WO2023155493A1 - 一种电子发射装置以及电子装置 - Google Patents

一种电子发射装置以及电子装置 Download PDF

Info

Publication number
WO2023155493A1
WO2023155493A1 PCT/CN2022/130787 CN2022130787W WO2023155493A1 WO 2023155493 A1 WO2023155493 A1 WO 2023155493A1 CN 2022130787 W CN2022130787 W CN 2022130787W WO 2023155493 A1 WO2023155493 A1 WO 2023155493A1
Authority
WO
WIPO (PCT)
Prior art keywords
electron emission
electron
refractory container
emission device
present disclosure
Prior art date
Application number
PCT/CN2022/130787
Other languages
English (en)
French (fr)
Inventor
李西军
Original Assignee
西湖大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西湖大学 filed Critical 西湖大学
Publication of WO2023155493A1 publication Critical patent/WO2023155493A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/04Liquid electrodes, e.g. liquid cathode
    • H01J1/06Containers for liquid-pool electrodes; Arrangement or mounting thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/04Liquid electrodes, e.g. liquid cathode
    • H01J1/05Liquid electrodes, e.g. liquid cathode characterised by material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/04Liquid electrodes, e.g. liquid cathode
    • H01J1/10Cooling, heating, circulating, filtering, or controlling level of liquid in a liquid-pool electrode

Definitions

  • the present disclosure relates to electron emission sources, and more particularly, to an electron emission device.
  • Electron emission device is an important invention in modern times. Its application in people's daily life includes cathode ray tube display and electron beam generated by it is accelerated to a high voltage and then bombards heavy metals to generate X-ray tubes. Although the cathode ray tube display has faded out of our daily life, the X-ray source excited by the electron emission device is still widely used in chest X-ray, CT and other medical equipment for inspection. Vacuum electron tubes prepared by electron emission devices still play a very important role in high-frequency and high-power microwave technologies, such as radar.
  • the main physical mechanisms of existing electron generating devices are photoexcitation, thermal excitation, electric field excitation and secondary electron generation or their combined use.
  • photo-excited electron generation technology is mainly used in photomultiplier tube; scanning electron microscope and electron beam exposure technology mainly use thermal excitation and electric field excitation technology, especially thermal field emission and cold field emission technology.
  • Thermal field emission technology is widely used in electron beam exposure machines, high-end scanning electron microscopes and transmission electron microscopes because it can output very stable and high electron beam currents for a long time.
  • Current thermal field emission electron beam devices are thermal field electron emission filaments. When electrons are emitted, the filament material is solid, and the strong electric field required for field emission depends on the processing accuracy of the filament tip.
  • an embodiment of the present disclosure proposes an electron emission device and an electronic device to solve the shortcomings of the existing solid thermal emission or thermal field emission filament products such as insufficient consistency, difficulty in making the filament into a compact array, and short lifespan.
  • the present disclosure provides an electron emission device, which includes a refractory container and a heating power source.
  • the refractory container has a cavity, and the cavity has a certain degree of vacuum.
  • An electron emission material is arranged in the cavity.
  • the bottom of the refractory container is provided with at least one through hole, and the electron emission material is heated and melted to pass through the through hole to form an arc-shaped convex liquid surface and realize electron emission outward.
  • the melting temperature of the refractory container is higher than the melting temperature of the electron emission material and the operating temperature of the electron emission device, and the melting temperature of the electron emission material is lower than the operating temperature of the electron emission device .
  • the cross-section of the refractory container is at least one of circular, rectangular, rectangular, and elliptical, and the cavity portion is a circular cavity.
  • the electron emission material is at least one of a semiconductor material, an electrical insulating material, and a metal material.
  • the semiconductor material is GaAs or InP; or at least one of the electrical insulating material CsO2, Zr2O3, Y2O3, BeO, WO3, Rb2O, Ir2O3; or the metal material is W, Re, At least one of Ru, Pt, Zr.
  • a plurality of through holes are provided at the bottom of the refractory container, and an electron emission array can be formed by providing a plurality of through holes.
  • a heating device is also included, the heating device is arranged on the side wall of the refractory container, and is used for heating the refractory container and the electron emission material therein.
  • a corresponding ring-shaped extraction electrode is disposed below each of the through holes, and the extraction electrode is disposed opposite to the convex liquid surface.
  • it also includes an extraction power supply, the negative electrode of the extraction power supply is connected to the convex liquid surface of the electron emission material through the inner wall of the refractory container, and the positive electrode of the extraction power supply is connected to the ring-shaped The above-mentioned extraction electrode connection.
  • the present disclosure also provides an electronic device, which adopts the electron emission device described in any one of the above technical solutions, and the electronic device includes at least one of a vacuum electron tube, an X-ray generator, an electronic display and a thermoelectric transducer .
  • the embodiment of the present disclosure has a higher field emission effect of electrons, a high degree of consistency in product structure, and easy debugging. And the life of cold field emission filament is significantly extended, which can meet the application of electron beam exposure machine, scanning electron microscope, transmission electron microscope and other X light sources.
  • FIG. 1 is a schematic structural diagram of an electron emission device according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of an electron emission device according to an embodiment of the present disclosure
  • FIG. 3 is a functional schematic diagram of an electron emission device according to an embodiment of the disclosure.
  • Embodiments of the present disclosure relate to an electron emission device.
  • the electron emission device here is mainly used in electron microscopes and electron beam exposure technology. Of course, it can also be used in vacuum electron tubes, X-ray generators, electronic displays and thermoelectric transducers. etc. device. As shown in FIG.
  • an embodiment of the present disclosure relates to an electron emission device 100 , for example, it can be arranged on the top of an electron column of a scanning electron microscope, a transmission electron microscope, and an electron beam exposure machine; specifically, the electron emission device 100 Including a refractory container 1, the cross-section of the refractory container 1 can be circular, or other shapes such as rectangle, rectangle, ellipse, etc., the refractory container 1 has a cavity portion 11, and the cavity portion 11 here is A vacuum cavity with a certain degree of vacuum, the cavity part 11 here may be a circular cavity with an inner diameter in the range of 1um to 100um. In the cavity portion 11 of the refractory container 1 is provided an electron emission material 2 having a fixed melting temperature.
  • the refractory container 1 here is made of a material with a higher melting temperature, such as a metal material, and the melting temperature of the material of the refractory container 1 is higher than the melting temperature of the electron emission material 2, and is also higher than the The operating temperature of the electron emission device 100, and the melting temperature of the electron emission material 2 is lower than the operating temperature of the electron emission device 100, so that when the electron emission device 100 is in operation, the electron emission material 2 will It will melt into a liquid state, but the refractory container 1 will not be melted. It should be noted that, between the room temperature and the melting temperature of the refractory container 1 , no chemical reaction or alloy formation occurs between the electron emission material 2 and the material of the refractory container 1 .
  • the electron emission material 2 here refers to a material that absorbs a certain amount of energy, so that electrons are released from the constraints of atomic nuclei to be emitted from atoms.
  • the electron emission material 2 here can be a semiconductor material.
  • a semiconductor material with a low work function can be used, such as GaAs, InP, etc., and the energy bandgap of this material at room temperature is between 0.2eV and 5eV.
  • the electron emission material 2 can also be an electrical insulating material, as a preferred, oxide material with a low work function can be used, such as CsO2, Zr2O3, Y2O3, BeO, WO3, Rb2O, Ir2O3, etc.; of course,
  • the electron emission material 2 can also be a metal material, preferably, a metal material with a low work function, such as W, Re, Ru, Pt, Zr, etc. can be used.
  • At least one through hole 3 is provided at the bottom of the refractory container 1, and the electron emission material 2 realizes electron emission from the through hole 3, and the through hole 3 here is formed by micro-nano processing technology Micron-scale through holes, the diameter of the through hole 3 is between 0.1um and 100um, and the micro-nano-fabrication technology can make the consistency of the processed structure higher.
  • a plurality of through holes 3 may be provided at the bottom of the refractory container 11 , so that an electron emission array can be formed by arranging a plurality of through holes 3 .
  • the electron emission device 100 also includes a heating device 4 and a heating power source 6, the heating device 4 is arranged on the side wall of the refractory container 1, and is used for heating the refractory container 1 and the electrons therein.
  • the emission material 2 is heated, which can be devices such as resistance wires; 2 heating to its melting temperature and above, which is arranged outside the refractory container 1, and adjusts the power to adjust the electric energy provided to the heating device 4, wherein the heating power supply 6 is a constant voltage DC power supply, Its output current is between 0A and 10A.
  • the heating device 4 may not be provided, and the heating power source 6 and the refractory container 1 may be directly connected to each other.
  • the outer walls are connected so that the electron emission material 2 in the refractory container 1 can be heated to its melting temperature or above by adjusting the power.
  • the electron emission material 2 when the electron emission material 2 is heated to its melting temperature and above, the electron emission material 2 will be in a liquid state after melting, and the electron emission material 2 in the liquid state passes through the The through hole 3 forms a convex liquid surface 8 with an arc shape.
  • the liquid since the operating temperature range of the electron emission device 100 is higher than the melting temperature of the electron emission material 2, the liquid will There is an infiltration effect with the solid, that is, the electron emission material 2 in a liquid state will form an arc-shaped convex liquid surface at the opening of the through hole 3 after passing through the through hole 3 under the action of gravity or the like 8.
  • the convex liquid surface 8 forms an arc at the opening of the through hole 3 after passing through the through hole 3 of the refractory container 1 , the convex liquid surface 8 can emit electron beams under the action of a strong electric field; further, as shown in Figure 2, the convex liquid surface 8 can further pull out a liquid with a smaller radius under the action of a high electric field.
  • the droplet structure that is, the structure forming the liquid needle point 9, can further enhance the local electric field and enhance the field emission effect of electrons.
  • a corresponding ring-shaped extraction electrode 5 is provided below each of the through holes 3, and the extraction electrode 5 is opposite to the convex liquid surface 8.
  • the central axis of the extraction electrode 5 coincides with the symmetrical axis of the convex liquid surface 8 .
  • the distance between the through hole 3 and the extraction electrode 5 is 50um to 5000um; wherein, the extraction electrode 5 has a ring structure, and the inner diameter of the ring structure is 1um to 100um.
  • the electron emission device 100 also includes an extraction power supply 7, which can be arranged outside the fire-resistant container 1, and the negative electrode of the extraction power supply 7 passes through the inner wall of the fire-resistant container 1 and connects with the electrons.
  • the convex liquid surface 8 of the emitting material 2 is connected, and the positive electrode of the extraction power supply 7 is connected to the ring-shaped extraction electrode 5 .
  • the lead-out power supply 7 is an adjustable DC voltage source, and its output voltage is between 0V and 6kV.
  • the convex liquid surface can be formed through the cooperation of the liquid after melting the electron emission material and the through hole. Select range.
  • the structural lifetime of the electron emission device is directly proportional to the mass of the electron emission material contained therein. Therefore, the electron emission lifetime of the electron emission device can be much longer than that of the conventional hot field emission and cold field emission filaments.
  • the refractory container 1 in the device 100 is arranged at the top of the electron lens tube, and the electron emission material 2 in the above embodiment is further arranged in the cavity part 11 of the refractory container 1, and the heating
  • the power supply 6 is connected with the heating device 5 and the heating device 5 is connected with the refractory container 1, if the refractory container 1 is made of metal material, the heating power supply 6 can be directly connected with the refractory container 1 phase connection.
  • the cavity portion 11 of the refractory container 1 located at the top of the electron column is evacuated to a high vacuum state, for example, after adjusting the vacuum degree in the cavity portion 11 to 1 micropascal, adjust The power V1 of the heating power supply 6, until the temperature of the electron emission material 2 reaches the melting temperature, so that the electron emission material 2 starts to melt, and then slowly increase the power V1 of the heating power supply 6 until it is located in the refractory
  • the electron emission material 2 melted to a liquid state in the container 1 passes through the through hole 3 at the lower end of the refractory container 1 and continuously falls under the action of gravity or capillary force.
  • the opening at the lower end of the through hole 3 is
  • the electron emission material 2 in the liquid state and the through hole 3 in the solid state are infiltrated and the surface energy of the liquid works together to form a stable curved liquid surface 8; then continue to slowly increase the
  • the voltage of the extraction power supply 7 is used to form a strong electric field under the action of the extraction electrode 7, and the convex liquid surface 8 emits electron beams under the action of the strong electric field, thereby achieving the purpose of electron emission.
  • the convex liquid surface 8 can also form a stable liquid needle point 9 under the action of a strong electric field and liquid surface energy, and the liquid needle point 9 can further enhance the local electric field strength, thereby increasing the field emission effect of emitting electron beams , to achieve the purpose of forming a high-brightness electron emission device.
  • the capillary action of the liquid, the structure of the micron-scale capillary channel, the infiltration action of the material, the electric field effect, etc. have a higher field emission effect of electrons and a higher degree of structural consistency. It is relatively easy to debug, and the life of the electron emission structure is directly proportional to the quality of the electron emission material contained, so that the life of the electron generation can be significantly longer than that of the traditional hot field emission and cold field emission filaments.
  • An embodiment of the present disclosure also provides an electronic device, which adopts the electron emission device in any one of the above technical solutions, where the electronic device at least includes a vacuum electron tube, an X-ray generator, an electronic display, and a thermoelectric transducer. kind of.

Landscapes

  • Electron Sources, Ion Sources (AREA)
  • Cold Cathode And The Manufacture (AREA)

Abstract

本公开实施例提出一种电子发射装置以及电子装置,所述电子发射装置包括耐火容器以及加热电源,所述耐火容器具有一空腔部,所述空腔部具有一定真空度,在所述空腔部中设置电子发射材料,在所述耐火容器的底部设置至少一个通孔,所述电子发射材料受热熔化后穿过所述通孔形成具有弧形的外凸液面并向外实现电子发射。本公开实施例具有较高的电子的场发射效果,产品结构一致性程度高,调试容易,电子发射装置的寿命和容纳的电子发射材料质量成正比,使得公开的电子装置寿命可以比传统的热场发射和冷场发射灯丝寿命有显著延长,可以满足电子束曝光机、扫描电镜、透射电镜和其他X光源的应用。

Description

一种电子发射装置以及电子装置 技术领域
本公开涉及电子发射源,尤其涉及一种电子发射装置。
背景技术
电子发射装置是近代重要的发明,在人们日常生活的应用包括阴极射线管显示器和用其发生的电子束加速到高电压后轰击重金属产生x射线的射线管等。虽然阴极射线管显示器现在已经淡出我们的日常生活,但是电子发射装置激发的X射线源依然广泛应用于检查的胸透、CT等医疗设备中。由电子发射装置制备的真空电子管在高频、高功率微波技术,如雷达中还有非常重要的地位。在科研中,扫描电镜、透射电镜、质谱仪器等都离不开电子发射装置,现代芯片生产技术中的光刻掩模板的制造设备电子束曝光机也离不开电子发生装置。
现有的电子发生装置主要的物理机制有光激发、热激发、电场激发和二次电子发生或它们的联合使用。其中光激发电子发生技术主要用于光电倍增管;扫描电镜、电子束曝光技术主要用热激发和电场激发技术,尤其是热场发射和冷场发射技术。热场发射技术因其可以长时间输出非常稳定的高的电子束流而被广泛应用于电子束曝光机和高端扫描电镜、透射电镜中。现在的热场发射电子束装置是热场电子发射灯丝。电子发射时,灯丝材料是固体,场发射需要的强电场依赖于灯丝尖端的加工精度,通常采用化学腐蚀钨单晶成高宽比非常大的针尖,其尖端半径在100nm以内,保障场发射需要的强电场。其缺点有:1)化学腐蚀钨单晶加工出来的针尖几何和尺寸重复性差,加工的灯丝电子发射一致性不高,安装调试麻烦;2)灯丝几何尺寸大,通常电镜用灯丝组装后直径在1-2cm,这样的灯丝很难做成阵列安装在电镜或电子束曝光机中;3)灯丝的寿命相对短,一般在10000小时左右;4)因为化学腐蚀后钨针尖内的缺陷、吸附等导致灯丝发射电子束流不稳或失效等;4)目前采用的针尖制备工艺目前仅限于W和LaB6等少数几种材料,限制电子束发射装置材料的选用范围。
发明内容
有鉴于此,本公开实施例提出了一种电子发射装置以及电子装置,以解决现有固体热发射或热场发射灯丝产品一致性不足,灯丝难以制备成紧凑的阵列和寿命短等缺点。
本公开提供一种电子发射装置,其包括耐火容器以及加热电源,所述耐火容器具有一空腔部,所述空腔部具有一定真空度,在所述空腔部中设置电子发射材料,在所述耐火容器的底部设置至少一个通孔,所述电子发射材料受热熔化后穿过所述通孔形成具有弧形的外凸液面并向外实现电子发射。
在实施例中,所述耐火容器的熔化温度高于所述电子发射材料的熔化温度以及所述电子发射装置的工作温度,所述电子发射材料的熔化温度低于所述电子发射装置的工作温度。
在一些实施例中,所述耐火容器的截面是圆形、矩形、长方形、椭圆形中的至少一种,所述空腔部是圆形空腔。
在一些实施例中,所述电子发射材料是半导体材料,电绝缘材料、金属材料中的至少一种。
在一些实施例中,所述半导体材料是GaAs或者InP;或者所述电绝缘材料CsO2,Zr2O3,Y2O3,BeO,WO3,Rb2O,Ir2O3中的至少一种;或者所述金属材料是W,Re,Ru,Pt,Zr中的至少一种。
在一些实施例中,在所述耐火容器的底部设置多个所述通孔,通过设置多个所述通孔以便于能够实现形成电子发射阵列。
在一些实施例中,还包括加热装置,所述加热装置设置在所述耐火容器的侧壁上,其用于对所述耐火容器以及其中的所述电子发射材料进行加热。
在一些实施例中,在每个所述通孔的下方设置对应的环状的引出电极,所述引出电极与所述外凸液面相对设置。
在一些实施例中,还包括引出电源,所述引出电源的负极经过所述耐火容器的内壁与所述电子发射材料的所述外凸液面连接,所述引出电源的正极与环状的所述引出电极连接。
本公开还提供一种电子装置,其采用上述任一项技术方案中所述的电子发射装置,所述电子装置至少包括真空电子管、X射线发生器、电子显示器 和热电换能器中的一种。
本公开实施例具有较高的电子的场发射效果,产品结构一致性程度高,调试容易,电子发射结构的寿命和容纳的电子发射材料质量成正比,使得电子发生寿命可以比传统的热场发射和冷场发射灯丝寿命有显著延长,可以满足电子束曝光机、扫描电镜、透射电镜和其他X光源的应用。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例的电子发射装置的结构示意图;
图2为本公开实施例的电子发射装置的结构示意图;
图3为本公开实施例的电子发射装置的功能示意图。
具体实施方式
为了使得本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物 理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
为了保持本公开实施例的以下说明清楚且简明,本公开省略了已知功能和已知部件的详细说明。
本公开实施例涉及一种电子发射装置,这里的所述电子发射装置主要应用于电子显微镜中、电子束曝光技术中,当然也可用于真空电子管、X射线发生器、电子显示器和热电换能器等装置中。如图1所示,本公开实施例涉及一种电子发射装置100,例如可以设置在扫描电镜、透射电镜和电子束曝光机等装置的电子镜筒的顶端;具体地,所述电子发射装置100包括耐火容器1,所述耐火容器1的截面可以是圆形,也可以是矩形、长方形、椭圆形等其他形状,所述耐火容器1具有一空腔部11,这里的所述空腔部11是具有一定真空度的真空腔体,这里的所述空腔部11可以是圆形空腔,其内径在1um到100um范围内。在所述耐火容器1的所述空腔部11中设置电子发射材料2,所述电子发射材料2具有固定的熔化温度。
进一步地,这里的所述耐火容器1采用熔化温度较高的材料制成,例如金属材料,所述耐火容器1的材料的熔化温度高于所述电子发射材料2的熔化温度,也高于所述电子发射装置100的工作温度,并且所述电子发射材料2的熔化温度低于所述电子发射装置100的工作温度,这样,在所述电子发射装置100工作时,所述电子发射材料2将会熔化为液态,而所述耐火容器1不会被熔化。需要说明的是,在所述室温和所述耐火容器1的熔化温度之间,所述电子发射材料2与所述耐火容器1的材料之间不发生化学反应也不会形成合金。
进一步地,这里的所述电子发射材料2是指吸收一定能量,从而使得电子脱离原子核的束缚而被发射出原子的材料。这里的所述电子发射材料2可以是半导体材料,作为一种优选,可以采用低功函数的半导体材料,例如GaAs,InP等,这种材料在室温下的能带带隙在0.2eV到5eV之间;此外,所述电子发射材料2还可以是电绝缘材料,作为一种优选,可以采用低功函数的氧化物材料,例如CsO2,Zr2O3,Y2O3,BeO,WO3,Rb2O,Ir2O3等;当然,所述电子发射材料2还可以是金属材料,作为一种优选,可以采用低功函数的金属材料,例如W,Re,Ru,Pt,Zr等。
进一步地,在所述耐火容器1的底部设置至少一个通孔3,所述电子发射材料2从所述通孔3向外实现电子发射,这里的所述通孔3为通过微纳加工技术形成的微米级的通孔,所述通孔3的直径在0.1um到100um之间,利用微纳加工技术能够使得加工出结构的一致性程度较高。在另一个实施方式中,可以在所述耐火容器11的底部设置多个所述通孔3,通过设置多个所述通孔3以便于能够实现形成电子发射阵列。
此外,所述电子发射装置100还包括加热装置4和加热电源6,所述加热装置4设置在所述耐火容器1的侧壁上,其用于对所述耐火容器1以及其中的所述电子发射材料2进行加热,其例如可以是电阻丝等装置;所述加热电源6与所述加热装置4连接,以提供电能通过所述加热装置4将所述耐火容器1中的所述电子发射材料2加热至其熔化温度及以上,其设置在所述耐火容器1之外,其通过调节功率以调节向所述加热装置4提供的电能,其中,所述加热电源6为恒压的直流电源,其输出电流在0A到10A之间。
其中,在一些实施方式中,如果所述耐火容器1采用导电的材料制成,例如金属材料,则也可以不设置所述加热装置4,直接将所述加热电源6与所述耐火容器1的外壁连接,从而通过功率的调节以将所述耐火容器1中的所述电子发射材料2加热至其熔化温度及以上。
如上所述,当所述电子发射材料2加热至其熔化温度及以上之后,所述电子发射材料2在熔化后将呈现液态,液态的所述电子发射材料2在重力等作用下穿过所述通孔3形成具有弧形的外凸液面8。具体地,由于所述电子发射装置100的工作温区高于所述电子发射材料2的熔化温度,液体在所述电子发射材料2的熔化温度到所述电子发射装置100的工作温度之间将与固体之间存在浸润作用,即呈液态的所述电子发射材料2在重力等作用下经过所述通孔3后在所述通孔3的开口处会形成弧形的所述外凸液面8。
这样,当所述电子发射材料2在达到熔化温度即受热熔化后,在所述通孔3侧壁的固体和液体之间的浸润作用下,呈液态的所述电子发射材料2在重力或者毛细力作用下,基于所述通孔3的侧壁的浸润作用经过所述耐火容器1的所述通孔3后在所述通孔3的开口处行成弧形的所述外凸液面8,所述外凸液面8可以在强电场作用下发出电子束;进一步地,如图2所示,所述外凸液面8在高电场作用下进一步还可以拉抻出半径更小的液滴结构,也就是形成液体针尖9的结构,从而能够进一步增强局域电场,增强电子的场 发射效应。
为了构建电场以利于所述外凸液面8发射电子束,在每个所述通孔3的下方设置对应的环状的引出电极5,所述引出电极5与所述外凸液面8相对设置,也就是,所述引出电极5的中心轴和所述外凸液面8对称轴重合。这里的所述通孔3与所述引出电极5之间的间距是50um到5000um;其中,所述引出电极5具有环形结构,所述环形结构的内径1um到100um。
进一步地,所述电子发射装置100还包括引出电源7,所述引出电源7可以设置在所述耐火容器1之外,所述引出电源7的负极经过所述耐火容器1的内壁与所述电子发射材料2的所述外凸液面8连接,所述引出电源7的正极与环状的所述引出电极5连接。所述引出电源7为可调的直流电压源,其输出电压在0V到6kV之间。
在本公开实施例中通过采用电子发射材料熔化后的液体和通孔的配合能够形成外凸液面,外凸液面在强直流电场作用下形成液体针尖,从而能扩大所述电子发射材料的选择范围。这种电子发射装置的结构寿命和容纳的所述电子发射材料质量成正比,因此,所述电子发射装置的电子发射寿命可以比传统的热场发射和冷场发射灯丝寿命增长较多。
在采用本公开实施例的所述电子发射装置100的过程中,结合图3所示,可以基于以下方式进行:如果是在扫描电镜、透射电镜和电子束曝光机中,则将所述电子发射装置100中的所述耐火容器1设置于其中的电子镜筒顶端,进一步将上述实施例中所述电子发射材料2设置于所述耐火容器1的所述空腔部11中,将所述加热电源6与所述加热装置5连接并将所述加热装置5与所述耐火容器1连接,如果所述耐火容器1采用金属材料制成,这样可以将所述加热电源6直接与所述耐火容器1相连接。
进一步地,将位于例如电子镜筒顶端的所述耐火容器1的所述空腔部11抽到高真空状态,例如在将所述空腔部11中的真空度调整到1微帕斯卡后,调节所述加热电源6的功率V1,直到所述电子发射材料2的温度达到熔化温度后,这样所述电子发射材料2开始熔化,然后缓慢增加所述加热电源6的功率V1,直到位于所述耐火容器1中熔化至液态的所述电子发射材料2经过所述耐火容器1下端的所述通孔3,在重力或者毛细力作用下不断下坠,这样,在所述通孔3的下端开口处因呈液态的所述电子发射材料2和呈固态的所述通孔3之间的浸润作用以及液体表面能共同作用下,从而形成稳定的具 有弧形的外凸液面8;然后继续缓慢增加所述引出电源7的电压,使得在所述引出电极7的作用下形成强电场,所述外凸液面8在强电场的作用下发出电子束,从而达到电子发射的目的。当然,所述外凸液面8还可以在强电场和液体表面能作用下形成稳定的液体针尖9,所述液体针尖9能够进一步增强局域的电场强度,从而增加发射电子束的场发射效果,达到形成高亮度的电子发射装置的目的。
这里通过所述电子发射装置发射电子束的过程中,采用液体的毛细作用、微米级毛细管道的结构、材料的浸润作用、电场效应等,具有较高的电子的场发射效应,结构一致性程度较,调试容易,电子发射结构的寿命和容纳的电子发射材料质量成正比,使得电子发生寿命可以比传统的热场发射和冷场发射灯丝寿命显著延长。
本公开的实施例还提供一种电子装置,其采用上述任一项技术方案中的电子发射装置,这里的所述电子装置至少包括真空电子管、X射线发生器、电子显示器和热电换能器中的一种。
以上描述仅为本公开的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本公开中所涉及的公开范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离上述公开构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本公开中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。
此外,虽然采用特定次序描绘了各操作,但是这不应当理解为要求这些操作以所示出的特定次序或以顺序次序执行来执行。在一定环境下,多任务和并行处理可能是有利的。同样地,虽然在上面论述中包含了若干具体实现细节,但是这些不应当被解释为对本公开的范围的限制。在单独的实施例的上下文中描述的某些特征还可以组合地实现在单个实施例中。相反地,在单个实施例的上下文中描述的各种特征也可以单独地或以任何合适的子组合的方式实现在多个实施例中。
尽管已经采用特定于结构特征和/或方法逻辑动作的语言描述了本主题,但是应当理解所附权利要求书中所限定的主题未必局限于上面描述的特定特征或动作。相反,上面所描述的特定特征和动作仅仅是实现权利要求书的示例形式。
以上对本公开多个实施例进行了详细说明,但本公开不限于这些具体的实施例,本领域技术人员在本公开构思的基础上,能够做出多种变型和修改实施例,这些变型和修改都应落入本公开所要求保护的范围。

Claims (10)

  1. 一种电子发射装置,其包括耐火容器以及加热电源,所述耐火容器具有一空腔部,所述空腔部具有一定真空度,其特征在于,在所述空腔部中设置电子发射材料,在所述耐火容器的底部设置至少一个通孔,所述电子发射材料受热熔化后穿过所述通孔形成具有弧形的外凸液面并向外实现电子发射。
  2. 根据权利要求1所述的电子发射装置,其特征在于,所述耐火容器的熔化温度高于所述电子发射材料的熔化温度以及所述电子发射装置的工作温度,所述电子发射材料的熔化温度低于所述电子发射装置的工作温度。
  3. 根据权利要求1所述的电子发射装置,其特征在于,所述耐火容器的截面是圆形、矩形、长方形、椭圆形中的至少一种,所述空腔部是圆形空腔。
  4. 根据权利要求1所述的电子发射装置,其特征在于,所述电子发射材料是半导体材料,电绝缘材料、金属材料中的至少一种。
  5. 根据权利要求4所述的电子发射装置,其特征在于,所述半导体材料是GaAs或者InP;或者所述电绝缘材料CsO2,Zr2O3,Y2O3,BeO,WO3,Rb2O,Ir2O3中的至少一种;或者所述金属材料是W,Re,Ru,Pt,Zr中的至少一种。
  6. 根据权利要求1所述的电子发射装置,其特征在于,在所述耐火容器的底部设置多个所述通孔,通过设置多个所述通孔以便于能够实现形成电子发射阵列。
  7. 根据权利要求1所述的电子发射装置,其特征在于,还包括加热装置,所述加热装置设置在所述耐火容器的侧壁上,其用于对所述耐火容器以及其中的所述电子发射材料进行加热。
  8. 根据权利要求1所述的电子发射装置,其特征在于,在每个所述通孔的下方设置对应的环状的引出电极,所述引出电极与所述外凸液面相对设置。
  9. 根据权利要求8所述的电子发射装置,其特征在于,还包括引出电源,所述引出电源的负极经过所述耐火容器的内壁与所述电子发射材料的所述外凸液面连接,所述引出电源的正极与环状的所述引出电极连接。
  10. 一种电子装置,其特征在于,采用上述任一项权利要求中所述的电子发射装置,所述电子装置至少包括真空电子管、X射线发生器、电子显示器和热电换能器中的一种。
PCT/CN2022/130787 2022-02-18 2022-11-09 一种电子发射装置以及电子装置 WO2023155493A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210152727.6 2022-02-18
CN202210152727.6A CN114512378A (zh) 2022-02-18 2022-02-18 一种电子发射装置以及电子装置

Publications (1)

Publication Number Publication Date
WO2023155493A1 true WO2023155493A1 (zh) 2023-08-24

Family

ID=81552756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/130787 WO2023155493A1 (zh) 2022-02-18 2022-11-09 一种电子发射装置以及电子装置

Country Status (2)

Country Link
CN (1) CN114512378A (zh)
WO (1) WO2023155493A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114512378A (zh) * 2022-02-18 2022-05-17 西湖大学 一种电子发射装置以及电子装置
CN115148561A (zh) * 2022-07-08 2022-10-04 西湖大学 一种电子发射装置以及电子装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5971235A (ja) * 1982-10-15 1984-04-21 Hitachi Ltd イオン源
US5399865A (en) * 1992-06-18 1995-03-21 Hitachi, Ltd. Liquid metal ion source with high temperature cleaning apparatus for cleaning the emitter and reservoir
CN113678224A (zh) * 2019-07-23 2021-11-19 株式会社Param 电子枪装置
CN114512378A (zh) * 2022-02-18 2022-05-17 西湖大学 一种电子发射装置以及电子装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1947674B1 (en) * 2005-11-08 2015-06-17 Advantest Corporation Electron gun, electron beam exposure system and exposure method
CN103367083A (zh) * 2013-07-10 2013-10-23 杭州电子科技大学 小束斑x射线设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5971235A (ja) * 1982-10-15 1984-04-21 Hitachi Ltd イオン源
US5399865A (en) * 1992-06-18 1995-03-21 Hitachi, Ltd. Liquid metal ion source with high temperature cleaning apparatus for cleaning the emitter and reservoir
CN113678224A (zh) * 2019-07-23 2021-11-19 株式会社Param 电子枪装置
CN114512378A (zh) * 2022-02-18 2022-05-17 西湖大学 一种电子发射装置以及电子装置

Also Published As

Publication number Publication date
CN114512378A (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
WO2023155493A1 (zh) 一种电子发射装置以及电子装置
Gaertner Historical development and future trends of vacuum electronics
US5052034A (en) X-ray generator
EP1505627A2 (en) Magnetron
KR20010082722A (ko) 전자 방사원, 전자 방사 모듈 및 전자 방사원 제조 방법
CN109068468B (zh) 一种一体化场致发射x射线源
WO2024007504A1 (zh) 一种电子发射装置以及电子装置
JP4792404B2 (ja) 電子源の製造方法
US20110036810A1 (en) Manufacturing method of electron source
US8072126B2 (en) Field electron emission source having carbon nanotubes and method for manufacturing the same
KR101956540B1 (ko) 탄소나노튜브 실을 포함한 초소형 엑스레이 소스 및 이를 이용한 엑스레이 발생장치
WO2011040326A1 (ja) 電子源用ロッド、電子源及び電子機器
CN212062371U (zh) 可调节的冷阴极x射线管
KR101615337B1 (ko) 탄소나노튜브 실을 포함한 엑스레이 소스 및 이를 이용한 엑스레이 발생장치
JP2001052596A (ja) 安定化ZrO2リザーバーを有するショットキーエミッタカソード
CN204257584U (zh) 一种冷阴极x射线管阴极
JP7295974B2 (ja) 電子源、電子線装置および電子源の製造方法
JP2006244859A (ja) 電界電子放出型ランプ
CN110867359B (zh) 微焦点x射线源
JP7556429B1 (ja) 電界放射装置
WO2018113069A1 (zh) 一种图案化碳纳米管阴极的透射式x射线源结构
WO2018112718A1 (zh) 一种图案化碳纳米管阴极的反射式x射线源结构
KR101961759B1 (ko) 탄소나노튜브 실과 비드구조물을 포함하는 엑스레이 소스 및 이를 이용한 엑스레이 발생장치
GB2617028A (en) Fabrication process for single-crystallization anti-evaporation X-ray tube anode target
JP2006032195A (ja) 電子放射源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926797

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022926797

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022926797

Country of ref document: EP

Effective date: 20240918