JP6803874B2 - Carbon-modified Boron Nitride, Its Manufacturing Method and Highly Thermally Conductive Resin Composition - Google Patents

Carbon-modified Boron Nitride, Its Manufacturing Method and Highly Thermally Conductive Resin Composition Download PDF

Info

Publication number
JP6803874B2
JP6803874B2 JP2018106168A JP2018106168A JP6803874B2 JP 6803874 B2 JP6803874 B2 JP 6803874B2 JP 2018106168 A JP2018106168 A JP 2018106168A JP 2018106168 A JP2018106168 A JP 2018106168A JP 6803874 B2 JP6803874 B2 JP 6803874B2
Authority
JP
Japan
Prior art keywords
boron nitride
carbon
graphene oxide
resin
modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018106168A
Other languages
Japanese (ja)
Other versions
JP2019001701A (en
JP2019001701A5 (en
Inventor
弘朗 在間
弘朗 在間
伊藤 玄
玄 伊藤
淳子 大仲
淳子 大仲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Research Institute KRI Inc
Original Assignee
Kansai Research Institute KRI Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=65004780&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6803874(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kansai Research Institute KRI Inc filed Critical Kansai Research Institute KRI Inc
Priority to PCT/JP2018/022717 priority Critical patent/WO2018230638A1/en
Publication of JP2019001701A publication Critical patent/JP2019001701A/en
Publication of JP2019001701A5 publication Critical patent/JP2019001701A5/ja
Application granted granted Critical
Publication of JP6803874B2 publication Critical patent/JP6803874B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、窒化ホウ素と樹脂からなる高熱伝導材料に関し、具体的には、表面改質された窒化ホウ素に関する。 The present invention relates to a highly thermally conductive material composed of boron nitride and a resin, and specifically to surface-modified boron nitride.

電子・通信機器の小型化・高密度化やLED照明機器の高性能化に伴い、発生する熱を効率よく放熱する重要性が高まり、熱伝導性の高い樹脂材料の開発が進められている。従来、樹脂材料の熱伝導性を高めるためにグラファイトやアルミナなどの金属酸化物粉末を混合することが行われている。しかしながら、グラファイトを用いると樹脂材料の電気伝導性が高くなる問題がある。金属酸化物では、十分な熱伝導性が得られない問題がある。 With the miniaturization and high density of electronic and communication equipment and the high performance of LED lighting equipment, the importance of efficiently dissipating the generated heat is increasing, and the development of resin materials with high thermal conductivity is being promoted. Conventionally, a metal oxide powder such as graphite or alumina has been mixed in order to increase the thermal conductivity of the resin material. However, when graphite is used, there is a problem that the electrical conductivity of the resin material is increased. Metal oxides have a problem that sufficient thermal conductivity cannot be obtained.

こうした問題に対して、電気伝導性がなく高熱伝導性である窒化ホウ素などの窒化物が期待されている。しかしながら、窒化ホウ素表面には官能基がひじょうに少ないため、樹脂との親和性が低い。そのため、樹脂への分散性が悪いことや窒化ホウ素表面と樹脂との界面で剥離が起こって空隙ができやすい問題がある。 To solve these problems, nitrides such as boron nitride, which have no electrical conductivity and high thermal conductivity, are expected. However, since there are very few functional groups on the surface of boron nitride, the affinity with the resin is low. Therefore, there are problems that the dispersibility in the resin is poor and that peeling occurs at the interface between the boron nitride surface and the resin to easily form voids.

窒化ホウ素と樹脂との親和性を改善するため、窒化ホウ素にあるアミノ基や水酸基にシランカップリング剤や有機化合物などを反応させることが行われている。しかし、これらの基は主にグラファイトと同様の層状構造を持つ窒化ホウ素の結晶シートの端面に存在しているため、窒化ホウ素表面の樹脂親和性改善にはあまり効果がない。 In order to improve the affinity between boron nitride and the resin, a silane coupling agent, an organic compound, or the like is reacted with an amino group or a hydroxyl group in boron nitride. However, since these groups are mainly present on the end faces of the boron nitride crystal sheet having a layered structure similar to graphite, they are not very effective in improving the resin affinity of the boron nitride surface.

窒化ホウ素全面の改質方法としては、例えば、大気中での加熱酸化(特許文献1)、超臨界水又は亜臨界水を用いた表面酸化(特許文献2)、プラズマ処理によるアミノ基導入(特許文献3)、メカノケミカル処理(特許文献4)などが提案されている。 Examples of the method for modifying the entire surface of boron nitride include thermal oxidation in the atmosphere (Patent Document 1), surface oxidation using supercritical water or subcritical water (Patent Document 2), and introduction of amino groups by plasma treatment (Patent Document 1). Document 3), mechanochemical treatment (Patent Document 4) and the like have been proposed.

特開平9−12771号公報Japanese Unexamined Patent Publication No. 9-12771 特許5722016号Patent No. 5722016 特開2015−137335号公報JP 2015-137335 特開2015−36361号公報JP-A-2015-36361

本発明は前記課題を解決するためになされたものであり、その目的とするところは、省エネルギー、低コストで樹脂親和性の良い窒化ホウ素を提供することにある。 The present invention has been made to solve the above problems, and an object of the present invention is to provide boron nitride which is energy-saving, low-cost, and has good resin affinity.

さらには、前記カーボン修飾窒化ホウ素を樹脂に混合して高熱伝導性樹脂組成物を提供することにある。 Another object of the present invention is to provide a highly thermally conductive resin composition by mixing the carbon-modified boron nitride with a resin.

本発明のカーボン修飾窒化ホウ素は、窒化ホウ素粒子表面にシート状カーボン層を有する。 The carbon-modified boron nitride of the present invention has a sheet-like carbon layer on the surface of the boron nitride particles.

好ましい実施態様においては、前記シート状カーボン層が1〜20層の酸化グラフェンであり、または、前記シート状カーボン層が1〜20層の還元型酸化グラフェンである。 In a preferred embodiment, the sheet-shaped carbon layer is 1 to 20 layers of graphene oxide, or the sheet-shaped carbon layer is 1 to 20 layers of reduced graphene oxide.

本発明の高熱伝導性樹脂組成物は、本発明のカーボン修飾窒化ホウ素を樹脂に混合した、高熱伝導性樹脂組成物である。 The highly thermally conductive resin composition of the present invention is a highly thermally conductive resin composition obtained by mixing the carbon-modified boron nitride of the present invention with a resin.

本発明のカーボン修飾窒化ホウ素粒子の製造方法は、酸化グラフェン水分散液に窒化ホウ素粉末を混合する工程、液中から固体を回収して乾燥する工程からなる。 The method for producing carbon-modified boron nitride particles of the present invention comprises a step of mixing boron nitride powder with a graphene oxide aqueous dispersion and a step of recovering a solid from the liquid and drying it.

別の実施態様においては、前記方法で得られたカーボン修飾窒化ホウ素を還元剤で還元する工程を含む。 In another embodiment, the step of reducing the carbon-modified boron nitride obtained by the above method with a reducing agent is included.

本発明によれば、粒子表面にシート状カーボン層を有する窒化ホウ素を省エネルギー、低コストで提供できる。それにより、窒化ホウ素と樹脂との親和性が向上するため、配合された樹脂組成物の流動性や窒化ホウ素と樹脂との界面接着性を向上することができる。それにより電気伝導性がなく機械的強度と熱伝導性の優れた熱伝導性樹脂組成物を提供できる。 According to the present invention, boron nitride having a sheet-like carbon layer on the particle surface can be provided with energy saving and low cost. As a result, the affinity between boron nitride and the resin is improved, so that the fluidity of the blended resin composition and the interfacial adhesiveness between boron nitride and the resin can be improved. As a result, it is possible to provide a thermally conductive resin composition having no electrical conductivity and excellent mechanical strength and thermal conductivity.

表面にシート状カーボン層を有する窒化ホウ素粒子の走査型電子顕微鏡写真。Scanning electron micrograph of boron nitride particles having a sheet-like carbon layer on the surface.

以下、本発明の好ましい実施形態について説明するが、本発明はこれらの実施形態には限定されない。 Hereinafter, preferred embodiments of the present invention will be described, but the present invention is not limited to these embodiments.

本発明のカーボン修飾窒化ホウ素は、窒化ホウ素粒子表面にシート状カーボン層を有しており、このシート状カーボン層は樹脂と窒化ホウ素界面の親和性を改善する機能を有する。シート状カーボン層は、酸化グラフェン、または、この酸化グラフェンを化学的還元および/または加熱による物理的還元処理した還元型酸化グラフェンである。還元方法は、公知の技術の何れも用いることができ、特に制限はない。 The carbon-modified boron nitride of the present invention has a sheet-like carbon layer on the surface of the boron nitride particles, and the sheet-like carbon layer has a function of improving the affinity between the resin and the boron nitride interface. The sheet-shaped carbon layer is graphene oxide or reduced graphene oxide obtained by chemically reducing and / or physically reducing the graphene oxide by heating. Any known technique can be used as the reduction method, and there is no particular limitation.

シート状カーボン層を酸化グラフェンとするか、これを還元した還元型酸化グラフェンにするかは、カーボン修飾窒化ホウ素を混合する樹脂の性質によって選択できる。例えば、酸化グラフェンとした場合、酸化グラフェンに水酸基、カルボキシル基、エポキシ基などがあるので、これらを利用して混合する樹脂への親和性を向上することができる。利用方法としては、これらの基を樹脂と化学結合させる方法、これらの基と樹脂分子中の官能基との物理的相互作用を利用する方法、これらの基に樹脂と親和性の良い有機化合物またはオリゴマーを化学結合させる方法などを挙げることができる。なお、化学結合させる場合、当業者であれば容易に実施し得る化学反応ならびに有機化合物およびオリゴマーは全て利用できる。還元型酸化グラフェンとした場合は、ポリフェニレンエーテルなどのような芳香族基を多く有する樹脂への親和性向上が期待できる。 Whether the sheet-shaped carbon layer is graphene oxide or reduced graphene oxide can be selected depending on the properties of the resin mixed with carbon-modified boron nitride. For example, in the case of graphene oxide, since graphene oxide has a hydroxyl group, a carboxyl group, an epoxy group, etc., it is possible to improve the affinity for the resin to be mixed by utilizing these. As a method of use, a method of chemically bonding these groups to a resin, a method of utilizing a physical interaction between these groups and a functional group in a resin molecule, an organic compound having a good affinity with a resin for these groups, or Examples thereof include a method of chemically bonding an oligomer. In the case of chemical bonding, all chemical reactions and organic compounds and oligomers that can be easily carried out by those skilled in the art can be used. When reduced graphene oxide is used, it can be expected to improve the affinity for resins having many aromatic groups such as polyphenylene ether.

グラファイトをハマーズ法などにより酸化・剥離して得られる酸化グラフェンは、単層の酸化グラフェン、単層の酸化グラフェンが複数積層した複層酸化グラフェンおよび内部に酸化されていない層が存在する複層酸化グラフェンの混合物となる。本明細書では、これら全て含めて酸化グラフェンとする。こうした混合物をそのまま使うとシート状カーボン層は単層から複層の酸化グラフェンが混ざった層になる。なお、酸化グラフェン同士の電気的反発により、窒化ホウ素粒子上の酸化グラフェンにさらに別の酸化グラフェンは積層しないため、シート状カーボン層の酸化グラフェン層数の分布は、最初の酸化グラフェンの層数の分布が反映される。窒化ホウ素粒子上の酸化グラフェンを還元した場合、還元型酸化グラフェンの層数は、元の酸化グラフェンの層数が維持されると考えられる。 Graphene oxide obtained by oxidizing and exfoliating graphite by the Hammers method or the like is a single-layer graphene oxide, a multi-layer graphene oxide in which a plurality of single-layer graphene oxides are laminated, and a multi-layer oxidation in which an unoxidized layer is present. It is a mixture of graphene. In the present specification, all of these are referred to as graphene oxide. When such a mixture is used as it is, the sheet-shaped carbon layer becomes a layer in which a single layer to a multi-layer graphene oxide is mixed. Since another graphene oxide is not laminated on the graphene oxide on the boron nitride particles due to the electrical repulsion between the graphene oxides, the distribution of the number of graphene oxide layers in the sheet-shaped carbon layer is the same as the number of the first graphene oxide layers. The distribution is reflected. When graphene oxide on the boron nitride particles is reduced, it is considered that the number of layers of reduced graphene oxide is maintained at the original number of layers of graphene oxide.

シート状カーボン層の前記機能は、1〜20層、好ましくは1〜10層、より好ましくは1〜7層の酸化グラフェンまたは還元型酸化グラフェンにより発揮される。20層より多くなるとグラファイトの性質が出てくるため好ましくない。ここで、酸化グラフェンおよび還元型酸化グラフェンの層数は、例えば、原子間力顕微鏡、透過型電子顕微鏡、ラマンスペクトルなどで評価することができる。 The function of the sheet-shaped carbon layer is exhibited by 1 to 20 layers, preferably 1 to 10 layers, more preferably 1 to 7 layers of graphene oxide or reduced graphene oxide. If the number of layers is more than 20, the properties of graphite will appear, which is not preferable. Here, the number of layers of graphene oxide and reduced graphene oxide can be evaluated by, for example, an atomic force microscope, a transmission electron microscope, a Raman spectrum, or the like.

シート状カーボン層は窒化ホウ素粒子全面を覆っている必要はないが、樹脂親和性向上効果の面からみると、被覆割合(=炭素原子数/ホウ素原子数比)は、少なくとも0.2以上、好ましくは0.3以上、より好ましくは0.5以上である。この被覆割合は、X 線光電子分光法から推定できる。また、複数ポイントの顕微ラマンスペクトル測定を行い、酸化グラフェンに由来するDまたはGバンドが観測されるポイント数の全測定ポイント数に対する割合を用いて被覆割合とすることもできる。この場合も被覆割合は、少なくとも0.2以上、好ましくは0.3以上、より好ましくは0.5以上である。 The sheet-like carbon layer does not need to cover the entire surface of the boron nitride particles, but from the viewpoint of the effect of improving resin affinity, the coating ratio (= carbon atom number / boron atom number ratio) is at least 0.2 or more. It is preferably 0.3 or more, more preferably 0.5 or more. This coverage ratio can be estimated from X-ray photoelectron spectroscopy. It is also possible to perform microscopic Raman spectrum measurement of a plurality of points and use the ratio of the number of points where the D or G band derived from graphene oxide is observed to the total number of measurement points to obtain the covering ratio. In this case as well, the coating ratio is at least 0.2 or more, preferably 0.3 or more, and more preferably 0.5 or more.

窒化ホウ素には六方晶、立方晶等様々な結晶構造のものが知られており、本発明では、いずれをも用いることができる。これらの窒化ホウ素の中で、工業的に入手しやすく、安価であることから六方晶窒化ホウ素粉末が好ましい。窒化ホウ素のサイズは、一般的に熱伝導分野の使用に適する大きさであれば特に限定されないが、好ましくは平均粒径0.1〜100μm、より好ましくは0.5〜60μmである。0.1μmより小さいとナノ粒子効果が強くなって配合した樹脂組成物の流動性が著しく低下する。100μmより大きいと、例えば熱伝導層を形成した場合の層厚を薄くできなくなる。 Boron nitride has various crystal structures such as hexagonal crystal and cubic crystal, and any of them can be used in the present invention. Among these boron nitride powders, hexagonal boron nitride powder is preferable because it is industrially easily available and inexpensive. The size of boron nitride is generally not particularly limited as long as it is suitable for use in the field of heat conduction, but is preferably an average particle size of 0.1 to 100 μm, more preferably 0.5 to 60 μm. If it is smaller than 0.1 μm, the nanoparticle effect becomes stronger and the fluidity of the blended resin composition is significantly lowered. If it is larger than 100 μm, for example, the layer thickness when a heat conductive layer is formed cannot be reduced.

酸化グラフェンは、グラファイトをHummers法として知られる公知の方法を用いて酸化し、1〜20層に剥離処理して得た0.01〜5w%水性分散液を利用できる。媒体としては、水を主体として酸化グラフェンが凝集しない範囲で、親水性溶媒、例えば、メタノール、エタノール等のアルコール類、エチレングリコールなどのグリコール類、テトラヒドロフランなどを加えることができる。得られる酸化グラフェンは、様々な形状のものがあるが、一般的な形状は周囲に凹凸のある矩形に近い形状を持つ薄いシート状であり、その大きさは原料のグラファイト結晶の大きさに依存する。しかし、実際にはシートの大きさは広い分布を持っているため、利用においては大きさに特に制限はないが、目安としては存在するシートの最も長いところの長さが窒化ホウ素粒子の平均粒子径の1/1000〜2/1、好ましくは1/500〜1/1、より好ましくは1/10〜0.7/1である。1/1000〜2/1の範囲外であるとシート状カーボン層となりにくい。 As graphene oxide, a 0.01 to 5 w% aqueous dispersion obtained by oxidizing graphite using a known method known as the Hummers method and exfoliating it into 1 to 20 layers can be used. As the medium, a hydrophilic solvent such as alcohols such as methanol and ethanol, glycols such as ethylene glycol, tetrahydrofuran and the like can be added as long as graphene oxide does not aggregate mainly in water. The graphene oxide obtained has various shapes, but the general shape is a thin sheet having a shape close to a rectangle with irregularities around it, and the size depends on the size of the graphite crystal of the raw material. To do. However, in reality, the size of the sheet has a wide distribution, so there is no particular limitation on the size in use, but as a guide, the length of the longest part of the existing sheet is the average particle of boron nitride particles. The diameter is 1/1000 to 2/1, preferably 1/500 to 1/1, and more preferably 1/10 to 0.7 / 1. If it is outside the range of 1/1000 to 2/1, it is difficult to form a sheet-like carbon layer.

カーボン修飾窒化ホウ素は、酸化グラフェン水性分散液に窒化ホウ素粉末を加えて、撹拌または必要に応じてホモジナイザー等の強力な分散装置を用いて分散し、次いで分散液から濾別または遠心沈降によって回収した後、室温乾燥または必要に応じて加熱乾燥することにより粉体として得ることができる。酸化グラフェン水性分散液に窒化ホウ素粉末を分散していくと、沈殿が生じて上澄み(酸化グラフェン水性分散液層)の色が薄くなっていく。最終的に上澄みは無色透明となり、上澄みから酸化グラフェンは検出されなくなる。すなわち、酸化グラフェン水性分散液に窒化ホウ素粉末を分散するだけで、窒化ホウ素粒子への酸化グラフェンの吸着が起こっているものと考えられる。よって、酸化グラフェン水性分散液への窒化ホウ素の添加量は、窒化ホウ素粒子表面にどれだけ吸着させるかによって任意に選択することができる。 The carbon-modified boron nitride was dispersed by adding boron nitride powder to an aqueous dispersion of graphene oxide, stirring or, if necessary, using a powerful disperser such as a homogenizer, and then recovering from the dispersion by filtration or centrifugation. After that, it can be obtained as a powder by drying at room temperature or, if necessary, heating and drying. When the boron nitride powder is dispersed in the graphene oxide aqueous dispersion, precipitation occurs and the color of the supernatant (graphene oxide aqueous dispersion layer) becomes lighter. Eventually, the supernatant becomes colorless and transparent, and graphene oxide is no longer detected in the supernatant. That is, it is considered that the adsorption of graphene oxide to the boron nitride particles occurs only by dispersing the boron nitride powder in the aqueous graphene oxide dispersion. Therefore, the amount of boron nitride added to the graphene oxide aqueous dispersion can be arbitrarily selected depending on how much boron nitride is adsorbed on the surface of the boron nitride particles.

前記分散液または乾燥物を還元剤で還元する化学還元、または乾燥物を加熱処理する加熱還元によりシート状カーボン層を還元型酸化グラフェンとすることができる。化学還元の還元剤としては、公知のものを用いることができ、例えば、ヒドラジンや、塩酸ヒドラジン、硫酸ヒドラジン、抱水ヒドラジン等 のヒドラジン化合物等のヒドラジン系還元剤、水素化ホウ素ナトリウム、亜硫酸ナトリウム、亜硫酸水素ナトリウム、チオ硫酸ナトリウム、亜硝酸ナトリウム、次亜硝酸ナトリウム、亜リン酸及び亜リン酸ナトリウム等のその塩、次亜リン酸及び次亜リン酸ナトリウム等のその塩、ヨウ化水素、アスコルビン酸、エタノールなどのアルコール類、エチレングリコールなどのグリコール類等を挙げることができ、これらを1種または2種以上用いることができる。使用量は、酸化グラフェンの重量の0.1〜50倍、好ましくは0.5〜30倍量、より好ましくは1〜20倍量を用いることが好ましい。還元剤の総量が前記範囲より少ないと反応が進み難く、前記範囲より多いと系から除く手間がかかる。還元時間は、室温で還元を行う場合、1時間〜72時間である。還元を促進するために反応混合物を加熱することができる。加熱範囲としては、30℃〜100℃、好ましくは40℃〜90℃、より好ましくは50℃〜80℃である。加熱還元としては、公知の条件を利用できるが、例えば、真空または不活性気体中、700〜1200℃で熱処理すればよい。 The sheet-shaped carbon layer can be made into reduced graphene oxide by chemical reduction in which the dispersion liquid or the dried product is reduced with a reducing agent, or heat reduction in which the dried product is heat-treated. As the reducing agent for chemical reduction, known ones can be used, for example, hydrazine, hydrazine-based reducing agents such as hydrazine compounds such as hydrazine hydrochloride, hydrazine sulfate and hydrous hydrazine, sodium boron hydride, sodium sulfite, etc. Its salts such as sodium hydrogen sulfite, sodium thiosulfite, sodium nitrite, sodium hyponitrite, phosphorous acid and sodium bisulfite, its salts such as hypophosphite and sodium hypophosphate, hydrogen iodide, ascorbin Examples thereof include acids, alcohols such as ethanol, glycols such as ethylene glycol, and one or more of these can be used. The amount used is 0.1 to 50 times, preferably 0.5 to 30 times, more preferably 1 to 20 times the weight of graphene oxide. If the total amount of the reducing agent is less than the above range, the reaction is difficult to proceed, and if it is more than the above range, it takes time to remove it from the system. The reduction time is 1 hour to 72 hours when the reduction is performed at room temperature. The reaction mixture can be heated to promote the reduction. The heating range is 30 ° C to 100 ° C, preferably 40 ° C to 90 ° C, and more preferably 50 ° C to 80 ° C. Known conditions can be used for the heat reduction, and for example, heat treatment may be performed at 700 to 1200 ° C. in a vacuum or an inert gas.

本発明のカーボン修飾窒化ホウ素を樹脂と混合することによって、高熱伝導性樹脂組成物を得ることができる。混合量は、1〜90体積%、好ましくは10〜90体積%、より好ましくは20〜90体積%である。1体積%より少ないと熱伝導性が得られない。窒化ホウ素の配合量は多い方が熱伝導性が高くなることが知られおり、上限は特に限定されないが、樹脂組成物の機械的強度を考慮すると上限は90体積%程度が好ましい。 By mixing the carbon-modified boron nitride of the present invention with a resin, a highly thermally conductive resin composition can be obtained. The mixing amount is 1 to 90% by volume, preferably 10 to 90% by volume, and more preferably 20 to 90% by volume. If it is less than 1% by volume, thermal conductivity cannot be obtained. It is known that the larger the amount of boron nitride blended, the higher the thermal conductivity, and the upper limit is not particularly limited, but the upper limit is preferably about 90% by volume in consideration of the mechanical strength of the resin composition.

本発明のカーボン修飾窒化ホウ素を樹脂と混合する方法は、樹脂が固体の場合は、これらとカーボン修飾窒化ホウ素を紛体で混合した後、ニーダーや二軸押出機などを用いて溶融混合する乾式プロセス、あるいは、樹脂を適切な溶剤に溶解してカーボン修飾窒化ホウ素と混合・撹拌またはホモジナイザーやビーズミルを用いた分散処理をする湿式プロセスで行うことができる。これらの方法は、用いる樹脂の性状によって適宜選択することができる。樹脂が液状の場合は、これらとカーボン修飾窒化ホウ素とを攪拌機、3本ロールやニーダーなどを用いて混合、あるいは、樹脂を適切な溶剤または希釈剤で希釈してカーボン修飾窒化ホウ素と混合・撹拌またはホモジナイザーやビーズミルを用いた分散処理をすることで混合処理できる。これらの方法は、用いる樹脂の性状によって適宜選択することができる。 The method of mixing the carbon-modified boron nitride with the resin of the present invention is a dry process in which, when the resin is a solid, these and the carbon-modified boron nitride are mixed with a powder and then melt-mixed using a kneader or a twin-screw extruder. Alternatively, it can be carried out by a wet process in which the resin is dissolved in an appropriate solvent and mixed / stirred with carbon-modified boron nitride or dispersed using a homogenizer or a bead mill. These methods can be appropriately selected depending on the properties of the resin used. If the resin is liquid, mix these with carbon-modified boron nitride using a stirrer, three rolls, a kneader, etc., or dilute the resin with an appropriate solvent or diluent and mix / stir with carbon-modified boron nitride. Alternatively, the mixing treatment can be performed by performing a dispersion treatment using a homogenizer or a bead mill. These methods can be appropriately selected depending on the properties of the resin used.

本発明のカーボン修飾窒化ホウ素と混合する樹脂としては、ポリオレフィン、ポリシクロオレフィン、ポリスチレン、ABS,ポリカーボネート、ポリアミド、ポリイミド、ポリアクリレート、ポリエチレンテレフタレート、ポリフェニレンスルフィド、エポキシ樹脂、ウレタン樹脂、シリコーン樹脂、フェノール樹脂などを挙げることができる。 Examples of the resin to be mixed with the carbon-modified boron nitride of the present invention include polyolefin, polycycloolefin, polystyrene, ABS, polycarbonate, polyamide, polyimide, polyacrylate, polyethylene terephthalate, polyphenylene sulfide, epoxy resin, urethane resin, silicone resin, and phenol resin. And so on.

前記樹脂組成物は、必要に応じてさらに硬化剤、架橋剤、重合開始剤、物性を調整するための高分子化合物または低分子化合物、シリカやクレイのような無機フィラーを含むことができる。 The resin composition may further contain a curing agent, a cross-linking agent, a polymerization initiator, a high molecular weight compound or a low molecular weight compound for adjusting physical properties, and an inorganic filler such as silica or clay, if necessary.

以下、実施例により本発明を具体的に説明するが、本発明はこれら実施例には限定されない。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples.

(酸化グラフェン分散液の作製)
硝酸ナトリウム0.3gおよび過マンガン酸カリウム1.8gを濃硫酸14mlに溶解させ、これに日本黒鉛製グラファイトACB150 0.2gを加えて室温で攪拌した。7日間攪拌後、反応液を冷却して5%硫酸水50mlをゆっくりと加え、さらに30%過酸化水素水10mlを加えて1時間室温で攪拌した。次いで、過酸化水素濃度0.5%および硫酸濃度3%となるように調整した混合液100mlで希釈して、酸化したグラファイトを遠心沈降させた。沈殿物を再び0.5%の過酸化水素と3%の硫酸を含む混合液100mlに分散させ、次いで遠心沈降させることにより、酸化グラファイトを得た。
(Preparation of graphene oxide dispersion)
0.3 g of sodium nitrate and 1.8 g of potassium permanganate were dissolved in 14 ml of concentrated sulfuric acid, 0.2 g of graphite ACB150 made by Nippon Graphite was added thereto, and the mixture was stirred at room temperature. After stirring for 7 days, the reaction solution was cooled, 50 ml of 5% sulfuric acid water was slowly added, 10 ml of 30% hydrogen peroxide solution was further added, and the mixture was stirred at room temperature for 1 hour. Then, it was diluted with 100 ml of a mixed solution adjusted to have a hydrogen peroxide concentration of 0.5% and a sulfuric acid concentration of 3%, and the oxidized graphite was centrifuged. The precipitate was again dispersed in 100 ml of a mixture containing 0.5% hydrogen peroxide and 3% sulfuric acid, and then centrifuged to obtain graphite oxide.

次いで、遠心沈降物を0.5%の過酸化水素と3%の硫酸を含む混合液100mlに分散させ、これを透析膜に入れてイオン交換水に漬け、イオン交換水を交換しながら7日間透析を行った。次いで、透析液を超音波洗浄機に入れて8時間超音波照射処理した後、遠心分離することにより上澄みを取りだし、濃度0.044g/100mlの酸化グラフェン分散液を得た。分散液を50倍に希釈してシリコン基板に塗布し、原子間力顕微鏡(AFM)で観察したところ、シートの最も長いところの長さが100〜2000nm、厚さ1〜18nmの分布を持つシート状物体を観察することができた。 Next, the centrifugal sediment was dispersed in 100 ml of a mixed solution containing 0.5% hydrogen peroxide and 3% sulfuric acid, placed in a dialysis membrane and immersed in ion-exchanged water, and the ion-exchanged water was exchanged for 7 days. Dialysis was performed. Next, the dialysate was placed in an ultrasonic cleaner and subjected to ultrasonic irradiation treatment for 8 hours, and then the supernatant was taken out by centrifugation to obtain a graphene oxide dispersion having a concentration of 0.044 g / 100 ml. When the dispersion was diluted 50 times, applied to a silicon substrate, and observed with an atomic force microscope (AFM), the longest part of the sheet had a length of 100 to 2000 nm and a thickness of 1 to 18 nm. I was able to observe the shape object.

(実施例1)
(酸化グラフェン層を有するカーボン修飾窒化ホウ素の作製)
0.044g/100mlの酸化グラフェン分散液50mlに六方晶窒化ホウ素粉末(昭和電工 ショウビーエヌ(登録商標) UHP−2)を超音波洗浄器で超音波を照射しながら、加えていった。窒化ホウ素粉末を加えると凝集沈殿が生じ、加える量が増えると上澄みの色(褐色)が薄くなって行き、窒化ホウ素粉末を7.5g加えた時点で上澄みはほぼ無色となった。
沈殿を濾別して蒸留水100ml、メタノール100mlで洗浄後、60℃で8時間乾燥して薄茶色の粉末を得た(カーボン修飾UHP−2とする)。この粉末を電界放射形走査電子顕微鏡で観察したところ、平板な窒化ホウ素粒子表面に多数の皺が観察された。原料の窒化ホウ素粒子にはこのような皺はみられないことから、この皺は窒化ホウ素粒子表面に形成された酸化グラフェンによるものと考えられる。さらに窒化ホウ素粒子表面の異なる5点の顕微ラマンスペクトルを測定したところ、全ての測定点で酸化グラフェンのDバンドを観測することができたことから、酸化グラフェンは窒化ホウ素粒子の全面を覆っているものと考えられる。
(Example 1)
(Preparation of carbon-modified boron nitride having a graphene oxide layer)
Hexagonal boron nitride powder (Showa Denko ShoBN (registered trademark) UHP-2) was added to 50 ml of 0.044 g / 100 ml graphene oxide dispersion while irradiating ultrasonic waves with an ultrasonic cleaner. When the boron nitride powder was added, cohesive precipitation occurred, and as the amount added increased, the color (brown) of the supernatant became lighter, and when 7.5 g of the boron nitride powder was added, the supernatant became almost colorless.
The precipitate was separated by filtration, washed with 100 ml of distilled water and 100 ml of methanol, and dried at 60 ° C. for 8 hours to obtain a light brown powder (referred to as carbon-modified UHP-2). When this powder was observed with a field emission scanning electron microscope, many wrinkles were observed on the surface of the flat boron nitride particles. Since such wrinkles are not observed in the raw material boron nitride particles, it is considered that these wrinkles are due to graphene oxide formed on the surface of the boron nitride particles. Furthermore, when the microscopic Raman spectra at five different points on the surface of the boron nitride particles were measured, the D band of graphene oxide could be observed at all the measurement points. Therefore, graphene oxide covers the entire surface of the boron nitride particles. It is considered to be.

(実施例2)
(還元型酸化グラフェン層を有するカーボン修飾窒化ホウ素の作製)
0.044g/100mlの酸化グラフェン分散液50mlに六方晶窒化ホウ素粉末しながら、加えていった。窒化ホウ素粉末を加えると凝集沈殿が生じ、加える量が増えると上澄みの色(褐色)が薄くなって行き、窒化ホウ素粉末を7.5g加えた時点で上澄みはほぼ無色となった。
次いで、ヒドラジン水和物5mlを加えて1晩室温で撹拌し、生成した沈殿を濾別して蒸留水100ml、メタノール100mlで洗浄後、60℃で8時間乾燥して灰色の粉末を得た(還元型カーボン修飾UHP−2とする)。乾燥した窒化ホウ素粒子表面の異なる5点の顕微ラマンスペクトルを測定したところ、全ての測定点で還元型酸化グラフェンのGバンドを観測することができたことから、還元型酸化グラフェンに覆われた窒化ホウ素粒子が得られているものと考えられる。
(Example 2)
(Preparation of carbon-modified boron nitride having a reduced graphene oxide layer)
Hexagonal boron nitride powder was added to 50 ml of 0.044 g / 100 ml graphene oxide dispersion. When the boron nitride powder was added, cohesive precipitation occurred, and as the amount added increased, the color (brown) of the supernatant became lighter, and when 7.5 g of the boron nitride powder was added, the supernatant became almost colorless.
Then, 5 ml of hydrazine hydrate was added and stirred overnight at room temperature, and the resulting precipitate was filtered off, washed with 100 ml of distilled water and 100 ml of methanol, and dried at 60 ° C. for 8 hours to obtain a gray powder (reduced type). Carbon-modified UHP-2). When the microscopic Raman spectra at five different points on the surface of the dried boron nitride particles were measured, the G band of reduced graphene oxide could be observed at all the measurement points. Therefore, the nitride covered with reduced graphene oxide was observed. It is considered that boron particles are obtained.

(実施例3)
(カーボン修飾窒化ホウ素を含む樹脂組成物の作製1)
ビスA型エポキシ(三菱化学製:Ep828) 33重量部とフェノールノボラック(DIC製:TD2090)19重量部、2−エチル−4−メチルイミダゾール(ナカライテスク製:2E4MZ)0.5重量部を乳鉢でよく混ぜ合わせ、さらに実施例1で作製したカーボン修飾UHP−2 48重量部を添加して乳鉢で均一になるまで混練して窒化ホウ素混合物を得た(窒化ホウ素添加量は35vol%)。得られた混合物を120℃で4分間乾燥し、真空プレス機にて140℃/0.5MPa/5分、180℃/0.5MPa/2時間プレスを行い、硬化物を得た。
(Example 3)
(Preparation of Resin Composition Containing Carbon-Modified Boron Nitride 1)
Bis A type epoxy (Mitsubishi Chemical: Ep828) 33 parts by weight, phenol novolac (DIC: TD2090) 19 parts by weight, 2-ethyl-4-methylimidazole (Nacalai Tesque: 2E4MZ) 0.5 parts by weight in a dairy bowl After mixing well, 48 parts by weight of the carbon-modified UHP-2 prepared in Example 1 was added and kneaded in a dairy pot until uniform to obtain a boron nitride mixture (boron nitride addition amount was 35 vol%). The obtained mixture was dried at 120 ° C. for 4 minutes and pressed with a vacuum press at 140 ° C./0.5 MPa/5 minutes and 180 ° C./0.5 MPa/2 hours to obtain a cured product.

(実施例4)
(カーボン修飾窒化ホウ素を含む樹脂組成物の作製2)
実施例1で作製したカーボン修飾UHP−2の添加量を45vol%にする以外は、実施例3と同様にしてエポキシ樹脂硬化物を得た。
(Example 4)
(Preparation of Resin Composition Containing Carbon-Modified Boron Nitride 2)
An epoxy resin cured product was obtained in the same manner as in Example 3 except that the amount of the carbon-modified UHP-2 produced in Example 1 was 45 vol%.

(比較例1)
窒化ホウ素を未修飾の六方晶窒化ホウ素(昭和電工製ショウビーエヌ(登録商標) UHP−2)にする以外は実施例3と同様にして窒化ホウ素添加量35vol%のエポキシ樹脂硬化物を作製した。
(Comparative Example 1)
An epoxy resin cured product having a boron nitride addition amount of 35 vol% was prepared in the same manner as in Example 3 except that boron nitride was changed to unmodified hexagonal boron nitride (Showa Denko's ShoBN (registered trademark) UHP-2). ..

(比較例2)
窒化ホウ素(昭和電工製ショウビーエヌ(登録商標) UHP−2)の添加量を45vol%にする以外は、 比較例1と同様にしてエポキシ樹脂硬化物を作製した。
(Comparative Example 2)
An epoxy resin cured product was prepared in the same manner as in Comparative Example 1 except that the amount of boron nitride (Showa Denko's ShoBN (registered trademark) UHP-2) was 45 vol%.

(熱伝導率の測定)
べテル製サーモウェーブアナライザ TA(周期加熱方式)を用いて、得られた硬化物の厚み方向と平面方向の熱伝導率を算出した。測定結果の一覧を表1に示す。
(Measurement of thermal conductivity)
The thermal conductivity in the thickness direction and the plane direction of the obtained cured product was calculated using Bethel's Thermowave Analyzer TA (periodic heating method). A list of measurement results is shown in Table 1.

表1に示すように、同一添加量である実施例3と比較例1、ならびに実施例4と比較例2を比較すると、カーボン修飾窒化ホウ素を用いた硬化物では、明らかに厚み方向、平面方向ともに熱伝導率が向上していた。特に厚み方向の熱伝導率は、実施例2で23%の大きな向上がみられた。作製した硬化物において平面方向と厚み方向で熱伝導率が異なるのは、窒化ホウ素が平面方向に配向しているためと考えられる。実施例において、特に厚み方向の熱伝導率の向上がみられた要因としては、窒化ホウ素表面と樹脂との親和性が改善された結果、両者界面の剥離による空隙生成が減ったことが考えられる。 As shown in Table 1, when Example 3 and Comparative Example 1 and Example 4 and Comparative Example 2 having the same addition amount are compared, the cured product using carbon-modified boron nitride clearly has a thickness direction and a plane direction. Both had improved thermal conductivity. In particular, the thermal conductivity in the thickness direction was significantly improved by 23% in Example 2. It is considered that the reason why the thermal conductivity of the produced cured product differs between the plane direction and the thickness direction is that the boron nitride is oriented in the plane direction. In the examples, the reason why the thermal conductivity was particularly improved in the thickness direction is considered to be that the affinity between the boron nitride surface and the resin was improved, and as a result, the formation of voids due to the peeling of the interface between the two was reduced. ..

(顕微ラマンスペクトル測定による酸化グラフェン層を有するカーボン修飾窒化ホウ素の分析)
実施例1で作製したカーボン修飾窒化ホウ素粒子から無作為に10個の粒子を選択して顕微ラマンスペクトルを測定(測定装置:Horiba XploRA)し、酸化グラフェン由来の1590cm−1のバンドと窒化ホウ素由来の1360cm−1のバンドのマッピングを行った。すべての粒子について、観察した粒子表面の大部分で1590cm−1のバンドが検出されたことより、窒化ホウ素粒子はまんべんなく表面に酸化グラフェン層を有していると考えられる。また、1590cm−1のバンド強度が強いところは1360cm−1のバンド強度が弱かった。これは、酸化グラフェンによる被覆を支持していると考えられる。
(Analysis of carbon-modified boron nitride having a graphene oxide layer by microscopic Raman spectrum measurement)
Ten particles were randomly selected from the carbon-modified boron nitride particles prepared in Example 1 and the microscopic Raman spectrum was measured (measurement device: Horiba XproRA), and a 1590 cm- 1 band derived from graphene oxide and a boron nitride derived 1360 cm -1 band was mapped. For all the particles, a band of 1590 cm -1 was detected on most of the observed particle surface, suggesting that the boron nitride particles have a graphene oxide layer evenly on the surface. Further, where the band strength of 1590 cm -1 was strong, the band strength of 1360 cm -1 was weak. This is believed to support the coating with graphene oxide.

(X線光電子分光による酸化グラフェン層を有するカーボン修飾窒化ホウ素の分析)
酸化グラフェンと実施例1で作製したカーボン修飾窒化ホウ素について、X線光電子分光を用いて酸化グラフェンの吸着前後変化を分析した(測定装置:ULVAC PHI 5000)。C1sスペクトルにおいて、未吸着の酸化グラフェンに対して窒化ホウ素上の酸化グラフェン層にはC−O結合に帰属されるピーク強度の著しい減少とC−B結合およびC−N結合とみられる新たなピークがみられた。酸化グラフェンは窒化ホウ素に吸着することによって、何らかの化学的変化を起こしていると考えられる。
(Analysis of carbon-modified boron nitride having a graphene oxide layer by X-ray photoelectron spectroscopy)
For graphene oxide and the carbon-modified boron nitride prepared in Example 1, changes before and after adsorption of graphene oxide were analyzed using X-ray photoelectron spectroscopy (measuring device: ULVAC PHI 5000). In the C1s spectrum, the graphene oxide layer on boron nitride has a significant decrease in the peak intensity attributed to the C—O bond and new peaks appearing to be the CB and CN bonds compared to the unadsorbed graphene oxide. It was seen. Graphene oxide is considered to have undergone some chemical changes by being adsorbed on boron nitride.

(実施例5)
(カーボン修飾窒化ホウ素を含む樹脂組成物の作製3)
ビスA型エポキシ(三菱化学製:Ep828) 20重量部とフェノールノボラック(DIC製:TD2090)11重量部、2−エチル−4−メチルイミダゾール(ナカライテスク製:2E4MZ)0.3重量部を乳鉢でよく混ぜ合わせ、さらに実施例1で作製したカーボン修飾UHP−2 38重量部、球状アルミナCB A20S 31重量部を添加して乳鉢で均一になるまで混練して窒化ホウ素−アルミナ混合物を得た(窒化ホウ素添加量は35vol%、アルミナ添加量は15vol%、充填材総添加量は50vol%)。得られた混合物を120℃で4分間乾燥し、真空プレス機にて140℃/20MPa/5分、180℃/0.5MPa/2時間プレスを行い、硬化物を得た。
続いて、べテル製サーモウェーブアナライザ TA(周期加熱方式)を用いて厚み方向と平面方向の熱拡散率を測定し、硬化物の比熱と比重から厚み方向と平面方向の熱伝導率を算出した。
(Example 5)
(Preparation of Resin Composition Containing Carbon-Modified Boron Nitride 3)
20 parts by weight of bis A type epoxy (Mitsubishi Chemical: Ep828), 11 parts by weight of phenol novolac (DIC: TD2090), 0.3 part by weight of 2-ethyl-4-methylimidazole (Nacalai Tesque: 2E4MZ) in a dairy bowl After mixing well, 38 parts by weight of the carbon-modified UHP-2 prepared in Example 1 and 31 parts by weight of spherical alumina CB A20S were added and kneaded in a dairy pot until uniform to obtain a boron nitride-alumina mixture (boron nitride-alumina mixture). The amount of boron added is 35 vol%, the amount of alumina added is 15 vol%, and the total amount of filler added is 50 vol%). The obtained mixture was dried at 120 ° C. for 4 minutes and pressed with a vacuum press at 140 ° C./20 MPa / 5 minutes and 180 ° C./0.5 MPa/2 hours to obtain a cured product.
Subsequently, the thermal diffusivity in the thickness direction and the plane direction was measured using the Bethel Thermowave Analyzer TA (periodic heating method), and the thermal conductivity in the thickness direction and the plane direction was calculated from the specific heat and specific gravity of the cured product. ..

(実施例6〜8)
(カーボン修飾窒化ホウ素を含む樹脂組成物の作製2〜5)
球状アルミナ(昭和電工製CB A20Sの添加量を表2に従って25、35、40vol%にする以外は、実施例5と同様にしてエポキシ樹脂硬化物を作製し、厚み方向と平面方向の熱伝導率を算出した。
(Examples 6 to 8)
(Preparation of Resin Composition Containing Carbon-Modified Boron Nitride 2-5)
An epoxy resin cured product was prepared in the same manner as in Example 5 except that the amount of spherical alumina (CB A20S manufactured by Showa Denko Co., Ltd. was 25, 35, 40 vol% according to Table 2), and the thermal conductivity in the thickness direction and the plane direction was increased. Was calculated.

(比較例3〜6)
窒化ホウ素を未修飾の六方晶窒化ホウ素(昭和電工製ショウビーエヌ(登録商標)UHP−2)にする以外は表3に従って実施例5と同様にして窒化ホウ素添加量35vol%、球状アルミナ添加量15、25、35、40 vol%のエポキシ樹脂硬化物を作製し、厚み方向と平面方向の熱伝導率を算出した。
(Comparative Examples 3 to 6)
Boron nitride addition amount 35 vol%, spherical alumina addition amount in the same manner as in Example 5 according to Table 3 except that boron nitride is unmodified hexagonal boron nitride (Showa Denko's ShoBN (registered trademark) UHP-2). A cured epoxy resin of 15, 25, 35, and 40 vol% was prepared, and the thermal conductivity in the thickness direction and the plane direction was calculated.

表2及び表3に示すように、同一添加量である実施例5と比較例3、ならびに実施例6と比較例4を比較すると、カーボン修飾窒化ホウ素を用いた硬化物では、明らかに厚み方向、平面方向ともに熱伝導率が向上していた。厚み方向の熱伝導率は、実施例8で61%の大きな向上がみられた。作製した硬化物において平面方向と厚み方向で熱伝導率が異なるのは、窒化ホウ素が平面方向に配向しているためと考えられる。実施例において、特に厚み方向の熱伝導率の向上がみられた要因としては、球状アルミナの添加により窒化ホウ素の平面配向が乱され、厚み方向への熱パスが増えたことと、窒化ホウ素表面と樹脂との親和性が改善された結果、両者界面の剥離による空隙生成が減ったことが考えられる。 As shown in Tables 2 and 3, when Example 5 and Comparative Example 3 and Example 6 and Comparative Example 4 having the same amount of addition are compared, the cured product using carbon-modified boron nitride is clearly in the thickness direction. , The thermal conductivity was improved in both the plane direction. The thermal conductivity in the thickness direction was significantly improved by 61% in Example 8. It is considered that the reason why the thermal conductivity of the produced cured product differs between the plane direction and the thickness direction is that the boron nitride is oriented in the plane direction. In the examples, the factors that particularly improved the thermal conductivity in the thickness direction were that the addition of spherical alumina disturbed the planar orientation of boron nitride and increased the heat path in the thickness direction, and the surface of boron nitride. As a result of the improvement of the affinity between the resin and the resin, it is considered that the formation of voids due to the peeling of the interface between the two is reduced.

(実施例9)
(カーボン修飾窒化ホウ素を含む樹脂組成物の作製6)
無溶剤型シリコーン樹脂(信越化学工業製 KNS−320A)1.56重量部に実施例1で作製したカーボン修飾窒化ホウ素2.18重量部と硬化剤(信越化学工業製CAT−PL−50T)0.03重量部を乳鉢でよく混ぜ合わせた。混合物をポリテトラフッ化エチレン製四角容器に入れて真空脱泡(室温30分)した後、ポリテトラフッ化エチレン製板で混合物を押し広げながら蓋をして、80℃30分加熱して硬化させた。
得られた硬化物を型枠から取り出してべテル製サーモウェーブアナライザ TA(周期加熱方式)を用いて厚み方向の熱拡散率を測定し、硬化物の比熱と比重から厚み方向の熱伝導率を算出したところ、熱伝導率は1.31W/(m・K)であった。
(Example 9)
(Preparation of Resin Composition Containing Carbon-Modified Boron Nitride 6)
Solvent-free silicone resin (KNS-320A manufactured by Shin-Etsu Chemical Co., Ltd.) 1.56 parts by weight, 2.18 parts by weight of carbon-modified boron nitride prepared in Example 1 and curing agent (CAT-PL-50T manufactured by Shin-Etsu Chemical Co., Ltd.) 0 .03 parts by weight were mixed well in a dairy pot. The mixture was placed in a square container made of ethylene polytetrafluoride and vacuum defoamed (room temperature for 30 minutes), and then the mixture was covered with a plate made of ethylene polytetrafluoride while spreading, and heated at 80 ° C. for 30 minutes to cure.
The obtained cured product is taken out from the mold and the thermal diffusivity in the thickness direction is measured using Bethel's Thermo Wave Analyzer TA (periodic heating method), and the thermal conductivity in the thickness direction is determined from the specific heat and specific gravity of the cured product. As a result of calculation, the thermal conductivity was 1.31 W / (m · K).

(比較例7)
カーボン修飾窒化ホウ素を無修飾の窒化ホウ素(昭和電工製ショウビーエヌ(登録商標)UHP−2)にする以外は実施例9と同様にして硬化物を作製し、厚み方向の熱伝導率を算出したところ、熱伝導率は0.82W/(m・K)であった。実施例9と比較すると、カーボン修飾窒化ホウ素を用いた方が熱伝導率は高くなる結果となった。
(Comparative Example 7)
A cured product was prepared in the same manner as in Example 9 except that the carbon-modified boron nitride was changed to unmodified boron nitride (Showa Denko's ShoBN (registered trademark) UHP-2), and the thermal conductivity in the thickness direction was calculated. As a result, the thermal conductivity was 0.82 W / (m · K). Compared with Example 9, the thermal conductivity was higher when carbon-modified boron nitride was used.

本発明のカーボン修飾窒化ホウ素は、粒子表面にシート状カーボン層を有することにより樹脂との親和性が向上し、配合された樹脂組成物の流動性や窒化ホウ素と樹脂との界面接着性を改善することができる。それにより機械的強度と熱伝導性の優れた熱伝導性樹脂組成物を提供でき、各種装置の熱伝導材料、放熱材料として利用できる。


The carbon-modified boron nitride of the present invention has a sheet-like carbon layer on the particle surface to improve the affinity with the resin, and improve the fluidity of the blended resin composition and the interfacial adhesiveness between the boron nitride and the resin. can do. Thereby, it is possible to provide a heat conductive resin composition having excellent mechanical strength and heat conductivity, and it can be used as a heat conductive material and a heat radiating material of various devices.


Claims (3)

カーボン修飾窒化ホウ素であって、表面未処理の六方晶窒化ホウ素粒子表面にシート状カーボン層を有し、前記シート状カーボン層が1〜20層の酸化グラフェンであるカーボン修飾窒化ホウ素。 Carbon-modified boron nitride, which is a carbon-modified boron nitride having a sheet-like carbon layer on the surface of hexagonal boron nitride particles whose surface has not been treated, and the sheet-like carbon layer is graphene oxide having 1 to 20 layers. 請求項1に記載のカーボン修飾窒化ホウ素を樹脂に混合した、高熱伝導性樹脂組成物。 A highly thermally conductive resin composition obtained by mixing the carbon-modified boron nitride according to claim 1 with a resin. カーボン修飾窒化ホウ素粒子の製造方法であって、
表面未処理の六方晶窒化ホウ素粒子粉末を酸化グラフェンの水分散液に、上澄みが無色透明になるまで混合する工程、
液中から固体を回収して乾燥する工程、
からなる、カーボン修飾窒化ホウ素の製造方法。
A method for producing carbon-modified boron nitride particles.
The powder of the hexagonal boron nitride particles in the surface raw water dispersion of graphene oxide, mixing until the supernatant is colorless and transparent,
The process of recovering a solid from the liquid and drying it,
A method for producing carbon-modified boron nitride, which comprises.
JP2018106168A 2017-06-16 2018-06-01 Carbon-modified Boron Nitride, Its Manufacturing Method and Highly Thermally Conductive Resin Composition Active JP6803874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/022717 WO2018230638A1 (en) 2017-06-16 2018-06-14 Carbon-modified boron nitride, method for producing same, and highly heat-conductive resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017118255 2017-06-16
JP2017118255 2017-06-16

Publications (3)

Publication Number Publication Date
JP2019001701A JP2019001701A (en) 2019-01-10
JP2019001701A5 JP2019001701A5 (en) 2019-07-11
JP6803874B2 true JP6803874B2 (en) 2020-12-23

Family

ID=65004780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018106168A Active JP6803874B2 (en) 2017-06-16 2018-06-01 Carbon-modified Boron Nitride, Its Manufacturing Method and Highly Thermally Conductive Resin Composition

Country Status (1)

Country Link
JP (1) JP6803874B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7402610B2 (en) * 2019-01-21 2023-12-21 三井化学株式会社 Thermal conductive resin compositions, thermal conductive sheets and electronic components
JP7348745B2 (en) * 2019-04-25 2023-09-21 株式会社日本触媒 Method of manufacturing the composite
KR102200848B1 (en) * 2019-12-13 2021-01-12 주식회사 케이비엘러먼트 Thermally conductive sheet comprising non-oxidized graphene and hexagonal boron nitride
CN114479774B (en) * 2022-01-20 2023-09-26 国网河北省电力有限公司电力科学研究院 Preparation method and preparation equipment of heat-conducting insulating material GBN
CN114525114A (en) * 2022-02-28 2022-05-24 中国电子科技集团公司第三十三研究所 Preparation method of graphene fiber-based heat-conducting wave-absorbing powder material
CN116478476B (en) * 2023-05-06 2023-11-28 青岛中新华美塑料有限公司 PP/PA alloy and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130230722A1 (en) * 2010-11-24 2013-09-05 Fuji Electric Co., Ltd. Conductive thin film and transparent conductive film comprising graphene
GB201104824D0 (en) * 2011-03-22 2011-05-04 Univ Manchester Structures and methods relating to graphene
WO2014171030A1 (en) * 2013-04-19 2014-10-23 株式会社インキュベーション・アライアンス Carbon fiber and method for producing same
JP6225848B2 (en) * 2014-03-13 2017-11-08 株式会社豊田中央研究所 Boron nitride nanosheet-containing dispersion, boron nitride nanosheet composite and production method thereof
JP6284019B2 (en) * 2014-04-03 2018-02-28 株式会社豊田中央研究所 Boron nitride nanosheet-containing dispersion and production method thereof, boron nitride nanosheet composite and production method thereof
JP6241398B2 (en) * 2014-09-11 2017-12-06 株式会社デンソー Method for producing graphene laminate

Also Published As

Publication number Publication date
JP2019001701A (en) 2019-01-10

Similar Documents

Publication Publication Date Title
JP6803874B2 (en) Carbon-modified Boron Nitride, Its Manufacturing Method and Highly Thermally Conductive Resin Composition
Su et al. Fabrication of thermal conductivity enhanced polymer composites by constructing an oriented three-dimensional staggered interconnected network of boron nitride platelets and carbon nanotubes
Zhao et al. Synergistic enhanced thermal conductivity of epoxy composites with boron nitride nanosheets and microspheres
CN111511679B (en) Hexagonal boron nitride powder, method for producing same, and composition and heat dissipating material using same
TWI763709B (en) Boron nitride bulk particles, method for producing the same, and thermally conductive resin composition using the same
TWI718560B (en) Hexagonal boron nitride powder and its manufacturing method, its composition and heat dissipation material
Long et al. Resolving the dilemma of gaining conductivity but losing environmental friendliness in producing polystyrene/graphene composites via optimizing the matrix-filler structure
WO2017145869A1 (en) Hexagonal boron nitride powder, production method therefor, resin composition and resin sheet
Tanaka et al. Tailoring of nanocomposite dielectrics: from fundamentals to devices and applications
TW200838910A (en) TiO2-coated CNT, TiO2-coated CNT reinforcing polymer composite and methods of preparation thereof
JP7175586B2 (en) Boron nitride particle aggregate, method for producing the same, composition, and resin sheet
Nayak et al. Mechanical properties and thermal conductivity of epoxy composites enhanced by h-BN/RGO and mh-BN/GO hybrid filler for microelectronics packaging application
WO2018230638A1 (en) Carbon-modified boron nitride, method for producing same, and highly heat-conductive resin composition
JP7402610B2 (en) Thermal conductive resin compositions, thermal conductive sheets and electronic components
JP2012240891A (en) Nanocarbon-nanocomposite, and method for producing the same
Zeng et al. Green synthesis of AgNPs/reduced graphene oxide nanocomposites and effect on the electrical performance of electrically conductive adhesives
Wang et al. Enhanced comprehensive properties of nylon-6 nanocomposites by aniline-modified boron nitride nanosheets
Kim et al. Fabrication of covalently linked exfoliated boron nitride nanosheet/multi-walled carbon nanotube hybrid particles for thermal conductive composite materials
Ma et al. Preparation of modified hexagonal boron nitride by ball-milling and enhanced thermal conductivity of epoxy resin
JP6786047B2 (en) Method of manufacturing heat conductive sheet
Ryu et al. Magnetic alignment of electrochemically exfoliated graphite in epoxy as a thermal interface material with high through-plane thermal conductivity
Yan et al. Effect of graphene oxide with different exfoliation levels on the mechanical properties of epoxy nanocomposites
JP7268984B2 (en) Graphene oxide modified aluminum nitride particles
Borah et al. Milled graphitic nanoparticle toughened epoxy composites via increased resistance to in-plane crack propagation
Zhang et al. Polyhedral oligosilsesquioxane-modified boron nitride enhances the mechanical properties of polyimide nanocomposites

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190607

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190607

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190910

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200428

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201201

R150 Certificate of patent or registration of utility model

Ref document number: 6803874

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250