WO2023155663A1 - 一种以氢气为燃料的家用燃气热水器控制方法 - Google Patents

一种以氢气为燃料的家用燃气热水器控制方法 Download PDF

Info

Publication number
WO2023155663A1
WO2023155663A1 PCT/CN2023/073564 CN2023073564W WO2023155663A1 WO 2023155663 A1 WO2023155663 A1 WO 2023155663A1 CN 2023073564 W CN2023073564 W CN 2023073564W WO 2023155663 A1 WO2023155663 A1 WO 2023155663A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
hydrogen
combustion
execute
controller
Prior art date
Application number
PCT/CN2023/073564
Other languages
English (en)
French (fr)
Inventor
高文学
户英杰
周伟业
苗庆伟
严荣松
王艳
杨林
Original Assignee
中国市政工程华北设计研究总院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国市政工程华北设计研究总院有限公司 filed Critical 中国市政工程华北设计研究总院有限公司
Publication of WO2023155663A1 publication Critical patent/WO2023155663A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • F24H9/2035Arrangement or mounting of control or safety devices for water heaters using fluid fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • the invention belongs to the field of urban gas combustion and application, and in particular relates to a method for controlling a household gas water heater using hydrogen as fuel.
  • the gas sources of household gas water heaters are mainly natural gas and liquefied petroleum gas.
  • hydrogen energy as a clean and low-carbon green energy, is expected to be popularized in the field of household gas water heaters.
  • the physical and chemical properties of hydrogen are quite different from natural gas and liquefied petroleum gas, which makes it impossible to burn stably on existing gas water heaters.
  • Existing flameout protection devices for gas water heaters mostly use flame sensing needles to monitor the flame combustion state.
  • the principle is that the ions generated by the combustion of natural gas or liquefied petroleum gas form an ionization current on the sensing needle, and detect whether the gas is extinguished through the ionization characteristics; but hydrogen Combustion cannot produce ions, which makes the flame sensing needle invalid and poses a safety hazard.
  • the flame propagation speed of hydrogen combustion is fast, and it is easy to flash back, and its low ignition temperature and short flameout distance will also aggravate the flashback phenomenon, which has a greater safety hazard.
  • the density and calorific value of hydrogen are lower, so when hydrogen is used as fuel, the heat load of traditional household gas water heaters will be greatly reduced, making water heaters unable to have a large heat load adjustment range. Affect the performance; if the flow rate of hydrogen is increased, the tendency of hydrogen tempering will be aggravated. At the same time, in order to meet the air volume required for combustion, the speed of the fan will be increased accordingly, resulting in high noise.
  • the product of hydrogen combustion is gaseous water. When passing through the exhaust pipe, the saturated water vapor will easily turn into condensed water, which will corrode the exhaust pipe and even affect the heat exchanger and burner. Long-term operation has a greater safety hazard.
  • Patent Publication No. CN110207386A is an invention patent "a staged combustion gas water heater and its control method".
  • the switch of the firepower gear is realized by controlling the switch of the section valve through the controller, and the current linkage control method is used to control the different firepower stages.
  • Patent Publication No. CN112146286A "A Gas Water Heater Air Volume Matching Control Method and Control System", according to the fire section and the program segmented air volume adjustment relationship matching the heat load of this fire section, determine the theoretical fan air volume to adjust ; But this patent is only regulated by the air volume of the theoretical blower fan, and cannot judge the actual air volume required for combustion, and cannot guarantee the best combustion effect.
  • the invention patent of patent publication number CN110274395A "A Control Method for Self-adaptive Fully Premixed Gas Water Heater and Gas Water Heater” monitors the combustion of the water heater by collecting gas flow, fan flow and excess oxygen content after combustion; but the The invention does not adopt staged combustion technology, which cannot achieve large heat load adjustment and cannot meet the constant temperature hot water output; and when hydrogen fuel is used, when the heat load of the water heater changes, the flow rate of hydrogen in the burner cannot be kept within the tempering limit inside, which is prone to tempering phenomenon.
  • the purpose of the present invention is to overcome the shortcomings of the prior art and provide a control method for domestic gas water heaters using hydrogen as fuel.
  • the control method can realize safe and stable combustion of hydrogen on gas water heaters and avoid backfire and condensed water of hydrogen combustion. Corrosion to the water heater, while having a large load adjustment range, can output constant temperature hot water.
  • a method for controlling a household gas water heater using hydrogen as fuel of the present invention comprises the following steps:
  • Step 1 Refit the existing household gas water heater.
  • the modified structure is as follows: a burner including three combustion groups is installed in the combustion chamber, which is divided into a left combustion group, a middle combustion group and a right combustion group; The outlet end is divided into three gas mixing pipe branches, the outlet of the left gas mixing pipe branch installed with the first solenoid valve is connected with the left combustion group, the outlet of the middle gas mixing pipe branch is connected with the middle combustion group, and the right side with the second solenoid valve is installed The outlet of the branch pipe of the side gas mixing pipe is connected with the combustion group on the right side, the air outlet of the fan is connected with the inlet of the gas mixing pipe, the inlet end of the gas pipe passes through the shell of the gas water heater and the outlet end is connected with the gas mixing pipe.
  • a gas proportional valve is installed on the pipe, and an oxygen sensor is installed on the exhaust pipe connected to the condensation chamber;
  • the fan and gas proportional valve are connected to the controller through the control line to realize the control of the flow of hydrogen and air
  • the oxygen sensor is connected to the controller through the control line
  • the controller reads the oxygen output from the oxygen sensor. concentration information And output the control signal to the fan to adjust the speed of the fan;
  • Step 2 Controlling the household gas water heater includes the following steps:
  • the user sets the hot water temperature T set on the control panel connected to the controller, the controller calculates the theoretical heat load ⁇ , if the theoretical heat load is less than two-thirds of the maximum heat load ⁇ max , it enters the staged combustion mode, Then execute the next step; otherwise, enter the full-stage combustion mode, and then execute S30;
  • the controller outputs a closing signal to the first solenoid valve or the second solenoid valve; if ⁇ 1/3 ⁇ max , the controller outputs a closing signal to the first solenoid valve and the second solenoid valve
  • the valve outputs a closing signal; then calculate the actual hydrogen flow Q h entering the gas pipe according to the theoretical heat load, and adjust the current I b of the gas proportional valve according to the linear relationship between the preset gas proportional valve current I b and the actual hydrogen flow Q h , to control the valve size of the gas proportional valve; execute the next step when the gas proportional valve current I b reaches the corresponding value ; Output alternate close signal;
  • the controller adjusts the fan speed R according to the ratio between the preset fan speed R and the actual air intake flow into the mixing tube, so that the ratio of the actual air intake flow to the theoretical air intake flow is between 1.05 and 1.25 ;
  • the controller reads the outlet water temperature signal T out output by the temperature sensor installed on the water outlet pipe and reads the oxygen concentration signal C output by the oxygen sensor; judges the difference between the outlet water temperature T out and the hot water temperature T set set by the user Whether the preset requirements are met; if the preset requirements are met, go to the next step; otherwise, go to S24;
  • the controller outputs an opening signal to the first solenoid valve and the second solenoid valve to open the first solenoid valve and the second solenoid valve;
  • the controller calculates the flow of hydrogen gas entering the gas pipe according to the theoretical heat load ⁇ , adjusts the current I b of the gas proportional valve according to the ratio of the preset gas proportional valve current I b to the hydrogen flow, and controls the valve size of the gas proportional valve;
  • the controller adjusts the fan speed R according to the preset proportional relationship between the fan speed R and the actual air intake flow rate, so that the ratio of the actual air intake flow rate to the theoretical air intake flow rate is between 1.05 and 1.25;
  • the controller reads the outlet water temperature signal T out output by the temperature sensor installed on the outlet pipe and reads the oxygen concentration signal C output by the oxygen sensor; judges the difference between the outlet water temperature T out and the hot water temperature T set set by the user whether to meet the pre- Set requirements; if the preset requirements are met, go to the next step; otherwise, go to S35;
  • a kind of control method provided by the present invention can make the burner in different thermal load ranges, the flow rate of hydrogen in the burner can be kept within the tempering limit, can avoid the occurrence of hydrogen combustion tempering;
  • the combustion state is monitored to ensure that the flow rate of hydrogen and air is always kept at the optimal combustion ratio, to prevent backfire when the gas pressure and external wind pressure fluctuate, and to maintain the stable combustion of hydrogen.
  • a domestic gas water heater provided by the present invention realizes a large thermal load adjustment range through segmental combustion technology, has the function of constant temperature hot water output, and can realize stable combustion of hydrogen in the burner at the same time; heat exchange through condensation It can improve the thermal efficiency of the water heater, save energy, and reduce the corrosion of the condensed water on the exhaust pipe and the heat exchanger.
  • Fig. 1 is a kind of flow chart of the domestic gas water heater control method with hydrogen as fuel of the present invention
  • Fig. 2 is a kind of domestic gas-fired water heater structural representation that takes hydrogen as fuel of the present invention
  • Fig. 3 is a top view of a circular fire hole burner of a household gas water heater using hydrogen as fuel of the present invention
  • Fig. 4 is a top view of a slit-type flame hole burner of a household gas water heater using hydrogen as fuel according to the present invention.
  • the directional indication is only used to explain the position in a certain posture (as shown in the accompanying drawing). ) under the relative positional relationship, movement conditions, etc. between the various components, if the specific posture changes, the directional indication will also change accordingly.
  • a kind of domestic gas water heater control method using hydrogen as fuel of the present invention comprises the following steps:
  • Step 1 Refit the existing household gas water heater.
  • the modified structure is as follows: a burner 6 including three combustion groups is installed in the combustion chamber, which is divided into a left combustion group, a middle combustion group and a right combustion group; The outlet end of 9 is divided into three gas mixing pipe branches, the outlet of the left gas mixing pipe branch installed with the first solenoid valve 7 communicates with the left combustion group, the outlet of the middle gas mixing pipe branch communicates with the middle combustion group, and the second electromagnetic valve 7 is installed.
  • the outlet of the gas mixing pipe branch on the right side of the valve 18 communicates with the combustion group on the right side.
  • the air outlet of fan 8 communicates with the inlet of gas mixing pipe 9, the inlet end of gas pipe 10 passes through the housing of gas water heater and the outlet port communicates with gas mixing pipe 9, and a gas proportional valve 17 is installed on the gas pipe.
  • An oxygen sensor 24 is installed on the exhaust pipe 25 communicating with the condensation chamber 23 .
  • the blower 8 and the gas proportional valve 17 are connected with the controller 2 through the control line to realize the control of the flow of hydrogen and air.
  • the oxygen sensor 24 is connected to the controller through a control line, and the controller reads the oxygen concentration information output by the oxygen sensor 24 and outputs a control signal to the blower to adjust the speed of the blower.
  • the blower 8 preferably adopts a DC variable frequency blower, and the intake of air can be changed by adjusting the speed of the blower, so as to maintain the mixing ratio of air and hydrogen to achieve the best combustion effect.
  • Step 2 Controlling the household gas water heater includes the following steps:
  • the user sets the hot water temperature T set on the control panel connected to the controller 2, the controller 2 calculates the theoretical heat load ⁇ , if the theoretical heat load is less than two-thirds of the maximum heat load ⁇ max , then enters staged combustion mode, and then execute the next step; otherwise, enter the full stage combustion mode, and then execute S30;
  • is the theoretical heat load when the user sets the hot water temperature T set ;
  • Q in is the water flow rate of the water inlet pipe, which is obtained by the water flow sensor 16;
  • C p is the specific heat capacity of water, which is a fixed value ;
  • is the thermal efficiency of the gas water heater, which is a measured value;
  • the maximum thermal load ⁇ max is the theoretically achievable maximum thermal load after entering the full-stage combustion mode, and is a set value.
  • the hot water temperature T set and the water inflow Q in set by the user are values that change dynamically according to the real-time demand of the user; therefore, when the gas water heater enters a stable combustion state, if T set and Q in change, it is necessary to re-execute S10 to adjust the combustion mode of the burner to match the new user demand and maintain the stable combustion of hydrogen.
  • the controller adjusts the fan speed R according to the ratio between the preset fan speed R and the actual air intake flow rate entering the mixing tube 9, so that the ratio of the actual air intake flow rate to the theoretical air intake flow rate is between 1.05 and 1.25
  • the controller controls the ignition device for intermediate combustion. Group ignition or ignition to the middle combustion group and the left burner or right combustion group to enter the segmented combustion mode;
  • the actual air intake flow rate is the flow rate of air actually entering the mixing tube through the fan. It is calculated according to the proportional relationship between the fan speed R and the air volume. The linear relationship between the fan speed R and the air volume needs to be measured in advance and stored in the control system. device;
  • the controller reads the outlet water temperature signal T out output by the temperature sensor 11 installed on the outlet pipe and reads the oxygen concentration signal C output by the oxygen sensor 24; judges the outlet water temperature T out and the hot water temperature T set set by the user Whether the difference meets the preset requirements; if the preset requirements are met, then go to the next step; otherwise, go to S24;
  • the difference between the outlet water temperature T out and the hot water temperature T set set by the user should be within ⁇ 3°C;
  • the preset range of the oxygen concentration C in the flue gas is calculated based on the theoretical air intake flow rate and the actual air intake flow rate.
  • the oxygen concentration C is 0.21*(k-1)/[0.21*(k-1)+0.79*k], then the preset range of the oxygen concentration C in the flue gas is 1.25% ⁇ 5.05%;
  • the controller outputs an opening signal to the first solenoid valve and the second solenoid valve to open the first solenoid valve and the second solenoid valve;
  • the controller calculates the flow of hydrogen gas entering the gas pipe 10 according to the theoretical heat load ⁇ , adjusts the current I b of the gas proportional valve according to the ratio of the preset gas proportional valve current I b to the hydrogen flow, and controls the valve size of the gas proportional valve;
  • the controller adjusts the fan speed R according to the preset proportional relationship between the fan speed R and the actual air intake flow rate, so that the ratio of the actual air intake flow rate to the theoretical air intake flow rate is between 1.05 and 1.25, ensuring that the hydrogen gas is completely Combustion, avoiding hydrogen backfire during combustion, while preventing high noise caused by excessive fan speed, preventing excess air from reducing flue gas temperature and thermal efficiency; at the same time, the controller controls the ignition device to ignite and enter the full combustion mode;
  • the controller reads the outlet water temperature signal T out output by the temperature sensor 11 installed on the outlet pipe and reads the oxygen concentration signal C output by the oxygen sensor 24; judges the outlet water temperature T out and the hot water temperature T set set by the user Whether the difference meets the preset requirements; if the preset requirements are met, then go to the next step; otherwise, go to S35;
  • the difference between the outlet water temperature T out and the hot water temperature T set set by the user should be within ⁇ 3°C;
  • the controller adjusts the current I s of the water volume servo valve to reduce the valve opening of the water volume servo valve, thereby reducing the water inflow, and returns to S33; otherwise, returns to S31 to increase the gas proportional valve current I b ;
  • the hydrogen In order to control the flow of hydrogen, the hydrogen enters the gas mixing pipe through the gas pipe, and the fan speed is determined according to the hydrogen flow, so that the air flow and the hydrogen flow can reach the best combustion ratio, the air enters the gas mixing pipe through the fan, and the air and hydrogen are mixed in the gas mixing pipe
  • the controller controls the ignition device to ignite, and the hydrogen burns stably on the burner; the flue gas after combustion passes through the heat exchange chamber upwards, exchanges sensible heat with the tubular heat exchanger in the heat exchange chamber, and enters the to the smoke collecting hood, and then into the condensation chamber, where it exchanges latent heat with the plate heat exchanger in the condensation chamber.
  • the saturated water vapor condenses into liquid water and enters the condensed water collection device, and then discharged through the drain pipe, and the remaining flue gas is discharged through the exhaust pipe.
  • the current of the gas proportional valve and the speed of the fan are adjusted to maintain the best state of combustion.
  • This method can keep the flow rate of hydrogen in the burner within the tempering limit in the range of different heat loads of the burner, which can avoid the occurrence of hydrogen combustion tempering; at the same time, the combustion state of hydrogen can be monitored to ensure that hydrogen and The air flow is always kept at the optimum combustion ratio to maintain the stable combustion of hydrogen.
  • the domestic gas water heater using hydrogen as fuel in the present invention has a structure as shown in the figure, including a casing 1, the controller is installed on the inner wall of the casing, and a main body is installed in the middle of the casing, and the main body includes Combustion chamber 20 and heat exchange chamber 4 that are arranged successively from bottom to top, are covered with smoke collecting hood 3 on the top wall of described heat exchange chamber 4, and burner 6 is installed in described combustion chamber 20, on the burner
  • the shape of the fire hole can be round or slotted.
  • a finned tube heat exchanger is installed in the heat exchange chamber 4, and a heat exchange pipeline 21 is coiled outside the heat exchange chamber,
  • the condensing chamber 23 is arranged on the upper part of the shell, and a plate heat exchanger is installed in the condensing chamber 23, and the top wall of the condensing chamber is connected with the bottom of the smoke exhaust pipe 25 provided through the shell at the upper part.
  • the bottom wall is connected with a condensed water collection device 22, the condensed water collection device is connected with the drain pipe 14 provided through the bottom wall of the casing, the water inlet pipe 13 installed with the water volume servo valve 15 and the water flow sensor 16 exchanges heat with the plate type in the condensing chamber
  • the outlet of the plate heat exchanger is connected to the inlet of the fin-tube heat exchanger in the heat exchange chamber, and the outlet of the fin-tube heat exchanger is connected to one end of the heat exchange pipeline coiled outside the heat exchange chamber.
  • the other end of the heat pipe is connected to one end of the outlet pipe 12 equipped with a temperature sensor 11; the cold water first enters the plate heat exchanger in the condensation chamber through the inlet pipe 13 for primary heat exchange with the flue gas, and then enters the pipe in the heat exchange chamber.
  • Type heat exchanger for secondary heat exchange can condense saturated water vapor in flue gas after combustion into water, prevent corrosion of flue and heat exchanger, improve thermal efficiency of water heater and save energy.
  • the saturated water vapor in the flue gas is condensed into water after passing through the plate heat exchanger, and then enters the drain pipe through the condensed water collection device to be discharged, and other waste gases in the flue gas are discharged through the exhaust pipe 25 above the condensation chamber;
  • An oxygen sensor 24 is arranged on the smoke pipe, and the oxygen sensor is connected with the controller to realize the monitoring of the oxygen content in the flue gas.
  • the air outlet of the blower fan 8 installed in the lower part of the housing communicates with the inlet of the gas mixing pipe 9, the inlet end of the gas pipe 10 passes through the shell of the gas water heater and the outlet end communicates with the gas mixing pipe 9, and installs on the gas pipe.
  • Gas proportional valve 17 is arranged.
  • the burner 6 includes three combustion groups, namely the left combustion group, the middle combustion group, and the right combustion group;
  • the outlet of the branch pipe is communicated with the combustion group on the left side, the outlet of the gas mixing pipe branch pipe in the middle is communicated with the combustion group in the middle, and the outlet of the gas mixing pipe branch pipe on the right side where the second electromagnetic valve 18 is installed is communicated with the combustion group on the right side.
  • the outer wall of the combustion chamber is fixed with an ignition device 19 connected to the controller and a flameout protection device 5.
  • the ignition device adopts an ignition needle
  • the flameout protection device adopts a thermocouple to realize ignition and flame monitoring of the burner.
  • the water volume servo valve and the water flow sensor are connected to the controller to monitor the water inflow; a temperature sensor is installed on the water outlet pipe, and the temperature sensor is connected to the controller to monitor the outlet water temperature.
  • the controller is connected with the fan and the gas proportional valve to realize the control of the flow of hydrogen and air.
  • the present invention can realize the staged combustion of hydrogen on the burner through the switch of two electromagnetic valves, has a large range of heat load adjustment, and can cooperate with the speed adjustment of the fan to realize the stable combustion of hydrogen and prevent the occurrence of hydrogen backfire;
  • the two solenoid valves are closed, only the middle section burner can burn hydrogen, and with the gas proportional valve and fan, the burner can achieve low-fire combustion;
  • the middle section and the The combustion group on one side works to achieve medium-fire combustion of the burner; when the two solenoid valves are fully opened, all combustion groups work to achieve high-power combustion of the burner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

本发明公开了一种以氢气为燃料的家用燃气热水器控制方法,该方法结合了分段燃烧技术和全预混燃烧技术,控制器根据进水流量和设定的热水输入温度,判断燃烧模式,通过设置两个电磁阀和分段燃烧器,实现氢气在燃烧器上的分段燃烧,同时配合风机的转速调节和燃气比例阀电流大小实现氢气的稳定燃烧;在所述的排烟管上设置氧传感器,控制器通过对出水温度和烟气中氧浓度的监测,判断实际氢气燃烧是否达到最佳状态,并进行调节。该发明可以使家用燃气热水器在以氢气为燃料时具有较大的热负荷调节范围和恒温热水输出的功能,实现氢气在燃气热水器上的安全、稳定燃烧,避免氢气燃烧回火和冷凝水对热水器的腐蚀。

Description

一种以氢气为燃料的家用燃气热水器控制方法 技术领域
本发明属于城镇燃气燃烧与应用领域,尤其涉及一种以氢气为燃料的家用燃气热水器控制方法。
背景技术
目前家用燃气热水器的气源主要为天然气和液化石油气,随着国家“碳达峰、碳中和”目标的提出,氢能作为清洁低碳的绿色能源,有望在家用燃气热水器领域进行普及。但是氢气的物理化学性质与天然气和液化石油气相差较大,导致无法在现有的燃气热水器上稳定燃烧。现有的燃气热水器熄火保护装置多采用火焰感应针来监测火焰燃烧状态,原理是天然气或液化石油气燃烧产生的离子体在感应针上形成电离电流,通过电离特性来检测燃气是否熄灭;但是氢气燃烧无法产生离子体,使得火焰感应针失效,具有安全隐患。另外,氢气燃烧的火焰传播速度快,容易发生回火,并且其着火温度低和熄火距离小,也会加重回火现象,具有较大得安全隐患。并且,相对天然气和液化石油气,氢气的密度和发热量较低,导致在以氢气为燃料时,传统家用燃气热水器的热负荷会大幅度降低,使得热水器无法具有较大的热负荷调节范围,影响使用性能;若增加氢气的流速,则会加重氢气回火的倾向性,同时为了满足燃烧所需空气量,其风机的转速也会相应提高,导致噪音偏高。另外,氢气燃烧的产物为气态水,在经过排烟管时,饱和水蒸气容易变成冷凝水从而腐蚀排烟管,甚至影响到换热器和燃烧器,长时间运行具有较大安全隐患。
目前,为提高燃气热水器的热负荷调节范围,降低风机噪音,实现恒温热水输出,多采用风机变频调速及分段燃烧技术。专利公开号为CN110207386A的发明专利“一种分段燃烧的燃气热水器及其控制方法”,通过控制器控制分段阀的开关来实现火力档位的切换,并且采用电流联动控制方式将不同火力档位限定在不同燃气比例阀电流区间;专利公开号为CN111520713A的发明专利“一种密闭式全预混燃烧系统及热水器”,运用了一种以燃气引射空气的全预混方式,引射管的空气引射量由燃气压力以及风机转速共同控制,在全预混燃烧的基础上实现了对燃烧分段的控制;但以上专利只实现了两段燃烧,无法满足在以氢气为燃料时,热负荷大幅度降低导致的调节范围变小现象;同时以上专利均采用上抽型风机,设置在顶部,无法精确控制进入燃烧器的空气量,容易导致燃烧不稳定现象,并 且氢气燃烧生成的冷凝水会影响风机的寿命。
专利公开号为CN112146286A的发明专利“一种燃气热水器的风量匹配控制方法和控制系统”,根据火力段以及与此火力段的热负荷相匹配的程序分段风量调节关系,确定理论风机风量进行调节;但该专利只是通过理论风机风量进行调节,无法对实际的燃烧所需空气量进行判断,不能保证最佳的燃烧效果。专利公开号为CN112113349A的发明专利“一种热水器的控制方法及热水器”,通过检测当前分段热水器的噪音值和风道的风压值,判断热水器是否燃烧稳定;但该发明无法精确感知燃烧状态波动,易受到环境噪音的干扰;同时在达到最大热负荷时,该发明通过调小燃气比例阀来维持风量和燃气量的平衡,将会导致热水出水温度下降,无法达到恒温热水的要求。专利公开号为CN110274395A的发明专利“一种自适应全预混燃气热水器的控制方法及燃气热水器”,通过采集燃气流量、风机流量和燃烧后的过剩氧含量来对热水器的燃烧进行监控;但是该发明没有采用分段燃烧技术无法实现较大的热负荷调节,无法满足恒温热水输出;并且在使用氢气燃料时,当热水器热负荷变化时,氢气在燃烧器中的流速无法保持在回火界限内,从而容易出现回火现象。
发明内容
本发明的目的在于克服已有技术的缺点,提供一种以氢气为燃料的家用燃气热水器控制方法,该控制方法可以实现氢气在燃气热水器上的安全、稳定燃烧,避免氢气燃烧回火和冷凝水对热水器的腐蚀,同时具有较大的负荷调节范围,可输出恒温热水。
本发明的一种以氢气为燃料的家用燃气热水器控制方法,包括以下步骤:
步骤一、对现有的家用燃气热水器进行改装,改装结构为:在燃烧室内安装有包含三个燃烧组的燃烧器,分为左侧燃烧组、中间燃烧组、右侧燃烧组;混气管的出口端分为三条混气管支管,安装有第一电磁阀的左侧混气管支管的出口与左侧燃烧组连通,中间混气管支管的出口与中间燃烧组连通,安装有第二电磁阀的右侧混气管支管的出口与右侧燃烧组连通,风机的出风口与混气管的进口连通,燃气管的进气端穿过燃气热水器的壳体且出口端与混气管连通,在所述的燃气管上安装有燃气比例阀,在与冷凝室连通的排烟管上安装有氧传感器;
所述的风机和燃气比例阀通过控制线与控制器相连,实现对氢气和空气流量的控制,所述的氧传感器通过控制线与控制器相连,所述的控制器读取氧传感器输出的氧浓度信息 并向风机输出控制信号,调整风机的转速;
步骤二、对家用燃气热水器进行控制操作,包括以下步骤:
S10,用户在与控制器连接的控制面板上设置热水温度Tset,控制器计算理论热负荷Ф,若理论热负荷小于最大热负荷Фmax的三分之二,则进入分段燃烧模式,然后执行下一步;否则进入全段燃烧模式,然后执行S30;
S20,若1/3Фmax<Ф<2/3Фmax,控制器向第一电磁阀或者第二电磁阀输出关闭信号,若Ф<1/3Фmax,控制器向第一电磁阀和第二电磁阀输出关闭信号;然后根据理论热负荷计算进入燃气管的实际氢气流量Qh,根据预设的燃气比例阀的电流Ib与实际氢气流量Qh的线性关系,调节燃气比例阀的电流Ib,控制燃气比例阀的阀门大小;在燃气比例阀电流Ib达到对应的值时执行下一步;若1/3Фmax<Ф<2/3Фmax,控制器向第一电磁阀或者第二电磁阀输出交替关闭信号;
S21,控制器根据预设的风机转速R与进入混合管的实际空气进气流量的比例关系,调节风机转速R,使得实际空气进气流量与理论空气进气流量的比例在1.05~1.25之间;
S22,控制器读取安装在出水管上的温度传感器输出的出水温度信号Tout并读取氧传感器输出的氧浓度信号C;判断出水温度Tout与用户设定的热水温度Tset差值是否满足预设要求;若满足预设要求,则执行下一步;否则,执行S24;
S23,判断烟气中的氧浓度C是否满足预设范围;若满足预设要求,则执行S40;若氧浓度C小于预设范围,返回执行S21,提高风机转速;若氧浓度C大于预设范围,返回执行S21,降低风机转速;
S24,判断出水温度Tout与用户设定的热水温度Tset的大小;若Tout>Tset,则返回执行S20,降低燃气比例阀电流Ib;否则执行S30;
S30,控制器向第一电磁阀和第二电磁阀输出开启信号,打开第一电磁阀和第二电磁阀;
S31,控制器根据理论热负荷Ф计算进入燃气管的氢气流量,根据预设的燃气比例阀电流Ib与氢气流量的比例,调节燃气比例阀电流Ib,控制燃气比例阀的阀门大小;
S32,控制器根据预设的风机转速R与实际空气进气流量的比例关系,调节风机转速R,使得实际空气进气流量与理论空气进气流量的比例在1.05~1.25之间;
S33,控制器读取安装在出水管上的温度传感器输出的出水温度信号Tout并读取氧传感器输出的氧浓度信号C;判断出水温度Tout与用户设定的热水温度Tset差值是否满足预 设要求;若满足预设要求,则执行下一步;否则,执行S35;
S34,判断烟气中的氧浓度C是否满足预设范围;若满足预设要求,则执行S40;若氧浓度C小于预设范围,返回执行S32,提高风机转速;若氧浓度C大于预设范围,返回执行S32,降低风机转速;
S35,判断出水温度Tout与用户设定的热水温度Tset的大小;若Tout>Tset,则返回执行S31,降低燃气比例阀电流Ib;否则执行S36;
S36,判断燃气比例阀电流Ib是否达到预设最大值,若达到预设最大值,则通过控制器调小水量伺服阀电流Is,降低水量伺服阀阀门开度,从而降低进水流量,并返回执行S33;否则,返回执行S31,提高燃气比例阀电流Ib
S40,保持风机转速R、燃气比例阀电流Ib和水量伺服阀电流Is不变,维持氢气正常燃烧。
本发明的优点:
1.本发明提供的一种控制方法可以使燃烧器在不同热负荷范围内,氢气在燃烧器中的流速都可以保持在回火界限内,可避免氢气燃烧回火发生;同时可对氢气的燃烧状态进行监控,保证氢气和空气流量始终保持在最佳燃烧比例,防止在燃气压力及外部风压波动时发生回火,保持氢气的稳定燃烧。
2.本发明提供的一种家用燃气热水器通过分段燃烧技术实现了较大的热负荷调节范围,具有恒温热水输出的功能,同时可实现氢气在燃烧器内的稳定燃烧;通过冷凝换热可以提高热水器的热效率,节约能源,并减小冷凝水对排烟管和换热器的腐蚀。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为本发明的一种以氢气为燃料的家用燃气热水器控制方法的流程图;
图2为本发明的一种以氢气为燃料的家用燃气热水器结构示意图;
图3为本发明的一种以氢气为燃料的家用燃气热水器的圆形火孔燃烧器俯视图;
图4为本发明的一种以氢气为燃料的家用燃气热水器的缝隙式火孔燃烧器俯视图。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有 指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
另外,若本发明实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
如图1所示,本发明的一种以氢气为燃料的家用燃气热水器控制方法,包括以下步骤:
步骤一、对现有的家用燃气热水器进行改装,改装结构为:在燃烧室内安装有包含三个燃烧组的燃烧器6,分为左侧燃烧组、中间燃烧组、右侧燃烧组;混气管9的出口端分为三条混气管支管,安装有第一电磁阀7的左侧混气管支管的出口与左侧燃烧组连通,中间混气管支管的出口与中间燃烧组连通,安装有第二电磁阀18的右侧混气管支管的出口与右侧燃烧组连通。风机8的出风口与混气管9的进口连通,燃气管10的进气端穿过燃气热水器的壳体且出口端与混气管9连通,在所述的燃气管上安装有燃气比例阀17。在与冷凝室23连通的排烟管25上安装有氧传感器24。
所述的风机8和燃气比例阀17通过控制线与控制器2相连,实现对氢气和空气流量的控制。所述的氧传感器24通过控制线与控制器相连,所述的控制器读取氧传感器24输出的氧浓度信息并向风机输出控制信号,调整风机的转速。
所述的风机8优选的采用直流变频风机,可以通过调整风机的转速来改变空气的进量,从而保持空气和氢气的混合比例,达到最佳燃烧的效果。
步骤二、对家用燃气热水器进行控制操作,包括以下步骤:
S10,用户在与控制器2连接的控制面板上设置热水温度Tset,控制器2计算理论热负荷Ф,若理论热负荷小于最大热负荷Фmax的三分之二,则进入分段燃烧模式,然后执行下一步;否则进入全段燃烧模式,然后执行S30;
控制器2计算理论热负荷的公式:Ф=1/η*Cp*Qin(Tset-Tin);
其中,Ф为用户设定热水温度Tset时的理论热负荷;Qin为进水管的进水流量,通过水流量传感器16获得;Cp为水的比热容,为固定值;Tin为进水温度,通过在热水器启动时 刻时安装在出水管上的温度传感器11获得;η为燃气热水器的热效率,为测定值;最大热负荷Фmax为进入全段燃烧模式后理论上可达到的最大热负荷,为设定值。
在燃气热水器的实际使用过程中,用户设定的热水温度Tset和进水流量Qin是一个根据用户实时需求而动态变化的值;因此,当燃气热水器进入稳定燃烧状态后,若Tset和Qin发生变化,则需要重新执行S10,调节燃烧器的燃烧模式,以匹配新的用户需求,保持氢气的稳定燃烧。
S20,若1/3Фmax<Ф<2/3Фmax,控制器2向第一电磁阀7或者第二电磁18阀输出关闭信号,若Ф<1/3Фmax,控制器2向第一电磁阀7和第二电磁18阀输出关闭信号;然后根据理论热负荷计算进入燃气管10的实际氢气流量Qh,根据预设的燃气比例阀17的电流Ib与实际氢气流量Qh的线性关系,调节燃气比例阀的电流Ib,控制燃气比例阀的阀门大小;在燃气比例阀电流Ib达到对应的值时执行下一步;
所述的实际氢气流量的计算方法,参见国家标准GB 6932-2015《家用燃气快速热水器》里表12中关于热负荷和燃气流量的关系式;
预设的燃气比例阀电流Ib与实际氢气流量Qh的线性关系需要提前测定好Ib~Qh曲线,并保存在控制器中;
S21,控制器根据预设的风机转速R与进入混合管9的实际空气进气流量的比例关系,调节风机转速R,使得实际空气进气流量与理论空气进气流量的比例在1.05~1.25之间,优点是可以保证氢气完全燃烧,避免氢气在燃烧时发生回火,同时防止风机转速过高导致的高噪音,防止多余的空气降低烟气温度和热效率;同时控制器控制点火装置对中间燃烧组点火或者对中间燃烧组以及左侧燃烧器或者右侧燃烧组点火,进入分段燃烧模式;
所述的理论空气进气流量为氢气刚好完全燃烧所需的空气量,根据燃烧反应式2H2+O2=2H2O+ΔH和氢气的流量计算出,若实际氢气流量Qh为n,则理论氧气进气流量为n/2,理论空气进气流量为(n/2)÷0.21=50*n/21;
所述的实际空气进气流量为空气通过风机实际进入混合管中的流量,根据风机的转速R与风量的比例关系计算出,风机的转速R与风量的线性关系需提前测定好并保存在控制器中;
S22,控制器读取安装在出水管上的温度传感器11输出的出水温度信号Tout并读取氧传感器24输出的氧浓度信号C;判断出水温度Tout与用户设定的热水温度Tset差值是否满足预设要求;若满足预设要求,则执行下一步;否则,执行S24;
通常,出水温度Tout与用户设定热水温度Tset差值应在±3℃之内;
S23,判断烟气中的氧浓度C是否满足预设范围;若满足预设要求,则执行S40;若氧浓度C小于预设范围,返回执行S21,提高风机转速;若氧浓度C大于预设范围,返回执行S21,降低风机转速;
S24,判断出水温度Tout与用户设定的热水温度Tset的大小;若Tout>Tset,则返回执行S20,降低燃气比例阀电流Ib;否则执行S30;
所述的烟气中的氧浓度C预设范围根据理论空气进气流量与实际空气进气流量计算得出,实际空气进气流量与理论空气进气流量的比例在1.05~1.25之间,根据燃烧反应式2H2+O2=2H2O+ΔH,该燃烧反应只消耗空气中的氧气,无其他气体生成,若实际空气进气流量与理论空气进气流量的比例为k,则燃烧后氧浓度C为0.21*(k-1)/[0.21*(k-1)+0.79*k],则烟气中的氧浓度C预设范围为1.25%~5.05%;
S30,控制器向第一电磁阀和第二电磁阀输出开启信号,打开第一电磁阀和第二电磁阀;
S31,控制器根据理论热负荷Ф计算进入燃气管10的氢气流量,根据预设的燃气比例阀电流Ib与氢气流量的比例,调节燃气比例阀电流Ib,控制燃气比例阀的阀门大小;
S32,控制器根据预设的风机转速R与实际空气进气流量的比例关系,调节风机转速R,使得实际空气进气流量与理论空气进气流量的比例在1.05~1.25之间,保证氢气完全燃烧,避免氢气在燃烧时发生回火,同时防止风机转速过高导致的高噪音,防止多余的空气降低烟气温度和热效率;同时控制器控制点火装置进行点火,进入全段燃烧模式;
S33,控制器读取安装在出水管上的温度传感器11输出的出水温度信号Tout并读取氧传感器24输出的氧浓度信号C;判断出水温度Tout与用户设定的热水温度Tset差值是否满足预设要求;若满足预设要求,则执行下一步;否则,执行S35;
通常,出水温度Tout与用户设定热水温度Tset差值应在±3℃之内;
S34,判断烟气中的氧浓度C是否满足预设范围;若满足预设要求,则执行S40;若氧浓度C小于预设范围,返回执行S32,提高风机转速;若氧浓度C大于预设范围,返回执行S32,降低风机转速;
S35,判断出水温度Tout与用户设定的热水温度Tset的大小;若Tout>Tset,则返回执行S31,降低燃气比例阀电流Ib;否则执行S36;
S36,判断燃气比例阀电流Ib是否达到预设最大值,如果Ib达到预设最大值,说明燃 气比例阀已经达到最大开度,氢气流量达到最大,此时热水器的热负荷已无法提高,若保证出水温度不变,则需要调节水量伺服阀,降低进水流量;若达到预设最大值,则通过控制器调小水量伺服阀电流Is,降低水量伺服阀阀门开度,从而降低进水流量,并返回执行S33;否则,返回执行S31,提高燃气比例阀电流Ib
S40,保持风机转速R、燃气比例阀电流Ib和水量伺服阀电流Is不变,维持氢气正常燃烧。
本发明的工作原理如下:
通过控制器连接温度传感器、水流量传感器、氧传感器,实现对进水流量、出水温度和烟气中氧含量的监测;通过控制器连接风机、燃气比例阀、第一电磁阀、第二电磁阀和水量伺服阀,实现对空气流量、氢气流量和进水流量的控制。
先根据用户设定的热水温度和进水流量计算理论热负荷,判断燃烧器进入分段燃烧模式还是全段燃烧模式;若进入分段燃烧模式,则根据热负荷的大小,选择关闭第一电磁阀和/或第二电磁阀;若进入全段燃烧模式,则打开第一电磁阀和第二电磁阀;根据理论热负荷计算氢气流量,通过改变燃气比例阀电流大小,控制阀门开度,从而控制氢气的流量,氢气通过燃气管进入混气管,并根据氢气流量确定风机转速,使空气流量和氢气流量达到最佳燃烧比例,空气通过风机进入混气管,空气和氢气在混气管中进行混合后到达燃烧器,同时控制器控制点火装置进行点火,氢气在燃烧器上稳定燃烧;燃烧后的烟气向上经过热交换室,与热交换室内的管式热交换器进行显热交换后,进入到集烟罩,然后再进入到冷凝室,与冷凝室中的板式热交换器进行潜热交换,饱和水蒸气冷凝成液态水进入到冷凝水收集装置,然后通过排水管排出,剩余烟气通过排烟管排出;另外通过对出水温度和烟气中的氧浓度的监测,判断实际燃烧是否达到最佳状态;若没有,则通过调节燃气比例阀电流和风机转速,使燃烧保持最佳状态。该方法可以使燃烧器在不同热负荷范围内,氢气在燃烧器中的流速都可以保持在回火界限内,可避免氢气燃烧回火发生;同时可对氢气的燃烧状态进行监控,保证氢气和空气流量始终保持在最佳燃烧比例,保持氢气的稳定燃烧。
本发明采用的以氢气为燃料的家用燃气热水器,其结构如图所示,包括外壳1,控制器安装在外壳的内壁上,在所述的外壳内中间安装有主体,所述的主体内包括从下至上依次设置的燃烧室20和热交换室4,在所述的热交换室4顶壁上盖有集烟罩3,在所述的燃烧室20内安装有燃烧器6,燃烧器上的火孔形状可为圆形或者缝隙式。
在所述的热交换室4内安装有翅片管式热交换器,在热交换室外盘绕有换热管路21, 冷凝室23设置在外壳内上部,在所述的冷凝室23内安装有板式热交换器,冷凝室顶壁与上部穿过外壳设置的排烟管25的底部连接,在所述的冷凝室的底壁上连接有冷凝水收集装置22,冷凝水收集装置与穿过外壳底壁设置的排水管14连接,安装有水量伺服阀15、水流量传感器16的进水管13与冷凝室内的板式热交换器进口连接,板式热交换器的出口与热交换室内的翅片管式热交换器的进口连接,翅片管式热交换器的出口连接盘绕在热交换室外的换热管路的一端,换热管路的另一端与安装有温度传感器11的出水管12的一端连接;冷水首先由进水管13进入冷凝室的板式热交换器与烟气进行一级换热,然后进入热交换室的管式热交换器进行二级换热,可以将燃烧后烟气中的饱和水蒸气冷凝成水,防止腐蚀烟道和换热器,同时可以提高热水器的热效率,节约能源。烟气中的饱和水蒸气经过板式热交换器后冷凝成水,然后通过冷凝水收集装置进入排水管排出,烟气中的其他废气通过冷凝室上方的排烟管25排出;在所述的排烟管上设置有氧传感器24,氧传感器与控制器连接,实现对烟气中氧含量的监测。
安装在外壳内下部的风机8的出风口与混气管9的进口连通,燃气管10的进气端穿过燃气热水器的壳体且出口端与混气管9连通,在所述的燃气管上安装有燃气比例阀17。燃烧器6包括三个燃烧组,分别为左侧燃烧组、中间燃烧组、右侧燃烧组;混气管9的出口端分为三条混气管支管,安装有第一电磁阀7的左侧混气管支管的出口与左侧燃烧组连通,中间混气管支管的出口与中间燃烧组连通,安装有第二电磁阀18的右侧混气管支管的出口与右侧燃烧组连通。燃烧室的外壁上固定有与控制器连接的点火装置19和熄火保护装置5,点火装置采用点火针,熄火保护装置采用热电偶,实现燃烧器的点火和火焰监测。
所述的水量伺服阀和水流量传感器与控制器连接,实现对进水量的监控;所述的出水管上安装有温度传感器,所述的温度传感器与控制器连接,实现对出水温度的监测。
所述的控制器连接风机和燃气比例阀,实现对氢气和空气流量的控制。
本发明可以通过两个电磁阀的开关,实现氢气在燃烧器上的分段燃烧,具有较大的热负荷调节范围,同时可以配合风机的转速调节实现氢气的稳定燃烧,防止氢气回火发生;当两个电磁阀都处于关闭的状态时,只有中间段燃烧器可以燃烧氢气,配合燃气比例阀和风机,可以实现燃烧器的小火力燃烧;当一个电磁阀处于关闭的状态时,中间段和其中一侧的燃烧组工作,可以实现燃烧器的中火力燃烧;当两个电磁阀全开时,所有燃烧组全部工作,可以实现燃烧器的大火力燃烧。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (4)

  1. 一种以氢气为燃料的家用燃气热水器控制方法,其特征在于包括以下步骤:
    步骤一、对现有的家用燃气热水器进行改装,改装结构为:在燃烧室内安装有包含三个燃烧组的燃烧器(6),分为左侧燃烧组、中间燃烧组、右侧燃烧组;混气管(9)的出口端分为三条混气管支管,安装有第一电磁阀(7)的左侧混气管支管的出口与左侧燃烧组连通,中间混气管支管的出口与中间燃烧组连通,安装有第二电磁阀(18)的右侧混气管支管的出口与右侧燃烧组连通,风机(8)的出风口与混气管(9)的进口连通,燃气管(10)的进气端穿过燃气热水器的壳体且出口端与混气管连通,在所述的燃气管上安装有燃气比例阀(17),在与冷凝室(23)连通的排烟管(25)上安装有氧传感器(24);
    所述的风机和燃气比例阀通过控制线与控制器相连,实现对氢气和空气流量的控制,所述的氧传感器通过控制线与控制器相连,所述的控制器读取氧传感器输出的氧浓度信息并向风机输出控制信号,调整风机的转速;
    步骤二、对家用燃气热水器进行控制操作,包括以下步骤:
    S10,用户在与控制器连接的控制面板上设置热水温度Tset,控制器计算理论热负荷Ф,若理论热负荷小于最大热负荷Фmax的三分之二,则进入分段燃烧模式,然后执行下一步;否则进入全段燃烧模式,然后执行S30;
    S20,若1/3Фmax<Ф<2/3Фmax,控制器向第一电磁阀或者第二电磁阀输出关闭信号,若Ф<1/3Фmax,控制器向第一电磁阀和第二电磁阀输出关闭信号;然后根据理论热负荷计算进入燃气管的实际氢气流量Qh,根据预设的燃气比例阀的电流Ib与实际氢气流量Qh的线性关系,调节燃气比例阀的电流Ib,控制燃气比例阀的阀门大小;在燃气比例阀电流Ib达到对应的值时执行下一步;
    S21,控制器根据预设的风机转速R与进入混合管的实际空气进气流量的比例关系,调节风机转速R,使得实际空气进气流量与理论空气进气流量的比例在1.05~1.25之间;
    S22,控制器读取安装在出水管上的温度传感器输出的出水温度信号并读取氧传感器输出的氧浓度信号C;判断出水温度Tout与用户设定的热水温度Tset差值是否满足预设要求;若满足预设要求,则执行下一步;否则,执行S24;
    S23,判断烟气中的氧浓度C是否满足预设范围;若满足预设要求,则执行S40;若氧浓度C小于预设范围,返回执行S21,提高风机转速;若氧浓度C大于预设范围,返回执行S21,降低风机转速;
    S24,判断出水温度Tout与用户设定的热水温度Tset的大小;若Tout>Tset,则返回执行S20,降低燃气比例阀电流Ib;否则执行S30;
    S30,控制器向第一电磁阀和第二电磁阀输出开启信号,打开第一电磁阀和第二电磁阀;
    S31,控制器根据理论热负荷Ф计算进入燃气管的氢气流量,根据预设的燃气比例阀电流Ib与氢气流量的比例,调节燃气比例阀电流Ib,控制燃气比例阀的阀门大小;
    S32,控制器根据预设的风机转速R与实际空气进气流量的比例关系,调节风机转速R,使得实际空气进气流量与理论空气进气流量的比例在1.05~1.25之间;
    S33,控制器读取安装在出水管上的温度传感器输出的出水温度信号并读取氧传感器输出的氧浓度信号C;判断出水温度Tout与用户设定的热水温度Tset差值是否满足预设要求;若满足预设要求,则执行下一步;否则,执行S35;
    S34,判断烟气中的氧浓度C是否满足预设范围;若满足预设要求,则执行S40;若氧浓度C小于预设范围,返回执行S32,提高风机转速;若氧浓度C大于预设范围,返回执行S32,降低风机转速;
    S35,判断出水温度Tout与用户设定的热水温度Tset的大小;若Tout>Tset,则返回执行S31,降低燃气比例阀电流Ib;否则执行S36;
    S36,判断燃气比例阀电流Ib是否达到预设最大值,若达到预设最大值,则通过控制器调小水量伺服阀电流Is,降低水量伺服阀阀门开度,从而降低进水流量,并返回执行S33;否则,返回执行S31,提高燃气比例阀电流Ib
    S40,保持风机转速R、燃气比例阀电流Ib和水量伺服阀电流Is不变,维持氢气正常燃烧。
  2. 根据权利要求1所述的以氢气为燃料的家用燃气热水器控制方法,其特征在于:所述的风机采用直流变频风机。
  3. 根据权利要求1或者2所述的以氢气为燃料的家用燃气热水器控制方法,其特征在于:在分段燃烧模式下,当1/3Фmax<Ф<2/3Фmax时,控制器向第一电磁阀或者第二电磁阀输出交替关闭信号。
  4. 根据权利要求3所述的以氢气为燃料的家用燃气热水器控制方法,其特征在于:出水温度Tout与用户设定热水温度Tset差值在±3℃之内。
PCT/CN2023/073564 2022-02-17 2023-01-28 一种以氢气为燃料的家用燃气热水器控制方法 WO2023155663A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210148182.1 2022-02-17
CN202210148182.1A CN114484885B (zh) 2022-02-17 2022-02-17 一种以氢气为燃料的家用燃气热水器控制方法

Publications (1)

Publication Number Publication Date
WO2023155663A1 true WO2023155663A1 (zh) 2023-08-24

Family

ID=81483062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/073564 WO2023155663A1 (zh) 2022-02-17 2023-01-28 一种以氢气为燃料的家用燃气热水器控制方法

Country Status (2)

Country Link
CN (1) CN114484885B (zh)
WO (1) WO2023155663A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114484885B (zh) * 2022-02-17 2023-09-01 中国市政工程华北设计研究总院有限公司 一种以氢气为燃料的家用燃气热水器控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6329111A (ja) * 1986-03-05 1988-02-06 Snow Brand Milk Prod Co Ltd 燃焼装置における空燃比制御方法及び装置
CN2658641Y (zh) * 2003-10-15 2004-11-24 中山华帝燃具股份有限公司 一种可分段燃烧的新型燃气热水器
CN105387613A (zh) * 2015-12-07 2016-03-09 成都前锋电子有限责任公司 一种分段燃烧式的燃气采暖热水炉
CN110159575A (zh) * 2018-02-10 2019-08-23 芜湖美的厨卫电器制造有限公司 燃气热水器的风机控制方法、装置、热水器及存储介质
CN111578306A (zh) * 2020-05-13 2020-08-25 珠海格力电器股份有限公司 燃气壁挂炉自适应控制方法、设备和燃气壁挂炉系统
CN114484885A (zh) * 2022-02-17 2022-05-13 中国市政工程华北设计研究总院有限公司 一种以氢气为燃料的家用燃气热水器控制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR910000677B1 (ko) * 1985-07-15 1991-01-31 도오도오 기기 가부시기가이샤 가스 순간식 급탕기(給湯機)
CN200946917Y (zh) * 2006-08-25 2007-09-12 广东万和集团有限公司 全预混催化燃烧冷凝式燃气热水器
CN101839552B (zh) * 2009-03-18 2012-03-14 中山市华美骏达电器有限公司 一种鼓风式燃气热水器恒温控制方法及其控制系统
CN201935414U (zh) * 2011-02-11 2011-08-17 广东万和新电气股份有限公司 恒温型燃气热水器
CN109579280A (zh) * 2018-12-28 2019-04-05 广东顺德大派电气有限公司 一种自适应燃气热水器
CN111595030A (zh) * 2020-06-15 2020-08-28 珠海格力电器股份有限公司 燃气热水器控制方法、装置、系统及燃气热水器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6329111A (ja) * 1986-03-05 1988-02-06 Snow Brand Milk Prod Co Ltd 燃焼装置における空燃比制御方法及び装置
CN2658641Y (zh) * 2003-10-15 2004-11-24 中山华帝燃具股份有限公司 一种可分段燃烧的新型燃气热水器
CN105387613A (zh) * 2015-12-07 2016-03-09 成都前锋电子有限责任公司 一种分段燃烧式的燃气采暖热水炉
CN110159575A (zh) * 2018-02-10 2019-08-23 芜湖美的厨卫电器制造有限公司 燃气热水器的风机控制方法、装置、热水器及存储介质
CN111578306A (zh) * 2020-05-13 2020-08-25 珠海格力电器股份有限公司 燃气壁挂炉自适应控制方法、设备和燃气壁挂炉系统
CN114484885A (zh) * 2022-02-17 2022-05-13 中国市政工程华北设计研究总院有限公司 一种以氢气为燃料的家用燃气热水器控制方法

Also Published As

Publication number Publication date
CN114484885A (zh) 2022-05-13
CN114484885B (zh) 2023-09-01

Similar Documents

Publication Publication Date Title
CN105387458B (zh) 一种降低燃烧设备氮氧化物排放的系统及方法
WO2023155663A1 (zh) 一种以氢气为燃料的家用燃气热水器控制方法
WO2021036709A1 (zh) 一种脉冲加热炉系统及控制方法
CN201875806U (zh) 板换两用壁挂炉
WO2017032138A1 (zh) 燃气具的燃烧加热闭环控制系统
CN109612104A (zh) 一种新型低氮冷凝式燃气暖浴两用炉
CN111174412A (zh) 燃气热水设备
CN212274265U (zh) 一种低氮冷凝壁挂炉
CN2658641Y (zh) 一种可分段燃烧的新型燃气热水器
CN109442366A (zh) 一种贯流式全预混低NOx锅炉
KR100406472B1 (ko) 풍압센서를 이용한 공기비례제어 보일러
JPS62162847A (ja) ガス瞬間式給湯装置
CN214148339U (zh) 新型燃气卧式内燃可调节受热面热水锅炉
CN209341609U (zh) 一种新型低氮冷凝式燃气暖浴两用炉
CN205579720U (zh) 节能减排的燃气壁挂炉
CN213480208U (zh) 一种集成式动力燃烧装置
CN110671717B (zh) 一种用于蒸汽发电锅炉的燃烧精控系统
CN209213903U (zh) 一种烟气脱硝用管道内直接加热燃烧器
CN207865959U (zh) 一种无辅助烟道燃烧技术的熔铝炉
CN207455550U (zh) 烧结余热锅炉补燃炉
CN214791887U (zh) 一种环境自适应的全预混冷凝式燃气暖浴两用炉
CN114353152B (zh) 一种供暖和卫浴同步进行的壁挂炉及其控制方法
CN219103315U (zh) 一种可智能调节燃烧状态的燃气热水器
CN202254352U (zh) 燃气采暖热水炉的气路安全保护装置
CN2599479Y (zh) 燃气热水器水气联调自动恒温系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23755667

Country of ref document: EP

Kind code of ref document: A1