WO2018047828A1 - Heat-conductive sheet and semiconductor device - Google Patents

Heat-conductive sheet and semiconductor device Download PDF

Info

Publication number
WO2018047828A1
WO2018047828A1 PCT/JP2017/031980 JP2017031980W WO2018047828A1 WO 2018047828 A1 WO2018047828 A1 WO 2018047828A1 JP 2017031980 W JP2017031980 W JP 2017031980W WO 2018047828 A1 WO2018047828 A1 WO 2018047828A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
conductive sheet
heat conductive
silicone
fiber length
Prior art date
Application number
PCT/JP2017/031980
Other languages
French (fr)
Japanese (ja)
Inventor
荒巻 慶輔
弘幸 良尊
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to CN201780065575.3A priority Critical patent/CN109891577B/en
Publication of WO2018047828A1 publication Critical patent/WO2018047828A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16152Cap comprising a cavity for hosting the device, e.g. U-shaped cap

Definitions

  • the present invention relates to a heat conductive sheet disposed between a heat source such as an electronic component and a heat radiating member such as a heat sink, and a semiconductor device including the heat conductive sheet.
  • a heat conductive sheet is provided between the semiconductor element and the heat sink in order to efficiently release the heat of the semiconductor element.
  • a heat conductive sheet a material in which a filler such as a heat conductive filler [scale-like particles (boron nitride (BN), graphite, etc.), carbon fiber, etc.] is dispersed and contained in silicone is widely used (for example, Patent Documents 1 to 3).
  • heat conductive fillers have anisotropy of heat conduction.
  • a heat of about 600 W / m ⁇ K to 1200 W / m ⁇ K in the fiber direction.
  • boron nitride when used, it has a thermal conductivity of about 110 W / m ⁇ K in the plane direction and about 2 W / m ⁇ K in the direction perpendicular to the plane direction. It is known to have.
  • heat conductive fillers having excellent heat conductivity such as carbon fiber, graphite fiber, and metal fiber, have conductivity. For this reason, when the blending amount is increased, the possibility of causing a contact failure (short-circuit) due to contact with the conduction portion of the electronic device component increases.
  • the thermal conductive sheet is required to further improve the thermal conductivity and ensure insulation.
  • an object of the present invention is to provide a heat conductive sheet having high thermal conductivity and excellent insulation, and a semiconductor device using the heat conductive sheet.
  • Means for solving the problems are as follows. That is, ⁇ 1> A heat conductive sheet containing a binder resin and a fibrous filler having conductivity, The conductive filler and the heat conductive sheet satisfy the following relational expression (1).
  • D90 is an area fiber length ( ⁇ m) of 90% cumulative from the short fiber length side in the fiber length distribution of the conductive fibrous filler
  • D50 is a fiber of the conductive fibrous filler.
  • the area fiber length ( ⁇ m) is accumulated 50% from the short fiber length side in the long distribution
  • A is the average thickness ( ⁇ m) of the heat conductive sheet.
  • the conventional problems can be solved, the object can be achieved, and the heat conductive sheet having high heat conductivity and excellent insulation properties, and the heat conductive sheet are used.
  • a semiconductor device can be provided.
  • FIG. 1 is a cross-sectional view showing an example of a semiconductor device to which the present invention is applied.
  • the heat conductive sheet of the present invention contains at least a binder resin and a fibrous filler having conductivity, preferably contains a heat conductive filler, and further contains other components as necessary.
  • the inventors of the present invention have made extensive studies in order to achieve the contradictory purpose of improving the thermal conductivity and ensuring the insulating properties of the thermal conductive sheet.
  • the inventors paid attention to the fiber length distribution of the conductive fibrous filler used. If the fiber lengths of the fibrous filler are uniform and the fiber length distribution is narrow to some extent, the fibrous filler has few fibrous fillers longer than the average fiber length. Therefore, it can prevent that a long fibrous filler makes conduction in the thickness direction of a heat conductive sheet. That is, the present inventors have found that the fiber length distribution of the fibrous filler and the thickness of the heat conductive sheet are important for improving the heat conductivity and ensuring the insulation in the heat conductive sheet.
  • D90 is an area fiber length ( ⁇ m) of 90% cumulative from the short fiber length side in the fiber length distribution of the conductive fibrous filler
  • D50 is a fiber of the conductive fibrous filler.
  • the area fiber length ( ⁇ m) is accumulated 50% from the short fiber length side in the long distribution
  • A is the average thickness ( ⁇ m) of the heat conductive sheet.
  • Binder resin There is no restriction
  • thermosetting polymer examples include crosslinked rubber, epoxy resin, polyimide resin, bismaleimide resin, benzocyclobutene resin, phenol resin, unsaturated polyester, diallyl phthalate resin, silicone, polyurethane, polyimide silicone, thermosetting polyphenylene.
  • examples include ether and thermosetting modified polyphenylene ether. These may be used individually by 1 type and may use 2 or more types together.
  • crosslinked rubber examples include natural rubber, butadiene rubber, isoprene rubber, nitrile rubber, hydrogenated nitrile rubber, chloroprene rubber, ethylene propylene rubber, chlorinated polyethylene, chlorosulfonated polyethylene, butyl rubber, halogenated butyl rubber, fluorine rubber, Examples thereof include urethane rubber, acrylic rubber, polyisobutylene rubber, and silicone rubber. These may be used individually by 1 type and may use 2 or more types together.
  • thermosetting polymer is silicone from the viewpoints of excellent molding processability and weather resistance, and adhesion and followability to electronic components.
  • the silicone is not particularly limited and may be appropriately selected depending on the intended purpose, but preferably contains a liquid silicone gel main component and a curing agent.
  • examples of such silicone include addition reaction type silicone and heat vulcanization type millable type silicone using peroxide for vulcanization.
  • addition reaction type silicone is particularly preferable because adhesion between the heat generating surface of the electronic component and the heat sink surface is required.
  • addition reaction type silicone a two-component addition reaction type silicone using a polyorganosiloxane having a vinyl group as a main ingredient and a polyorganosiloxane having a Si—H group as a curing agent is preferable.
  • the content of the binder resin in the heat conductive sheet is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 20% by volume to 50% by volume, more preferably 30% by volume to 40% by volume. 30 vol% to 40 vol% is particularly preferred.
  • a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the conductive fibrous filler (hereinafter sometimes referred to as “fibrous filler”) is not particularly limited as long as it is a conductive fiber, and can be appropriately selected according to the purpose.
  • a metal fiber, carbon fiber, etc. are mentioned. Among these, carbon fiber is preferable.
  • group carbon fiber, and PBO fiber the carbon fiber which graphitized pitch type
  • Carbon fibers synthesized by CVD (chemical vapor deposition), CCVD (catalytic chemical vapor deposition), or the like can be used.
  • carbon fibers obtained by graphitizing PBO fibers and pitch-based carbon fibers are particularly preferable from the viewpoint of thermal conductivity.
  • the carbon fiber can be used after partially or entirely surface-treating as necessary.
  • the surface treatment include oxidation treatment, nitriding treatment, nitration, sulfonation, or attaching a metal, a metal compound, an organic compound, or the like to the surface of a functional group or carbon fiber introduced to the surface by these treatments.
  • the process etc. which are combined are mentioned.
  • the functional group include a hydroxyl group, a carboxyl group, a carbonyl group, a nitro group, and an amino group.
  • the specific gravity of the carbon fibers include, for example, 2.10g / cm 3 ⁇ 2.26g / cm 3.
  • the organic filler different from the binder resin may adhere to the fibrous filler.
  • the organic material preferably has an insulating property, and by doing so, the insulating property of the heat conductive sheet can be further improved.
  • the average fiber length (average major axis length) of the fibrous filler is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 50 ⁇ m to 250 ⁇ m, more preferably 75 ⁇ m to 220 ⁇ m.
  • the average fiber length ( ⁇ m) of the fibrous filler is preferably 0.001 to 1.00 times, more preferably 0.01 to 0.50 times the average thickness ( ⁇ m) of the heat conductive sheet, and 0
  • the ratio is still more preferably 0.01 times to 0.30 times, and particularly preferably 0.05 times to 0.20 times.
  • the thermal conductivity may decrease, and when it is 1.00 times or more, the volume resistance decreases when the voltage is high. There are things to do.
  • the average fiber diameter (average minor axis length) of the fibrous filler is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 4 ⁇ m to 20 ⁇ m, more preferably 5 ⁇ m to 14 ⁇ m.
  • the aspect ratio (average major axis length / average minor axis length) of the fibrous filler is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 8 or more, more preferably 9 to 30. preferable. When the aspect ratio is less than 8, since the fiber length (major axis length) of the fibrous filler is short, the thermal conductivity may be lowered.
  • the average major axis length and the average minor axis length of the fibrous filler can be measured by, for example, a microscope, a scanning electron microscope (SEM), a particle size distribution meter, or the like.
  • the average major axis length of the fibrous filler is an arithmetic average value of the fiber length of the fibrous filler to be measured.
  • the content of the fibrous filler in the heat conductive sheet is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 4% by volume to 40% by volume, and 5% by volume to 35% by volume. More preferred is 6 to 30% by volume. When the content is less than 4% by volume, it may be difficult to obtain a sufficiently low thermal resistance. When the content exceeds 40% by volume, the moldability of the heat conductive sheet may be affected. There is.
  • the fibrous filler and the heat conductive sheet preferably satisfy the following relational expression (1) and satisfy the following relational expression (2).
  • D90 is an area fiber length ( ⁇ m) of 90% cumulative from the short fiber length side in the fiber length distribution of the conductive fibrous filler
  • D50 is a fiber of the conductive fibrous filler.
  • the area fiber length ( ⁇ m) is accumulated 50% from the short fiber length side in the long distribution
  • A is the average thickness ( ⁇ m) of the heat conductive sheet.
  • the “area fiber length” is a fiber length weighted by the area of the fibrous filler. And when the accumulation curve was calculated
  • D90-D50 is preferably 50 ⁇ m or less, and more preferably 35 ⁇ m or less.
  • the lower limit of D90-D50 is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include 5 ⁇ m.
  • the method for adjusting the D90-D50 of the fibrous filler is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include the following methods. -A commercially available fibrous filler is classified and adjusted to a predetermined fiber length distribution. ⁇ Cut the lump or thread filler to a certain length.
  • D50 and D90 can be obtained by measuring the fiber length of the fibrous filler and expressing the measurement result as an area distribution.
  • D50 and D90 can be obtained by Malvern Morpholog G3 or Malvern FPIA-3000.
  • the heat conductive filler is not particularly limited as long as it is a heat conductive filler other than the fibrous filler, and can be appropriately selected according to the purpose. Examples thereof include an inorganic filler.
  • the inorganic filler is different from the fibrous filler.
  • the inorganic filler examples include aluminum nitride (aluminum nitride: AlN), silica, aluminum oxide (alumina), boron nitride, titania, glass, zinc oxide, silicon carbide, silicon (silicon), silicon oxide, aluminum oxide, and metal. And particles. These may be used individually by 1 type and may use 2 or more types together. Among these, aluminum oxide, boron nitride, aluminum nitride, zinc oxide, and silica are preferable, and aluminum oxide and aluminum nitride are particularly preferable from the viewpoint of thermal conductivity.
  • the inorganic filler may be subjected to a surface treatment.
  • the inorganic filler is treated with a coupling agent as the surface treatment, the dispersibility of the inorganic filler is improved and the flexibility of the heat conductive sheet is improved.
  • the average particle size of the said inorganic filler is preferably 1 ⁇ m to 10 ⁇ m, more preferably 1 ⁇ m to 5 ⁇ m, and particularly preferably 3 ⁇ m to 5 ⁇ m.
  • the average particle size is less than 1 ⁇ m, the viscosity increases and mixing may become difficult.
  • the average particle size exceeds 10 ⁇ m, the thermal resistance of the heat conductive sheet may increase.
  • the average particle size is preferably 0.3 ⁇ m to 6.0 ⁇ m, more preferably 0.3 ⁇ m to 2.0 ⁇ m, and particularly preferably 0.5 ⁇ m to 1.5 ⁇ m. If the average particle size is less than 0.3 ⁇ m, the viscosity may increase and mixing may be difficult, and if it exceeds 6.0 ⁇ m, the thermal resistance of the heat conductive sheet may increase.
  • the average particle diameter of the inorganic filler can be measured by, for example, a particle size distribution meter or a scanning electron microscope (SEM).
  • the inorganic filler may be a magnetic metal powder.
  • the magnetic metal powder for example, an amorphous metal powder or a crystalline metal powder can be used.
  • the amorphous metal powder include Fe—Si—B—Cr, Fe—Si—B, Co—Si—B, Co—Zr, Co—Nb, and Co—Ta.
  • the crystalline metal powder include pure iron, Fe-based, Co-based, Ni-based, Fe-Ni-based, Fe-Co-based, Fe-Al-based, Fe-Si-based, Fe-Si-Al-based, Fe-Ni-Si-Al-based materials and the like can be mentioned.
  • the crystalline metal powder is a microcrystalline metal powder obtained by adding a small amount of N (nitrogen), C (carbon), O (oxygen), B (boron), etc. to the crystalline metal powder. May be used. Moreover, as said magnetic metal powder, you may use what mixed the thing from which a material differs, and the thing from which average particle diameter differs 2 or more types.
  • the magnetic metal powder may have any shape such as a spherical shape or a flat shape, but from the viewpoint of enhancing the filling property, a spherical particle size of several ⁇ m to several tens ⁇ m is preferable. .
  • Such a magnetic metal powder can be produced, for example, by an atomizing method.
  • the atomizing method has an advantage that a spherical powder can be easily produced.
  • the molten metal is caused to flow out of a nozzle, and a jet stream of air, water, inert gas, etc. is sprayed on the molten metal to be solidified as droplets. This is how to make powder.
  • the cooling rate is set to about 10 ⁇ 6 (K / s) in order to prevent the molten metal from crystallizing.
  • the amorphous metal powder is manufactured by the above-described atomization method, for example, the surface of the amorphous metal powder can be made smooth.
  • the amorphous metal powder having a small surface irregularity and a small specific surface area is used as the magnetic metal powder, the filling property can be improved with respect to the binder resin. Further, the filling property can be further improved by performing the coupling treatment.
  • the content of the heat conductive filler in the heat conductive sheet is preferably 30% by volume to 70% by volume, and more preferably 40% by volume to 60% by volume.
  • the other components are not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include thixotropic agents, dispersants, curing accelerators, retarders, slightly tackifiers, plasticizers, and flame retardants. , Antioxidants, stabilizers, colorants and the like.
  • the average thickness of the heat conductive sheet is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.05 mm to 5.00 mm, more preferably 0.07 mm to 4.00 mm, and 0.0. 10 mm to 3.00 mm is particularly preferable.
  • the average thickness of the heat conductive sheet can be calculated from, for example, an arithmetic average value obtained by measuring the thickness of the heat conductive sheet at any five locations.
  • the manufacturing method of the heat conductive sheet of this invention contains a molded object preparation process and a molded object sheet preparation process at least, and includes other processes.
  • the manufacturing method of the said heat conductive sheet is a method of manufacturing the said heat conductive sheet of this invention.
  • the thermal conductive resin composition is molded by molding and curing a thermally conductive resin composition containing a binder resin and a fibrous filler having conductivity into a predetermined shape. If it is the process of obtaining a body, there will be no restriction
  • the said heat conductive resin composition contains binder resin and the fibrous filler which has electroconductivity at least, Preferably it contains a heat conductive filler, and also contains another component as needed.
  • binder resin the said binder resin illustrated in description of the said heat conductive sheet is mentioned.
  • conductive fibrous filler include the conductive fibrous filler exemplified in the description of the thermal conductive sheet.
  • heat conductive filler the said heat conductive filler illustrated in description of the said heat conductive sheet is mentioned.
  • the extrusion molding method and the mold molding method are not particularly limited, and the viscosity of the heat conductive resin composition and the obtained heat conduction can be selected from various known extrusion molding methods and mold molding methods. It can be appropriately employed depending on the characteristics required for the sheet.
  • the binder resin flows.
  • Some of the conductive fibrous fillers are oriented along the flow direction, but in many cases, the orientation is random.
  • the central portion is electrically conductive with respect to the width direction of the extruded molded body block.
  • the fibrous filler there exists a tendency for the fibrous filler to have to orient.
  • the fibrous filler having conductivity is likely to be randomly oriented under the influence of the slit wall.
  • the size and shape of the molded body can be determined according to the required size of the heat conductive sheet. For example, there is a rectangular parallelepiped having a vertical size of 0.5 cm to 15 cm and a horizontal size of 0.5 cm to 15 cm. The length of the rectangular parallelepiped may be determined as necessary.
  • the curing of the thermally conductive resin composition in the molded body production step is preferably thermosetting.
  • the curing temperature in the thermosetting is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the binder resin contains a liquid silicone gel main component and a curing agent
  • 80 ° C. to 120 ° C. is preferred.
  • the curing time in the said thermosetting According to the objective, it can select suitably, For example, 1 to 10 hours etc. are mentioned.
  • the molded body sheet production step is not particularly limited as long as it is a step of cutting the molded body into a sheet shape to obtain a molded body sheet, and can be appropriately selected according to the purpose. It can be carried out.
  • the slicing apparatus is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include an ultrasonic cutter and a planer.
  • the cutting direction of the molded body is preferably 60 ° to 120 ° with respect to the extrusion direction because some are oriented in the extrusion direction, and 70 ° to 110 °. The degree is more preferable.
  • the average thickness of the molded sheet is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include 0.3 mm to 5.0 mm.
  • the pressing step is not particularly limited as long as it is a step of pressing the molded sheet, and can be appropriately selected according to the purpose. By performing the pressing step, the surface of the molded body sheet is smoothed, adhesion with other members is increased, and interface contact resistance at light load can be reduced.
  • the pressing can be performed by using, for example, a pair of pressing devices including a flat plate and a press head having a flat surface. Moreover, you may carry out using a pinch roll.
  • the pressure at the time of pressing is not particularly limited and can be appropriately selected according to the purpose. However, if it is too low, the thermal resistance tends to be the same as when not pressing, and if it is too high, the sheet is stretched. Since there is a tendency, 0.1 MPa to 100 MPa is preferable, and 0.5 MPa to 95 MPa is more preferable.
  • the semiconductor device of the present invention includes at least a heat source, a heat radiating member, and a heat conductive sheet, and further includes other members as necessary.
  • the heat conductive sheet is sandwiched between the heat source and the heat radiating member.
  • Heat source> There is no restriction
  • the heat radiating member is not particularly limited as long as the heat generated from the heat source is conducted and dissipated to the outside, and can be appropriately selected according to the purpose.
  • a heat radiating device a cooler, a heat sink , Heat spreader, die pad, printed circuit board, cooling fan, Peltier element, heat pipe, housing, and the like.
  • the heat conductive sheet is the heat conductive sheet of the present invention.
  • FIG. 1 is a schematic cross-sectional view showing an example of a semiconductor device of the present invention.
  • the semiconductor device includes a heat conductive sheet 1, a heat spreader 2, an electronic component 3, a heat sink 5, and a wiring substrate 6.
  • the heat conductive sheet 1 radiates heat generated by the electronic component 3, and is fixed to the main surface 2 a facing the electronic component 3 of the heat spreader 2, as shown in FIG. 1, and the electronic component 3, the heat spreader 2, It is sandwiched between the two. Further, the heat conductive sheet 1 is sandwiched between the heat spreader 2 and the heat sink 5. The heat conductive sheet 1 radiates heat of the electronic component 3 together with the heat spreader 2.
  • the heat spreader 2 is formed in, for example, a rectangular plate shape, and has a main surface 2a facing the electronic component 3 and a side wall 2b erected along the outer periphery of the main surface 2a.
  • a heat conductive sheet 1 is provided on a main surface 2a surrounded by a side wall 2b, and a heat sink 5 is provided on the other surface 2c opposite to the main surface 2a via the heat conductive sheet 1.
  • the heat spreader 2 has a higher thermal conductivity, so that the thermal resistance is reduced and the heat of the electronic component 3 such as a semiconductor element is efficiently absorbed. Therefore, the heat spreader 2 is formed using, for example, copper or aluminum having good thermal conductivity. be able to.
  • the electronic component 3 is a semiconductor package such as BGA, for example, and is mounted on the wiring board 6. Further, the heat spreader 2 also has the front end surface of the side wall 2b mounted on the wiring board 6, and thereby surrounds the electronic component 3 at a predetermined distance by the side wall 2b.
  • the heat conductive sheet 1 is adhered to the main surface 2 a of the heat spreader 2, thereby absorbing heat generated by the electronic component 3 and dissipating it from the heat sink 5. Adhesion between the heat spreader 2 and the heat conductive sheet 1 can be performed by the adhesive force of the heat conductive sheet 1 itself.
  • Example 1 In Example 1, alumina particles (thermally conductive particles: manufactured by Denki Kagaku Kogyo Co., Ltd.) having an average particle diameter of 4 ⁇ m coupled to a two-component addition reaction type liquid silicone with a silane coupling agent, and an average fiber length Pitch-based carbon fiber (thermal conductive fiber, XN80C-15F, with sizing agent: manufactured by Nippon Graphite Fiber Co., Ltd.) having a volume of 150 ⁇ m and an average fiber diameter of 9 ⁇ m is added to a two-component addition reaction type liquid silicone: alumina.
  • alumina particles thermalally conductive particles: manufactured by Denki Kagaku Kogyo Co., Ltd.
  • an average fiber length Pitch-based carbon fiber thermo conductive fiber, XN80C-15F, with sizing agent: manufactured by Nippon Graphite Fiber Co., Ltd.
  • the two-component addition reaction type liquid silicone is a mixture of a silicone A liquid (main agent) 50 mass% and a silicone B liquid (curing agent) 50 mass%.
  • the obtained silicone composition was extruded into a rectangular parallelepiped mold (30 mm ⁇ 30 mm) in which an inner wall of the peeled PET film was pasted to mold a silicone molded body.
  • the obtained silicone molding was cured in an oven at 100 ° C. for 6 hours to obtain a silicone cured product.
  • the obtained cured silicone was heated in an oven at 100 ° C.
  • the slice speed of the ultrasonic cutter was 50 mm per second.
  • the ultrasonic vibration applied to the ultrasonic cutter had an oscillation frequency of 20.5 kHz and an amplitude of 60 ⁇ m.
  • Example 2 In Example 2, alumina particles (thermally conductive particles: manufactured by Denki Kagaku Kogyo Co., Ltd.) having an average particle diameter of 4 ⁇ m coupled to a two-component addition reaction type liquid silicone with a silane coupling agent, and an average fiber length Pitch-based carbon fiber (heat conductive fiber, XN80C-15F, without sizing agent: manufactured by Nippon Graphite Fiber Co., Ltd.) having a volume of 150 ⁇ m and an average fiber diameter of 9 ⁇ m is added to a two-component addition reaction type liquid silicone: alumina.
  • alumina particles thermalally conductive particles: manufactured by Denki Kagaku Kogyo Co., Ltd.
  • an average fiber length Pitch-based carbon fiber heat conductive fiber, XN80C-15F, without sizing agent: manufactured by Nippon Graphite Fiber Co., Ltd.
  • the two-component addition reaction type liquid silicone is a mixture of a silicone A liquid (main agent) 50 mass% and a silicone B liquid (curing agent) 50 mass%.
  • the obtained silicone composition was extruded into a rectangular parallelepiped mold (30 mm ⁇ 30 mm) in which an inner wall of the peeled PET film was pasted to mold a silicone molded body.
  • the obtained silicone molding was cured in an oven at 100 ° C. for 6 hours to obtain a silicone cured product.
  • the obtained cured silicone was heated in an oven at 100 ° C.
  • the slice speed of the ultrasonic cutter was 50 mm per second.
  • the ultrasonic vibration applied to the ultrasonic cutter had an oscillation frequency of 20.5 kHz and an amplitude of 60 ⁇ m.
  • Example 3 In Example 3, alumina particles (thermal conductive particles: manufactured by Denki Kagaku Kogyo Co., Ltd.) having an average particle diameter of 4 ⁇ m, which were coupled to a two-component addition reaction type liquid silicone with a silane coupling agent, and an average fiber length Pitch-based carbon fiber (heat conductive fiber, XN80C-20F, no sizing agent: manufactured by Nippon Graphite Fiber Co., Ltd.) having an average fiber diameter of 200 ⁇ m and an average fiber diameter of 9 ⁇ m is added to a two-component addition-reaction type liquid silicone: alumina.
  • alumina particles thermal conductive particles: manufactured by Denki Kagaku Kogyo Co., Ltd.
  • Pitch-based carbon fiber heat conductive fiber, XN80C-20F, no sizing agent: manufactured by Nippon Graphite Fiber Co., Ltd.
  • the two-component addition reaction type liquid silicone is a mixture of a silicone A liquid (main agent) 50 mass% and a silicone B liquid (curing agent) 50 mass%.
  • the obtained silicone composition was extruded into a rectangular parallelepiped mold (30 mm ⁇ 30 mm) in which an inner wall of the peeled PET film was pasted to mold a silicone molded body.
  • the obtained silicone molding was cured in an oven at 100 ° C. for 6 hours to obtain a silicone cured product.
  • the obtained cured silicone was heated in an oven at 100 ° C.
  • the slice speed of the ultrasonic cutter was 50 mm per second.
  • the ultrasonic vibration applied to the ultrasonic cutter had an oscillation frequency of 20.5 kHz and an amplitude of 60 ⁇ m.
  • the two-component addition reaction type liquid silicone is a mixture of a silicone A liquid (main agent) 50 mass% and a silicone B liquid (curing agent) 50 mass%.
  • the obtained silicone composition was extruded into a rectangular parallelepiped mold (30 mm ⁇ 30 mm) in which an inner wall of the peeled PET film was pasted to mold a silicone molded body.
  • the obtained silicone molding was cured in an oven at 100 ° C. for 6 hours to obtain a silicone cured product.
  • the obtained cured silicone was heated in an oven at 100 ° C. for 1 hour and then cut with an ultrasonic cutter to obtain a molded sheet having an average thickness of 2000 ⁇ m.
  • the slice speed of the ultrasonic cutter was 50 mm per second.
  • the ultrasonic vibration applied to the ultrasonic cutter had an oscillation frequency of 20.5 kHz and an amplitude of 60 ⁇ m.
  • Comparative Example 2 In Comparative Example 2, alumina particles (thermal conductive particles: manufactured by Denki Kagaku Kogyo Co., Ltd.) having an average particle diameter of 4 ⁇ m, which are coupled to a two-component addition reaction type liquid silicone with a silane coupling agent, and an average fiber length Pitch-based carbon fiber (thermally conductive fiber, XN80C-15M, no sizing agent: manufactured by Nippon Graphite Fiber Co., Ltd.) having a volume of 150 ⁇ m and an average fiber diameter of 9 ⁇ m is added to a two-component addition reaction type liquid silicone: alumina.
  • alumina particles thermal conductive particles: manufactured by Denki Kagaku Kogyo Co., Ltd.
  • an average fiber length Pitch-based carbon fiber thermoally conductive fiber, XN80C-15M, no sizing agent: manufactured by Nippon Graphite Fiber Co., Ltd.
  • the two-component addition reaction type liquid silicone is a mixture of a silicone A liquid (main agent) 50 mass% and a silicone B liquid (curing agent) 50 mass%.
  • the obtained silicone composition was extruded into a rectangular parallelepiped mold (30 mm ⁇ 30 mm) in which an inner wall of the peeled PET film was pasted to mold a silicone molded body.
  • the obtained silicone molding was cured in an oven at 100 ° C. for 6 hours to obtain a silicone cured product.
  • the obtained cured silicone was heated in an oven at 100 ° C.
  • the slice speed of the ultrasonic cutter was 50 mm per second.
  • the ultrasonic vibration applied to the ultrasonic cutter had an oscillation frequency of 20.5 kHz and an amplitude of 60 ⁇ m.
  • Comparative Example 3 In Comparative Example 3, alumina particles (thermal conductive particles: manufactured by Denki Kagaku Kogyo Co., Ltd.) having an average particle diameter of 4 ⁇ m, which are coupled to a two-component addition reaction type liquid silicone with a silane coupling agent, and an average fiber length Pitch-based carbon fiber (heat conductive fiber, XN80C-20M, no sizing agent: manufactured by Nippon Graphite Fiber Co., Ltd.) having an average fiber diameter of 200 ⁇ m and an average fiber diameter of 9 ⁇ m, is a two-component addition reaction type liquid silicone: alumina.
  • alumina particles thermal conductive particles: manufactured by Denki Kagaku Kogyo Co., Ltd.
  • an average fiber length Pitch-based carbon fiber heat conductive fiber, XN80C-20M, no sizing agent: manufactured by Nippon Graphite Fiber Co., Ltd.
  • the two-component addition reaction type liquid silicone is a mixture of a silicone A liquid (main agent) 50 mass% and a silicone B liquid (curing agent) 50 mass%.
  • the obtained silicone composition was extruded into a rectangular parallelepiped mold (30 mm ⁇ 30 mm) in which an inner wall of the peeled PET film was pasted to mold a silicone molded body.
  • the obtained silicone molding was cured in an oven at 100 ° C. for 6 hours to obtain a silicone cured product.
  • the obtained cured silicone was heated in an oven at 100 ° C.
  • the slice speed of the ultrasonic cutter was 50 mm per second.
  • the ultrasonic vibration applied to the ultrasonic cutter had an oscillation frequency of 20.5 kHz and an amplitude of 60 ⁇ m.
  • volume resistivity was measured using a Hiresta (MCP-HT800) manufactured by Mitsubishi Chemical Analytech Co., Ltd. and a URS probe by a method according to JIS K-6911.
  • the thermal conductivity of the heat conductive sheet (molded sheet) was measured by applying a load of 1 kgf / cm 2 by a measurement method based on ASTM-D5470.
  • D90 is an area fiber length ( ⁇ m) of 90% cumulative from the short fiber length side in the fiber length distribution of the conductive fibrous filler.
  • D50 is an area fiber length ( ⁇ m) accumulated 50% from the short fiber length side in the fiber length distribution of the fibrous filler having conductivity.
  • D10 is a 10% area fiber length ( ⁇ m) accumulated from the short fiber length side in the fiber length distribution of the fibrous filler having conductivity.
  • the measurable range at the measurement voltage when measuring volume resistivity is shown below. When it was less than the measurable range, it was written as “UR”, and when it was over the measurable range, it was written as “OR”.

Abstract

Provided is a heat-conductive sheet containing a binder resin and a conductive fibrous filler, wherein the conductive fibrous filler and the heat-conductive sheet satisfy relational expression (1) below. D90-D50 ≤ A×0.035 (1), where D90 is a fiber length (µm) at 90% by cumulative area from the short fiber length side in the fiber length distribution of the conductive fibrous filler, D50 is a fiber length (µm) at 50% by cumulative area from the short fiber length side in the fiber length distribution of the conductive fibrous filler, and A is the average thickness (µm) of the heat-conductive sheet.

Description

熱伝導シート、及び半導体装置Thermal conductive sheet and semiconductor device
 本発明は、電子部品等の熱源とヒートシンク等の放熱部材との間に配置される熱伝導シート、及び前記熱伝導シートを備えた半導体装置に関する。 The present invention relates to a heat conductive sheet disposed between a heat source such as an electronic component and a heat radiating member such as a heat sink, and a semiconductor device including the heat conductive sheet.
 従来、パーソナルコンピュータ等の各種電気機器やその他の機器に搭載されている半導体素子においては、駆動により熱が発生し、発生した熱が蓄積されると半導体素子の駆動や周辺機器へ悪影響が生じることから、各種冷却手段が用いられている。半導体素子等の電子部品の冷却方法としては、当該機器にファンを取り付け、機器筐体内の空気を冷却する方式や、その冷却すべき半導体素子に放熱フィンや放熱板等のヒートシンクを取り付ける方法等が知られている。 Conventionally, in semiconductor devices mounted on various electric devices such as personal computers and other devices, heat is generated by driving, and when the generated heat is accumulated, driving of the semiconductor devices and peripheral devices are adversely affected. Therefore, various cooling means are used. As a method for cooling electronic components such as semiconductor elements, there are a method in which a fan is attached to the device and the air in the device casing is cooled, a method in which a heat sink such as a heat radiating fin or a heat radiating plate is attached to the semiconductor element to be cooled, etc. Are known.
 上述の半導体素子にヒートシンクを取り付けて冷却を行う場合、半導体素子の熱を効率よく放出させるために、半導体素子とヒートシンクとの間に熱伝導シートが設けられている。この熱伝導シートとしては、シリコーンに熱伝導性フィラー〔鱗片状粒子(窒化ホウ素(BN)、黒鉛等)、炭素繊維等〕等の充填剤を分散含有させたものが広く用いられている(例えば、特許文献1~3参照)。 When a heat sink is attached to the above-described semiconductor element for cooling, a heat conductive sheet is provided between the semiconductor element and the heat sink in order to efficiently release the heat of the semiconductor element. As this heat conductive sheet, a material in which a filler such as a heat conductive filler [scale-like particles (boron nitride (BN), graphite, etc.), carbon fiber, etc.] is dispersed and contained in silicone is widely used (for example, Patent Documents 1 to 3).
 これら熱伝導性フィラーは、熱伝導の異方性を有しており、例えば熱伝導性フィラーとして炭素繊維を用いた場合、繊維方向には約600W/m・K~1200W/m・Kの熱伝導率を有し、窒化ホウ素を用いた場合には、面方向では約110W/m・K、面方向に垂直な方向では約2W/m・Kの熱伝導率を有し、異方性を有することが知られている。 These heat conductive fillers have anisotropy of heat conduction. For example, when carbon fiber is used as the heat conductive filler, a heat of about 600 W / m · K to 1200 W / m · K in the fiber direction. When boron nitride is used, it has a thermal conductivity of about 110 W / m · K in the plane direction and about 2 W / m · K in the direction perpendicular to the plane direction. It is known to have.
 ここで、パーソナルコンピュータのCPUなどの電子部品は、その高速化、高性能化に伴って、その放熱量は年々増大する傾向にある。しかしながら、反対にプロセッサ等のチップサイズは微細シリコン回路技術の進歩によって、従来と同等サイズかより小さいサイズとなり、単位面積あたりの熱流速は高くなっている。したがって、その温度上昇による不具合などを回避するために、CPUなどの電子部品をより効率的に放熱、冷却することが求められている。 Here, electronic parts such as CPUs of personal computers tend to increase in heat dissipation year by year as their speed and performance become higher. However, on the contrary, the chip size of a processor or the like has become equal to or smaller than the conventional size due to the advancement of fine silicon circuit technology, and the heat flow rate per unit area is high. Therefore, in order to avoid problems caused by the temperature rise, it is required to more efficiently dissipate and cool electronic components such as CPUs.
 そのためには熱伝導シートの熱伝導性を向上する必要が有り、その手法として、一般的には熱伝導性フィラーを多量に配合することが考えられる。しかし、炭素繊維や黒鉛繊維、金属繊維等の熱伝導性に優れる熱伝導性フィラーは、導電性を有している。そのため、配合量を増やすと電子機器部品の導通箇所との接触により接点不良(ショート)を引き起こす可能性が大きくなる。 For that purpose, it is necessary to improve the thermal conductivity of the heat conductive sheet, and as a method for that, it is generally considered to add a large amount of a heat conductive filler. However, heat conductive fillers having excellent heat conductivity, such as carbon fiber, graphite fiber, and metal fiber, have conductivity. For this reason, when the blending amount is increased, the possibility of causing a contact failure (short-circuit) due to contact with the conduction portion of the electronic device component increases.
 このように、熱伝導シートには更なる熱伝導率の向上と共に絶縁性の確保も求められている。 Thus, the thermal conductive sheet is required to further improve the thermal conductivity and ensure insulation.
特開2001-322139号公報JP 2001-322139 A 特開2009-132810号公報JP 2009-132810 A 特開2012-23335号公報JP 2012-23335 A
 本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、高い熱伝導性を有しつつ、絶縁性にも優れる熱伝導シート、及び前記熱伝導シートを用いた半導体装置を提供することを目的とする。 This invention makes it a subject to solve the said various problems in the past and to achieve the following objectives. That is, an object of the present invention is to provide a heat conductive sheet having high thermal conductivity and excellent insulation, and a semiconductor device using the heat conductive sheet.
 前記課題を解決するための手段としては、以下の通りである。即ち、
 <1> バインダ樹脂と、導電性を有する繊維状フィラーとを含有する熱伝導シートであって、
 前記導電性を有する繊維状フィラーと、前記熱伝導シートとが、以下の関係式(1)を満たすことを特徴とする熱伝導シートである。
  D90-D50 ≦ A×0.035  ・・・関係式(1)
 ここで、D90は、前記導電性を有する繊維状フィラーの繊維長分布における短繊維長側から累積90%の面積繊維長(μm)であり、D50は、前記導電性を有する繊維状フィラーの繊維長分布における短繊維長側から累積50%の面積繊維長(μm)であり、Aは、前記熱伝導シートの平均厚み(μm)である。
 <2> 前記導電性を有する繊維状フィラーと、前記熱伝導シートとが、以下の関係式(2)を満たす前記<1>に記載の熱伝導シートである。
  D90-D50 ≦ A×0.018  ・・・関係式(2)
 <3> 前記導電性を有する繊維状フィラーが、炭素繊維である前記<1>から<2>のいずれかに記載の熱伝導シートである。
 <4> 更に、前記導電性を有する繊維状フィラー以外の熱伝導性フィラーを含有する前記<1>から<3>のいずれかに記載の熱伝導シートである。
 <5> 前記バインダ樹脂が、シリコーンである前記<1>から<4>のいずれかに記載の熱伝導シートである。
 <6> 熱源と、放熱部材と、前記熱源と前記放熱部材との間に挟持される熱伝導シートとを有し、
 前記熱伝導シートが、前記<1>から<5>のいずれかに記載の熱伝導シートであることを特徴とする半導体装置である。
Means for solving the problems are as follows. That is,
<1> A heat conductive sheet containing a binder resin and a fibrous filler having conductivity,
The conductive filler and the heat conductive sheet satisfy the following relational expression (1).
D90-D50 ≦ A × 0.035 ... Relational expression (1)
Here, D90 is an area fiber length (μm) of 90% cumulative from the short fiber length side in the fiber length distribution of the conductive fibrous filler, and D50 is a fiber of the conductive fibrous filler. The area fiber length (μm) is accumulated 50% from the short fiber length side in the long distribution, and A is the average thickness (μm) of the heat conductive sheet.
<2> The heat conductive sheet according to <1>, wherein the conductive fibrous filler and the heat conductive sheet satisfy the following relational expression (2).
D90-D50 ≦ A × 0.018 ... Relational expression (2)
<3> The heat conductive sheet according to any one of <1> to <2>, wherein the fibrous filler having conductivity is carbon fiber.
<4> The heat conductive sheet according to any one of <1> to <3>, further including a heat conductive filler other than the fibrous filler having conductivity.
<5> The heat conductive sheet according to any one of <1> to <4>, wherein the binder resin is silicone.
<6> A heat source, a heat radiating member, and a heat conductive sheet sandwiched between the heat source and the heat radiating member,
The heat conductive sheet is the heat conductive sheet according to any one of <1> to <5>.
 本発明によれば、従来における前記諸問題を解決し、前記目的を達成することができ、高い熱伝導性を有しつつ、絶縁性にも優れる熱伝導シート、及び前記熱伝導シートを用いた半導体装置を提供することができる。 According to the present invention, the conventional problems can be solved, the object can be achieved, and the heat conductive sheet having high heat conductivity and excellent insulation properties, and the heat conductive sheet are used. A semiconductor device can be provided.
図1は、本発明が適用された半導体装置の一例を示す断面図である。FIG. 1 is a cross-sectional view showing an example of a semiconductor device to which the present invention is applied.
(熱伝導シート)
 本発明の熱伝導シートは、バインダ樹脂と、導電性を有する繊維状フィラーとを少なくとも含有し、好ましくは熱伝導性フィラーを含有し、更に必要に応じて、その他の成分を含有する。
(Heat conduction sheet)
The heat conductive sheet of the present invention contains at least a binder resin and a fibrous filler having conductivity, preferably contains a heat conductive filler, and further contains other components as necessary.
 本発明者らは、熱伝導シートにおける熱伝導性の向上と絶縁性の確保という、二律背反の目的を達成するために、鋭意検討を行った。
 本発明者らは、使用される導電性を有する繊維状フィラーの繊維長分布に着目した。該繊維状フィラーの繊維長が揃っており、繊維長分布がある程度狭ければ、該繊維状フィラー中には平均的な繊維長よりも長い繊維状フィラーが少ない。そのため、長い繊維状フィラーが熱伝導シートの厚み方向に導通を生じさせることを防止できる。
 即ち、熱伝導シートにおける熱伝導性の向上と絶縁性の確保には、繊維状フィラーの繊維長分布と、熱伝導シートの厚みとが重要であることを、本発明者らは見出した。
The inventors of the present invention have made extensive studies in order to achieve the contradictory purpose of improving the thermal conductivity and ensuring the insulating properties of the thermal conductive sheet.
The inventors paid attention to the fiber length distribution of the conductive fibrous filler used. If the fiber lengths of the fibrous filler are uniform and the fiber length distribution is narrow to some extent, the fibrous filler has few fibrous fillers longer than the average fiber length. Therefore, it can prevent that a long fibrous filler makes conduction in the thickness direction of a heat conductive sheet.
That is, the present inventors have found that the fiber length distribution of the fibrous filler and the thickness of the heat conductive sheet are important for improving the heat conductivity and ensuring the insulation in the heat conductive sheet.
 そして、更に検討を重ねた結果、前記導電性を有する繊維状フィラーと、前記熱伝導シートとが、以下の関係式(1)を満たすことにより、熱伝導性の向上と絶縁性の確保という、二律背反の目的を達成することを見出し、本発明の完成に至った。
  D90-D50 ≦ A×0.035  ・・・関係式(1)
 ここで、D90は、前記導電性を有する繊維状フィラーの繊維長分布における短繊維長側から累積90%の面積繊維長(μm)であり、D50は、前記導電性を有する繊維状フィラーの繊維長分布における短繊維長側から累積50%の面積繊維長(μm)であり、Aは、前記熱伝導シートの平均厚み(μm)である。
And as a result of further examination, the fibrous filler having conductivity and the thermal conductive sheet satisfy the following relational expression (1), thereby improving thermal conductivity and ensuring insulation: It has been found that the object of antinomy can be achieved, and the present invention has been completed.
D90-D50 ≦ A × 0.035 ... Relational expression (1)
Here, D90 is an area fiber length (μm) of 90% cumulative from the short fiber length side in the fiber length distribution of the conductive fibrous filler, and D50 is a fiber of the conductive fibrous filler. The area fiber length (μm) is accumulated 50% from the short fiber length side in the long distribution, and A is the average thickness (μm) of the heat conductive sheet.
<バインダ樹脂>
 前記バインダ樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、熱硬化性ポリマーなどが挙げられる。
<Binder resin>
There is no restriction | limiting in particular as said binder resin, According to the objective, it can select suitably, For example, a thermosetting polymer etc. are mentioned.
 前記熱硬化性ポリマーとしては、例えば、架橋ゴム、エポキシ樹脂、ポリイミド樹脂、ビスマレイミド樹脂、ベンゾシクロブテン樹脂、フェノール樹脂、不飽和ポリエステル、ジアリルフタレート樹脂、シリコーン、ポリウレタン、ポリイミドシリコーン、熱硬化型ポリフェニレンエーテル、熱硬化型変性ポリフェニレンエーテルなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。 Examples of the thermosetting polymer include crosslinked rubber, epoxy resin, polyimide resin, bismaleimide resin, benzocyclobutene resin, phenol resin, unsaturated polyester, diallyl phthalate resin, silicone, polyurethane, polyimide silicone, thermosetting polyphenylene. Examples include ether and thermosetting modified polyphenylene ether. These may be used individually by 1 type and may use 2 or more types together.
 前記架橋ゴムとしては、例えば、天然ゴム、ブタジエンゴム、イソプレンゴム、ニトリルゴム、水添ニトリルゴム、クロロプレンゴム、エチレンプロピレンゴム、塩素化ポリエチレン、クロロスルホン化ポリエチレン、ブチルゴム、ハロゲン化ブチルゴム、フッ素ゴム、ウレタンゴム、アクリルゴム、ポリイソブチレンゴム、シリコーンゴムなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。 Examples of the crosslinked rubber include natural rubber, butadiene rubber, isoprene rubber, nitrile rubber, hydrogenated nitrile rubber, chloroprene rubber, ethylene propylene rubber, chlorinated polyethylene, chlorosulfonated polyethylene, butyl rubber, halogenated butyl rubber, fluorine rubber, Examples thereof include urethane rubber, acrylic rubber, polyisobutylene rubber, and silicone rubber. These may be used individually by 1 type and may use 2 or more types together.
 これらの中でも、成形加工性、耐候性に優れると共に、電子部品に対する密着性及び追従性の点から、前記熱硬化性ポリマーは、シリコーンであることが特に好ましい。 Among these, it is particularly preferable that the thermosetting polymer is silicone from the viewpoints of excellent molding processability and weather resistance, and adhesion and followability to electronic components.
 前記シリコーンとしては、特に制限はなく、目的に応じて適宜選択することができるが、液状シリコーンゲルの主剤と、硬化剤とを含有することが好ましい。そのようなシリコーンとしては、例えば、付加反応型シリコーン、過酸化物を加硫に用いる熱加硫型ミラブルタイプのシリコーンなどが挙げられる。これらの中でも、電子機器の放熱部材としては、電子部品の発熱面とヒートシンク面との密着性が要求されるため、付加反応型シリコーンが特に好ましい。 The silicone is not particularly limited and may be appropriately selected depending on the intended purpose, but preferably contains a liquid silicone gel main component and a curing agent. Examples of such silicone include addition reaction type silicone and heat vulcanization type millable type silicone using peroxide for vulcanization. Among these, as the heat radiating member of the electronic equipment, addition reaction type silicone is particularly preferable because adhesion between the heat generating surface of the electronic component and the heat sink surface is required.
 前記付加反応型シリコーンとしては、ビニル基を有するポリオルガノシロキサンを主剤、Si-H基を有するポリオルガノシロキサンを硬化剤とした、2液性の付加反応型シリコーンが好ましい。 As the addition reaction type silicone, a two-component addition reaction type silicone using a polyorganosiloxane having a vinyl group as a main ingredient and a polyorganosiloxane having a Si—H group as a curing agent is preferable.
 前記液状シリコーンゲルの主剤と、硬化剤との組合せにおいて、前記主剤と前記硬化剤との配合割合としては、特に制限はなく、目的に応じて適宜選択することができるが、質量比で主剤:硬化剤=35:65~65:35であることが好ましい。 In the combination of the main component of the liquid silicone gel and the curing agent, the blending ratio of the main component and the curing agent is not particularly limited and may be appropriately selected depending on the intended purpose. Curing agent = 35: 65 to 65:35 is preferable.
 前記熱伝導シートにおける前記バインダ樹脂の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、20体積%~50体積%が好ましく、30体積%~40体積%がより好ましく、30体積%~40体積%が特に好ましい。
 なお、本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
The content of the binder resin in the heat conductive sheet is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 20% by volume to 50% by volume, more preferably 30% by volume to 40% by volume. 30 vol% to 40 vol% is particularly preferred.
In the present specification, a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
<導電性を有する繊維状フィラー>
 前記導電性を有する繊維状フィラー(以下、「繊維状フィラー」と称することがある)としては、導電性を有する繊維であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、金属繊維、炭素繊維などが挙げられる。これらの中でも、炭素繊維が好ましい。
<Fibrous filler having conductivity>
The conductive fibrous filler (hereinafter sometimes referred to as “fibrous filler”) is not particularly limited as long as it is a conductive fiber, and can be appropriately selected according to the purpose. For example, a metal fiber, carbon fiber, etc. are mentioned. Among these, carbon fiber is preferable.
 前記炭素繊維としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ピッチ系炭素繊維、PAN系炭素繊維、PBO繊維を黒鉛化した炭素繊維、アーク放電法、レーザー蒸発法、CVD法(化学気相成長法)、CCVD法(触媒化学気相成長法)等で合成された炭素繊維を用いることができる。これらの中でも、熱伝導性の点から、PBO繊維を黒鉛化した炭素繊維、ピッチ系炭素繊維が特に好ましい。 There is no restriction | limiting in particular as said carbon fiber, According to the objective, it can select suitably, For example, the carbon fiber which graphitized pitch type | system | group carbon fiber, PAN type | system | group carbon fiber, and PBO fiber, the arc discharge method, the laser evaporation method Carbon fibers synthesized by CVD (chemical vapor deposition), CCVD (catalytic chemical vapor deposition), or the like can be used. Among these, carbon fibers obtained by graphitizing PBO fibers and pitch-based carbon fibers are particularly preferable from the viewpoint of thermal conductivity.
 前記炭素繊維は、必要に応じて、その一部又は全部を表面処理して用いることができる。前記表面処理としては、例えば、酸化処理、窒化処理、ニトロ化、スルホン化、あるいはこれらの処理によって表面に導入された官能基若しくは炭素繊維の表面に、金属、金属化合物、有機化合物等を付着あるいは結合させる処理などが挙げられる。前記官能基としては、例えば、水酸基、カルボキシル基、カルボニル基、ニトロ基、アミノ基などが挙げられる。 The carbon fiber can be used after partially or entirely surface-treating as necessary. Examples of the surface treatment include oxidation treatment, nitriding treatment, nitration, sulfonation, or attaching a metal, a metal compound, an organic compound, or the like to the surface of a functional group or carbon fiber introduced to the surface by these treatments. The process etc. which are combined are mentioned. Examples of the functional group include a hydroxyl group, a carboxyl group, a carbonyl group, a nitro group, and an amino group.
 前記炭素繊維の比重としては、例えば、2.10g/cm~2.26g/cmなどが挙げられる。 The specific gravity of the carbon fibers include, for example, 2.10g / cm 3 ~ 2.26g / cm 3.
 前記繊維状フィラーには、前記バインダ樹脂と異なる有機材料が付着していてもよい。前記有機材料は、絶縁性を有することが好ましく、そうすることで、前記熱伝導シートの絶縁性をより優れたものとすることができる。 The organic filler different from the binder resin may adhere to the fibrous filler. The organic material preferably has an insulating property, and by doing so, the insulating property of the heat conductive sheet can be further improved.
 前記繊維状フィラーの平均繊維長(平均長軸長さ)としては、特に制限はなく、目的に応じて適宜選択することができるが、50μm~250μmが好ましく、75μm~220μmがより好ましい。 The average fiber length (average major axis length) of the fibrous filler is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 50 μm to 250 μm, more preferably 75 μm to 220 μm.
 前記繊維状フィラーの平均繊維長(μm)は、前記熱伝導シートの平均厚み(μm)の0.001倍~1.00倍が好ましく、0.01倍~0.50倍がより好ましく、0.01倍~0.30倍が更により好ましく、0.05倍~0.20倍が特に好ましい。
 前記平均繊維長が前記熱伝導シートの平均厚みの0.001倍未満であると、熱伝導率が低下することがあり、1.00倍以上であると、高電圧の場合に体積抵抗が低下することがある。
The average fiber length (μm) of the fibrous filler is preferably 0.001 to 1.00 times, more preferably 0.01 to 0.50 times the average thickness (μm) of the heat conductive sheet, and 0 The ratio is still more preferably 0.01 times to 0.30 times, and particularly preferably 0.05 times to 0.20 times.
When the average fiber length is less than 0.001 times the average thickness of the heat conductive sheet, the thermal conductivity may decrease, and when it is 1.00 times or more, the volume resistance decreases when the voltage is high. There are things to do.
 前記繊維状フィラーの平均繊維径(平均短軸長さ)としては、特に制限はなく、目的に応じて適宜選択することができるが、4μm~20μmが好ましく、5μm~14μmがより好ましい。 The average fiber diameter (average minor axis length) of the fibrous filler is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 4 μm to 20 μm, more preferably 5 μm to 14 μm.
 前記繊維状フィラーのアスペクト比(平均長軸長さ/平均短軸長さ)としては、特に制限はなく、目的に応じて適宜選択することができるが、8以上が好ましく、9~30がより好ましい。前記アスペクト比が、8未満であると、繊維状フィラーの繊維長(長軸長さ)が短いため、熱伝導率が低下してしまうことがある。
 ここで、前記繊維状フィラーの平均長軸長さ、及び平均短軸長さは、例えばマイクロスコープ、走査型電子顕微鏡(SEM)、粒度分布計などにより測定することができる。
 前記繊維状フィラーの平均長軸長さは、測定対象の繊維状フィラーの繊維長の算術平均値である。
The aspect ratio (average major axis length / average minor axis length) of the fibrous filler is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 8 or more, more preferably 9 to 30. preferable. When the aspect ratio is less than 8, since the fiber length (major axis length) of the fibrous filler is short, the thermal conductivity may be lowered.
Here, the average major axis length and the average minor axis length of the fibrous filler can be measured by, for example, a microscope, a scanning electron microscope (SEM), a particle size distribution meter, or the like.
The average major axis length of the fibrous filler is an arithmetic average value of the fiber length of the fibrous filler to be measured.
 前記熱伝導シートにおける前記繊維状フィラーの含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、4体積%~40体積%が好ましく、5体積%~35体積%がより好ましく、6体積%~30体積%が特に好ましい。前記含有量が、4体積%未満であると、十分に低い熱抵抗を得ることが困難になることがあり、40体積%を超えると、前記熱伝導シートの成型性に影響を与えてしまうことがある。 The content of the fibrous filler in the heat conductive sheet is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 4% by volume to 40% by volume, and 5% by volume to 35% by volume. More preferred is 6 to 30% by volume. When the content is less than 4% by volume, it may be difficult to obtain a sufficiently low thermal resistance. When the content exceeds 40% by volume, the moldability of the heat conductive sheet may be affected. There is.
<<D50、D90>>
 前記熱伝導シートにおいて、前記繊維状フィラーと、前記熱伝導シートとは、以下の関係式(1)を満たし、以下の関係式(2)を満たすことが好ましい。
  D90-D50 ≦ A×0.035  ・・・関係式(1)
  D90-D50 ≦ A×0.018  ・・・関係式(2)
 ここで、D90は、前記導電性を有する繊維状フィラーの繊維長分布における短繊維長側から累積90%の面積繊維長(μm)であり、D50は、前記導電性を有する繊維状フィラーの繊維長分布における短繊維長側から累積50%の面積繊維長(μm)であり、Aは、前記熱伝導シートの平均厚み(μm)である。
 前記関係式(2)を満たすことで、絶縁性をより優れたものとできる。
 ここで、「面積繊維長」とは、繊維状フィラーの面積によって重み付けられた繊維長である。
 そして、繊維状フィラーの集団の全面積を100%として累積カーブを求めたとき、その累積カーブが10%、50%、90%となる点の面積繊維長が、それぞれD10、D50、D90である。
<< D50, D90 >>
In the heat conductive sheet, the fibrous filler and the heat conductive sheet preferably satisfy the following relational expression (1) and satisfy the following relational expression (2).
D90-D50 ≦ A × 0.035 ... Relational expression (1)
D90-D50 ≦ A × 0.018 ... Relational expression (2)
Here, D90 is an area fiber length (μm) of 90% cumulative from the short fiber length side in the fiber length distribution of the conductive fibrous filler, and D50 is a fiber of the conductive fibrous filler. The area fiber length (μm) is accumulated 50% from the short fiber length side in the long distribution, and A is the average thickness (μm) of the heat conductive sheet.
By satisfying the relational expression (2), the insulation can be made more excellent.
Here, the “area fiber length” is a fiber length weighted by the area of the fibrous filler.
And when the accumulation curve was calculated | required by making the total area of the group of fibrous fillers into 100%, the area fiber length of the point from which the accumulation curve becomes 10%, 50%, and 90% is D10, D50, and D90, respectively. .
 D90-D50は、50μm以下が好ましく、35μm以下がより好ましい。D90-D50の下限値としては、特に制限はなく、目的に応じて適宜選択することができるが、5μmなどが挙げられる。 D90-D50 is preferably 50 μm or less, and more preferably 35 μm or less. The lower limit of D90-D50 is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include 5 μm.
 前記繊維状フィラーのD90-D50を調整する方法としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、以下の方法などが挙げられる。
 ・市販されている繊維状フィラーを分級して、所定の繊維長分布に調整する。
 ・塊状もしくは糸状のフィラーを一定長の長さになるように切断する。
The method for adjusting the D90-D50 of the fibrous filler is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include the following methods.
-A commercially available fibrous filler is classified and adjusted to a predetermined fiber length distribution.
・ Cut the lump or thread filler to a certain length.
 D50、D90は、繊維状フィラーの繊維長を測定し、測定結果を面積分布で表すことで求めることができ、例えば、Malvern社製モフォロギG3、Malvern社製FPIA-3000、により求めることができる。 D50 and D90 can be obtained by measuring the fiber length of the fibrous filler and expressing the measurement result as an area distribution. For example, D50 and D90 can be obtained by Malvern Morpholog G3 or Malvern FPIA-3000.
<熱伝導性フィラー>
 前記熱伝導性フィラーとしては、前記繊維状フィラー以外の熱伝導性フィラーであれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、無機物フィラーなどが挙げられる。
<Thermal conductive filler>
The heat conductive filler is not particularly limited as long as it is a heat conductive filler other than the fibrous filler, and can be appropriately selected according to the purpose. Examples thereof include an inorganic filler.
 前記無機物フィラーとしては、その形状、材質、平均粒径などについては特に制限はなく、目的に応じて適宜選択することができる。前記形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、球状、楕円球状、塊状、粒状、扁平状、針状などが挙げられる。これらの中でも、球状、楕円形状が充填性の点から好ましく、球状が特に好ましい。
 なお、本明細書において、前記無機物フィラーは、前記繊維状フィラーとは異なる。
There is no restriction | limiting in particular about the shape, material, average particle diameter, etc. as said inorganic filler, According to the objective, it can select suitably. There is no restriction | limiting in particular as said shape, According to the objective, it can select suitably, For example, spherical shape, elliptical spherical shape, lump shape, granular form, flat shape, needle shape etc. are mentioned. Among these, spherical and elliptical shapes are preferable from the viewpoint of filling properties, and spherical shapes are particularly preferable.
In the present specification, the inorganic filler is different from the fibrous filler.
 前記無機物フィラーとしては、例えば、窒化アルミニウム(窒化アルミ:AlN)、シリカ、酸化アルミニウム(アルミナ)、窒化ホウ素、チタニア、ガラス、酸化亜鉛、炭化ケイ素、ケイ素(シリコン)、酸化珪素、酸化アルミニウム、金属粒子などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、酸化アルミニウム、窒化ホウ素、窒化アルミニウム、酸化亜鉛、シリカが好ましく、熱伝導率の点から、酸化アルミニウム、窒化アルミニウムが特に好ましい。 Examples of the inorganic filler include aluminum nitride (aluminum nitride: AlN), silica, aluminum oxide (alumina), boron nitride, titania, glass, zinc oxide, silicon carbide, silicon (silicon), silicon oxide, aluminum oxide, and metal. And particles. These may be used individually by 1 type and may use 2 or more types together. Among these, aluminum oxide, boron nitride, aluminum nitride, zinc oxide, and silica are preferable, and aluminum oxide and aluminum nitride are particularly preferable from the viewpoint of thermal conductivity.
 なお、前記無機物フィラーは、表面処理が施されていてもよい。前記表面処理としてカップリング剤で前記無機物フィラーを処理すると、前記無機物フィラーの分散性が向上し、熱伝導シートの柔軟性が向上する。 The inorganic filler may be subjected to a surface treatment. When the inorganic filler is treated with a coupling agent as the surface treatment, the dispersibility of the inorganic filler is improved and the flexibility of the heat conductive sheet is improved.
 前記無機物フィラーの平均粒径としては、特に制限はなく、目的に応じて適宜選択することができる。
 前記無機物フィラーがアルミナの場合、その平均粒径は、1μm~10μmが好ましく、1μm~5μmがより好ましく、3μm~5μmが特に好ましい。前記平均粒径が、1μm未満であると、粘度が大きくなり、混合しにくくなることがあり、10μmを超えると、前記熱伝導シートの熱抵抗が大きくなることがある。
 前記無機物フィラーが窒化アルミニウムの場合、その平均粒径は、0.3μm~6.0μmが好ましく、0.3μm~2.0μmがより好ましく、0.5μm~1.5μmが特に好ましい。前記平均粒径が、0.3μm未満であると、粘度が大きくなり、混合しにくくなることがあり、6.0μmを超えると、前記熱伝導シートの熱抵抗が大きくなることがある。
 前記無機物フィラーの平均粒径は、例えば、粒度分布計、走査型電子顕微鏡(SEM)により測定することができる。
There is no restriction | limiting in particular as an average particle diameter of the said inorganic filler, According to the objective, it can select suitably.
When the inorganic filler is alumina, the average particle size is preferably 1 μm to 10 μm, more preferably 1 μm to 5 μm, and particularly preferably 3 μm to 5 μm. When the average particle size is less than 1 μm, the viscosity increases and mixing may become difficult. When the average particle size exceeds 10 μm, the thermal resistance of the heat conductive sheet may increase.
When the inorganic filler is aluminum nitride, the average particle size is preferably 0.3 μm to 6.0 μm, more preferably 0.3 μm to 2.0 μm, and particularly preferably 0.5 μm to 1.5 μm. If the average particle size is less than 0.3 μm, the viscosity may increase and mixing may be difficult, and if it exceeds 6.0 μm, the thermal resistance of the heat conductive sheet may increase.
The average particle diameter of the inorganic filler can be measured by, for example, a particle size distribution meter or a scanning electron microscope (SEM).
 また、前記無機物フィラーは、磁性金属粉末であってもよい。前記磁性金属粉末としては、例えば、アモルファス金属粉末や、結晶質の金属粉末を用いることができる。
 前記アモルファス金属粉末としては、例えば、Fe-Si-B-Cr系、Fe-Si-B系、Co-Si-B系、Co-Zr系、Co-Nb系、Co-Ta系のもの等が挙げられる。
 前記結晶質の金属粉末としては、例えば、純鉄、Fe系、Co系、Ni系、Fe-Ni系、Fe-Co系、Fe-Al系、Fe-Si系、Fe-Si-Al系、Fe-Ni-Si-Al系のもの等が挙げられる。また、結晶質の金属粉末としては、結晶質の金属粉末に、N(窒素)、C(炭素)、O(酸素)、B(ホウ素)等を微量加えて微細化させた微結晶質金属粉末を用いてもよい。
 また、前記磁性金属粉末としては、材料が異なるものや、平均粒径が異なるものを2種以上混合したものを用いてもよい。
The inorganic filler may be a magnetic metal powder. As the magnetic metal powder, for example, an amorphous metal powder or a crystalline metal powder can be used.
Examples of the amorphous metal powder include Fe—Si—B—Cr, Fe—Si—B, Co—Si—B, Co—Zr, Co—Nb, and Co—Ta. Can be mentioned.
Examples of the crystalline metal powder include pure iron, Fe-based, Co-based, Ni-based, Fe-Ni-based, Fe-Co-based, Fe-Al-based, Fe-Si-based, Fe-Si-Al-based, Fe-Ni-Si-Al-based materials and the like can be mentioned. The crystalline metal powder is a microcrystalline metal powder obtained by adding a small amount of N (nitrogen), C (carbon), O (oxygen), B (boron), etc. to the crystalline metal powder. May be used.
Moreover, as said magnetic metal powder, you may use what mixed the thing from which a material differs, and the thing from which average particle diameter differs 2 or more types.
 前記磁性金属粉末としては、球状、扁平状等どのような形状であってもよいが、充填性を高くする観点から、粒径が数μm~数十μmであって、球状であるものが好ましい。このような磁性金属粉末は、例えば、アトマイズ法により製造することができる。前記アトマイズ法とは、球状の粉末が作りやすい利点を有し、溶融金属をノズルから流出させ、流出させた溶融金属に空気、水、不活性ガス等のジェット流を吹き付けて液滴として凝固させて粉末を作る方法である。前記アトマイズ法により磁性金属粉末を製造する際には、溶融金属が結晶化しないようにするために、冷却速度を10―6(K/s)程度にすることが好ましい。上述したアトマイズ法により、アモルファス金属粉末を製造した場合には、例えば、アモルファス金属粉末の表面を滑らかな状態とすることができる。このように表面凹凸が少なく、比表面積が小さいアモルファス金属粉末を磁性金属粉末として用いると、バインダ樹脂に対して充填性を高めることができる。また、カップリング処理を行うことで更に充填性を向上できる。 The magnetic metal powder may have any shape such as a spherical shape or a flat shape, but from the viewpoint of enhancing the filling property, a spherical particle size of several μm to several tens μm is preferable. . Such a magnetic metal powder can be produced, for example, by an atomizing method. The atomizing method has an advantage that a spherical powder can be easily produced. The molten metal is caused to flow out of a nozzle, and a jet stream of air, water, inert gas, etc. is sprayed on the molten metal to be solidified as droplets. This is how to make powder. When the magnetic metal powder is produced by the atomization method, it is preferable to set the cooling rate to about 10 −6 (K / s) in order to prevent the molten metal from crystallizing. When the amorphous metal powder is manufactured by the above-described atomization method, for example, the surface of the amorphous metal powder can be made smooth. When the amorphous metal powder having a small surface irregularity and a small specific surface area is used as the magnetic metal powder, the filling property can be improved with respect to the binder resin. Further, the filling property can be further improved by performing the coupling treatment.
 前記熱伝導シートにおける前記熱伝導性フィラーの含有量は、30体積%~70体積%が好ましく、40体積%~60体積%がより好ましい。 The content of the heat conductive filler in the heat conductive sheet is preferably 30% by volume to 70% by volume, and more preferably 40% by volume to 60% by volume.
<その他の成分>
 前記その他の成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、チキソトロピー性付与剤、分散剤、硬化促進剤、遅延剤、微粘着付与剤、可塑剤、難燃剤、酸化防止剤、安定剤、着色剤などが挙げられる。
<Other ingredients>
The other components are not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include thixotropic agents, dispersants, curing accelerators, retarders, slightly tackifiers, plasticizers, and flame retardants. , Antioxidants, stabilizers, colorants and the like.
 前記熱伝導シートの平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、0.05mm~5.00mmが好ましく、0.07mm~4.00mmがより好ましく、0.10mm~3.00mmが特に好ましい。
 前記熱伝導シートの平均厚みは、例えば、熱伝導シートの厚みを任意の5箇所で測定し、その算術平均値から算出することができる。
The average thickness of the heat conductive sheet is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.05 mm to 5.00 mm, more preferably 0.07 mm to 4.00 mm, and 0.0. 10 mm to 3.00 mm is particularly preferable.
The average thickness of the heat conductive sheet can be calculated from, for example, an arithmetic average value obtained by measuring the thickness of the heat conductive sheet at any five locations.
(熱伝導シートの製造方法)
 本発明の熱伝導シートの製造方法は、成型体作製工程と、成型体シート作製工程とを少なくとも含み、その他の工程を含む。
 前記熱伝導シートの製造方法は、本発明の前記熱伝導シートを製造する方法である。
(Method for producing heat conductive sheet)
The manufacturing method of the heat conductive sheet of this invention contains a molded object preparation process and a molded object sheet preparation process at least, and includes other processes.
The manufacturing method of the said heat conductive sheet is a method of manufacturing the said heat conductive sheet of this invention.
<成型体作製工程>
 前記成型体作製工程としては、バインダ樹脂、及び導電性を有する繊維状フィラーを含有する熱伝導性樹脂組成物を所定の形状に成型して硬化することにより、前記熱伝導性樹脂組成物の成型体を得る工程であれば、特に制限はなく、目的に応じて適宜選択することができる。
<Molded body production process>
As the molding production step, the thermal conductive resin composition is molded by molding and curing a thermally conductive resin composition containing a binder resin and a fibrous filler having conductivity into a predetermined shape. If it is the process of obtaining a body, there will be no restriction | limiting in particular, According to the objective, it can select suitably.
-熱伝導性樹脂組成物-
 前記熱伝導性樹脂組成物は、バインダ樹脂と、導電性を有する繊維状フィラーとを少なくとも含有し、好ましくは熱伝導性フィラーを含有し、更に必要に応じて、その他の成分を含有する。
 前記バインダ樹脂としては、前記熱伝導シートの説明において例示した前記バインダ樹脂が挙げられる。
 前記導電性を有する繊維状フィラーとしては、前記熱伝導シートの説明において例示した前記導電性を有する繊維状フィラーが挙げられる。
 前記熱伝導性フィラーとしては、前記熱伝導シートの説明において例示した前記熱伝導性フィラーが挙げられる。
-Thermally conductive resin composition-
The said heat conductive resin composition contains binder resin and the fibrous filler which has electroconductivity at least, Preferably it contains a heat conductive filler, and also contains another component as needed.
As said binder resin, the said binder resin illustrated in description of the said heat conductive sheet is mentioned.
Examples of the conductive fibrous filler include the conductive fibrous filler exemplified in the description of the thermal conductive sheet.
As said heat conductive filler, the said heat conductive filler illustrated in description of the said heat conductive sheet is mentioned.
 前記成型体作製工程において、前記熱伝導性樹脂組成物を所定の形状に成型する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、押出し成型法、金型成型法などが挙げられる。 There is no restriction | limiting in particular as a method of shape | molding the said heat conductive resin composition in a predetermined shape in the said molded object preparation process, According to the objective, it can select suitably, For example, an extrusion molding method, die molding Law.
 前記押出し成型法、及び前記金型成型法としては、特に制限されず、公知の各種押出し成型法、及び金型成型法の中から、前記熱伝導性樹脂組成物の粘度や、得られる熱伝導シートに要求される特性等に応じて適宜採用することができる。 The extrusion molding method and the mold molding method are not particularly limited, and the viscosity of the heat conductive resin composition and the obtained heat conduction can be selected from various known extrusion molding methods and mold molding methods. It can be appropriately employed depending on the characteristics required for the sheet.
 前記押出し成型法において、前記熱伝導性樹脂組成物をダイより押し出す際、あるいは前記金型成型法において、前記熱伝導性樹脂組成物を金型へ圧入する際、例えば、前記バインダ樹脂が流動し、その流動方向に沿って一部の前記導電性を有する繊維状フィラーが配向するが、多くは配向がランダムになっている。 When extruding the thermally conductive resin composition from a die in the extrusion molding method, or when pressing the thermally conductive resin composition into a mold in the mold molding method, for example, the binder resin flows. Some of the conductive fibrous fillers are oriented along the flow direction, but in many cases, the orientation is random.
 なお、前記押出し成型法において、前記熱伝導性樹脂組成物をダイより押し出す際、ダイの先端にスリットを取り付けた場合、押し出された成型体ブロックの幅方向に対して中央部は、導電性を有する繊維状フィラーが配向しやすい傾向がある。その一方、成型体ブロックの幅方向に対して周辺部は、スリット壁の影響を受けて導電性を有する繊維状フィラーがランダムに配向されやすい。 In the extrusion molding method, when extruding the thermally conductive resin composition from the die, if a slit is attached to the tip of the die, the central portion is electrically conductive with respect to the width direction of the extruded molded body block. There exists a tendency for the fibrous filler to have to orient. On the other hand, in the peripheral part with respect to the width direction of the molded body block, the fibrous filler having conductivity is likely to be randomly oriented under the influence of the slit wall.
 成型体(ブロック状の成型体)の大きさ及び形状は、求められる熱伝導シートの大きさに応じて決めることができる。例えば、断面の縦の大きさが0.5cm~15cmで横の大きさが0.5cm~15cmの直方体が挙げられる。直方体の長さは必要に応じて決定すればよい。 The size and shape of the molded body (block-shaped molded body) can be determined according to the required size of the heat conductive sheet. For example, there is a rectangular parallelepiped having a vertical size of 0.5 cm to 15 cm and a horizontal size of 0.5 cm to 15 cm. The length of the rectangular parallelepiped may be determined as necessary.
 前記成型体作製工程における前記熱伝導性樹脂組成物の硬化は熱硬化であることが好ましい。前記熱硬化における硬化温度としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記バインダ樹脂が、液状シリコーンゲルの主剤と、硬化剤とを含有する場合、80℃~120℃が好ましい。前記熱硬化における硬化時間としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、1時間~10時間などが挙げられる。 The curing of the thermally conductive resin composition in the molded body production step is preferably thermosetting. The curing temperature in the thermosetting is not particularly limited and may be appropriately selected depending on the intended purpose. For example, when the binder resin contains a liquid silicone gel main component and a curing agent, 80 ° C. to 120 ° C. is preferred. There is no restriction | limiting in particular as the curing time in the said thermosetting, According to the objective, it can select suitably, For example, 1 to 10 hours etc. are mentioned.
<成型体シート作製工程>
 前記成型体シート作製工程としては、前記成型体をシート状に切断し、成型体シートを得る工程であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、スライス装置により行うことができる。
<Molded sheet production process>
The molded body sheet production step is not particularly limited as long as it is a step of cutting the molded body into a sheet shape to obtain a molded body sheet, and can be appropriately selected according to the purpose. It can be carried out.
 前記スライス装置としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、超音波カッター、かんな(鉋)などが挙げられる。前記成型体の切断方向としては、成型方法が押出し成型法である場合には、押出し方向に配向しているものもあるために押出し方向に対して60度~120度が好ましく、70度~110度がより好ましい。 The slicing apparatus is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include an ultrasonic cutter and a planer. When the molding method is an extrusion molding method, the cutting direction of the molded body is preferably 60 ° to 120 ° with respect to the extrusion direction because some are oriented in the extrusion direction, and 70 ° to 110 °. The degree is more preferable.
 前記成型体シートの平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができる、例えば、0.3mm~5.0mmなどが挙げられる。 The average thickness of the molded sheet is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include 0.3 mm to 5.0 mm.
<その他の工程>
 前記その他の工程としては、例えば、プレス工程などが挙げられる。
<Other processes>
As said other process, a press process etc. are mentioned, for example.
<<プレス工程>>
 前記プレス工程としては、前記成型体シートをプレスする工程であれば、特に制限はなく、目的に応じて適宜選択することができる。
 前記プレス工程を行うことで、前記成型体シートの表面が平滑化され、他の部材との密着性が増し、軽荷重時の界面接触抵抗を低減させることができる。
<< Pressing process >>
The pressing step is not particularly limited as long as it is a step of pressing the molded sheet, and can be appropriately selected according to the purpose.
By performing the pressing step, the surface of the molded body sheet is smoothed, adhesion with other members is increased, and interface contact resistance at light load can be reduced.
 前記プレスは、例えば、平盤と表面が平坦なプレスヘッドとからなる一対のプレス装置を使用して行うことができる。また、ピンチロールを使用して行ってもよい。 The pressing can be performed by using, for example, a pair of pressing devices including a flat plate and a press head having a flat surface. Moreover, you may carry out using a pinch roll.
 前記プレスの際の圧力としては、特に制限はなく、目的に応じて適宜選択することができるが、低すぎるとプレスをしない場合と熱抵抗が変わらない傾向があり、高すぎるとシートが延伸する傾向があるので、0.1MPa~100MPaが好ましく、0.5MPa~95MPaがより好ましい。 The pressure at the time of pressing is not particularly limited and can be appropriately selected according to the purpose. However, if it is too low, the thermal resistance tends to be the same as when not pressing, and if it is too high, the sheet is stretched. Since there is a tendency, 0.1 MPa to 100 MPa is preferable, and 0.5 MPa to 95 MPa is more preferable.
(半導体装置)
 本発明の半導体装置は、熱源と、放熱部材と、熱伝導シートとを少なくとも有し、更に必要に応じて、その他の部材を有する。
 前記熱伝導シートは、前記熱源と前記放熱部材との間に挟持されている。
(Semiconductor device)
The semiconductor device of the present invention includes at least a heat source, a heat radiating member, and a heat conductive sheet, and further includes other members as necessary.
The heat conductive sheet is sandwiched between the heat source and the heat radiating member.
<熱源>
 前記熱源としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、電子部品などが挙げられる。前記電子部品としては、例えば、CPU、MPU、グラフィック演算素子などが挙げられる。
<Heat source>
There is no restriction | limiting in particular as said heat source, According to the objective, it can select suitably, For example, an electronic component etc. are mentioned. Examples of the electronic component include a CPU, MPU, graphic arithmetic element, and the like.
<放熱部材>
 前記放熱部材としては、前記熱源から発生する熱を伝導して外部に放散させるものであれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、放熱器、冷却器、ヒートシンク、ヒートスプレッダ、ダイパッド、プリント基板、冷却ファン、ペルチェ素子、ヒートパイプ、筐体などが挙げられる。
<Heat dissipation member>
The heat radiating member is not particularly limited as long as the heat generated from the heat source is conducted and dissipated to the outside, and can be appropriately selected according to the purpose. For example, a heat radiating device, a cooler, a heat sink , Heat spreader, die pad, printed circuit board, cooling fan, Peltier element, heat pipe, housing, and the like.
<熱伝導シート>
 前記熱伝導シートは、本発明の前記熱伝導シートである。
<Heat conduction sheet>
The heat conductive sheet is the heat conductive sheet of the present invention.
 本発明の半導体装置の一例を図を用いて説明する。 An example of the semiconductor device of the present invention will be described with reference to the drawings.
 図1は、本発明の半導体装置の一例を示す断面模式図である。
 半導体装置は、熱伝導シート1と、ヒートスプレッダ2と、電子部品3と、ヒートシンク5と、配線基板6とを有する。
FIG. 1 is a schematic cross-sectional view showing an example of a semiconductor device of the present invention.
The semiconductor device includes a heat conductive sheet 1, a heat spreader 2, an electronic component 3, a heat sink 5, and a wiring substrate 6.
 熱伝導シート1は、電子部品3の発する熱を放熱するものであり、図1に示すように、ヒートスプレッダ2の電子部品3と対峙する主面2aに固定され、電子部品3と、ヒートスプレッダ2との間に挟持されるものである。また、熱伝導シート1は、ヒートスプレッダ2とヒートシンク5との間に挟持される。そして、熱伝導シート1は、ヒートスプレッダ2とともに、電子部品3の熱を放熱する。 The heat conductive sheet 1 radiates heat generated by the electronic component 3, and is fixed to the main surface 2 a facing the electronic component 3 of the heat spreader 2, as shown in FIG. 1, and the electronic component 3, the heat spreader 2, It is sandwiched between the two. Further, the heat conductive sheet 1 is sandwiched between the heat spreader 2 and the heat sink 5. The heat conductive sheet 1 radiates heat of the electronic component 3 together with the heat spreader 2.
 ヒートスプレッダ2は、例えば、方形板状に形成され、電子部品3と対峙する主面2aと、主面2aの外周に沿って立設された側壁2bとを有する。ヒートスプレッダ2は、側壁2bに囲まれた主面2aに熱伝導シート1が設けられ、また主面2aと反対側の他面2cに熱伝導シート1を介してヒートシンク5が設けられる。ヒートスプレッダ2は、高い熱伝導率を有するほど、熱抵抗が減少し、効率よく半導体素子等の電子部品3の熱を吸熱することから、例えば、熱伝導性の良い銅やアルミニウムを用いて形成することができる。 The heat spreader 2 is formed in, for example, a rectangular plate shape, and has a main surface 2a facing the electronic component 3 and a side wall 2b erected along the outer periphery of the main surface 2a. In the heat spreader 2, a heat conductive sheet 1 is provided on a main surface 2a surrounded by a side wall 2b, and a heat sink 5 is provided on the other surface 2c opposite to the main surface 2a via the heat conductive sheet 1. The heat spreader 2 has a higher thermal conductivity, so that the thermal resistance is reduced and the heat of the electronic component 3 such as a semiconductor element is efficiently absorbed. Therefore, the heat spreader 2 is formed using, for example, copper or aluminum having good thermal conductivity. be able to.
 電子部品3は、例えば、BGA等の半導体パッケージであり、配線基板6へ実装される。また、ヒートスプレッダ2も、側壁2bの先端面が配線基板6に実装され、これにより側壁2bによって所定の距離を隔てて電子部品3を囲んでいる。 The electronic component 3 is a semiconductor package such as BGA, for example, and is mounted on the wiring board 6. Further, the heat spreader 2 also has the front end surface of the side wall 2b mounted on the wiring board 6, and thereby surrounds the electronic component 3 at a predetermined distance by the side wall 2b.
 そして、ヒートスプレッダ2の主面2aに、熱伝導シート1が接着されることにより、電子部品3の発する熱を吸収し、ヒートシンク5より放熱する。ヒートスプレッダ2と熱伝導シート1との接着は、熱伝導シート1自身の粘着力によって行うことができる。 Then, the heat conductive sheet 1 is adhered to the main surface 2 a of the heat spreader 2, thereby absorbing heat generated by the electronic component 3 and dissipating it from the heat sink 5. Adhesion between the heat spreader 2 and the heat conductive sheet 1 can be performed by the adhesive force of the heat conductive sheet 1 itself.
 次いで、本発明の実施例について説明する。本発明は、以下の実施例に限定されるものではない。 Next, examples of the present invention will be described. The present invention is not limited to the following examples.
(実施例1)
 実施例1では、2液性の付加反応型液状シリコーンに、シランカップリング剤でカップリング処理した平均粒径4μmのアルミナ粒子(熱伝導性粒子:電気化学工業株式会社製)と、平均繊維長150μm、平均繊維径9μmのピッチ系炭素繊維(熱伝導性繊維、XN80C-15F、サイジング剤あり:日本グラファイトファイバー株式会社製)とを、体積比で、2液性の付加反応型液状シリコーン:アルミナ粒子:ピッチ系炭素繊維=33vol%:53.5vol%:13.5vol%となるように分散させて、シリコーン組成物(熱伝導性樹脂組成物)を調製した。2液性の付加反応型液状シリコーンは、シリコーンA液(主剤)50質量%、シリコーンB液(硬化剤)50質量%の比率で混合したものである。得られたシリコーン組成物を、内壁に剥離処理したPETフィルムを貼った直方体状の金型(30mm×30mm)の中に押し出してシリコーン成型体を成型した。得られたシリコーン成型体をオーブンにて100℃で6時間硬化してシリコーン硬化物とした。得られたシリコーン硬化物を、オーブンにて100℃で1時間加熱した後、超音波カッターで切断し、平均厚み2000μmの成型体シートを得た。超音波カッターのスライス速度は、毎秒50mmとした。また、超音波カッターに付与する超音波振動は、発振周波数を20.5kHzとし、振幅を60μmとした。
(Example 1)
In Example 1, alumina particles (thermally conductive particles: manufactured by Denki Kagaku Kogyo Co., Ltd.) having an average particle diameter of 4 μm coupled to a two-component addition reaction type liquid silicone with a silane coupling agent, and an average fiber length Pitch-based carbon fiber (thermal conductive fiber, XN80C-15F, with sizing agent: manufactured by Nippon Graphite Fiber Co., Ltd.) having a volume of 150 μm and an average fiber diameter of 9 μm is added to a two-component addition reaction type liquid silicone: alumina. Particles: pitch-based carbon fiber = 33 vol%: 53.5 vol%: 13.5 vol% were dispersed so as to prepare a silicone composition (thermally conductive resin composition). The two-component addition reaction type liquid silicone is a mixture of a silicone A liquid (main agent) 50 mass% and a silicone B liquid (curing agent) 50 mass%. The obtained silicone composition was extruded into a rectangular parallelepiped mold (30 mm × 30 mm) in which an inner wall of the peeled PET film was pasted to mold a silicone molded body. The obtained silicone molding was cured in an oven at 100 ° C. for 6 hours to obtain a silicone cured product. The obtained cured silicone was heated in an oven at 100 ° C. for 1 hour and then cut with an ultrasonic cutter to obtain a molded sheet having an average thickness of 2000 μm. The slice speed of the ultrasonic cutter was 50 mm per second. The ultrasonic vibration applied to the ultrasonic cutter had an oscillation frequency of 20.5 kHz and an amplitude of 60 μm.
(実施例2)
 実施例2では、2液性の付加反応型液状シリコーンに、シランカップリング剤でカップリング処理した平均粒径4μmのアルミナ粒子(熱伝導性粒子:電気化学工業株式会社製)と、平均繊維長150μm、平均繊維径9μmのピッチ系炭素繊維(熱伝導性繊維、XN80C-15F、サイジング剤無し:日本グラファイトファイバー株式会社製)とを、体積比で、2液性の付加反応型液状シリコーン:アルミナ粒子:ピッチ系炭素繊維=33vol%:53.5vol%:13.5vol%となるように分散させて、シリコーン組成物(熱伝導性樹脂組成物)を調製した。2液性の付加反応型液状シリコーンは、シリコーンA液(主剤)50質量%、シリコーンB液(硬化剤)50質量%の比率で混合したものである。得られたシリコーン組成物を、内壁に剥離処理したPETフィルムを貼った直方体状の金型(30mm×30mm)の中に押し出してシリコーン成型体を成型した。得られたシリコーン成型体をオーブンにて100℃で6時間硬化してシリコーン硬化物とした。得られたシリコーン硬化物を、オーブンにて100℃で1時間加熱した後、超音波カッターで切断し、平均厚み2000μmの成型体シートを得た。超音波カッターのスライス速度は、毎秒50mmとした。また、超音波カッターに付与する超音波振動は、発振周波数を20.5kHzとし、振幅を60μmとした。
(Example 2)
In Example 2, alumina particles (thermally conductive particles: manufactured by Denki Kagaku Kogyo Co., Ltd.) having an average particle diameter of 4 μm coupled to a two-component addition reaction type liquid silicone with a silane coupling agent, and an average fiber length Pitch-based carbon fiber (heat conductive fiber, XN80C-15F, without sizing agent: manufactured by Nippon Graphite Fiber Co., Ltd.) having a volume of 150 μm and an average fiber diameter of 9 μm is added to a two-component addition reaction type liquid silicone: alumina. Particles: pitch-based carbon fiber = 33 vol%: 53.5 vol%: 13.5 vol% were dispersed so as to prepare a silicone composition (thermally conductive resin composition). The two-component addition reaction type liquid silicone is a mixture of a silicone A liquid (main agent) 50 mass% and a silicone B liquid (curing agent) 50 mass%. The obtained silicone composition was extruded into a rectangular parallelepiped mold (30 mm × 30 mm) in which an inner wall of the peeled PET film was pasted to mold a silicone molded body. The obtained silicone molding was cured in an oven at 100 ° C. for 6 hours to obtain a silicone cured product. The obtained cured silicone was heated in an oven at 100 ° C. for 1 hour and then cut with an ultrasonic cutter to obtain a molded sheet having an average thickness of 2000 μm. The slice speed of the ultrasonic cutter was 50 mm per second. The ultrasonic vibration applied to the ultrasonic cutter had an oscillation frequency of 20.5 kHz and an amplitude of 60 μm.
(実施例3)
 実施例3では、2液性の付加反応型液状シリコーンに、シランカップリング剤でカップリング処理した平均粒径4μmのアルミナ粒子(熱伝導性粒子:電気化学工業株式会社製)と、平均繊維長200μm、平均繊維径9μmのピッチ系炭素繊維(熱伝導性繊維、XN80C-20F、サイジング剤無し:日本グラファイトファイバー株式会社製)とを、体積比で、2液性の付加反応型液状シリコーン:アルミナ粒子:ピッチ系炭素繊維=33vol%:53.5vol%:13.5vol%となるように分散させて、シリコーン組成物(熱伝導性樹脂組成物)を調製した。2液性の付加反応型液状シリコーンは、シリコーンA液(主剤)50質量%、シリコーンB液(硬化剤)50質量%の比率で混合したものである。得られたシリコーン組成物を、内壁に剥離処理したPETフィルムを貼った直方体状の金型(30mm×30mm)の中に押し出してシリコーン成型体を成型した。得られたシリコーン成型体をオーブンにて100℃で6時間硬化してシリコーン硬化物とした。得られたシリコーン硬化物を、オーブンにて100℃で1時間加熱した後、超音波カッターで切断し、平均厚み2000μmの成型体シートを得た。超音波カッターのスライス速度は、毎秒50mmとした。また、超音波カッターに付与する超音波振動は、発振周波数を20.5kHzとし、振幅を60μmとした。
(Example 3)
In Example 3, alumina particles (thermal conductive particles: manufactured by Denki Kagaku Kogyo Co., Ltd.) having an average particle diameter of 4 μm, which were coupled to a two-component addition reaction type liquid silicone with a silane coupling agent, and an average fiber length Pitch-based carbon fiber (heat conductive fiber, XN80C-20F, no sizing agent: manufactured by Nippon Graphite Fiber Co., Ltd.) having an average fiber diameter of 200 μm and an average fiber diameter of 9 μm is added to a two-component addition-reaction type liquid silicone: alumina. Particles: pitch-based carbon fiber = 33 vol%: 53.5 vol%: 13.5 vol% were dispersed so as to prepare a silicone composition (thermally conductive resin composition). The two-component addition reaction type liquid silicone is a mixture of a silicone A liquid (main agent) 50 mass% and a silicone B liquid (curing agent) 50 mass%. The obtained silicone composition was extruded into a rectangular parallelepiped mold (30 mm × 30 mm) in which an inner wall of the peeled PET film was pasted to mold a silicone molded body. The obtained silicone molding was cured in an oven at 100 ° C. for 6 hours to obtain a silicone cured product. The obtained cured silicone was heated in an oven at 100 ° C. for 1 hour and then cut with an ultrasonic cutter to obtain a molded sheet having an average thickness of 2000 μm. The slice speed of the ultrasonic cutter was 50 mm per second. The ultrasonic vibration applied to the ultrasonic cutter had an oscillation frequency of 20.5 kHz and an amplitude of 60 μm.
(比較例1)
 比較例1では、2液性の付加反応型液状シリコーンに、シランカップリング剤でカップリング処理した平均粒径4μmのアルミナ粒子(熱伝導性粒子:電気化学工業株式会社製)と、平均繊維長150μm、平均繊維径9μmのピッチ系炭素繊維(熱伝導性繊維、XN80C-15M、サイジング剤有り:日本グラファイトファイバー株式会社製)とを、体積比で、2液性の付加反応型液状シリコーン:アルミナ粒子:ピッチ系炭素繊維=33vol%:53.5vol%:13.5vol%となるように分散させて、シリコーン組成物(熱伝導性樹脂組成物)を調製した。2液性の付加反応型液状シリコーンは、シリコーンA液(主剤)50質量%、シリコーンB液(硬化剤)50質量%の比率で混合したものである。得られたシリコーン組成物を、内壁に剥離処理したPETフィルムを貼った直方体状の金型(30mm×30mm)の中に押し出してシリコーン成型体を成型した。得られたシリコーン成型体をオーブンにて100℃で6時間硬化してシリコーン硬化物とした。得られたシリコーン硬化物を、オーブンにて100℃で1時間加熱した後、超音波カッターで切断し、平均厚み2000μmの成型体シートを得た。超音波カッターのスライス速度は、毎秒50mmとした。また、超音波カッターに付与する超音波振動は、発振周波数を20.5kHzとし、振幅を60μmとした。
(Comparative Example 1)
In Comparative Example 1, alumina particles (thermal conductive particles: manufactured by Denki Kagaku Kogyo Co., Ltd.) having an average particle diameter of 4 μm, which are coupled to a two-component addition reaction type liquid silicone with a silane coupling agent, and an average fiber length Pitch-based carbon fiber (thermal conductive fiber, XN80C-15M, with sizing agent: manufactured by Nippon Graphite Fiber Co., Ltd.) having a volume ratio of 150 μm and an average fiber diameter of 9 μm is a two-component addition reaction type liquid silicone: alumina Particles: pitch-based carbon fiber = 33 vol%: 53.5 vol%: 13.5 vol% were dispersed so as to prepare a silicone composition (thermally conductive resin composition). The two-component addition reaction type liquid silicone is a mixture of a silicone A liquid (main agent) 50 mass% and a silicone B liquid (curing agent) 50 mass%. The obtained silicone composition was extruded into a rectangular parallelepiped mold (30 mm × 30 mm) in which an inner wall of the peeled PET film was pasted to mold a silicone molded body. The obtained silicone molding was cured in an oven at 100 ° C. for 6 hours to obtain a silicone cured product. The obtained cured silicone was heated in an oven at 100 ° C. for 1 hour and then cut with an ultrasonic cutter to obtain a molded sheet having an average thickness of 2000 μm. The slice speed of the ultrasonic cutter was 50 mm per second. The ultrasonic vibration applied to the ultrasonic cutter had an oscillation frequency of 20.5 kHz and an amplitude of 60 μm.
(比較例2)
 比較例2では、2液性の付加反応型液状シリコーンに、シランカップリング剤でカップリング処理した平均粒径4μmのアルミナ粒子(熱伝導性粒子:電気化学工業株式会社製)と、平均繊維長150μm、平均繊維径9μmのピッチ系炭素繊維(熱伝導性繊維、XN80C-15M、サイジング剤無し:日本グラファイトファイバー株式会社製)とを、体積比で、2液性の付加反応型液状シリコーン:アルミナ粒子:ピッチ系炭素繊維=33vol%:53.5vol%:13.5vol%となるように分散させて、シリコーン組成物(熱伝導性樹脂組成物)を調製した。2液性の付加反応型液状シリコーンは、シリコーンA液(主剤)50質量%、シリコーンB液(硬化剤)50質量%の比率で混合したものである。得られたシリコーン組成物を、内壁に剥離処理したPETフィルムを貼った直方体状の金型(30mm×30mm)の中に押し出してシリコーン成型体を成型した。得られたシリコーン成型体をオーブンにて100℃で6時間硬化してシリコーン硬化物とした。得られたシリコーン硬化物を、オーブンにて100℃で1時間加熱した後、超音波カッターで切断し、平均厚み2000μmの成型体シートを得た。超音波カッターのスライス速度は、毎秒50mmとした。また、超音波カッターに付与する超音波振動は、発振周波数を20.5kHzとし、振幅を60μmとした。
(Comparative Example 2)
In Comparative Example 2, alumina particles (thermal conductive particles: manufactured by Denki Kagaku Kogyo Co., Ltd.) having an average particle diameter of 4 μm, which are coupled to a two-component addition reaction type liquid silicone with a silane coupling agent, and an average fiber length Pitch-based carbon fiber (thermally conductive fiber, XN80C-15M, no sizing agent: manufactured by Nippon Graphite Fiber Co., Ltd.) having a volume of 150 μm and an average fiber diameter of 9 μm is added to a two-component addition reaction type liquid silicone: alumina. Particles: pitch-based carbon fiber = 33 vol%: 53.5 vol%: 13.5 vol% were dispersed so as to prepare a silicone composition (thermally conductive resin composition). The two-component addition reaction type liquid silicone is a mixture of a silicone A liquid (main agent) 50 mass% and a silicone B liquid (curing agent) 50 mass%. The obtained silicone composition was extruded into a rectangular parallelepiped mold (30 mm × 30 mm) in which an inner wall of the peeled PET film was pasted to mold a silicone molded body. The obtained silicone molding was cured in an oven at 100 ° C. for 6 hours to obtain a silicone cured product. The obtained cured silicone was heated in an oven at 100 ° C. for 1 hour and then cut with an ultrasonic cutter to obtain a molded sheet having an average thickness of 2000 μm. The slice speed of the ultrasonic cutter was 50 mm per second. The ultrasonic vibration applied to the ultrasonic cutter had an oscillation frequency of 20.5 kHz and an amplitude of 60 μm.
(比較例3)
 比較例3では、2液性の付加反応型液状シリコーンに、シランカップリング剤でカップリング処理した平均粒径4μmのアルミナ粒子(熱伝導性粒子:電気化学工業株式会社製)と、平均繊維長200μm、平均繊維径9μmのピッチ系炭素繊維(熱伝導性繊維、XN80C-20M、サイジング剤無し:日本グラファイトファイバー株式会社製)とを、体積比で、2液性の付加反応型液状シリコーン:アルミナ粒子:ピッチ系炭素繊維=33vol%:53.5vol%:13.5vol%となるように分散させて、シリコーン組成物(熱伝導性樹脂組成物)を調製した。2液性の付加反応型液状シリコーンは、シリコーンA液(主剤)50質量%、シリコーンB液(硬化剤)50質量%の比率で混合したものである。得られたシリコーン組成物を、内壁に剥離処理したPETフィルムを貼った直方体状の金型(30mm×30mm)の中に押し出してシリコーン成型体を成型した。得られたシリコーン成型体をオーブンにて100℃で6時間硬化してシリコーン硬化物とした。得られたシリコーン硬化物を、オーブンにて100℃で1時間加熱した後、超音波カッターで切断し、平均厚み2000μmの成型体シートを得た。超音波カッターのスライス速度は、毎秒50mmとした。また、超音波カッターに付与する超音波振動は、発振周波数を20.5kHzとし、振幅を60μmとした。
(Comparative Example 3)
In Comparative Example 3, alumina particles (thermal conductive particles: manufactured by Denki Kagaku Kogyo Co., Ltd.) having an average particle diameter of 4 μm, which are coupled to a two-component addition reaction type liquid silicone with a silane coupling agent, and an average fiber length Pitch-based carbon fiber (heat conductive fiber, XN80C-20M, no sizing agent: manufactured by Nippon Graphite Fiber Co., Ltd.) having an average fiber diameter of 200 μm and an average fiber diameter of 9 μm, is a two-component addition reaction type liquid silicone: alumina. Particles: pitch-based carbon fiber = 33 vol%: 53.5 vol%: 13.5 vol% were dispersed so as to prepare a silicone composition (thermally conductive resin composition). The two-component addition reaction type liquid silicone is a mixture of a silicone A liquid (main agent) 50 mass% and a silicone B liquid (curing agent) 50 mass%. The obtained silicone composition was extruded into a rectangular parallelepiped mold (30 mm × 30 mm) in which an inner wall of the peeled PET film was pasted to mold a silicone molded body. The obtained silicone molding was cured in an oven at 100 ° C. for 6 hours to obtain a silicone cured product. The obtained cured silicone was heated in an oven at 100 ° C. for 1 hour and then cut with an ultrasonic cutter to obtain a molded sheet having an average thickness of 2000 μm. The slice speed of the ultrasonic cutter was 50 mm per second. The ultrasonic vibration applied to the ultrasonic cutter had an oscillation frequency of 20.5 kHz and an amplitude of 60 μm.
[体積抵抗率の測定]
 JIS K-6911に準拠した方法で、三菱化学アナリテック社製ハイレスタ(MCP-HT800)及びURSプローブを用いて、体積抵抗率を測定した。
[Measurement of volume resistivity]
Volume resistivity was measured using a Hiresta (MCP-HT800) manufactured by Mitsubishi Chemical Analytech Co., Ltd. and a URS probe by a method according to JIS K-6911.
[熱伝導率の測定]
 ASTM-D5470に準拠した測定方法で、1kgf/cmの荷重をかけて熱伝導シート(成型体シート)の熱伝導率を測定した。
[Measurement of thermal conductivity]
The thermal conductivity of the heat conductive sheet (molded sheet) was measured by applying a load of 1 kgf / cm 2 by a measurement method based on ASTM-D5470.
[繊維長測定]
 使用した炭素繊維の繊維長分布はMalvern社製モフォロギG3で測定した。
 ここで、D90は、前記導電性を有する繊維状フィラーの繊維長分布における短繊維長側から累積90%の面積繊維長(μm)である。
 D50は、前記導電性を有する繊維状フィラーの繊維長分布における短繊維長側から累積50%の面積繊維長(μm)である。
 D10は、前記導電性を有する繊維状フィラーの繊維長分布における短繊維長側から累積10%の面積繊維長(μm)である。
[Fiber length measurement]
The fiber length distribution of the carbon fibers used was measured with a morpholog G3 manufactured by Malvern.
Here, D90 is an area fiber length (μm) of 90% cumulative from the short fiber length side in the fiber length distribution of the conductive fibrous filler.
D50 is an area fiber length (μm) accumulated 50% from the short fiber length side in the fiber length distribution of the fibrous filler having conductivity.
D10 is a 10% area fiber length (μm) accumulated from the short fiber length side in the fiber length distribution of the fibrous filler having conductivity.
 結果を表1に示す。 The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 体積抵抗率測定時の測定電圧における測定可能範囲を以下に示す。測定可能範囲未満であった場合には、「UR」と表記し、測定可能範囲を超えた場合には「OR」と表記した。 The measurable range at the measurement voltage when measuring volume resistivity is shown below. When it was less than the measurable range, it was written as “UR”, and when it was over the measurable range, it was written as “OR”.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明者らによる実験の結果から、前記熱伝導シートにおいて、前記導電性を有する繊維状フィラーと、前記熱伝導シートとが、前記関係式(1)を満たすことにより、熱伝導性の向上と絶縁性の確保という、二律背反の目的を達成することが確認できた。また、前記関係式(2)を満たすことにより、絶縁性がより優れる結果となった。
 なお、D90-D50以外に、D50-D10やD90-D10と、熱伝導性の向上及び絶縁性の確保の両立との関係も検討したが、相関関係は認められなかった。
From the results of experiments by the present inventors, in the thermal conductive sheet, when the fibrous filler having conductivity and the thermal conductive sheet satisfy the relational expression (1), the thermal conductivity is improved. It has been confirmed that the objection of ensuring anti-insulation is achieved. Further, satisfying the relational expression (2) resulted in better insulation.
In addition to D90-D50, the relationship between D50-D10 and D90-D10 and the coexistence of improving thermal conductivity and ensuring insulation was also examined, but no correlation was found.
 1  熱伝導シート
 2  ヒートスプレッダ
 2a 主面
 2b 側壁
 2c 他面
 3  電子部品
 3a 上面
 5  ヒートシンク
 6  配線基板
DESCRIPTION OF SYMBOLS 1 Thermal conductive sheet 2 Heat spreader 2a Main surface 2b Side wall 2c Other surface 3 Electronic component 3a Upper surface 5 Heat sink 6 Wiring board

Claims (6)

  1.  バインダ樹脂と、導電性を有する繊維状フィラーとを含有する熱伝導シートであって、
     前記導電性を有する繊維状フィラーと、前記熱伝導シートとが、以下の関係式(1)を満たすことを特徴とする熱伝導シート。
      D90-D50 ≦ A×0.035  ・・・関係式(1)
     ここで、D90は、前記導電性を有する繊維状フィラーの繊維長分布における短繊維長側から累積90%の面積繊維長(μm)であり、D50は、前記導電性を有する繊維状フィラーの繊維長分布における短繊維長側から累積50%の面積繊維長(μm)であり、Aは、前記熱伝導シートの平均厚み(μm)である。
    A heat conductive sheet containing a binder resin and a fibrous filler having conductivity,
    The conductive filler and the heat conductive sheet satisfy the following relational expression (1):
    D90-D50 ≦ A × 0.035 ... Relational expression (1)
    Here, D90 is an area fiber length (μm) of 90% cumulative from the short fiber length side in the fiber length distribution of the conductive fibrous filler, and D50 is a fiber of the conductive fibrous filler. The area fiber length (μm) is accumulated 50% from the short fiber length side in the long distribution, and A is the average thickness (μm) of the heat conductive sheet.
  2.  前記導電性を有する繊維状フィラーと、前記熱伝導シートとが、以下の関係式(2)を満たす請求項1に記載の熱伝導シート。
      D90-D50 ≦ A×0.018  ・・・関係式(2)
    The heat conductive sheet according to claim 1, wherein the fibrous filler having conductivity and the heat conductive sheet satisfy the following relational expression (2).
    D90-D50 ≦ A × 0.018 ... Relational expression (2)
  3.  前記導電性を有する繊維状フィラーが、炭素繊維である請求項1から2のいずれかに記載の熱伝導シート。 The heat conductive sheet according to any one of claims 1 to 2, wherein the conductive fibrous filler is carbon fiber.
  4.  更に、前記導電性を有する繊維状フィラー以外の熱伝導性フィラーを含有する請求項1から3のいずれかに記載の熱伝導シート。 Furthermore, the heat conductive sheet in any one of Claim 1 to 3 containing heat conductive fillers other than the fibrous filler which has the said electroconductivity.
  5.  前記バインダ樹脂が、シリコーンである請求項1から4のいずれかに記載の熱伝導シート。 The heat conductive sheet according to any one of claims 1 to 4, wherein the binder resin is silicone.
  6.  熱源と、放熱部材と、前記熱源と前記放熱部材との間に挟持される熱伝導シートとを有し、
     前記熱伝導シートが、請求項1から5のいずれかに記載の熱伝導シートであることを特徴とする半導体装置。
    A heat source, a heat radiating member, and a heat conductive sheet sandwiched between the heat source and the heat radiating member,
    The semiconductor device according to claim 1, wherein the heat conductive sheet is the heat conductive sheet according to claim 1.
PCT/JP2017/031980 2016-09-12 2017-09-05 Heat-conductive sheet and semiconductor device WO2018047828A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780065575.3A CN109891577B (en) 2016-09-12 2017-09-05 Thermally conductive sheet and semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-177977 2016-09-12
JP2016177977A JP6753745B2 (en) 2016-09-12 2016-09-12 Heat conduction sheet and semiconductor device

Publications (1)

Publication Number Publication Date
WO2018047828A1 true WO2018047828A1 (en) 2018-03-15

Family

ID=61562508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031980 WO2018047828A1 (en) 2016-09-12 2017-09-05 Heat-conductive sheet and semiconductor device

Country Status (4)

Country Link
JP (1) JP6753745B2 (en)
CN (1) CN109891577B (en)
TW (1) TWI714804B (en)
WO (1) WO2018047828A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023157829A1 (en) * 2022-02-16 2023-08-24 デンカ株式会社 Heat dissipation sheet manufacturing method and heat dissipation sheet

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113150558B (en) 2021-05-12 2021-11-26 广东思泉新材料股份有限公司 Directional heat conducting sheet, preparation method thereof and semiconductor heat dissipation device
WO2023182268A1 (en) 2022-03-25 2023-09-28 バンドー化学株式会社 Thermally conductive sheet
WO2023190587A1 (en) * 2022-03-29 2023-10-05 積水ポリマテック株式会社 Thermally conductive sheet and method for producing thermally conductive sheet
US11615999B1 (en) 2022-07-22 2023-03-28 GuangDong Suqun New Material Co., Ltd Oriented heat conducting sheet and preparation method thereof, and semiconductor heat dissipating device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000192337A (en) * 1998-12-21 2000-07-11 Mitsubishi Chemicals Corp Graphite carbon fiber and heat-dissipation sheet made thereof
JP2002088257A (en) * 2000-09-18 2002-03-27 Polymatech Co Ltd Thermally conductive molded product and its manufacturing method
JP2002097372A (en) * 2000-09-20 2002-04-02 Polymatech Co Ltd Heat-conductive polymer composition and heat-conductive molding
WO2006003774A1 (en) * 2004-07-06 2006-01-12 Mitsubishi Corporation Method for manufacturing carbon fiber reinforced carbon composite material suitable for semiconductor heat sink
JP2009108118A (en) * 2007-10-26 2009-05-21 Teijin Ltd Pitch-based carbon short fiber filler and molded product using it
JP2012025831A (en) * 2010-07-22 2012-02-09 Mitsubishi Plastics Inc Heat-dissipating molded body, heat-dissipating member, and housing
JP2015029071A (en) * 2013-06-27 2015-02-12 デクセリアルズ株式会社 Thermally conductive sheet, method for manufacturing the same, and semiconductor device
JP2015216387A (en) * 2010-06-17 2015-12-03 デクセリアルズ株式会社 Thermally conductive sheet and method of producing the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001322139A (en) * 2000-05-16 2001-11-20 Jsr Corp Method for producing composite sheet and composite sheet
JP2003026828A (en) * 2001-07-18 2003-01-29 Jsr Corp Heat-conductive sheet and method for producing the same and heat-conductive plate
JP2003201116A (en) * 2001-10-10 2003-07-15 Showa Denko Kk Granular alumina, manufacturing method of granular alumina and composition containing granular alumina
JP4911674B2 (en) * 2005-02-21 2012-04-04 キヤノン株式会社 Heat fixing member and heat fixing device
JP4971958B2 (en) * 2007-11-30 2012-07-11 帝人株式会社 Sheet-like thermally conductive molded body
CN105482456A (en) * 2012-07-07 2016-04-13 迪睿合株式会社 Thermally conductive sheet
CN104212368B (en) * 2013-05-31 2019-08-16 日东电工株式会社 Thermal conductivity bonding sheet
JP6069112B2 (en) * 2013-06-19 2017-02-01 デクセリアルズ株式会社 Thermally conductive sheet and method for producing the thermally conductive sheet
JP6178389B2 (en) * 2014-12-25 2017-08-09 デクセリアルズ株式会社 Method for manufacturing thermal conductive sheet, thermal conductive sheet, and semiconductor device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000192337A (en) * 1998-12-21 2000-07-11 Mitsubishi Chemicals Corp Graphite carbon fiber and heat-dissipation sheet made thereof
JP2002088257A (en) * 2000-09-18 2002-03-27 Polymatech Co Ltd Thermally conductive molded product and its manufacturing method
JP2002097372A (en) * 2000-09-20 2002-04-02 Polymatech Co Ltd Heat-conductive polymer composition and heat-conductive molding
WO2006003774A1 (en) * 2004-07-06 2006-01-12 Mitsubishi Corporation Method for manufacturing carbon fiber reinforced carbon composite material suitable for semiconductor heat sink
JP2009108118A (en) * 2007-10-26 2009-05-21 Teijin Ltd Pitch-based carbon short fiber filler and molded product using it
JP2015216387A (en) * 2010-06-17 2015-12-03 デクセリアルズ株式会社 Thermally conductive sheet and method of producing the same
JP2012025831A (en) * 2010-07-22 2012-02-09 Mitsubishi Plastics Inc Heat-dissipating molded body, heat-dissipating member, and housing
JP2015029071A (en) * 2013-06-27 2015-02-12 デクセリアルズ株式会社 Thermally conductive sheet, method for manufacturing the same, and semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023157829A1 (en) * 2022-02-16 2023-08-24 デンカ株式会社 Heat dissipation sheet manufacturing method and heat dissipation sheet
JP7399359B1 (en) 2022-02-16 2023-12-15 デンカ株式会社 Heat dissipation sheet manufacturing method and heat dissipation sheet

Also Published As

Publication number Publication date
TW201826465A (en) 2018-07-16
TWI714804B (en) 2021-01-01
CN109891577A (en) 2019-06-14
CN109891577B (en) 2023-10-24
JP2018046073A (en) 2018-03-22
JP6753745B2 (en) 2020-09-09

Similar Documents

Publication Publication Date Title
JP6366627B2 (en) Electromagnetic wave absorbing heat conducting sheet, method for producing electromagnetic wave absorbing heat conducting sheet, and semiconductor device
WO2018047828A1 (en) Heat-conductive sheet and semiconductor device
WO2018079240A1 (en) Heat conduction sheet, heat conduction sheet manufacturing method, and semiconductor device
JP6301978B2 (en) HEAT CONDUCTIVE SHEET, HEAT CONDUCTIVE SHEET MANUFACTURING METHOD, HEAT DISSIBLING MEMBER AND SEMICONDUCTOR DEVICE
JP6379320B1 (en) Electromagnetic wave absorbing heat conducting sheet, method for producing electromagnetic wave absorbing heat conducting sheet, and semiconductor device
JP6178389B2 (en) Method for manufacturing thermal conductive sheet, thermal conductive sheet, and semiconductor device
WO2018061712A1 (en) Electromagnetic wave absorbing heat transfer sheet, method for producing electromagnetic wave absorbing heat transfer sheet, and semiconductor device
JP7096723B2 (en) Method for manufacturing a heat conductive sheet
JP7384560B2 (en) Thermal conductive sheets, mounting methods for thermal conductive sheets, manufacturing methods for electronic devices
JP6393816B2 (en) HEAT CONDUCTIVE SHEET, HEAT CONDUCTIVE SHEET MANUFACTURING METHOD, HEAT DISSIBLING MEMBER AND SEMICONDUCTOR DEVICE
WO2019244950A1 (en) Semiconductor device and method for producing semiconductor device
US20240120254A1 (en) Thermally-conductive sheet and electronic device
WO2016104169A1 (en) Method for producing heat-conductive sheet, heat-conductive sheet, and semiconductor device
WO2018147228A1 (en) Electromagnetic wave-suppressing heat transfer sheet, method for producing electromagnetic wave-suppressing heat transfer sheet, and semiconductor device
JP6307288B2 (en) Thermally conductive member and semiconductor device
WO2022176823A1 (en) Heat conductive sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848768

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17848768

Country of ref document: EP

Kind code of ref document: A1