WO2023157487A1 - Clock control circuit, and imaging element - Google Patents
Clock control circuit, and imaging element Download PDFInfo
- Publication number
- WO2023157487A1 WO2023157487A1 PCT/JP2022/048122 JP2022048122W WO2023157487A1 WO 2023157487 A1 WO2023157487 A1 WO 2023157487A1 JP 2022048122 W JP2022048122 W JP 2022048122W WO 2023157487 A1 WO2023157487 A1 WO 2023157487A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- period
- circuit
- ssc
- horizontal scanning
- clock
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
Definitions
- the present disclosure relates to clock control circuits and imaging devices.
- Patent Documents 1 and 2 do not sufficiently suppress image noise, and power consumption increases.
- a clock control circuit includes a spread spectrum circuit that spreads the spectrum of a clock signal used in at least one predetermined circuit in an image pickup device having a plurality of pixels; a control circuit for recognizing the horizontal scanning period and for outputting a setting signal for controlling the spreading period of the spectrum spread by the spectrum spreading circuit so that it becomes a desired period for the horizontal scanning period.
- An imaging device includes a plurality of pixels, at least one predetermined circuit, a spectrum spread circuit that spreads the spectrum of a clock signal used in the at least one predetermined circuit, and a plurality of and a control circuit for recognizing the horizontal scanning period for the pixels and for outputting a setting signal for controlling the spreading period of the spectrum spread by the spectrum spreading circuit so that it becomes a desired period for the horizontal scanning period.
- a clock control circuit or an imaging device recognizes a horizontal scanning period for a plurality of pixels, and sets the spread period of spectrum spread by the spectrum spread circuit to a desired period with respect to the horizontal scanning period. Control the diffusion period so that
- FIG. 1 is an explanatory diagram showing an example of the relationship between EMI standards and interference waves.
- FIG. 2 is an explanatory diagram showing an example of the clock frequency of the SSC.
- FIG. 3 is an explanatory diagram showing an example of interference waves when SSC is applied.
- FIG. 4 is an explanatory diagram schematically showing an example of a pixel output result when SSC is applied to an image sensor.
- FIG. 5 is an explanatory diagram schematically showing an example of the relationship between the 1H period and the SSC spreading period.
- FIG. 6 is an explanatory diagram showing a specification example of some operation parameters and operation ranges of the image sensor.
- FIG. 7 is a block diagram showing an overview of an imaging device according to an embodiment of the present disclosure; FIG.
- FIG. 8 is a block diagram schematically showing a configuration example of a main part of an imaging device according to one embodiment.
- FIG. 9 is a block diagram schematically showing a configuration example of the 1H identification processing circuit and an overview of the operation of the 1H identification processing circuit.
- FIG. 10 is an explanatory diagram showing an example of the relationship between the input setting signal and the output signal of the 1H identification processing circuit.
- FIG. 11 is an explanatory diagram schematically showing a modification of the relationship between the 1H period and the SSC spreading period.
- FIG. 12 schematically shows an example of the relationship between the 1H period and the SSC diffusion period when the 1H period is varied in the same image sensor.
- FIG. 13 is an explanatory diagram showing an example of performance evaluation in an actual machine of the technology according to one embodiment.
- FIG. 14 is an explanatory diagram schematically showing an example of the relationship between the 1V period and 1H period and the SSC spreading period.
- FIG. 15 is an explanatory diagram schematically showing an example of the SSC
- FIG. 1 shows an example of the relationship between an EMI standard as an interference wave standard and an interference wave from an EUT (Equipment Under Test).
- the horizontal axis indicates frequency
- the vertical axis indicates the level of interfering waves.
- SSC Spread Spectrum Clocking
- FIG. 2 shows an example of the CLK (clock) frequency of the SSC.
- FIG. 2A shows an example of the waveform of the clock signal after spectrum spreading by SSC.
- FIG. 2B shows an example of SSC frequency fluctuation (frequency trend).
- the horizontal axis indicates time.
- the vertical axis indicates frequency.
- fc indicates the center frequency of the SSC.
- the clock frequency dynamically fluctuates according to the spreading frequency (the reciprocal of the SSC spreading period).
- ⁇ indicates a spreading factor, and in the example of FIG. 2B, a frequency variation of ⁇ % is produced with respect to the center frequency fc.
- Fig. 3 shows an example of interference waves when SSC is applied.
- the horizontal axis indicates frequency
- the vertical axis indicates the level of interfering waves.
- the frequency band of the interfering wave spreads according to the spreading factor as shown in Fig. 3, but the peak level of the interfering wave is reduced.
- FIG. 4 schematically shows an example of pixel output results when SSC is applied to the image sensor.
- Patent Document 1 International Publication No. 2013/47404
- the SSC clock is counted, the count value is used for the 1H period, and the 1H period is changed for each row.
- Patent Document 2 Japanese Patent Application Laid-Open No. 2001-268355 proposes a technique of resetting the SSC at each timing of horizontal scanning. As a result, each horizontal scan is operated with a spread clock having the same phase (frequency).
- a transfer gate clock signal that determines the charge storage time of the photoelectric conversion element is used for resetting.
- FIG. 5 schematically shows an example of the relationship between the horizontal scanning period (1H period) and the SSC diffusion period.
- FIG. 5A shows an example of the waveform of the horizontal scanning control signal (horizontal synchronization signal).
- FIG. 5B shows an example of the waveform of the clock signal after spectrum spreading by SSC.
- FIG. 5C shows an example of SSC frequency fluctuation (frequency trend).
- the horizontal axis indicates time.
- the vertical axis indicates frequency.
- FIG. 5 shows an example in which the 1H period and the SSC spreading period are the same. From this, it can be seen that the 1H period and the SSC diffusion period are the same for each row when horizontal scanning is performed. The same effect can be obtained when the 1H period is an integral multiple of the SSC spreading period.
- Fig. 6 shows a specification example of some operating parameters and operating ranges of the imaging device in a table format.
- the 1H period and the SSC spreading period are made the same for each row as shown in FIG. 5, it is conceivable to fix the 1H period.
- the 1H period is fixed, it can be designed so that the 1H period and the SSC spreading period are the same for each row in advance, so that it is easy to do so.
- the input clock signal to the image pickup device, the angle of view characteristics of the image pickup device itself, the frame rate, and the like can be varied according to the specifications.
- AAA, BBB, GGG, HHH, XXX, and YYY mean numerical values including decimal places. In this way, the imaging device may have variable operating parameters.
- the user using the imaging device can arbitrarily set the operating parameters within the operating range. Therefore, depending on these parameters, the above-mentioned 1H period easily fluctuates. If the 1H period fluctuates, it will deviate from the SSC diffusion period or an integer multiple of the SSC diffusion period, resulting in occurrence of horizontal streak noise in pixels.
- FIG. 7 shows an outline of an imaging device 1 according to an embodiment of the present disclosure.
- the imaging element 1 is, for example, a CCD (Charge Coupled Device) image sensor or a CMOS (Complementary Metal Oxide Semiconductor) image sensor.
- the imaging device 1 according to one embodiment can be applied to general equipment using an image sensor, such as mobile terminal equipment and camera equipment.
- the imaging device 1 includes a pixel array 10, a pixel driving section 11, a pixel reading section 12, a pixel signal processing section 13, and a control section .
- the imaging device 1 is composed of, for example, an IC chip.
- the pixel array 10 has a plurality of pixels P arranged in a matrix.
- the pixel drive unit 11 sequentially drives the plurality of pixels P in the pixel array 11 row by row based on instructions from the control unit 14 .
- the pixel reading unit 12 reads and outputs image signals from the plurality of pixels P based on instructions from the control unit 14 .
- the pixel signal processing unit 13 performs predetermined signal processing on the image signal output from the pixel reading unit 12 .
- the control unit 14 controls each circuit in the imaging device 1.
- the control section 14 has a clock control circuit 15 .
- the clock control circuit 15 controls the generation of clock signals used for each circuit in the imaging device 1 .
- FIG. 8 schematically shows a configuration example of the essential parts of the imaging device 1 according to one embodiment.
- FIG. 8 shows a circuit configuration example of a portion related to clock signal generation.
- FIG. 8 shows a circuit configuration example for making the 1H period and the SSC spreading period the same.
- An imaging device 1 includes a CLK system configuration circuit 2, an SSC circuit 3, a 1H identification processing circuit 4, and a mode register 5.
- the control unit 14 may have these configuration blocks.
- the clock control circuit 15 has at least an SSC circuit 3 and a 1H identification processing circuit 4 .
- the SSC circuit 3 is a spectrum spread circuit that spreads the spectrum of a clock signal used for at least one predetermined circuit in the imaging device 1 .
- the SSC circuit 3 includes a PLL and a modulation circuit that dynamically controls the clock of the PLL.
- the SSC circuit 3 may have one output clock signal, or may have a plurality of output clock signals.
- the modulation circuit of the SSC circuit 3 receives a setting signal (SSC spreading period setting signal) from the 1H identification processing circuit 4 relating to the SSC spreading frequency and the SSC spreading factor. Based on the setting signal from the 1H identification processing circuit 4, the SSC circuit 3 adjusts the SSC spreading frequency so that the frequency matches the reciprocal number (frequency) of the 1H period.
- the CLK system configuration circuit 2 supplies each circuit with a clock signal corresponding to the operating frequency of each circuit in the imaging device 1 .
- the CLK system configuration circuit 2 performs clock frequency division and clock distribution according to the setting signal from the mode register 5 .
- the CLK system configuration circuit 2 has an SSC non-applied CLK circuit 21 that generates an SSC non-applied clock signal and an SSC applied CLK circuit 22 that generates an SSC applied clock signal.
- An external input clock signal INCK and an output clock signal from the SSC circuit 3 are input to the CLK system configuration circuit 2 as input clock signals.
- the external input clock signal INCK is input to the SSC non-applied CLK circuit 21 as an input clock signal.
- the output clock signal from the SSC circuit 3 is input to the SSC-applied CLK circuit 22 as an input clock signal.
- a part of the SSC non-application clock signal is inputted as an input clock signal to the SSC circuit 3 (see FIG. 9 described later).
- the mode register 5 generates setting signals that determine various operation modes of the imaging device 1 .
- a setting signal generated by the mode register 5 is supplied to each circuit in the imaging device 1 .
- Each circuit in the image sensor 1 operates according to the settings determined by the mode register 5 .
- the mode register 5 outputs a clock frequency setting signal (frequency division setting signal) to the CLK system configuration circuit 2 and the 1H identification processing circuit 4 as a setting signal.
- FIG. 9 schematically shows a configuration example of the 1H identification processing circuit 4 and an overview of the operation of the 1H identification processing circuit 4.
- the 1H identification processing circuit 4 has an SSC spreading period setting memory 41 and a control circuit 42 .
- the control circuit 42 recognizes the 1H period for a plurality of pixels P, and controls the SSC spreading period so that the spreading period of the spectrum spread by the SSC circuit 3 (SSC spreading period) becomes a desired period for the 1H period.
- a setting signal (SSC spreading cycle setting signal) is output to the SSC circuit 3 .
- the desired period is, for example, a period in which the 1H period and the SSC spreading period are the same.
- the control circuit 42 recognizes the dynamic change in the 1H period, and adjusts the SSC spreading period to the dynamic change in the 1H period. It is possible to output the SSC spreading period setting signal so as to follow the desired period. In this case, the control circuit 42 may recognize the dynamic change of the 1H period during the blanking period of the 1H period, and output the setting signal following the dynamic change of the 1H period.
- the control circuit 42 recognizes the 1H period based on the clock setting signal used for each circuit related to scanning of at least a plurality of pixels P in the imaging device 1.
- the clock setting signal includes, for example, a signal indicating division setting of the clock.
- the control circuit 42 provides a frequency division setting signal indicating the frequency division number of the input clock signal to the SSC circuit 3 with respect to the external input clock signal INCK, and to each circuit related to scanning of at least a plurality of pixels P in the image sensor 1.
- the 1H period may be recognized based on the clock setting signal used.
- the control circuit 42 includes circuits using, for example, decoders, combinational logic circuits, and FlipFlops.
- the control circuit 42 refers to the information stored in the SSC spreading period setting memory 41 and recognizes the 1H period based on the input setting signal.
- the SSC spreading period setting memory 41 stores table information as shown in FIG. 10, for example.
- the control circuit 42 matches the setting value indicated by the input setting signal with the table information, and outputs an SSC spreading cycle setting signal as an output signal.
- FIG. 10 shows an example of the relationship between the input setting signal and the output signal of the 1H identification processing circuit 4 in tabular form.
- FIG. 10 shows, as an example of the input setting signal, the clock setting signal used for each circuit related to pixel scanning and the frequency division number of the SSC input clock for the external input clock signal INCK. Also, as an example of the output signal (SSC spreading period setting signal), the frequency division number of the SSC input clock corresponding to the 1H period is shown.
- FIG. 10 shows an example in which signals A, B, C, D, E, and F exist as clock setting signals used for each circuit related to pixel scanning. 1 may vary depending on circuit specifications. Further, each of the signals A, B, C, D, E, and F may be 1 bit, or may be composed of multiple bits.
- the input setting signal includes a frequency division setting signal indicating the frequency division number of the SSC input clock with respect to the externally input clock signal INCK. If recognizable, the input setting signals may be only clock setting signals used for each circuit related to pixel scanning.
- the value of the frequency division number of the SSC input clock for the external input clock signal INCK may be arbitrarily set by the mode register 5 later.
- the current value may be set to a value that is minus 1, plus 1, 2 times, 0.5 times, or the like.
- the division number of the SSC input clock corresponding to the 1H period may also be arbitrarily set by the mode register 5 later.
- the current value may be set to a value that is minus 1, plus 1, 2 times, 0.5 times, or the like.
- FIG. 11 schematically shows a modification of the relationship between the 1H period and the SSC spreading period.
- FIG. 11A shows an example of the waveform of the horizontal scanning control signal (horizontal synchronization signal).
- FIG. 11B shows an example of the waveform of the clock signal after spectrum spreading by SSC.
- FIG. 11C shows an example of SSC frequency fluctuation (frequency trend).
- the horizontal axis indicates time.
- the vertical axis indicates frequency.
- the desired period controlled by the control circuit 42 of the 1H identification processing circuit 4 is not limited to a period in which the 1H period and the SSC spreading period are the same, but may be a period in which the 1H period is an integral multiple of the SSC spreading period. good too.
- FIG. 5 shows an example in which the 1H period and the SSC spreading period are the same. It may be configured so that it can be doubled.
- the setting signal of the mode register 5 is not limited to doubling, and the 1H period may be configured to be an arbitrary integer multiple of the SSC spreading period. It is desirable that the 1H period is an integral multiple of the SSC diffusion period, but within a range in which the horizontal streak noise of the pixel P is not emphasized, some error may occur from the integral multiple. For example, there may be an error of approximately several percent from an integer multiple.
- the control signal for the integer multiple may be input to the 1H identification processing circuit 4 or may be input to the SSC circuit 3 .
- the 1H period is recognized, and the spread period of the spectrum spread by the SSC circuit 3 (SSC spread period) is set to the desired period with respect to the 1H period.
- the SSC spreading period is controlled so that As a result, SSC can be favorably applied while suppressing image noise with low power consumption.
- the 1H period is fixed during the operation of the imaging device 1, periodic fluctuations such as jitter do not occur in the 1H period.
- the variation of the 1H period can be followed inside the image sensor 1, and the SSC diffusion period can be set to a desired period. It is desirable that the 1H period is an integral multiple of the SSC diffusion period, but within a range where the horizontal streak noise of the pixel P is not emphasized, even if there is a difference (difference between the 1H period and the SSC diffusion period) in this time. good. For example, an error of approximately several percent may occur.
- FIG. 12 schematically shows an example of the relationship between the 1H period and the SSC diffusion period when the 1H period is varied in the same image pickup device 1 .
- (A1) and (A2) of FIG. 12 show an example of the waveform of the horizontal scanning control signal (horizontal synchronization signal).
- (B1) and (B2) of FIG. 12 show an example of the waveform of the clock signal after spectrum spreading by SSC.
- (C1) and (C2) of FIG. 12 show an example of frequency fluctuation (frequency trend) of the SSC.
- the horizontal axis indicates time.
- the vertical axis indicates frequency.
- FIG. 12 shows a case where the 1H period and the SSC spreading period are the same.
- the 1H period is A(s).
- the 1H period is B(s).
- the magnitude relationship of the numerical values is A>B.
- the control circuit 42 of the 1H identification processing circuit 4 can recognize fluctuations in the 1H period based on at least the clock setting signal used for each circuit related to pixel scanning, and the SSC spreading period It is possible to output the SSC spreading period setting signal so that the desired period follows the dynamic change of the 1H period.
- FIG. 13 shows an example of performance evaluation in an actual machine of the technology according to one embodiment.
- FIG. 13A shows an example of the waveform of the horizontal scanning control signal (horizontal synchronization signal).
- (B) of FIG. 13 shows an example of the waveform of the fluctuation of the power supply voltage of the circuit to which the SSC is applied. Fluctuations in the power supply voltage are obtained by monitoring the power supply voltage outside the imaging device 1 .
- FIG. 13C shows an example of the waveform of the clock signal after spectrum spreading by SSC.
- FIG. 13D shows an example of SSC frequency fluctuation (frequency trend).
- the horizontal axis indicates time.
- the vertical axis indicates frequency.
- a horizontal scanning control signal ((A) in FIG. 13) representing the 1H period is output to the outside of the image pickup device 1 and sent to the host side controlling the image pickup device 1 for synchronization.
- the conduction noise in the power supply line of the circuit to which the SSC is applied from outside the chip constituting the imaging device 1 it is possible to monitor the interval between the peak cycles of the power supply noise from outside the imaging device 1 (FIG. 13). of (B)).
- the trend of the SSC spread spectrum clock frequency can be known outside the imaging device 1 (the SSC spreading period can be known) ((D) in FIG. 13).
- the 1H period and the SSC diffusion period can be easily grasped outside the imaging device 1 . Therefore, it is possible to easily evaluate the performance of the technology according to the embodiment in an actual device outside the imaging device 1 .
- FIG. 14 schematically shows an example of the relationship between the vertical scanning period (1V period) and 1H period and the SSC diffusion period.
- FIG. 14A shows an example of the waveform of the vertical scanning control signal (vertical synchronization signal).
- FIG. 14B shows an example of the waveform of the horizontal scanning control signal (horizontal synchronization signal).
- FIG. 14C shows an example of the waveform of the clock signal after spectrum spreading by SSC.
- FIG. 14D shows an example of SSC frequency fluctuation (frequency trend).
- the horizontal axis indicates time.
- the vertical axis indicates frequency.
- the vertical scanning period can be obtained by multiplying the 1H period by the number of rows of pixels P of the image sensor 1 . Note that the number of lines conforms to the specifications of the imaging device 1 .
- FIG. 15 schematically shows an example of the SSC spreading period when the 1H period varies within one frame period.
- FIG. 15A shows an example of the waveform of the vertical scanning control signal (vertical synchronization signal).
- FIG. 15B shows an example of the waveform of the horizontal scanning control signal (horizontal synchronization signal).
- FIG. 15C shows an example of the waveform of the clock signal after spectrum spreading by SSC.
- FIG. 15D shows an example of SSC frequency fluctuation (frequency trend).
- the horizontal axis indicates time.
- the vertical axis indicates frequency.
- the SSC spreading period also fluctuates following the fluctuation of the 1H period.
- the 1H period is changed.
- the 1H period can be arbitrarily changed within one frame period, as shown in FIG.
- the 1H period dynamically changes within one frame period as shown in FIG. It is possible to make them the same.
- the change of the 1H period during the blanking period is externally controlled, only the processing of the 1H identification processing circuit 4 and the frequency division setting change of the SSC circuit 3 may be performed in the image sensor 1 .
- the SSC setting can be completed within several clocks, for example.
- the SSC spreading period is A>B.
- the present technology can also have the following configuration.
- the horizontal scanning period for a plurality of pixels is recognized, and the spreading period of the spectrum spread by the spectrum spreading circuit is controlled so as to be a desired period with respect to the horizontal scanning period. .
- SSC can be favorably applied while suppressing image noise with low power consumption.
- a spread spectrum circuit that spreads the spectrum of a clock signal used in at least one predetermined circuit in an imaging device having a plurality of pixels; Control for recognizing the horizontal scanning period for the plurality of pixels and outputting a setting signal for controlling the spreading period of the spectrum spread by the spectrum spreading circuit so that the spreading period is a desired period for the horizontal scanning period.
- a clock control circuit comprising a circuit and a clock control circuit.
- the control circuit recognizes a dynamic change in the horizontal scanning period, and outputs the setting signal so that the diffusion period follows the dynamic change in the horizontal scanning period and becomes the desired period.
- the clock control circuit according to (1) or (2).
- the control circuit recognizes a dynamic change in the horizontal scanning period during a blanking period of the horizontal scanning period, and outputs the setting signal following the dynamic change in the horizontal scanning period. ).
- the control circuit includes a frequency division setting signal indicating a frequency division number of an input clock signal to the spread spectrum circuit with respect to an externally input clock signal, and a clock used for a circuit related to scanning of at least the plurality of pixels in the imaging device.
- the clock control circuit according to any one of (1) to (5) above, which recognizes the horizontal scanning period based on a setting signal.
- (7) a plurality of pixels; at least one predetermined circuit; a spread spectrum circuit that spreads the spectrum of a clock signal used in the at least one predetermined circuit; Control for recognizing the horizontal scanning period for the plurality of pixels and outputting a setting signal for controlling the spreading period of the spectrum spread by the spectrum spreading circuit so that the spreading period is a desired period for the horizontal scanning period.
- An imaging device comprising a circuit and .
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
Abstract
A clock control circuit according to the present disclosure comprises: a spectrum spreading circuit that spreads a spectrum in response to a clock signal used in at least one prescribed circuit in an imaging element having a plurality of pixels; and a control circuit that recognizes a horizontal scanning period for a plurality of pixels, and outputs a setting signal that controls a spread cycle of spectrum spreading by the spectrum spreading circuit such that the spread cycle becomes a desired cycle in relation to the horizontal scanning period.
Description
本開示は、クロック制御回路、および撮像素子に関する。
The present disclosure relates to clock control circuits and imaging devices.
電子機器におけるEMI(Electromagnetic Interference)を低減する方法として、スペクトラム拡散クロック(SSC:Spread Spectrum Clocking)を用いることが有効である。一方、撮像素子にSSCを適用した場合、画素出力に画ノイズが発生する場合があり、この画ノイズを低減する技術が提案されている(特許文献1,2参照)。
As a method of reducing EMI (Electromagnetic Interference) in electronic equipment, it is effective to use spread spectrum clocking (SSC). On the other hand, when SSC is applied to an image sensor, image noise may occur in pixel output, and techniques for reducing this image noise have been proposed (see Patent Documents 1 and 2).
特許文献1,2に記載の技術では画ノイズの抑制が不十分であり、また、消費電力が増加する。
The techniques described in Patent Documents 1 and 2 do not sufficiently suppress image noise, and power consumption increases.
低消費電力で画ノイズを抑制しつつ、SSCを良好に適用することが可能なクロック制御回路、および撮像素子を提供することが望ましい。
It is desirable to provide a clock control circuit and an imaging device that can satisfactorily apply SSC while suppressing image noise with low power consumption.
本開示の一実施の形態に係るクロック制御回路は、複数の画素を有する撮像素子内の少なくとも1つの所定の回路に用いられるクロック信号に対してスペクトラム拡散を行うスペクトラム拡散回路と、複数の画素に対する水平走査期間を認識し、スペクトラム拡散回路によるスペクトラム拡散の拡散周期が、水平走査期間に対して所望の周期となるように拡散周期を制御する設定信号を出力する制御回路とを備える。
A clock control circuit according to an embodiment of the present disclosure includes a spread spectrum circuit that spreads the spectrum of a clock signal used in at least one predetermined circuit in an image pickup device having a plurality of pixels; a control circuit for recognizing the horizontal scanning period and for outputting a setting signal for controlling the spreading period of the spectrum spread by the spectrum spreading circuit so that it becomes a desired period for the horizontal scanning period.
本開示の一実施の形態に係る撮像素子は、複数の画素と、少なくとも1つの所定の回路と、少なくとも1つの所定の回路に用いられるクロック信号に対してスペクトラム拡散を行うスペクトラム拡散回路と、複数の画素に対する水平走査期間を認識し、スペクトラム拡散回路によるスペクトラム拡散の拡散周期が、水平走査期間に対して所望の周期となるように拡散周期を制御する設定信号を出力する制御回路とを備える。
An imaging device according to an embodiment of the present disclosure includes a plurality of pixels, at least one predetermined circuit, a spectrum spread circuit that spreads the spectrum of a clock signal used in the at least one predetermined circuit, and a plurality of and a control circuit for recognizing the horizontal scanning period for the pixels and for outputting a setting signal for controlling the spreading period of the spectrum spread by the spectrum spreading circuit so that it becomes a desired period for the horizontal scanning period.
本開示の一実施の形態に係るクロック制御回路、または撮像素子では、複数の画素に対する水平走査期間を認識し、スペクトラム拡散回路によるスペクトラム拡散の拡散周期が、水平走査期間に対して所望の周期となるように拡散周期を制御する。
A clock control circuit or an imaging device according to an embodiment of the present disclosure recognizes a horizontal scanning period for a plurality of pixels, and sets the spread period of spectrum spread by the spectrum spread circuit to a desired period with respect to the horizontal scanning period. Control the diffusion period so that
以下、本開示の実施の形態について図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
0.比較例(図1~図6)
1.一実施の形態(図7~図15)
1.1 構成および動作
1.2 変形例
1.3 効果
2.その他の実施の形態
Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The description will be given in the following order.
0. Comparative example (Figures 1 to 6)
1. One embodiment (FIGS. 7-15)
1.1 Configuration and operation 1.2 Modification 1.3Effect 2. Other embodiments
0.比較例(図1~図6)
1.一実施の形態(図7~図15)
1.1 構成および動作
1.2 変形例
1.3 効果
2.その他の実施の形態
Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The description will be given in the following order.
0. Comparative example (Figures 1 to 6)
1. One embodiment (FIGS. 7-15)
1.1 Configuration and operation 1.2 Modification 1.3
<0.比較例>
LSI(Large Scale Integration)の多機能化による消費電力の増大や、動作速度の向上により、製品、あるいは製品に搭載されるデバイスのEMIの規格を満たさないケースが多くなってきている。図1には、妨害波規格としてのEMI規格とEUT(Equipment Under Test)からの妨害波との関係の一例を示す。図1において横軸は周波数、縦軸は妨害波のレベルを示す。 <0. Comparative example>
Due to an increase in power consumption and an improvement in operating speed due to multi-functionalization of LSIs (Large Scale Integration), there are many cases where products or devices mounted on products do not meet the EMI standard. FIG. 1 shows an example of the relationship between an EMI standard as an interference wave standard and an interference wave from an EUT (Equipment Under Test). In FIG. 1, the horizontal axis indicates frequency, and the vertical axis indicates the level of interfering waves.
LSI(Large Scale Integration)の多機能化による消費電力の増大や、動作速度の向上により、製品、あるいは製品に搭載されるデバイスのEMIの規格を満たさないケースが多くなってきている。図1には、妨害波規格としてのEMI規格とEUT(Equipment Under Test)からの妨害波との関係の一例を示す。図1において横軸は周波数、縦軸は妨害波のレベルを示す。 <0. Comparative example>
Due to an increase in power consumption and an improvement in operating speed due to multi-functionalization of LSIs (Large Scale Integration), there are many cases where products or devices mounted on products do not meet the EMI standard. FIG. 1 shows an example of the relationship between an EMI standard as an interference wave standard and an interference wave from an EUT (Equipment Under Test). In FIG. 1, the horizontal axis indicates frequency, and the vertical axis indicates the level of interfering waves.
EMIを緩和する有効な手段としては、例えばスペクトラム拡散クロック(SSC:Spread Spectrum Clocking)が良く使用される。
As an effective means of mitigating EMI, for example, spread spectrum clocking (SSC: Spread Spectrum Clocking) is often used.
図2に、SSCのCLK(クロック)周波数の一例を示す。図2の(A)には、SSCによるスペクトラム拡散後のクロック信号の波形の一例を示す。図2の(B)には、SSCの周波数変動(周波数トレンド)の一例を示す。図2の(A),(B)において横軸は時間を示す。図2の(B)において縦軸は周波数を示す。
Fig. 2 shows an example of the CLK (clock) frequency of the SSC. FIG. 2A shows an example of the waveform of the clock signal after spectrum spreading by SSC. FIG. 2B shows an example of SSC frequency fluctuation (frequency trend). In (A) and (B) of FIG. 2, the horizontal axis indicates time. In FIG. 2B, the vertical axis indicates frequency.
図2の(B)においてfcはSSCの中心周波数を示す。SSCでは、拡散周波数(SSC拡散周期の逆数)に応じて、動的にクロック周波数が変動する。δは拡散率を示しており、図2の(B)の例では、中心周波数fcに対して±δ%の周波数変動を生じさせている。
In (B) of FIG. 2, fc indicates the center frequency of the SSC. In SSC, the clock frequency dynamically fluctuates according to the spreading frequency (the reciprocal of the SSC spreading period). δ indicates a spreading factor, and in the example of FIG. 2B, a frequency variation of ±δ% is produced with respect to the center frequency fc.
図3に、SSCを適用した場合の妨害波の一例を示す。図3において横軸は周波数、縦軸は妨害波のレベルを示す。
Fig. 3 shows an example of interference waves when SSC is applied. In FIG. 3, the horizontal axis indicates frequency, and the vertical axis indicates the level of interfering waves.
SSCを適用すると、図3に示したように拡散率に応じて妨害波の周波数帯域は広がるが、妨害波のピークレベルは低減する。
When SSC is applied, the frequency band of the interfering wave spreads according to the spreading factor as shown in Fig. 3, but the peak level of the interfering wave is reduced.
図4は、撮像素子にSSCを適用した場合の画素出力結果の一例を模式的に示している。
FIG. 4 schematically shows an example of pixel output results when SSC is applied to the image sensor.
前述したSSCを、例えばIC(Integrated Circuit)チップで構成されるイメージセンサなどの撮像素子に適用した場合、画素出力に対して、横筋の画ノイズが発生する場合がある。撮像素子において、横方向の1行単位の画素では同一の時刻帯で光電素子の出力をA/D(アナログ/デジタル)変換するため、横方向の出力に差分は発生しない。しかしながら、行ごとに画素をみると、SSCによるクロック周期の時間的揺らぎの影響により、画素出力は一定であっても行ごとにA/D変換結果が異なってしまい、結果的に横筋が発生する場合がある。
When the above-mentioned SSC is applied to an image sensor such as an image sensor composed of an IC (Integrated Circuit) chip, horizontal streak image noise may occur in pixel output. In the image pickup device, since the pixels in the horizontal direction in units of one row A/D (analog/digital) convert the output of the photoelectric device in the same time zone, no difference occurs in the output in the horizontal direction. However, when looking at pixels on a row-by-row basis, even if the pixel output is constant, the results of A/D conversion differ from row to row due to the effects of temporal fluctuations in the clock cycle of the SSC, resulting in the occurrence of horizontal streaks. Sometimes.
それゆえ、行ごとにSSCの周波数が変わらないようにするという技術が提案されている。例えば特許文献1(国際公開第2013/47404号)では、SSCのクロックをカウントし、そのカウント値を1H期間に利用し、1H期間を行ごとに変動させる。そして、1H期間の平均値の変動量を0とすることで、ノイズを抑制する技術が提案されている。また、特許文献2(特開2001-268355号公報)では、水平走査のタイミングごとにSSCをリセットする技術が提案されている。これにより、水平走査ごとに位相(周波数)の揃った拡散クロックで動作させる。リセットには光電変換素子の電荷蓄積時間を決定する移送ゲートクロック信号を用いる。
Therefore, a technique has been proposed to keep the SSC frequency unchanged for each row. For example, in Patent Document 1 (International Publication No. 2013/47404), the SSC clock is counted, the count value is used for the 1H period, and the 1H period is changed for each row. A technique for suppressing noise by setting the fluctuation amount of the average value in the 1H period to 0 has been proposed. Further, Patent Document 2 (Japanese Patent Application Laid-Open No. 2001-268355) proposes a technique of resetting the SSC at each timing of horizontal scanning. As a result, each horizontal scan is operated with a spread clock having the same phase (frequency). A transfer gate clock signal that determines the charge storage time of the photoelectric conversion element is used for resetting.
図5に、水平走査期間(1H期間)とSSC拡散周期との関係の一例を模式的に示す。図5の(A)には、水平走査制御信号(水平同期信号)の波形の一例を示す。図5の(B)には、SSCによるスペクトラム拡散後のクロック信号の波形の一例を示す。図5の(C)には、SSCの周波数変動(周波数トレンド)の一例を示す。図5の(A),(B),(C)において横軸は時間を示す。図5の(C)において縦軸は周波数を示す。
FIG. 5 schematically shows an example of the relationship between the horizontal scanning period (1H period) and the SSC diffusion period. FIG. 5A shows an example of the waveform of the horizontal scanning control signal (horizontal synchronization signal). FIG. 5B shows an example of the waveform of the clock signal after spectrum spreading by SSC. FIG. 5C shows an example of SSC frequency fluctuation (frequency trend). In (A), (B), and (C) of FIG. 5, the horizontal axis indicates time. In FIG. 5C, the vertical axis indicates frequency.
図5には、1H期間とSSC拡散周期とを同一にした例を示す。これにより、水平走査する際は、行ごとに1H期間とSSC拡散周期とが同じとなっているのが分かる。なお、1H期間をSSC拡散周期に対して整数倍にした場合にも同じ効果が得られる。
FIG. 5 shows an example in which the 1H period and the SSC spreading period are the same. From this, it can be seen that the 1H period and the SSC diffusion period are the same for each row when horizontal scanning is performed. The same effect can be obtained when the 1H period is an integral multiple of the SSC spreading period.
図6に、撮像素子の一部の動作パラメータと動作範囲の仕様例を表形式で示す。
Fig. 6 shows a specification example of some operating parameters and operating ranges of the imaging device in a table format.
図5に示したように1H期間とSSC拡散周期とを行ごとに同一にする場合、1H期間を固定化することが考えられる。1H期間が固定化されていれば、あらかじめ1H期間とSSC拡散周期とを行ごとに同一となるように設計できるため、その容易性は高い。しかしながら、1H期間を行ごとに固定化することが難しい場合がある。例えば図6に示したように、撮像素子への入力クロック信号や、撮像素子自体が保有している画角特性、フレームレートなどが、仕様上可変できるようになっている。なお、図6の表において、AAA、BBB、GGG、HHH、XXX、YYYは小数点以下を含んだ数値を意味している。このように、撮像素子では動作パラメータが可変となっている場合がある。そして、撮像素子を使用するユーザが、動作範囲内で任意に動作パラメータを設定することができる場合が多分にある。それゆえ、これらのパラメータ次第では、前述した1H期間が容易に変動してしまう。1H期間が変動してしまうと、SSC拡散周期あるいはSSC拡散周期の整数倍と乖離が生じてしまうため、画素に横筋ノイズが発生してしまう。
When the 1H period and the SSC spreading period are made the same for each row as shown in FIG. 5, it is conceivable to fix the 1H period. If the 1H period is fixed, it can be designed so that the 1H period and the SSC spreading period are the same for each row in advance, so that it is easy to do so. However, it may be difficult to fix the 1H period for each row. For example, as shown in FIG. 6, the input clock signal to the image pickup device, the angle of view characteristics of the image pickup device itself, the frame rate, and the like can be varied according to the specifications. In the table of FIG. 6, AAA, BBB, GGG, HHH, XXX, and YYY mean numerical values including decimal places. In this way, the imaging device may have variable operating parameters. In many cases, the user using the imaging device can arbitrarily set the operating parameters within the operating range. Therefore, depending on these parameters, the above-mentioned 1H period easily fluctuates. If the 1H period fluctuates, it will deviate from the SSC diffusion period or an integer multiple of the SSC diffusion period, resulting in occurrence of horizontal streak noise in pixels.
一方、上述した特許文献2で提案されているように、水平走査のタイミングごとにSSCをリセットすることで、1H期間が変動しても、1H期間とSSC拡散周期とを同一にすることが可能となる。しかしながら、この手法だとSSCのリセット時、および起動の際に消費する動作電流が増大する。また、SSC回路をPLL(Phase Locked Loop)で構成した際、PLLが安定動作するまでの起動時間がかかりすぎると、ブランキング期間を短くすることも難しくなる。
On the other hand, as proposed in the above-mentioned Patent Document 2, by resetting the SSC at each horizontal scanning timing, it is possible to make the 1H period and the SSC spreading period the same even if the 1H period fluctuates. becomes. However, this method increases the operating current consumed when the SSC is reset and activated. In addition, when the SSC circuit is composed of a PLL (Phase Locked Loop), if it takes too long to start up until the PLL operates stably, it becomes difficult to shorten the blanking period.
そこで、低消費電力で画ノイズを抑制しつつ、SSCを良好に適用することが可能なクロック制御回路、および撮像素子を提供することが望ましい。
Therefore, it is desirable to provide a clock control circuit and an imaging device that can satisfactorily apply SSC while suppressing image noise with low power consumption.
<1.一実施の形態>
[1.1 構成および動作]
図7は、本開示の一実施の形態に係る撮像素子1の概要を示している。 <1. one embodiment>
[1.1 Configuration and Operation]
FIG. 7 shows an outline of animaging device 1 according to an embodiment of the present disclosure.
[1.1 構成および動作]
図7は、本開示の一実施の形態に係る撮像素子1の概要を示している。 <1. one embodiment>
[1.1 Configuration and Operation]
FIG. 7 shows an outline of an
一実施の形態に係る撮像素子1は、例えばCCD(Charge Coupled Device)イメージセンサやCMOS(Complementary Metal Oxide Semiconductor)イメージセンサである。一実施の形態に係る撮像素子1は、携帯端末機器やカメラ機器などイメージセンサを使用する機器全般に適用可能である。
The imaging element 1 according to one embodiment is, for example, a CCD (Charge Coupled Device) image sensor or a CMOS (Complementary Metal Oxide Semiconductor) image sensor. The imaging device 1 according to one embodiment can be applied to general equipment using an image sensor, such as mobile terminal equipment and camera equipment.
撮像素子1は、画素アレイ10と、画素駆動部11と、画素読み出し部12と、画素信号処理部13と、制御部14とを備えている。撮像素子1は例えばICチップで構成される。
The imaging device 1 includes a pixel array 10, a pixel driving section 11, a pixel reading section 12, a pixel signal processing section 13, and a control section . The imaging device 1 is composed of, for example, an IC chip.
画素アレイ10は、マトリックス状に配置された複数の画素Pを有している。画素駆動部11は、制御部14からの指示に基づいて、画素アレイ11における複数の画素Pを行ごとに順次駆動する。
The pixel array 10 has a plurality of pixels P arranged in a matrix. The pixel drive unit 11 sequentially drives the plurality of pixels P in the pixel array 11 row by row based on instructions from the control unit 14 .
画素読み出し部12は、制御部14からの指示に基づいて、複数の画素Pからの画像信号を読み出して出力する。画素信号処理部13は、画素読み出し部12から出力された画像信号に対して所定の信号処理部を行う。
The pixel reading unit 12 reads and outputs image signals from the plurality of pixels P based on instructions from the control unit 14 . The pixel signal processing unit 13 performs predetermined signal processing on the image signal output from the pixel reading unit 12 .
制御部14は、撮像素子1内の各回路の制御を行う。制御部14は、クロック制御回路15を有している。クロック制御回路15は、撮像素子1内の各回路に用いられるクロック信号の生成に関する制御を行う。
The control unit 14 controls each circuit in the imaging device 1. The control section 14 has a clock control circuit 15 . The clock control circuit 15 controls the generation of clock signals used for each circuit in the imaging device 1 .
図8は、一実施の形態に係る撮像素子1の要部構成例を概略的に示している。図8には、クロック信号の生成に関連する部分の回路構成例を示す。図8には、1H期間とSSC拡散周期とを同一にするための回路構成例を示す。
FIG. 8 schematically shows a configuration example of the essential parts of the imaging device 1 according to one embodiment. FIG. 8 shows a circuit configuration example of a portion related to clock signal generation. FIG. 8 shows a circuit configuration example for making the 1H period and the SSC spreading period the same.
一実施の形態に係る撮像素子1は、CLK系統構成回路2と、SSC回路3と、1H同定処理回路4と、モードレジスタ5とを備えている。制御部14は、これらの構成ブロックを有していてもよい。クロック制御回路15は、少なくとも、SSC回路3と、1H同定処理回路4とを有する。
An imaging device 1 according to one embodiment includes a CLK system configuration circuit 2, an SSC circuit 3, a 1H identification processing circuit 4, and a mode register 5. The control unit 14 may have these configuration blocks. The clock control circuit 15 has at least an SSC circuit 3 and a 1H identification processing circuit 4 .
SSC回路3は、撮像素子1内の少なくとも1つの所定の回路に用いられるクロック信号に対してスペクトラム拡散を行うスペクトラム拡散回路である。SSC回路3には、PLLと、PLLのクロックを動的に制御する変調回路とが含まれる。SSC回路3の出力クロック信号は1つでもよいし、複数の出力クロック信号が存在してもよい。SSC回路3の変調回路には、SSCの拡散周波数、およびSSCの拡散率などに関する1H同定処理回路4からの設定信号(SSC拡散周期設定信号)が入力される。SSC回路3は、1H同定処理回路4からの設定信号に基づいて、1H期間の逆数(周波数)に合致した周波数となるようにSSC拡散周波数の周波数調整を行う。
The SSC circuit 3 is a spectrum spread circuit that spreads the spectrum of a clock signal used for at least one predetermined circuit in the imaging device 1 . The SSC circuit 3 includes a PLL and a modulation circuit that dynamically controls the clock of the PLL. The SSC circuit 3 may have one output clock signal, or may have a plurality of output clock signals. The modulation circuit of the SSC circuit 3 receives a setting signal (SSC spreading period setting signal) from the 1H identification processing circuit 4 relating to the SSC spreading frequency and the SSC spreading factor. Based on the setting signal from the 1H identification processing circuit 4, the SSC circuit 3 adjusts the SSC spreading frequency so that the frequency matches the reciprocal number (frequency) of the 1H period.
CLK系統構成回路2は、撮像素子1内の各回路の動作周波数に対応したクロック信号を各回路に供給する。CLK系統構成回路2は、モードレジスタ5からの設定信号に応じたクロックの分周およびクロックの分配などを行う。CLK系統構成回路2は、SSC非適用クロック信号を生成するSSC非適用CLK用回路21と、SSC適用クロック信号を生成するSSC適用CLK用回路22とを有する。CLK系統構成回路2には、入力クロック信号として、外部入力クロック信号INCKと、SSC回路3からの出力クロック信号とが入力される。SSC非適用CLK用回路21には、外部入力クロック信号INCKが入力クロック信号として入力される。SSC適用CLK用回路22には、SSC回路3からの出力クロック信号が入力クロック信号として入力される。SSC非適用クロック信号の一部は、SSC回路3への入力クロック信号として入力される(後述する図9参照)。
The CLK system configuration circuit 2 supplies each circuit with a clock signal corresponding to the operating frequency of each circuit in the imaging device 1 . The CLK system configuration circuit 2 performs clock frequency division and clock distribution according to the setting signal from the mode register 5 . The CLK system configuration circuit 2 has an SSC non-applied CLK circuit 21 that generates an SSC non-applied clock signal and an SSC applied CLK circuit 22 that generates an SSC applied clock signal. An external input clock signal INCK and an output clock signal from the SSC circuit 3 are input to the CLK system configuration circuit 2 as input clock signals. The external input clock signal INCK is input to the SSC non-applied CLK circuit 21 as an input clock signal. The output clock signal from the SSC circuit 3 is input to the SSC-applied CLK circuit 22 as an input clock signal. A part of the SSC non-application clock signal is inputted as an input clock signal to the SSC circuit 3 (see FIG. 9 described later).
モードレジスタ5は、撮像素子1の各種動作モードを決める設定信号を生成する。モードレジスタ5で生成した設定信号は、撮像素子1内の各回路へ供給される。撮像素子1内の各回路は、モードレジスタ5で決定された設定に準拠して動作を行う。モードレジスタ5は、設定信号としてクロック周波数設定信号(分周設定信号)をCLK系統構成回路2と1H同定処理回路4とに出力する。
The mode register 5 generates setting signals that determine various operation modes of the imaging device 1 . A setting signal generated by the mode register 5 is supplied to each circuit in the imaging device 1 . Each circuit in the image sensor 1 operates according to the settings determined by the mode register 5 . The mode register 5 outputs a clock frequency setting signal (frequency division setting signal) to the CLK system configuration circuit 2 and the 1H identification processing circuit 4 as a setting signal.
図9に、1H同定処理回路4の一構成例および1H同定処理回路4の動作の概要を概略的に示す。
FIG. 9 schematically shows a configuration example of the 1H identification processing circuit 4 and an overview of the operation of the 1H identification processing circuit 4.
1H同定処理回路4は、SSC拡散周期設定用メモリ41と、制御回路42とを有する。制御回路42は、複数の画素Pに対する1H期間を認識し、SSC回路3によるスペクトラム拡散の拡散周期(SSC拡散周期)が、1H期間に対して所望の周期となるようにSSC拡散周期を制御する設定信号(SSC拡散周期設定信号)をSSC回路3に出力する。ここで、所望の周期は、例えば、1H期間とSSC拡散周期とが同一となる周期である。
The 1H identification processing circuit 4 has an SSC spreading period setting memory 41 and a control circuit 42 . The control circuit 42 recognizes the 1H period for a plurality of pixels P, and controls the SSC spreading period so that the spreading period of the spectrum spread by the SSC circuit 3 (SSC spreading period) becomes a desired period for the 1H period. A setting signal (SSC spreading cycle setting signal) is output to the SSC circuit 3 . Here, the desired period is, for example, a period in which the 1H period and the SSC spreading period are the same.
制御回路42は、後述する図12、図15に示すように1H期間が変動する場合であっても、1H期間の動的な変化を認識し、SSC拡散周期が1H期間の動的な変化に追従して所望の周期となるようにSSC拡散周期設定信号を出力可能となっている。この場合、制御回路42は、1H期間のブランキング期間において、1H期間の動的な変化を認識し、1H期間の動的な変化に追従して設定信号を出力するようにしてもよい。
Even if the 1H period fluctuates as shown in FIGS. 12 and 15 to be described later, the control circuit 42 recognizes the dynamic change in the 1H period, and adjusts the SSC spreading period to the dynamic change in the 1H period. It is possible to output the SSC spreading period setting signal so as to follow the desired period. In this case, the control circuit 42 may recognize the dynamic change of the 1H period during the blanking period of the 1H period, and output the setting signal following the dynamic change of the 1H period.
制御回路42は、撮像素子1における少なくとも複数の画素Pの走査に関連する各回路に用いられるクロック設定信号に基づいて、1H期間を認識する。クロック設定信号には、例えばクロックの分周設定を示す信号が含まれる。例えば、制御回路42は、外部入力クロック信号INCKに対するSSC回路3への入力クロック信号の分周数を示す分周設定信号と、撮像素子1における少なくとも複数の画素Pの走査に関連する各回路に用いられるクロック設定信号とに基づいて、1H期間を認識するようにしてもよい。
The control circuit 42 recognizes the 1H period based on the clock setting signal used for each circuit related to scanning of at least a plurality of pixels P in the imaging device 1. The clock setting signal includes, for example, a signal indicating division setting of the clock. For example, the control circuit 42 provides a frequency division setting signal indicating the frequency division number of the input clock signal to the SSC circuit 3 with respect to the external input clock signal INCK, and to each circuit related to scanning of at least a plurality of pixels P in the image sensor 1. The 1H period may be recognized based on the clock setting signal used.
制御回路42は、例えばデコーダ、組み合わせ論理回路、およびFlipFlopなどを使用した回路を含む。制御回路42は、SSC拡散周期設定用メモリ41に格納された情報を参照し、入力設定信号に基づいて、1H期間を認識する。SSC拡散周期設定用メモリ41は、例えば図10に示したようなテーブル情報を格納している。制御回路42は、入力設定信号で示される設定値とテーブル情報とのマッチングを行い、出力信号としてSSC拡散周期設定信号を出力する。
The control circuit 42 includes circuits using, for example, decoders, combinational logic circuits, and FlipFlops. The control circuit 42 refers to the information stored in the SSC spreading period setting memory 41 and recognizes the 1H period based on the input setting signal. The SSC spreading period setting memory 41 stores table information as shown in FIG. 10, for example. The control circuit 42 matches the setting value indicated by the input setting signal with the table information, and outputs an SSC spreading cycle setting signal as an output signal.
図10に、1H同定処理回路4の入力設定信号と出力信号との関係の一例を表形式で示す。
FIG. 10 shows an example of the relationship between the input setting signal and the output signal of the 1H identification processing circuit 4 in tabular form.
図10には、入力設定信号の一例として、画素走査に関連する各回路に用いるクロック設定信号と、SSC入力クロックの外部入力クロック信号INCKに対する分周数とを示す。また、出力信号(SSC拡散周期設定信号)の一例として、1H期間に対応するSSC入力クロックの分周数を示す。
FIG. 10 shows, as an example of the input setting signal, the clock setting signal used for each circuit related to pixel scanning and the frequency division number of the SSC input clock for the external input clock signal INCK. Also, as an example of the output signal (SSC spreading period setting signal), the frequency division number of the SSC input clock corresponding to the 1H period is shown.
図10では、画素走査に関連する各回路に用いるクロック設定信号として、信号A,B,C,D,E,Fが存在する例を示しているが、クロック設定信号の信号数は、撮像素子1の回路仕様に応じて変わってもよい。また、信号A,B,C,D,E,Fの各信号は1bitでもよいし、複数bitで構成されてもよい。
FIG. 10 shows an example in which signals A, B, C, D, E, and F exist as clock setting signals used for each circuit related to pixel scanning. 1 may vary depending on circuit specifications. Further, each of the signals A, B, C, D, E, and F may be 1 bit, or may be composed of multiple bits.
図10では、入力設定信号としてSSC入力クロックの外部入力クロック信号INCKに対する分周数を示す分周設定信号を含んでいるが、画素走査に関連する各回路に用いるクロック設定信号だけで1H期間を認識可能であれば、入力設定信号は画素走査に関連する各回路に用いるクロック設定信号のみであってもよい。
In FIG. 10, the input setting signal includes a frequency division setting signal indicating the frequency division number of the SSC input clock with respect to the externally input clock signal INCK. If recognizable, the input setting signals may be only clock setting signals used for each circuit related to pixel scanning.
また、図10のテーブル情報において、SSC入力クロックの外部入力クロック信号INCKに対する分周数の値は、モードレジスタ5によって後から任意に設定できるようにしてもよい。例えば、現在の値に対して、全体的にマイナス1、あるいはプラス1、2倍、0.5倍などの値に設定できるようにしてもよい。同様に、1H期間に対応するSSC入力クロックの分周数も、モードレジスタ5によって後から任意に設定できるようにしてもよい。例えば、現在の値に対して、全体的にマイナス1、あるいはプラス1、2倍、0.5倍などの値に設定できるようにしてもよい。
In addition, in the table information of FIG. 10, the value of the frequency division number of the SSC input clock for the external input clock signal INCK may be arbitrarily set by the mode register 5 later. For example, the current value may be set to a value that is minus 1, plus 1, 2 times, 0.5 times, or the like. Similarly, the division number of the SSC input clock corresponding to the 1H period may also be arbitrarily set by the mode register 5 later. For example, the current value may be set to a value that is minus 1, plus 1, 2 times, 0.5 times, or the like.
[1.2 変形例]
図11に、1H期間とSSC拡散周期との関係の変形例を模式的に示す。図11の(A)には、水平走査制御信号(水平同期信号)の波形の一例を示す。図11の(B)には、SSCによるスペクトラム拡散後のクロック信号の波形の一例を示す。図11の(C)には、SSCの周波数変動(周波数トレンド)の一例を示す。図11の(A),(B),(C)において横軸は時間を示す。図11の(C)において縦軸は周波数を示す。 [1.2 Modification]
FIG. 11 schematically shows a modification of the relationship between the 1H period and the SSC spreading period. FIG. 11A shows an example of the waveform of the horizontal scanning control signal (horizontal synchronization signal). FIG. 11B shows an example of the waveform of the clock signal after spectrum spreading by SSC. FIG. 11C shows an example of SSC frequency fluctuation (frequency trend). In (A), (B), and (C) of FIG. 11, the horizontal axis indicates time. In FIG. 11C, the vertical axis indicates frequency.
図11に、1H期間とSSC拡散周期との関係の変形例を模式的に示す。図11の(A)には、水平走査制御信号(水平同期信号)の波形の一例を示す。図11の(B)には、SSCによるスペクトラム拡散後のクロック信号の波形の一例を示す。図11の(C)には、SSCの周波数変動(周波数トレンド)の一例を示す。図11の(A),(B),(C)において横軸は時間を示す。図11の(C)において縦軸は周波数を示す。 [1.2 Modification]
FIG. 11 schematically shows a modification of the relationship between the 1H period and the SSC spreading period. FIG. 11A shows an example of the waveform of the horizontal scanning control signal (horizontal synchronization signal). FIG. 11B shows an example of the waveform of the clock signal after spectrum spreading by SSC. FIG. 11C shows an example of SSC frequency fluctuation (frequency trend). In (A), (B), and (C) of FIG. 11, the horizontal axis indicates time. In FIG. 11C, the vertical axis indicates frequency.
1H同定処理回路4の制御回路42が制御する所望の周期は、1H期間とSSC拡散周期とが同一となる周期に限らず、1H期間がSSC拡散周期に対して整数倍となる周期であってもよい。例えば、図5には、1H期間とSSC拡散周期とを同一にする例を示したが、モードレジスタ5の設定信号によって、図11に示した例のように1H期間をSSC拡散周期に対して2倍にすることができるように構成してもよい。また、モードレジスタ5の設定信号によって、2倍に限らず、1H期間をSSC拡散周期に対して任意の整数倍にすることができるように構成してもよい。1H期間がSSC拡散周期に対して整数倍となることが望ましいが、画素Pの横筋ノイズが強調されない範囲内においては、整数倍から多少の誤差は生じてもよい。例えば整数倍から概ね数%の誤差があってもよい。なお、この整数倍にするための制御信号は、1H同定処理回路4に入力してもよいし、SSC回路3に入力してもよい。
The desired period controlled by the control circuit 42 of the 1H identification processing circuit 4 is not limited to a period in which the 1H period and the SSC spreading period are the same, but may be a period in which the 1H period is an integral multiple of the SSC spreading period. good too. For example, FIG. 5 shows an example in which the 1H period and the SSC spreading period are the same. It may be configured so that it can be doubled. Also, the setting signal of the mode register 5 is not limited to doubling, and the 1H period may be configured to be an arbitrary integer multiple of the SSC spreading period. It is desirable that the 1H period is an integral multiple of the SSC diffusion period, but within a range in which the horizontal streak noise of the pixel P is not emphasized, some error may occur from the integral multiple. For example, there may be an error of approximately several percent from an integer multiple. The control signal for the integer multiple may be input to the 1H identification processing circuit 4 or may be input to the SSC circuit 3 .
[1.3 効果]
以上説明したように、一実施の形態に係る撮像素子1によれば、1H期間を認識し、SSC回路3によるスペクトラム拡散の拡散周期(SSC拡散周期)が、1H期間に対して所望の周期となるようにSSC拡散周期を制御する。これにより、低消費電力で画ノイズを抑制しつつ、SSCを良好に適用することが可能となる。 [1.3 Effect]
As described above, according to theimaging device 1 according to the embodiment, the 1H period is recognized, and the spread period of the spectrum spread by the SSC circuit 3 (SSC spread period) is set to the desired period with respect to the 1H period. The SSC spreading period is controlled so that As a result, SSC can be favorably applied while suppressing image noise with low power consumption.
以上説明したように、一実施の形態に係る撮像素子1によれば、1H期間を認識し、SSC回路3によるスペクトラム拡散の拡散周期(SSC拡散周期)が、1H期間に対して所望の周期となるようにSSC拡散周期を制御する。これにより、低消費電力で画ノイズを抑制しつつ、SSCを良好に適用することが可能となる。 [1.3 Effect]
As described above, according to the
1H期間が撮像素子1の動作時に固定されるのであれば、1H期間はジッタなどの周期的な時間揺れは起こらないが、一実施の形態に係る撮像素子1によれば、1H期間がどのように変わったとしても、撮像素子1内部で1H期間の変動に追従し、SSC拡散周期を所望の周期にすることができる。1H期間はSSC拡散周期に対して整数倍となることが望ましいが、画素Pの横筋ノイズが強調されない範囲内においては、この時間に差分(1H期間とSSC拡散周期との差分)は生じてもよい。例えば概ね数%の誤差が生じてもよい。
If the 1H period is fixed during the operation of the imaging device 1, periodic fluctuations such as jitter do not occur in the 1H period. , the variation of the 1H period can be followed inside the image sensor 1, and the SSC diffusion period can be set to a desired period. It is desirable that the 1H period is an integral multiple of the SSC diffusion period, but within a range where the horizontal streak noise of the pixel P is not emphasized, even if there is a difference (difference between the 1H period and the SSC diffusion period) in this time. good. For example, an error of approximately several percent may occur.
図12に、同一の撮像素子1において1H期間を変動させた場合の1H期間とSSC拡散周期との関係の一例を模式的に示す。図12の(A1),(A2)には、水平走査制御信号(水平同期信号)の波形の一例を示す。図12の(B1),(B2)には、SSCによるスペクトラム拡散後のクロック信号の波形の一例を示す。図12の(C1),(C2)には、SSCの周波数変動(周波数トレンド)の一例を示す。図12の(A1),(B1),(C1),(A2),(B2),(C2)において横軸は時間を示す。図12の(C1),(C2)において縦軸は周波数を示す。
FIG. 12 schematically shows an example of the relationship between the 1H period and the SSC diffusion period when the 1H period is varied in the same image pickup device 1 . (A1) and (A2) of FIG. 12 show an example of the waveform of the horizontal scanning control signal (horizontal synchronization signal). (B1) and (B2) of FIG. 12 show an example of the waveform of the clock signal after spectrum spreading by SSC. (C1) and (C2) of FIG. 12 show an example of frequency fluctuation (frequency trend) of the SSC. In (A1), (B1), (C1), (A2), (B2), and (C2) of FIG. 12, the horizontal axis indicates time. In (C1) and (C2) of FIG. 12, the vertical axis indicates frequency.
図12には1H期間とSSC拡散周期とを同一にした場合を示す。図12の(A1),(B1),(C1)では1H期間はA(s)となっている。図12の(A2),(B2),(C2)では1H期間はB(s)となっている。数値の大小関係は、A>Bとなっている。上述したように、1H同定処理回路4の制御回路42は、少なくとも画素走査に関連する各回路に用いられるクロック設定信号に基づいて、1H期間の変動を認識することが可能であり、SSC拡散周期が1H期間の動的な変化に追従して所望の周期となるようにSSC拡散周期設定信号を出力可能である。
FIG. 12 shows a case where the 1H period and the SSC spreading period are the same. In (A1), (B1), and (C1) of FIG. 12, the 1H period is A(s). In (A2), (B2), and (C2) of FIG. 12, the 1H period is B(s). The magnitude relationship of the numerical values is A>B. As described above, the control circuit 42 of the 1H identification processing circuit 4 can recognize fluctuations in the 1H period based on at least the clock setting signal used for each circuit related to pixel scanning, and the SSC spreading period It is possible to output the SSC spreading period setting signal so that the desired period follows the dynamic change of the 1H period.
(評価)
図13に、一実施の形態に係る技術の実機における性能評価の一例を示す。図13の(A)には、水平走査制御信号(水平同期信号)の波形の一例を示す。図13の(B)には、SSCが適用された回路の電源電圧の揺れの波形の一例を示す。電源電圧の揺れは、撮像素子1の外の電源電圧をモニタすることにより得られる。図13の(C)には、SSCによるスペクトラム拡散後のクロック信号の波形の一例を示す。図13の(D)には、SSCの周波数変動(周波数トレンド)の一例を示す。図13の(A),(B),(C),(D)において横軸は時間を示す。図13の(D)において縦軸は周波数を示す。 (evaluation)
FIG. 13 shows an example of performance evaluation in an actual machine of the technology according to one embodiment. FIG. 13A shows an example of the waveform of the horizontal scanning control signal (horizontal synchronization signal). (B) of FIG. 13 shows an example of the waveform of the fluctuation of the power supply voltage of the circuit to which the SSC is applied. Fluctuations in the power supply voltage are obtained by monitoring the power supply voltage outside theimaging device 1 . FIG. 13C shows an example of the waveform of the clock signal after spectrum spreading by SSC. FIG. 13D shows an example of SSC frequency fluctuation (frequency trend). In (A), (B), (C), and (D) of FIG. 13, the horizontal axis indicates time. In FIG. 13D, the vertical axis indicates frequency.
図13に、一実施の形態に係る技術の実機における性能評価の一例を示す。図13の(A)には、水平走査制御信号(水平同期信号)の波形の一例を示す。図13の(B)には、SSCが適用された回路の電源電圧の揺れの波形の一例を示す。電源電圧の揺れは、撮像素子1の外の電源電圧をモニタすることにより得られる。図13の(C)には、SSCによるスペクトラム拡散後のクロック信号の波形の一例を示す。図13の(D)には、SSCの周波数変動(周波数トレンド)の一例を示す。図13の(A),(B),(C),(D)において横軸は時間を示す。図13の(D)において縦軸は周波数を示す。 (evaluation)
FIG. 13 shows an example of performance evaluation in an actual machine of the technology according to one embodiment. FIG. 13A shows an example of the waveform of the horizontal scanning control signal (horizontal synchronization signal). (B) of FIG. 13 shows an example of the waveform of the fluctuation of the power supply voltage of the circuit to which the SSC is applied. Fluctuations in the power supply voltage are obtained by monitoring the power supply voltage outside the
1H期間を表す水平走査制御信号(図13の(A))は、撮像素子1の外部に出力され、撮像素子1を制御するホスト側へ同期を取るために送付される。一方、SSCが適用された回路の電源線における伝導ノイズの評価を撮像素子1を構成するチップの外から行うことにより、撮像素子1の外から電源ノイズのピーク周期の間隔をモニタできる(図13の(B))。これにより、撮像素子1の外部において、SSCのスペクトラム拡散クロック周波数のトレンドを知ることができる(SSC拡散周期を知ることができる)(図13の(D))。このように、撮像素子1の外部において、1H期間とSSC拡散周期とを容易に把握することができる。このため、一実施の形態に係る技術の実機における性能評価を撮像素子1の外部において容易に行うことが可能となる。
A horizontal scanning control signal ((A) in FIG. 13) representing the 1H period is output to the outside of the image pickup device 1 and sent to the host side controlling the image pickup device 1 for synchronization. On the other hand, by evaluating the conduction noise in the power supply line of the circuit to which the SSC is applied from outside the chip constituting the imaging device 1, it is possible to monitor the interval between the peak cycles of the power supply noise from outside the imaging device 1 (FIG. 13). of (B)). As a result, the trend of the SSC spread spectrum clock frequency can be known outside the imaging device 1 (the SSC spreading period can be known) ((D) in FIG. 13). In this way, the 1H period and the SSC diffusion period can be easily grasped outside the imaging device 1 . Therefore, it is possible to easily evaluate the performance of the technology according to the embodiment in an actual device outside the imaging device 1 .
図14に、垂直走査期間(1V期間)および1H期間とSSC拡散周期との関係の一例を模式的に示す。図14の(A)には、垂直走査制御信号(垂直同期信号)の波形の一例を示す。図14の(B)には、水平走査制御信号(水平同期信号)の波形の一例を示す。図14の(C)には、SSCによるスペクトラム拡散後のクロック信号の波形の一例を示す。図14の(D)には、SSCの周波数変動(周波数トレンド)の一例を示す。図14の(A),(B),(C),(D)において横軸は時間を示す。図14の(D)において縦軸は周波数を示す。
FIG. 14 schematically shows an example of the relationship between the vertical scanning period (1V period) and 1H period and the SSC diffusion period. FIG. 14A shows an example of the waveform of the vertical scanning control signal (vertical synchronization signal). FIG. 14B shows an example of the waveform of the horizontal scanning control signal (horizontal synchronization signal). FIG. 14C shows an example of the waveform of the clock signal after spectrum spreading by SSC. FIG. 14D shows an example of SSC frequency fluctuation (frequency trend). In FIGS. 14A, 14B, 14C, and 14D, the horizontal axis indicates time. In (D) of FIG. 14, the vertical axis indicates frequency.
仮に水平走査信号(図14の(B))が撮像素子1の外部へ出力されず、垂直走査信号(垂直同期信号)(図14の(A))が出力される場合は、垂直走査期間に基づいて、上記図13に示した場合と同様の評価が可能となる。また、垂直走査期間が撮像素子1の1フレーム期間であっても、上記図13に示した場合と同様の評価が可能となる。この場合、垂直走査期間は、1H期間に対して、撮像素子1の画素Pの行数を乗算すれば得られる。なお、行数については撮像素子1の仕様に準ずるものとなる。
If the horizontal scanning signal ((B) in FIG. 14) is not output to the outside of the imaging device 1 and the vertical scanning signal (vertical synchronization signal) ((A) in FIG. 14) is output, then during the vertical scanning period Based on this, the same evaluation as in the case shown in FIG. 13 is possible. Also, even if the vertical scanning period is one frame period of the image sensor 1, the same evaluation as in the case shown in FIG. 13 is possible. In this case, the vertical scanning period can be obtained by multiplying the 1H period by the number of rows of pixels P of the image sensor 1 . Note that the number of lines conforms to the specifications of the imaging device 1 .
図15に、1フレーム期間内において1H期間が変動する場合のSSC拡散周期の一例を模式的に示す。図15の(A)には、垂直走査制御信号(垂直同期信号)の波形の一例を示す。図15の(B)には、水平走査制御信号(水平同期信号)の波形の一例を示す。図15の(C)には、SSCによるスペクトラム拡散後のクロック信号の波形の一例を示す。図15の(D)には、SSCの周波数変動(周波数トレンド)の一例を示す。図15の(A),(B),(C),(D)において横軸は時間を示す。図15の(D)において縦軸は周波数を示す。
FIG. 15 schematically shows an example of the SSC spreading period when the 1H period varies within one frame period. FIG. 15A shows an example of the waveform of the vertical scanning control signal (vertical synchronization signal). FIG. 15B shows an example of the waveform of the horizontal scanning control signal (horizontal synchronization signal). FIG. 15C shows an example of the waveform of the clock signal after spectrum spreading by SSC. FIG. 15D shows an example of SSC frequency fluctuation (frequency trend). In FIGS. 15A, 15B, 15C, and 15D, the horizontal axis indicates time. In (D) of FIG. 15, the vertical axis indicates frequency.
1フレーム期間内において1H期間が変動する場合、一実施の形態に係る技術では、1H期間の変動に追従してSSC拡散周期も変動する。例えば、撮像素子1の入力クロック信号(外部入力クロック信号INCK)の周波数を変更させた場合、あるいは、1フレーム期間を外部から制御し、変更させた場合等には、1H期間が変更される。そのような場合において、前述した電源ノイズのピークの変動の周期(SSC拡散周期と等価)が、1H期間と等しくなっているか否かの実証が可能である。撮像素子1を使用するユーザによっては、図15に示したように、1H期間を1フレーム期間内で任意に変更する可能性がある。一実施の形態に係る技術では、図15に示したように1フレーム期間内で1H期間がダイナミックに変動したとしてもブランキング期間内での逐次処理により、随時、SSC拡散周期と1H期間とを同じとすることが可能となる。例えば、ブランキング期間に1H期間の変更が外部から制御された場合、撮像素子1内では、1H同定処理回路4の処理、およびSSC回路3の分周設定変更のみを行うようにしてもよい。これにより、例えば数クロック内にSSCの設定を完結させることができる。なお、図15の(D)において、SSC拡散周期は、A>Bとなる。
When the 1H period fluctuates within one frame period, in the technique according to one embodiment, the SSC spreading period also fluctuates following the fluctuation of the 1H period. For example, when the frequency of the input clock signal (external input clock signal INCK) of the image sensor 1 is changed, or when one frame period is controlled and changed from the outside, the 1H period is changed. In such a case, it is possible to verify whether or not the period of fluctuation of the power supply noise peak (equivalent to the SSC spreading period) is equal to the 1H period. Depending on the user who uses the image sensor 1, there is a possibility that the 1H period can be arbitrarily changed within one frame period, as shown in FIG. In the technique according to one embodiment, even if the 1H period dynamically changes within one frame period as shown in FIG. It is possible to make them the same. For example, when the change of the 1H period during the blanking period is externally controlled, only the processing of the 1H identification processing circuit 4 and the frequency division setting change of the SSC circuit 3 may be performed in the image sensor 1 . As a result, the SSC setting can be completed within several clocks, for example. In addition, in (D) of FIG. 15, the SSC spreading period is A>B.
なお、本明細書に記載された効果はあくまでも例示であって限定されるものではなく、また他の効果があってもよい。以降の他の実施の形態の効果についても同様である。
It should be noted that the effects described in this specification are merely examples and are not limited, and other effects may also occur. The same applies to the effects of other embodiments described below.
<2.その他の実施の形態>
本開示による技術は、上記一実施の形態の説明に限定されず種々の変形実施が可能である。 <2. Other Embodiments>
The technology according to the present disclosure is not limited to the description of the above embodiment, and various modifications are possible.
本開示による技術は、上記一実施の形態の説明に限定されず種々の変形実施が可能である。 <2. Other Embodiments>
The technology according to the present disclosure is not limited to the description of the above embodiment, and various modifications are possible.
例えば、本技術は以下のような構成を取ることもできる。
以下の構成の本技術によれば、複数の画素に対する水平走査期間を認識し、スペクトラム拡散回路によるスペクトラム拡散の拡散周期が、水平走査期間に対して所望の周期となるように拡散周期を制御する。これにより、低消費電力で画ノイズを抑制しつつ、SSCを良好に適用することが可能となる。 For example, the present technology can also have the following configuration.
According to the present technology having the following configuration, the horizontal scanning period for a plurality of pixels is recognized, and the spreading period of the spectrum spread by the spectrum spreading circuit is controlled so as to be a desired period with respect to the horizontal scanning period. . As a result, SSC can be favorably applied while suppressing image noise with low power consumption.
以下の構成の本技術によれば、複数の画素に対する水平走査期間を認識し、スペクトラム拡散回路によるスペクトラム拡散の拡散周期が、水平走査期間に対して所望の周期となるように拡散周期を制御する。これにより、低消費電力で画ノイズを抑制しつつ、SSCを良好に適用することが可能となる。 For example, the present technology can also have the following configuration.
According to the present technology having the following configuration, the horizontal scanning period for a plurality of pixels is recognized, and the spreading period of the spectrum spread by the spectrum spreading circuit is controlled so as to be a desired period with respect to the horizontal scanning period. . As a result, SSC can be favorably applied while suppressing image noise with low power consumption.
(1)
複数の画素を有する撮像素子内の少なくとも1つの所定の回路に用いられるクロック信号に対してスペクトラム拡散を行うスペクトラム拡散回路と、
前記複数の画素に対する水平走査期間を認識し、前記スペクトラム拡散回路によるスペクトラム拡散の拡散周期が、前記水平走査期間に対して所望の周期となるように前記拡散周期を制御する設定信号を出力する制御回路と
を備える
クロック制御回路。
(2)
前記所望の周期は、前記水平走査期間と前記拡散周期とが同一となる周期、または前記水平走査期間が前記拡散周期に対して整数倍となる周期である
上記(1)に記載のクロック制御回路。
(3)
前記制御回路は、前記水平走査期間の動的な変化を認識し、前記拡散周期が前記水平走査期間の動的な変化に追従して前記所望の周期となるように前記設定信号を出力する
上記(1)または(2)に記載のクロック制御回路。
(4)
前記制御回路は、前記水平走査期間のブランキング期間において、前記水平走査期間の動的な変化を認識し、前記水平走査期間の動的な変化に追従して前記設定信号を出力する
上記(3)に記載のクロック制御回路。
(5)
前記制御回路は、前記撮像素子における少なくとも前記複数の画素の走査に関連する回路に用いられるクロック設定信号に基づいて、前記水平走査期間を認識する
上記(1)ないし(4)のいずれか1つに記載のクロック制御回路。
(6)
前記制御回路は、外部入力クロック信号に対する前記スペクトラム拡散回路への入力クロック信号の分周数を示す分周設定信号と、前記撮像素子における少なくとも前記複数の画素の走査に関連する回路に用いられるクロック設定信号とに基づいて、前記水平走査期間を認識する
上記(1)ないし(5)のいずれか1つに記載のクロック制御回路。
(7)
複数の画素と、
少なくとも1つの所定の回路と、
前記少なくとも1つの所定の回路に用いられるクロック信号に対してスペクトラム拡散を行うスペクトラム拡散回路と、
前記複数の画素に対する水平走査期間を認識し、前記スペクトラム拡散回路によるスペクトラム拡散の拡散周期が、前記水平走査期間に対して所望の周期となるように前記拡散周期を制御する設定信号を出力する制御回路と
を備える
撮像素子。 (1)
a spread spectrum circuit that spreads the spectrum of a clock signal used in at least one predetermined circuit in an imaging device having a plurality of pixels;
Control for recognizing the horizontal scanning period for the plurality of pixels and outputting a setting signal for controlling the spreading period of the spectrum spread by the spectrum spreading circuit so that the spreading period is a desired period for the horizontal scanning period. A clock control circuit comprising a circuit and a clock control circuit.
(2)
The clock control circuit according to (1) above, wherein the desired period is a period in which the horizontal scanning period and the diffusion period are the same, or a period in which the horizontal scanning period is an integral multiple of the diffusion period. .
(3)
The control circuit recognizes a dynamic change in the horizontal scanning period, and outputs the setting signal so that the diffusion period follows the dynamic change in the horizontal scanning period and becomes the desired period. The clock control circuit according to (1) or (2).
(4)
The control circuit recognizes a dynamic change in the horizontal scanning period during a blanking period of the horizontal scanning period, and outputs the setting signal following the dynamic change in the horizontal scanning period. ).
(5)
any one of the above (1) to (4), wherein the control circuit recognizes the horizontal scanning period based on a clock setting signal used in a circuit related to scanning of at least the plurality of pixels in the imaging element; The clock control circuit described in .
(6)
The control circuit includes a frequency division setting signal indicating a frequency division number of an input clock signal to the spread spectrum circuit with respect to an externally input clock signal, and a clock used for a circuit related to scanning of at least the plurality of pixels in the imaging device. The clock control circuit according to any one of (1) to (5) above, which recognizes the horizontal scanning period based on a setting signal.
(7)
a plurality of pixels;
at least one predetermined circuit;
a spread spectrum circuit that spreads the spectrum of a clock signal used in the at least one predetermined circuit;
Control for recognizing the horizontal scanning period for the plurality of pixels and outputting a setting signal for controlling the spreading period of the spectrum spread by the spectrum spreading circuit so that the spreading period is a desired period for the horizontal scanning period. An imaging device comprising a circuit and .
複数の画素を有する撮像素子内の少なくとも1つの所定の回路に用いられるクロック信号に対してスペクトラム拡散を行うスペクトラム拡散回路と、
前記複数の画素に対する水平走査期間を認識し、前記スペクトラム拡散回路によるスペクトラム拡散の拡散周期が、前記水平走査期間に対して所望の周期となるように前記拡散周期を制御する設定信号を出力する制御回路と
を備える
クロック制御回路。
(2)
前記所望の周期は、前記水平走査期間と前記拡散周期とが同一となる周期、または前記水平走査期間が前記拡散周期に対して整数倍となる周期である
上記(1)に記載のクロック制御回路。
(3)
前記制御回路は、前記水平走査期間の動的な変化を認識し、前記拡散周期が前記水平走査期間の動的な変化に追従して前記所望の周期となるように前記設定信号を出力する
上記(1)または(2)に記載のクロック制御回路。
(4)
前記制御回路は、前記水平走査期間のブランキング期間において、前記水平走査期間の動的な変化を認識し、前記水平走査期間の動的な変化に追従して前記設定信号を出力する
上記(3)に記載のクロック制御回路。
(5)
前記制御回路は、前記撮像素子における少なくとも前記複数の画素の走査に関連する回路に用いられるクロック設定信号に基づいて、前記水平走査期間を認識する
上記(1)ないし(4)のいずれか1つに記載のクロック制御回路。
(6)
前記制御回路は、外部入力クロック信号に対する前記スペクトラム拡散回路への入力クロック信号の分周数を示す分周設定信号と、前記撮像素子における少なくとも前記複数の画素の走査に関連する回路に用いられるクロック設定信号とに基づいて、前記水平走査期間を認識する
上記(1)ないし(5)のいずれか1つに記載のクロック制御回路。
(7)
複数の画素と、
少なくとも1つの所定の回路と、
前記少なくとも1つの所定の回路に用いられるクロック信号に対してスペクトラム拡散を行うスペクトラム拡散回路と、
前記複数の画素に対する水平走査期間を認識し、前記スペクトラム拡散回路によるスペクトラム拡散の拡散周期が、前記水平走査期間に対して所望の周期となるように前記拡散周期を制御する設定信号を出力する制御回路と
を備える
撮像素子。 (1)
a spread spectrum circuit that spreads the spectrum of a clock signal used in at least one predetermined circuit in an imaging device having a plurality of pixels;
Control for recognizing the horizontal scanning period for the plurality of pixels and outputting a setting signal for controlling the spreading period of the spectrum spread by the spectrum spreading circuit so that the spreading period is a desired period for the horizontal scanning period. A clock control circuit comprising a circuit and a clock control circuit.
(2)
The clock control circuit according to (1) above, wherein the desired period is a period in which the horizontal scanning period and the diffusion period are the same, or a period in which the horizontal scanning period is an integral multiple of the diffusion period. .
(3)
The control circuit recognizes a dynamic change in the horizontal scanning period, and outputs the setting signal so that the diffusion period follows the dynamic change in the horizontal scanning period and becomes the desired period. The clock control circuit according to (1) or (2).
(4)
The control circuit recognizes a dynamic change in the horizontal scanning period during a blanking period of the horizontal scanning period, and outputs the setting signal following the dynamic change in the horizontal scanning period. ).
(5)
any one of the above (1) to (4), wherein the control circuit recognizes the horizontal scanning period based on a clock setting signal used in a circuit related to scanning of at least the plurality of pixels in the imaging element; The clock control circuit described in .
(6)
The control circuit includes a frequency division setting signal indicating a frequency division number of an input clock signal to the spread spectrum circuit with respect to an externally input clock signal, and a clock used for a circuit related to scanning of at least the plurality of pixels in the imaging device. The clock control circuit according to any one of (1) to (5) above, which recognizes the horizontal scanning period based on a setting signal.
(7)
a plurality of pixels;
at least one predetermined circuit;
a spread spectrum circuit that spreads the spectrum of a clock signal used in the at least one predetermined circuit;
Control for recognizing the horizontal scanning period for the plurality of pixels and outputting a setting signal for controlling the spreading period of the spectrum spread by the spectrum spreading circuit so that the spreading period is a desired period for the horizontal scanning period. An imaging device comprising a circuit and .
本出願は、日本国特許庁において2022年2月18日に出願された日本特許出願番号第2022-23816号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。
This application claims priority based on Japanese Patent Application No. 2022-23816 filed on February 18, 2022 at the Japan Patent Office, and the entire contents of this application are incorporated herein by reference. incorporated into the application.
当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。
Depending on design requirements and other factors, those skilled in the art may conceive various modifications, combinations, subcombinations, and modifications that fall within the scope of the appended claims and their equivalents. It is understood that
Claims (7)
- 複数の画素を有する撮像素子内の少なくとも1つの所定の回路に用いられるクロック信号に対してスペクトラム拡散を行うスペクトラム拡散回路と、
前記複数の画素に対する水平走査期間を認識し、前記スペクトラム拡散回路によるスペクトラム拡散の拡散周期が、前記水平走査期間に対して所望の周期となるように前記拡散周期を制御する設定信号を出力する制御回路と
を備える
クロック制御回路。 a spread spectrum circuit that spreads the spectrum of a clock signal used in at least one predetermined circuit in an imaging device having a plurality of pixels;
Control for recognizing the horizontal scanning period for the plurality of pixels and outputting a setting signal for controlling the spreading period of the spectrum spread by the spectrum spreading circuit so that the spreading period is a desired period for the horizontal scanning period. A clock control circuit comprising a circuit and a clock control circuit. - 前記所望の周期は、前記水平走査期間と前記拡散周期とが同一となる周期、または前記水平走査期間が前記拡散周期に対して整数倍となる周期である
請求項1に記載のクロック制御回路。 2. The clock control circuit according to claim 1, wherein the desired period is a period in which the horizontal scanning period and the diffusion period are the same, or a period in which the horizontal scanning period is an integral multiple of the diffusion period. - 前記制御回路は、前記水平走査期間の動的な変化を認識し、前記拡散周期が前記水平走査期間の動的な変化に追従して前記所望の周期となるように前記設定信号を出力する
請求項1に記載のクロック制御回路。 The control circuit recognizes a dynamic change in the horizontal scanning period and outputs the setting signal so that the diffusion period follows the dynamic change in the horizontal scanning period and becomes the desired period. Item 2. The clock control circuit according to item 1. - 前記制御回路は、前記水平走査期間のブランキング期間において、前記水平走査期間の動的な変化を認識し、前記水平走査期間の動的な変化に追従して前記設定信号を出力する
請求項3に記載のクロック制御回路。 4. The control circuit recognizes a dynamic change in the horizontal scanning period during a blanking period of the horizontal scanning period, and outputs the setting signal following the dynamic change in the horizontal scanning period. The clock control circuit described in . - 前記制御回路は、前記撮像素子における少なくとも前記複数の画素の走査に関連する回路に用いられるクロック設定信号に基づいて、前記水平走査期間を認識する
請求項1に記載のクロック制御回路。 2. The clock control circuit according to claim 1, wherein the control circuit recognizes the horizontal scanning period based on a clock setting signal used for a circuit related to scanning of at least the plurality of pixels in the imaging element. - 前記制御回路は、外部入力クロック信号に対する前記スペクトラム拡散回路への入力クロック信号の分周数を示す分周設定信号と、前記撮像素子における少なくとも前記複数の画素の走査に関連する回路に用いられるクロック設定信号とに基づいて、前記水平走査期間を認識する
請求項1に記載のクロック制御回路。 The control circuit includes a frequency division setting signal indicating a frequency division number of an input clock signal to the spread spectrum circuit with respect to an externally input clock signal, and a clock used for a circuit related to scanning of at least the plurality of pixels in the imaging device. 2. The clock control circuit according to claim 1, wherein said horizontal scanning period is recognized based on a setting signal. - 複数の画素と、
少なくとも1つの所定の回路と、
前記少なくとも1つの所定の回路に用いられるクロック信号に対してスペクトラム拡散を行うスペクトラム拡散回路と、
前記複数の画素に対する水平走査期間を認識し、前記スペクトラム拡散回路によるスペクトラム拡散の拡散周期が、前記水平走査期間に対して所望の周期となるように前記拡散周期を制御する設定信号を出力する制御回路と
を備える
撮像素子。 a plurality of pixels;
at least one predetermined circuit;
a spread spectrum circuit that spreads the spectrum of a clock signal used in the at least one predetermined circuit;
Control for recognizing the horizontal scanning period for the plurality of pixels and outputting a setting signal for controlling the spreading period of the spectrum spread by the spectrum spreading circuit so that the spreading period is a desired period for the horizontal scanning period. An imaging device comprising a circuit and .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280091358.2A CN118805382A (en) | 2022-02-18 | 2022-12-27 | Clock control circuit and image pickup device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022023816A JP2023120774A (en) | 2022-02-18 | 2022-02-18 | Clock control circuit and imaging element |
JP2022-023816 | 2022-02-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023157487A1 true WO2023157487A1 (en) | 2023-08-24 |
Family
ID=87577953
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/048122 WO2023157487A1 (en) | 2022-02-18 | 2022-12-27 | Clock control circuit, and imaging element |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2023120774A (en) |
CN (1) | CN118805382A (en) |
WO (1) | WO2023157487A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004505565A (en) * | 2000-07-28 | 2004-02-19 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Method and apparatus for spread spectrum clocking of digital video |
JP2017103679A (en) * | 2015-12-03 | 2017-06-08 | 株式会社リコー | Photoelectric conversion element, image reading device, image forming apparatus, and image reading method |
WO2017159122A1 (en) * | 2016-03-16 | 2017-09-21 | 株式会社リコー | Photoelectric conversion device, image reading device, and image forming device |
-
2022
- 2022-02-18 JP JP2022023816A patent/JP2023120774A/en active Pending
- 2022-12-27 CN CN202280091358.2A patent/CN118805382A/en active Pending
- 2022-12-27 WO PCT/JP2022/048122 patent/WO2023157487A1/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004505565A (en) * | 2000-07-28 | 2004-02-19 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Method and apparatus for spread spectrum clocking of digital video |
JP2017103679A (en) * | 2015-12-03 | 2017-06-08 | 株式会社リコー | Photoelectric conversion element, image reading device, image forming apparatus, and image reading method |
WO2017159122A1 (en) * | 2016-03-16 | 2017-09-21 | 株式会社リコー | Photoelectric conversion device, image reading device, and image forming device |
Also Published As
Publication number | Publication date |
---|---|
JP2023120774A (en) | 2023-08-30 |
CN118805382A (en) | 2024-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI399088B (en) | Data processor, solid-state imaging device, imaging device, and electronic apparatus | |
JP4974930B2 (en) | Timing signal generator and image reading apparatus having the same | |
US7742552B1 (en) | Spread spectrum clock generator with controlled delay elements | |
US7696802B2 (en) | Data delay control circuit and method | |
US8723577B2 (en) | Spreading a clock signal | |
US11177793B2 (en) | Clock synthesis circuitry and associated techniques for generating clock signals refreshing display screen content | |
US20120112940A1 (en) | Analog to digital converter | |
US20110205398A1 (en) | Imaging processing system and digital camera | |
US20080136469A1 (en) | Semiconductor integrated circuit device and internal power control system including the same | |
US20100150271A1 (en) | modulated clock, an ic including the modulated clock and a method of providing a modulated clock signal for power control | |
JP6051500B2 (en) | Image reading apparatus and electronic apparatus | |
EP2840778B1 (en) | Spread spectrum clock generation circuit, clock transfer circuit, integrated circuit, and image reading apparatus | |
CN101815178A (en) | Solid-state imaging device, imaging device, and semiconductor device | |
TWI406120B (en) | Spread spectrum circuit | |
WO2023157487A1 (en) | Clock control circuit, and imaging element | |
JPH08228280A (en) | Image signal processing unit for image sensor | |
JP2007043554A (en) | Emi countermeasure method and circuit of electronic circuit device | |
JP2002010144A (en) | Device for driving image pickup element and method therefor and picture processor | |
JP2011055118A (en) | Spread spectrum clock generation device | |
JP2013219442A (en) | Electronic device, image sensor, and electronic camera | |
JP2006238315A (en) | Method of measures and circuit against emi for electronic circuit device | |
JP2006148840A (en) | Semiconductor integrated circuit and electronic component for clock generation | |
JP2005151296A (en) | Image reading apparatus | |
JPH06232744A (en) | Signal processor | |
JP2001298580A (en) | Image pickup device, image processor, and method for driving solid-state image pickup element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22927369 Country of ref document: EP Kind code of ref document: A1 |