WO2023157806A1 - Copper alloy material, and resistor resistance material and resistor using copper alloy material - Google Patents

Copper alloy material, and resistor resistance material and resistor using copper alloy material Download PDF

Info

Publication number
WO2023157806A1
WO2023157806A1 PCT/JP2023/004822 JP2023004822W WO2023157806A1 WO 2023157806 A1 WO2023157806 A1 WO 2023157806A1 JP 2023004822 W JP2023004822 W JP 2023004822W WO 2023157806 A1 WO2023157806 A1 WO 2023157806A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
copper alloy
alloy material
copper
Prior art date
Application number
PCT/JP2023/004822
Other languages
French (fr)
Japanese (ja)
Inventor
紳悟 川田
貴大 佐々木
俊太 秋谷
優 樋口
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to JP2023538018A priority Critical patent/JP7354481B1/en
Publication of WO2023157806A1 publication Critical patent/WO2023157806A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/05Alloys based on copper with manganese as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C13/00Resistors not provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material

Definitions

  • the present invention relates to a copper alloy material, and a resistance material for a resistor and a resistor using the copper alloy material.
  • the metal materials used for resistors are required to have a stable resistance value even when the environmental temperature changes.
  • Cu--Mn--Ni alloys and Cu--Mn--Sn alloys are widely used as alloy materials constituting resistor materials because their resistance values do not easily change even when the environmental temperature changes.
  • these Cu--Mn--Ni alloys and Cu--Mn--Sn alloys are used in resistors designed to have a predetermined resistance value by forming circuits (patterns) using resistive materials, for example.
  • the volume resistivity is as low as less than 50 ⁇ 10 ⁇ 8 ( ⁇ m), so it is necessary to increase the resistance value of the resistor by reducing the cross-sectional area of the resistive material.
  • the Joule heat generated in the resistive material with a small cross-sectional area increases and heats up. As a result, there is a problem that the resistance material is easily broken (melted) by heat.
  • a resistor material with a higher volume resistivity is desired.
  • Patent Document 1 in a copper alloy containing Mn in the range of 23% by mass or more and 28% by mass or less and Ni in the range of 9% by mass or more and 13% by mass or less, the mass fraction of Mn and By configuring the mass fraction of Ni so that the thermoelectromotive force with respect to copper is less than ⁇ 1 ⁇ V /°C at 20°C, a high electrical resistance (volume resistivity ⁇ ) can be obtained, the thermoelectromotive force for copper (thermoelectromotive force for copper, EMF) is small, the temperature coefficient of electrical resistance is low, and the inherent electrical resistance is highly stable with respect to time (time invariance) It is possible to obtain a copper alloy having
  • resistors and the resistive materials used in them have also become smaller.
  • Resistance materials used for resistors are generally formed by cutting such as press punching, so in order to reduce the variation in resistance value, the copper alloy material must have excellent press punching workability. is required. In order to provide a copper alloy material with excellent press-punching workability, it is necessary to improve the dimensional accuracy of the cut surface during press-punching.
  • resistors such as shunt resistors and chip resistors for the electrical system of electric vehicles have been required to have a high volume resistivity ⁇ , as well as high-precision resistors that can withstand high-temperature environments.
  • High-precision copper alloys that can withstand high-temperature environments are also required for the copper alloys used in such resistors. More specifically, there is a demand for a copper alloy material that has a high volume resistivity ⁇ , a low electromotive force with copper even at high temperatures, and a small absolute value of the copper thermoelectromotive force (EMF).
  • EMF copper thermoelectromotive force
  • an object of the present invention is to provide a copper alloy material having excellent press-punchability, sufficiently high volume resistivity, and a small absolute value of thermoelectromotive force (EMF) against copper, and the copper alloy
  • the object of the present invention is to provide a resistance material for a resistor and a resistor using a material.
  • the present inventors contain Mn: 20.0 mass% or more and 35.0 mass% or less and Ni: 6.5 mass% or more and 17.0 mass% or less, and O: 0 mass ppm or more and 800 mass ppm or less and C: 0 mass ppm or more and 800 mass ppm or less and a copper alloy material having an alloy composition containing 60 mass ppm or more and 800 mass ppm or less in total of O and C, with the balance being Cu and inevitable impurities, For example, it has a sufficiently high volume resistivity ⁇ as a resistance material, and has a small absolute value of thermoelectromotive force (EMF) against copper in a temperature range from normal temperature (eg, 5 ° C. to 35 ° C.) to high temperature (eg, 80 ° C.), In addition, the present inventors have found that a copper alloy material having excellent press-punching workability can be obtained, and have completed the present invention.
  • EMF thermoelectromotive force
  • the gist and configuration of the present invention are as follows.
  • the alloy composition is Fe: 0.01% by mass or more and 0.50% by mass or less, Co: 0.01% by mass or more and 2.00% by mass or less, Sn: 0.01% by mass or more and 5.00% by mass.
  • a resistance material for a resistor comprising the copper alloy material according to any one of (1) to (3) above.
  • a resistor comprising the resistance material for a resistor according to (4) above.
  • a copper alloy material having excellent press-punching workability, sufficiently high volume resistivity, and a small absolute value of thermoelectromotive force (EMF) against copper, and the copper alloy material.
  • the resistive material for the resistor used and the resistor can be provided.
  • FIG. 2 is a schematic diagram showing a cut surface when the copper alloy material of the present invention is press-punched.
  • FIG. 1 is a schematic diagram of an apparatus for measuring copper thermoelectromotive force (EMF) for test materials of the present invention examples and comparative examples. 1 shows an example of an optical microscope photograph of a cross section perpendicular to the stretching direction during working of the copper alloy material of Inventive Example 9, observed within a visual field area of 10000 ⁇ m 2 .
  • FIG. 10 shows a scanning electron microscope (SEM) photograph of a cut surface of the copper alloy material of Example 11 of the present invention, which is subjected to press punching, when viewed in a cross section including the thickness direction and the width direction.
  • 1 shows a scanning electron microscope (SEM) photograph of a cut surface of the copper alloy material of Comparative Example 1 subjected to press-punching, viewed in a cross section including the thickness direction and the width direction.
  • the copper alloy material according to the present invention contains Mn: 20.0 mass% or more and 35.0 mass% or less and Ni: 6.5 mass% or more and 17.0 mass% or less, and O: 0 mass ppm or more and 800 mass ppm.
  • the copper alloy material of the present invention contains Mn in the range of 20.0% by mass to 35.0% by mass and Ni in the range of 6.5% by mass to 17.0% by mass.
  • the volume resistivity ⁇ is increased, and the absolute value of the thermoelectromotive force against copper (EMF, hereinafter sometimes simply referred to as “thermoelectromotive force against copper”) generated between the temperature environment of 0 ° C. and 80 ° C. becomes smaller, it is possible to improve the performance of the resistor even in a high-temperature environment.
  • the copper alloys described in Patent Documents 1 and 2 described above have a single phase with a face-centered cubic structure that is highly ductile. There is a problem that the resistance value of the resulting resistor varies.
  • the copper alloy material according to the present invention contains Mn in the range of 20.0% by mass or more and 35.0% by mass or less, and contains 60 ppm by mass or more of O and C in total, so that O and C When one or both of them combine with Mn to form an oxide or carbide, it is possible to increase the ratio of the shear plane in the cross section when the copper alloy material is press-punched.
  • the larger the ratio of the sheared surface the smaller the area of the sag and the fractured surface in the cross section. Therefore, the flatness of the cut surface can be improved, and the processing accuracy in press punching can be improved. As a result, it is possible to improve the accuracy of the resistor obtained from the copper alloy.
  • the copper alloy material according to the present invention contains Mn in the range of 20.0% by mass or more and 35.0% by mass or less, and Ni in the range of 6.5% by mass or more and 17.0% by mass or less.
  • Mn in the range of 20.0% by mass or more and 35.0% by mass or less
  • Ni in the range of 6.5% by mass or more and 17.0% by mass or less.
  • the copper alloy material according to the present invention has excellent press-punching workability, has a sufficiently high volume resistivity ⁇ , and has a small absolute value of the copper thermoelectromotive force (EMF). It is possible to provide a material, a resistance material for a resistor using the same, and a resistor.
  • the alloy composition of the copper alloy material of the present invention contains, as essential components, Mn: 20.0% by mass or more and 35.0% by mass or less and Ni: 6.5% by mass or more and 17.0% by mass or less. be.
  • Mn 20.0% by mass or more and 35.0% by mass or less
  • Mn (manganese) is an element that increases the volume resistivity ⁇ .
  • the Mn content is preferably 20.0% by mass or more, more preferably 22.0% by mass or more, and 24.0% by mass. % or more is more preferable.
  • the volume resistivity ⁇ of the copper alloy material can be further increased.
  • the Mn content when the Mn content exceeds 35.0% by mass, the melting point of the copper alloy material is lowered, making it difficult to control the production of the copper alloy material, especially the hot working, so that uniform properties can be obtained. becomes difficult. Therefore, the Mn content should be in the range of 20.0% by mass or more and 35.0% by mass or less.
  • Ni is an element that adjusts the thermoelectromotive force (EMF) against copper in the positive direction.
  • EMF thermoelectromotive force
  • Ni is preferably contained in an amount of 6.5% by mass or more.
  • the Ni content is in the range of 6.5% by mass or more and 17.0% by mass or less, from the viewpoint of obtaining a copper alloy material having desired properties and from the viewpoint of obtaining a copper alloy material that is easy to manufacture. It is preferably in the range of 12.0% by mass or more and more preferably in the range of 6.5% by mass or more and 9.0% by mass or less.
  • O (oxygen) and C (carbon) form oxides and carbides with Mn, thereby increasing the proportion of the sheared surface in the cross section when the copper alloy material is press-punched, thereby improving the press-punching process.
  • At least one of these elements is essential because it has a property-enhancing effect.
  • the total content of O and C is preferably 60 ppm by mass or more, more preferably 100 ppm by mass or more.
  • the total amount of one or two of O and C exceeds 800 ppm by mass, the copper alloy material becomes embrittled and production becomes difficult.
  • the total content of one or two of O and C is in the range of 60 mass ppm or more and 800 mass ppm or less, preferably 100 The range is from mass ppm to 800 mass ppm.
  • the total content of one or two of O and C may be in the range of 60 mass ppm or more and 600 mass ppm or less, or in the range of 100 mass ppm or more and 600 mass ppm or less.
  • the content of O is set in the range of 0 mass ppm or more and 800 mass ppm or less from the viewpoint of achieving high strength without embrittlement of the copper alloy material.
  • the content of C should be in the range of 0 mass ppm or more and 800 mass ppm or less.
  • One or both of the O content and the C content may be in the range of 0 mass ppm or more and 600 mass ppm or less.
  • the copper alloy material of the present invention contains, as optional additive components, Fe: 0.01% by mass or more and 0.50% by mass or less, Co: 0.01% by mass or more and 2.00% by mass or less, Sn: 0.01% by mass.
  • Fe is an element that adjusts the thermoelectromotive force (EMF) against copper in the positive direction.
  • EMF thermoelectromotive force
  • Fe is preferably contained in an amount of 0.01% by mass or more.
  • the Fe content is preferably in the range of 0.01% by mass or more and 0.50% by mass or less.
  • Co is an element that positively adjusts the thermoelectromotive force (EMF) against copper.
  • EMF thermoelectromotive force
  • Co is preferably contained in an amount of 0.01% by mass or more.
  • the Co content is preferably in the range of 0.01% by mass or more and 2.00% by mass or less.
  • Sn (tin) is a component that can be used to adjust the volume resistivity ⁇ . In order to exhibit this effect, it is preferable to contain 0.01% by mass or more of Sn. On the other hand, by setting the Sn content to 5.00% by mass or less, it is possible to make it difficult for the copper alloy material to become embrittled and reduce the manufacturability.
  • Zn 0.01% by mass or more and 5.00% by mass or less
  • Zn (zinc) is a component that can be used to adjust the volume resistivity ⁇ . In order to exhibit this effect, it is preferable to contain 0.01% by mass or more of Zn. On the other hand, the Zn content may adversely affect the stability of the electrical performance of the resistor, such as the volume resistivity ⁇ and copper thermoelectric force (EMF), so it should be kept at 5.00% by mass or less. preferably.
  • Cr 0.01% by mass or more and 0.50% by mass or less
  • Cr chromium
  • the Cr content may adversely affect the stability of the electrical performance of the resistor, such as the volume resistivity ⁇ and copper thermoelectromotive force (EMF), so it is set to 0.50% by mass or less. preferably.
  • Silver (Ag: 0.01% by mass or more and 0.50% by mass or less) is a component that can be used to adjust the volume resistivity ⁇ . In order to exhibit this effect, it is preferable to contain 0.01% by mass or more of Ag. On the other hand, the Ag content may adversely affect the stability of the electrical performance of the resistor, such as the volume resistivity ⁇ and copper thermoelectromotive force (EMF), so it is set to 0.50% by mass or less. preferably.
  • Al 0.01% by mass or more and 1.00% by mass or less
  • Al (aluminum) is a component that can be used to adjust the volume resistivity ⁇ . In order to exhibit this effect, it is preferable to contain 0.01% by mass or more of Al.
  • the Al content is preferably 1.00% by mass or less because it may embrittle the copper alloy material.
  • Mg 0.01% by mass or more and 0.50% by mass or less
  • Mg manganesium
  • Mg content is preferably 0.50% by mass or less because it may embrittle the copper alloy material.
  • Si 0.01% by mass or more and 0.50% by mass or less
  • Si silicon
  • Si is a component that can be used to adjust the volume resistivity ⁇ . In order to exhibit this effect, it is preferable to contain 0.01% by mass or more of Si.
  • the Si content is preferably 0.50% by mass or less because it may embrittle the copper alloy material.
  • P 0.01% by mass or more and 0.50% by mass or less
  • P (phosphorus) is a component that can be used to adjust the volume resistivity ⁇ . In order to exhibit this action, it is preferable to contain 0.01% by mass or more of P. On the other hand, since the P content may embrittle the copper alloy material, it is preferable to set it to 0.50% by mass or less.
  • Total amount of optional additive components 0.01% by mass or more and 5.00% by mass or less
  • the content of these optional additive components is too large, the electrical characteristics become unstable and the production of the copper alloy material becomes difficult, so the total content should be 5.00 mass % or less. is preferred.
  • ⁇ Remainder Cu and inevitable impurities> The remainder consists of Cu (copper) and unavoidable impurities other than the essential ingredients and optional additive ingredients described above.
  • the "unavoidable impurities” referred to here generally refer to those present in the raw materials of copper-based products and those that are unavoidably mixed in during the manufacturing process. It is an impurity that is allowed because it does not affect the properties of copper-based products.
  • Components that can be cited as inevitable impurities include, for example, nonmetallic elements such as sulfur (S) and metallic elements such as antimony (Sb).
  • the upper limit of the content of these components can be 0.05% by mass for each of the above components, and 0.10% by mass for the total amount of the above components.
  • the shape of the copper alloy material of the present invention is not particularly limited, but the process of hot or cold stretching described later, press punching, etc.
  • a plate material is preferable from the viewpoint of facilitating cutting.
  • the rolling direction can be the stretching direction.
  • the copper alloy material of the present invention may be in the form of a strip such as a ribbon material, a wire such as a rectangular wire or a round wire, in addition to a plate or bar.
  • the copper alloy material is observed in a cross section orthogonal to the drawing direction (drawing direction, drawing direction, extrusion direction) during processing, and oxides and carbides observed within a viewing area of 10000 ⁇ m 2
  • the number of coarse precipitated particles, which are precipitated particles having a maximum dimension of more than 20 ⁇ m is preferably 3 or less.
  • the oxides and carbides of manganese are dispersed more uniformly in the copper alloy material, and when the copper alloy material is press-punched, the proportion of the sheared surface in the cross section can be increased. It is possible to improve the punching workability and improve the dimensional accuracy of the copper alloy material after press punching.
  • precipitated particles with a maximum dimension of more than 20 ⁇ m tend to form regions where oxides and carbides are sparse around the particles, which tends to make the cross section uneven when press-punched. It is preferable that the number contained in the alloy material is small. Therefore, from the viewpoint of improving the processing accuracy in press punching by making the cross section uniform when press punching, the number of coarse precipitated particles observed in the visual field area of 10000 ⁇ m 2 is 3 or less. It is preferably 1 or less, and most preferably 0.
  • Measurement of the number of coarse precipitated particles containing oxides or carbides in this specification is performed by embedding in resin so that the cross section perpendicular to the stretching direction during processing of the copper alloy material is exposed. After that, the cross section perpendicular to the stretching direction is polished, and the exposed crystal is observed with an optical microscope with a 100 ⁇ m ⁇ 100 ⁇ m square as one field of view. This can be done by measuring the particle size of precipitated particles containing carbide.
  • An example of a method for producing a copper alloy material The copper alloy material described above can be realized by controlling a combination of the alloy composition and the production process, and the production process is not particularly limited. Among them, the following method can be given as an example of a manufacturing process capable of obtaining the copper alloy material described above.
  • a copper-based material having substantially the same alloy composition as that of the copper alloy material described above is subjected to at least a casting step [step 1], a homogenization heat treatment step [step 2], a hot working step [step 3], a first cold working step [step 4], and a first annealing step [step 5].
  • Step 1 In the casting step [step 1], a high-frequency melting furnace is used to melt a copper-based material having the above-described alloy composition in an inert gas atmosphere, which is a non-oxidizing atmosphere, or in a vacuum. An ingot having a predetermined shape (for example, thickness of 30 mm, width of 50 mm, and length of 300 mm) is produced.
  • the alloy composition of the copper-based material may not always match completely with the alloy composition of the copper-based material manufactured by adhering or volatilizing in the melting furnace depending on the additive components in each manufacturing process. However, it has substantially the same alloy composition as that of the copper alloy material.
  • a copper-based material containing at least one of copper, manganese, nickel, graphite, and copper oxide, or copper, manganese, nickel, graphite, copper oxide, and the optional additive components described above is used. , melting and casting.
  • manganese has the feature of easily forming oxides and carbides, so by reacting with carbon constituting graphite and oxygen contained in copper oxide, oxides and carbides with few coarse precipitated particles are formed. Containing precipitated particles can be obtained. Therefore, the copper alloy material obtained through the above-described manufacturing method can contain oxides and carbides within the range of the alloy composition described above. can be improved.
  • the molten copper-based material is held at a melting temperature in the range of 1100 ° C. or higher and 1250 ° C. or lower for a holding time of 2 hours or less, and then an average cooling rate of 0.5 ° C. or more per second. It is preferable to obtain an ingot by cooling to 600° C. or less. As a result, fine oxides and carbides can be dispersed in the ingot with high uniformity. On the other hand, if the melting temperature is increased, if the retention time at the melting temperature is increased, or if the cooling rate during casting is slow, coarse oxides or carbides may increase.
  • the melting temperature in the casting process [step 1] and the melting temperature are preferably within the above ranges.
  • the retention time at the melting temperature is more preferably within 1 hour.
  • the homogenization heat treatment step [step 2] is a step of subjecting the ingot after the casting step [step 1] to a heat treatment for homogenization.
  • the heat treatment conditions in the homogenization heat treatment step [step 2] are such that the heating temperature is in the range of 750 ° C. or higher and 900 ° C. or lower and the holding time at the heating temperature is 10 from the viewpoint of suppressing the coarsening of the crystal grains. It is preferable to set the time in the range of 1 minute to 10 hours.
  • hot working step [step 3] In the hot working process [Step 3], the ingot that has been subjected to the homogenization heat treatment is subjected to stretching such as hot rolling and wire drawing until it reaches a predetermined thickness and size, and the hot worked material is obtained. This is the manufacturing process.
  • the hot working step [step 3] includes both the hot rolling step and the hot drawing (wire drawing) step.
  • the working temperature is preferably in the range of 750° C. or higher and 900° C. or lower, and may be the same as the heating temperature in the homogenization heat treatment step [step 2].
  • the working rate in the hot working step [Step 3] is preferably 10% or more.
  • processing rate is the value obtained by subtracting the cross-sectional area after processing from the cross-sectional area before stretching such as rolling or wire drawing, dividing the value by the cross-sectional area before processing, multiplying by 100, and percent is a value expressed by the following formula.
  • [Processing rate] ⁇ ([cross-sectional area before processing] - [cross-sectional area after processing]) / [cross-sectional area before processing] ⁇ x 100 (%)
  • the means for cooling the hot-worked material is not particularly limited, but from the viewpoint of making coarsening of crystal grains difficult to occur, it is preferable to use a means for increasing the cooling rate as much as possible, such as water cooling. It is preferable to set the cooling rate to 10° C./second or more by means of .
  • the surface of the hot-worked material after cooling may be chamfered.
  • Chamfering can remove surface oxide films and defects generated in the hot working step [step 3].
  • the conditions for facing are not particularly limited as long as they are the conditions that are commonly used.
  • the amount to be removed from the surface of the hot-worked material by chamfering can be appropriately adjusted based on the conditions of the hot-working step [Step 3], for example, about 0.5 to 4 mm from the surface of the hot-worked material. be able to.
  • First cold working step [Step 4] the hot worked material after the hot working step [step 3] is cold rolled at an arbitrary working rate according to the thickness and size of the product. It is a process of applying drawing processing such as wire drawing.
  • the first cold working step [Step 4] includes both the cold rolling step and the cold drawing (wire drawing) step.
  • the conditions for stretching such as rolling and wire drawing in the first cold working step [step 4] can be set according to the size of the hot-worked material.
  • the total working rate in the first cold working step [step 4] may be 50% or more. preferable.
  • the first annealing step [step 5] is an annealing step in which the cold-rolled material after the first cold working step [step 4] is heat-treated and recrystallized.
  • the heat treatment conditions in the first annealing step [step 5] are such that the heating temperature is in the range of 600° C. or higher and 800° C. or lower, and the holding time at the heating temperature is in the range of 1 minute or longer and 2 hours or shorter.
  • the heating temperature is less than 600° C. or when the holding time is less than 1 minute, it becomes difficult to recrystallize the copper alloy material.
  • the heating temperature exceeds 800° C. or when the holding time exceeds 2 hours crystal grains may become coarse, resulting in poor workability.
  • the cold working step and the annealing step may be repeatedly perform the cold working step and the annealing step once or more on the cold-rolled material that has undergone the first annealing step [step 5].
  • the cold-rolled material after the first annealing step [step 5] may be subjected to a second cold working step and annealing step.
  • a second cold working step [step 6] and a second annealing step [step 7] can be performed, respectively.
  • the copper alloy material becomes a plate material, bar material, strip material, or wire material having a desired shape, and coarse crystal grains are less likely to be formed. Therefore, it is possible to obtain a copper alloy material exhibiting desired characteristics in terms of workability, volume resistivity, and copper thermoelectromotive force.
  • the total working rate in the second cold working process [Step 6] can be 50% or more.
  • the heat treatment conditions in the second annealing step [Step 7] are such that the heating temperature is in the range of 600° C. or more and 800° C. or less, and the holding time at the heating temperature is in the range of 1 minute or more and 2 hours or less.
  • the copper alloy material of the present invention is extremely useful as a resistance material for resistors used in resistors such as shunt resistors or chip resistors. That is, it is preferable that the resistive material for a resistor is made of the copper alloy material described above. Also, resistors such as shunt resistors or chip resistors preferably have a resistive material for resistors made of the copper alloy material described above.
  • This ingot is subjected to a homogenization heat treatment step [Step 2] in which heat treatment is performed at a heating temperature of 800 ° C. and a holding time of 5 hours.
  • a hot-worked material was obtained by performing a hot-working step [Step 3] of rolling along the longitudinal direction so that the thickness before working was 30 mm and the thickness after working was 10 mm. After that, the substrate was cooled to room temperature by water cooling, and was chamfered to remove the oxide film formed on the surface. The thickness of the hot worked material after facing was 8 mm.
  • the hot-worked material is rolled along the longitudinal direction at a total working rate of 88% (thickness before working is 8 mm, thickness after working is 1 mm).
  • a cold working step [step 4] was performed.
  • the cold-rolled material after the first cold working step [step 4] is heat-treated at a heating temperature of 600° C. or higher and 800° C. or lower for a holding time in the range of 1 minute or more and 2 hours or less.
  • the first annealing step [step 5] was performed.
  • a second cold working step [step 6] was carried out, rolling along.
  • the cold-rolled material after the second cold working step [step 6] is heat-treated at a heating temperature of 600° C. or higher and 800° C. or lower for a holding time in the range of 1 minute or more and 2 hours or less.
  • the second annealing step [step 7] was performed. In this manner, copper alloy sheet materials of Inventive Examples 1 to 17 and Comparative Examples 1 to 6 were produced.
  • the cross section perpendicular to the stretching direction of the test material was further polished, and the cross section of the test material at different positions in the stretching direction was measured.
  • the average value of the number of coarse precipitated particles in 5 fields of view was obtained, and the obtained average value was taken as the number of coarse precipitated particles. Table 2 shows the results.
  • FIG. 1 is a schematic diagram showing a cut surface when press punching is performed on the copper alloy material of the present invention.
  • a copper alloy material 1 shown in FIG. 1 shows a cut surface 2 after being subjected to press punching, which is performed by lowering an upper die (punch) while being fixed on a lower die (not shown). be.
  • a droop 3 on the cut surface 2, a sheared surface 4 and a fractured surface 5 are formed in order from the upper surface 1a side of the copper alloy material 1 punched by press.
  • burrs 6 are often formed on the lower edge of the cut surface 2 so as to extend outward from the fractured surface 5 . Therefore, the cross section including the thickness direction and the width direction of the copper alloy material 1 includes the sag 3 , the sheared surface 4 , the fractured surface 5 and the burr 6 .
  • a section including the thickness direction z and the width direction x which is a surface along the direction perpendicular to the stretching direction y, is scanned with a scanning electron microscope (SEM ) (SSX-550 manufactured by Shimadzu Corporation) was used for observation at a magnification of 200 times. Then, from a scanning electron microscope (SEM) photograph of the cut surface 2, the ratio of the cross-sectional area of the sheared surface 4 to the cross-sectional area of the cross section including the thickness direction and the width direction was calculated.
  • SEM scanning electron microscope
  • the ratio of the cross-sectional area of the sheared surface 4 to the calculated cross-sectional area including the thickness direction and the width direction is 40% or more, it is evaluated as excellent in press punching workability. did.
  • the ratio of the cross-sectional area of the shear surface 4 to the cross-sectional area including the thickness direction and the width direction is 35% or more and less than 40%, it is considered that the press punchability is good. evaluated. On the other hand, when this ratio was less than 35%, it was evaluated as "x" because the press punchability was poor. Table 2 shows the results.
  • the volume resistivity ⁇ is measured by setting the distance between the voltage terminals to 200 mm, the measurement current to 100 mA, and measuring the voltage at room temperature of 20°C by the four-terminal method according to the method specified in JIS C2525. A volume resistivity ⁇ [ ⁇ cm] was obtained.
  • the volume resistivity ⁇ when the volume resistivity ⁇ was 80 ⁇ cm or more, the volume resistivity ⁇ was sufficiently large, and it was evaluated as " ⁇ " as being excellent as a resistive material. In addition, when the volume resistivity ⁇ was 70 ⁇ cm or more and less than 80 ⁇ cm, the volume resistivity ⁇ was large and was evaluated as “good” as a good resistance material. On the other hand, when the volume resistivity ⁇ was less than 70 ⁇ cm, the volume resistivity ⁇ was small, and it was evaluated as “ ⁇ ” as a poor resistance material. In this example, " ⁇ " and " ⁇ " were evaluated as pass levels. Table 2 shows the results.
  • the measurement of the copper thermoelectromotive force (EMF) of the test material was performed according to JIS C2527. More specifically, as shown in FIG.
  • the temperature measuring junction P1 to which one end of the test material 11 and standard copper wire 21 is connected, is immersed in hot water kept warm in a constant temperature bath 41 at 80 ° C., and the test material 11 and
  • the thermoelectromotive force EMF ⁇ V/° C.
  • thermoelectromotive force against copper when the absolute value is 0.6 ⁇ V / ° C. or less, the absolute value of the thermoelectromotive force against copper (EMF) is small and it is considered to be good as a resistive material. 0” was evaluated.
  • the absolute value of the thermoelectromotive force (EMF) to copper is greater than 0.6 ⁇ V/° C., the absolute value of the thermoelectromotive force (EMF) to copper is large, and it is regarded as being unsatisfactory as a resistive material, and is marked as “x”. evaluated. Table 2 shows the results.
  • the copper alloy materials of Examples 1 to 17 of the present invention have an alloy composition within the appropriate range of the present invention, and when viewed in a cross section perpendicular to the stretching direction, oxide and the number of coarse precipitated particles containing at least one of carbide and carbide was 3 or less in each case. there were.
  • the copper alloy materials of Examples 1 to 17 of the present invention were all evaluated as "good” with respect to copper thermoelectromotive force (EMF).
  • the copper alloy material of Comparative Example 1 had a small total amount of O and C, and the alloy composition was outside the proper range of the present invention. Therefore, the copper alloy material of Comparative Example 1 was evaluated as "poor" in press punching workability.
  • the copper alloy material of Comparative Example 2 had a large total amount of O and C, which was outside the appropriate range of the present invention. Therefore, the copper alloy material of Comparative Example 2 was cracked during rolling in the hot working process [process 3].
  • the copper alloy material of Comparative Example 3 had a low Mn content, and the alloy composition was outside the appropriate range of the present invention. Therefore, the copper alloy material of Comparative Example 3 was evaluated as "x" in volume resistivity ⁇ .
  • the copper alloy material of Comparative Example 4 had a large Mn content, and the alloy composition was outside the appropriate range of the present invention. Therefore, the copper alloy material of Comparative Example 4 was evaluated as "x" in terms of copper thermoelectromotive force (EMF).
  • EMF copper thermoelectromotive force
  • the copper alloy material of Comparative Example 5 had a large Ni content, and the alloy composition was outside the appropriate range of the present invention. Therefore, the copper alloy material of Comparative Example 5 was evaluated as "x" in terms of copper thermoelectromotive force (EMF).
  • EMF copper thermoelectromotive force
  • the copper alloy material of Comparative Example 6 had a low Ni content, and the alloy composition was outside the appropriate range of the present invention. Therefore, the copper alloy material of Comparative Example 6 was evaluated as "x" in terms of copper thermoelectromotive force (EMF).
  • EMF copper thermoelectromotive force
  • the copper alloy material of the present invention example has at least good volume resistivity ⁇ and copper thermoelectromotive force (EMF) when the alloy composition is within the proper range of the present invention. .
  • the copper alloy material of the example of the present invention has at least good press-punching workability.
  • FIG. 3 shows an example of an optical microscope photograph of a cross section perpendicular to the stretching direction during working of the copper alloy material of Inventive Example 9, observed within a viewing area of 10000 ⁇ m 2 .
  • precipitated particles containing oxides and/or carbides appear as black dots. From the optical micrograph of FIG. 3, it was confirmed that coarse precipitated particles, which are precipitated particles having a maximum dimension of more than 20 ⁇ m, were not precipitated within the field of view as precipitated particles containing at least one of oxides and carbides. .
  • FIG. 4 and 5 show the cross sections including the thickness direction and the width direction of the cut surfaces of the copper alloy materials of the present invention example and the comparative example when the press punching process is performed using a scanning electron microscope. (SEM) Photographs are shown.
  • FIG. 4 is a SEM photograph of a cut surface when the copper alloy material of Example 11 of the present invention was punched by press
  • FIG. 5 is a photograph of the cut surface when the copper alloy material of Comparative Example 1 was punched by press. It is an SEM photograph of a cut surface when the film is cut. 4 and 5, the boundary between the sheared surface 4, 400 and the fractured surface 5, 500 is indicated by a dashed line.
  • the ratio of the cross-sectional area of the shear plane 4 to the cross-sectional area of the cross section including the thickness direction and the width direction of the copper alloy material 1 of the example of the present invention is 400 It was confirmed that it is larger than the ratio of the cross-sectional area of

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Conductive Materials (AREA)

Abstract

Provided are: a copper alloy material having excellent press punching workability and sufficiently high volume resistivity, as well as a small absolute value of thermoelectromotive force (EMF) relative to copper; and a resistor resistance material and a resistor using the copper alloy material. The copper alloy material has an alloy composition containing 20.0-35.0 mass% of Mn, 6.5-17.0 mass% of Ni, 0-800 mass ppm of O, 0-800 mass ppm of C, and 60-800 mass ppm in total of O and C, with the remainder comprising Cu and inevitable impurities.

Description

銅合金材、ならびに銅合金材を用いた抵抗器用抵抗材料および抵抗器Copper alloy material, resistance material for resistor and resistor using copper alloy material
 本発明は、銅合金材、ならびに該銅合金材を用いた抵抗器用抵抗材料および抵抗器に関する。 The present invention relates to a copper alloy material, and a resistance material for a resistor and a resistor using the copper alloy material.
 抵抗器に使用される抵抗材の金属材料には、環境温度が変化しても抵抗値が安定することが要求される。これに関し、Cu-Mn-Ni合金やCu-Mn-Sn合金は、環境温度が変化しても抵抗値が変わりにくいため、抵抗材を構成する合金材料として広く用いられている。 The metal materials used for resistors are required to have a stable resistance value even when the environmental temperature changes. In this regard, Cu--Mn--Ni alloys and Cu--Mn--Sn alloys are widely used as alloy materials constituting resistor materials because their resistance values do not easily change even when the environmental temperature changes.
 しかしながら、たとえば抵抗材料を用いて回路(パターン)を形成することによって所定の抵抗値になるように設計される抵抗器に、これらのCu-Mn-Ni合金やCu-Mn-Sn合金を抵抗材料として用いた場合には、体積抵抗率が50×10-8(Ω・m)未満と小さいため、抵抗材料の断面積を小さくして抵抗器の抵抗値を大きくする必要がある。このような抵抗器では、回路に一時的に大電流が流された場合や、常にある程度大きな電流が流され続けるような場合に、断面積の小さな抵抗材料に生じるジュール熱が高くなって発熱し、その結果、抵抗材料が熱により破断(溶断)しやすくなってしまうという不都合があった。 However, these Cu--Mn--Ni alloys and Cu--Mn--Sn alloys are used in resistors designed to have a predetermined resistance value by forming circuits (patterns) using resistive materials, for example. , the volume resistivity is as low as less than 50×10 −8 (Ω·m), so it is necessary to increase the resistance value of the resistor by reducing the cross-sectional area of the resistive material. In such resistors, when a large current is temporarily passed through the circuit, or when a large current is constantly passed through the circuit, the Joule heat generated in the resistive material with a small cross-sectional area increases and heats up. As a result, there is a problem that the resistance material is easily broken (melted) by heat.
 このため、抵抗材料の断面積が小さくなるのを抑制するために、体積抵抗率のより大きな抵抗材料が求められている。 Therefore, in order to suppress the reduction of the cross-sectional area of the resistor material, a resistor material with a higher volume resistivity is desired.
 例えば、特許文献1には、Mnを23質量%以上28質量%以下の範囲で含有し、かつNiを9質量%以上13質量%以下の範囲で含有する銅合金において、Mnの質量分率とNiの質量分率を、銅に対する熱起電力が20℃で±1μV/℃より小さくなるように構成することで、50×10-8[Ω・m]以上の高い電気抵抗(体積抵抗率ρ)を得ることができるとともに、銅に対する熱起電力(対銅熱起電力、EMF)が小さく、電気抵抗の温度係数が低く、かつ、固有の電気抵抗の時間に対する高い安定性(時間不変性)を有する銅合金を得ることができるとしている。 For example, in Patent Document 1, in a copper alloy containing Mn in the range of 23% by mass or more and 28% by mass or less and Ni in the range of 9% by mass or more and 13% by mass or less, the mass fraction of Mn and By configuring the mass fraction of Ni so that the thermoelectromotive force with respect to copper is less than ±1 μV /°C at 20°C, a high electrical resistance (volume resistivity ρ ) can be obtained, the thermoelectromotive force for copper (thermoelectromotive force for copper, EMF) is small, the temperature coefficient of electrical resistance is low, and the inherent electrical resistance is highly stable with respect to time (time invariance) It is possible to obtain a copper alloy having
 また、特許文献2には、Mnを21.0質量%以上30.2質量%以下の範囲で含有し、かつNiを8.2質量%以上11.0質量%以下の範囲で含有する銅合金において、20℃から60℃までの温度範囲における抵抗温度係数(TCR)の値x[ppm/℃]を-10≦x≦-2または2≦x≦10の範囲にし、かつ、体積抵抗率ρを80×10-8[Ω・m]以上115×10-8[Ω・m]以下にすることで、抵抗材料を用いたチップ抵抗器などの抵抗器の回路の断面積が小さくなるのを抑制するとともに、抵抗材料のジュール熱が高くなるのを抑制することができるとしている。 Further, in Patent Document 2, a copper alloy containing Mn in the range of 21.0% by mass or more and 30.2% by mass or less and Ni in the range of 8.2% by mass or more and 11.0% by mass or less , the temperature coefficient of resistance (TCR) value x [ppm/°C] in the temperature range from 20°C to 60°C is in the range of -10 ≤ x ≤ -2 or 2 ≤ x ≤ 10, and the volume resistivity ρ is 80×10 −8 [Ω・m] or more and 115×10 −8 [Ω・m] or less, the cross-sectional area of the circuit of a resistor such as a chip resistor using a resistive material is reduced. In addition, it is possible to suppress an increase in the Joule heat of the resistance material.
特表2016-528376号公報Japanese Patent Publication No. 2016-528376 特開2017-053015号公報JP 2017-053015 A
 近年の電気電子部品の小型高集積化に伴い、抵抗器やそれに用いられる抵抗材料も小型化が進んでいる。抵抗器に用いられる抵抗材料は、一般に、プレス打ち抜き加工などの切断加工を施すことにより形成されるため、抵抗値のばらつきを小さくするには、銅合金材が優れたプレス打ち抜き加工性を有することが求められる。ここで、優れたプレス打ち抜き加工性を銅合金材にもたらすには、プレス打ち抜き加工を行なう際の切断面の寸法精度を高める必要がある。 In recent years, as electrical and electronic components have become smaller and more highly integrated, resistors and the resistive materials used in them have also become smaller. Resistance materials used for resistors are generally formed by cutting such as press punching, so in order to reduce the variation in resistance value, the copper alloy material must have excellent press punching workability. is required. In order to provide a copper alloy material with excellent press-punching workability, it is necessary to improve the dimensional accuracy of the cut surface during press-punching.
 さらに、近年、電気自動車の電装系などにおいて、シャント抵抗器やチップ抵抗器などの抵抗器として、体積抵抗率ρが大きいもののほか、高温の使用環境に耐える高精度なものが求められており、このような抵抗器に用いられる銅合金としても、高温の使用環境に耐える高精度なものが求められている。より具体的には、体積抵抗率ρが大きく、かつ、高温になっても銅との起電力が生じ難く対銅熱起電力(EMF)の絶対値が小さい銅合金材が求められている。 Furthermore, in recent years, resistors such as shunt resistors and chip resistors for the electrical system of electric vehicles have been required to have a high volume resistivity ρ, as well as high-precision resistors that can withstand high-temperature environments. High-precision copper alloys that can withstand high-temperature environments are also required for the copper alloys used in such resistors. More specifically, there is a demand for a copper alloy material that has a high volume resistivity ρ, a low electromotive force with copper even at high temperatures, and a small absolute value of the copper thermoelectromotive force (EMF).
 したがって、本発明の目的は、優れたプレス打ち抜き加工性を有するとともに、十分に高い体積抵抗率を有し、かつ対銅熱起電力(EMF)の絶対値が小さい銅合金材、ならびに該銅合金材を用いた抵抗器用抵抗材料および抵抗器を提供することにある。 Accordingly, an object of the present invention is to provide a copper alloy material having excellent press-punchability, sufficiently high volume resistivity, and a small absolute value of thermoelectromotive force (EMF) against copper, and the copper alloy The object of the present invention is to provide a resistance material for a resistor and a resistor using a material.
 本発明者らは、Mn:20.0質量%以上35.0質量%以下およびNi:6.5質量%以上17.0質量%以下を含有するとともに、O:0質量ppm以上800質量ppm以下およびC:0質量ppm以上800質量ppm以下でかつOおよびCの合計で60質量ppm以上800質量ppm以下を含有し、残部がCuおよび不可避不純物からなる合金組成を有する銅合金材によることで、例えば抵抗材料として十分に高い体積抵抗率ρを有するとともに、常温(例えば5℃~35℃)から高温(例えば80℃)までの温度範囲における対銅熱起電力(EMF)の絶対値も小さく、かつプレス打ち抜き加工性に優れた銅合金材が得られることを見出し、本発明を完成させるに至った。 The present inventors contain Mn: 20.0 mass% or more and 35.0 mass% or less and Ni: 6.5 mass% or more and 17.0 mass% or less, and O: 0 mass ppm or more and 800 mass ppm or less and C: 0 mass ppm or more and 800 mass ppm or less and a copper alloy material having an alloy composition containing 60 mass ppm or more and 800 mass ppm or less in total of O and C, with the balance being Cu and inevitable impurities, For example, it has a sufficiently high volume resistivity ρ as a resistance material, and has a small absolute value of thermoelectromotive force (EMF) against copper in a temperature range from normal temperature (eg, 5 ° C. to 35 ° C.) to high temperature (eg, 80 ° C.), In addition, the present inventors have found that a copper alloy material having excellent press-punching workability can be obtained, and have completed the present invention.
 上記目的を達成するため、本発明の要旨構成は、以下のとおりである。
(1)Mn:20.0質量%以上35.0質量%以下およびNi:6.5質量%以上17.0質量%以下を含有するとともに、O:0質量ppm以上800質量ppm以下およびC:0質量ppm以上800質量ppm以下でかつOおよびCの合計で60質量ppm以上800質量ppm以下を含有し、残部がCuおよび不可避不純物からなる合金組成を有する、銅合金材。
(2)前記銅合金材の加工時の延伸方向に対して直交する断面で見て、10000μmの視野面積内で観察される、酸化物および炭化物の少なくとも一方を含有する析出粒子のうち、最大寸法が20μm超の析出粒子である粗大析出粒子の存在数が3個以下である、上記(1)に記載の銅合金材。
(3)前記合金組成は、Fe:0.01質量%以上0.50質量%以下、Co:0.01質量%以上2.00質量%以下、Sn:0.01質量%以上5.00質量%以下、Zn:0.01質量%以上5.00質量%以下、Cr:0.01質量%以上0.50質量%以下、Ag:0.01質量%以上0.50質量%以下、Al:0.01質量%以上1.00質量%以下、Mg:0.01質量%以上0.50質量%以下、Si:0.01質量%以上0.50質量%以下、およびP:0.01質量%以上0.50質量%以下からなる群から選択される少なくとも1種の成分をさらに含有する、上記(1)または(2)に記載の銅合金材。
(4)上記(1)から(3)のいずれか1項に記載の銅合金材からなる、抵抗器用抵抗材料。
(5)上記(4)に記載の抵抗器用抵抗材料を有する、抵抗器。
In order to achieve the above object, the gist and configuration of the present invention are as follows.
(1) Mn: 20.0% by mass or more and 35.0% by mass or less and Ni: 6.5% by mass or more and 17.0% by mass or less, O: 0 mass ppm or more and 800 mass ppm or less and C: A copper alloy material having an alloy composition containing 0 mass ppm or more and 800 mass ppm or less, a total of 60 mass ppm or more and 800 mass ppm or less of O and C, and the balance being Cu and unavoidable impurities.
(2) Of the precipitated particles containing at least one of oxides and carbides observed within a viewing area of 10000 μm 2 when viewed in a cross section orthogonal to the stretching direction during processing of the copper alloy material, the maximum The copper alloy material according to (1) above, wherein the number of coarse precipitated particles, which are precipitated particles having a size of more than 20 μm, is 3 or less.
(3) The alloy composition is Fe: 0.01% by mass or more and 0.50% by mass or less, Co: 0.01% by mass or more and 2.00% by mass or less, Sn: 0.01% by mass or more and 5.00% by mass. % or less, Zn: 0.01% by mass or more and 5.00% by mass or less, Cr: 0.01% by mass or more and 0.50% by mass or less, Ag: 0.01% by mass or more and 0.50% by mass or less, Al: 0.01% by mass or more and 1.00% by mass or less, Mg: 0.01% by mass or more and 0.50% by mass or less, Si: 0.01% by mass or more and 0.50% by mass or less, and P: 0.01% by mass % or more and 0.50% by mass or less, the copper alloy material according to (1) or (2) above, further containing at least one component selected from the group consisting of 0.50% by mass or less.
(4) A resistance material for a resistor, comprising the copper alloy material according to any one of (1) to (3) above.
(5) A resistor comprising the resistance material for a resistor according to (4) above.
 本発明によれば、優れたプレス打ち抜き加工性を有するとともに、十分に高い体積抵抗率を有し、かつ対銅熱起電力(EMF)の絶対値が小さい銅合金材、ならびに該銅合金材を用いた抵抗器用抵抗材料および抵抗器を提供することができる。 According to the present invention, there is provided a copper alloy material having excellent press-punching workability, sufficiently high volume resistivity, and a small absolute value of thermoelectromotive force (EMF) against copper, and the copper alloy material. The resistive material for the resistor used and the resistor can be provided.
本発明の銅合金材に対してプレス打ち抜き加工を行なったときの切断面を示す模式図である。FIG. 2 is a schematic diagram showing a cut surface when the copper alloy material of the present invention is press-punched. 本発明例および比較例の供試材について、対銅熱起電力(EMF)を測定するための装置の模式図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of an apparatus for measuring copper thermoelectromotive force (EMF) for test materials of the present invention examples and comparative examples. 本発明例9の銅合金材の加工時の延伸方向に対して直交する断面について、10000μmの視野面積内で観察したときの光学顕微鏡写真の一例を示す。1 shows an example of an optical microscope photograph of a cross section perpendicular to the stretching direction during working of the copper alloy material of Inventive Example 9, observed within a visual field area of 10000 μm 2 . 本発明例11の銅合金材についてプレス打ち抜き加工を行なったときの切断面について、厚さ方向および幅方向を含む断面で見たときの走査型電子顕微鏡(SEM)写真を示す。FIG. 10 shows a scanning electron microscope (SEM) photograph of a cut surface of the copper alloy material of Example 11 of the present invention, which is subjected to press punching, when viewed in a cross section including the thickness direction and the width direction. 比較例1の銅合金材についてプレス打ち抜き加工を行なったときの切断面について、厚さ方向および幅方向を含む断面で見たときの走査型電子顕微鏡(SEM)写真を示す。1 shows a scanning electron microscope (SEM) photograph of a cut surface of the copper alloy material of Comparative Example 1 subjected to press-punching, viewed in a cross section including the thickness direction and the width direction.
 以下、本発明の銅合金材の好ましい実施形態について、詳細に説明する。なお、本発明の合金の成分組成において、「質量%」を単に「%」と示すこともある。また、「質量ppm」を単に「ppm」と示すこともある。 A preferred embodiment of the copper alloy material of the present invention will be described in detail below. In addition, in the component composition of the alloy of the present invention, "% by mass" may be simply indicated as "%". Also, "mass ppm" may be simply indicated as "ppm".
 本発明に従う銅合金材は、Mn:20.0質量%以上35.0質量%以下およびNi:6.5質量%以上17.0質量%以下を含有するとともに、O:0質量ppm以上800質量ppm以下およびC:0質量ppm以上800質量ppm以下でかつOおよびCの合計で60質量ppm以上800質量ppm以下を含有し、残部がCuおよび不可避不純物からなる合金組成を有する。 The copper alloy material according to the present invention contains Mn: 20.0 mass% or more and 35.0 mass% or less and Ni: 6.5 mass% or more and 17.0 mass% or less, and O: 0 mass ppm or more and 800 mass ppm. ppm or less and C: 0 mass ppm or more and 800 mass ppm or less and an alloy composition containing 60 mass ppm or more and 800 mass ppm or less in total of O and C, with the balance being Cu and unavoidable impurities.
 本発明の銅合金材では、Mnを20.0質量%以上35.0質量%以下の範囲で含有し、かつNiを6.5質量%以上17.0質量%以下の範囲で含有することで、体積抵抗率ρが高められるとともに、0℃と80℃の温度環境の間で発生する対銅熱起電力(EMF、以下、単に「対銅熱起電力」という場合がある。)の絶対値が小さくなるため、高温環境下においても、抵抗器の高性能化を進めることができる。 The copper alloy material of the present invention contains Mn in the range of 20.0% by mass to 35.0% by mass and Ni in the range of 6.5% by mass to 17.0% by mass. , the volume resistivity ρ is increased, and the absolute value of the thermoelectromotive force against copper (EMF, hereinafter sometimes simply referred to as “thermoelectromotive force against copper”) generated between the temperature environment of 0 ° C. and 80 ° C. becomes smaller, it is possible to improve the performance of the resistor even in a high-temperature environment.
 これに関し、上述の特許文献1、2に記載の銅合金では、延性に富んだ面心立法構造の単相であったため、プレス打ち抜き加工を行なう際の切断面の寸法精度が低く、銅合金から得られる抵抗器において抵抗値にばらつきが生じる問題があった。 In this regard, the copper alloys described in Patent Documents 1 and 2 described above have a single phase with a face-centered cubic structure that is highly ductile. There is a problem that the resistance value of the resulting resistor varies.
 しかしながら、本発明に従う銅合金材では、特にMnを20.0質量%以上35.0質量%以下の範囲で含有し、かつOおよびCを合計で60質量ppm以上含有することで、OおよびCのうち一方または両方がMnと結合して酸化物や炭化物を形成することで、銅合金材をプレス打ち抜き加工したときの断面における剪断面の割合を高めることができる。この剪断面の割合が大きいほど、断面におけるダレと破断面の面積が相対的に小さくなるため、切断面における平坦度を高めることができ、プレス打ち抜き加工における加工精度を高めることが可能である。その結果、銅合金から得られる抵抗器の高精度化を進めることができる。 However, the copper alloy material according to the present invention contains Mn in the range of 20.0% by mass or more and 35.0% by mass or less, and contains 60 ppm by mass or more of O and C in total, so that O and C When one or both of them combine with Mn to form an oxide or carbide, it is possible to increase the ratio of the shear plane in the cross section when the copper alloy material is press-punched. The larger the ratio of the sheared surface, the smaller the area of the sag and the fractured surface in the cross section. Therefore, the flatness of the cut surface can be improved, and the processing accuracy in press punching can be improved. As a result, it is possible to improve the accuracy of the resistor obtained from the copper alloy.
 また、本発明に従う銅合金材では、Mnを20.0質量%以上35.0質量%以下の範囲で含有し、かつNiを6.5質量%以上17.0質量%以下の範囲で含有するとともに、OおよびCを合計で800質量ppm以下の範囲で含有することにより、銅合金材の脆化を起こり難くすることで、銅合金材の高強度化を図って製造し易くすることができる。 Further, the copper alloy material according to the present invention contains Mn in the range of 20.0% by mass or more and 35.0% by mass or less, and Ni in the range of 6.5% by mass or more and 17.0% by mass or less. At the same time, by containing O and C in a total amount of 800 mass ppm or less, embrittlement of the copper alloy material is made difficult to occur, so that the copper alloy material can be made stronger and easier to manufacture. .
 その結果、本発明に従う銅合金材によることで、優れたプレス打ち抜き加工性を有するとともに、十分に高い体積抵抗率ρを有し、かつ対銅熱起電力(EMF)の絶対値が小さい銅合金材ならびにそれを用いた抵抗器用抵抗材料および抵抗器を提供することができる。 As a result, the copper alloy material according to the present invention has excellent press-punching workability, has a sufficiently high volume resistivity ρ, and has a small absolute value of the copper thermoelectromotive force (EMF). It is possible to provide a material, a resistance material for a resistor using the same, and a resistor.
[1]銅合金材の組成
<必須含有成分>
 本発明の銅合金材の合金組成は、必須含有成分として、Mn:20.0質量%以上35.0質量%以下およびNi:6.5質量%以上17.0質量%以下を含有するものである。
[1] Composition of copper alloy material <essential ingredients>
The alloy composition of the copper alloy material of the present invention contains, as essential components, Mn: 20.0% by mass or more and 35.0% by mass or less and Ni: 6.5% by mass or more and 17.0% by mass or less. be.
(Mn:20.0質量%以上35.0質量%以下)
 Mn(マンガン)は、体積抵抗率ρを高める元素である。この作用を発揮するとともに、均質な銅合金材を得るためには、Mnは、20.0質量%以上含有することが好ましく、22.0質量%以上含有することがより好ましく、24.0質量%以上含有することがさらに好ましい。ここで、Mn含有量を22.0質量%以上または24.0質量%以上に増加させることで、銅合金材の体積抵抗率ρをより一層高めることができる。他方で、Mn含有量が35.0質量%を超えると、銅合金材の融点が低下することで、銅合金材の製造、特に熱間加工の制御が困難になるため、均一な特性を得ることが困難になる。このため、Mn含有量は、20.0質量%以上35.0質量%以下の範囲にする。
(Mn: 20.0% by mass or more and 35.0% by mass or less)
Mn (manganese) is an element that increases the volume resistivity ρ. In order to exhibit this effect and obtain a homogeneous copper alloy material, the Mn content is preferably 20.0% by mass or more, more preferably 22.0% by mass or more, and 24.0% by mass. % or more is more preferable. Here, by increasing the Mn content to 22.0% by mass or more or 24.0% by mass or more, the volume resistivity ρ of the copper alloy material can be further increased. On the other hand, when the Mn content exceeds 35.0% by mass, the melting point of the copper alloy material is lowered, making it difficult to control the production of the copper alloy material, especially the hot working, so that uniform properties can be obtained. becomes difficult. Therefore, the Mn content should be in the range of 20.0% by mass or more and 35.0% by mass or less.
(Ni:6.5質量%以上17.0質量%以下)
 Ni(ニッケル)は、対銅熱起電力(EMF)の正の方向に調整する元素である。この作用を発揮するには、Niは、6.5質量%以上含有することが好ましい。他方で、Ni含有量が17.0質量%を超えると、均一な組織が得られ難くなり、体積抵抗率ρや対銅熱起電力(EMF)などが変化する恐れがある。特に、Ni含有量は、所望の特性を有する銅合金材を得る観点や、製造しやすい銅合金材を得る観点から、6.5質量%以上17.0質量%以下の範囲にし、6.5質量%以上12.0質量%以下の範囲にすることが好ましく、6.5質量%以上9.0質量%以下の範囲にすることがより好ましい。
(Ni: 6.5% by mass or more and 17.0% by mass or less)
Ni (nickel) is an element that adjusts the thermoelectromotive force (EMF) against copper in the positive direction. In order to exhibit this effect, Ni is preferably contained in an amount of 6.5% by mass or more. On the other hand, if the Ni content exceeds 17.0% by mass, it becomes difficult to obtain a uniform structure, and there is a risk that the volume resistivity ρ and the copper thermoelectromotive force (EMF) will change. In particular, the Ni content is in the range of 6.5% by mass or more and 17.0% by mass or less, from the viewpoint of obtaining a copper alloy material having desired properties and from the viewpoint of obtaining a copper alloy material that is easy to manufacture. It is preferably in the range of 12.0% by mass or more and more preferably in the range of 6.5% by mass or more and 9.0% by mass or less.
(OおよびCのうち1種または2種:合計で60質量ppm以上800質量ppm以下)
 O(酸素)およびC(炭素)は、Mnとの間で酸化物や炭化物を形成することで、銅合金材をプレス打ち抜き加工したときの断面における剪断面の割合を高め、それによりプレス打ち抜き加工性を向上させる作用があるため、これらの元素のうち少なくともいずれかは必須である。この作用を発揮するには、OおよびCは、合計で60質量ppm以上含有することが好ましく、100質量ppm以上含有することがより好ましい。他方で、OおよびCのうち1種または2種の合計量が800質量ppmを超えると、銅合金材が脆化することで製造が困難になる。したがって、高強度化を図るとともにプレス打ち抜き加工性を向上させる観点では、OおよびCのうち1種または2種の含有量は、合計で60質量ppm以上800質量ppm以下の範囲とし、好ましくは100質量ppm以上800質量ppm以下の範囲とする。また、OおよびCのうち1種または2種の含有量は、合計で60質量ppm以上600質量ppm以下の範囲、または100質量ppm以上600質量ppm以下の範囲としてもよい。
(One or two of O and C: 60 mass ppm or more and 800 mass ppm or less in total)
O (oxygen) and C (carbon) form oxides and carbides with Mn, thereby increasing the proportion of the sheared surface in the cross section when the copper alloy material is press-punched, thereby improving the press-punching process. At least one of these elements is essential because it has a property-enhancing effect. In order to exhibit this effect, the total content of O and C is preferably 60 ppm by mass or more, more preferably 100 ppm by mass or more. On the other hand, if the total amount of one or two of O and C exceeds 800 ppm by mass, the copper alloy material becomes embrittled and production becomes difficult. Therefore, from the viewpoint of achieving high strength and improving press punching workability, the total content of one or two of O and C is in the range of 60 mass ppm or more and 800 mass ppm or less, preferably 100 The range is from mass ppm to 800 mass ppm. The total content of one or two of O and C may be in the range of 60 mass ppm or more and 600 mass ppm or less, or in the range of 100 mass ppm or more and 600 mass ppm or less.
(OおよびC:それぞれ0質量ppm以上800質量ppm以下)
 ここで、Oの含有量は、銅合金材を脆化させることなく高強度化を図る観点から、0質量ppm以上800質量ppm以下の範囲とする。また、Cの含有量も、同様の観点から、0質量ppm以上800質量ppm以下の範囲とする。Oの含有量およびCの含有量のうち一方または両方は、0質量ppm以上600質量ppm以下の範囲としてもよい。
(O and C: 0 mass ppm or more and 800 mass ppm or less, respectively)
Here, the content of O is set in the range of 0 mass ppm or more and 800 mass ppm or less from the viewpoint of achieving high strength without embrittlement of the copper alloy material. Also, from the same viewpoint, the content of C should be in the range of 0 mass ppm or more and 800 mass ppm or less. One or both of the O content and the C content may be in the range of 0 mass ppm or more and 600 mass ppm or less.
<任意添加成分>
 本発明の銅合金材は、任意添加成分として、Fe:0.01質量%以上0.50質量%以下、Co:0.01質量%以上2.00質量%以下、Sn:0.01質量%以上5.00質量%以下、Zn:0.01質量%以上5.00質量%以下、Cr:0.01質量%以上0.50質量%以下、Ag:0.01質量%以上0.50質量%以下、Al:0.01質量%以上1.00質量%以下、Mg:0.01質量%以上0.50質量%以下、Si:0.01質量%以上0.50質量%以下、およびP:0.01質量%以上0.50質量%以下からなる群から選択される少なくとも1種の成分を、さらに含有することができる。
<Optional Addition Ingredients>
The copper alloy material of the present invention contains, as optional additive components, Fe: 0.01% by mass or more and 0.50% by mass or less, Co: 0.01% by mass or more and 2.00% by mass or less, Sn: 0.01% by mass. 5.00% by mass or less, Zn: 0.01% by mass or more and 5.00% by mass or less, Cr: 0.01% by mass or more and 0.50% by mass or less, Ag: 0.01% by mass or more and 0.50% by mass % or less, Al: 0.01% by mass or more and 1.00% by mass or less, Mg: 0.01% by mass or more and 0.50% by mass or less, Si: 0.01% by mass or more and 0.50% by mass or less, and P : at least one component selected from the group consisting of 0.01% by mass or more and 0.50% by mass or less.
(Fe:0.01質量%以上0.50質量%以下)
 Fe(鉄)は、対銅熱起電力(EMF)を正の方向に調整する元素である。この作用を発揮するには、Feは、0.01質量%以上含有することが好ましい。他方で、Feの含有量が0.50質量%を超えると、均一な組織が得られ難くなることによって、電気的な性能にばらつきが生じやすくなる。したがって、Feの含有量は、0.01質量%以上0.50質量%以下の範囲にすることが好ましい。
(Fe: 0.01% by mass or more and 0.50% by mass or less)
Fe (iron) is an element that adjusts the thermoelectromotive force (EMF) against copper in the positive direction. In order to exhibit this effect, Fe is preferably contained in an amount of 0.01% by mass or more. On the other hand, when the Fe content exceeds 0.50% by mass, it becomes difficult to obtain a uniform structure, which tends to cause variations in electrical performance. Therefore, the Fe content is preferably in the range of 0.01% by mass or more and 0.50% by mass or less.
(Co:0.01質量%以上2.00質量%以下)
 Co(コバルト)は、対銅熱起電力(EMF)を正の方向に調整する元素である。この作用を発揮するには、Coは、0.01質量%以上含有することが好ましい。他方で、Coの含有量が2.00質量%を超えると、均一な組織が得られ難くなることによって、電気的な性能にばらつきが生じやすくなる。したがって、Coの含有量は、0.01質量%以上2.00質量%以下の範囲にすることが好ましい。
(Co: 0.01% by mass or more and 2.00% by mass or less)
Co (cobalt) is an element that positively adjusts the thermoelectromotive force (EMF) against copper. In order to exhibit this effect, Co is preferably contained in an amount of 0.01% by mass or more. On the other hand, if the Co content exceeds 2.00% by mass, it becomes difficult to obtain a uniform structure, which tends to cause variations in electrical performance. Therefore, the Co content is preferably in the range of 0.01% by mass or more and 2.00% by mass or less.
(Sn:0.01質量%以上5.00質量%以下)
 Sn(錫)は、体積抵抗率ρの調整に用いることができる成分である。この作用を発揮するには、Snを0.01質量%以上含有することが好ましい。他方で、Sn含有量は、5.00質量%以下にすることで、銅合金材が脆化することによる製造性の低下を起こり難くすることができる。
(Sn: 0.01% by mass or more and 5.00% by mass or less)
Sn (tin) is a component that can be used to adjust the volume resistivity ρ. In order to exhibit this effect, it is preferable to contain 0.01% by mass or more of Sn. On the other hand, by setting the Sn content to 5.00% by mass or less, it is possible to make it difficult for the copper alloy material to become embrittled and reduce the manufacturability.
(Zn:0.01質量%以上5.00質量%以下)
 Zn(亜鉛)は、体積抵抗率ρの調整に用いることができる成分である。この作用を発揮するには、Znを0.01質量%以上含有することが好ましい。他方で、Zn含有量は、体積抵抗率ρや対銅熱起電力(EMF)などの、抵抗器の電気的な性能の安定性に悪影響を及ぼす恐れがあるため、5.00質量%以下にすることが好ましい。
(Zn: 0.01% by mass or more and 5.00% by mass or less)
Zn (zinc) is a component that can be used to adjust the volume resistivity ρ. In order to exhibit this effect, it is preferable to contain 0.01% by mass or more of Zn. On the other hand, the Zn content may adversely affect the stability of the electrical performance of the resistor, such as the volume resistivity ρ and copper thermoelectric force (EMF), so it should be kept at 5.00% by mass or less. preferably.
(Cr:0.01質量%以上0.50質量%以下)
 Cr(クロム)は、体積抵抗率ρの調整に用いることができる成分である。この作用を発揮するには、Crを0.01質量%以上含有することが好ましい。他方で、Cr含有量は、体積抵抗率ρや対銅熱起電力(EMF)などの、抵抗器の電気的な性能の安定性に悪影響を及ぼす恐れがあるため、0.50質量%以下にすることが好ましい。
(Cr: 0.01% by mass or more and 0.50% by mass or less)
Cr (chromium) is a component that can be used to adjust the volume resistivity ρ. In order to exhibit this effect, it is preferable to contain 0.01% by mass or more of Cr. On the other hand, the Cr content may adversely affect the stability of the electrical performance of the resistor, such as the volume resistivity ρ and copper thermoelectromotive force (EMF), so it is set to 0.50% by mass or less. preferably.
(Ag:0.01質量%以上0.50質量%以下)
 銀(Ag)は、体積抵抗率ρの調整に用いることができる成分である。この作用を発揮するには、Agを0.01質量%以上含有することが好ましい。他方で、Ag含有量は、体積抵抗率ρや対銅熱起電力(EMF)などの、抵抗器の電気的な性能の安定性に悪影響を及ぼす恐れがあるため、0.50質量%以下にすることが好ましい。
(Ag: 0.01% by mass or more and 0.50% by mass or less)
Silver (Ag) is a component that can be used to adjust the volume resistivity ρ. In order to exhibit this effect, it is preferable to contain 0.01% by mass or more of Ag. On the other hand, the Ag content may adversely affect the stability of the electrical performance of the resistor, such as the volume resistivity ρ and copper thermoelectromotive force (EMF), so it is set to 0.50% by mass or less. preferably.
(Al:0.01質量%以上1.00質量%以下)
 Al(アルミニウム)は、体積抵抗率ρの調整に用いることができる成分である。この作用を発揮するには、Alを0.01質量%以上含有することが好ましい。他方で、Al含有量は、銅合金材を脆化させる恐れがあるため、1.00質量%以下にすることが好ましい。
(Al: 0.01% by mass or more and 1.00% by mass or less)
Al (aluminum) is a component that can be used to adjust the volume resistivity ρ. In order to exhibit this effect, it is preferable to contain 0.01% by mass or more of Al. On the other hand, the Al content is preferably 1.00% by mass or less because it may embrittle the copper alloy material.
(Mg:0.01質量%以上0.50質量%以下)
 Mg(マグネシウム)は、体積抵抗率ρの調整に用いることができる成分である。この作用を発揮するには、Mgを0.01質量%以上含有することが好ましい。他方で、Mg含有量は、銅合金材を脆化させる恐れがあるため、0.50質量%以下にすることが好ましい。
(Mg: 0.01% by mass or more and 0.50% by mass or less)
Mg (magnesium) is a component that can be used to adjust the volume resistivity ρ. In order to exhibit this effect, it is preferable to contain 0.01% by mass or more of Mg. On the other hand, the Mg content is preferably 0.50% by mass or less because it may embrittle the copper alloy material.
(Si:0.01質量%以上0.50質量%以下)
 Si(ケイ素)は、体積抵抗率ρの調整に用いることができる成分である。この作用を発揮するには、Siを0.01質量%以上含有することが好ましい。他方で、Si含有量は、銅合金材を脆化させる恐れがあるため、0.50質量%以下にすることが好ましい。
(Si: 0.01% by mass or more and 0.50% by mass or less)
Si (silicon) is a component that can be used to adjust the volume resistivity ρ. In order to exhibit this effect, it is preferable to contain 0.01% by mass or more of Si. On the other hand, the Si content is preferably 0.50% by mass or less because it may embrittle the copper alloy material.
(P:0.01質量%以上0.50質量%以下)
 P(リン)は、体積抵抗率ρの調整に用いることができる成分である。この作用を発揮するには、Pを0.01質量%以上含有することが好ましい。他方で、P含有量は、銅合金材を脆化させる恐れがあるため、0.50質量%以下にすることが好ましい。
(P: 0.01% by mass or more and 0.50% by mass or less)
P (phosphorus) is a component that can be used to adjust the volume resistivity ρ. In order to exhibit this action, it is preferable to contain 0.01% by mass or more of P. On the other hand, since the P content may embrittle the copper alloy material, it is preferable to set it to 0.50% by mass or less.
(任意添加成分の合計量:0.01質量%以上5.00質量%以下)
 Fe、Co、Sn、Zn、Cr、Ag、Al、Mg、SiおよびPからなる群から選択される少なくとも1種の(任意添加)成分は、上述した任意添加成分による効果を得るため、合計で0.01質量%以上含有することが好ましい。他方で、これらの任意添加成分の含有量は、多量に含むと電気的特性が不安定になり、また、銅合金材の製造が困難になるため、合計で5.00質量%以下にすることが好ましい。
(Total amount of optional additive components: 0.01% by mass or more and 5.00% by mass or less)
At least one (optionally added) component selected from the group consisting of Fe, Co, Sn, Zn, Cr, Ag, Al, Mg, Si and P, in order to obtain the effect of the above-described optional added component, It is preferable to contain 0.01% by mass or more. On the other hand, if the content of these optional additive components is too large, the electrical characteristics become unstable and the production of the copper alloy material becomes difficult, so the total content should be 5.00 mass % or less. is preferred.
<残部:Cuおよび不可避不純物>
 上述した必須含有成分および任意添加成分以外は、残部がCu(銅)および不可避不純物からなる。なお、ここでいう「不可避不純物」とは、おおむね銅系製品において、原料中に存在するものや、製造工程において不可避的に混入するもので、本来は不要なものであるが、微量であり、銅系製品の特性に影響を及ぼさないため許容されている不純物である。不可避不純物として挙げられる成分としては、例えば、硫黄(S)などの非金属元素や、アンチモン(Sb)などの金属元素が挙げられる。なお、これらの成分含有量の上限は、上記成分ごとに0.05質量%、上記成分の総量で0.10質量%とすることができる。
<Remainder: Cu and inevitable impurities>
The remainder consists of Cu (copper) and unavoidable impurities other than the essential ingredients and optional additive ingredients described above. Incidentally, the "unavoidable impurities" referred to here generally refer to those present in the raw materials of copper-based products and those that are unavoidably mixed in during the manufacturing process. It is an impurity that is allowed because it does not affect the properties of copper-based products. Components that can be cited as inevitable impurities include, for example, nonmetallic elements such as sulfur (S) and metallic elements such as antimony (Sb). In addition, the upper limit of the content of these components can be 0.05% by mass for each of the above components, and 0.10% by mass for the total amount of the above components.
[2]銅合金材の形状と金属組織
 本発明の銅合金材の形状は、特に限定されるものではないが、後述する熱間または冷間での延伸加工の工程や、プレス打ち抜き加工などの切断加工を行ないやすくする観点では、板材であることが好ましい。ここで、板材のように、圧延によって形成される銅合金材では、圧延方向を延伸方向とすることができる。他方で、本発明の銅合金材は、板材や棒材のほか、リボン材などの条材や、平角線材や丸線材などの線材の形態であってもよく、本発明の銅合金材でこれらの形状を形成することで、端末についての切断加工を行ない易くすることができる。特に、伸線や引抜、押出によって形成されるこれらの形状の銅合金材では、伸線方向、引抜方向および押出方向のいずれかを延伸方向とすることができる。
[2] Shape and metallographic structure of copper alloy material The shape of the copper alloy material of the present invention is not particularly limited, but the process of hot or cold stretching described later, press punching, etc. A plate material is preferable from the viewpoint of facilitating cutting. Here, in the case of a copper alloy material formed by rolling, such as a sheet material, the rolling direction can be the stretching direction. On the other hand, the copper alloy material of the present invention may be in the form of a strip such as a ribbon material, a wire such as a rectangular wire or a round wire, in addition to a plate or bar. By forming the shape of , it is possible to facilitate cutting of the end. In particular, in copper alloy materials having these shapes formed by wire drawing, drawing, or extrusion, any one of the wire drawing direction, the drawing direction, and the extrusion direction can be set as the drawing direction.
 ここで、銅合金材は、加工時の延伸方向(伸線方向、引抜方向、押出方向)に対して直交する断面で見て、10000μmの視野面積内で観察される、酸化物および炭化物の少なくとも一方を含有する析出粒子のうち、最大寸法が20μm超の析出粒子である粗大析出粒子の存在数が3個以下であることが好ましい。これにより、銅合金材においてマンガンの酸化物や炭化物がより均一に分散することになることで、銅合金材をプレス打ち抜き加工したときの断面における剪断面の割合をより高めることができるため、プレス打ち抜き加工性を高め、プレス打ち抜き加工後における銅合金材の寸法精度をより高めることができる。特に、最大寸法が20μm超の析出粒子は、酸化物や炭化物が疎になる領域を粒子の周囲に形成しやすいことで、プレス打ち抜き加工したときの断面を不均一にする傾向があるため、銅合金材に含まれる数は少ないことが好ましい。したがって、プレス打ち抜き加工したときの断面を均一にして、プレス打ち抜き加工における加工精度を高める観点では、10000μmの視野面積内で観察される粗大析出粒子の存在数は、3個以下であることが好ましく、1個以下であることがより好ましく、0個であることが最も好ましい。 Here, the copper alloy material is observed in a cross section orthogonal to the drawing direction (drawing direction, drawing direction, extrusion direction) during processing, and oxides and carbides observed within a viewing area of 10000 μm 2 Among the precipitated particles containing at least one of them, the number of coarse precipitated particles, which are precipitated particles having a maximum dimension of more than 20 μm, is preferably 3 or less. As a result, the oxides and carbides of manganese are dispersed more uniformly in the copper alloy material, and when the copper alloy material is press-punched, the proportion of the sheared surface in the cross section can be increased. It is possible to improve the punching workability and improve the dimensional accuracy of the copper alloy material after press punching. In particular, precipitated particles with a maximum dimension of more than 20 μm tend to form regions where oxides and carbides are sparse around the particles, which tends to make the cross section uneven when press-punched. It is preferable that the number contained in the alloy material is small. Therefore, from the viewpoint of improving the processing accuracy in press punching by making the cross section uniform when press punching, the number of coarse precipitated particles observed in the visual field area of 10000 μm 2 is 3 or less. It is preferably 1 or less, and most preferably 0.
 本明細書における酸化物または炭化物を含有する粗大析出粒子の存在数の測定は、銅合金材の加工時の延伸方向に対して直交する断面が露出するように樹脂に埋め込んで供試材を作製した後、この延伸方向に対して直交する断面を研磨し、露出する結晶を、光学顕微鏡を用いて100μm×100μm四方を一視野として観察することで、顕微鏡像に黒色で表われる、酸化物や炭化物を含有する析出粒子の粒径を測定することにより行なうことができる。 Measurement of the number of coarse precipitated particles containing oxides or carbides in this specification is performed by embedding in resin so that the cross section perpendicular to the stretching direction during processing of the copper alloy material is exposed. After that, the cross section perpendicular to the stretching direction is polished, and the exposed crystal is observed with an optical microscope with a 100 μm × 100 μm square as one field of view. This can be done by measuring the particle size of precipitated particles containing carbide.
[3]銅合金材の製造方法の一例
 上述した銅合金材は、合金組成や製造プロセスを組み合わせて制御することによって実現することができ、その製造プロセスは特に限定されない。その中でも、上述した銅合金材を得ることが可能な、製造プロセスの一例として、以下の方法を挙げることができる。
[3] An example of a method for producing a copper alloy material The copper alloy material described above can be realized by controlling a combination of the alloy composition and the production process, and the production process is not particularly limited. Among them, the following method can be given as an example of a manufacturing process capable of obtaining the copper alloy material described above.
 本発明の銅合金材の製造方法の一例として、上述した銅合金材の合金組成と実質的に同じ合金組成を有する銅系素材に、少なくとも、鋳造工程[工程1]、均質化熱処理工程[工程2]、熱間加工工程[工程3]、第1冷間加工工程[工程4]、第1焼鈍工程[工程5]を順次行なうものである。 As an example of the method for producing a copper alloy material of the present invention, a copper-based material having substantially the same alloy composition as that of the copper alloy material described above is subjected to at least a casting step [step 1], a homogenization heat treatment step [step 2], a hot working step [step 3], a first cold working step [step 4], and a first annealing step [step 5].
(i)鋳造工程[工程1]
 鋳造工程[工程1]は、高周波溶解炉を用いて、非酸化雰囲気である不活性ガス雰囲気中もしくは真空中で、上述の合金組成を有する銅系素材を溶融させ、これを鋳造することによって、所定形状(例えば厚さ30mm、幅50mm、長さ300mm)の鋳塊(インゴット)を作製する。なお、銅系素材の合金組成は、製造の各工程において、添加成分によっては溶解炉に付着したり揮発したりして製造される銅合金材の合金組成とは必ずしも完全には一致しない場合があるが、銅合金材の合金組成と実質的に同じ合金組成を有している。
(i) Casting step [Step 1]
In the casting step [step 1], a high-frequency melting furnace is used to melt a copper-based material having the above-described alloy composition in an inert gas atmosphere, which is a non-oxidizing atmosphere, or in a vacuum. An ingot having a predetermined shape (for example, thickness of 30 mm, width of 50 mm, and length of 300 mm) is produced. In addition, the alloy composition of the copper-based material may not always match completely with the alloy composition of the copper-based material manufactured by adhering or volatilizing in the melting furnace depending on the additive components in each manufacturing process. However, it has substantially the same alloy composition as that of the copper alloy material.
 ここで、鋳造工程[工程1]は、銅、マンガン、ニッケル、黒鉛および酸化銅、または銅、マンガン、ニッケル、黒鉛、酸化銅および上述の任意添加成分のうち少なくとも一種を含有する銅系素材を、溶解して鋳造する。ここで、マンガンは、酸化物や炭化物を形成しやすい特長を有するため、黒鉛を構成する炭素や、酸化銅に含まれる酸素と反応させることで、粗大な析出粒子の少ない、酸化物や炭化物を含有する析出粒子を得ることができる。したがって、上記製造方法を経て得られる銅合金材に、上述の合金組成の範囲で酸化物や炭化物を含ませることができるため、得られる銅合金材の高強度化を図り、プレス打ち抜き加工性を向上させることができる。 Here, in the casting step [Step 1], a copper-based material containing at least one of copper, manganese, nickel, graphite, and copper oxide, or copper, manganese, nickel, graphite, copper oxide, and the optional additive components described above is used. , melting and casting. Here, manganese has the feature of easily forming oxides and carbides, so by reacting with carbon constituting graphite and oxygen contained in copper oxide, oxides and carbides with few coarse precipitated particles are formed. Containing precipitated particles can be obtained. Therefore, the copper alloy material obtained through the above-described manufacturing method can contain oxides and carbides within the range of the alloy composition described above. can be improved.
 この鋳造工程[工程1]では、銅系素材の溶湯を、1100℃以上1250℃以下の範囲の溶解温度で、2時間以内の保持時間で保持した後、毎秒0.5℃以上の平均冷却速度で600℃以下に冷却して鋳塊を得ることが好ましい。これにより、鋳塊中に微細な酸化物や炭化物を高い均一性で分散させることができる。他方で、溶解温度を高くした場合や、溶解温度における保持時間を長くした場合、また、鋳造時の冷却速度が遅い場合には、粗大な酸化物あるいは炭化物が増える恐れがある。したがって、粗大な酸化物や炭化物の析出を減らし、酸化物や炭化物を高い均一性で分散させることで、プレス打ち抜き加工性を向上させる観点では、鋳造工程[工程1]における溶解温度や、溶解温度における保持時間、鋳造時の冷却速度は、上記範囲内であることが好ましい。特に、溶解温度における保持時間は、1時間以内であることがより好ましい。 In this casting step [Step 1], the molten copper-based material is held at a melting temperature in the range of 1100 ° C. or higher and 1250 ° C. or lower for a holding time of 2 hours or less, and then an average cooling rate of 0.5 ° C. or more per second. It is preferable to obtain an ingot by cooling to 600° C. or less. As a result, fine oxides and carbides can be dispersed in the ingot with high uniformity. On the other hand, if the melting temperature is increased, if the retention time at the melting temperature is increased, or if the cooling rate during casting is slow, coarse oxides or carbides may increase. Therefore, from the viewpoint of improving press punchability by reducing the precipitation of coarse oxides and carbides and dispersing the oxides and carbides with high uniformity, the melting temperature in the casting process [step 1] and the melting temperature The holding time in and the cooling rate during casting are preferably within the above ranges. In particular, the retention time at the melting temperature is more preferably within 1 hour.
(ii)均質化熱処理工程[工程2]
 均質化熱処理工程[工程2]は、鋳造工程[工程1]を行なった後の鋳塊に対して、均質化のための熱処理を行なう工程である。ここで、均質化熱処理工程[工程2]における熱処理の条件は、結晶粒の粗大化を抑制する観点から、加熱温度を750℃以上900℃以下の範囲にし、かつ加熱温度での保持時間を10分間以上10時間以下の範囲にすることが好ましい。
(ii) Homogenization heat treatment step [step 2]
The homogenization heat treatment step [step 2] is a step of subjecting the ingot after the casting step [step 1] to a heat treatment for homogenization. Here, the heat treatment conditions in the homogenization heat treatment step [step 2] are such that the heating temperature is in the range of 750 ° C. or higher and 900 ° C. or lower and the holding time at the heating temperature is 10 from the viewpoint of suppressing the coarsening of the crystal grains. It is preferable to set the time in the range of 1 minute to 10 hours.
(iii)熱間加工工程[工程3]
 熱間加工工程[工程3]は、均質化熱処理を行なった鋳塊に対して、所定の厚さや寸法になるまで熱間で圧延や伸線などの延伸加工を施して、熱間加工材を作製する工程である。ここで、熱間加工工程[工程3]には、熱間圧延工程と、熱間延伸(伸線)工程の両方が含まれる。熱間加工工程[工程3]の条件は、加工温度は750℃以上900℃以下の範囲であることが好ましく、均質化熱処理工程[工程2]における加熱温度と同じであってもよい。また、熱間加工工程[工程3]における加工率は、10%以上であることが好ましい。
(iii) hot working step [step 3]
In the hot working process [Step 3], the ingot that has been subjected to the homogenization heat treatment is subjected to stretching such as hot rolling and wire drawing until it reaches a predetermined thickness and size, and the hot worked material is obtained. This is the manufacturing process. Here, the hot working step [step 3] includes both the hot rolling step and the hot drawing (wire drawing) step. As for the conditions of the hot working step [step 3], the working temperature is preferably in the range of 750° C. or higher and 900° C. or lower, and may be the same as the heating temperature in the homogenization heat treatment step [step 2]. Moreover, the working rate in the hot working step [Step 3] is preferably 10% or more.
 ここで、「加工率」は、圧延や伸線などの延伸加工を施す前の断面積から、加工後の断面積を引いた値を、加工前の断面積で除して100を乗じ、パーセントで表した値であり、下記式で表される。
 [加工率]={([加工前の断面積]-[加工後の断面積])/[加工前の断面積]}×100(%)
Here, the "processing rate" is the value obtained by subtracting the cross-sectional area after processing from the cross-sectional area before stretching such as rolling or wire drawing, dividing the value by the cross-sectional area before processing, multiplying by 100, and percent is a value expressed by the following formula.
[Processing rate] = {([cross-sectional area before processing] - [cross-sectional area after processing]) / [cross-sectional area before processing]} x 100 (%)
 熱間加工工程[工程3]後の熱間加工材は、冷却することが好ましい。ここで、熱間加工材に対する冷却の手段は、特に限定されないが、例えば結晶粒の粗大化を起こり難くすることができる観点では、できるだけ冷却速度を大きくする手段であることが好ましく、例えば水冷などの手段により、冷却速度を10℃/秒以上にすることが好ましい。 It is preferable to cool the hot-worked material after the hot working step [Step 3]. Here, the means for cooling the hot-worked material is not particularly limited, but from the viewpoint of making coarsening of crystal grains difficult to occur, it is preferable to use a means for increasing the cooling rate as much as possible, such as water cooling. It is preferable to set the cooling rate to 10° C./second or more by means of .
 ここで、冷却後の熱間加工材に対して、表面を削り取る面削を行なってもよい。面削を行なうことで、熱間加工工程[工程3]で生じた表面の酸化膜や欠陥を除去することができる。面削の条件は、通常行なわれている条件であればよく、特に限定されない。面削により熱間加工材の表面から削り取る量は、熱間加工工程[工程3]の条件に基づいて適宜調整することができ、例えば熱間加工材の表面から0.5~4mm程度とすることができる。 Here, the surface of the hot-worked material after cooling may be chamfered. Chamfering can remove surface oxide films and defects generated in the hot working step [step 3]. The conditions for facing are not particularly limited as long as they are the conditions that are commonly used. The amount to be removed from the surface of the hot-worked material by chamfering can be appropriately adjusted based on the conditions of the hot-working step [Step 3], for example, about 0.5 to 4 mm from the surface of the hot-worked material. be able to.
(v)第1冷間加工工程[工程4]
 第1冷間加工工程[工程4]は、熱間加工工程[工程3]を行なった後の熱間加工材に、製品の厚さや大きさに合わせた任意の加工率で、冷間で圧延や伸線などの延伸加工を施す工程である。ここで、第1冷間加工工程[工程4]には、冷間圧延工程と、冷間延伸(伸線)工程の両方が含まれる。第1冷間加工工程[工程4]における圧延や伸線などの延伸加工の条件は、熱間加工材の大きさに合わせて設定することができる。特に、後述する第1焼鈍工程[工程5]で、再結晶による結晶粒の均一な析出を促す観点では、第1冷間加工工程[工程4]における総加工率を50%以上とすることが好ましい。
(v) First cold working step [Step 4]
In the first cold working step [step 4], the hot worked material after the hot working step [step 3] is cold rolled at an arbitrary working rate according to the thickness and size of the product. It is a process of applying drawing processing such as wire drawing. Here, the first cold working step [Step 4] includes both the cold rolling step and the cold drawing (wire drawing) step. The conditions for stretching such as rolling and wire drawing in the first cold working step [step 4] can be set according to the size of the hot-worked material. In particular, in the first annealing step [step 5] described later, from the viewpoint of promoting uniform precipitation of crystal grains by recrystallization, the total working rate in the first cold working step [step 4] may be 50% or more. preferable.
(vi)第1焼鈍工程[工程5]
 第1焼鈍工程[工程5]は、第1冷間加工工程[工程4]を行なった後の冷延材に対して熱処理を施して再結晶させる焼鈍の工程である。ここで、第1焼鈍工程[工程5]における熱処理の条件は、加熱温度が600℃以上800℃以下の範囲であり、かつ加熱温度での保持時間が1分以上2時間以下の範囲である。他方で、加熱温度が600℃未満の場合や、保持時間が1分未満の場合、銅合金材の再結晶が困難になる。また、加熱温度が800℃を超える場合や、保持時間が2時間を超える場合、結晶粒が粗大化することがあるため、加工性が低下する。
(vi) First annealing step [Step 5]
The first annealing step [step 5] is an annealing step in which the cold-rolled material after the first cold working step [step 4] is heat-treated and recrystallized. Here, the heat treatment conditions in the first annealing step [step 5] are such that the heating temperature is in the range of 600° C. or higher and 800° C. or lower, and the holding time at the heating temperature is in the range of 1 minute or longer and 2 hours or shorter. On the other hand, when the heating temperature is less than 600° C. or when the holding time is less than 1 minute, it becomes difficult to recrystallize the copper alloy material. In addition, when the heating temperature exceeds 800° C. or when the holding time exceeds 2 hours, crystal grains may become coarse, resulting in poor workability.
 ここで、第1焼鈍工程[工程5]を行なった後の冷延材に対して、冷間加工工程および焼鈍工程を1回以上繰り返し行なうことが好ましい。例えば、第1焼鈍工程[工程5]を行なった後の冷延材に対して、2回目の冷間加工工程および焼鈍工程を行なってもよく、このときの冷間加工工程および焼鈍工程を、それぞれ第2冷間加工工程[工程6]および第2焼鈍工程[工程7]とすることができる。このように、冷間加工工程および焼鈍工程を1回以上繰り返し行なうことで、銅合金材が所望の形状を有する板材や棒材、条材、線材になるとともに、粗大な結晶粒が形成され難くなるため、加工性や体積抵抗率、対銅熱起電力において、所望の特性を示す銅合金材を得ることができる。 Here, it is preferable to repeatedly perform the cold working step and the annealing step once or more on the cold-rolled material that has undergone the first annealing step [step 5]. For example, the cold-rolled material after the first annealing step [step 5] may be subjected to a second cold working step and annealing step. A second cold working step [step 6] and a second annealing step [step 7] can be performed, respectively. By repeating the cold working process and the annealing process one or more times in this manner, the copper alloy material becomes a plate material, bar material, strip material, or wire material having a desired shape, and coarse crystal grains are less likely to be formed. Therefore, it is possible to obtain a copper alloy material exhibiting desired characteristics in terms of workability, volume resistivity, and copper thermoelectromotive force.
 このとき、第2冷間加工工程[工程6]における総加工率は、50%以上にすることができる。また、第2焼鈍工程[工程7]における熱処理の条件は、加熱温度が600℃以上800℃以下の範囲であり、かつ加熱温度での保持時間が1分以上2時間以下の範囲である。 At this time, the total working rate in the second cold working process [Step 6] can be 50% or more. The heat treatment conditions in the second annealing step [Step 7] are such that the heating temperature is in the range of 600° C. or more and 800° C. or less, and the holding time at the heating temperature is in the range of 1 minute or more and 2 hours or less.
[4]銅合金材の用途
 本発明の銅合金材は、抵抗器、例えばシャント抵抗器またはチップ抵抗器に用いられる抵抗器用抵抗材料として極めて有用である。すなわち、抵抗器用抵抗材料は、上述の銅合金材からなることが好ましい。また、シャント抵抗器またはチップ抵抗器などの抵抗器は、上述の銅合金材からなる抵抗器用抵抗材料を有することが好ましい。
[4] Uses of copper alloy material The copper alloy material of the present invention is extremely useful as a resistance material for resistors used in resistors such as shunt resistors or chip resistors. That is, it is preferable that the resistive material for a resistor is made of the copper alloy material described above. Also, resistors such as shunt resistors or chip resistors preferably have a resistive material for resistors made of the copper alloy material described above.
 以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の概念および特許請求の範囲に含まれるあらゆる態様を含み、本発明の範囲内で種々に改変することができる。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and includes various aspects within the scope of the present invention, including all aspects included in the concept of the present invention and the scope of claims. can be modified to
 次に、本発明の効果をさらに明確にするために、本発明例および比較例について説明するが、本発明はこれら実施例に限定されるものではない。 Next, in order to further clarify the effects of the present invention, examples of the present invention and comparative examples will be described, but the present invention is not limited to these examples.
 (本発明例1~17および比較例1~6)
 銅系素材として、銅、マンガン、ニッケル、黒鉛、酸化銅および任意添加成分を、表1に示す合金組成の割合に沿って配合し、高周波溶解炉によって非酸化雰囲気で溶解し、これを溶湯から600℃まで冷却して鋳造する鋳造工程[工程1]を行なって鋳塊を得た。ここで、表1に記載されている各成分のうち、横線「-」が記載されている任意添加成分については、銅系素材に原料として添加していない。また、銅系素材を溶解する温度(溶解温度)と、溶解温度における保持時間、保持時間が経過した後の溶湯の冷却速度は、表1に記載のとおりである。
(Invention Examples 1 to 17 and Comparative Examples 1 to 6)
As a copper-based material, copper, manganese, nickel, graphite, copper oxide and optional additive components are blended according to the alloy composition ratio shown in Table 1, melted in a high-frequency melting furnace in a non-oxidizing atmosphere, and melted from the melt. A casting step [Step 1] of cooling to 600° C. and casting was performed to obtain an ingot. Here, among the components listed in Table 1, the optionally added components marked with a horizontal line "-" are not added as raw materials to the copper-based material. Table 1 shows the temperature for melting the copper-based material (melting temperature), the holding time at the melting temperature, and the cooling rate of the molten metal after the holding time.
 この鋳塊に対して、800℃の加熱温度および5時間の保持時間で熱処理を行なう均質化熱処理工程[工程2]を行ない、次いで、800℃の加工温度で、総加工率が67%(加工前の厚みが30mm、加工後の厚みが10mm)となるように、長手方向に沿って圧延する熱間加工工程[工程3]を行なって熱間加工材を得た。その後、水冷により室温まで冷却して、表面に形成された酸化膜を除去する面削を行なった。面削後における熱間加工材の厚さは8mmであった。 This ingot is subjected to a homogenization heat treatment step [Step 2] in which heat treatment is performed at a heating temperature of 800 ° C. and a holding time of 5 hours. A hot-worked material was obtained by performing a hot-working step [Step 3] of rolling along the longitudinal direction so that the thickness before working was 30 mm and the thickness after working was 10 mm. After that, the substrate was cooled to room temperature by water cooling, and was chamfered to remove the oxide film formed on the surface. The thickness of the hot worked material after facing was 8 mm.
 熱間加工工程[工程3]後の熱間加工材に対して、88%の総加工率(加工前の厚みが8mm、加工後の厚みが1mm)で長手方向に沿って圧延する、第1冷間加工工程[工程4]を行なった。次いで、第1冷間加工工程[工程4]を行なった後の冷延材に対して、600℃以上800℃以下の加熱温度での保持時間を1分以上2時間以下の範囲にして熱処理を行なう、第1焼鈍工程[工程5]を行なった。 After the hot working step [Step 3], the hot-worked material is rolled along the longitudinal direction at a total working rate of 88% (thickness before working is 8 mm, thickness after working is 1 mm). A cold working step [step 4] was performed. Next, the cold-rolled material after the first cold working step [step 4] is heat-treated at a heating temperature of 600° C. or higher and 800° C. or lower for a holding time in the range of 1 minute or more and 2 hours or less. The first annealing step [step 5] was performed.
 さらに、第1焼鈍工程[工程5]を行なった後の熱間加工材に対して、70%の総加工率(加工前の厚みが1mm、加工後の厚みが0.3mm)で長手方向に沿って圧延する、第2冷間加工工程[工程6]を行なった。次いで、第2冷間加工工程[工程6]を行なった後の冷延材に対して、600℃以上800℃以下の加熱温度での保持時間を1分以上2時間以下の範囲にして熱処理を行なう、第2焼鈍工程[工程7]を行なった。このようにして、本発明例1~17および比較例1~6の銅合金板材を作製した。 Furthermore, for the hot-worked material after performing the first annealing step [step 5], in the longitudinal direction at a total working rate of 70% (thickness before working is 1 mm, thickness after working is 0.3 mm) A second cold working step [step 6] was carried out, rolling along. Next, the cold-rolled material after the second cold working step [step 6] is heat-treated at a heating temperature of 600° C. or higher and 800° C. or lower for a holding time in the range of 1 minute or more and 2 hours or less. The second annealing step [step 7] was performed. In this manner, copper alloy sheet materials of Inventive Examples 1 to 17 and Comparative Examples 1 to 6 were produced.
 なお、表1では、銅系素材の合金組成に含まれない成分の欄には横線「-」を記載し、該当する成分を含まない、または含有していたとしても検出限界値未満であることを明らかにした。 In Table 1, a horizontal line "-" is written in the column of the component not included in the alloy composition of the copper-based material, and the corresponding component is not included, or even if it is included, it is less than the detection limit value. clarified.
[各種測定および評価方法]
 上記本発明例および比較例に係る銅合金材(銅合金板材)を用いて、下記に示す特性評価を行なった。各特性の評価条件は下記のとおりである。
[Various measurement and evaluation methods]
Using the copper alloy materials (copper alloy sheet materials) according to the examples of the present invention and the comparative examples, the following characteristics were evaluated. Evaluation conditions for each property are as follows.
[1]酸化物または炭化物を含有する粗大析出粒子の存在数の測定
 作製した銅合金材について、銅合金材の加工時の延伸方向に対して直交する断面が露出するように樹脂に埋め込んで供試材を作製した後、この延伸方向に対して直交する断面を研磨した。次いで、研磨後の供試材の断面について、光学顕微鏡(オリンパス社製、型番:GX71)を用いて、100μm×100μm四方を一視野として観察し、顕微鏡像に黒色で表われる、酸化物および炭化物の少なくとも一方を含有する析出粒子のうち、最大寸法が20μm超の析出粒子である粗大析出粒子を計数した。本発明例および比較例では、研磨後の供試材の断面を観察した後、供試材の延伸方向に対して直交する断面をさらに研磨し、延伸方向について異なる位置における供試材の断面を露出させて、同様に断面における粗大析出粒子を計数することを繰り返すことで、5視野における粗大析出粒子数の平均値を求め、得られる平均値を粗大析出粒子の存在数とした。結果を表2に示す。
[1] Measurement of the number of coarse precipitated particles containing oxides or carbides After preparing the sample, the cross section perpendicular to the stretching direction was polished. Next, the cross section of the test material after polishing is observed using an optical microscope (manufactured by Olympus, model number: GX71) with a 100 μm × 100 μm square as one field of view, and the oxides and carbides that appear black in the microscope image. Of the precipitated particles containing at least one of the above, coarse precipitated particles, which are precipitated particles with a maximum dimension of more than 20 µm, were counted. In the present invention example and the comparative example, after observing the cross section of the test material after polishing, the cross section perpendicular to the stretching direction of the test material was further polished, and the cross section of the test material at different positions in the stretching direction was measured. By repeating exposing and counting the coarse precipitated particles in the cross section in the same manner, the average value of the number of coarse precipitated particles in 5 fields of view was obtained, and the obtained average value was taken as the number of coarse precipitated particles. Table 2 shows the results.
[2]プレス打ち抜き加工性の評価方法
 作製した銅合金材のプレス打ち抜き加工性は、日本伸銅協会技術標準JCBA T310:2019に規定される、銅及び銅合金薄板条の剪断試験方法に記載の剪断試験を行なった。すなわち、銅合金材に対して、上型(パンチ)と下型(ダイ)のクリアランスが10μmとなるように調整して、延伸方向yに沿った大きさが2mm、延伸方向yに対して直角に交わる方向(図1のx方向)に沿った大きさが10mmの長方形の形状に打ち抜き加工を施し、外周に切断面2を有する銅合金材1の供試材を作製した。
[2] Evaluation method for press punchability The press punchability of the produced copper alloy material is described in the shear test method for copper and copper alloy thin strips specified in the Japan Copper and Brass Association Technical Standard JCBA T310: 2019. A shear test was performed. That is, for the copper alloy material, the clearance between the upper die (punch) and the lower die (die) is adjusted to 10 μm, and the size along the stretching direction y is 2 mm, and the width is perpendicular to the stretching direction y. A rectangular shape with a size of 10 mm was punched along the direction (x direction in FIG. 1) intersecting with , and a test material of a copper alloy material 1 having a cut surface 2 on the outer periphery was produced.
 図1は、本発明の銅合金材に対してプレス打ち抜き加工を行なったときの切断面を示す模式図である。図1に示す銅合金材1は、図示しない下型(ダイ)上に固定された状態で上型(パンチ)を下降させて行なう、プレス打ち抜き加工を施した後の切断面2を示すものである。ここで、切断面2は、プレス打ち抜き加工された銅合金材1の上面1a側から順に、ダレ3、剪断面4および破断面5が形成される。また、切断面2の下端縁には、破断面5から外側に延出するように、バリ6が形成されることが多い。そのため、銅合金材1の厚さ方向および幅方向を含む断面には、ダレ3、剪断面4、破断面5およびバリ6が含まれる。 FIG. 1 is a schematic diagram showing a cut surface when press punching is performed on the copper alloy material of the present invention. A copper alloy material 1 shown in FIG. 1 shows a cut surface 2 after being subjected to press punching, which is performed by lowering an upper die (punch) while being fixed on a lower die (not shown). be. Here, on the cut surface 2, a droop 3, a sheared surface 4 and a fractured surface 5 are formed in order from the upper surface 1a side of the copper alloy material 1 punched by press. Moreover, burrs 6 are often formed on the lower edge of the cut surface 2 so as to extend outward from the fractured surface 5 . Therefore, the cross section including the thickness direction and the width direction of the copper alloy material 1 includes the sag 3 , the sheared surface 4 , the fractured surface 5 and the burr 6 .
 本実施例では、形成された切断面2のうち、延伸方向yに対して直角に交わる方向に沿った面である、厚さ方向zおよび幅方向xを含む断面について、走査型電子顕微鏡(SEM)((株)島津製作所製、SSX-550)を用いて、200倍の倍率で観察を行なった。そして、切断面2の走査型電子顕微鏡(SEM)写真から、厚さ方向および幅方向を含む断面の断面積に対する、剪断面4の断面積の割合を算出した。 In this embodiment, of the formed cut surface 2, a section including the thickness direction z and the width direction x, which is a surface along the direction perpendicular to the stretching direction y, is scanned with a scanning electron microscope (SEM ) (SSX-550 manufactured by Shimadzu Corporation) was used for observation at a magnification of 200 times. Then, from a scanning electron microscope (SEM) photograph of the cut surface 2, the ratio of the cross-sectional area of the sheared surface 4 to the cross-sectional area of the cross section including the thickness direction and the width direction was calculated.
 算出された厚さ方向および幅方向を含む断面の断面積に対する、剪断面4の断面積の割合について、40%以上であった場合を、プレス打ち抜き加工性が優れているとして「◎」と評価した。また、厚さ方向および幅方向を含む断面の断面積に対する、剪断面4の断面積の割合が35%以上40%未満にあった場合を、プレス打ち抜き加工性が良好であるとして「○」と評価した。一方、この割合が35%未満であった場合を、プレス打ち抜き加工性が不良であるとして「×」と評価した。結果を表2に示す。 If the ratio of the cross-sectional area of the sheared surface 4 to the calculated cross-sectional area including the thickness direction and the width direction is 40% or more, it is evaluated as excellent in press punching workability. did. In addition, when the ratio of the cross-sectional area of the shear surface 4 to the cross-sectional area including the thickness direction and the width direction is 35% or more and less than 40%, it is considered that the press punchability is good. evaluated. On the other hand, when this ratio was less than 35%, it was evaluated as "x" because the press punchability was poor. Table 2 shows the results.
[3]体積抵抗率の測定
 作製した銅合金材について、得られた厚さ0.3mmの板材を幅10mm、長さ300mmに切断し、供試材を作製した。
[3] Measurement of Volume Resistivity Regarding the produced copper alloy material, the obtained plate material with a thickness of 0.3 mm was cut into a width of 10 mm and a length of 300 mm to produce a test material.
 体積抵抗率ρの測定は、電圧端子間距離を200mm、測定電流を100mAとして、室温20℃で、JIS C2525に規定された方法に準じた四端子法によって電圧を測定し、得られた値から体積抵抗率ρ[μΩ・cm]を求めた。 The volume resistivity ρ is measured by setting the distance between the voltage terminals to 200 mm, the measurement current to 100 mA, and measuring the voltage at room temperature of 20°C by the four-terminal method according to the method specified in JIS C2525. A volume resistivity ρ [μΩ·cm] was obtained.
 測定された体積抵抗率ρについて、80μΩ・cm以上であった場合を体積抵抗率ρが十分に大きく、抵抗材料として優れているとして「◎」と評価した。また、体積抵抗率ρが70μΩ・cm以上80μΩ・cm未満であった場合を、体積抵抗率ρが大きく、抵抗材料として良好であるとして「○」と評価した。他方で、体積抵抗率ρが70μΩ・cm未満であった場合を、体積抵抗率ρが小さく抵抗材料としては不良であるとして「×」と評価した。本実施例では、「◎」と「○」を合格レベルとして評価した。結果を表2に示す。 Regarding the measured volume resistivity ρ, when the volume resistivity ρ was 80 μΩ·cm or more, the volume resistivity ρ was sufficiently large, and it was evaluated as "◎" as being excellent as a resistive material. In addition, when the volume resistivity ρ was 70 μΩ·cm or more and less than 80 μΩ·cm, the volume resistivity ρ was large and was evaluated as “good” as a good resistance material. On the other hand, when the volume resistivity ρ was less than 70 μΩ·cm, the volume resistivity ρ was small, and it was evaluated as “×” as a poor resistance material. In this example, "⊚" and "◯" were evaluated as pass levels. Table 2 shows the results.
[4]対銅熱起電力(EMF)の測定方法
 作製した銅合金材について、得られた厚さ0.3mmの板材を幅10mm、長さ1000mmに切断し、供試材を作製した。
[4] Measurement method of copper thermoelectromotive force (EMF) For the produced copper alloy material, the obtained plate material with a thickness of 0.3 mm was cut into a width of 10 mm and a length of 1000 mm to produce a test material.
 供試材の対銅熱起電力(EMF)の測定は、JIS C2527に沿って行なった。より具体的に、供試材11の対銅熱起電力(EMF)を測定するための装置10は、図2に示すように、十分に焼鈍された直径1mm以下の純銅線を標準銅線21として用い、供試材11および標準銅線21の一方の端部を接続させた測温接点Pを、80℃の恒温槽41で保温している温水に浸漬させるとともに、供試材11および標準銅線21の他方の端部をそれぞれ銅線31、32に接続させた基準接点P21、P22を、氷点装置42で保冷している0℃の氷水に浸漬させたときの起電力を、電圧測定器43で測定した。得られた起電力について、温度差である80[℃]で割ることで、対銅熱起電力EMF(μV/℃)を求めた。 The measurement of the copper thermoelectromotive force (EMF) of the test material was performed according to JIS C2527. More specifically, as shown in FIG. The temperature measuring junction P1 , to which one end of the test material 11 and standard copper wire 21 is connected, is immersed in hot water kept warm in a constant temperature bath 41 at 80 ° C., and the test material 11 and The electromotive force when the reference contacts P21 and P22 , in which the other ends of the standard copper wire 21 are connected to the copper wires 31 and 32, respectively, are immersed in 0°C ice water insulated by the freezing point device 42 is , was measured by the voltage measuring device 43 . By dividing the obtained electromotive force by 80 [° C.], which is the temperature difference, the thermoelectromotive force EMF (μV/° C.) against copper was obtained.
 測定された対銅熱起電力(EMF)について、絶対値が0.6μV/℃以下であった場合を、対銅熱起電力(EMF)の絶対値が小さく、抵抗材料として良好であるとして「〇」と評価した。他方で、対銅熱起電力(EMF)の絶対値が0.6μV/℃より大きい場合を、対銅熱起電力(EMF)の絶対値が大きく、抵抗材料として不良であるとして「×」と評価した。結果を表2に示す。 Regarding the measured thermoelectromotive force against copper (EMF), when the absolute value is 0.6 μV / ° C. or less, the absolute value of the thermoelectromotive force against copper (EMF) is small and it is considered to be good as a resistive material. 0” was evaluated. On the other hand, when the absolute value of the thermoelectromotive force (EMF) to copper is greater than 0.6 μV/° C., the absolute value of the thermoelectromotive force (EMF) to copper is large, and it is regarded as being unsatisfactory as a resistive material, and is marked as “x”. evaluated. Table 2 shows the results.
[5]総合評価
 プレス打ち抜き加工性、体積抵抗率ρおよび対銅熱起電力(EMF)に関する3つの評価結果のうち、プレス打ち抜き加工性および体積抵抗率ρの評価結果の両方を「◎」と評価し、かつ対銅熱起電力(EMF)を「○」と評価した場合を、プレス打ち抜き加工性、体積抵抗率ρおよび対銅熱起電力(EMF)の3つの特性が優れているとして「◎」と評価した。また、これらの3つの評価結果のうち、プレス打ち抜き加工性および体積抵抗率ρの評価結果の一方または両方と、対銅熱起電力(EMF)を「○」と評価し、残りを「◎」と評価した場合を、これらの3つの特性が少なくとも良好であるとして「○」と評価した。他方で、プレス打ち抜き加工性、体積抵抗率ρおよび対銅熱起電力(EMF)のうち少なくともいずれかで評価結果が「×」になった場合を、これらの3つの特性のうち少なくともいずれかが不合格であるとして「×」と評価した。結果を表2に示す。
[5] Comprehensive evaluation Of the three evaluation results regarding press punchability, volume resistivity ρ, and copper thermoelectromotive force (EMF), both the evaluation results of press punchability and volume resistivity ρ were given “◎”. When evaluated and the copper thermoelectromotive force (EMF) is evaluated as “○”, the three characteristics of press punchability, volume resistivity ρ and copper thermoelectromotive force (EMF) are considered to be excellent. ◎”. In addition, among these three evaluation results, one or both of the evaluation results of press punchability and volume resistivity ρ, and the copper thermoelectromotive force (EMF) are evaluated as "○", and the rest are evaluated as "◎". When evaluated as "A", these three characteristics were evaluated as "good" at least. On the other hand, when at least one of press punching workability, volume resistivity ρ, and copper thermoelectromotive force (EMF) is evaluated as “×”, at least one of these three characteristics is evaluated. It was evaluated as "×" as being unacceptable. Table 2 shows the results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1および表2の結果から、本発明例1~17の銅合金材は、合金組成が本発明の適正範囲内であるとともに、延伸方向に対して直交する断面で見たときの、酸化物および炭化物の少なくとも一方を含有する粗大析出粒子の存在数が、いずれも3個以下であったため、体積抵抗率ρおよびプレス打ち抜き加工性の評価において「◎」または「〇」と評価されるものであった。また、本発明例1~17の銅合金材は、対銅熱起電力(EMF)について、いずれも「〇」と評価されるものであった。 From the results in Tables 1 and 2, the copper alloy materials of Examples 1 to 17 of the present invention have an alloy composition within the appropriate range of the present invention, and when viewed in a cross section perpendicular to the stretching direction, oxide and the number of coarse precipitated particles containing at least one of carbide and carbide was 3 or less in each case. there were. In addition, the copper alloy materials of Examples 1 to 17 of the present invention were all evaluated as "good" with respect to copper thermoelectromotive force (EMF).
 他方で、比較例1の銅合金材は、OおよびCの合計量が少なく、合金組成が本発明の適正範囲外であった。そのため、比較例1の銅合金材は、プレス打ち抜き加工性において「×」と評価されていた。 On the other hand, the copper alloy material of Comparative Example 1 had a small total amount of O and C, and the alloy composition was outside the proper range of the present invention. Therefore, the copper alloy material of Comparative Example 1 was evaluated as "poor" in press punching workability.
 また、比較例2の銅合金材は、OおよびCの合計量が多く、本発明の適正範囲外であった。そのため、比較例2の銅合金材は、熱間加工工程[工程3]における圧延時に割れが発生するものであった。 Also, the copper alloy material of Comparative Example 2 had a large total amount of O and C, which was outside the appropriate range of the present invention. Therefore, the copper alloy material of Comparative Example 2 was cracked during rolling in the hot working process [process 3].
 また、比較例3の銅合金材は、Mnの含有量が少なく、合金組成が本発明の適正範囲外であった。そのため、比較例3の銅合金材は、体積抵抗率ρにおいて「×」と評価されていた。 In addition, the copper alloy material of Comparative Example 3 had a low Mn content, and the alloy composition was outside the appropriate range of the present invention. Therefore, the copper alloy material of Comparative Example 3 was evaluated as "x" in volume resistivity ρ.
 また、比較例4の銅合金材は、Mnの含有量が多く、合金組成が本発明の適正範囲外であった。そのため、比較例4の銅合金材は、対銅熱起電力(EMF)において「×」と評価されていた。 In addition, the copper alloy material of Comparative Example 4 had a large Mn content, and the alloy composition was outside the appropriate range of the present invention. Therefore, the copper alloy material of Comparative Example 4 was evaluated as "x" in terms of copper thermoelectromotive force (EMF).
 また、比較例5の銅合金材は、Niの含有量が多く、合金組成が本発明の適正範囲外であった。そのため、比較例5の銅合金材は、対銅熱起電力(EMF)において「×」と評価されていた。 In addition, the copper alloy material of Comparative Example 5 had a large Ni content, and the alloy composition was outside the appropriate range of the present invention. Therefore, the copper alloy material of Comparative Example 5 was evaluated as "x" in terms of copper thermoelectromotive force (EMF).
 また、比較例6の銅合金材は、Niの含有量が少なく、合金組成が本発明の適正範囲外であった。そのため、比較例6の銅合金材は、対銅熱起電力(EMF)において「×」と評価されていた。 In addition, the copper alloy material of Comparative Example 6 had a low Ni content, and the alloy composition was outside the appropriate range of the present invention. Therefore, the copper alloy material of Comparative Example 6 was evaluated as "x" in terms of copper thermoelectromotive force (EMF).
 この結果から、本発明例の銅合金材は、合金組成が本発明の適正範囲内であるときに、体積抵抗率ρおよび対銅熱起電力(EMF)が少なくとも良好であることが確認された。それとともに、本発明例の銅合金材は、プレス打ち抜き加工性も、少なくとも良好であることが確認された。 From this result, it was confirmed that the copper alloy material of the present invention example has at least good volume resistivity ρ and copper thermoelectromotive force (EMF) when the alloy composition is within the proper range of the present invention. . At the same time, it was confirmed that the copper alloy material of the example of the present invention has at least good press-punching workability.
 また、図3に、本発明例9の銅合金材の加工時の延伸方向に対して直交する断面について、10000μmの視野面積内で観察したときの光学顕微鏡写真の一例を示す。この光学顕微鏡写真では、酸化物および炭化物の少なくとも一方を含有する析出粒子が黒い点として表われる。図3の光学顕微鏡写真からは、酸化物および炭化物の少なくとも一方を含有する析出粒子として、最大寸法が20μm超の析出粒子である粗大析出粒子が、視野内に析出していないことが確認された。 FIG. 3 shows an example of an optical microscope photograph of a cross section perpendicular to the stretching direction during working of the copper alloy material of Inventive Example 9, observed within a viewing area of 10000 μm 2 . In this optical micrograph, precipitated particles containing oxides and/or carbides appear as black dots. From the optical micrograph of FIG. 3, it was confirmed that coarse precipitated particles, which are precipitated particles having a maximum dimension of more than 20 μm, were not precipitated within the field of view as precipitated particles containing at least one of oxides and carbides. .
 また、図4および図5に、本発明例および比較例の銅合金材についてプレス打ち抜き加工を行なったときの切断面について、厚さ方向および幅方向を含む断面で見たときの走査型電子顕微鏡(SEM)写真を示す。ここで、図4は、本発明例11の銅合金材についてプレス打ち抜き加工を行なったときの切断面についてのSEM写真であり、図5は、比較例1の銅合金材についてプレス打ち抜き加工を行なったときの切断面についてのSEM写真である。なお、図4および図5では、剪断面4、400と破断面5、500の境界を破線で示している。これらのSEM写真から、本発明例の銅合金材1は、厚さ方向および幅方向を含む断面の断面積に対する剪断面4の断面積の割合が、比較例の銅合金材100における剪断面400の断面積の割合と比べて大きいことが確認された。 4 and 5 show the cross sections including the thickness direction and the width direction of the cut surfaces of the copper alloy materials of the present invention example and the comparative example when the press punching process is performed using a scanning electron microscope. (SEM) Photographs are shown. Here, FIG. 4 is a SEM photograph of a cut surface when the copper alloy material of Example 11 of the present invention was punched by press, and FIG. 5 is a photograph of the cut surface when the copper alloy material of Comparative Example 1 was punched by press. It is an SEM photograph of a cut surface when the film is cut. 4 and 5, the boundary between the sheared surface 4, 400 and the fractured surface 5, 500 is indicated by a dashed line. From these SEM photographs, the ratio of the cross-sectional area of the shear plane 4 to the cross-sectional area of the cross section including the thickness direction and the width direction of the copper alloy material 1 of the example of the present invention is 400 It was confirmed that it is larger than the ratio of the cross-sectional area of
 1  銅合金材
 1a  銅合金材の上面
 1b  銅合金材の下面
 2、200  切断面
 3、300  ダレ
 4、400  剪断面
 5、500  破断面
 6、600  バリ
 7  境界線
 10 対銅熱起電力(EMF)測定装置
 11  供試材
 21  標準銅線
 31、32  銅線
 41  恒温槽
 42  氷点装置
 43  電圧測定器
 100  比較例の銅合金材
 100a  比較例の銅合金材の上面
 100b  比較例の銅合金材の下面
 P  測温接点
 P21、P22  基準接点
 x  幅方向
 y  延伸方向
 z  厚さ方向
1 Copper alloy material 1a Upper surface of copper alloy material 1b Lower surface of copper alloy material 2, 200 Cut surface 3, 300 Sagging 4, 400 Shear surface 5, 500 Fracture surface 6, 600 Burr 7 Boundary line 10 Copper thermoelectromotive force (EMF ) Measuring device 11 Sample material 21 Standard copper wire 31, 32 Copper wire 41 Thermostatic bath 42 Freezing point device 43 Voltage measuring device 100 Copper alloy material of comparative example 100a Upper surface of copper alloy material of comparative example 100b Copper alloy material of comparative example Lower surface P1 temperature measuring junction P21 , P22 reference junction x width direction y stretching direction z thickness direction

Claims (5)

  1.  Mn:20.0質量%以上35.0質量%以下およびNi:6.5質量%以上17.0質量%以下を含有するとともに、
     O:0質量ppm以上800質量ppm以下およびC:0質量ppm以上800質量ppm以下でかつOおよびCの合計で60質量ppm以上800質量ppm以下を含有し、残部がCuおよび不可避不純物からなる合金組成を有する、銅合金材。
    Mn: 20.0% by mass or more and 35.0% by mass or less and Ni: 6.5% by mass or more and 17.0% by mass or less,
    O: 0 mass ppm or more and 800 mass ppm or less and C: 0 mass ppm or more and 800 mass ppm or less and an alloy containing 60 mass ppm or more and 800 mass ppm or less in total of O and C, and the balance being Cu and inevitable impurities A copper alloy material having a composition.
  2.  前記銅合金材の加工時の延伸方向に対して直交する断面で見て、10000μmの視野面積内で観察される、酸化物および炭化物の少なくとも一方を含有する析出粒子のうち、最大寸法が20μm超の析出粒子である粗大析出粒子の存在数が3個以下である、請求項1に記載の銅合金材。 Among the precipitated particles containing at least one of oxides and carbides observed in a viewing area of 10000 μm 2 when viewed in a cross section perpendicular to the stretching direction during processing of the copper alloy material, the maximum dimension is 20 μm. 2. The copper alloy material according to claim 1, wherein the number of coarse precipitated particles, which are super precipitated particles, is 3 or less.
  3.  前記合金組成は、
     Fe:0.01質量%以上0.50質量%以下、
     Co:0.01質量%以上2.00質量%以下、
     Sn:0.01質量%以上5.00質量%以下、
     Zn:0.01質量%以上5.00質量%以下、
     Cr:0.01質量%以上0.50質量%以下、
     Ag:0.01質量%以上0.50質量%以下、
     Al:0.01質量%以上1.00質量%以下、
     Mg:0.01質量%以上0.50質量%以下、
     Si:0.01質量%以上0.50質量%以下、および
     P:0.01質量%以上0.50質量%以下からなる群から選択される少なくとも1種の成分をさらに含有する、請求項1に記載の銅合金材。
    The alloy composition is
    Fe: 0.01% by mass or more and 0.50% by mass or less,
    Co: 0.01% by mass or more and 2.00% by mass or less,
    Sn: 0.01% by mass or more and 5.00% by mass or less,
    Zn: 0.01% by mass or more and 5.00% by mass or less,
    Cr: 0.01% by mass or more and 0.50% by mass or less,
    Ag: 0.01% by mass or more and 0.50% by mass or less,
    Al: 0.01% by mass or more and 1.00% by mass or less,
    Mg: 0.01% by mass or more and 0.50% by mass or less,
    Si: 0.01% by mass or more and 0.50% by mass or less, and P: 0.01% by mass or more and 0.50% by mass or less. The copper alloy material according to .
  4.  請求項1から3のいずれか1項に記載の銅合金材からなる、抵抗器用抵抗材料。 A resistance material for a resistor, comprising the copper alloy material according to any one of claims 1 to 3.
  5.  請求項4に記載の抵抗器用抵抗材料を有する、抵抗器。 A resistor comprising the resistance material for a resistor according to claim 4.
PCT/JP2023/004822 2022-02-18 2023-02-13 Copper alloy material, and resistor resistance material and resistor using copper alloy material WO2023157806A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023538018A JP7354481B1 (en) 2022-02-18 2023-02-13 Copper alloy materials, resistor materials and resistors using copper alloy materials

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022024046 2022-02-18
JP2022-024046 2022-02-18

Publications (1)

Publication Number Publication Date
WO2023157806A1 true WO2023157806A1 (en) 2023-08-24

Family

ID=87578186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004822 WO2023157806A1 (en) 2022-02-18 2023-02-13 Copper alloy material, and resistor resistance material and resistor using copper alloy material

Country Status (3)

Country Link
JP (1) JP7354481B1 (en)
TW (1) TW202342774A (en)
WO (1) WO2023157806A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256775A (en) * 1999-03-03 2000-09-19 Toyota Motor Corp Cu-Ni-Mn SINTERING FRICTIONAL MATERIAL
JP2012089686A (en) * 2010-10-20 2012-05-10 Hitachi Cable Ltd Three-dimentional wiring body and method for manufacturing three-dimentional wiring body
JP2017053015A (en) * 2015-09-11 2017-03-16 日立金属株式会社 Resistive material
WO2021062485A1 (en) * 2019-10-03 2021-04-08 Advanced Alloy Holdings Pty Ltd Copper alloys
WO2021200326A1 (en) * 2020-04-01 2021-10-07 Koa株式会社 Alloy for resistor, and usage of resistor alloy in resistor
WO2023276905A1 (en) * 2021-06-28 2023-01-05 古河電気工業株式会社 Copper alloy material, resistive material for resistors using same, and resistor
WO2023276904A1 (en) * 2021-06-28 2023-01-05 古河電気工業株式会社 Copper alloy material, and resistive material for resistor and resistor using same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256775A (en) * 1999-03-03 2000-09-19 Toyota Motor Corp Cu-Ni-Mn SINTERING FRICTIONAL MATERIAL
JP2012089686A (en) * 2010-10-20 2012-05-10 Hitachi Cable Ltd Three-dimentional wiring body and method for manufacturing three-dimentional wiring body
JP2017053015A (en) * 2015-09-11 2017-03-16 日立金属株式会社 Resistive material
WO2021062485A1 (en) * 2019-10-03 2021-04-08 Advanced Alloy Holdings Pty Ltd Copper alloys
WO2021200326A1 (en) * 2020-04-01 2021-10-07 Koa株式会社 Alloy for resistor, and usage of resistor alloy in resistor
WO2023276905A1 (en) * 2021-06-28 2023-01-05 古河電気工業株式会社 Copper alloy material, resistive material for resistors using same, and resistor
WO2023276904A1 (en) * 2021-06-28 2023-01-05 古河電気工業株式会社 Copper alloy material, and resistive material for resistor and resistor using same

Also Published As

Publication number Publication date
JP7354481B1 (en) 2023-10-02
TW202342774A (en) 2023-11-01
JPWO2023157806A1 (en) 2023-08-24

Similar Documents

Publication Publication Date Title
KR101159562B1 (en) Cu-ni-si-co-based copper alloy for electronic material, and method for production thereof
JP6762438B2 (en) Resistor materials for resistors, their manufacturing methods, and resistors
TWI695075B (en) Copper alloy material and its manufacturing method
JP6226098B2 (en) Copper alloy for electronic and electrical equipment, copper alloy sheet material for electronic and electrical equipment, electronic and electrical equipment parts, terminals, bus bars, and movable pieces for relays
JP6696769B2 (en) Copper alloy plate and connector
JP5153949B1 (en) Cu-Zn-Sn-Ni-P alloy
JP6680041B2 (en) Copper alloys for electronic / electrical devices, plastic alloys for electronic / electrical devices, parts for electronic / electrical devices, terminals, and bus bars
JP6680042B2 (en) Copper alloys for electronic / electrical devices, plastic alloys for electronic / electrical devices, parts for electronic / electrical devices, terminals, and bus bars
CN108602097B (en) Copper alloy material for automobile and electric and electronic components and production method thereof
TWI429764B (en) Cu-Co-Si alloy for electronic materials
EP2623619A1 (en) Cu-Co-Si-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL AND METHOD FOR PRODUCING SAME
EP2221391A1 (en) Copper alloy sheet material
JP2011208232A (en) Cu-Co-Si ALLOY MATERIAL
WO2023276905A1 (en) Copper alloy material, resistive material for resistors using same, and resistor
WO2023276904A1 (en) Copper alloy material, and resistive material for resistor and resistor using same
JP6799933B2 (en) Manufacturing method of copper alloy plate and connector and copper alloy plate
WO2023157806A1 (en) Copper alloy material, and resistor resistance material and resistor using copper alloy material
JP4251672B2 (en) Copper alloy for electrical and electronic parts
JP7167385B1 (en) Copper alloy material, resistance material for resistor using the same, and resistor
WO2023276906A1 (en) Copper alloy material, resistive material for resistor using same, and resistor
JP7351171B2 (en) Copper alloys for electronic and electrical equipment, copper alloy sheets and strips for electronic and electrical equipment, parts for electronic and electrical equipment, terminals, and bus bars
TWI835180B (en) Copper alloy materials and resistance materials for resistors using the copper alloy materials and resistors
JP2011046970A (en) Copper alloy material and method for producing the same
JP6762453B1 (en) Copper alloy plate material and its manufacturing method
WO2023140314A1 (en) Copper alloy sheet material and method for manufacturing same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023538018

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23756331

Country of ref document: EP

Kind code of ref document: A1