WO2023155667A1 - 冰箱及其电解除氧装置 - Google Patents

冰箱及其电解除氧装置 Download PDF

Info

Publication number
WO2023155667A1
WO2023155667A1 PCT/CN2023/073574 CN2023073574W WO2023155667A1 WO 2023155667 A1 WO2023155667 A1 WO 2023155667A1 CN 2023073574 W CN2023073574 W CN 2023073574W WO 2023155667 A1 WO2023155667 A1 WO 2023155667A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolytic
reaction space
reactor
main body
body plate
Prior art date
Application number
PCT/CN2023/073574
Other languages
English (en)
French (fr)
Inventor
黄璐璐
费斌
苗建林
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔电冰箱有限公司
Publication of WO2023155667A1 publication Critical patent/WO2023155667A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/34Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
    • A23L3/3409Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of gases, e.g. fumigation; Compositions or apparatus therefor
    • A23L3/3445Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of gases, e.g. fumigation; Compositions or apparatus therefor in a controlled atmosphere comprising other gases in addition to CO2, N2, O2 or H2O
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/12Arrangements of compartments additional to cooling compartments; Combinations of refrigerators with other equipment, e.g. stove
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D25/00Charging, supporting, and discharging the articles to be cooled
    • F25D25/02Charging, supporting, and discharging the articles to be cooled by shelves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D25/00Charging, supporting, and discharging the articles to be cooled
    • F25D25/02Charging, supporting, and discharging the articles to be cooled by shelves
    • F25D25/024Slidable shelves
    • F25D25/025Drawers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the invention relates to the field of freshness preservation, in particular to a refrigerator and an electrolytic deoxygenation device thereof.
  • the electrochemical reaction device used to reduce the oxygen inside the refrigerator through electrochemical reaction it generally needs to cooperate with negative and positive electrode plates.
  • the negative and positive electrode plates are arranged at intervals inside the electrochemical reaction device, so as to generate corresponding chemical reactions on the surfaces of the respective electrode plates.
  • the negative and positive electrode plates are installed in the electrochemical reaction device at intervals.
  • this method is not only complicated in process, but also has poor fixing effect, which easily leads to changes in the interval between the two, thereby affecting the reaction.
  • An object of the present invention is to overcome at least one defect in the prior art, and provide a refrigerator and an electrolytic deoxygenation device thereof.
  • a further object of the present invention is to keep the anode plate and the cathode membrane assembly in a stable interval.
  • Another further object of the present invention is to firmly fix the anode plate and the reactor, and cancel other parts for fixing the anode plate, simplify the production process and improve production efficiency.
  • the present invention provides an electrolytic deoxygenation device, comprising: a reactor, one side of which forms at least one reaction space open to the front; at least one electrolytic deoxygenation unit, and the electrolytic deoxygenation unit is assembled in the reaction space one by one , used for consuming oxygen outside the electrolysis device through electrochemical reaction under the action of electrolysis voltage; wherein each electrolysis unit also includes an anode plate, the anode plate has a main body plate, and the main body plate is fixed on the rear wall of the reaction space .
  • a clamping wall extending along its circumference is formed in the reaction space, and the clamping wall is used to cooperate with the rear wall of the reaction space to clamp the edge of the main body plate to fix the main body plate so that the middle part of the main body plate is exposed to reaction space.
  • the anode plate and the reactor are integrally injection molded.
  • the anode plate further includes: an anode contact plate, formed on the top edge of the main body plate, and protruding from the reaction space, so as to be connected to an external power supply.
  • the anode contact piece includes: a first section, the first end of which is formed on the main body plate the top edge of the first section and extend upwards into the interior of the reactor; a second section whose first end is formed at the second end of the first section and extends forward so that its second end extends from the reactor protruding from the inside.
  • the reactor is provided with a groove open to the front at the top of the reaction space.
  • the groove is used to avoid the anode contact piece so that the anode contact piece protrudes reaction space.
  • each electrolytic deoxygenation unit further includes: a cathode membrane assembly disposed at an opening of the reaction space at a distance from the main plate, so as to seal the reaction space.
  • the cathode membrane assembly includes: a fixed frame, fixed to the opening of the reaction space, and the middle part is a hollow area, and the inner side of the fixed frame is provided with an installation groove along the circumferential direction; the cathode membrane group, the periphery of the cathode membrane group is fixed on Fit into the groove so that it can be fixed in the center of the fixed frame.
  • the reactor is formed with a first connecting rib at the opening of the reaction space; the side of the fixed frame facing the reaction space is formed with a second connecting rib adjoining the first connecting rib to seal the reaction space.
  • the present invention also provides a refrigerator, comprising the electrolytic deoxygenation device according to any one of the above.
  • the electrolytic oxygen removal device of the present invention since the main body plate of the anode plate is directly fixed on the rear wall of the reaction space, the position of the main body plate of the anode plate relative to the overall reaction space is in a stable state, and when the cathode membrane assembly is installed in the reaction space At the opening of the space, the gap between the two forms a stable interval.
  • the fixed reactor and the anode plate are fixed by integral injection molding, the clamping wall and the rear wall of the reaction space jointly clamp the main body plate of the anode plate, and together connect the anode plate of the anode plate Also fixed in the reactor.
  • This method not only facilitates fixing the anode plate and the reactor, cancels other parts for fixing the anode plate, but also simplifies the production process, improves production efficiency, and is convenient for mass production.
  • FIG. 1 is a schematic diagram of a refrigerator according to an embodiment of the present invention
  • Fig. 2 is a schematic diagram of an electrolytic deoxygenation device of a refrigerator according to an embodiment of the present invention
  • Fig. 3 is an exploded view of an electrolytic deoxidizer of a refrigerator according to an embodiment of the present invention.
  • Fig. 4 is the front view of the electrolytic deoxygenation device of the refrigerator according to one embodiment of the present invention.
  • Fig. 5 is a schematic sectional view taken along line A-A in Fig. 4;
  • Fig. 6 is a schematic cross-sectional view taken along the section line B-B in Fig. 4;
  • FIG. 7 is a schematic diagram of an anode plate in an electrolytic deoxidizer according to an embodiment of the present invention.
  • Fig. 8 is a front view of an electrolytic deoxygenation device of a refrigerator according to another embodiment of the present invention.
  • Fig. 9 is a schematic sectional view taken along line C-C in Fig. 8;
  • Fig. 10 is a schematic cross-sectional view taken along the section line D-D in Fig. 8;
  • Fig. 11 is a schematic diagram of a reactor in an electrolytic deoxygenation device according to another embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a refrigerator according to an embodiment of the present invention.
  • the present invention firstly provides a refrigerator 1 , which may generally include a box body 10 and a door body 20 .
  • the box body 10 may include an outer shell and a plurality of liners, and the outer shell is located on the outermost side of the overall refrigerator 1 to protect the entire refrigerator 1 .
  • a plurality of inner tanks are wrapped by the outer shell, and the space between them and the outer shell is filled with thermal insulation material (forming a foam layer), so as to reduce the outward heat dissipation of the inner tanks.
  • Each liner can define a storage compartment that is open forward, and the storage compartment can be configured as a refrigerator, freezer, temperature-changing room, etc. The number and functions of the specific storage compartments can be based on prior needs to configure.
  • the door body 20 is movably arranged in front of the inner tank to open and close the storage compartment of the inner tank.
  • the door body 20 can be set on one side of the front of the box body 10 in a hinged manner, and can be opened and closed by pivoting. Storage room.
  • the refrigerator 1 can also include a drawer assembly 30, and the drawer assembly 30 can also include a drawer body, which is retractably arranged in the box body 10, so that users can take items.
  • Fig. 2 is a schematic block diagram of a refrigerator 1 according to an embodiment of the present invention.
  • the refrigerator 1 can also include an electrolytic deoxygenation device 40, and the electrolytic deoxygenation device 40 can be set Put it in the inner tank or the drawer assembly 30 to separate the oxygen in the air flowing through it through electrolytic reaction, and keep the nitrogen in the storage compartment of the inner tank or the drawer body, so as to realize the preservation and storage of food.
  • the electrolytic deoxygenation device 40 can be arranged on the rear wall, side wall, top wall, bottom wall, etc. wall etc. In a word, those skilled in the art can install the electrolytic deoxygenation device 40 according to the actual situation after knowing the technical solution of this embodiment, which will not be listed here.
  • Fig. 2 is a schematic diagram of the electrolytic deoxygenation device 40 of the refrigerator 1 according to one embodiment of the present invention
  • Fig. 3 is an exploded view of the electrolytic deoxygenation device 40 of the refrigerator 1 according to one embodiment of the present invention
  • Fig. 4 is a front view of the electrolytic deoxidizer 40 of the refrigerator 1 according to an embodiment of the present invention
  • Fig. 5 is a schematic cross-sectional view taken along the section line A-A in Fig. 4
  • Fig. 6 is a schematic section view taken along the section line B-B in Fig. 4 Cutaway schematic cross-sectional view.
  • the electrolytic deoxygenation device 40 may further include a reactor 100 and at least one electrolytic deoxygenation unit 200 .
  • One side of the reactor 100 forms at least one reaction space 110 open to the front, and the electrolytic deoxygenation unit 200 is assembled in the reaction space 110 one by one, and is used to consume the external oxygen of the electrolytic deoxygenation device 40 through an electrochemical reaction under the action of the electrolytic voltage.
  • the reactor 100 can be flat, and its wider side is recessed to form one or more reaction spaces 110, and the reaction spaces 110 can be used to contain the electrolytic solution (such as sodium hydroxide solution, etc.) for the electrolysis reaction.
  • the electrolytic solution such as sodium hydroxide solution, etc.
  • each electrolytic deoxygenation unit 200 may also include a cathode membrane assembly 220, and the cathode membrane assembly 220 and the main body plate 212 are spaced apart from the opening of the reaction space 110 to seal the reaction space. Space 110.
  • the cathode membrane assembly 220 is used to consume oxygen through an electrochemical reaction under the action of the electrolysis voltage.
  • the anode plate 210 is used to provide reactants (for example, electrons) to the cathode membrane assembly 220 through an electrochemical reaction under the action of an electrolysis voltage and generate oxygen.
  • the oxygen in the air can undergo a reduction reaction at the cathode membrane assembly 220 , namely: O 2 +2H 2 O+4e ⁇ ⁇ 4OH ⁇ .
  • the OH- generated by the cathode membrane assembly 220 can undergo an oxidation reaction at the anode plate 210 to generate oxygen, namely: 4OH ⁇ ⁇ O 2 +2H 2 O+4e ⁇ .
  • the inventor realized that a certain distance needs to be firmly maintained between the cathode membrane assembly 220 and the main body plate 212 of the anode plate 210, so as to avoid low reaction efficiency caused by too large a distance, and avoid If the distance is too small, the oxygen generated by the anode plate 210 cannot be discharged in time, which affects the reaction process.
  • the main body plate 212 of the anode plate 210 is directly fixed on the rear wall 110a of the reaction space 110, that is to say, the position of the main body plate 212 of the anode plate 210 relative to the reaction space 110 as a whole is in a stable state, and
  • the cathode membrane assembly 220 is installed at the opening of the reaction space 110, the interval between the two forms a stable interval, and this method also omits the parts for installing the anode plate 210 in the reaction space 110, expanding The reaction space 110 is enlarged, and the assembly process is simplified.
  • the anode plate 210 and the reactor 100 can also be integrally formed by injection molding, so that the main body plate 212 of the anode plate 210 is firmly fixed on the rear wall of the reaction space 110 110a, and improve production efficiency.
  • the reaction space 110 is formed with a clamping wall 112 extending along its circumference.
  • the clamping wall 112 is used to cooperate with the rear wall 110a of the reaction space 110 to clamp the edge of the main body plate 212 to fix the main body plate 212 so that the main body A central portion of the plate 212 is exposed to the reaction space 110 .
  • injection molding firstly make an injection mold according to the shape of the reactor 100, then fix the anode plate 210 on the position of the rear wall 110a of the reactor 100, and finally inject liquid plastic raw materials (such as polypropylene, etc.) into the injection mold, and cool After shaping, the mold is opened to eject the assembly formed by the anode plate 210 and the reactor 100 .
  • liquid plastic raw materials such as polypropylene, etc.
  • design of the clamping wall 112 at the rear wall 110a of the reaction space 110 should also be considered, so that the final molded reactor 100 can be firmly wrapped on the main body plate by the clamping wall 112 212 around.
  • the clamping wall 112 extends along the circumference of the reaction space 110 , that is, the clamping wall 112 may extend along the rear wall 110 a of the reaction space 110 .
  • the width of the clamping wall 112 can also be set to be between 3 cm and 15 cm, such as 3 cm, 10 cm, 15 cm and so on.
  • the above definition not only enables the clamping wall 112 to cooperate with the rear wall 110a of the reactor 100 to fix the main body plate 212 of the anode plate 210, but also prevents the clamping wall 112 from occupying an excessively large area of the main body plate 212, thereby making the exposed main body Plate 212 is larger to ensure electrolysis efficiency.
  • the anode plate 210 may also include an anode contact piece 214, the anode contact piece 214 is formed on the top edge of the main body plate 212, and protrudes from the reaction space 110, so that Connect to external power supply.
  • the main body plate 212 of the anode plate 210 can be integrally formed with the anode contact plate 214, and the anode contact plate 214 is formed on the top of the main body plate 212, which extends from the reaction space 110 of the reactor 100. After being released, it is connected to the positive pole of the external power supply, so that the anode plate 210 is positively charged, and then the oxidation reaction occurs.
  • the main body plate 212 of the anode plate 210 is wrapped at the rear wall 110a of the reaction space 110, and the anode contact piece 214 is formed on the top edge of the main body plate 212, a part of the anode contact piece 214 can also be used during injection molding. It is also injection-molded in the reactor 100 together, and only the end thereof leaks out of the reactor 100 . In this way, it is not only convenient to power on the anode plate 210, but also can ensure that the anode contact piece 214 is also in a stable state, so as to avoid affecting the normal power supply of the anode plate 210 due to shaking and other factors.
  • FIG. 7 is a schematic diagram of the anode plate 210 in the electrolytic deoxidation device 40 according to an embodiment of the present invention.
  • the anode contact piece 214 may further include a first section 214a and a second section 214b, the first end of the first section 214a is formed on the top edge of the main body plate 212 and extends upward to the inside of the reactor 100 , the first end of the second section 214b is formed at the second end of the first section 214a and extends forward so that the second end protrudes from the inside of the reactor 100 .
  • the anode contact piece 214 is formed on the top edge of the main body plate 212 and then extends upwards to the inside of the reactor 100 , and then extends forward from the inside of the reactor 100 .
  • this method takes full advantage of the advantages of injection molding, and the anode contact is fixed by a thicker reactor 100 (the first section 214a penetrates upward into the interior of the reactor 100).
  • the electric sheet 214 ensures that the anode electric sheet 214 is fixed more firmly.
  • the first section 214 a and/or the second section 214 b of the anode contact piece 214 may also be in a wave shape, and FIG. 5 shows that the first section 214 a is in a wave shape. This is conducive to obtaining a larger contact area between the anode contact piece 214 and the reactor 100 during injection molding, and further ensures that the anode contact piece 214 is more firmly fixed.
  • the electrolytic oxygen removal device 40 of this embodiment provides a technical solution for fixing the reactor 100 and the anode plate 210 through integral injection molding.
  • the main body plate 212 of the anode plate 210 is jointly clamped by the clamping wall 112 and the rear wall 110a of the reaction space 110 by injection molding, and the anode contact piece 214 of the anode plate 210 is also fixed on the reaction space. device 100.
  • the electrolytic deoxidizer 40 in this way can not only facilitate the fixing of the anode plate 210 and the reactor 100, and eliminate other parts for fixing the anode plate 210, but also simplify the production process, improve production efficiency, and facilitate mass production.
  • Figure 8 is a front view of an electrolytic deoxidizer 40 of a refrigerator according to another embodiment of the present invention
  • Figure 9 is a schematic cross-sectional view taken along the section line C-C in Figure 8
  • Figure 10 is a schematic cross-sectional view taken along the A schematic cross-sectional view taken along line D-D in FIG. 8 .
  • the anode plate 210 can also be fixed in the reaction space by other means 110 on the rear wall 110a, such as adhesion, heat welding.
  • the anode plate 210 and the reactor 100 can be manufactured separately first, and then fixed on the rear wall 110 a of the reactor 100 by other fixing methods. Since the anode plate 210 is finally fixed on the rear wall 110 a of the reactor 100 , this method can also maintain a stable distance between the anode plate 210 and the cathode membrane assembly 220 .
  • the anode plate 210 when assembling the anode plate 210 and the reactor 100, the anode plate 210 can enter the reaction space 110 from the front to the back from the opening of the reaction space 110, and then be fixed to the rear of the reaction space 110 by means of adhesion and heat welding. wall 110a.
  • FIG. 11 is a schematic diagram of a reactor 100 in an electrolytic deoxygenation device 40 according to another embodiment of the present invention. Further, the reactor 100 is provided with a groove 114 open to the front at the top of the reaction space 110. When the main body plate 212 is fixed on the rear wall 110a from front to back, the groove 114 is used to avoid the anode contact piece 214, so that The anode contact piece 214 extends out of the reaction space 110 .
  • the groove 114 is opened forward.
  • the main body plate 212 is attached to the rear wall 110a of the reaction space 110.
  • the anode plate 210 The anode contact piece 214 enters into the groove 114 , so that when the cathode membrane assembly 220 is installed at the opening of the reaction space 110 , it will not interfere with the anode contact piece 214 extending out of the reaction space 110 .
  • each cathode membrane assembly 220 may further include a fixing frame 222 and a cathode membrane group 224 .
  • the fixing frame 222 is fixed at the opening of the reaction space 110 , and the middle thereof is a hollow area, and the inner side of the fixing frame 222 is provided with a mounting groove 227 along the circumferential direction.
  • the periphery of the cathode membrane group 224 is fixed in the installation groove 227 so as to be fixed in the center of the fixing frame 222 .
  • the shape of the fixing frame 222 matches the opening of the reaction space 110 and can be fixed with the reactor 100 by heat welding.
  • the inner side of the fixed frame 222 is provided with an installation groove 227 along the circumference, and the periphery of the cathode membrane group 224 is fixed in the installation groove 227, so that the cathode membrane group 224 can be tightened in the center of the fixed frame 222 to firmly provide a front for the reaction space 110. wall.
  • the reactor 100 is formed with a first connecting rib 116 at the opening of the reaction space 110, and the side of the fixed frame 222 facing the reaction space 110 is formed with a first connecting rib
  • the abutting second connecting rib 226 is used to seal the reaction space 110 .
  • first connecting rib 116 and the second connecting rib 226 can also be used as welding points, which can ensure that the fixing frame 222 and the reactor 100 are not deformed as a whole, and the gap sealing after welding is good.
  • the cathode membrane group 224 also includes a catalytic layer, a first waterproof and breathable layer, a Conductive layer and second waterproof breathable layer.
  • the catalyst layer can use noble metal or rare metal catalyst, such as metal platinum, metal gold, metal silver, metal manganese or metal rubidium and so on.
  • the first waterproof and gas-permeable layer and the second waterproof and gas-permeable layer can be waterproof and gas-permeable membranes, so that the electrolyte cannot seep out of the reaction space 110 , and air can enter the reaction space 110 through the first waterproof and gas-permeable layer and the second waterproof and gas-permeable layer.
  • the conductive layer can be made into a corrosion-resistant metal current collector, such as metal nickel, metal titanium, etc., so that it not only has better conductivity, corrosion resistance and support strength.
  • the top of the fixed frame 222 also has an extension 228, and the cathode membrane assembly 220 can also include a cathode electrode 229, and one end of the cathode electrode 229 is fixed on the top of the conductive layer of the cathode membrane group 224 , and pass through the extension part 228 to protrude out of the fixing frame 222, so as to facilitate the connection of the negative pole of the external power supply.
  • a plurality of reaction spaces 110 arranged at intervals may be provided on the reactor 100 , and a separating beam 117 is provided between two adjacent reactors 100 .
  • the reactor 100 can also define a liquid storage space 119 for storing electrolyte, the liquid storage space 119 can be located on one side of all the reaction spaces 110, and each dividing beam 117 can also be provided with a flow port 117a, The electrolyte in the liquid storage space 119 can replenish electrolyte for the reaction space 110 adjacent to it first, and then replenish the remaining reaction space 110 sequentially from the reaction space 110 through the flow port 117a.
  • an oxygen exhaust channel 118 can also be configured for each reaction space 110 on the reactor 100, and each oxygen exhaust channel 118 has an oxygen inlet 118a and The oxygen exhaust port 118b and the oxygen inlet port 118a are used to connect the oxygen exhaust channel 118 with the reaction space 110 , and the oxygen exhaust port 118b is used to discharge the gas in the oxygen exhaust channel 118 .
  • the top of the reactor 100 can also be provided with a liquid storage tank 115, the liquid storage tank 115 communicates with the liquid storage space 119, and the oxygen exhaust port 118b of the oxygen exhaust channel 118 can also be opened in The bottom of the water storage tank, so that the liquid in the liquid storage tank 115 can not only liquid-seal the oxygen discharge channel 118 to prevent external air from entering the reaction space 110 from the oxygen discharge channel 118, but also the liquid storage tank 115 can also play a role in collecting and filtering When the gases generated by each electrolytic deoxygenation unit 200 need to be used and guided, only one air guide tube needs to be connected to the external environment, and the structure is simple and easy to implement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

一种冰箱及其电解除氧装置,该电解除氧装置包括反应器和至少一个电解除氧单元,反应器的一面形成至少一个朝前敞开的反应空间,电解除氧单元一一对应地装配于反应空间,每个电解除氧单元还包括阳极板,阳极板具有主体板,主体板固定于反应空间的后壁上。该电解除氧装置能够使阳极板与阴极膜组件处于稳定间隔状态,保证电解反应正常进行,可靠性强。

Description

冰箱及其电解除氧装置 技术领域
本发明涉及保鲜领域,特别是涉及一种冰箱及其电解除氧装置。
背景技术
对于用于通过电化学反应降低冰箱内部氧气的电化学反应装置,其一般需要配合阴、阳电极板。通常,阴、阳电极板间隔地设置在电化学反应装置的内部,以便在各自的极板表面产生相应的化学反应。
通常,阴、阳电极板是分别间隔地安装在电化学反应装置的内部,然而这种方式不仅工序复杂,而且固定效果不佳,容易导致两者之间的间隔发生变化,从而影响反应进行。
发明内容
本发明的一个目的旨在克服现有技术中的至少一个缺陷,提供一种冰箱及其电解除氧装置。
本发明一个进一步的目的是要使阳极板与阴极膜组件处于稳定间隔状态。
本发明另一个进一步的目的是要稳固地固定阳极板与反应器,并取消其他用于固定阳极板的零件,简化生产工序,提高生产效率。
特别地,本发明提供了一种电解除氧装置,包括:反应器,其一面形成至少一个朝前敞开的反应空间;至少一个电解除氧单元,电解除氧单元一一对应地装配于反应空间,用于在电解电压的作用下通过电化学反应消耗电解除氧装置外部的氧气;其中每个电解除氧单元还包括阳极板,阳极板具有主体板,主体板固定于反应空间的后壁上。
可选地,反应空间内形成有沿其周向延伸的夹持壁,夹持壁用于配合反应空间的后壁夹持主体板的边缘,以固定主体板,以使主体板的中部暴露于反应空间。
可选地,阳极板与反应器一体注塑成型。
可选地,阳极板还包括:阳极接电片,形成于主体板的顶部边缘,并从反应空间伸出,以便于外部电源相连。
可选地,阳极接电片包括:第一区段,第一区段的第一端形成于主体板 的顶部边缘,并向上延伸至反应器的内部;第二区段,第二区段的第一端形成于第一区段的第二端,并向前延伸,使其第二端从反应器的内部伸出。
可选地,反应器在反应空间的顶部开设有朝前敞开的凹槽,当主体板自前向后地固定于后壁时,凹槽用于避让阳极接电片,以便阳极接电片伸出反应空间。
可选地,每个电解除氧单元还包括:阴极膜组件,与主体板间隔地设置于反应空间的敞开处,以封闭反应空间。
可选地,阴极膜组件包括:固定框架,固定于反应空间的敞开处,并且其中部为中空区域,固定框架的内侧沿周向开设有安装槽;阴极膜组,阴极膜组的周缘固定于安装槽内,以使其固定于固定框架的中央。
可选地,反应器在反应空间的敞开处形成有第一连接筋;固定框架朝向反应空间的一侧形成有第一连接筋相对接的第二连接筋,以密封反应空间。
特别地,本发明还提供了一种冰箱,包括根据上述任一项的电解除氧装置。
本发明的电解除氧装置,由于阳极板的主体板直接固定于反应空间的后壁上,因此,阳极板的主体板相对于反应空间整体的位置处于稳定状态,而当阴极膜组件安装在反应空间的敞口处时,二者之间的间隔形成了稳定的间隔。
本发明的电解除氧装置,固定反应器与阳极板通过一体注塑成型的方式固定,夹持壁与反应空间的后壁共同夹持阳极板的主体板,且一同将阳极板的阳极接电片也固定在反应器。这种方式不仅能够便于将阳极板与反应器固定,取消其他用于固定阳极板的零件,而且简化了生产工序,提高生产效率,便于批量生产。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的冰箱的示意图;
图2是根据本发明一个实施例的冰箱的电解除氧装置的示意图;
图3是根据本发明一个实施例的冰箱的电解除氧装置的分解图;
图4是根据本发明一个实施例的冰箱的电解除氧装置的主视图;
图5是沿图4中的剖切线A-A截取的示意性剖视图;
图6是沿图4中的剖切线B-B截取的示意性剖视图;
图7是根据本发明一个实施例的电解除氧装置中阳极板的示意图;
图8是根据本发明另外一个实施例的冰箱的电解除氧装置的主视图;
图9是沿图8中的剖切线C-C截取的示意性剖视图;
图10是沿图8中的剖切线D-D截取的示意性剖视图;
图11是根据本发明另外一个实施例的电解除氧装置中反应器的示意图。
具体实施方式
在本实施例的描述中,需要理解的是,术语“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“进深”等指示的方位或置关系为参考附图所示的方位或位置关系可以确定,这仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
参见图1,图1是根据本发明一个实施例的冰箱的示意图。本发明首先提供一种冰箱1,该冰箱1一般性地可以包括箱体10和门体20。
箱体10可以包括外壳和多个内胆,外壳位于整体冰箱1的最外侧,以保护整个冰箱1。多个内胆被外壳包裹,并且与外壳之间的空间中填充有保温材料(形成发泡层),以降低内胆向外散热。每个内胆可以限定出向前敞开的储物间室,并且储物间室可以被配置成冷藏室、冷冻室、变温室等等,具体的储物间室的数量和功能可以根据预先的需求进行配置。
门体20可动地设置于内胆的前方,以开闭内胆的储物间室,例如门体20可以通过铰接的方式设置箱体10前部的一侧,通过枢转的方式开闭储物间室。
该冰箱1还可包括抽屉组件30,抽屉组件30还可包括抽屉本体,抽屉本体可抽拉地设置于箱体10内,以便用户拿取物品。
参见图2,图2是根据本发明一个实施例的冰箱1的示意性框图。在一些实施例中,该冰箱1还可包括电解除氧装置40,该电解除氧装置40可设 置于内胆或者抽屉组件30内,以通过电解反应分离流经其上的空气中的氧气,并将氮气留在内胆的储物间室或抽屉本体内,实现对食物的保鲜储存。
具体地,电解除氧装置40可设置于储物间室的后壁、侧壁、顶壁、底壁等,同样地电解除氧装置40还可设置于抽屉本体的后壁、侧壁、底壁等。总之,本领域技术人员在知晓本实施例的技术方案后可根据实际情况设置电解除氧装置40,在此不一一列举。
参见图2至图6,图2是根据本发明一个实施例的冰箱1的电解除氧装置40的示意图,图3是根据本发明一个实施例的冰箱1的电解除氧装置40的分解图,图4是根据本发明一个实施例的冰箱1的电解除氧装置40的主视图,图5是沿图4中的剖切线A-A截取的示意性剖视图,图6是沿图4中的剖切线B-B截取的示意性剖视图。
在一些实施例中,该电解除氧装置40还可包括反应器100和至少一个电解除氧单元200。反应器100的一面形成至少一个朝前敞开的反应空间110,电解除氧单元200一一对应装配于反应空间110,用于在电解电压的作用下通过电化学反应消耗电解除氧装置40外部的氧气;其中每个电解除氧单元200还包括阳极板210,阳极板210具有主体板212,主体板212固定于反应空间110的后壁110a上。
反应器100可呈扁平状,其较宽的一面向内凹陷形成一个或多个反应空间110,该反应空间110可以用于盛装电解反应的电解液(例如氢氧化钠溶液等)。
参见图3,在一些进一步地的实施例中,每个电解除氧单元200还可包括阴极膜组件220,阴极膜组件220与主体板212间隔地设置于反应空间110的敞开处,以封闭反应空间110。
阴极膜组件220用于在电解电压的作用下通过电化学反应消耗氧气。阳极板210用于在电解电压的作用下通过电化学反应向阴极膜组件220提供反应物(例如,电子)且生成氧气。
在通电情况下,空气中的氧气可以在阴极膜组件220处发生还原反应,即:O2+2H2O+4e-→4OH-。阴极膜组件220产生的OH-可以在阳极板210处发生氧化反应,并生成氧气,即:4OH-→O2+2H2O+4e-
此外,发明人意识到:阴极膜组件220与阳极板210的主体板212之间需要稳固地保持一定的间距,以避免间距过大而导致反应效率低,且避免因 间距过小而导致阳极板210产生的氧气无法及时排出,影响反应进程。
在本实施例中,由于阳极板210的主体板212直接固定于反应空间110的后壁110a上,也就是说,阳极板210的主体板212相对于反应空间110整体的位置处于稳定状态,而当阴极膜组件220安装在反应空间110的敞口处时,二者之间的间隔形成了稳定的间隔,而且这种方式还省略了在反应空间110中用于安装阳极板210的零件,扩展了反应空间110,简化了组装工序。
参见图5和图6,在一些实施例中,该阳极板210还可与反应器100采用一体注塑成型的方式形成,以使阳极板210的主体板212稳固地固定于反应空间110的后壁110a上,并提升生产效率。
具体地,反应空间110内形成有沿其周向延伸的夹持壁112,夹持壁112用于配合反应空间110的后壁110a夹持主体板212的边缘,以固定主体板212,使主体板212的中部暴露于反应空间110。
在注塑时,首先根据反应器100的形状制造注塑模具,然后将阳极板210固定在反应器100后壁110a的位置,最后向注塑模具内注入液态的塑胶原料(例如聚丙烯等),经过冷却定型后,开模顶出阳极板210与反应器100形成的总成。
需要说明的是,在设计注塑模具时,还要考虑在反应空间110的后壁110a处设计夹持壁112,以使最终的成型的反应器100可以利用夹持壁112稳固地包裹在主体板212的周围。
此外,夹持壁112沿反应空间110内的周向延伸,也即,夹持壁112可沿反应空间110的后壁110a延伸。在一些具体的实施例中,该夹持壁112的宽度还可设置成3cm至15cm之间,例如3cm、10cm、15cm等。
通过上述限定不仅使得夹持壁112能够配合反应器100的后壁110a固定阳极板210的主体板212,而且使夹持壁112不会占据主体板212过大的面积,进而使暴露出的主体板212更大,以保证电解效率。
参见图3、图5和图6,进一步地,该阳极板210还可包括阳极接电片214,阳极接电片214形成于主体板212的顶部边缘,并从反应空间110伸出,以便于外部电源相连。
具体地,阳极板210的主体板212可与阳极接电片214一体成型,该阳极接电片214形成于主体板212的顶部,其从反应器100的反应空间110伸 出后与外部电源的正极相连,以使阳极板210带正电荷,进而发生氧化反应。
由于阳极板210的主体板212包裹在反应空间110的后壁110a处,而阳极接电片214形成于主体板212的顶部边缘,因此在注塑时还可将阳极接电片214的部分区段也一起注塑于反应器100内,仅使其末端漏出反应器100即可。这样不仅能够便于为阳极板210上电,而且能够保证阳极接电片214也处于稳定状态,避免因其晃动等因素影响阳极板210的正常供电。
参见图7,图7是根据本发明一个实施例的电解除氧装置40中阳极板210的示意图。进一步地,阳极接电片214还可包括第一区段214a和第二区段214b,第一区段214a的第一端形成于主体板212的顶部边缘,并向上延伸至反应器100的内部,第二区段214b的第一端形成于第一区段214a的第二端,并向前延伸,使其第二端从反应器100的内部伸出。
结合图5,阳极接电片214形成于主体板212的顶部边缘后先向上延伸,一直延伸至反应器100的内部,然后由反应器100的内部向前延伸出。相对于直接从夹持壁112穿出的方案,这种方式充分利用注塑成型的优势,由厚度更大的反应器100(第一区段214a向上穿进反应器100的内部)来固定阳极接电片214,保证阳极接电片214更加稳固地被固定。
参见图5和图7,进一步地,阳极接电片214的第一区段214a和/或第二区段214b还可呈波浪型,图5示出了第一区段214a呈波浪形。这样有利于在注塑成型时阳极接电片214与反应器100之间获得更大的接触面积,进一步保证阳极接电片214更加稳固地被固定。
综上所述,本实施例的电解除氧装置40提供了一种通过一体注塑成型的方式固定反应器100与阳极板210的技术方案。在该实施例中,采用注塑的方式利用夹持壁112与反应空间110的后壁110a共同夹持阳极板210的主体板212,且一同将阳极板210的阳极接电片214也固定在反应器100。
采用此种方式的电解除氧装置40不仅能够便于将阳极板210与反应器100固定,取消其他用于固定阳极板210的零件,而且简化了生产工序,提高生产效率,便于批量生产。
参见图8至图10,图8是根据本发明另外一个实施例的冰箱的电解除氧装置40的主视图,图9是沿图8中的剖切线C-C截取的示意性剖视图,图10是沿图8中的剖切线D-D截取的示意性剖视图。
在另外一些实施例中,阳极板210还可通过其他方式固定在反应空间 110的后壁110a上,例如粘连、热焊接的方式。
也即,在本实施例中,阳极板210与反应器100可先分别制成,然后通过其他固定方式固定在反应器100的后壁110a处。由于阳极板210最终也固定在反应器100的后壁110a上,因此这种方式也同样能够实现阳极板210与阴极膜组件220之间保持稳定的间隔。
具体地,在组装阳极板210与反应器100时,阳极板210可从反应空间110的敞口处自前向后地进入反应空间110,然后利用粘连、热焊接的方式固定在反应空间110的后壁110a处。
参见图11,图11是根据本发明另外一个实施例的电解除氧装置40中反应器100的示意图。进一步地,反应器100在反应空间110的顶部开设有朝前敞开的凹槽114,当主体板212自前向后地固定于后壁110a时,凹槽114用于避让阳极接电片214,以便阳极接电片214伸出反应空间110。
在本实施例中,凹槽114向前敞开,当阳极板210自前至后的安装在反应空间110时,主体板212贴靠在反应空间110的后壁110a,与此同时,阳极板210的阳极接电片214进入凹槽114内,这样当阴极膜组件220安装在反应空间110的敞口处时,不会干涉阳极接电片214伸出反应空间110。
参见图3,在一些实施例中,每个阴极膜组件220还可包括固定框架222和阴极膜组224。固定框架222固定于反应空间110的敞开处,并且其中部为中空区域,固定框架222的内侧沿周向开设有安装槽227。阴极膜组224的周缘固定于安装槽227内,以使其固定于固定框架222的中央。
固定框架222的形状与反应空间110的敞口处相匹配,并可通过热焊接的方式与反应器100相固定。固定框架222的内侧沿周向开设安装槽227,阴极膜组224的周缘固定于安装槽227内,这样阴极膜组224可绷紧于固定框架222的中央,以稳固地为反应空间110提供前壁。
参见图5、图6、图9和图10,具体地,反应器100在反应空间110的敞开处形成有第一连接筋116,固定框架222朝向反应空间110的一侧形成有第一连接筋相对接的第二连接筋226,以密封反应空间110。
此外,当采用热焊接的方式固定时,第一连接筋116和第二连接筋226还可作为焊接点,这样可以保证固定框架222与反应器100的整体不变形,焊接之后间隙密封性好。
进一步地,阴极膜组224还包括依次设置的催化层、第一防水透气层、 导电层和第二防水透气层。催化层可以采用贵金属或稀有金属催化剂,例如金属铂、金属金、金属银、金属锰或金属铷等。第一防水透气层和第二防水透气层可以为防水透气膜,以使得电解液无法从反应空间110渗出,而空气可以透过第一防水透气层和第二防水透气层进入反应空间110。导电层可以制作成耐腐金属集流网,例如金属镍、金属钛等,以使其不仅具备较佳的导电性、防腐性和支撑强度。
参见图3,进一步地,固定框架222的顶部还具有延伸部228,阴极膜组件220还可把包括阴极接电片229,阴极接电片229的一端固定在阴极膜组224的导电层的顶部,并贯穿延伸部228,以伸出固定框架222,以便于外部电源的负极相连。
参见图3和图11,在一些实施例中,该反应器100上可开设多个间隔设置的反应空间110,相邻两个反应器100之间具有分隔梁117。并且该反应器100还可限定出用于储存电解液的储液空间119,储液空间119可位于所有反应空间110的一侧,并且每个分隔梁117上还可设置有通流口117a,储液空间119内的电解液可先为与其相邻的反应空间110补充电解液,然后从该反应空间110依次通过通流口117a依次为剩余的反应空间110进行补液。
参见图3、图6、图10和图11,在一些实施例中,反应器100上还可为每个反应空间110配置一个排氧通道118,每个排氧通道118具有进氧口118a和排氧口118b,进氧口118a用于连通排氧通道118与反应空间110,排氧口118b用于将排氧通道118内的气体排出。
参见图3和图11,进一步地,反应器100的顶部还可设置有储液槽115,储液槽115与储液空间119相连通,并且排氧通道118的排氧口118b还可开设在储水槽的底部,这样储液槽115内的液体还不仅能够对排氧通道118进行液封,防止外部空气由排氧通道118进入反应空间110,而且储液槽115还可起到收集并过滤各个电解除氧单元200产生的气体,当需要利用导引这些气体时,仅需要使一根导气管连通外部环境即可,结构简单,易于实现。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种电解除氧装置,包括:
    反应器,其一面形成至少一个朝前敞开的反应空间;
    至少一个电解除氧单元,所述电解除氧单元一一对应地装配于所述反应空间,用于在电解电压的作用下通过电化学反应消耗所述电解除氧装置外部的氧气;其中每个所述电解除氧单元还包括阳极板,所述阳极板具有主体板,所述主体板固定于所述反应空间的后壁上。
  2. 根据权利要求1所述的电解除氧装置,其中
    所述反应空间内形成有沿其周向延伸的夹持壁,所述夹持壁用于配合所述反应空间的后壁夹持所述主体板的边缘,以固定所述主体板,以使所述主体板的中部暴露于所述反应空间。
  3. 根据权利要求1所述的电解除氧装置,其中
    所述阳极板与所述反应器一体注塑成型。
  4. 根据权利要求1所述的电解除氧装置,其中所述阳极板还包括:
    阳极接电片,形成于所述主体板的顶部边缘,并从所述反应空间伸出,以便于外部电源相连。
  5. 根据权利要求4所述的电解除氧装置,其中
    所述阳极接电片包括:
    第一区段,所述第一区段的第一端形成于所述主体板的顶部边缘,并向上延伸至所述反应器的内部;
    第二区段,所述第二区段的第一端形成于所述第一区段的第二端,并向前延伸,使其第二端从所述反应器的内部伸出。
  6. 根据权利要求4所述的电解除氧装置,其中
    所述反应器在所述反应空间的顶部开设有朝前敞开的凹槽,当所述主体板自前向后地固定于所述后壁时,所述凹槽用于避让所述阳极接电片,以便所述阳极接电片伸出所述反应空间。
  7. 根据权利要求1所述的电解除氧装置,其中每个所述电解除氧单元还包括:
    阴极膜组件,与所述主体板间隔地设置于所述反应空间的敞开处,以封闭所述反应空间。
  8. 根据权利要求7所述的电解除氧装置,其中
    所述阴极膜组件包括:
    固定框架,固定于所述反应空间的敞开处,并且其中部为中空区域,所述固定框架的内侧沿周向开设有安装槽;
    阴极膜组,所述阴极膜组的周缘固定于所述安装槽内,以使其固定于所述固定框架的中央。
  9. 根据权利要求8所述的电解除氧装置,其中
    所述反应器在所述反应空间的敞开处形成有第一连接筋;
    所述固定框架朝向所述反应空间的一侧形成有所述第一连接筋相对接的第二连接筋,以密封所述反应空间。
  10. 一种冰箱,包括根据权利要求1至9任一项所述的电解除氧装置。
PCT/CN2023/073574 2022-02-16 2023-01-28 冰箱及其电解除氧装置 WO2023155667A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210141299.7 2022-02-16
CN202210141299.7A CN116642282A (zh) 2022-02-16 2022-02-16 冰箱及其电解除氧装置

Publications (1)

Publication Number Publication Date
WO2023155667A1 true WO2023155667A1 (zh) 2023-08-24

Family

ID=87577529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/073574 WO2023155667A1 (zh) 2022-02-16 2023-01-28 冰箱及其电解除氧装置

Country Status (2)

Country Link
CN (1) CN116642282A (zh)
WO (1) WO2023155667A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09287869A (ja) * 1996-04-18 1997-11-04 Matsushita Electric Ind Co Ltd 酸素濃度調整機能付き冷蔵庫
JP2012037202A (ja) * 2010-08-11 2012-02-23 Toshiba Corp 食品の貯蔵方法
CN208979385U (zh) * 2018-09-21 2019-06-14 佛山顺德歌林美电子产品有限公司 一种储物器皿用的保鲜装置
CN210292481U (zh) * 2019-04-17 2020-04-10 佛山市顺德区阿波罗环保器材有限公司 氧气分离装置和冰箱
CN113446794A (zh) * 2020-03-24 2021-09-28 合肥华凌股份有限公司 除氧组件、储物装置及冰箱
CN217844419U (zh) * 2022-02-16 2022-11-18 青岛海尔电冰箱有限公司 冰箱及其电解除氧装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09287869A (ja) * 1996-04-18 1997-11-04 Matsushita Electric Ind Co Ltd 酸素濃度調整機能付き冷蔵庫
JP2012037202A (ja) * 2010-08-11 2012-02-23 Toshiba Corp 食品の貯蔵方法
CN208979385U (zh) * 2018-09-21 2019-06-14 佛山顺德歌林美电子产品有限公司 一种储物器皿用的保鲜装置
CN210292481U (zh) * 2019-04-17 2020-04-10 佛山市顺德区阿波罗环保器材有限公司 氧气分离装置和冰箱
CN113446794A (zh) * 2020-03-24 2021-09-28 合肥华凌股份有限公司 除氧组件、储物装置及冰箱
CN217844419U (zh) * 2022-02-16 2022-11-18 青岛海尔电冰箱有限公司 冰箱及其电解除氧装置

Also Published As

Publication number Publication date
CN116642282A (zh) 2023-08-25

Similar Documents

Publication Publication Date Title
CN217844419U (zh) 冰箱及其电解除氧装置
TWI770320B (zh) 鹼性水電解用膜-電極-墊片複合體
EP2819237B1 (en) Air cell
US10050287B2 (en) Bipolar plates for limiting the bypassing of the flow channels by the reactants
JP6013448B2 (ja) 電気化学セル、及び電気化学セルの使用
US11705594B2 (en) Metal-air cell, and method for manufacturing metal-air cell
WO2023155665A1 (zh) 冰箱及其电解除氧装置
WO2023155667A1 (zh) 冰箱及其电解除氧装置
CN216409396U (zh) 冰箱
CN216409399U (zh) 冰箱
AU742537B2 (en) Electrolysis apparatus for producing halogen gases
WO2023155668A1 (zh) 冰箱及其电解除氧系统
WO2022242241A1 (zh) 冰箱及其电解除氧装置
WO2023098385A1 (zh) 冰箱及其抽屉组件
WO2021200374A1 (ja) 電解槽
CN216114844U (zh) 冰箱及其电解除氧装置
US11251476B2 (en) Nested annular metal-air cell and systems containing same
WO2023142829A1 (zh) 电解除氧装置和冰箱
JP6499151B2 (ja) 電解槽
WO2022242240A1 (zh) 冰箱
WO2023098414A1 (zh) 冰箱及其电解除氧装置
WO2022242239A1 (zh) 冰箱及其电解除氧装置
CN211497806U (zh) 一种用于氢气发生器的电解分离池
KR102443013B1 (ko) 자석을 이용한 금속공기전지
CN220017833U (zh) 冷藏冷冻装置及其氧气处理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23755671

Country of ref document: EP

Kind code of ref document: A1