JP2006238315A - Method of measures and circuit against emi for electronic circuit device - Google Patents

Method of measures and circuit against emi for electronic circuit device Download PDF

Info

Publication number
JP2006238315A
JP2006238315A JP2005053303A JP2005053303A JP2006238315A JP 2006238315 A JP2006238315 A JP 2006238315A JP 2005053303 A JP2005053303 A JP 2005053303A JP 2005053303 A JP2005053303 A JP 2005053303A JP 2006238315 A JP2006238315 A JP 2006238315A
Authority
JP
Japan
Prior art keywords
asic
power supply
circuit
voltage
countermeasure method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005053303A
Other languages
Japanese (ja)
Inventor
Junnosuke Kataoka
淳之介 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005053303A priority Critical patent/JP2006238315A/en
Publication of JP2006238315A publication Critical patent/JP2006238315A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Logic Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To attain spectrum diffusion of drive frequency of an electronic circuit by a simple method with no use of an SSCG, resulting in a reduced EMI (radiation noise). <P>SOLUTION: Voltage fluctuation inside an ASIC is increased by raising an impedance of a power supply supplied to the ASIC (integrated circuit) for a reduced radiation noise. The signal required to avoid voltage fluctuation among the control signals outputted from the ASIC is received by a logic gate provided outside the ASIC, to stabilize the power supply voltage which drives the gate. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電子回路基板からのEMI(放射ノイズ)を低減させる方法及びその回路に関するものである。   The present invention relates to a method and circuit for reducing EMI (radiated noise) from an electronic circuit board.

従来、電子回路基板からのEMI(放射ノイズ)を低減させる手段として、電子ロジック回路の周波数を変調して分散低減させるためにSSCG(スペクトラム拡散クロックジェネレータ)をシステムクロックに使用する方法があった。また1つのASIC(集積回路)内部に複数の機能ブロックを備えた場合には、高い周波数精度が要求されるブロックにはSSCGオフのクロックを使用する必要がある場合があり、そのためASIC内部でSSCGオンのクロックとSSCGオフのクロックをブロックごとに使い分けているのが一般的である。   Conventionally, as means for reducing EMI (radiated noise) from an electronic circuit board, there has been a method of using a spread spectrum clock generator (SSCG) as a system clock in order to reduce the dispersion by modulating the frequency of the electronic logic circuit. In addition, when a plurality of functional blocks are provided in one ASIC (integrated circuit), it may be necessary to use an SSCG-off clock for a block that requires high frequency accuracy. Generally, an on clock and an SSCG off clock are used separately for each block.

また、リップルノイズや電圧変動に弱いブロックや、逆にリップルノイズや電圧変動の発生源となるブロックが存在しているために、該機能ブロックごとにそれぞれ別の電源端子を設け、それぞれ別の電源を供給する構成が一般的である。   Also, because there are blocks that are vulnerable to ripple noise and voltage fluctuations, and conversely, blocks that are sources of ripple noise and voltage fluctuations, a separate power supply terminal is provided for each functional block. The structure which supplies is common.

又、別の従来例としては、特許文献1及び特許文献2をあげることが出来る。
特開2000−049429号公報 特開2003−332706号公報
As another conventional example, Patent Literature 1 and Patent Literature 2 can be cited.
JP 2000-049429 A Japanese Patent Laid-Open No. 2003-332706

しかしながら上記従来技術では、SSCG(スペクトラム拡散クロックジェネレータ)をシステムクロックに使用するためにコストアップの要因となっていた。また1つのASIC(集積回路)内部に複数の機能ブロックを備えた場合には、高い周波数精度が要求されるブロックにはSSCGオフのクロックを使用する必要があり、そのためASIC内部でSSCGオンのクロックとSSCGオフのクロックをブロックごとに使い分ける必要があるため回路構成が複雑になっていた。   However, in the above-described prior art, SSCG (spread spectrum clock generator) is used as a system clock, which causes an increase in cost. In addition, when a plurality of functional blocks are provided in one ASIC (integrated circuit), it is necessary to use an SSCG-off clock for a block that requires high frequency accuracy. Therefore, an SSCG-on clock is used inside the ASIC. And the SSCG off clock must be used separately for each block, and the circuit configuration is complicated.

また、リップルノイズや電圧変動に弱いブロックや、逆にリップルノイズや電圧変動の発生源となるブロックが存在しているために、該機能ブロックごとにそれぞれ別の電源端子を設け、それぞれ別の電源を供給する必要が生じていた。   Also, because there are blocks that are vulnerable to ripple noise and voltage fluctuations, and conversely, blocks that are sources of ripple noise and voltage fluctuations, a separate power supply terminal is provided for each functional block. There was a need to supply.

上述した課題を解決するために本発明は、ASIC(集積回路)を実装する電子回路基板において、ASICの電源端子にインピーダンスの高い電源を供給することにより、ASIC内部の電源ライン及びロジック回路信号の電圧に変動を発生させ、ASIC内部の電源ライン及びロジック回路信号の電圧変動により動作周波数の安定性を低下させ、回路動作周波数のジッタ−成分を増加させ、また信号の状態遷移時間を長くさせ、それによってASIC及び電子回路基板からのEMI(放射ノイズ)を低減させることを特徴の1つとしている。   In order to solve the above-described problems, the present invention provides an electronic circuit board on which an ASIC (integrated circuit) is mounted, by supplying a power source having high impedance to a power terminal of the ASIC, thereby providing a power line and logic circuit signal inside the ASIC. Generate fluctuations in the voltage, decrease the stability of the operating frequency due to voltage fluctuations in the power line and logic circuit signal inside the ASIC, increase the jitter component of the circuit operating frequency, and lengthen the signal state transition time, Accordingly, one of the features is to reduce EMI (radiated noise) from the ASIC and the electronic circuit board.

また、ASIC(集積回路)内部の電圧変動が大きくてもASIC(集積回路)から出力される信号の電圧精度を高めるために、ASICの外部にロジックゲート素子を設け、ASICから出力される信号を一旦該ロジックゲートで受けてから出力する構成とし、また該ロジックゲートの駆動電源の電圧変動値は、該ASICを駆動する電源の電圧変動値よりも小さくすることをもう1つの特徴としている。   In order to increase the voltage accuracy of the signal output from the ASIC (integrated circuit) even if the voltage fluctuation inside the ASIC (integrated circuit) is large, a logic gate element is provided outside the ASIC, and the signal output from the ASIC is Another feature is that the voltage variation value of the power supply for driving the ASIC is made smaller than the voltage variation value of the power supply for driving the ASIC.

本発明によって、SSCGを用いる事無く簡易的な方法で電子回路の駆動周波数のスペクトラム拡散を図ることができ、その結果EMI(放射ノイズ)の低減が可能となる。またASIC内部で機能ブロックごとの駆動電源端子が分離できていなかった場合でも、外部にロジックゲート素子を追加することにより必要な信号のみを選択的に電源電圧の安定化を図ることができる。   According to the present invention, spectrum spreading of the driving frequency of an electronic circuit can be achieved by a simple method without using SSCG, and as a result, EMI (radiated noise) can be reduced. Further, even if the drive power supply terminals for each functional block cannot be separated inside the ASIC, the power supply voltage can be selectively stabilized only for necessary signals by adding a logic gate element to the outside.

以下、図面を参照して本発明の実施の形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明の実施の形態の一例を示す画像形成装置の電子回路のブロック図である。図1において10はシステムチップであり、CPUコア部、USB−I/F部、メモリコントロール部、I/O部、等、各機能ブロックからなる。該各機能ブロックごとにそれぞれ電源供給端子Vdd1,Vdd2,Vdd3,Vdd4を備える。Vdd1はCPUコア部の電源供給端子であり、通常低電圧である1.5Vで駆動する場合が多い。またCPUコア部の動作は高速であり、消費電流も大きいのでVdd1にはある程度の低インピーダンスと供給能力が必要とされる。従って通常はVdd1に接続されるパスコンの容量は0.1uFかそれ以上が使用される。また高調波ノイズの発生源となるので、直列に挿入されるFBCは検討の上選択する必要がある。Vdd2はUSB−I/F部の電源供給端子であり、接続されるパスコンの容量やインピーダンス、また基板のパターンには細心の注意を払う必要がる。また高調波ノイズの発生源となるので、直列に挿入されるFBCの選択にも細心の注意が必要である。Vdd3はメモリ制御部の電源供給端子であり、SDRAMが接続される場合は3.3Vである場合が多い。メモリ制御部も高速動作であり消費電流も大きく放射ノイズの発生源となる。通常接続されるパスコンの容量は0.1uFかそれ以上が使用される。また高調波ノイズの発生源となるので、直列に挿入されるFBCの選択にも細心の注意が必要である。Vdd4はI/O部の電源供給端子であり、電源電圧は3.3Vであることが多い。通常CPUコア部やメモリコントロール部と比べると低速動作であり、そのため消費電流も少ない。しかし高い電圧精度を要求するI/O信号がある場合がある。   FIG. 1 is a block diagram of an electronic circuit of an image forming apparatus showing an example of an embodiment of the present invention. In FIG. 1, reference numeral 10 denotes a system chip, which includes functional blocks such as a CPU core unit, a USB-I / F unit, a memory control unit, and an I / O unit. Each functional block includes power supply terminals Vdd1, Vdd2, Vdd3, and Vdd4. Vdd1 is a power supply terminal of the CPU core section, and is usually driven at a low voltage of 1.5V. Further, since the operation of the CPU core section is fast and the current consumption is large, Vdd1 needs a certain low impedance and supply capability. Therefore, normally, the capacity of the bypass capacitor connected to Vdd1 is 0.1 uF or more. Moreover, since it becomes a generation source of harmonic noise, it is necessary to select FBC inserted in series after examination. Vdd2 is a power supply terminal of the USB-I / F unit, and it is necessary to pay close attention to the capacity and impedance of the connected bypass capacitor and the pattern of the substrate. In addition, since it becomes a generation source of harmonic noise, careful attention is also required for selection of FBC inserted in series. Vdd3 is a power supply terminal of the memory control unit, and is often 3.3V when an SDRAM is connected. The memory control unit also operates at high speed, consumes a large amount of current, and is a source of radiation noise. Usually, the capacity of the bypass capacitor to be connected is 0.1 uF or more. In addition, since it becomes a generation source of harmonic noise, careful attention is also required for selection of FBC inserted in series. Vdd4 is a power supply terminal of the I / O unit, and the power supply voltage is often 3.3V. Usually, it operates at a lower speed than the CPU core unit and memory control unit, and therefore consumes less current. However, there may be an I / O signal that requires high voltage accuracy.

ここで本発明の特徴である供給電源の高インピーダンス化のために、パスコンC1,C2,C3,C4,は通常必要とされる容量より少なめである0.1uF以下の容量を選択する。その結果各電源端子電圧を測定すると、40mVから100mV程度のリップルが観測される。このリップルは内部動作による消費電流の変動に供給側が追従しきれずに電圧変動を生じさせるものである。電圧変動が生じるということは、内部のロジック動作において状態遷移時間が長くなり立上がり立下りが鈍って高調波成分が低減される事となり、放射ノイズが低減される。また位相遅れにより動作周波数のスペクトラム拡散が生じることも放射ノイズ低減に寄与する。しかしながらここで、内部のロジック動作電圧が変動するということはAC特性のマージン減少につながり、また外部静電やACラインノイズや雷サージなどの外来ノイズにも弱くなるという欠点もあるので、パスコンの容量及びその結果生ずる電圧変動量は慎重に決定する必要がある。電子デバイスの性質は温度依存性があるので温度変化も考慮し、デバイスの個体差も考慮する必要がある。また電源端子部での電圧変動測定値よりもデバイス内部の電圧変動の方が大きくなるので注意が必要である。   Here, in order to increase the impedance of the power supply, which is a feature of the present invention, the capacitance of 0.1 μF or less, which is smaller than the normally required capacitance, is selected for the bypass capacitors C1, C2, C3, C4. As a result, when each power supply terminal voltage is measured, a ripple of about 40 mV to 100 mV is observed. This ripple causes the voltage fluctuation without the supply side following the fluctuation of the consumption current due to the internal operation. The occurrence of voltage fluctuation means that the state transition time becomes longer in the internal logic operation, the rise and fall are dull, the harmonic components are reduced, and the radiation noise is reduced. Further, the spread of the operating frequency due to the phase delay also contributes to the reduction of radiation noise. However, fluctuations in the internal logic operating voltage lead to a reduction in the margin of AC characteristics, and also have the disadvantage of being weak against external static electricity, AC line noise, and external noise such as lightning surges. The capacity and the resulting voltage fluctuation must be carefully determined. Since the properties of electronic devices are temperature dependent, it is necessary to consider temperature changes and individual differences between devices. Note that the voltage fluctuation inside the device is larger than the measured voltage fluctuation at the power supply terminal.

20はシステムチップの外部に設け、I/O部から出力される制御信号に対して挿入するロジックゲート素子である。実施例1では単なるORゲートで片側をLに固定する程度のものである。本発明においては該ロジックゲート素子の挿入は駆動能力アップを目的としたバッファー挿入ではなく、あくまで信号の電圧精度アップを目的としたものであるので、ASICの出力バッファーの駆動能力よりも高い駆動能力のあるロジックゲート素子を使用するとは限らない。   A logic gate element 20 is provided outside the system chip and is inserted with respect to a control signal output from the I / O unit. In the first embodiment, one side is fixed to L with a simple OR gate. In the present invention, since the insertion of the logic gate element is not for the purpose of increasing the driving capability but for the purpose of improving the signal voltage accuracy, the driving capability higher than the driving capability of the output buffer of the ASIC is required. There is no guarantee that a certain logic gate element is used.

実施例1では一例としてCCD制御信号に対してロジックゲート素子を挿入した。Vdd5が該ロジックゲート素子の電源供給端子であり、出力信号の電圧安定化のためにVdd5とGND間に接続されるパスコンC5の容量は1uFから10uFと大きくする。またVdd5だけ独立してレギュレーターを設けて電源を生成しても良い。CCD制御信号はデジタル信号であるが、位相の変動や電圧の変動に大変大きく影響を受ける信号である。CCD制御信号は実施例1の装置構成においては500mm程度と長く引き回され、ケーブルの容量成分が大きいために信号がかなり鈍ってしまう。   In the first embodiment, as an example, a logic gate element is inserted for the CCD control signal. Vdd5 is a power supply terminal of the logic gate element, and the capacitance of the bypass capacitor C5 connected between Vdd5 and GND is increased from 1 uF to 10 uF in order to stabilize the voltage of the output signal. Alternatively, a power source may be generated by providing a regulator independently for Vdd5. The CCD control signal is a digital signal, but is a signal that is greatly affected by phase fluctuations and voltage fluctuations. The CCD control signal is drawn as long as about 500 mm in the apparatus configuration of the first embodiment, and the signal is considerably dull due to the large capacitance component of the cable.

30がCCDユニットである。図2はCCD制御信号の電圧安定化の効果を示す図である。図2の201はCCD制御信号の1つであるclmp信号のASIC(10)の出力端子の内部の出力バッファー前の波形である。ASICの出力は方形波であるが20mVから100mV程度の電圧変動がある。   Reference numeral 30 denotes a CCD unit. FIG. 2 is a diagram showing the effect of stabilizing the voltage of the CCD control signal. Reference numeral 201 in FIG. 2 denotes a waveform before the output buffer inside the output terminal of the ASIC (10) of the clmp signal which is one of the CCD control signals. The output of the ASIC is a square wave, but there is a voltage fluctuation of about 20 mV to 100 mV.

202はロジックゲート素子(20)を設けなかった場合のCCD基板の入力端子の波形である。ASICの出力は方形波であるがCCD基板との間の接続ケーブルは約500mmと長く容量成分が大きいために立ち上がり立下りがかなり鈍ってしまう。201のASICの出力信号の電圧降下がそのまま202のCCD基板の入力端子位置の電圧降下となる。203はCCD基板上のバッファー通過後の波形であり、202のCCD基板の入力端子の電圧降下がそのまま203のCCD基板上のバッファー通過後の信号の遅延となる事がわかる。   Reference numeral 202 denotes a waveform of the input terminal of the CCD substrate when the logic gate element (20) is not provided. The output of the ASIC is a square wave, but the connecting cable to the CCD substrate is about 500 mm long and has a large capacitance component, so the rise and fall are considerably slow. The voltage drop of the output signal of the ASIC 201 becomes the voltage drop of the input terminal position of the CCD substrate 202 as it is. Reference numeral 203 denotes a waveform after passing through the buffer on the CCD substrate, and it can be seen that a voltage drop at the input terminal of the CCD substrate at 202 directly becomes a delay of the signal after passing through the buffer on the CCD substrate at 203.

図2の204はCCD制御信号の1つであるclmp信号のASIC(10)の出力端子の後段にロジックゲート素子(20)を設けた場合の波形イメージである。ASICの出力は方形波でロジックゲート素子(20)によって20mVから100mV程度の電圧変動がなくなる。CCD基板との間の接続ケーブルは約500mmと長く容量成分が大きいために立ち上がり立下りがかなり鈍ってしまう。205はCCD基板の入力端子の波形であり、204のロジックゲート素子(20)の出力信号の電圧降下が無いので205のCCD基板の入力端子位置の電圧降下は発生しない。206はCCD基板上のバッファー通過後の波形であり、205のCCD基板の入力端子位置の電圧降下が無いので206のCCD基板上のバッファー通過後の信号の遅延は発生しない。   Reference numeral 204 in FIG. 2 represents a waveform image when a logic gate element (20) is provided at the subsequent stage of the output terminal of the ASIC (10) of the clmp signal which is one of the CCD control signals. The output of the ASIC is a square wave, and the voltage fluctuation of about 20 mV to 100 mV is eliminated by the logic gate element (20). Since the connection cable between the CCD substrate and the capacitance substrate is as long as about 500 mm and has a large capacitance component, the rise and fall are considerably slow. Reference numeral 205 denotes a waveform of the input terminal of the CCD substrate. Since there is no voltage drop of the output signal of the logic gate element (20) 204, a voltage drop at the input terminal position of the CCD substrate 205 does not occur. Reference numeral 206 denotes a waveform after passing through the buffer on the CCD substrate. Since there is no voltage drop at the input terminal position of the 205 CCD substrate, no signal delay occurs after passing through the buffer on the 206 CCD substrate.

図3は本発明実施例1のASICの電源端子の電圧を示す図であり、301はVdd1〜Vdd4の電源端子の電圧変動を表す図である。ASIC内部の動作に応じて複数の周期で電圧変動が生じているのがわかる。電圧変動幅は20mV〜100mV程度である。302は従来例の電源端子の電圧を示す図であり、周期性を持った電圧変動は発生しないようにしてあり、高周波のランダムノイズか電源自体のリップルが多少見られる程度である。また302は本発明実施例1のロジックゲート素子20に供給する電源であるVdd5の電圧変動を表す図でもある。本件の特徴であるASICに供給する電源電圧の変動よりも、ロジックゲート素子の電源電圧の変動の方が小さくなっていることを示すものである。   FIG. 3 is a diagram showing the voltage at the power supply terminal of the ASIC according to the first embodiment of the present invention, and 301 is a diagram showing voltage fluctuations at the power supply terminals Vdd1 to Vdd4. It can be seen that voltage fluctuations occur in a plurality of cycles according to the operation inside the ASIC. The voltage fluctuation range is about 20 mV to 100 mV. Reference numeral 302 is a diagram showing the voltage at the power supply terminal of the conventional example, and voltage fluctuations with periodicity are prevented from occurring, so that high-frequency random noise or a ripple of the power supply itself is somewhat observed. Reference numeral 302 denotes a voltage variation of Vdd5 which is a power source supplied to the logic gate element 20 according to the first embodiment of the present invention. This shows that the fluctuation of the power supply voltage of the logic gate element is smaller than the fluctuation of the power supply voltage supplied to the ASIC, which is the feature of the present case.

本発明実施例の画像形成装置の電子回路のブロック図である。1 is a block diagram of an electronic circuit of an image forming apparatus according to an embodiment of the present invention. 本発明実施例のロジックゲート素子を設けなかった場合のI/O制御信号波形と、ロジックゲート素子を設けた場合のI/O制御信号波形を示す図である。It is a figure which shows the I / O control signal waveform at the time of not providing the logic gate element of this invention Example, and the I / O control signal waveform at the time of providing a logic gate element. 本発明のASIC及びロジックゲート素子の電源端子の電圧波形を示す図である。It is a figure which shows the voltage waveform of the power supply terminal of ASIC of this invention, and a logic gate element.

符号の説明Explanation of symbols

10 ASIC(集積回路)
20 ロジックゲート素子
30 CCDユニット
10 ASIC (integrated circuit)
20 logic gate element 30 CCD unit

Claims (6)

ASIC(集積回路)を実装する電子回路基板において、ASICの電源端子にインピーダンスの高い電源を供給することにより、ASIC内部の電源ライン及びロジック回路信号の電圧に変動を発生させ、
ASIC内部の電源ライン及びロジック回路信号の電圧変動により動作周波数の安定性を低下させ、ASIC内部回路動作周波数のジッタ−成分を増加させ、又ASIC内部回路動作の立ち上がり立ち下りを鈍らせる事により、
ASIC及び電子回路基板からのEMI(放射ノイズ)を低減させることを特徴としたEMI対策方法及び回路。
In an electronic circuit board on which an ASIC (integrated circuit) is mounted, by supplying power with high impedance to the power supply terminal of the ASIC, the voltage of the power line inside the ASIC and the logic circuit signal is changed,
By reducing the stability of the operating frequency due to voltage fluctuations in the power line and logic circuit signal inside the ASIC, increasing the jitter component of the ASIC internal circuit operating frequency, and slowing the rise and fall of the ASIC internal circuit operation,
EMI countermeasure method and circuit characterized by reducing EMI (radiated noise) from ASIC and electronic circuit board.
複数の電源端子を有するASIC(集積回路)を実装する電子回路基板において、ASICの各電源端子毎に異なるインピーダンスで電源を供給することにより、ASIC内部の各回路ブロック毎に異なる電源電圧の変動を発生させる事を特徴とした請求項1に記載のEMI対策方法及び回路。   In an electronic circuit board on which an ASIC (integrated circuit) having a plurality of power supply terminals is mounted, by supplying power with a different impedance for each power supply terminal of the ASIC, fluctuations in power supply voltage that differ for each circuit block inside the ASIC The EMI countermeasure method and circuit according to claim 1, wherein the EMI countermeasure method is generated. ASIC(集積回路)を実装する電子回路基板において、ASICの電源端子に供給する電源ラインのインピーダンスを高めるために、電源供給ラインに直列で直流抵抗または交流抵抗を持つ素子を挿入し、また電源ラインとGND間に挿入するコンデンサの容量を電源電圧安定化に必要な値より小さく設定する事を特徴とした請求項1に記載のEMI対策方法及び回路。   In an electronic circuit board on which an ASIC (integrated circuit) is mounted, in order to increase the impedance of the power supply line supplied to the power supply terminal of the ASIC, an element having DC resistance or AC resistance is inserted in series with the power supply line, and the power supply line 2. The EMI countermeasure method and circuit according to claim 1, wherein a capacitance of a capacitor inserted between the first and the second GND is set smaller than a value necessary for stabilizing the power supply voltage. ASIC(集積回路)から出力される信号の電圧精度を高めるために、ASICの外部にロジックゲート素子を設け、ASICから出力される信号を一旦該ロジックゲートで受けてから出力する構成とし、該ロジックゲートの駆動電源の電圧変動値は、該ASICを駆動する電源の電圧変動値よりも小さくすることを特徴とした請求項1に記載のEMI対策方法及び回路。   In order to increase the voltage accuracy of a signal output from an ASIC (integrated circuit), a logic gate element is provided outside the ASIC, and a signal output from the ASIC is received once by the logic gate and then output. 2. The EMI countermeasure method and circuit according to claim 1, wherein the voltage fluctuation value of the power source for driving the gate is made smaller than the voltage fluctuation value of the power source for driving the ASIC. 請求項1において、ASIC内部の電源ライン及びロジック回路信号に生じさせる電圧変動値は10mVから200mV程度である事を特徴としたEMI対策方法及び回路。   2. The EMI countermeasure method and circuit according to claim 1, wherein a voltage fluctuation value generated in a power supply line and a logic circuit signal in the ASIC is about 10 mV to 200 mV. 請求項1において、ASIC内部の電源ライン及びロジック回路信号に生じさせる回路動作周波数の偏差は数ppmから数百ppm程度である事を特徴としたEMI対策方法及び回路。   2. The EMI countermeasure method and circuit according to claim 1, wherein the deviation of the circuit operating frequency generated in the power line and logic circuit signal in the ASIC is about several ppm to several hundred ppm.
JP2005053303A 2005-02-28 2005-02-28 Method of measures and circuit against emi for electronic circuit device Withdrawn JP2006238315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005053303A JP2006238315A (en) 2005-02-28 2005-02-28 Method of measures and circuit against emi for electronic circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005053303A JP2006238315A (en) 2005-02-28 2005-02-28 Method of measures and circuit against emi for electronic circuit device

Publications (1)

Publication Number Publication Date
JP2006238315A true JP2006238315A (en) 2006-09-07

Family

ID=37045440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005053303A Withdrawn JP2006238315A (en) 2005-02-28 2005-02-28 Method of measures and circuit against emi for electronic circuit device

Country Status (1)

Country Link
JP (1) JP2006238315A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008102705A (en) * 2006-10-18 2008-05-01 Canon Inc Memory access control circuit and its method
US7755951B2 (en) 2006-09-01 2010-07-13 Canon Kabushiki Kaisha Data output apparatus, memory system, data output method, and data processing method
JP2013224842A (en) * 2012-04-20 2013-10-31 Panasonic Corp Ic peripheral circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7755951B2 (en) 2006-09-01 2010-07-13 Canon Kabushiki Kaisha Data output apparatus, memory system, data output method, and data processing method
JP2008102705A (en) * 2006-10-18 2008-05-01 Canon Inc Memory access control circuit and its method
JP2013224842A (en) * 2012-04-20 2013-10-31 Panasonic Corp Ic peripheral circuit

Similar Documents

Publication Publication Date Title
JP3759105B2 (en) Clock generator especially for USB devices
US10847193B2 (en) Phase control between regulator outputs
CN109062391B (en) Power-on time sequence control circuit and electronic equipment
US9312757B2 (en) Output voltage adjustable charge pump
KR100852188B1 (en) System and method of dynamic voltage scaling
JP5640562B2 (en) Multi-output power supply
JP4960179B2 (en) Data processing apparatus, power supply voltage generation circuit, and power supply voltage generation method thereof
JP2007043554A (en) Emi countermeasure method and circuit of electronic circuit device
JP2015049812A (en) Semiconductor device and current amount control method
CN104335135A (en) Maximum current throttling
JP2006238315A (en) Method of measures and circuit against emi for electronic circuit device
JP2006101254A (en) Power source noise reduction circuit and reduction method thereof
JP4603903B2 (en) Load variation compensation circuit, electronic device, test apparatus, and timing generation circuit
US9075590B2 (en) Voltage identification definition reference voltage generation circuit and boot voltage generating method thereof
CN116529692B (en) Computing device and driving method thereof
JP4576862B2 (en) Integrated circuit device
US7221206B2 (en) Integrated circuit device having clock signal output circuit
JP2014057476A (en) Switching regulator and its control circuit, and electronic apparatus
US9459638B2 (en) Internal voltage generation circuit for adjusting internal voltage signal based on received bulk voltage signal, an upper limit reference voltage signal, and a lower limit reference voltage signal
US8183891B2 (en) Semiconductor device
KR100813550B1 (en) Circuit for generating reference voltage of semiconductor memory apparatus
TW202007044A (en) Device and method for over-current protection
US9600024B2 (en) Control method of clock gating for dithering in the clock signal to mitigate voltage transients
CN101923379A (en) Reset voltage generation circuit
JP6437333B2 (en) Semiconductor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080513