WO2023157829A1 - Heat dissipation sheet manufacturing method and heat dissipation sheet - Google Patents

Heat dissipation sheet manufacturing method and heat dissipation sheet Download PDF

Info

Publication number
WO2023157829A1
WO2023157829A1 PCT/JP2023/004938 JP2023004938W WO2023157829A1 WO 2023157829 A1 WO2023157829 A1 WO 2023157829A1 JP 2023004938 W JP2023004938 W JP 2023004938W WO 2023157829 A1 WO2023157829 A1 WO 2023157829A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
fibrous filler
sheet
slurry
heat dissipation
Prior art date
Application number
PCT/JP2023/004938
Other languages
French (fr)
Japanese (ja)
Inventor
太陽 山浦
基 田中
光祐 和田
将太 渡邉
昌樹 松本
Original Assignee
デンカ株式会社
株式会社U-Map
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社, 株式会社U-Map filed Critical デンカ株式会社
Priority to JP2023536119A priority Critical patent/JP7399359B1/en
Publication of WO2023157829A1 publication Critical patent/WO2023157829A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks

Definitions

  • the present invention relates to a heat dissipation sheet containing fibrous fillers and a method for producing the same.
  • Insulating materials with improved thermal conductivity include, for example, composite materials containing inorganic fillers and resins.
  • inorganic fillers In order to increase the thermal conductivity of composite materials, it is important to efficiently conduct heat between inorganic fillers.
  • a method for efficiently conducting heat between inorganic fillers for example, a method using a fibrous filler as the inorganic filler can be mentioned.
  • a fibrous filler By using a fibrous filler as the inorganic filler, a network structure serving as a heat transfer path is formed by the fibrous filler in the composite material, thereby allowing heat to be efficiently conducted in the composite material.
  • Examples of composite materials using fibrous fillers as inorganic fillers include resin compositions containing AlN whiskers (see, for example, Patent Document 1).
  • resin compositions containing AlN whiskers see, for example, Patent Document 1
  • heat dissipation paths are efficiently formed by AlN whiskers with high thermal conductivity, so the thermal conductivity of the resin composition is improved.
  • an object of the present invention is to provide a method for manufacturing a heat-dissipating sheet that can improve the relative density of a heat-dissipating sheet containing a fibrous filler as an inorganic filler, and a heat-dissipating sheet manufactured by the method.
  • the gist of the present invention is as follows. [1] A slurry preparation step of preparing a slurry containing a fibrous filler, a dispersant, a solvent, and a resin, a forming step of applying the slurry into a sheet to obtain a sheet-like molded body, and the sheet A method for producing a heat-dissipating sheet, comprising a pressing step of pressing the shaped body.
  • the silane coupling agent is methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, dimethoxydiphenylsilane, n-propyltrimethoxysilane, hexyltrimethoxysilane, decyltrimethoxysilane, 1,6-bis from (trimethoxysilyl)hexane, trifluoropropyltrimethoxysilane, tetraethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, n-propyltriethoxysilane, hexyltriethoxysilane and
  • the slurry adjustment step after obtaining a mixture by mixing the fibrous filler, the dispersant, and the solvent, the slurry is adjusted by mixing the mixture and the resin.
  • the dispersant used in the slurry adjustment step is at least one dispersant selected from the group consisting of anionic surfactants, nonionic surfactants and alkoxysilanes [1] to [6]
  • a heat dissipation sheet formed by molding a thermally conductive resin composition containing a fibrous filler and a resin, wherein the fibrous filler is oriented in the in-plane direction of the heat dissipation sheet.
  • the resin is a silicone resin.
  • a method for manufacturing a heat-dissipating sheet that can improve the relative density of a heat-dissipating sheet containing a fibrous filler as an inorganic filler, and a heat-dissipating sheet manufactured by the method.
  • the method for producing a heat-dissipating sheet of the present invention includes a slurry preparation step of preparing a slurry containing a fibrous filler, a dispersant, a solvent, and a resin, and a sheet-like molding obtained by coating the slurry into a sheet. It includes a molding step and a pressing step for pressing the sheet-like formed body. Thereby, the relative density of the heat dissipation sheet containing the fibrous filler as the inorganic filler can be improved. Each step will be described in detail below.
  • a slurry containing a fibrous filler, a dispersant, a solvent, and a resin is prepared.
  • fibrous fillers used in the slurry preparation process include AlN whiskers, alumina fibers, titania fibers, zirconia fibers, and other ceramic fibers. These fibrous fillers can be used singly or in combination of two or more. Among these fibrous fillers, AlN whiskers are preferable from the viewpoint of thermal conductivity and insulation.
  • the average fiber length of the fibrous filler is preferably 25-500 ⁇ m.
  • the thermal conductivity of the heat dissipation sheet can be further increased.
  • the average fiber length of the fibrous filler is 500 ⁇ m or less, the dispersibility of the fibrous filler in the heat dissipation sheet can be improved.
  • the average fiber length of the fibrous filler is more preferably 35-400 ⁇ m, still more preferably 40-300 ⁇ m.
  • the average fiber length of the fibrous filler can be measured by the method described in Examples below.
  • the average fiber diameter of the fibrous filler is preferably 0.1-20 ⁇ m.
  • the average fiber diameter of the fibrous filler is 0.1 ⁇ m or more, the strength of the fibrous filler can be improved, so that the handleability of the fibrous filler can be further improved.
  • the average fiber diameter of the fibrous filler is 20 ⁇ m or less, gaps between the fibrous fillers are less likely to occur in the heat dissipation sheet, facilitating the formation of heat conduction paths. From this point of view, the average fiber diameter of the fibrous filler is more preferably 0.5 to 15 ⁇ m, still more preferably 1 to 10 ⁇ m.
  • the average fiber diameter of the fibrous filler can be measured by the method described in Examples below.
  • the ratio of the average fiber length to the average fiber diameter of the fibrous filler (average fiber length/average fiber diameter) (hereinafter referred to as aspect ratio) is preferably 10 or more.
  • the fibrous filler has an aspect ratio of 10 or more, heat dissipation paths are efficiently formed in the heat dissipation sheet, and a heat dissipation sheet with high thermal conductivity can be obtained.
  • the aspect ratio of the fibrous filler is more preferably 15 or more, still more preferably 20 or more, and even more preferably 30 or more.
  • the upper limit of the aspect ratio range of the fibrous filler is not particularly limited, but is usually 1000 or less.
  • resins used in the slurry preparation process include epoxy resins, silicone resins, silicone rubbers, acrylic resins, phenolic resins, melamine resins, urea resins, unsaturated polyesters, fluorine resins, polyimides, polyamideimides, polyetherimides, poly Butylene terephthalate, polyethylene terephthalate, polyphenylene ether, polyphenylene sulfide, wholly aromatic polyester, polysulfone, liquid crystal polymer, polyethersulfone, polycarbonate, maleimide modified resin, ABS (acrylonitrile-butadiene-styrene) resin, AAS (acrylonitrile-acrylic rubber/styrene) ) resin, AES (acrylonitrile-ethylene-propylene-diene rubber-styrene) resin, and the like. These resins can be used individually by 1 type or in combination of 2 or more types. Among these resins, silicone resins are preferred.
  • the solvent used in the slurry preparation process is not particularly limited as long as it can dissolve the resin and dispersant used in the slurry preparation process and can be easily removed by heating.
  • the solvent used in the slurry preparation step is preferably a non-polar solvent with a small solubility parameter (SP value).
  • SP value small solubility parameter
  • solvents used in the slurry preparation process include, for example, benzene, toluene, xylene, acetone, hexane, isopropyl alcohol, ligroin, mineral spirits, chlorinated hydrocarbons, and the like. These solvents can be used singly or in combination of two or more.
  • the dispersant used in the slurry preparation step is preferably a surfactant and a silane coupling agent, more preferably It is a surfactant.
  • Surfactants include, for example, cationic surfactants, anionic surfactants, nonionic surfactants, amphoteric surfactants, and the like. These surfactants can be used singly or in combination of two or more. Among these surfactants, anionic surfactants and nonionic surfactants are preferable from the viewpoint of improving the wettability of the fibrous filler to the solvent and suppressing aggregation of the fibrous filler.
  • anionic surfactants include alkyl sulfates, polyoxyethylene alkyl sulfates, alkylbenzene sulfonates, alkylnaphthalenesulfonates, fatty acid salts, naphthalenesulfonic acid formalin condensate salts, and polycarboxylic acid type surfactants.
  • Polymeric surfactants, alkenyl succinates, alkanesulfonates, polyoxyalkylene alkyl ether phosphates and salts thereof, polyoxyalkylene alkyl aryl ether phosphates and salts thereof, and the like can be mentioned. These anionic surfactants can be used singly or in combination of two or more.
  • phosphate esters of polyoxyalkylene alkyl ethers are preferred from the viewpoint of improving the wettability of fibrous fillers to solvents and suppressing aggregation of fibrous fillers.
  • Ethylene alkyl ether phosphate is more preferable, polyoxyethylene tridecyl ether phosphate is more preferable, and polyoxyethylene tridecyl ether phosphate represented by the following formula (1) is even more preferable.
  • R 1 represents an alkyl group having 1 to 20 carbon atoms or an alkylaryl group having 7 to 25 carbon atoms
  • R 2 represents a hydrogen atom or —(CH 2 CH 2 O) n R 3
  • R 3 represents an alkyl group having 1 to 20 carbon atoms or an alkylaryl group having 7 to 25 carbon atoms
  • n is an integer of 1 to 20 representing the number of ethylene oxide additions.
  • Nonionic surfactants include, for example, polyoxyethylene alkyl ethers, polyoxyalkylene alkyl ethers, polyoxyethylene derivatives, sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene sorbitol fatty acid esters, glycerin fatty acid esters, Polyoxyethylene fatty acid esters, polyoxyethylene hydrogenated castor oil, polyoxyethylene alkylamines, polyoxyalkylenealkylamines, alkylalkanolamides, and the like. These nonionic surfactants can be used singly or in combination of two or more.
  • sorbitan fatty acid esters are preferred, and sorbitan toluoleate is more preferred, from the viewpoint of improving the wettability of the fibrous filler to the solvent and suppressing aggregation of the fibrous filler.
  • alkoxysilanes are preferable from the viewpoint of improving the wettability of the fibrous filler to the solvent and suppressing the aggregation of the fibrous filler.
  • Alkoxysilanes used as dispersants include, for example, methyltrimethoxysilane, dimethyldimethoxysilane, trimethylmethoxysilane, phenyltrimethoxysilane, dimethoxydiphenylsilane, n-propyltrimethoxysilane, hexyltrimethoxysilane, decyltrimethoxysilane.
  • 1,6-bis(trimethoxysilyl)hexane trifluoropropyltrimethoxysilane, tetraethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, n-propyltriethoxysilane, hexyltriethoxysilane , octyltriethoxysilane and the like.
  • These alkoxysilanes can be used singly or in combination of two or more.
  • alkoxysilanes selected from the group consisting of methyltrimethoxysilane, dimethyldimethoxysilane and trimethylmethoxysilane, from the viewpoint of improving the wettability of the fibrous filler to the solvent and suppressing the aggregation of the fibrous filler. is preferred, and dimethyldimethoxysilane is more preferred.
  • the amount of the fibrous filler is preferably 5 to 60 parts by volume with respect to the total 100 parts by volume of the fibrous filler and the resin, More preferably 10 to 50 parts by volume, still more preferably 15 to 40 parts by volume.
  • the amount of the solvent is preferably 10 to 80 parts by mass, more preferably 20 to 70 parts by mass, with respect to the total 100 parts by mass of the fibrous filler and the resin, More preferably, it is 30 to 60 parts by mass.
  • the amount of the dispersant compounded is preferably 0.01 to 10 parts by mass, more preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the fibrous filler. is 0.05 to 5 parts by mass, more preferably 0.1 to 3 parts by mass.
  • a device for mixing the fibrous filler, the dispersant, the solvent and the resin is not particularly limited as long as it can mix while suppressing pulverization of the fibrous filler.
  • fibrous fillers, dispersants, solvents and resins can be mixed using a stirring mixer.
  • the stirring kneader is equipped with rotating stirring blades, and the fibrous filler, dispersant, solvent and resin are mixed by the stirring blades.
  • the fibrous filler, dispersant, solvent and resin can also be mixed using a high speed agitator (dissolver).
  • high-speed agitators rotating turbine-like blades create convection currents in the ingredients in a vessel, thereby mixing the ingredients.
  • the slurry adjustment step it is preferable to prepare a slurry by mixing a fibrous filler, a dispersant, and a solvent to obtain a mixture, and then mixing the mixture with a resin.
  • the dispersion of the fibrous filler in the slurry can be further improved, and as a result, the relative density of the heat dissipation sheet can be further improved.
  • the mixing time for mixing the fibrous filler, dispersant, solvent and resin is preferably 0.5 to 30 minutes.
  • the fibrous filler in a dry state is often agglomerated, but if the mixing time is 0.5 minutes or longer, the agglomeration of the fibrous filler can be further sufficiently disentangled, and the fibrous filler in the slurry can be disaggregated. Dispersion can be further improved. As a result, the relative density of the heat dissipation sheet can be further improved.
  • the mixing time is 30 minutes or less, it is possible to suppress pulverization of the fibrous filler during mixing. From this point of view, the mixing time is more preferably 1.0 to 15 minutes, more preferably 1.2 to 10 minutes.
  • the slurry is applied in the form of a sheet to obtain a sheet-like formed body.
  • the slurry can be formed into a sheet by a doctor blade method.
  • the doctor blade method is a method of thinly spreading a slurry on a carrier film to obtain a compact.
  • the thickness of the sheet-like compact can be adjusted by adjusting the distance between the blade for thinly spreading the slurry and the carrier film and the speed at which the carrier film is drawn.
  • the slurry applied in sheet form is dried to form a sheet-like molded body.
  • the drying time of the slurry applied in sheet form is preferably 3 to 60 minutes. When the drying time is 3 minutes or longer, the solvent in the slurry can be sufficiently removed. When the drying time is 60 minutes or less, the sheet-like molding is not too hardened, so that it is possible to suppress the formation of gaps between the fibrous filler and the resin in the later-described pressing step. From this point of view, the drying time is more preferably 5 to 30 minutes, still more preferably 10 to 20 minutes.
  • the drying temperature of the slurry applied in sheet form is preferably 50 to 150°C.
  • the drying temperature is 50°C or higher, the solvent in the slurry can be sufficiently removed.
  • the drying temperature is 150° C. or less, the sheet-like molding is not too hardened, so that it is possible to suppress the formation of gaps between the fibrous filler and the resin in the later-described pressing step. From such a point of view, the drying temperature is more preferably 60 to 120°C, more preferably 70 to 100°C.
  • the press pressure when pressing the sheet-shaped compact is preferably 0.5 to 30 MPa.
  • the pressing pressure is 0.5 MPa or more, the relative density of the sheet-shaped molding can be further improved by pressing.
  • the pressing pressure is 30 MPa or less, deformation of the sheet-like molding caused by pressing can be suppressed. If the deformation of the sheet-like molding caused by pressing is large, gaps are likely to occur between the fibrous filler and the resin. From such a point of view, the press pressure when pressing the sheet-shaped compact is more preferably 1.0 to 20 MPa, and still more preferably 1.5 to 7 MPa.
  • the pressing time for pressing the sheet-shaped compact is preferably 5 to 60 minutes.
  • the pressing time is 5 minutes or more, the relative density of the sheet-like compact can be further improved by pressing.
  • the pressing time is 60 minutes or less, the deformation of the sheet-like molding caused by pressing can be suppressed. If the deformation of the sheet-like molding caused by pressing becomes large, a gap is likely to occur between the fibrous filler and the resin. From such a point of view, the press pressure when pressing the sheet-shaped compact is more preferably 5 to 50 minutes, and even more preferably 5 to 45 minutes.
  • the press temperature when pressing the sheet-shaped compact is preferably room temperature (15 to 30°C).
  • the method for producing a heat-dissipating sheet of the present invention may further include a surface treatment step before the slurry preparation step.
  • the fibrous filler is surface treated using a silane coupling agent.
  • the silane coupling agent used in the surface treatment step is preferably alkoxysilane.
  • Alkoxysilanes used in the surface treatment step include, for example, methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, dimethoxydiphenylsilane, n-propyltrimethoxysilane, hexyltrimethoxysilane, decyltrimethoxysilane, 1, 6-bis(trimethoxysilyl)hexane, trifluoropropyltrimethoxysilane, tetraethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, n-propyltriethoxysilane, hexyltriethoxysilane, octyltri ethoxysilane and the like.
  • alkoxysilanes can be used singly or in combination of two or more.
  • dimethyldimethoxysilane is preferred from the viewpoint of improving the affinity between the fibrous filler and the resin and improving the relative density of the heat-dissipating sheet.
  • Examples of surface treatment methods for surface treatment of fibrous fillers using a silane coupling agent include dry methods and wet methods.
  • the dry method is a method in which a fibrous filler and a silane coupling agent are stirred and mixed using a high-speed agitator such as a Henschel mixer or a blender, and the surface of the fibrous filler is modified with the silane coupling agent.
  • An organic solvent containing the silane coupling agent obtained by diluting the silane coupling agent to a concentration of approximately 1% by mass or an aqueous solution containing the silane coupling agent is sprayed onto the fibrous filler by a sprayer or the like to uniformly coat the surface of the fibrous filler.
  • the silane coupling agent to the fibrous filler so that it is dispersed in the Organic solvents for diluting the silane coupling agent include, for example, methyl alcohol, ethyl alcohol, isopropyl alcohol, acetone, toluene, and xylene.
  • the wet method is a method in which a fibrous filler and a silane coupling agent are reacted in a slurry or solution to modify the surface of the fibrous filler with the silane coupling agent.
  • the solution for reacting the fibrous filler with the silane coupling agent include water, methyl alcohol, ethyl alcohol, isopropyl alcohol, acetone, toluene, and xylene.
  • the fibrous filler is separated from the solution by methods such as filtration, centrifugation, decantation, and dried. Also, fibrous fillers may be used in a state of being contained in a solution. In the dry method, the fibrous filler may be pulverized during the surface treatment, so the wet method is preferred.
  • the temperature at which the fibrous filler is surface-treated with the silane coupling agent is preferably 0 to 50°C, more preferably 10 to 35°C.
  • the treatment time for surface treatment of the fibrous filler with the silane coupling agent is preferably 0.1 to 5 hours, more preferably 0.2 to 2 hours.
  • the amount of the silane coupling agent used when surface-treating the fibrous filler with the silane coupling agent is preferably 0.05 to 10 parts by mass, more preferably 0.05 to 10 parts by mass, with respect to 100 parts by mass of the fibrous filler. 0.1 to 5 parts by mass.
  • the method for producing a heat-dissipating sheet of the present invention may further include a sieving step of sieving the fibrous filler surface-treated in the surface treatment step using a sieve with an opening of 30 to 500 mesh.
  • the fibrous filler used in the slurry adjusting step may be the fibrous filler on the sieve sieved in the sieving step.
  • the average fiber length of the fibrous filler after the sieving step is preferably 50-500 ⁇ m.
  • the average fiber length of the fibrous filler is 50 ⁇ m or more, the thermal conductivity of the heat dissipation sheet can be further increased.
  • the average fiber length of the fibrous filler is 500 ⁇ m or less, the dispersibility of the fibrous filler in the heat dissipation sheet can be improved.
  • the average fiber length of the fibrous filler is more preferably 100-400 ⁇ m, still more preferably 150-300 ⁇ m.
  • the average fiber length of the fibrous filler can be measured by the method described in Examples below.
  • the average fiber diameter of the fibrous filler after the sieving step is preferably 0.1 to 20 ⁇ m.
  • the average fiber diameter of the fibrous filler is 0.1 ⁇ m or more, the strength of the fibrous filler can be improved, so that the handleability of the fibrous filler can be further improved.
  • the average fiber diameter of the fibrous filler is 20 ⁇ m or less, gaps between the fibrous fillers are less likely to occur in the heat dissipation sheet, facilitating the formation of heat conduction paths. From this point of view, the average fiber diameter of the fibrous filler is more preferably 0.5 to 15 ⁇ m, still more preferably 1.0 to 10 ⁇ m.
  • the average fiber diameter of the fibrous filler can be measured by the method described in Examples below.
  • the ratio of the average fiber length to the average fiber diameter of the fibrous filler after the sieving process is preferably 10 or more.
  • the fibrous filler has an aspect ratio of 10 or more, heat dissipation paths are efficiently formed in the heat dissipation sheet, and a heat dissipation sheet with high thermal conductivity can be obtained.
  • the aspect ratio of the fibrous filler is more preferably 15 or more, and still more preferably 20 or more.
  • the upper limit of the aspect ratio range of the fibrous filler is not particularly limited, but is usually 200 or less.
  • the fibrous filler surface-treated by the wet method in the surface treatment step may be dried after the sieving step without drying.
  • the fibrous filler that has been surface-treated by a wet method and dried may be sieved in the sieving step.
  • the heat dissipating sheet of the present invention is formed by molding a thermally conductive resin composition containing a fibrous filler and a resin, and the fibrous filler is oriented in the in-plane direction of the heat dissipating sheet. This makes it possible to obtain a heat-dissipating sheet with high thermal conductivity in the surface direction.
  • the heat-dissipating sheet of the present invention can be manufactured, for example, by the method for manufacturing a heat-dissipating sheet of the present invention.
  • a dispersing agent is blended in a slurry (thermally conductive resin composition) containing a fibrous filler, a resin, and a solvent.
  • a slurry thermalally conductive resin composition
  • the fibrous filler is sufficiently deagglomerated in the slurry, and the dispersibility of the fibrous filler in the slurry is improved.
  • the fibrous filler is easily oriented in the coating direction, so a heat dissipation sheet in which the fibrous filler is oriented in the in-plane direction of the heat dissipation sheet can be easily produced. .
  • the thickness of the heat-dissipating sheet of the present invention is preferably 100-5000 ⁇ m.
  • the thickness of the heat-dissipating sheet is 100 ⁇ m or more, the insulation of the heat-dissipating sheet can be improved.
  • the thickness of the heat-dissipating sheet is 5000 ⁇ m or less, the heat conductivity in the thickness direction of the heat-dissipating sheet can be improved. From this point of view, the thickness of the heat dissipation sheet of the present invention is more preferably 150 to 2000 ⁇ m, still more preferably 200 to 1000 ⁇ m.
  • the thickness of the heat-dissipating sheet of the present invention can be easily reduced to 1000 ⁇ m or less.
  • the thermal conductivity in the surface direction of the heat dissipation sheet of the present invention is preferably 3 W/m ⁇ K or more.
  • the thermal conductivity in the surface direction of the heat-dissipating sheet is 3 W/m ⁇ K or more, heat generated by heating a part of the heat-dissipating sheet can be easily conducted to the entire heat-dissipating sheet.
  • heat generated by heating a part of the heat dissipation sheet is radiated from the entire heat dissipation sheet, so that the heat generated by heating a part of the heat dissipation sheet can be easily dissipated.
  • the thermal conductivity in the plane direction of the heat dissipation sheet of the present invention is more preferably 4 W/m ⁇ K or more, and still more preferably 5 W/m ⁇ K or more.
  • the upper limit of the range of thermal conductivity in the surface direction of the heat dissipation sheet of the present invention is not particularly limited, it is usually 15 W/m ⁇ K or less. Further, the thermal conductivity in the surface direction of the heat-dissipating sheet can be measured by the method described in Examples below.
  • the thermal conductivity ratio (surface direction/thickness direction) of the thermal conductivity in the plane direction to the thermal conductivity in the thickness direction of the heat dissipation sheet of the present invention is preferably 3.5 or more.
  • the thermal conductivity ratio (plane direction/thickness direction) is 3.5 or more, the thermal conductivity of the heat dissipation sheet can be concentrated in the plane direction, so that the heat conductivity in the plane direction of the heat dissipation sheet is further improved. be able to.
  • the thermal conductivity ratio (surface direction/thickness direction) of the heat dissipation sheet of the present invention is more preferably 5 or more, still more preferably 6 or more, and even more preferably 7 or more. , more preferably 8 or more, and particularly preferably 9 or more.
  • the thermal conductivity in the thickness direction of the heat dissipation sheet is low, the heat conductivity in the thickness direction of the heat dissipation sheet is improved by making the heat dissipation sheet thinner.
  • the upper limit of the thermal conductivity ratio (surface direction/thickness direction) of the heat-dissipating sheet of the present invention is not particularly limited, but is usually 15 or less.
  • the heat conductivity in the thickness direction and the heat conductivity in the plane direction of the heat dissipation sheet can be measured by the method described in Examples below.
  • the relative density of the heat dissipation sheet of the present invention is preferably 90% or more.
  • the relative density of the heat-dissipating sheet of the present invention is 90% or more, the thermal conductivity of the heat-dissipating sheet can be further improved.
  • the relative density of the heat dissipation sheet is more preferably 93% or higher, more preferably 95% or higher.
  • the upper limit of the relative density range of the heat-dissipating sheet is 100%.
  • the relative density can be calculated by dividing the density of the heat-dissipating sheet by the theoretical density of the heat-dissipating sheet.
  • the density of the heat-dissipating sheet can be measured by the method described in Examples below.
  • the theoretical density of the heat-dissipating sheet can be calculated from the density of the resin forming the heat-dissipating sheet, the density of the fibrous filler forming the heat-dissipating sheet, and the volume ratio of the resin to the fibrous filler in the heat-dissipating sheet.
  • the resin and fibrous filler constituting the heat-dissipating sheet of the present invention are the same as the resin and fibrous filler used in the method for manufacturing the heat-dissipating sheet of the present invention. is omitted.
  • the ratio of the fibrous filler in the heat-dissipating sheet of the present invention is preferably 5 to 50% with respect to the total 100% by volume of the fibrous filler and the resin. % by volume, more preferably 10 to 45% by volume, and even more preferably 15 to 35% by volume. Even if the ratio of the fibrous filler in the heat-dissipating sheet is small, the network structure of the fibrous filler that serves as a heat transfer path can be formed inside the heat-dissipating sheet. Therefore, even if the proportion of the fibrous filler in the heat dissipation sheet is small, the thermal conductivity of the heat dissipation sheet can be increased.
  • the in-plane thermal diffusivity of the heat-dissipating sheet was measured by the In-Plane method using a thermal diffusivity measuring device (manufactured by Netzsch, trade name "LFA447 Nanoflash”).
  • the specific heat of the heat-dissipating sheet was calculated from the specific heat of each material constituting the solid content of the slurry and its composition ratio.
  • the thermal diffusivity in the thickness direction of the heat-dissipating sheet was measured by a laser flash method using a thermal diffusivity measuring device (manufactured by Netzsch, trade name "LFA447 Nanoflash”).
  • the specific heat and measured specific gravity of the heat-dissipating sheet were measured in the same manner as the method for measuring the in-plane thermal diffusivity of the heat-dissipating sheet.
  • silicone resin manufactured by Asahi Kasei Corporation, trade name "ELASTOSIL LR3303/20", dimethyl silicone
  • a slurry thermal conductive resin composition
  • a carrier film manufactured by Nitto Denko Corporation, trade name “NITOFLON Films 920UL”, thickness 0.1 ⁇ m, Teflon (registered trademark) film
  • the prepared slurry was applied and dried at 80° C. for 15 minutes to prepare a sheet-shaped compact.
  • Heat dissipation sheet 2 A heat-dissipating sheet 2 was produced in the same manner as the heat-dissipating sheet 1, except that the surface treatment was not performed. When the cross section of the heat dissipation sheet 2 was observed with a scanning electron microscope (SEM), the AlN whiskers were oriented in the in-plane direction of the heat dissipation sheet.
  • SEM scanning electron microscope
  • AlN whisker 1 manufactured by U-MAP Co., Ltd., trade name “Thermalnite (registered trademark) short fiber crushing type (fine powder removal)”), 5 parts by mass of dispersant (Daiichi Kogyo Seiyaku Co., Ltd.) per 100 parts by mass of AlN whisker 50 parts by mass of toluene is added to a total of 100 parts by mass of a total of 100 parts by mass of surface-treated AlN whiskers and a silicone resin described later. The mixture was mixed for 7.5 minutes using a product name “Awatori Mixer ARE-310” manufactured by Thinky Corporation.
  • silicone resin manufactured by Asahi Kasei Corporation, trade name "ELASTOSIL LR3303/20", dimethyl silicone
  • a slurry thermal conductive resin composition
  • a carrier film manufactured by Nitto Denko Corporation, trade name “NITOFLON Films 920UL”, thickness 0.1 ⁇ m, Teflon (registered trademark) film
  • the prepared slurry was applied and dried at 80° C. for 15 minutes to prepare a sheet-shaped compact.
  • Heat-dissipating sheet 4 was prepared in the same manner as heat-dissipating sheet 3, except that sorbitan trioleate (manufactured by Kao Corporation, trade name "Rheodol SP-O30V”) was used as a dispersant.
  • sorbitan trioleate manufactured by Kao Corporation, trade name "Rheodol SP-O30V”
  • SEM scanning electron microscope
  • Heat-dissipating sheet 5 was prepared in the same manner as heat-dissipating sheet 3, except that dimethyldimethoxysilane (manufactured by Dow Toray Industries, Inc., trade name: "DOWSIL Z-6329 Silane”) was used as a dispersant.
  • dimethyldimethoxysilane manufactured by Dow Toray Industries, Inc., trade name: "DOWSIL Z-6329 Silane”
  • SEM scanning electron microscope
  • Heat dissipation sheet 6 An attempt was made to produce heat-dissipating sheet 6 in the same manner as heat-dissipating sheet 3, except that no dispersant was used. However, the AlN whiskers formed agglomerates during mixing in the slurry preparation process, and a coatable slurry could not be produced. Therefore, the heat dissipation sheet 6 could not be produced.
  • silicone resin manufactured by Asahi Kasei Corporation, trade name "ELASTOSIL LR3303/20", dimethyl silicone
  • a slurry thermal conductive resin composition
  • a carrier film manufactured by Nitto Denko Corporation, trade name “NITOFLON Films 920UL”, thickness 0.1 ⁇ m, Teflon (registered trademark) film
  • a slurry adjustment process by a doctor blade method.
  • the resulting slurry was applied and dried at 80° C. for 15 minutes to prepare a sheet-like molding.
  • Heat dissipation sheet 8 A heat-dissipating sheet 8 was produced in the same manner as the heat-dissipating sheet 7, except that the slurry preparation process was changed as follows. When the cross section of the heat dissipation sheet 8 was observed with a scanning electron microscope (SEM), the AlN whiskers were oriented in the in-plane direction of the heat dissipation sheet.
  • SEM scanning electron microscope
  • AlN whisker 1 manufactured by U-MAP Co., Ltd., trade name “Thermalnite (registered trademark) short fiber crushing type (fine powder removal)”), 5 parts by mass of dispersant (Daiichi Kogyo Seiyaku Co., Ltd.) per 100 parts by mass of AlN whisker 50 parts by mass of toluene is added to a total of 100 parts by mass of a total of 100 parts by mass of surface-treated AlN whiskers and a silicone resin described later. The mixture was mixed for 7.5 minutes using a product name “Awatori Mixer ARE-310” manufactured by Thinky Corporation.
  • silicone resin manufactured by Asahi Kasei Corporation, trade name "ELASTOSIL LR3303/20", dimethyl silicone
  • a slurry thermal conductive resin composition
  • a carrier film manufactured by Nitto Denko Corporation, trade name “NITOFLON Films 920UL”, thickness 0.1 ⁇ m, Teflon (registered trademark) film
  • the prepared slurry was applied and dried at 80° C. for 5 minutes to prepare a sheet-shaped compact.
  • Heat-dissipating sheet 10 was produced in the same manner as heat-dissipating sheet 9 except that the drying time in the molding process was changed from 5 minutes to 10 minutes.
  • SEM scanning electron microscope
  • Heat-dissipating sheet 11 was produced in the same manner as heat-dissipating sheet 9 except that the drying time in the molding process was changed from 5 minutes to 15 minutes.
  • SEM scanning electron microscope
  • Heat-dissipating sheet 12 was produced in the same manner as heat-dissipating sheet 9 except that the drying time in the molding process was changed from 5 minutes to 20 minutes.
  • SEM scanning electron microscope
  • Heat-dissipating sheet 13 was produced in the same manner as heat-dissipating sheet 9 except that the drying time in the molding process was changed from 5 minutes to 30 minutes.
  • SEM scanning electron microscope
  • silicone resin manufactured by Asahi Kasei Corporation, trade name "ELASTOSIL LR3303/20", dimethyl silicone
  • a slurry thermal conductive resin composition
  • a carrier film manufactured by Nitto Denko Corporation, trade name “NITOFLON Films 920UL”, thickness 0.1 ⁇ m, Teflon (registered trademark) film
  • the prepared slurry was applied and dried at 80° C. for 15 minutes to prepare a sheet-shaped compact.
  • Heat dissipation sheet 15 A heat-dissipating sheet 15 was produced in the same manner as the heat-dissipating sheet 14 except that the pressing temperature in the pressing process was changed from room temperature to 150° C. and the pressing pressure was changed from 2 MPa to 15 MPa.
  • the cross section of the heat dissipation sheet 15 was observed with a scanning electron microscope (SEM), the AlN whiskers were oriented in the in-plane direction of the heat dissipation sheet.

Abstract

This heat dissipation sheet manufacturing method includes: a slurry preparation step for preparing a slurry containing a fibrous filler, a dispersant, a solvent, and a resin; a shaping step for applying the slurry in a sheet to obtain a sheet-like shaped body; and a pressing step for pressing the sheet-like shaped body. This heat dissipation sheet is obtained by shaping a thermally conductive resin composition containing the fibrous filler and the resin, said fibrous filler being oriented in the in-plane direction of the heat dissipation sheet. With the present invention, it is possible to provide a heat dissipation sheet manufacturing method with which it is possible to improve the relative density of a heat dissipation sheet containing a fibrous filler as an inorganic filler. It is also possible to provide a heat dissipation sheet manufactured using said manufacturing method.

Description

放熱シートの製造方法及び放熱シートMethod for manufacturing heat-dissipating sheet and heat-dissipating sheet
 本発明は繊維状フィラーを含む放熱シート及びその製造方法に関する。 The present invention relates to a heat dissipation sheet containing fibrous fillers and a method for producing the same.
 近年、電子機器の小型化及び高機能化が進んでいる。それに伴い、電子部品に対して高出力化及び高密度化が進んでいる。そのため、電子機器に使用される絶縁材料の熱伝導率を向上させることが重要な課題となっている。熱伝導率を向上させた絶縁材料には、例えば、無機フィラー及び樹脂を含むコンポジット材料が挙げられる。コンポジット材料を高熱伝導化するには、無機フィラー間で効率よく熱を伝導させることが重要である。無機フィラー間で効率よく熱を伝導させる方法として、例えば、無機フィラーとして繊維状フィラーを用いる方法が挙げられる。無機フィラーとして繊維状フィラーを用いることにより、コンポジット材料中に、伝熱経路となるネットワーク構造が繊維状フィラーによって形成され、これにより、コンポジット材料中を熱は効率よく伝導することができる。 In recent years, electronic devices have become smaller and more sophisticated. Accompanying this, electronic components are becoming higher in output and higher in density. Therefore, it is an important issue to improve the thermal conductivity of insulating materials used in electronic devices. Insulating materials with improved thermal conductivity include, for example, composite materials containing inorganic fillers and resins. In order to increase the thermal conductivity of composite materials, it is important to efficiently conduct heat between inorganic fillers. As a method for efficiently conducting heat between inorganic fillers, for example, a method using a fibrous filler as the inorganic filler can be mentioned. By using a fibrous filler as the inorganic filler, a network structure serving as a heat transfer path is formed by the fibrous filler in the composite material, thereby allowing heat to be efficiently conducted in the composite material.
 無機フィラーとして繊維状フィラーを用いたコンポジット材料として、例えば、AlNウィスカーを含有する樹脂組成物が挙げられる(例えば、特許文献1参照)。特許文献1に記載の樹脂組成物では、熱伝導性の高いAlNウィスカーによって放熱パスが効率的に形成されるので、樹脂組成物の熱伝導性は向上する。 Examples of composite materials using fibrous fillers as inorganic fillers include resin compositions containing AlN whiskers (see, for example, Patent Document 1). In the resin composition described in Patent Document 1, heat dissipation paths are efficiently formed by AlN whiskers with high thermal conductivity, so the thermal conductivity of the resin composition is improved.
特開2014-073951号公報JP 2014-073951 A
 しかしながら、AlNウィスカーや繊維状炭素などの繊維状フィラーには、樹脂との密着性が低いものが多い。そのため、繊維状フィラーと樹脂とを混合してコンポジット材料を作製した場合に、樹脂と繊維状フィラーとの間に空隙ができ、コンポジット材料の相対密度が低下することがあった。なお、コンポジット材料の相対密度低下の原因となる空隙の熱伝導性は高くない。そのため、相対密度が低下したコンポジット材料の熱伝導性は、期待された程、高くはならなかった。 However, many fibrous fillers such as AlN whiskers and fibrous carbon have low adhesion to resins. Therefore, when a composite material is produced by mixing a fibrous filler and a resin, voids are formed between the resin and the fibrous filler, and the relative density of the composite material is sometimes lowered. In addition, the thermal conductivity of the voids, which causes a decrease in the relative density of the composite material, is not high. Therefore, the thermal conductivity of the composite material with the lowered relative density was not as high as expected.
 そこで、本発明は、無機フィラーとして繊維状フィラーを含む放熱シートの相対密度を向上させることができる放熱シートの製造方法及びその製造方法により製造された放熱シートを提供することを目的とする。 Therefore, an object of the present invention is to provide a method for manufacturing a heat-dissipating sheet that can improve the relative density of a heat-dissipating sheet containing a fibrous filler as an inorganic filler, and a heat-dissipating sheet manufactured by the method.
 本発明者らは、鋭意研究を進めたところ、放熱シートを製造するために使用するスラリーに分散剤を添加することにより、相対密度の高い放熱シートを製造できることを見出し、本発明を完成させた。本発明は、以下を要旨とする。
[1]繊維状フィラーと、分散剤と、溶剤と、樹脂とを含むスラリーを調整するスラリー調製工程と、前記スラリーをシート状に塗工してシート状成形体を得る成形工程と、前記シート状成形体をプレスするプレス工程とを含む放熱シートの製造方法。
[2]前記スラリー調製工程の前に、シランカップリング剤を用いて前記繊維状フィラーの表面処理を実施する表面処理工程をさらに含む上記[1]に記載の放熱シートの製造方法。
[3]前記シランカップリング剤が、メチルトリメトキシシラン、ジメチルジメトキシラン、フェニルトリメトキシシラン、ジメトキシジフェニルシラン、n-プロピルトリメトキシシラン、ヘキシルトリメトキシシラン、デシルトリメトキシシラン、1,6-ビス(トリメトキシシリル)ヘキサン、トリフルオロプロピルトリメトキシシラン、テトラエトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、n-プロピルトリエトキシシラン、ヘキシルトリエトキシシラン及びオクチルトリエトキシシランからなる群から選択される少なくも1種のアルコキシシランである上記[2]に記載の放熱シートの製造方法。
[4]前記繊維状フィラーを、目開き30~500メッシュの篩を用いて篩分けする篩分工程をさらに含み、前記スラリー調整工程で用いる繊維状フィラーは、前記篩分工程で篩分けされた篩上の繊維状フィラーである上記[1]~[3]のいずれか1つに記載の放熱シートの製造方法。
[5]前記スラリー調整工程は、前記繊維状フィラーと、前記分散剤と、前記溶剤とを混合して混合物を得た後に、前記混合物と前記樹脂とを混合することによって前記スラリーを調整する上記[1]~[4]のいずれか1つに記載の放熱シートの製造方法。
[6]前記スラリー調整工程における前記繊維状フィラー、前記分散剤及び前記溶剤を混合するときの混合時間が0.5~30分である上記[5]に記載の放熱シートの製造方法。
[7]前記スラリー調整工程で用いる前記分散剤は、陰イオン性界面活性剤、非イオン性界面活性剤及びアルコキシシランからなる群から選択される少なくとも1種の分散剤である上記[1]~[6]のいずれか1つに記載の放熱シートの製造方法。
[8]前記分散剤が、ポリオキシアルキレンアルキルエーテルのリン酸エステル、ソルビタン脂肪酸エステル及びジメチルジメトキシシランからなる群から選択される少なくとも1種の分散剤である上記[7]に記載の放熱シートの製造方法。
[9]前記スラリー調整工程で用いる前記樹脂がシリコーン樹脂である上記[1]~[8]のいずれか1つに記載の放熱シートの製造方法。
[10]前記成形工程は、シート状に塗工した前記スラリーを3~60分の乾燥時間で乾燥する上記[1]~[9]のいずれか1つに記載の放熱シートの製造方法。
[11]前記プレス工程において前記シート状成形体をプレスするときのプレス圧が0.5~30MPaであり、プレス時間が5~60分である上記[1]~[10]のいずれか1つに記載の放熱シートの製造方法。
[12]繊維状フィラーと樹脂とを含む熱伝導性樹脂組成物を成形してなる放熱シートであって、前記繊維状フィラーが前記放熱シートの面内方向に配向している放熱シート。
[13]前記樹脂がシリコーン樹脂である上記[12]に記載の放熱シート。
As a result of intensive research, the present inventors found that a heat-dissipating sheet with a high relative density can be produced by adding a dispersant to the slurry used for manufacturing the heat-dissipating sheet, and completed the present invention. . The gist of the present invention is as follows.
[1] A slurry preparation step of preparing a slurry containing a fibrous filler, a dispersant, a solvent, and a resin, a forming step of applying the slurry into a sheet to obtain a sheet-like molded body, and the sheet A method for producing a heat-dissipating sheet, comprising a pressing step of pressing the shaped body.
[2] The method for producing a heat-dissipating sheet according to [1] above, further including a surface treatment step of surface-treating the fibrous filler using a silane coupling agent before the slurry preparation step.
[3] The silane coupling agent is methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, dimethoxydiphenylsilane, n-propyltrimethoxysilane, hexyltrimethoxysilane, decyltrimethoxysilane, 1,6-bis from (trimethoxysilyl)hexane, trifluoropropyltrimethoxysilane, tetraethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, n-propyltriethoxysilane, hexyltriethoxysilane and octyltriethoxysilane The method for producing a heat-dissipating sheet according to [2] above, wherein the at least one alkoxysilane is selected from the group consisting of:
[4] Further includes a sieving step of sieving the fibrous filler using a sieve with an opening of 30 to 500 mesh, and the fibrous filler used in the slurry adjustment step is sieved in the sieving step. The method for producing a heat-dissipating sheet according to any one of [1] to [3] above, wherein the fibrous filler is a sieve.
[5] In the slurry adjustment step, after obtaining a mixture by mixing the fibrous filler, the dispersant, and the solvent, the slurry is adjusted by mixing the mixture and the resin. [1] A method for producing a heat-dissipating sheet according to any one of [4].
[6] The method for producing a heat-dissipating sheet according to [5], wherein the fibrous filler, the dispersant, and the solvent are mixed in the slurry adjustment step for a mixing time of 0.5 to 30 minutes.
[7] The dispersant used in the slurry adjustment step is at least one dispersant selected from the group consisting of anionic surfactants, nonionic surfactants and alkoxysilanes [1] to [6] The method for producing a heat-dissipating sheet according to any one of [6].
[8] The heat-dissipating sheet according to [7] above, wherein the dispersant is at least one dispersant selected from the group consisting of polyoxyalkylene alkyl ether phosphate, sorbitan fatty acid ester, and dimethyldimethoxysilane. Production method.
[9] The method for producing a heat-dissipating sheet according to any one of [1] to [8] above, wherein the resin used in the slurry adjustment step is a silicone resin.
[10] The method for producing a heat-dissipating sheet according to any one of [1] to [9] above, wherein the molding step dries the slurry applied in the form of a sheet for a drying time of 3 to 60 minutes.
[11] Any one of the above [1] to [10], wherein the pressing pressure is 0.5 to 30 MPa and the pressing time is 5 to 60 minutes when pressing the sheet-shaped compact in the pressing step. 3. The method for manufacturing the heat-dissipating sheet according to 1.
[12] A heat dissipation sheet formed by molding a thermally conductive resin composition containing a fibrous filler and a resin, wherein the fibrous filler is oriented in the in-plane direction of the heat dissipation sheet.
[13] The heat dissipation sheet according to [12] above, wherein the resin is a silicone resin.
 本発明によれば、無機フィラーとして繊維状フィラーを含む放熱シートの相対密度を向上させることができる放熱シートの製造方法及びその製造方法により製造された放熱シートを提供することができる。 According to the present invention, it is possible to provide a method for manufacturing a heat-dissipating sheet that can improve the relative density of a heat-dissipating sheet containing a fibrous filler as an inorganic filler, and a heat-dissipating sheet manufactured by the method.
[放熱シートの製造方法]
 本発明の放熱シートの製造方法は、繊維状フィラーと、分散剤と、溶剤と、樹脂とを含むスラリーを調整するスラリー調製工程と、スラリーをシート状に塗工してシート状成形体を得る成形工程と、シート状成形体をプレスするプレス工程とを含む。これにより、無機フィラーとして繊維状フィラーを含む放熱シートの相対密度を向上させることができる。以下、各工程を詳細に説明する。
[Manufacturing method of heat dissipation sheet]
The method for producing a heat-dissipating sheet of the present invention includes a slurry preparation step of preparing a slurry containing a fibrous filler, a dispersant, a solvent, and a resin, and a sheet-like molding obtained by coating the slurry into a sheet. It includes a molding step and a pressing step for pressing the sheet-like formed body. Thereby, the relative density of the heat dissipation sheet containing the fibrous filler as the inorganic filler can be improved. Each step will be described in detail below.
(スラリー調製工程)
 スラリー調製工程では、繊維状フィラーと、分散剤と、溶剤と、樹脂とを含むスラリーを調整する。
<繊維状フィラー>
 スラリー調製工程で使用する繊維状フィラーには、例えば、AlNウィスカー、アルミナ繊維、チタニア繊維、ジルコニア繊維、その他のセラミックス繊維等が挙げられる。これらの繊維状フィラーは、1種を単独で、又は2種以上を組み合わせて使用することができる。これらの繊維状フィラーの中で、熱伝導性及び絶縁性の観点から、AlNウィスカーが好ましい。
(Slurry preparation step)
In the slurry preparation step, a slurry containing a fibrous filler, a dispersant, a solvent, and a resin is prepared.
<Fibrous filler>
Examples of fibrous fillers used in the slurry preparation process include AlN whiskers, alumina fibers, titania fibers, zirconia fibers, and other ceramic fibers. These fibrous fillers can be used singly or in combination of two or more. Among these fibrous fillers, AlN whiskers are preferable from the viewpoint of thermal conductivity and insulation.
 繊維状フィラーの平均繊維長は好ましくは25~500μmである。繊維状フィラーの平均繊維長が25μm以上であると、放熱シートの熱伝導性をさらに高くすることができる。繊維状フィラーの平均繊維長が500μm以下であると、放熱シートにおける繊維状フィラーの分散性を向上させることができる。また、繊維状フィラーの取り扱い性をさらに良好にすることができる。このような観点から、繊維状フィラーの平均繊維長は、より好ましくは35~400μmであり、さらに好ましくは40~300μmである。繊維状フィラーの平均繊維長は、後述の実施例に記載の方法により測定することができる。 The average fiber length of the fibrous filler is preferably 25-500 μm. When the average fiber length of the fibrous filler is 25 μm or more, the thermal conductivity of the heat dissipation sheet can be further increased. When the average fiber length of the fibrous filler is 500 µm or less, the dispersibility of the fibrous filler in the heat dissipation sheet can be improved. In addition, it is possible to further improve the handleability of the fibrous filler. From this point of view, the average fiber length of the fibrous filler is more preferably 35-400 μm, still more preferably 40-300 μm. The average fiber length of the fibrous filler can be measured by the method described in Examples below.
 繊維状フィラーの平均繊維径は好ましくは0.1~20μmである。繊維状フィラーの平均繊維径が0.1μm以上であると、繊維状フィラーの強度を改善することができるので、繊維状フィラーの取り扱い性がさらに良好にすることができる。繊維状フィラーの平均繊維径が20μm以下であると、放熱シート内において繊維状フィラー同士の隙間が生じさらに生じにくくなり、熱伝導パスを形成することが容易になる。このような観点から、繊維状フィラーの平均繊維径は、より好ましくは0.5~15μmであり、さらに好ましくは1~10μmである。繊維状フィラーの平均繊維径は、後述の実施例に記載の方法により測定することができる。 The average fiber diameter of the fibrous filler is preferably 0.1-20 μm. When the average fiber diameter of the fibrous filler is 0.1 μm or more, the strength of the fibrous filler can be improved, so that the handleability of the fibrous filler can be further improved. When the average fiber diameter of the fibrous filler is 20 μm or less, gaps between the fibrous fillers are less likely to occur in the heat dissipation sheet, facilitating the formation of heat conduction paths. From this point of view, the average fiber diameter of the fibrous filler is more preferably 0.5 to 15 μm, still more preferably 1 to 10 μm. The average fiber diameter of the fibrous filler can be measured by the method described in Examples below.
 繊維状フィラーの平均繊維径に対する平均繊維長の比(平均繊維長/平均繊維径)(以下、アスペクト比と呼ぶ)は好ましくは10以上である。繊維状フィラーのアスペクト比が10以上であると、放熱シート中において放熱パスが効率的に形成され、熱伝導率の高い放熱シートを得ることができる。このような観点から、繊維状フィラーのアスペクト比は、より好ましくは15以上であり、さらに好ましくは20以上であり、よりさらに好ましくは30以上である。また、繊維状フィラーのアスペクト比の範囲の上限値は、特に限定されないが、通常、1000以下である。 The ratio of the average fiber length to the average fiber diameter of the fibrous filler (average fiber length/average fiber diameter) (hereinafter referred to as aspect ratio) is preferably 10 or more. When the fibrous filler has an aspect ratio of 10 or more, heat dissipation paths are efficiently formed in the heat dissipation sheet, and a heat dissipation sheet with high thermal conductivity can be obtained. From such a viewpoint, the aspect ratio of the fibrous filler is more preferably 15 or more, still more preferably 20 or more, and even more preferably 30 or more. The upper limit of the aspect ratio range of the fibrous filler is not particularly limited, but is usually 1000 or less.
<樹脂>
 スラリー調製工程で使用する樹脂としては、例えば、エポキシ樹脂、シリコーン樹脂、シリコーンゴム、アクリル樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル、フッ素樹脂、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリフェニレンエーテル、ポリフェニレンスルフィド、全芳香族ポリエステル、ポリスルホン、液晶ポリマー、ポリエーテルスルホン、ポリカーボネート、マレイミド変性樹脂、ABS(アクリロニトリル-ブタジエン-スチレン)樹脂、AAS(アクリロニトリル-アクリルゴム・スチレン)樹脂、AES(アクリロニトリル・エチレン・プロピレン・ジエンゴム-スチレン)樹脂等が挙げられる。これらの樹脂は、1種を単独で、又は2種以上を組み合わせて使用することができる。これらの樹脂の中で、シリコーン樹脂が好ましい。
<Resin>
Examples of resins used in the slurry preparation process include epoxy resins, silicone resins, silicone rubbers, acrylic resins, phenolic resins, melamine resins, urea resins, unsaturated polyesters, fluorine resins, polyimides, polyamideimides, polyetherimides, poly Butylene terephthalate, polyethylene terephthalate, polyphenylene ether, polyphenylene sulfide, wholly aromatic polyester, polysulfone, liquid crystal polymer, polyethersulfone, polycarbonate, maleimide modified resin, ABS (acrylonitrile-butadiene-styrene) resin, AAS (acrylonitrile-acrylic rubber/styrene) ) resin, AES (acrylonitrile-ethylene-propylene-diene rubber-styrene) resin, and the like. These resins can be used individually by 1 type or in combination of 2 or more types. Among these resins, silicone resins are preferred.
<溶剤>
 スラリー調製工程で使用する溶剤は、スラリー調製工程で使用する樹脂及び分散剤を溶解できるとともに、加熱により除去が容易である溶媒であれば、特に限定されない。例えば、樹脂がシリコーン樹脂である場合、スラリー調製工程で使用する溶剤は、溶解度パラメーター(SP値)の小さい無極性溶剤が好ましい。樹脂がシリコーン樹脂である場合、スラリー調製工程で使用する溶剤には、例えば、ベンゼン、トルエン、キシレン、アセトン、ヘキサン、イソプロピルアルコール、リグロイン、ミネラルスピリット、塩素化炭化水素等が挙げられる。これらの溶剤は、1種を単独で、又は2種以上を組み合わせて使用することができる。
<Solvent>
The solvent used in the slurry preparation process is not particularly limited as long as it can dissolve the resin and dispersant used in the slurry preparation process and can be easily removed by heating. For example, when the resin is a silicone resin, the solvent used in the slurry preparation step is preferably a non-polar solvent with a small solubility parameter (SP value). When the resin is a silicone resin, solvents used in the slurry preparation process include, for example, benzene, toluene, xylene, acetone, hexane, isopropyl alcohol, ligroin, mineral spirits, chlorinated hydrocarbons, and the like. These solvents can be used singly or in combination of two or more.
<分散剤>
 溶剤に対する繊維状フィラーの濡れ性を改善して繊維状フィラーの凝集を抑制するという観点から、スラリー調製工程で使用する分散剤は、好ましくは界面活性剤及びシランカップリング剤であり、より好ましくは界面活性剤である。界面活性剤には、例えば、陽イオン性界面活性剤、陰イオン性界面活性剤、非イオン性界面活性剤、両性界面活性剤等が挙げられる。これらの界面活性剤は、1種を単独で、又は2種以上を組み合わせて使用することができる。溶剤に対する繊維状フィラーの濡れ性を改善して繊維状フィラーの凝集を抑制するという観点から、これらの界面活性剤の中で、陰イオン性界面活性剤及び非イオン性界面活性剤が好ましい。
<Dispersant>
From the viewpoint of improving the wettability of the fibrous filler to the solvent and suppressing the aggregation of the fibrous filler, the dispersant used in the slurry preparation step is preferably a surfactant and a silane coupling agent, more preferably It is a surfactant. Surfactants include, for example, cationic surfactants, anionic surfactants, nonionic surfactants, amphoteric surfactants, and the like. These surfactants can be used singly or in combination of two or more. Among these surfactants, anionic surfactants and nonionic surfactants are preferable from the viewpoint of improving the wettability of the fibrous filler to the solvent and suppressing aggregation of the fibrous filler.
 陰イオン性界面活性剤には、例えば、アルキル硫酸塩、ポリオキシエチレンアルキル硫酸エステル塩、アルキルベンゼンスルフォン酸塩、アルキルナフタレンスルフォン酸塩、脂肪酸塩、ナフタレンスルフォン酸ホルマリン縮合物の塩、ポリカルボン酸型高分子界面活性剤、アルケニルコハク酸塩、アルカンスルフォン酸塩、ポリオキシアルキレンアルキルエーテルのリン酸エステルおよびその塩、ポリオキシアルキレンアルキルアリールエーテルのリン酸エステルおよびその塩等が挙げられる。これらの陰イオン性界面活性剤は、1種を単独で、又は2種以上を組み合わせて使用することができる。溶剤に対する繊維状フィラーの濡れ性を改善して繊維状フィラーの凝集を抑制するという観点から、これらの陰イオン性界面活性剤の中で、ポリオキシアルキレンアルキルエーテルのリン酸エステルが好ましく、ポリオキシエチレンアルキルエーテルのリン酸エステルがより好ましく、ポリオキシエチレントリデシルエーテルリン酸エステルがさらに好ましく、次式(1)で表せるポリオキシエチレントリデシルエーテルリン酸エステルがよりさらに好ましい。 Examples of anionic surfactants include alkyl sulfates, polyoxyethylene alkyl sulfates, alkylbenzene sulfonates, alkylnaphthalenesulfonates, fatty acid salts, naphthalenesulfonic acid formalin condensate salts, and polycarboxylic acid type surfactants. Polymeric surfactants, alkenyl succinates, alkanesulfonates, polyoxyalkylene alkyl ether phosphates and salts thereof, polyoxyalkylene alkyl aryl ether phosphates and salts thereof, and the like can be mentioned. These anionic surfactants can be used singly or in combination of two or more. Among these anionic surfactants, phosphate esters of polyoxyalkylene alkyl ethers are preferred from the viewpoint of improving the wettability of fibrous fillers to solvents and suppressing aggregation of fibrous fillers. Ethylene alkyl ether phosphate is more preferable, polyoxyethylene tridecyl ether phosphate is more preferable, and polyoxyethylene tridecyl ether phosphate represented by the following formula (1) is even more preferable.
Figure JPOXMLDOC01-appb-C000001

式中、Rは炭素原子数1~20のアルキル基又は炭素原子数7~25のアルキルアリール基を表し、Rは水素原子又は-(CHCHO)を表し、Rは炭素原子数1~20のアルキル基又は炭素原子数7~25のアルキルアリール基を表し、nはエチレンオキサイドの付加数を表す1~20の整数である。
Figure JPOXMLDOC01-appb-C000001

In the formula, R 1 represents an alkyl group having 1 to 20 carbon atoms or an alkylaryl group having 7 to 25 carbon atoms, R 2 represents a hydrogen atom or —(CH 2 CH 2 O) n R 3 , and R 3 represents an alkyl group having 1 to 20 carbon atoms or an alkylaryl group having 7 to 25 carbon atoms, and n is an integer of 1 to 20 representing the number of ethylene oxide additions.
 非イオン性界面活性剤には、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシアルキレンアルキルエーテル、ポリオキシエチレン誘導体、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、グリセリン脂肪酸エステル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレン硬化ひまし油、ポリオキシエチレンアルキルアミン、ポリオキシアルキレンアルキルアミン、アルキルアルカノールアミド等が挙げられる。これらの非イオン性界面活性剤は、1種を単独で、又は2種以上を組み合わせて使用することができる。溶剤に対する繊維状フィラーの濡れ性を改善して繊維状フィラーの凝集を抑制するという観点から、これらの非イオン性界面活性剤の中で、ソルビタン脂肪酸エステルが好ましく、トルオレイン酸ソルビタンがより好ましい。 Nonionic surfactants include, for example, polyoxyethylene alkyl ethers, polyoxyalkylene alkyl ethers, polyoxyethylene derivatives, sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene sorbitol fatty acid esters, glycerin fatty acid esters, Polyoxyethylene fatty acid esters, polyoxyethylene hydrogenated castor oil, polyoxyethylene alkylamines, polyoxyalkylenealkylamines, alkylalkanolamides, and the like. These nonionic surfactants can be used singly or in combination of two or more. Among these nonionic surfactants, sorbitan fatty acid esters are preferred, and sorbitan toluoleate is more preferred, from the viewpoint of improving the wettability of the fibrous filler to the solvent and suppressing aggregation of the fibrous filler.
 溶剤に対する繊維状フィラーの濡れ性を改善して繊維状フィラーの凝集を抑制するという観点から、シランカップリング剤の中でアルコキシシランが好ましい。分散剤として使用するアルコキシシランには、例えば、メチルトリメトキシシラン、ジメチルジメトキシラン、トリメチルメトキシシラン、フェニルトリメトキシシラン、ジメトキシジフェニルシラン、n-プロピルトリメトキシシラン、ヘキシルトリメトキシシラン、デシルトリメトキシシラン、1,6-ビス(トリメトキシシリル)ヘキサン、トリフルオロプロピルトリメトキシシラン、テトラエトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、n-プロピルトリエトキシシラン、ヘキシルトリエトキシシラン、オクチルトリエトキシシラン等が挙げられる。これらのアルコキシシランは、1種を単独で、又は2種以上を組み合わせて使用することができる。溶剤に対する繊維状フィラーの濡れ性を改善して繊維状フィラーの凝集を抑制するという観点から、これらのアルコキシシランの中で、メチルトリメトキシシラン、ジメチルジメトキシシラン及びトリメチルメトキシシランからなる群から選択される少なくとも1種のアルコキシシランが好ましく、ジメチルジメトキシランがより好ましい。 Among the silane coupling agents, alkoxysilanes are preferable from the viewpoint of improving the wettability of the fibrous filler to the solvent and suppressing the aggregation of the fibrous filler. Alkoxysilanes used as dispersants include, for example, methyltrimethoxysilane, dimethyldimethoxysilane, trimethylmethoxysilane, phenyltrimethoxysilane, dimethoxydiphenylsilane, n-propyltrimethoxysilane, hexyltrimethoxysilane, decyltrimethoxysilane. , 1,6-bis(trimethoxysilyl)hexane, trifluoropropyltrimethoxysilane, tetraethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, n-propyltriethoxysilane, hexyltriethoxysilane , octyltriethoxysilane and the like. These alkoxysilanes can be used singly or in combination of two or more. Among these alkoxysilanes, selected from the group consisting of methyltrimethoxysilane, dimethyldimethoxysilane and trimethylmethoxysilane, from the viewpoint of improving the wettability of the fibrous filler to the solvent and suppressing the aggregation of the fibrous filler. is preferred, and dimethyldimethoxysilane is more preferred.
<配合量>
 放熱シートの熱伝導性の観点及び放熱シートの空隙抑制の観点から、繊維状フィラーの配合量は、繊維状フィラー及び樹脂の合計100体積部に対して、好ましくは5~60体積部であり、より好ましくは10~50体積部であり、さらに好ましくは15~40体積部である。
 スラリーの塗工性の観点から、溶剤の配合量は、繊維状フィラー及び樹脂の合計100質量部に対して、好ましくは10~80質量部であり、より好ましくは20~70質量部であり、さらに好ましくは30~60質量部である。
 繊維状フィラーの凝集抑制の観点及び放熱シートの熱伝導性の観点から、分散剤の配合量は、繊維状フィラー100質量部に対して、好ましくは0.01~10質量部であり、より好ましくは0.05~5質量部であり、さらに好ましくは0.1~3質量部である。
<Combination amount>
From the viewpoint of the thermal conductivity of the heat-dissipating sheet and the suppression of voids in the heat-dissipating sheet, the amount of the fibrous filler is preferably 5 to 60 parts by volume with respect to the total 100 parts by volume of the fibrous filler and the resin, More preferably 10 to 50 parts by volume, still more preferably 15 to 40 parts by volume.
From the viewpoint of the slurry coatability, the amount of the solvent is preferably 10 to 80 parts by mass, more preferably 20 to 70 parts by mass, with respect to the total 100 parts by mass of the fibrous filler and the resin, More preferably, it is 30 to 60 parts by mass.
From the viewpoint of suppressing the aggregation of the fibrous filler and the thermal conductivity of the heat dissipation sheet, the amount of the dispersant compounded is preferably 0.01 to 10 parts by mass, more preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the fibrous filler. is 0.05 to 5 parts by mass, more preferably 0.1 to 3 parts by mass.
<混合>
 繊維状フィラー、分散剤、溶剤及び樹脂を混合する装置は、繊維状フィラーの粉砕を抑制しながら混合することができる装置であれば、特に限定されない。例えば、繊維状フィラー、分散剤、溶剤及び樹脂は、攪拌混和機を使用して混合することができる。攪拌混和機には、回転する攪拌翼が備えられており、その攪拌翼により繊維状フィラー、分散剤、溶剤及び樹脂は混合される。また、繊維状フィラー、分散剤、溶剤及び樹脂は、高速かき混ぜ機(ディゾルバー)を使用して混合することもできる。高速かき混ぜ機では、回転したタービン状のブレードが容器内の原料に対流を起こさせ、それにより、原料を混合する。
<Mixed>
A device for mixing the fibrous filler, the dispersant, the solvent and the resin is not particularly limited as long as it can mix while suppressing pulverization of the fibrous filler. For example, fibrous fillers, dispersants, solvents and resins can be mixed using a stirring mixer. The stirring kneader is equipped with rotating stirring blades, and the fibrous filler, dispersant, solvent and resin are mixed by the stirring blades. The fibrous filler, dispersant, solvent and resin can also be mixed using a high speed agitator (dissolver). In high-speed agitators, rotating turbine-like blades create convection currents in the ingredients in a vessel, thereby mixing the ingredients.
 スラリー調整工程は、繊維状フィラーと、分散剤と、溶剤とを混合して混合物を得た後に、その混合物と樹脂とを混合することによってスラリーを調整することが好ましい。これにより、スラリー中の繊維状フィラーの分散をさらに改善することができ、その結果、放熱シートの相対密度をさらに向上させることができる。 In the slurry adjustment step, it is preferable to prepare a slurry by mixing a fibrous filler, a dispersant, and a solvent to obtain a mixture, and then mixing the mixture with a resin. Thereby, the dispersion of the fibrous filler in the slurry can be further improved, and as a result, the relative density of the heat dissipation sheet can be further improved.
 繊維状フィラー、分散剤、溶剤及び樹脂を混合するときの混合時間は、好ましくは0.5~30分である。乾燥状態の繊維状フィラーは凝集していることが多いが、上記混合時間が0.5分以上であると、繊維状フィラーの凝集をさらに十分に解くことができ、スラリー中の繊維状フィラーの分散をさらに改善することができる。そして、その結果、放熱シートの相対密度をさらに向上させることができる。上記混合時間が30分以下であると、混合中に繊維状フィラーが粉砕されることを抑制できる。このような観点から、上記混合時間は、より好ましくは1.0~15分であり、さらに好ましくは1.2~10分である。 The mixing time for mixing the fibrous filler, dispersant, solvent and resin is preferably 0.5 to 30 minutes. The fibrous filler in a dry state is often agglomerated, but if the mixing time is 0.5 minutes or longer, the agglomeration of the fibrous filler can be further sufficiently disentangled, and the fibrous filler in the slurry can be disaggregated. Dispersion can be further improved. As a result, the relative density of the heat dissipation sheet can be further improved. If the mixing time is 30 minutes or less, it is possible to suppress pulverization of the fibrous filler during mixing. From this point of view, the mixing time is more preferably 1.0 to 15 minutes, more preferably 1.2 to 10 minutes.
(成形工程)
 成形工程では、スラリーをシート状に塗工してシート状成形体を得る。例えば、ドクターブレード法によってスラリーをシート状に成形することができる。ドクターブレード法は、スラリーをキャリアフィルム上に薄く延ばして成形体を得る方法である。スラリーを薄く延ばすためのブレード(刃)とキャリアフィルムとの間の間隔、及びキャリアフィルムを引くときの速度を調節することにより、シート状成形体の厚さを調整することができる。
(Molding process)
In the forming step, the slurry is applied in the form of a sheet to obtain a sheet-like formed body. For example, the slurry can be formed into a sheet by a doctor blade method. The doctor blade method is a method of thinly spreading a slurry on a carrier film to obtain a compact. The thickness of the sheet-like compact can be adjusted by adjusting the distance between the blade for thinly spreading the slurry and the carrier film and the speed at which the carrier film is drawn.
 シート状に塗工したスラリーは、乾燥されて、シート状成形体となる。シート状に塗工したスラリーの乾燥時間は、好ましくは3~60分である。乾燥時間が3分以上であると、スラリー中の溶剤を十分に除去することができる。乾燥時間が60分以下であると、シート状成形体は硬化しすぎていないので、後述のプレス工程で、繊維状フィラーと樹脂との間に隙間が生じることを抑制することができる。このような観点から、乾燥時間は、より好ましくは5~30分であり、さらに好ましくは10~20分である。 The slurry applied in sheet form is dried to form a sheet-like molded body. The drying time of the slurry applied in sheet form is preferably 3 to 60 minutes. When the drying time is 3 minutes or longer, the solvent in the slurry can be sufficiently removed. When the drying time is 60 minutes or less, the sheet-like molding is not too hardened, so that it is possible to suppress the formation of gaps between the fibrous filler and the resin in the later-described pressing step. From this point of view, the drying time is more preferably 5 to 30 minutes, still more preferably 10 to 20 minutes.
 シート状に塗工したスラリーの乾燥温度は、好ましくは50~150℃である。乾燥温度が50℃以上であると、スラリー中の溶剤を十分に除去することができる。乾燥温度が150℃以下であると、シート状成形体は硬化しすぎていないので、後述のプレス工程で、繊維状フィラーと樹脂との間に隙間が生じることを抑制することができる。このような観点から、乾燥温度は、より好ましくは60~120℃であり、さらに好ましくは70~100℃である。 The drying temperature of the slurry applied in sheet form is preferably 50 to 150°C. When the drying temperature is 50°C or higher, the solvent in the slurry can be sufficiently removed. When the drying temperature is 150° C. or less, the sheet-like molding is not too hardened, so that it is possible to suppress the formation of gaps between the fibrous filler and the resin in the later-described pressing step. From such a point of view, the drying temperature is more preferably 60 to 120°C, more preferably 70 to 100°C.
(プレス工程)
 プレス工程では、シート状成形体をプレスする。シート状成形体をプレスするときのプレス圧は、好ましくは0.5~30MPaである。プレス圧が0.5MPa以上であると、プレスによりシート状成形体の相対密度をさらに向上させることができる。プレス圧が30MPa以下であると、プレスにより生ずるシート状成形体の変形を抑制することができる。なお、プレスにより生ずるシート状成形体の変形が大きいと、繊維状フィラーと樹脂との間に隙間が発生しやすくなる。このような観点から、シート状成形体をプレスするときのプレス圧は、より好ましくは1.0~20MPaであり、さらに好ましくは1.5~7MPaである。
(Pressing process)
In the pressing step, the sheet-like compact is pressed. The press pressure when pressing the sheet-shaped compact is preferably 0.5 to 30 MPa. When the pressing pressure is 0.5 MPa or more, the relative density of the sheet-shaped molding can be further improved by pressing. When the pressing pressure is 30 MPa or less, deformation of the sheet-like molding caused by pressing can be suppressed. If the deformation of the sheet-like molding caused by pressing is large, gaps are likely to occur between the fibrous filler and the resin. From such a point of view, the press pressure when pressing the sheet-shaped compact is more preferably 1.0 to 20 MPa, and still more preferably 1.5 to 7 MPa.
 シート状成形体をプレスするときのプレス時間は、好ましくは5~60分である。プレス時間が5分以上であると、プレスによりシート状成形体の相対密度をさらに向上させることができる。プレス時間が60分以下であると、プレスにより生ずるシート状成形体の変形を抑制することができる。なお、プレスにより生ずるシート状成形体の変形が大きくなると、繊維状フィラーと樹脂との間に隙間が発生しやすくなる。このような観点から、シート状成形体をプレスするときのプレス圧は、より好ましくは5~50分であり、さらに好ましくは5~45分である。 The pressing time for pressing the sheet-shaped compact is preferably 5 to 60 minutes. When the pressing time is 5 minutes or more, the relative density of the sheet-like compact can be further improved by pressing. When the pressing time is 60 minutes or less, the deformation of the sheet-like molding caused by pressing can be suppressed. If the deformation of the sheet-like molding caused by pressing becomes large, a gap is likely to occur between the fibrous filler and the resin. From such a point of view, the press pressure when pressing the sheet-shaped compact is more preferably 5 to 50 minutes, and even more preferably 5 to 45 minutes.
 シート状成形体をプレスするときのプレス温度は、室温(15~30℃)であることが好ましい。シート状成形体を室温でプレスすることにより、シート状成形体中の繊維状フィラーを面方向へ、さらに配向させながら、プレスにより生ずるシート状成形体の変形を抑制することができる。 The press temperature when pressing the sheet-shaped compact is preferably room temperature (15 to 30°C). By pressing the sheet-like molded article at room temperature, deformation of the sheet-like molded article caused by pressing can be suppressed while further orienting the fibrous filler in the sheet-shaped molded article in the plane direction.
(表面処理工程)
 本発明の放熱シートの製造方法は、スラリー調製工程の前に、表面処理工程をさらに含んでもよい。表面処理工程では、シランカップリング剤を用いて繊維状フィラーの表面処理を実施する。
(Surface treatment process)
The method for producing a heat-dissipating sheet of the present invention may further include a surface treatment step before the slurry preparation step. In the surface treatment step, the fibrous filler is surface treated using a silane coupling agent.
<シランカップリング剤>
 繊維状フィラーと樹脂との間の親和性を向上させて、放熱シートの相対密度を向上させるという観点から、表面処理工程で使用するシランカップリング剤は、好ましくはアルコキシシランである。表面処理工程で使用するアルコキシシランには、例えば、メチルトリメトキシシラン、ジメチルジメトキシラン、フェニルトリメトキシシラン、ジメトキシジフェニルシラン、n-プロピルトリメトキシシラン、ヘキシルトリメトキシシラン、デシルトリメトキシシラン、1,6-ビス(トリメトキシシリル)ヘキサン、トリフルオロプロピルトリメトキシシラン、テトラエトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、n-プロピルトリエトキシシラン、ヘキシルトリエトキシシラン、オクチルトリエトキシシラン等が挙げられる。これらのアルコキシシランは、1種を単独で、又は2種以上を組み合わせて使用することができる。繊維状フィラーと樹脂との間の親和性を向上させて、放熱シートの相対密度を向上させるという観点から、これらのアルコキシシランの中で、ジメチルジメトキシランが好ましい。
<Silane coupling agent>
From the viewpoint of improving the affinity between the fibrous filler and the resin and improving the relative density of the heat-dissipating sheet, the silane coupling agent used in the surface treatment step is preferably alkoxysilane. Alkoxysilanes used in the surface treatment step include, for example, methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, dimethoxydiphenylsilane, n-propyltrimethoxysilane, hexyltrimethoxysilane, decyltrimethoxysilane, 1, 6-bis(trimethoxysilyl)hexane, trifluoropropyltrimethoxysilane, tetraethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, n-propyltriethoxysilane, hexyltriethoxysilane, octyltri ethoxysilane and the like. These alkoxysilanes can be used singly or in combination of two or more. Among these alkoxysilanes, dimethyldimethoxysilane is preferred from the viewpoint of improving the affinity between the fibrous filler and the resin and improving the relative density of the heat-dissipating sheet.
<表面処理方法>
 シランカップリング剤を用いて繊維状フィラーの表面処理を実施するときの表面処理方法には、例えば、乾式法、湿式法等が挙げられる。乾式法は、ヘンシェルミキサー、ブレンダー等の高速攪拌機で、繊維状フィラー及びシランカップリング剤を攪拌混合し、繊維状フィラーの表面にシランカップリング剤を修飾する方法である。シランカップリング剤をおよそ1質量%の濃度に希釈して得られたシランカップリング剤含有有機溶剤もしくはシランカップリング剤含有水溶液をスプレーなどによって繊維状フィラーに噴霧し、繊維状フィラーの表面に均一に分散するようにシランカップリング剤を繊維状フィラーに添加することが好ましい。シランカップリング剤を希釈する有機溶剤には、例えば、メチルアルコール、エチルアルコール、イソプロピルアルコール、アセトン、トルエン、キシレンなどが挙げられる。湿式法は、スラリーまたは溶液中で繊維状フィラーとシランカップリング剤を反応させて、繊維状フィラーの表面にシランカップリング剤を修飾する方法である。繊維状フィラーとシランカップリング剤を反応させる溶液として、例えば、水、メチルアルコール、エチルアルコール、イソプロピルアルコール、アセトン、トルエン、キシレンなどが挙げられる。反応後、繊維状フィラーは、ろ過、遠心分離、デカンテーションなどの方法で溶液から分離され、そして乾燥される。また、溶液に含まれている状態で繊維状フィラーを使用してもよい。乾式法では、表面処理中に繊維状フィラーが粉砕されるおそれがあるので、湿式法が好ましい。
<Surface treatment method>
Examples of surface treatment methods for surface treatment of fibrous fillers using a silane coupling agent include dry methods and wet methods. The dry method is a method in which a fibrous filler and a silane coupling agent are stirred and mixed using a high-speed agitator such as a Henschel mixer or a blender, and the surface of the fibrous filler is modified with the silane coupling agent. An organic solvent containing the silane coupling agent obtained by diluting the silane coupling agent to a concentration of approximately 1% by mass or an aqueous solution containing the silane coupling agent is sprayed onto the fibrous filler by a sprayer or the like to uniformly coat the surface of the fibrous filler. It is preferable to add the silane coupling agent to the fibrous filler so that it is dispersed in the Organic solvents for diluting the silane coupling agent include, for example, methyl alcohol, ethyl alcohol, isopropyl alcohol, acetone, toluene, and xylene. The wet method is a method in which a fibrous filler and a silane coupling agent are reacted in a slurry or solution to modify the surface of the fibrous filler with the silane coupling agent. Examples of the solution for reacting the fibrous filler with the silane coupling agent include water, methyl alcohol, ethyl alcohol, isopropyl alcohol, acetone, toluene, and xylene. After reaction, the fibrous filler is separated from the solution by methods such as filtration, centrifugation, decantation, and dried. Also, fibrous fillers may be used in a state of being contained in a solution. In the dry method, the fibrous filler may be pulverized during the surface treatment, so the wet method is preferred.
 シランカップリング剤を用いて繊維状フィラーの表面処理を実施するときの温度は、好ましくは0~50℃、より好ましくは10~35℃である。また、シランカップリング剤を用いて繊維状フィラーの表面処理を実施するときの処理時間は、好ましくは0.1~5時間、より好ましくは0.2~2時間である。シランカップリング剤を用いて繊維状フィラーの表面処理を実施するときのシランカップリング剤の使用量は、繊維状フィラー100質量部に対して、好ましくは0.05~10質量部、より好ましくは0.1~5質量部である。 The temperature at which the fibrous filler is surface-treated with the silane coupling agent is preferably 0 to 50°C, more preferably 10 to 35°C. The treatment time for surface treatment of the fibrous filler with the silane coupling agent is preferably 0.1 to 5 hours, more preferably 0.2 to 2 hours. The amount of the silane coupling agent used when surface-treating the fibrous filler with the silane coupling agent is preferably 0.05 to 10 parts by mass, more preferably 0.05 to 10 parts by mass, with respect to 100 parts by mass of the fibrous filler. 0.1 to 5 parts by mass.
(篩分工程)
 本発明の放熱シートの製造方法は、表面処理工程で表面処理された繊維状フィラーを、目開き30~500メッシュの篩を用いて篩分けする篩分工程をさらに含んでもよい。そして、スラリー調整工程で用いる繊維状フィラーは、篩分工程で篩分けされた篩上の繊維状フィラーであってもよい。これにより、スラリー調整工程で用いる繊維状フィラーから、伝熱経路となるネットワーク構造の形成にあまり寄与しない短い繊維状フィラーを除去することができる。その結果、面方向の熱伝導率がさらに高い放熱シートを得ることができる。
(Sieving process)
The method for producing a heat-dissipating sheet of the present invention may further include a sieving step of sieving the fibrous filler surface-treated in the surface treatment step using a sieve with an opening of 30 to 500 mesh. The fibrous filler used in the slurry adjusting step may be the fibrous filler on the sieve sieved in the sieving step. As a result, short fibrous fillers that do not contribute much to the formation of a network structure that serves as a heat transfer path can be removed from the fibrous fillers used in the slurry adjustment step. As a result, it is possible to obtain a heat dissipating sheet having a higher thermal conductivity in the surface direction.
 篩分工程後の繊維状フィラーの平均繊維長は好ましくは50~500μmである。繊維状フィラーの平均繊維長が50μm以上であると、放熱シートの熱伝導性をさらに高くすることができる。繊維状フィラーの平均繊維長が500μm以下であると、放熱シートにおける繊維状フィラーの分散性を向上させることができる。また、繊維状フィラーの取り扱い性をさらに良好にすることができる。このような観点から、繊維状フィラーの平均繊維長は、より好ましくは100~400μmであり、さらに好ましくは150~300μmである。繊維状フィラーの平均繊維長は、後述の実施例に記載の方法により測定することができる。 The average fiber length of the fibrous filler after the sieving step is preferably 50-500 μm. When the average fiber length of the fibrous filler is 50 µm or more, the thermal conductivity of the heat dissipation sheet can be further increased. When the average fiber length of the fibrous filler is 500 µm or less, the dispersibility of the fibrous filler in the heat dissipation sheet can be improved. In addition, it is possible to further improve the handleability of the fibrous filler. From this point of view, the average fiber length of the fibrous filler is more preferably 100-400 μm, still more preferably 150-300 μm. The average fiber length of the fibrous filler can be measured by the method described in Examples below.
 篩分工程後の繊維状フィラーの平均繊維径は好ましくは0.1~20μmである。繊維状フィラーの平均繊維径が0.1μm以上であると、繊維状フィラーの強度を改善することができるので、繊維状フィラーの取り扱い性がさらに良好にすることができる。繊維状フィラーの平均繊維径が20μm以下であると、放熱シート内において繊維状フィラー同士の隙間が生じさらに生じにくくなり、熱伝導パスを形成することが容易になる。このような観点から、繊維状フィラーの平均繊維径は、より好ましくは0.5~15μmであり、さらに好ましくは1.0~10μmである。繊維状フィラーの平均繊維径は、後述の実施例に記載の方法により測定することができる。 The average fiber diameter of the fibrous filler after the sieving step is preferably 0.1 to 20 μm. When the average fiber diameter of the fibrous filler is 0.1 μm or more, the strength of the fibrous filler can be improved, so that the handleability of the fibrous filler can be further improved. When the average fiber diameter of the fibrous filler is 20 μm or less, gaps between the fibrous fillers are less likely to occur in the heat dissipation sheet, facilitating the formation of heat conduction paths. From this point of view, the average fiber diameter of the fibrous filler is more preferably 0.5 to 15 μm, still more preferably 1.0 to 10 μm. The average fiber diameter of the fibrous filler can be measured by the method described in Examples below.
 篩分工程後の繊維状フィラーの平均繊維径に対する平均繊維長の比(平均繊維長/平均繊維径)(以下、アスペクト比と呼ぶ)は好ましくは10以上である。繊維状フィラーのアスペクト比が10以上であると、放熱シート中において放熱パスが効率的に形成され、熱伝導率の高い放熱シートを得ることができる。このような観点から、繊維状フィラーのアスペクト比は、より好ましくは15以上であり、さらに好ましくは20以上である。また、繊維状フィラーのアスペクト比の範囲の上限値は、特に限定されないが、通常、200以下である。 The ratio of the average fiber length to the average fiber diameter of the fibrous filler after the sieving process (average fiber length/average fiber diameter) (hereinafter referred to as aspect ratio) is preferably 10 or more. When the fibrous filler has an aspect ratio of 10 or more, heat dissipation paths are efficiently formed in the heat dissipation sheet, and a heat dissipation sheet with high thermal conductivity can be obtained. From such a viewpoint, the aspect ratio of the fibrous filler is more preferably 15 or more, and still more preferably 20 or more. The upper limit of the aspect ratio range of the fibrous filler is not particularly limited, but is usually 200 or less.
 表面処理工程において湿式法で表面処理された繊維状フィラーを乾燥しないで、篩分工程後に乾燥してもよい。また、表面処理工程において、湿式法で表面処理され、乾燥された繊維状フィラーを、篩分工程で篩い分けしてもよい。 The fibrous filler surface-treated by the wet method in the surface treatment step may be dried after the sieving step without drying. In the surface treatment step, the fibrous filler that has been surface-treated by a wet method and dried may be sieved in the sieving step.
[放熱シート]
 本発明の放熱シートは、繊維状フィラーと樹脂とを含む熱伝導性樹脂組成物を成形してなるものであり、繊維状フィラーが放熱シートの面内方向に配向している。これにより、面方向の熱伝導率が高い放熱シートを得ることができる。本発明の放熱シートは、例えば、本発明の放熱シートの製造方法により製造することができる。本発明の放熱シートの製造方法では、繊維状フィラー、樹脂及び溶剤を含むスラリー(熱伝導性樹脂組成物)には分散剤が配合されている。その結果、スラリー中で、繊維状フィラーの凝集が十分に解かれるとともに、スラリー中の繊維状フィラーの分散性も向上する。そして、スラリーをシート状に塗工すると、繊維状フィラーは塗工方向に容易に配向するので、繊維状フィラーが放熱シートの面内方向に配向している放熱シートを容易に製造することができる。
[Heat release sheet]
The heat dissipating sheet of the present invention is formed by molding a thermally conductive resin composition containing a fibrous filler and a resin, and the fibrous filler is oriented in the in-plane direction of the heat dissipating sheet. This makes it possible to obtain a heat-dissipating sheet with high thermal conductivity in the surface direction. The heat-dissipating sheet of the present invention can be manufactured, for example, by the method for manufacturing a heat-dissipating sheet of the present invention. In the method for producing a heat-dissipating sheet of the present invention, a dispersing agent is blended in a slurry (thermally conductive resin composition) containing a fibrous filler, a resin, and a solvent. As a result, the fibrous filler is sufficiently deagglomerated in the slurry, and the dispersibility of the fibrous filler in the slurry is improved. When the slurry is applied in a sheet form, the fibrous filler is easily oriented in the coating direction, so a heat dissipation sheet in which the fibrous filler is oriented in the in-plane direction of the heat dissipation sheet can be easily produced. .
(厚さ)
 本発明の放熱シートの厚さは、好ましくは100~5000μmである。放熱シートの厚さが100μm以上であると、放熱シートの絶縁性を改善することができる。放熱シートの厚さが5000μm以下であると、放熱シートの厚さ方向の熱伝導性を改善することができる。このような観点から本発明の放熱シートの厚さは、より好ましくは150~2000μmであり、さらに好ましくは200~1000μmである。なお、本発明の放熱シートでは、繊維状フィラーが放熱シートの面内方向に配向しているので、本発明の放熱シートの厚さを容易に1000μm以下にすることができる。
(thickness)
The thickness of the heat-dissipating sheet of the present invention is preferably 100-5000 μm. When the thickness of the heat-dissipating sheet is 100 µm or more, the insulation of the heat-dissipating sheet can be improved. When the thickness of the heat-dissipating sheet is 5000 μm or less, the heat conductivity in the thickness direction of the heat-dissipating sheet can be improved. From this point of view, the thickness of the heat dissipation sheet of the present invention is more preferably 150 to 2000 μm, still more preferably 200 to 1000 μm. In the heat-dissipating sheet of the present invention, since the fibrous filler is oriented in the in-plane direction of the heat-dissipating sheet, the thickness of the heat-dissipating sheet of the present invention can be easily reduced to 1000 μm or less.
(面方向の熱伝導率)
 本発明の放熱シートの面方向の熱伝導率は、好ましくは3W/m・K以上である。放熱シートの面方向の熱伝導率が3W/m・K以上であると、放熱シートの一部が加熱されて発生した熱が、放熱シート全体に容易に伝導することができる。その結果、放熱シートの一部が加熱されて発生した熱が、放熱シート全体から放熱されるので、放熱シートの一部が加熱されて発生した熱を容易に放熱することができる。このような観点から、本発明の放熱シートの面方向の熱伝導率は、より好ましくは4W/m・K以上であり、さらに好ましくは5W/m・K以上である。なお、本発明の放熱シートの面方向の熱伝導率の範囲の上限値は、特に限定されないが、通常、15W/m・K以下である。また、放熱シートの面方向の熱伝導率は、後述の実施例に記載の方法により測定することができる。
(Thermal conductivity in surface direction)
The thermal conductivity in the surface direction of the heat dissipation sheet of the present invention is preferably 3 W/m·K or more. When the thermal conductivity in the surface direction of the heat-dissipating sheet is 3 W/m·K or more, heat generated by heating a part of the heat-dissipating sheet can be easily conducted to the entire heat-dissipating sheet. As a result, heat generated by heating a part of the heat dissipation sheet is radiated from the entire heat dissipation sheet, so that the heat generated by heating a part of the heat dissipation sheet can be easily dissipated. From this point of view, the thermal conductivity in the plane direction of the heat dissipation sheet of the present invention is more preferably 4 W/m·K or more, and still more preferably 5 W/m·K or more. Although the upper limit of the range of thermal conductivity in the surface direction of the heat dissipation sheet of the present invention is not particularly limited, it is usually 15 W/m·K or less. Further, the thermal conductivity in the surface direction of the heat-dissipating sheet can be measured by the method described in Examples below.
(厚さ方向の熱伝導率に対する面方向の熱伝導率の熱伝導率比(面方向/厚さ方向))
 本発明の放熱シートの厚さ方向の熱伝導率に対する面方向の熱伝導率の熱伝導率比(面方向/厚さ方向)は、好ましくは3.5以上である。上記熱伝導率比(面方向/厚さ方向)が3.5以上であると、放熱シートが有する熱伝導能力を面方向に集中できるので、放熱シートの面方向の熱伝導性をさらに改善することができる。このような観点から、本発明の放熱シートの上記熱伝導率比(面方向/厚さ方向)は、より好ましくは5以上であり、さらに好ましくは6以上であり、よりさらに好ましくは7以上であり、よりさらに好ましくは8以上であり、特に好ましくは9以上である。なお、放熱シートの厚さ方向の熱伝導率は低くなるが、放熱シートを薄くすることにより、放熱シートの厚さ方向の熱伝導性は改善される。また、本発明の放熱シートの上記熱伝導率比(面方向/厚さ方向)の範囲の上限値は、特に限定されないが、通常、15以下である。放熱シートの厚さ方向の熱伝導率及び面方向の熱伝導率は、後述の実施例に記載の方法により測定することができる。
(Thermal conductivity ratio of the thermal conductivity in the plane direction to the thermal conductivity in the thickness direction (plane direction/thickness direction))
The thermal conductivity ratio (surface direction/thickness direction) of the thermal conductivity in the plane direction to the thermal conductivity in the thickness direction of the heat dissipation sheet of the present invention is preferably 3.5 or more. When the thermal conductivity ratio (plane direction/thickness direction) is 3.5 or more, the thermal conductivity of the heat dissipation sheet can be concentrated in the plane direction, so that the heat conductivity in the plane direction of the heat dissipation sheet is further improved. be able to. From such a viewpoint, the thermal conductivity ratio (surface direction/thickness direction) of the heat dissipation sheet of the present invention is more preferably 5 or more, still more preferably 6 or more, and even more preferably 7 or more. , more preferably 8 or more, and particularly preferably 9 or more. Although the thermal conductivity in the thickness direction of the heat dissipation sheet is low, the heat conductivity in the thickness direction of the heat dissipation sheet is improved by making the heat dissipation sheet thinner. The upper limit of the thermal conductivity ratio (surface direction/thickness direction) of the heat-dissipating sheet of the present invention is not particularly limited, but is usually 15 or less. The heat conductivity in the thickness direction and the heat conductivity in the plane direction of the heat dissipation sheet can be measured by the method described in Examples below.
(相対密度)
 本発明の放熱シートの相対密度は、好ましくは90%以上である。本発明の放熱シートの相対密度が90%以上であると、放熱シートの熱伝導性をさらに改善することができる。このような観点から、放熱シートの相対密度は、より好ましくは93%以上であり、さらに好ましくは95%以上である。放熱シートの相対密度の範囲の上限値は100%である。なお、相対密度は、放熱シートの密度を、放熱シートの理論密度で割り算することにより算出することができる。放熱シートの密度は、後述の実施例に記載の方法により測定することができる。放熱シートの理論密度は、放熱シートを構成する樹脂の密度、放熱シートを構成する繊維状フィラーの密度、及び放熱シートにおける樹脂及び繊維状フィラーの体積比から算出することができる。
(relative density)
The relative density of the heat dissipation sheet of the present invention is preferably 90% or more. When the relative density of the heat-dissipating sheet of the present invention is 90% or more, the thermal conductivity of the heat-dissipating sheet can be further improved. From this point of view, the relative density of the heat dissipation sheet is more preferably 93% or higher, more preferably 95% or higher. The upper limit of the relative density range of the heat-dissipating sheet is 100%. The relative density can be calculated by dividing the density of the heat-dissipating sheet by the theoretical density of the heat-dissipating sheet. The density of the heat-dissipating sheet can be measured by the method described in Examples below. The theoretical density of the heat-dissipating sheet can be calculated from the density of the resin forming the heat-dissipating sheet, the density of the fibrous filler forming the heat-dissipating sheet, and the volume ratio of the resin to the fibrous filler in the heat-dissipating sheet.
(樹脂及び繊維状フィラー)
 本発明の放熱シートを構成する樹脂及び繊維状フィラーは、本発明の放熱シートの製造方法で使用する樹脂及び繊維状フィラーと同様であるので、本発明の放熱シートを構成する樹脂及び繊維状フィラーの説明は省略する。
(resin and fibrous filler)
The resin and fibrous filler constituting the heat-dissipating sheet of the present invention are the same as the resin and fibrous filler used in the method for manufacturing the heat-dissipating sheet of the present invention. is omitted.
(繊維状フィラーの割合)
 放熱シートの熱伝導性の観点及び放熱シートの空隙抑制の観点から、本発明の放熱シートにおける繊維状フィラーの割合は、繊維状フィラー及び樹脂の合計100体積%に対して、好ましくは5~50体積%であり、より好ましくは10~45体積%であり、さらに好ましくは15~35体積%である。放熱シートにおける繊維状フィラーの割合が小さくても、伝熱経路となる繊維状フィラーのネットワーク構造を放熱シートの内部に形成することができる。したがって、放熱シートにおける繊維状フィラーの割合が小さくても、放熱シートの熱伝導率を高くすることができる。
(Proportion of fibrous filler)
From the viewpoint of the thermal conductivity of the heat-dissipating sheet and the suppression of voids in the heat-dissipating sheet, the ratio of the fibrous filler in the heat-dissipating sheet of the present invention is preferably 5 to 50% with respect to the total 100% by volume of the fibrous filler and the resin. % by volume, more preferably 10 to 45% by volume, and even more preferably 15 to 35% by volume. Even if the ratio of the fibrous filler in the heat-dissipating sheet is small, the network structure of the fibrous filler that serves as a heat transfer path can be formed inside the heat-dissipating sheet. Therefore, even if the proportion of the fibrous filler in the heat dissipation sheet is small, the thermal conductivity of the heat dissipation sheet can be increased.
 以下、本発明について、実施例により、詳細に説明する。なお、本発明は以下の実施例に限定されるものではない。
[繊維状フィラーの評価]
(繊維状フィラーの平均繊維長、平均繊維径、平均アスペクト比)
 繊維状フィラーの平均繊維長、平均繊維径、平均アスペクト比はSEM(走査型電子顕微鏡、日本電子株式会社、JMS-7001F)から50個以上の繊維 を選び出して以下の計算式より体積平均とした。
 (平均繊維長)=Σ(V×l)/ΣV
 (平均繊維径)=Σ(V×d)/ΣV
 (平均アスペクト比)=Σ(V×(l/d))/ΣV
 l:n個目の繊維の繊維長
 d:n個目の繊維の繊維径
 V:n個目の繊維の体積=(d/2)×l×π
EXAMPLES The present invention will be described in detail below with reference to examples. In addition, the present invention is not limited to the following examples.
[Evaluation of fibrous filler]
(Average fiber length, average fiber diameter, average aspect ratio of fibrous filler)
The average fiber length, average fiber diameter, and average aspect ratio of the fibrous filler were obtained by selecting 50 or more fibers from an SEM (scanning electron microscope, JEOL Ltd., JMS-7001F) and calculating the volume average according to the following formula. .
(Average fiber length) = Σ (V n ×l n )/ΣV n
(Average fiber diameter) = Σ (V n ×d n )/ΣV n
(average aspect ratio) = Σ(V n ×(l n /d n ))/ΣV n
l n : Fiber length of n-th fiber d n : Fiber diameter of n-th fiber V n : Volume of n-th fiber = (d n /2) 2 × l n × π
[放熱シートの評価]
(相対密度)
 放熱シートの相対密度は、アルキメデス法により放熱シートの実測比重を測定し、その値を理論比重で割り算することにより算出した。
 具体的には、比重測定キット(エー・アンド・ディー社製、商品名「AD-1653」)を用いて、放熱シートの空気中の重さ及び水中の重さを測定し、その測定結果及び水の密度から放熱シートの実測比重を算出した。
 次に、スラリーの固形分を構成する各材料の比重及びその構成比から放熱シートの理論比重を算出した。
 そして、以下の式より放熱シートの相対密度(%)を算出した。
  放熱シートの相対密度(%)=(実測比重/理論比重)×100
[Evaluation of Heat Dissipating Sheet]
(relative density)
The relative density of the heat-dissipating sheet was calculated by measuring the actual specific gravity of the heat-dissipating sheet by the Archimedes method and dividing the measured value by the theoretical specific gravity.
Specifically, using a specific gravity measurement kit (manufactured by A&D, trade name "AD-1653"), the weight of the heat dissipation sheet in the air and the weight in water are measured, and the measurement results and The measured specific gravity of the heat-dissipating sheet was calculated from the density of water.
Next, the theoretical specific gravity of the heat-dissipating sheet was calculated from the specific gravity of each material constituting the solid content of the slurry and the composition ratio thereof.
Then, the relative density (%) of the heat dissipation sheet was calculated from the following formula.
Relative density (%) of heat-dissipating sheet = (measured specific gravity/theoretical specific gravity) x 100
(面方向熱伝導率)
 放熱シートの面方向熱拡散率は、熱拡散率測定装置(Netzsch社製、商品名「LFA447 Nanoflash」)を用いてIn-Plane法により測定した。放熱シートの比熱はスラリーの固形分を構成する各材料の比熱とその構成比から算出した。放熱シートの実測比重は上述の相対密度の測定方法と同様にして測定した。そして、放熱シートの面方向熱伝導率を以下の式より算出した。
  放熱シートの面方向熱伝導率=面方向熱拡散率×比熱×実測比重
(surface thermal conductivity)
The in-plane thermal diffusivity of the heat-dissipating sheet was measured by the In-Plane method using a thermal diffusivity measuring device (manufactured by Netzsch, trade name "LFA447 Nanoflash"). The specific heat of the heat-dissipating sheet was calculated from the specific heat of each material constituting the solid content of the slurry and its composition ratio. The measured specific gravity of the heat-dissipating sheet was measured in the same manner as the relative density measurement method described above. Then, the in-plane thermal conductivity of the heat dissipation sheet was calculated from the following formula.
In-plane thermal conductivity of heat-dissipating sheet = In-plane thermal diffusivity x Specific heat x Measured specific gravity
(厚さ方向熱伝導率)
 放熱シートの厚さ方向熱拡散率は熱拡散率測定装置(Netzsch社製、商品名「LFA447 Nanoflash」)を用いレーザーフラッシュ法にて測定した。放熱シートの比熱及び実測比重は上述の放熱シートの面方向熱拡散率の測定方法と同様にして測定した。そして、放熱シートの厚さ方向熱伝導率を以下の式より算出した。
 放熱シートの厚さ方向熱伝導率=厚さ方向熱拡散率×比熱×実測比重
(thickness direction thermal conductivity)
The thermal diffusivity in the thickness direction of the heat-dissipating sheet was measured by a laser flash method using a thermal diffusivity measuring device (manufactured by Netzsch, trade name "LFA447 Nanoflash"). The specific heat and measured specific gravity of the heat-dissipating sheet were measured in the same manner as the method for measuring the in-plane thermal diffusivity of the heat-dissipating sheet. Then, the thermal conductivity in the thickness direction of the heat dissipation sheet was calculated from the following formula.
Thermal conductivity in the thickness direction of the heat dissipation sheet = thermal diffusivity in the thickness direction x specific heat x measured specific gravity
[放熱シートの作製]
(放熱シート1の作製)
<表面処理工程>
 AlNウィスカー1(株式会社U-MAP製、商品名「Thermalnite(登録商標)短繊維破砕タイプ(微粉除去)」)100質量部に対して、1質量部のシランカップリング剤(ダウ・東レ株式会社製、商品名「DOWSIL Z-6329 Silane」、ジメチルジメトキシシシラン)及び100質量部のトルエンと400質量部のメタノールと5質量部の分散剤(第一工業製薬株式会社製、商品名「プライサーフ215C」)を添加して、40分混合した後、750μm(24メッシュ)の篩に通して、表面処理AlNウィスカーを得た。
[Production of heat dissipation sheet]
(Preparation of Heat Dissipating Sheet 1)
<Surface treatment process>
AlN whisker 1 (manufactured by U-MAP Co., Ltd., trade name "Thermalnite (registered trademark) short fiber crushing type (fine powder removal)") 100 parts by mass, 1 part by mass of a silane coupling agent (Dow Toray Industries, Inc. manufactured by Daiichi Kogyo Seiyaku Co., Ltd., trade name "DOWSIL Z-6329 Silane", dimethyldimethoxysilane) and 100 parts by mass of toluene, 400 parts by mass of methanol and 5 parts by mass of a dispersant (manufactured by Daiichi Kogyo Seiyaku Co., Ltd., trade name "Plysurf 215C") was added and mixed for 40 minutes before passing through a 750 μm (24 mesh) sieve to obtain surface treated AlN whiskers.
<スラリー調整工程>
 得られた表面処理AlNウィスカー、表面処理AlNウィスカー100質量部に対して5質量部の分散剤(第一工業製薬株式会社製、商品名「プライサーフ215C」、ポリオキシエチレントリデシルエーテルリン酸エステル)、並びに表面処理AlNウィスカー及び後述のシリコーン樹脂の合計100質量部に対して50質量部のトルエンを攪拌機(株式会社シンキー製、商品名「あわとり練太郎ARE-310」)を用いて7.5分混合した。その後、表面処理AlNウィスカー及びシリコーン樹脂の合計100体積部に対して70体積部のシリコーン樹脂(旭化成株式会社製、商品名「ELASTOSIL LR3303/20」、ジメチルシリコーン)を、上記攪拌機を用いてさらに1.5分混合してスラリー(熱伝導樹脂組成物)を作製した。
<Slurry adjustment process>
The obtained surface-treated AlN whisker, 5 parts by mass of a dispersant (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., trade name "Plysurf 215C", polyoxyethylene tridecyl ether phosphate ester per 100 parts by mass of the surface-treated AlN whisker ), and 50 parts by mass of toluene with respect to a total of 100 parts by mass of the surface-treated AlN whisker and the silicone resin described later was added to 7. using a stirrer (manufactured by Thinky Co., Ltd., trade name "Awatori Mixer ARE-310"). Mix for 5 minutes. After that, 70 parts by volume of silicone resin (manufactured by Asahi Kasei Corporation, trade name "ELASTOSIL LR3303/20", dimethyl silicone) was added to a total of 100 parts by volume of the surface-treated AlN whisker and silicone resin using the above stirrer. A slurry (thermal conductive resin composition) was prepared by mixing for 5 minutes.
<成形工程>
 ドクターブレード法により、キャリアフィルム(日東電工株式会社製、商品名「NITOFLON Films 920UL」、厚さ0.1μm、テフロン(登録商標)フィルム)の上に0.6mmの厚さで、スラリー調整工程で作製したスラリーを塗工し、80℃で15分乾燥させ、シート状成形体を作製した。
<Molding process>
By the doctor blade method, a carrier film (manufactured by Nitto Denko Corporation, trade name “NITOFLON Films 920UL”, thickness 0.1 μm, Teflon (registered trademark) film) with a thickness of 0.6 mm was applied in the slurry adjustment process. The prepared slurry was applied and dried at 80° C. for 15 minutes to prepare a sheet-shaped compact.
<プレス工程>
 平板プレス機(株式会社柳瀬製作所製)を用いて、シート状成形体に対して、150℃、圧力15MPaの条件で40分の加熱プレスを行い、厚さ0.33mmの放熱シート1を作製した。放熱シート1の断面を走査電子顕微鏡(SEM)で観察したところ、AlNウィスカーは放熱シートの面内方向に配向していた。
<Press process>
Using a flat plate press (manufactured by Yanase Seisakusho Co., Ltd.), the sheet-like molded body was heat-pressed for 40 minutes at 150 ° C. and a pressure of 15 MPa to prepare a heat dissipation sheet 1 with a thickness of 0.33 mm. . When the cross section of the heat dissipation sheet 1 was observed with a scanning electron microscope (SEM), the AlN whiskers were oriented in the in-plane direction of the heat dissipation sheet.
(放熱シート2)
 表面処理を実施しなかった以外は放熱シート1と同様な方法で放熱シート2を作製した。放熱シート2の断面を走査電子顕微鏡(SEM)で観察したところ、AlNウィスカーは放熱シートの面内方向に配向していた。
(Heat dissipation sheet 2)
A heat-dissipating sheet 2 was produced in the same manner as the heat-dissipating sheet 1, except that the surface treatment was not performed. When the cross section of the heat dissipation sheet 2 was observed with a scanning electron microscope (SEM), the AlN whiskers were oriented in the in-plane direction of the heat dissipation sheet.
(放熱シート3)
<スラリー調整工程>
 AlNウィスカー1(株式会社U-MAP製、商品名「Thermalnite(登録商標)短繊維破砕タイプ(微粉除去)」)、AlNウィスカー100質量部に対して5質量部の分散剤(第一工業製薬株式会社製、商品名「プライサーフ215C」、ポリオキシエチレントリデシルエーテルリン酸エステル)、並びに表面処理AlNウィスカー及び後述のシリコーン樹脂の合計100質量部に対して50質量部のトルエンを攪拌機(株式会社シンキー製、商品名「あわとり練太郎ARE-310」)を用いて7.5分混合した。その後、表面処理AlNウィスカー及びシリコーン樹脂の合計100体積部に対して70体積部のシリコーン樹脂(旭化成株式会社製、商品名「ELASTOSIL LR3303/20」、ジメチルシリコーン)を、上記攪拌機を用いてさらに1.5分混合してスラリー(熱伝導樹脂組成物)を作製した。
(Heat-dissipating sheet 3)
<Slurry adjustment process>
AlN whisker 1 (manufactured by U-MAP Co., Ltd., trade name “Thermalnite (registered trademark) short fiber crushing type (fine powder removal)”), 5 parts by mass of dispersant (Daiichi Kogyo Seiyaku Co., Ltd.) per 100 parts by mass of AlN whisker 50 parts by mass of toluene is added to a total of 100 parts by mass of a total of 100 parts by mass of surface-treated AlN whiskers and a silicone resin described later. The mixture was mixed for 7.5 minutes using a product name “Awatori Mixer ARE-310” manufactured by Thinky Corporation. After that, 70 parts by volume of silicone resin (manufactured by Asahi Kasei Corporation, trade name "ELASTOSIL LR3303/20", dimethyl silicone) was added to a total of 100 parts by volume of the surface-treated AlN whisker and silicone resin using the above stirrer. A slurry (thermal conductive resin composition) was prepared by mixing for 5 minutes.
<成形工程>
 ドクターブレード法により、キャリアフィルム(日東電工株式会社製、商品名「NITOFLON Films 920UL」、厚さ0.1μm、テフロン(登録商標)フィルム)の上に0.6mmの厚さで、スラリー調整工程で作製したスラリーを塗工し、80℃で15分乾燥させ、シート状成形体を作製した。
<Molding process>
By the doctor blade method, a carrier film (manufactured by Nitto Denko Corporation, trade name “NITOFLON Films 920UL”, thickness 0.1 μm, Teflon (registered trademark) film) with a thickness of 0.6 mm was applied in the slurry adjustment process. The prepared slurry was applied and dried at 80° C. for 15 minutes to prepare a sheet-shaped compact.
<プレス工程>
 平板プレス機(株式会社柳瀬製作所製)を用いて、シート状成形体に対して、150℃、圧力15MPaの条件で40分の加熱プレスを行い、厚さ0.25mmの放熱シート3を作製した。放熱シート3の断面を走査電子顕微鏡(SEM)で観察したところ、AlNウィスカーは放熱シートの面内方向に配向していた。
<Press process>
Using a flat press machine (manufactured by Yanase Seisakusho Co., Ltd.), the sheet-like molded body was heat-pressed for 40 minutes at 150 ° C. and a pressure of 15 MPa to prepare a heat dissipation sheet 3 with a thickness of 0.25 mm. . When the cross section of the heat dissipation sheet 3 was observed with a scanning electron microscope (SEM), the AlN whiskers were oriented in the in-plane direction of the heat dissipation sheet.
(放熱シート4)
 分散剤としてトリオレイン酸ソルビタン(花王株式会社製、商品名「レオドールSP-O30V」)を使用した以外は放熱シート3と同様な方法で放熱シート4を作製した。放熱シート4の断面を走査電子顕微鏡(SEM)で観察したところ、AlNウィスカーは放熱シートの面内方向に配向していた。
(Heat radiation sheet 4)
Heat-dissipating sheet 4 was prepared in the same manner as heat-dissipating sheet 3, except that sorbitan trioleate (manufactured by Kao Corporation, trade name "Rheodol SP-O30V") was used as a dispersant. When the cross section of the heat dissipation sheet 4 was observed with a scanning electron microscope (SEM), the AlN whiskers were oriented in the in-plane direction of the heat dissipation sheet.
(放熱シート5)
 分散剤としてジメチルジメトキシシラン(ダウ・東レ株式会社製、商品名「DOWSIL Z-6329 Silane」)を使用した以外は放熱シート3と同様な方法で放熱シート5を作製した。放熱シート5の断面を走査電子顕微鏡(SEM)で観察したところ、AlNウィスカーは放熱シートの面内方向に配向していた。
(Heat dissipation sheet 5)
Heat-dissipating sheet 5 was prepared in the same manner as heat-dissipating sheet 3, except that dimethyldimethoxysilane (manufactured by Dow Toray Industries, Inc., trade name: "DOWSIL Z-6329 Silane") was used as a dispersant. When the cross section of the heat dissipation sheet 5 was observed with a scanning electron microscope (SEM), the AlN whiskers were oriented in the in-plane direction of the heat dissipation sheet.
(放熱シート6)
 分散剤を使用しない以外は、放熱シート3と同様な方法で放熱シート6を作製しようとした。しかし、スラリー調製工程の混合時にAlNウィスカーが凝集塊を形成し、塗工可能なスラリーを作製できなかった。したがって、放熱シート6は作製できなかった。
(Heat dissipation sheet 6)
An attempt was made to produce heat-dissipating sheet 6 in the same manner as heat-dissipating sheet 3, except that no dispersant was used. However, the AlN whiskers formed agglomerates during mixing in the slurry preparation process, and a coatable slurry could not be produced. Therefore, the heat dissipation sheet 6 could not be produced.
(放熱シート7)
<スラリー調整工程>
 AlNウィスカー2(株式会社U-MAP製、商品名「Thermalnite(登録商標)短繊維破砕タイプ」)(微粉の除去なし)、AlNウィスカー100質量部に対して5質量部の分散剤(第一工業製薬株式会社製、商品名「プライサーフ215C」、ポリオキシエチレントリデシルエーテルリン酸エステル)、並びに表面処理AlNウィスカー及び後述のシリコーン樹脂の合計100質量部に対して50質量部のトルエンを攪拌機(株式会社シンキー製、商品名「あわとり練太郎ARE-310」)を用いて7.5分混合した。その後、表面処理AlNウィスカー及びシリコーン樹脂の合計100体積部に対して70体積部のシリコーン樹脂(旭化成株式会社製、商品名「ELASTOSIL LR3303/20」、ジメチルシリコーン)を、上記攪拌機を用いてさらに1.5分混合してスラリー(熱伝導樹脂組成物)を作製した。
(Heat dissipation sheet 7)
<Slurry adjustment process>
AlN whisker 2 (manufactured by U-MAP Co., Ltd., trade name "Thermalnite (registered trademark) short fiber crushing type") (no fine powder removal), 5 parts by mass of dispersant (Daiichi Kogyo Pharmaceutical Co., Ltd., trade name "Plysurf 215C", polyoxyethylene tridecyl ether phosphate), surface-treated AlN whiskers and silicone resin described later Add 50 parts by mass of toluene to a total of 100 parts by mass The mixture was mixed for 7.5 minutes using a product name “Awatori Mixer ARE-310” manufactured by Thinky Co., Ltd. After that, 70 parts by volume of silicone resin (manufactured by Asahi Kasei Corporation, trade name "ELASTOSIL LR3303/20", dimethyl silicone) was added to a total of 100 parts by volume of the surface-treated AlN whisker and silicone resin using the above stirrer. A slurry (thermal conductive resin composition) was prepared by mixing for 5 minutes.
<成形工程>
 ドクターブレード法により、キャリアフィルム(日東電工社製、商品名「NITOFLON Films 920UL」、厚さ0.1μm、テフロン(登録商標)フィルム)の上に0.6mmの厚さで、スラリー調整工程で作製したスラリーを塗工し、80℃で15分乾燥させ、シート状成形体を作製した。
<Molding process>
A carrier film (manufactured by Nitto Denko Corporation, trade name “NITOFLON Films 920UL”, thickness 0.1 μm, Teflon (registered trademark) film) with a thickness of 0.6 mm is prepared by a slurry adjustment process by a doctor blade method. The resulting slurry was applied and dried at 80° C. for 15 minutes to prepare a sheet-like molding.
<プレス工程>
 平板プレス機(株式会社柳瀬製作所製)を用いて、シート状成形体に対して、150℃、圧力15MPaの条件で40分の加熱プレスを行い、厚さ0.33mmの放熱シート7を作製した。放熱シート7の断面を走査電子顕微鏡(SEM)で観察したところ、AlNウィスカーは放熱シートの面内方向に配向していた。
<Press process>
Using a flat press machine (manufactured by Yanase Seisakusho Co., Ltd.), the sheet-like molded body was heat-pressed for 40 minutes at 150 ° C. and a pressure of 15 MPa to prepare a heat dissipation sheet 7 with a thickness of 0.33 mm. . When the cross section of the heat dissipation sheet 7 was observed with a scanning electron microscope (SEM), the AlN whiskers were oriented in the in-plane direction of the heat dissipation sheet.
(放熱シート8)
 スラリー調整工程を以下のように変更したが以外は放熱シート7と同様な方法で放熱シート8を作製した。放熱シート8の断面を走査電子顕微鏡(SEM)で観察したところ、AlNウィスカーは放熱シートの面内方向に配向していた。
<スラリー調整工程>
 AlNウィスカー2(株式会社U-MAP製、商品名「Thermalnite(登録商標)短繊維破砕タイプ」)(微粉の除去なし)、AlNウィスカー100質量部に対して5質量部の分散剤(第一工業製薬株式会社製、商品名「プライサーフ215C」、ポリオキシエチレントリデシルエーテルリン酸エステル)、表面処理AlNウィスカー及びシリコーン樹脂の合計100質量部に対して50質量部のトルエン、並びに、表面処理AlNウィスカー及びシリコーン樹脂の合計100体積部に対して70体積部のシリコーン樹脂(旭化成株式会社製、商品名「ELASTOSIL LR3303/20」、ジメチルシリコーン)を攪拌機(株式会社シンキー製、商品名「あわとり練太郎ARE-310」)を用いて7.5分混合してスラリー(熱伝導樹脂組成物)を作製した。
(Heat dissipation sheet 8)
A heat-dissipating sheet 8 was produced in the same manner as the heat-dissipating sheet 7, except that the slurry preparation process was changed as follows. When the cross section of the heat dissipation sheet 8 was observed with a scanning electron microscope (SEM), the AlN whiskers were oriented in the in-plane direction of the heat dissipation sheet.
<Slurry adjustment process>
AlN whisker 2 (manufactured by U-MAP Co., Ltd., trade name "Thermalnite (registered trademark) short fiber crushing type") (no fine powder removal), 5 parts by mass of dispersant (Daiichi Kogyo Pharmaceutical Co., Ltd., trade name "Plysurf 215C", polyoxyethylene tridecyl ether phosphate), surface-treated AlN whiskers and silicone resin, 50 parts by weight of toluene per 100 parts by weight in total, and surface-treated AlN 70 parts by volume of silicone resin (manufactured by Asahi Kasei Corporation, product name "ELASTOSIL LR3303/20", dimethyl silicone) was added to a total of 100 parts by volume of whiskers and silicone resin with a stirrer (manufactured by Thinky Co., Ltd., product name "Awatori Kneading"). Taro ARE-310") was mixed for 7.5 minutes to prepare a slurry (thermal conductive resin composition).
(放熱シート9)
<スラリー調整工程>
 AlNウィスカー1(株式会社U-MAP製、商品名「Thermalnite(登録商標)短繊維破砕タイプ(微粉除去)」)、AlNウィスカー100質量部に対して5質量部の分散剤(第一工業製薬株式会社製、商品名「プライサーフ215C」、ポリオキシエチレントリデシルエーテルリン酸エステル)、並びに表面処理AlNウィスカー及び後述のシリコーン樹脂の合計100質量部に対して50質量部のトルエンを攪拌機(株式会社シンキー製、商品名「あわとり練太郎ARE-310」)を用いて7.5分混合した。その後、表面処理AlNウィスカー及びシリコーン樹脂の合計100体積部に対して70体積部のシリコーン樹脂(旭化成株式会社製、商品名「ELASTOSIL LR3303/20」、ジメチルシリコーン)を上記攪拌機に投入し、さらに1.5分混合してスラリー(熱伝導樹脂組成物)を作製した。
(Heat dissipation sheet 9)
<Slurry adjustment process>
AlN whisker 1 (manufactured by U-MAP Co., Ltd., trade name “Thermalnite (registered trademark) short fiber crushing type (fine powder removal)”), 5 parts by mass of dispersant (Daiichi Kogyo Seiyaku Co., Ltd.) per 100 parts by mass of AlN whisker 50 parts by mass of toluene is added to a total of 100 parts by mass of a total of 100 parts by mass of surface-treated AlN whiskers and a silicone resin described later. The mixture was mixed for 7.5 minutes using a product name “Awatori Mixer ARE-310” manufactured by Thinky Corporation. After that, 70 parts by volume of silicone resin (manufactured by Asahi Kasei Corporation, trade name "ELASTOSIL LR3303/20", dimethyl silicone) per 100 parts by volume in total of surface-treated AlN whiskers and silicone resin was added to the stirrer, and A slurry (thermal conductive resin composition) was prepared by mixing for 5 minutes.
<成形工程>
 ドクターブレード法により、キャリアフィルム(日東電工株式会社製、商品名「NITOFLON Films 920UL」、厚さ0.1μm、テフロン(登録商標)フィルム)の上に0.6mmの厚さで、スラリー調整工程で作製したスラリーを塗工し、80℃で5分乾燥させ、シート状成形体を作製した。
<Molding process>
By the doctor blade method, a carrier film (manufactured by Nitto Denko Corporation, trade name “NITOFLON Films 920UL”, thickness 0.1 μm, Teflon (registered trademark) film) with a thickness of 0.6 mm was applied in the slurry adjustment process. The prepared slurry was applied and dried at 80° C. for 5 minutes to prepare a sheet-shaped compact.
<プレス工程>
 平板プレス機(株式会社柳瀬製作所製)を用いて、シート状成形体に対して、150℃、圧力15MPaの条件で40分の加熱プレスを行い、厚さ0.25mmの放熱シート3を作製した。放熱シート3の断面を走査電子顕微鏡(SEM)で観察したところ、AlNウィスカーは放熱シートの面内方向に配向していた。
<Press process>
Using a flat press machine (manufactured by Yanase Seisakusho Co., Ltd.), the sheet-like molded body was heat-pressed for 40 minutes at 150 ° C. and a pressure of 15 MPa to prepare a heat dissipation sheet 3 with a thickness of 0.25 mm. . When the cross section of the heat dissipation sheet 3 was observed with a scanning electron microscope (SEM), the AlN whiskers were oriented in the in-plane direction of the heat dissipation sheet.
(放熱シート10)
 成形工程における乾燥時間を5分から10分に変更した以外は放熱シート9と同様な方法で放熱シート10を作製した。放熱シート10の断面を走査電子顕微鏡(SEM)で観察したところ、AlNウィスカーは放熱シートの面内方向に配向していた。
(Heat dissipation sheet 10)
Heat-dissipating sheet 10 was produced in the same manner as heat-dissipating sheet 9 except that the drying time in the molding process was changed from 5 minutes to 10 minutes. When the cross section of the heat dissipation sheet 10 was observed with a scanning electron microscope (SEM), the AlN whiskers were oriented in the in-plane direction of the heat dissipation sheet.
(放熱シート11)
 成形工程における乾燥時間を5分から15分に変更した以外は放熱シート9と同様な方法で放熱シート11を作製した。放熱シート11の断面を走査電子顕微鏡(SEM)で観察したところ、AlNウィスカーは放熱シートの面内方向に配向していた。
(Heat dissipation sheet 11)
Heat-dissipating sheet 11 was produced in the same manner as heat-dissipating sheet 9 except that the drying time in the molding process was changed from 5 minutes to 15 minutes. When the cross section of the heat dissipation sheet 11 was observed with a scanning electron microscope (SEM), the AlN whiskers were oriented in the in-plane direction of the heat dissipation sheet.
(放熱シート12)
 成形工程における乾燥時間を5分から20分に変更した以外は放熱シート9と同様な方法で放熱シート12を作製した。放熱シート12の断面を走査電子顕微鏡(SEM)で観察したところ、AlNウィスカーは放熱シートの面内方向に配向していた。
(Heat dissipation sheet 12)
Heat-dissipating sheet 12 was produced in the same manner as heat-dissipating sheet 9 except that the drying time in the molding process was changed from 5 minutes to 20 minutes. When the cross section of the heat dissipation sheet 12 was observed with a scanning electron microscope (SEM), the AlN whiskers were oriented in the in-plane direction of the heat dissipation sheet.
(放熱シート13)
 成形工程における乾燥時間を5分から30分に変更した以外は放熱シート9と同様な方法で放熱シート13を作製した。放熱シート13の断面を走査電子顕微鏡(SEM)で観察したところ、AlNウィスカーは放熱シートの面内方向に配向していた。
(Heat dissipation sheet 13)
Heat-dissipating sheet 13 was produced in the same manner as heat-dissipating sheet 9 except that the drying time in the molding process was changed from 5 minutes to 30 minutes. When the cross section of the heat dissipation sheet 13 was observed with a scanning electron microscope (SEM), the AlN whiskers were oriented in the in-plane direction of the heat dissipation sheet.
(放熱シート14)
<表面処理工程>
 AlNウィスカー1(株式会社U-MAP製、商品名「Thermalnite(登録商標)短繊維破砕タイプ(微粉除去)」)100質量部に対して、1質量部のシランカップリング剤(ダウ・東レ社製、商品名「DOWSIL Z-6329 Silane」、ジメチルジメトキシシシラン)及び100質量部のトルエンと400質量部のメタノールと5質量部の分散剤(第一工業製薬株式会社製、商品名「プライサーフ215C」)を添加して、40分混合した後、45μm(325メッシュ)の篩にかけ、篩上を回収し、表面処理AlNウィスカーを得た。
(Heat dissipation sheet 14)
<Surface treatment process>
1 part by mass of a silane coupling agent (manufactured by , trade name “DOWSIL Z-6329 Silane”, dimethyldimethoxysilane) and 100 parts by mass of toluene, 400 parts by mass of methanol and 5 parts by mass of a dispersant (Daiichi Kogyo Seiyaku Co., Ltd., trade name “Plysurf 215C ”), mixed for 40 minutes, passed through a 45 μm (325 mesh) sieve, and collected on the sieve to obtain a surface-treated AlN whisker.
<スラリー調整工程>
 得られた表面処理AlNウィスカー、表面処理AlNウィスカー100質量部に対して5質量部の分散剤(第一工業製薬株式会社製、商品名「プライサーフ215C」、ポリオキシエチレントリデシルエーテルリン酸エステル)、並びに表面処理AlNウィスカー及び後述のシリコーン樹脂の合計100質量部に対して50質量部のトルエンを攪拌機(株式会社シンキー製、商品名「あわとり練太郎ARE-310」)を用いて7.5分混合した。その後、表面処理AlNウィスカー及びシリコーン樹脂の合計100体積部に対して70体積部のシリコーン樹脂(旭化成株式会社製、商品名「ELASTOSIL LR3303/20」、ジメチルシリコーン)を、上記攪拌機を用いてさらに1.5分混合してスラリー(熱伝導樹脂組成物)を作製した。
<Slurry adjustment process>
The obtained surface-treated AlN whisker, 5 parts by mass of a dispersant (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., trade name "Plysurf 215C", polyoxyethylene tridecyl ether phosphate ester per 100 parts by mass of the surface-treated AlN whisker ), and 50 parts by mass of toluene with respect to a total of 100 parts by mass of the surface-treated AlN whisker and the silicone resin described later was added to 7. using a stirrer (manufactured by Thinky Co., Ltd., trade name "Awatori Mixer ARE-310"). Mix for 5 minutes. After that, 70 parts by volume of silicone resin (manufactured by Asahi Kasei Corporation, trade name "ELASTOSIL LR3303/20", dimethyl silicone) was added to a total of 100 parts by volume of the surface-treated AlN whisker and silicone resin using the above stirrer. A slurry (thermal conductive resin composition) was prepared by mixing for 5 minutes.
<成形工程>
 ドクターブレード法により、キャリアフィルム(日東電工株式会社製、商品名「NITOFLON Films 920UL」、厚さ0.1μm、テフロン(登録商標)フィルム)の上に0.6mmの厚さで、スラリー調整工程で作製したスラリーを塗工し、80℃で15分乾燥させ、シート状成形体を作製した。
<Molding process>
By the doctor blade method, a carrier film (manufactured by Nitto Denko Corporation, trade name “NITOFLON Films 920UL”, thickness 0.1 μm, Teflon (registered trademark) film) with a thickness of 0.6 mm was applied in the slurry adjustment process. The prepared slurry was applied and dried at 80° C. for 15 minutes to prepare a sheet-shaped compact.
<プレス工程>
 平板プレス機(株式会社柳瀬製作所製)を用いて、シート状成形体に対して、室温(25℃)、圧力2MPaの条件で40分の加熱プレスを行い、厚さ0.3mmの放熱シート14を作製した。放熱シート14の断面を走査電子顕微鏡(SEM)で観察したところ、AlNウィスカーは放熱シートの面内方向に配向していた。
<Press process>
Using a flat plate press (manufactured by Yanase Seisakusho Co., Ltd.), the sheet-shaped molded body is heat-pressed for 40 minutes at room temperature (25 ° C.) and a pressure of 2 MPa to form a heat dissipation sheet 14 with a thickness of 0.3 mm. was made. When the cross section of the heat dissipation sheet 14 was observed with a scanning electron microscope (SEM), the AlN whiskers were oriented in the in-plane direction of the heat dissipation sheet.
(放熱シート15)
 プレス工程におけるプレス温度を室温から150℃に、プレス圧を2MPaから15MPaに変更した以外は放熱シート14と同様な方法で放熱シート15を作製した。放熱シート15の断面を走査電子顕微鏡(SEM)で観察したところ、AlNウィスカーは放熱シートの面内方向に配向していた。
(Heat dissipation sheet 15)
A heat-dissipating sheet 15 was produced in the same manner as the heat-dissipating sheet 14 except that the pressing temperature in the pressing process was changed from room temperature to 150° C. and the pressing pressure was changed from 2 MPa to 15 MPa. When the cross section of the heat dissipation sheet 15 was observed with a scanning electron microscope (SEM), the AlN whiskers were oriented in the in-plane direction of the heat dissipation sheet.
 評価結果を表1~6に示す。 The evaluation results are shown in Tables 1-6.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 以上の実施例及び比較例から、AlNウィスカー、樹脂及び溶剤を含むスラリーに分散剤を添加することにより、AlNウィスカーを用いても、放熱シートの相対密度が高くすることができることがわかった。 From the above examples and comparative examples, it was found that by adding a dispersant to the slurry containing AlN whiskers, resin, and solvent, the relative density of the heat dissipation sheet can be increased even when AlN whiskers are used.

Claims (13)

  1.  繊維状フィラーと、分散剤と、溶剤と、樹脂とを含むスラリーを調整するスラリー調製工程と、
     前記スラリーをシート状に塗工してシート状成形体を得る成形工程と、
     前記シート状成形体をプレスするプレス工程とを含む放熱シートの製造方法。
    A slurry preparation step of preparing a slurry containing a fibrous filler, a dispersant, a solvent, and a resin;
    A forming step of applying the slurry into a sheet to obtain a sheet-like molded body;
    and a pressing step of pressing the sheet-like formed body.
  2.  前記スラリー調製工程の前に、シランカップリング剤を用いて前記繊維状フィラーの表面処理を実施する表面処理工程をさらに含む請求項1に記載の放熱シートの製造方法。 The method for producing a heat-dissipating sheet according to claim 1, further comprising a surface treatment step of surface-treating the fibrous filler using a silane coupling agent before the slurry preparation step.
  3.  前記シランカップリング剤が、メチルトリメトキシシラン、ジメチルジメトキシラン、フェニルトリメトキシシラン、ジメトキシジフェニルシラン、n-プロピルトリメトキシシラン、ヘキシルトリメトキシシラン、デシルトリメトキシシラン、1,6-ビス(トリメトキシシリル)ヘキサン、トリフルオロプロピルトリメトキシシラン、テトラエトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、n-プロピルトリエトキシシラン、ヘキシルトリエトキシシラン及びオクチルトリエトキシシランからなる群から選択される少なくも1種のアルコキシシランである請求項2に記載の放熱シートの製造方法。 The silane coupling agent is methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, dimethoxydiphenylsilane, n-propyltrimethoxysilane, hexyltrimethoxysilane, decyltrimethoxysilane, 1,6-bis(trimethoxysilane). silyl)hexane, trifluoropropyltrimethoxysilane, tetraethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, n-propyltriethoxysilane, hexyltriethoxysilane and octyltriethoxysilane 3. The method for producing a heat-dissipating sheet according to claim 2, wherein at least one alkoxysilane is selected.
  4.  前記繊維状フィラーを、目開き30~500メッシュの篩を用いて篩分けする篩分工程をさらに含み、
     前記スラリー調整工程で用いる繊維状フィラーは、前記篩分工程で篩分けされた篩上の繊維状フィラーである請求項1又は2に記載の放熱シートの製造方法。
    Further comprising a sieving step of sieving the fibrous filler using a sieve with an opening of 30 to 500 mesh,
    3. The method for producing a heat-dissipating sheet according to claim 1, wherein the fibrous filler used in the slurry adjusting step is a sieved fibrous filler sieved in the sieving step.
  5.  前記スラリー調整工程は、前記繊維状フィラーと、前記分散剤と、前記溶剤とを混合して混合物を得た後に、前記混合物と前記樹脂とを混合することによって前記スラリーを調整する請求項1又は2に記載の放熱シートの製造方法。 1 or 2, wherein in the slurry adjustment step, the slurry is adjusted by mixing the fibrous filler, the dispersant, and the solvent to obtain a mixture, and then mixing the mixture with the resin. 3. The method for manufacturing the heat-dissipating sheet according to 2.
  6.  前記スラリー調整工程における前記繊維状フィラー、前記分散剤及び前記溶剤を混合するときの混合時間が0.5~30分である請求項5に記載の放熱シートの製造方法。 The method for producing a heat-dissipating sheet according to claim 5, wherein the fibrous filler, the dispersant, and the solvent are mixed in the slurry adjusting step for a mixing time of 0.5 to 30 minutes.
  7.  前記スラリー調整工程で用いる前記分散剤は、陰イオン性界面活性剤、非イオン性界面活性剤及びアルコキシシランからなる群から選択される少なくとも1種の分散剤である請求項1又は2に記載の放熱シートの製造方法。 3. The dispersant according to claim 1 or 2, wherein the dispersant used in the slurry preparation step is at least one dispersant selected from the group consisting of anionic surfactants, nonionic surfactants and alkoxysilanes. A method for manufacturing a heat dissipation sheet.
  8.  前記分散剤が、ポリオキシアルキレンアルキルエーテルのリン酸エステル、ソルビタン脂肪酸エステル及びジメチルジメトキシシランからなる群から選択される少なくとも1種の分散剤である請求項7に記載の放熱シートの製造方法。 The method for producing a heat-dissipating sheet according to claim 7, wherein the dispersant is at least one dispersant selected from the group consisting of polyoxyalkylene alkyl ether phosphate, sorbitan fatty acid ester, and dimethyldimethoxysilane.
  9.  前記スラリー調整工程で用いる前記樹脂がシリコーン樹脂である請求項1又は2に記載の放熱シートの製造方法。 The method for manufacturing a heat-dissipating sheet according to claim 1 or 2, wherein the resin used in the slurry adjustment step is a silicone resin.
  10.  前記成形工程は、シート状に塗工した前記スラリーを3~60分の乾燥時間で乾燥する請求項1又は2に記載の放熱シートの製造方法。 The method for producing a heat-dissipating sheet according to claim 1 or 2, wherein the forming step dries the slurry coated in a sheet form for a drying time of 3 to 60 minutes.
  11.  前記プレス工程において前記シート状成形体をプレスするときのプレス圧が0.5~30MPaであり、プレス時間が5~60分である請求項1又は2に記載の放熱シートの製造方法。 The method for producing a heat-dissipating sheet according to claim 1 or 2, wherein the press pressure is 0.5 to 30 MPa and the press time is 5 to 60 minutes when pressing the sheet-like formed body in the pressing step.
  12.  繊維状フィラーと樹脂とを含む熱伝導性樹脂組成物を成形してなる放熱シートであって、
     前記繊維状フィラーが前記放熱シートの面内方向に配向している放熱シート。
    A heat dissipating sheet formed by molding a thermally conductive resin composition containing a fibrous filler and a resin,
    A heat-dissipating sheet in which the fibrous filler is oriented in an in-plane direction of the heat-dissipating sheet.
  13.  前記樹脂がシリコーン樹脂である請求項12に記載の放熱シート。

     
    13. The heat dissipation sheet according to claim 12, wherein the resin is a silicone resin.

PCT/JP2023/004938 2022-02-16 2023-02-14 Heat dissipation sheet manufacturing method and heat dissipation sheet WO2023157829A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023536119A JP7399359B1 (en) 2022-02-16 2023-02-14 Heat dissipation sheet manufacturing method and heat dissipation sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-021985 2022-02-16
JP2022021985 2022-02-16

Publications (1)

Publication Number Publication Date
WO2023157829A1 true WO2023157829A1 (en) 2023-08-24

Family

ID=87578280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004938 WO2023157829A1 (en) 2022-02-16 2023-02-14 Heat dissipation sheet manufacturing method and heat dissipation sheet

Country Status (3)

Country Link
JP (1) JP7399359B1 (en)
TW (1) TW202344581A (en)
WO (1) WO2023157829A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001160607A (en) * 1999-12-02 2001-06-12 Polymatech Co Ltd Anisotropic heat conducting sheet
JP2002234952A (en) * 2001-02-08 2002-08-23 Fuji Kobunshi Kogyo Kk Heat-softening radiating sheet
JP2003192913A (en) * 2001-12-28 2003-07-09 Fujitsu Ltd Heat-conductive resin composition and electronic component device using the same
JP2004339485A (en) * 2003-04-24 2004-12-02 Showa Denko Kk Carbon fiber-containing resin dispersion, and resin composite material
WO2013057889A1 (en) * 2011-10-19 2013-04-25 日東電工株式会社 Thermal-conductive sheet, led mounting substrate, and led module
JP2013225541A (en) * 2012-04-19 2013-10-31 Shinichi Natsume Heat conduction sheet
WO2015002084A1 (en) * 2013-07-01 2015-01-08 デクセリアルズ株式会社 Method of manufacturing heat conductive sheet, heat conductive sheet, and heat dissipation member
WO2017187940A1 (en) * 2016-04-28 2017-11-02 ポリマテック・ジャパン株式会社 Thermally-conductive composition, thermally-conductive sheet, and method for producing thermally-conductive sheet
WO2018047828A1 (en) * 2016-09-12 2018-03-15 デクセリアルズ株式会社 Heat-conductive sheet and semiconductor device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001315244A (en) 2000-05-01 2001-11-13 Jsr Corp Heat conductive sheet, method for manufacturing same and radiation structure using heat conductive sheet
JP2012082295A (en) 2010-10-08 2012-04-26 Teijin Ltd Thermally conductive composition
US20150259589A1 (en) 2012-11-21 2015-09-17 Takagi Chemicals, Inc. Highly filled high thermal conductive material, method for manufacturing same, composition, coating liquid and molded article

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001160607A (en) * 1999-12-02 2001-06-12 Polymatech Co Ltd Anisotropic heat conducting sheet
JP2002234952A (en) * 2001-02-08 2002-08-23 Fuji Kobunshi Kogyo Kk Heat-softening radiating sheet
JP2003192913A (en) * 2001-12-28 2003-07-09 Fujitsu Ltd Heat-conductive resin composition and electronic component device using the same
JP2004339485A (en) * 2003-04-24 2004-12-02 Showa Denko Kk Carbon fiber-containing resin dispersion, and resin composite material
WO2013057889A1 (en) * 2011-10-19 2013-04-25 日東電工株式会社 Thermal-conductive sheet, led mounting substrate, and led module
JP2013225541A (en) * 2012-04-19 2013-10-31 Shinichi Natsume Heat conduction sheet
WO2015002084A1 (en) * 2013-07-01 2015-01-08 デクセリアルズ株式会社 Method of manufacturing heat conductive sheet, heat conductive sheet, and heat dissipation member
WO2017187940A1 (en) * 2016-04-28 2017-11-02 ポリマテック・ジャパン株式会社 Thermally-conductive composition, thermally-conductive sheet, and method for producing thermally-conductive sheet
WO2018047828A1 (en) * 2016-09-12 2018-03-15 デクセリアルズ株式会社 Heat-conductive sheet and semiconductor device

Also Published As

Publication number Publication date
TW202344581A (en) 2023-11-16
JPWO2023157829A1 (en) 2023-08-24
JP7399359B1 (en) 2023-12-15

Similar Documents

Publication Publication Date Title
CN111511679B (en) Hexagonal boron nitride powder, method for producing same, and composition and heat dissipating material using same
KR101274975B1 (en) Thermally conductive materials based on thermally conductive hollow particles and fabrication method thereof
Hou et al. Preparation and characterization of surface modified boron nitride epoxy composites with enhanced thermal conductivity
WO2020004600A1 (en) Aggregate boron nitride particles, boron nitride powder, production method for boron nitride powder, resin composition, and heat dissipation member
EP2455339B1 (en) Magnesium oxide particles, method for producing same, heat dissipating filler, resin composition, heat dissipating grease, and heat dissipating coating composition
WO2017145869A1 (en) Hexagonal boron nitride powder, production method therefor, resin composition and resin sheet
JP5078053B2 (en) Composition for heat conductive composite material containing carbon material and use thereof
WO2016086587A1 (en) Thermally conductive and insulating epoxy resin composition and preparation method therefor and use thereof
JP6815042B2 (en) A resin composition, an article produced from the resin composition, and a method for producing the same.
JP2006257392A (en) Improved boron nitride composition and polymer-based composition blended therewith
JP6803874B2 (en) Carbon-modified Boron Nitride, Its Manufacturing Method and Highly Thermally Conductive Resin Composition
JP7175586B2 (en) Boron nitride particle aggregate, method for producing the same, composition, and resin sheet
Guo et al. One-pot synthesis of bimodal silica nanospheres and their effects on the rheological and thermal–mechanical properties of silica–epoxy composites
TW202112653A (en) Method for producing silica-coated boron nitride particles and silica-coated boron nitride particles
WO2017126608A1 (en) Thermally conductive filler composition, use thereof, and method for producing same
JP6786047B2 (en) Method of manufacturing heat conductive sheet
JPWO2014132445A1 (en) Method for producing ceramic fine particle dispersion
WO2006057458A1 (en) Composition for heat-conducting composite material containing carbon material and use thereof
JP7399359B1 (en) Heat dissipation sheet manufacturing method and heat dissipation sheet
WO2018230638A1 (en) Carbon-modified boron nitride, method for producing same, and highly heat-conductive resin composition
JP2022546342A (en) Thermally conductive filler and its preparation method
KR101898234B1 (en) Resin composition, article prepared by using the same and method of preparing the same
JP5474115B2 (en) Composition for heat conductive composite material containing carbon material and use thereof
CN114806081B (en) Polymer composite material based on aromatic compound modified heat-conducting insulating composite powder and preparation thereof
KR20190110745A (en) Thermal conductive colored composite material applicable to smart wear

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023536119

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23756354

Country of ref document: EP

Kind code of ref document: A1