WO2023155343A1 - 丙烷脱氢与合成氨耦合系统和工艺 - Google Patents

丙烷脱氢与合成氨耦合系统和工艺 Download PDF

Info

Publication number
WO2023155343A1
WO2023155343A1 PCT/CN2022/098813 CN2022098813W WO2023155343A1 WO 2023155343 A1 WO2023155343 A1 WO 2023155343A1 CN 2022098813 W CN2022098813 W CN 2022098813W WO 2023155343 A1 WO2023155343 A1 WO 2023155343A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
gas
hydrogen
propane
nitrogen
Prior art date
Application number
PCT/CN2022/098813
Other languages
English (en)
French (fr)
Inventor
巩金龙
秦健
裴春雷
陆振谱
孙国栋
Original Assignee
天津大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学 filed Critical 天津大学
Publication of WO2023155343A1 publication Critical patent/WO2023155343A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/143Fractional distillation or use of a fractionation or rectification column by two or more of a fractionation, separation or rectification step
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/04Preparation of ammonia by synthesis in the gas phase
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/04Purification; Separation; Use of additives by distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00004Scale aspects
    • B01J2219/00006Large-scale industrial plants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0001Separation or purification processing
    • C01B2210/0009Physical processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention belongs to the field of petrochemical technology, and in particular relates to a coupling system and process for propane dehydrogenation and synthetic ammonia.
  • ammonia is widely used downstream in the production of nitrogen fertilizers and in the pharmaceutical industry. So far, the global ammonia production has reached 171 million tons per year, and it is expected to maintain an annual increase of 3-5% in the future, while nearly 85% of ammonia production is used for food production, feeding about 50% of the world's total population .
  • the mature ammonia synthesis patent technologies in the world include: Kellogg process of the United States, Topsoe process of Denmark, Casali process of Switzerland, Braun company's synthesis process, Uhde company's ICIAMV synthetic ammonia process, ICI's LCA synthetic ammonia process, KBR's KAAP synthetic ammonia process , Alcohol-ammonia co-production ammonia synthesis process and Guochang's GC-type low-pressure ammonia synthesis process.
  • the industrial ammonia synthesis reaction requires a large amount of high-purity hydrogen, which is often produced from upstream fossil fuels.
  • Chinese patent CN 101870479 B discloses the method of Fischer-Tropsch synthesis co-production ammonia synthesis process, the tail gas produced in the production process of Fischer-Tropsch wax and clean fuel oil is separated from the hydrogen after carbon monoxide conversion and carbon dioxide removal, and then For downstream ammonia synthesis process.
  • Chinese patent CN 104560201 B discloses a high-purity hydrogen production process and system, in which high-purity hydrogen needs to go through bituminous coal to produce water gas, water gas to produce shift gas, shift gas desulfurization, decarburization and purification, and then used in the downstream ammonia synthesis process.
  • the above patents all require a specific and tedious process to obtain large-scale high-purity hydrogen.
  • the hydrogen acquisition process will undoubtedly have problems such as high equipment investment costs and large floor space.
  • the invention discloses a coupling system and process for propane dehydrogenation and ammonia synthesis.
  • the equipment investment can be reduced, the energy consumption of the device can be reduced, and the construction land can be reduced.
  • the purpose is conducive to long-term stable production.
  • a coupling system for propane dehydrogenation and ammonia synthesis comprising a de-C4 rectification tower (101), a propane preheating unit (102), a propane dehydrogenation reaction unit (103), and a dehydrogenation reaction gas Compression unit (104), dehydrogenation reaction gas drying unit (105), dehydrogenation reaction gas cold box unit (106), dehydrogenation reaction product separation unit (107), de-C2 rectification tower (108), propyne hydrogenation Reaction unit (109), propane propylene rectification tower (110), air compressor (201), cryogenic air separation unit (202), pressure swing adsorption unit (301); nitrogen-hydrogen mixer unit (302), nitrogen-hydrogen Mixed gas compression unit I (303), nitrogen-hydrogen mixed gas preheating unit (304), synthetic ammonia reaction unit (305), synthetic ammonia reaction gas condensation unit (306), synthetic ammonia reactant separation unit (307), nitrogen-hydrogen mixed gas compression Unit II (308);
  • the inlet of the de-C4 rectification tower (101) is used to pass into the propane raw material (1), and the gas-phase outlet at the top of the de-C4 rectification tower (101) is connected with the gas-phase inlet of the propane preheating unit (102),
  • the outlet of the column bottom liquid phase of the de-C4 rectification tower (101) is used to obtain heavy component liquids (2) such as C4;
  • the outlet of the propane preheating unit (102) is connected with the propane dehydrogenation reaction unit (103)
  • the inlet of the propane dehydrogenation reaction unit (103) is connected with the inlet of the dehydrogenation reaction gas compression unit (104), and the outlet of the dehydrogenation reaction gas compression unit (104) is connected with the dehydrogenation reaction unit (104).
  • the inlet of the reaction gas drying unit (105) is connected, and the outlet of the dehydrogenation reaction gas drying unit (105) is connected with the inlet of the dehydrogenation reaction gas cold box unit (106), and the dehydrogenation reaction gas cold box unit
  • the outlet of (106) is connected with the inlet of the dehydrogenation reactant separation unit (107)
  • the gas phase outlet of the dehydrogenation reactant separation unit (107) is connected with the inlet of the pressure swing adsorption unit (301)
  • the dehydrogenation reactant separation unit (107) is connected with the inlet of the pressure swing adsorption unit (301).
  • the liquid phase outlet of the hydrogen reactant separation unit (107) is connected to the inlet of the de-C2 rectification tower (108), and the gas-phase outlet of the de-C2 rectification tower (108) is used to obtain the C2 light component gas (12), the liquid phase outlet of the bottom of the de-C rectification tower (108) is connected with the liquid phase inlet of the propyne hydrogenation reaction unit (109), and the propyne hydrogenation reaction unit (109)
  • the gas phase inlet is used to feed hydrogen (14), the outlet of the propyne hydrogenation reaction unit (109) is connected with the inlet of the propane propylene rectification tower (110), and the propane propylene rectification tower (110)
  • the gas phase outlet at the top of the tower is used to obtain the propylene product (16), and the liquid phase outlet of the bottom of the propane propylene rectifying tower (110) is connected to the liquid phase inlet of the propane preheating unit (102);
  • the inlet of the air compressor (201) is used to feed air (17), the outlet of the air compressor (201) is connected with the inlet of the cryogenic air separation unit (202), and the cryogenic air separation
  • the liquid phase outlet of unit (202) is used to obtain oxygen (20), and the gas phase outlet of described cryogenic air separation unit (202) is connected with the first gas phase inlet of described nitrogen-hydrogen mixer unit (302);
  • the methane and hydrogen mixed gas outlet of the pressure adsorption unit (301) is used to obtain the hydrogen mixed gas (22), and the pure hydrogen gas outlet of the pressure swing adsorption unit (301) is connected with the second nitrogen-hydrogen mixer unit (302) gas phase inlet connection;
  • the outlet of the nitrogen-hydrogen mixer unit (302) is connected to the inlet of the nitrogen-hydrogen mixture compression unit I (303), and the outlet of the nitrogen-hydrogen mixture compression unit I (303) is connected to the nitrogen-hydrogen mixture compression unit I (303) outlet.
  • the first gas phase inlet of the preheating unit (304) is connected, the outlet of the nitrogen-hydrogen mixed gas preheating unit (304) is connected with the inlet of the synthetic ammonia reaction unit (305), and the outlet of the synthetic ammonia reaction unit (305) It is connected with the inlet of the synthesis ammonia reaction gas condensing unit (306), the outlet of the synthesis ammonia reaction gas condensation unit (306) is connected with the inlet of the synthesis ammonia reactant separation unit (307), and the synthesis ammonia reactant separation unit (307 ) is connected to the inlet of the nitrogen-hydrogen mixture compression unit II (308), and the outlet of the nitrogen-hydrogen mixture compression unit II (308) is connected to the first outlet of the nitrogen-hydrogen mixture preheating unit (304
  • the propane raw material (1) enters the de-C4 rectification tower (101) to remove the C4 heavy component liquid, and the tower still of the de-C4 rectification tower (101) obtains C4 and other heavy component liquids (2), and the top of the tower obtains C3 light components Divide gas (3);
  • the C3 light component gas (3) enters the propane preheating unit (102) for heating with the circulating propane (4) obtained from the bottom of the propane propylene rectifying tower (110) to obtain gas phase propane (5);
  • the gas-phase propane (5) enters the propane dehydrogenation reaction unit (103) for propane dehydrogenation reaction, and the obtained propane dehydrogenation reaction gas (6) enters the dehydrogenation reaction gas compression unit (104) for compression, and the obtained dehydrogenation reaction gas is compressed
  • the gas enters the dehydrogenation reaction gas drying unit (105) to remove moisture, and the obtained dehydrogenation reaction dry gas (8) is sent to the dehydrogenation reaction gas cooling box unit (106) for cooling and condensation, and the obtained condensed product (9) enters the dehydrogenation reaction
  • the reactant separation unit (107) flashes and separates, the top of the dehydrogenation reactant separation unit (107) obtains a hydrogen-containing tail gas (11), and the bottom of the tower obtains a C2/C3 liquid (10) and a hydrogen-containing tail gas (11) ;
  • the C2/C3 liquid (10) enters the de-C2 rectification tower (108) for rectification and separation, the C2 light component gas (12) is obtained from the top of the de-C2 rectification tower (108), and the C3 liquid I ( 13); C3 liquid I (13) and hydrogen I (14) are sent to the propyne hydrogenation reaction unit (109) for propyne hydrogenation reaction, and the obtained C3 liquid II (15) is sent to the propane propylene rectification tower (110) rectification and separation, the top of the propane propylene rectification tower (110) obtains the propylene product (16), and the tower still obtains the circulating propane (4);
  • the air (17) is compressed by the air compressor (201), and the obtained compressed air (18) is sent to the cryogenic air separation unit (202) for rectification and separation to obtain nitrogen (19) and oxygen (20);
  • the hydrogen-containing tail gas (11) obtained at the top of the dehydrogenation reactant separation unit (107) is sent to the pressure swing adsorption unit (301) to obtain hydrogen II (21) and a mixed gas of methane and hydrogen (22) after the separation process;
  • Nitrogen (19) and hydrogen II (21) are sent to the nitrogen-hydrogen mixer unit (302) for uniform mixing, and the obtained nitrogen-hydrogen mixture (23) is compressed by the nitrogen-hydrogen mixture compression unit I (303), and the obtained nitrogen-hydrogen mixture
  • the pressurized circulating nitrogen-hydrogen mixed gas (30) obtained by the compressed gas (24) and the nitrogen-hydrogen mixed gas compression unit II (308) enters the nitrogen-hydrogen mixed gas preheating unit (304) for heating, and the obtained high-temperature mixed compressed gas (25) enter the synthetic ammonia reaction unit (305) to carry out the synthetic ammonia reaction, the obtained synthetic ammonia reaction gas (26) enters the synthetic ammonia reaction gas condensation unit (306) to cool down and condense, and the obtained low-temperature synthetic ammonia reactant (27) enters the synthetic ammonia reactant separation unit (307) for flashing Steam and separate to obtain liquid ammonia product (28) and nitrogen-hydrogen circulating mixed gas (29); nitrogen-hydrogen circulating mixed gas (29) enters the nitrogen-hydrogen mixed gas compression unit II (308)
  • reaction pressure of the dehydrogenation reactor in the propane dehydrogenation reaction unit (103) is 0.1-1.0 MPaA, and the reaction temperature is 550-650°C.
  • the operating pressure of the dehydrogenation reaction gas cooling box unit (106) is 1.0-1.5 MPaA, and the operating temperature is -110--60°C.
  • reaction pressure of the ammonia synthesis reactor in the ammonia synthesis reaction unit (305) is 15.0-20.0 MPaA, and the reaction temperature is 350-500°C.
  • the operating pressure of the ammonia synthesis reactant separation unit (307) is 2.0-18.0 MPaA, and the operating temperature is 20-50°C.
  • the coupling system and process for propane dehydrogenation and synthetic ammonia of the present invention can co-produce liquid ammonia while producing high-quality propylene products; the hydrogen-containing tail gas separated from the dehydrogenation reaction gas cooling box unit only needs to undergo simple pressure swing adsorption High-purity hydrogen can be obtained through the process.
  • the traditional synthetic ammonia process technology it can avoid cumbersome production processes such as fossil fuel hydrogen production, and the operation process becomes simpler; and only need to provide pressure swing adsorption unit and cryogenic air separation
  • the unit avoids the use of fossil fuel hydrogen production equipment, reduces the use of fossil fuels, improves energy utilization efficiency, reduces equipment investment and operating costs, reduces construction land, and has better economic benefits for the device.
  • Fig. 1 is a structural schematic diagram of a coupled system for propane dehydrogenation and ammonia synthesis provided by the present invention.
  • this embodiment provides a coupling system for propane dehydrogenation and ammonia synthesis, including a de-C4 rectification tower 101, a propane preheating unit 102, a propane dehydrogenation reaction unit 103, a dehydrogenation reaction gas compression unit 104, and a dehydrogenation reaction gas compression unit 104.
  • Hydrogen reaction gas drying unit 105 dehydrogenation reaction gas cold box unit 106, dehydrogenation reactant separation unit 107, de-C2 rectification tower 108, propyne hydrogenation reaction unit 109, propane propylene rectification tower 110, air compressor 201 , cryogenic air separation unit 202, pressure swing adsorption unit 301; nitrogen-hydrogen mixer unit 302, nitrogen-hydrogen mixed gas compression unit I 303, nitrogen-hydrogen mixed gas preheating unit 304, synthetic ammonia reaction unit 305, synthetic ammonia reaction gas condensation unit 306, Synthetic ammonia reactant separation unit 307, nitrogen-hydrogen mixed gas compression unit II 308.
  • the inlet of the de-C4 rectification tower 101 is used to pass into the propane raw material 1, the tower top gas phase outlet of the de-C4 rectification tower 101 is connected with the gas phase inlet of the propane preheating unit 102, and the tower bottom liquid phase outlet of the de-C4 rectification tower 101 Used to obtain liquid 2 of heavy components such as C4.
  • the outlet of the propane preheating unit 102 is connected with the inlet of the propane dehydrogenation reaction unit 103
  • the outlet of the propane dehydrogenation reaction unit 103 is connected with the inlet of the dehydrogenation reaction gas compression unit 104
  • the outlet of the dehydrogenation reaction gas compression unit 104 is connected with the dehydrogenation reaction unit 104.
  • the inlet of the reaction gas drying unit 105 is connected, the outlet of the dehydrogenation reaction gas drying unit 105 is connected with the inlet of the dehydrogenation reaction gas cold box unit 106, and the outlet of the dehydrogenation reaction gas cold box unit 106 is connected with the dehydrogenation reactant separation unit 107.
  • the inlet is connected, the gas phase outlet of the dehydrogenation reactant separation unit 107 is connected with the inlet of the pressure swing adsorption unit 301, the liquid phase outlet of the dehydrogenation reactant separation unit 107 is connected with the inlet of the de-C rectification tower 108, and the de-C rectification tower
  • the top gas phase outlet of 108 is used to obtain C2 light component gas 12
  • the liquid phase outlet of the bottom of the C2 rectification tower 108 is connected with the liquid phase inlet of the propyne hydrogenation reaction unit 109, and the propyne hydrogenation reaction unit 109
  • the gas phase inlet is used to feed hydrogen 14
  • the outlet of the propane hydrogenation reaction unit 109 is connected to the inlet of the propane propylene rectification tower 110
  • the top gas phase outlet of the propane propylene rectification tower 110 is used to obtain the propylene product 16, propane, acryl
  • the liquid phase outlet of the bottom of the distillation column 110 is connected with the liquid phase inlet of
  • the inlet of air compressor 201 is used to pass into air 17, and the outlet of air compressor 201 is connected with the inlet of cryogenic air separation unit 202, and the liquid phase outlet of cryogenic air separation unit 202 is used for obtaining oxygen 20, and cryogenic air separation
  • the gas phase outlet of the unit 202 is connected to the first gas phase inlet of the nitrogen-hydrogen mixer unit 302 .
  • the methane and hydrogen mixed gas outlet of the pressure swing adsorption unit 301 is used to obtain the hydrogen mixed gas 22 , and the pure hydrogen gas outlet of the pressure swing adsorption unit 301 is connected with the second gas phase inlet of the nitrogen-hydrogen mixer unit 302 .
  • the outlet of the nitrogen-hydrogen mixer unit 302 is connected to the inlet of the nitrogen-hydrogen mixture compression unit I303, and the outlet of the nitrogen-hydrogen mixture compression unit I303 is connected to the first gas phase inlet of the nitrogen-hydrogen mixture preheating unit 304.
  • the outlet of the heating unit 304 is connected with the inlet of the synthetic ammonia reaction unit 305, the outlet of the synthetic ammonia reaction unit 305 is connected with the inlet of the synthetic ammonia reaction gas condensing unit 306, the outlet of the synthetic ammonia reaction gas condensing unit 306 is connected with the inlet of the synthetic ammonia reactant separation unit 307, and the synthetic ammonia
  • the gas phase outlet of the reactant separation unit 307 is connected to the inlet of the nitrogen-hydrogen mixture compression unit II 308, the outlet of the nitrogen-hydrogen mixture compression unit II 308 is connected to the second gas phase inlet of the nitrogen-hydrogen mixture preheating unit 304, and the ammonia synthesis reactant separation unit
  • the liquid phase outlet of 307 is used to obtain liquid ammonia product 28.
  • the process based on the above-mentioned propane dehydrogenation and ammonia synthesis coupling system includes the following reaction process:
  • the propane raw material 1 first enters the C4-removing rectification tower 101 to remove the C4 heavy component liquid, wherein the propane raw material includes ethane, propane, and butane.
  • C4 and other heavy component liquids 2 are obtained from the bottom of the C4-removing rectification tower 101
  • C3 light component gas 3 is obtained from the top of the C4-removing rectification tower 101 .
  • the C3 light component gas 3 enters the propane preheating unit 102 together with the circulating propane 4 from the tank of the propane propylene rectifying tower 110 for heating to obtain gas phase propane 5 .
  • Gas-phase propane 5 enters propane dehydrogenation reaction unit 103 for propane dehydrogenation reaction to obtain propane dehydrogenation reaction gas 6;
  • the operating conditions of the dehydrogenation reactor in propane dehydrogenation reaction unit 103 are reaction pressure 0.1-1.0 MPaA, reaction temperature 550- 650°C; the reaction pressure and reaction temperature can ensure better conversion rate of propane dehydrogenation and better selectivity of propylene, so that the yield of by-product hydrogen is also better.
  • the propane dehydrogenation reaction gas 6 enters the dehydrogenation reaction gas compression unit 104 for compression to obtain the dehydrogenation reaction compressed gas 7 .
  • the dehydrogenation reaction compressed gas 7 then enters the dehydrogenation reaction gas drying unit 105 to remove moisture, and obtains the dehydrogenation reaction dry gas 8 .
  • the dehydrogenation reaction dry gas 8 is sent to the dehydrogenation reaction gas cooling box unit 106 for cooling and condensation to obtain the condensed product 9 .
  • the operating pressure of the dehydrogenation reaction gas cooling box unit 106 is 1.0-1.5 MPaA, and the operating temperature is -110--60°C. The operating pressure and operating temperature make the concentration and energy consumption of the hydrogen-containing tail gas more appropriate.
  • the condensed product 9 enters the dehydrogenation reactant separation unit 107 for flash separation, the hydrogen-containing tail gas 11 is obtained from the top of the dehydrogenation reactant separation unit 107, and the C2/C3 liquid 10 and hydrogen-containing tail gas 11 are obtained from the bottom of the tower.
  • the C2/C3 liquid 10 enters the C2-removing rectification tower 108 for rectification and separation, the C2 light component gas 12 is obtained from the top of the C2-removing rectification tower 108, and the C3 liquid I13 is obtained from the bottom of the tower.
  • the C3 liquid I13 and the hydrogen gas I14 are sent to the propyne hydrogenation reaction unit 109 for propyne hydrogenation reaction to obtain the C3 liquid II15.
  • C3 liquid II 15 is sent to propane propylene rectification tower 110 to carry out rectification separation, and the tower top of propane propylene rectification tower 110 is propylene product 16, and propylene product 16 is sent outside the boundary area; 4. Recycle back to the propane preheating unit 102.
  • the air 17 is sent into the air compressor 201 and compressed by the air compressor 201 to obtain the compressed air 18 .
  • the compressed air 18 is sent to the cryogenic air separation unit 202 for rectification and separation to obtain nitrogen 19 and oxygen 20, the nitrogen 19 is sent to the ammonia synthesis reaction unit, and the oxygen product 20 is sent out of the boundary area.
  • the hydrogen-containing tail gas 11 at the top of the dehydrogenation reactant separation unit 107 is sent to the pressure swing adsorption unit 301 for separation process, and the outlet of the pressure swing adsorption unit 301 obtains hydrogen II 21 and methane and hydrogen mixed gas 22 .
  • the nitrogen-hydrogen mixed gas 23 is compressed by the nitrogen-hydrogen mixed gas compression unit I303 to obtain the nitrogen-hydrogen mixed gas 24 .
  • the high-temperature mixed compressed gas 25 enters the ammonia synthesis reaction unit 305 for ammonia synthesis reaction to obtain ammonia synthesis reaction gas 26 .
  • the operating conditions of the ammonia synthesis reactor in the ammonia synthesis reaction unit 305 are a reaction pressure of 15.0-20.0 MPaA and a reaction temperature of 350-500°C; the reaction pressure and reaction temperature can ensure a better conversion rate of the ammonia synthesis reaction, and ensure a reasonable energy consumption.
  • the synthetic ammonia reaction gas 26 enters the ammonia synthesis reaction gas condensation unit 306 for cooling and condensation to obtain the low-temperature synthesis ammonia reactant 27 .
  • the low-temperature synthetic ammonia reactant 27 enters the synthetic ammonia reactant separation unit 307 for flash separation to obtain the liquid ammonia product 28 and the nitrogen-hydrogen circulating mixed gas 29; the nitrogen-hydrogen circulating mixed gas 29 enters the nitrogen-hydrogen mixed gas compression unit II 308 for compression to obtain a pressurized cycle
  • the nitrogen-hydrogen mixed gas 30 enters the pressurized circulating nitrogen-hydrogen mixed gas 30 is circulated back to the nitrogen-hydrogen mixed gas preheating unit 304 , and the liquid ammonia product 28 is sent out of the boundary area.
  • the operating pressure of the synthetic ammonia reactant separation unit 307 is 2.0-18.0 MPaA, and the operating temperature is 20-50°C; the operating pressure and reaction temperature can ensure the separation of liquid ammonia and nitrogen-hydrogen gas as much as possible, and increase the purity of liquid ammonia.
  • propane dehydrogenation and synthetic ammonia coupling system and process of the present invention are coupled according to the characteristics of propane dehydrogenation and synthetic ammonia reaction gas, avoiding the cumbersome process of hydrogen production from fossil fuels commonly used in industry, and improving energy utilization efficiency and reducing equipment
  • the purpose of reducing investment, reducing device energy consumption, and reducing construction land is conducive to long-term stable production and improving the economic benefits of the reaction system.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

一种丙烷脱氢与合成氨耦合系统和工艺,通过对丙烷脱氢反应副产氢气和合成氨反应需要高纯度氢气作为原料的耦合,能够在生产高质量丙烯产物的同时联产液氨,丙烷脱氢反应分离出的含氢尾气只需要经过简单的变压吸附过程就可以获取高纯度氢气,操作工艺变得简单,并且提高了能量利用效率。

Description

丙烷脱氢与合成氨耦合系统和工艺 技术领域
本发明属于石油化工技术领域,具体的说,是涉及一种丙烷脱氢与合成氨耦合系统和工艺。
背景技术
氨作为化工工业中的一种关键中间产物,下游广泛用于生产氮肥和制药产业。到目前为止,全球范围内氨的产量已经达到每年1.71亿吨,预计未来每年将保持3-5%的增加,而将近85%的氨产量用于粮食生产,养活了世界总人口的约50%。目前世界范围内成熟的合成氨专利技术有:美国Kellogg工艺、丹麦托普索工艺、瑞士卡萨利工艺、Braun公司合成工艺、Uhde公司ICIAMV合成氨工艺、ICI公司的LCA合成氨工艺、KBR公司KAAP合成氨工艺、醇氨联产的合成氨工艺以及国昌公司的GC型低压合成氨工艺。而目前工业上合成氨工业反应需要大量高纯度的氢气,这些氢气往往由上游化石燃料制得。
现有技术中,中国专利CN 101870479 B公开了费托合成联产合成氨工艺的方法,将费托蜡及清洁燃料油生产过程中产生的尾气经过一氧化碳变换、二氧化碳脱除后的氢气分离出,再用于下游的合成氨过程。中国专利CN 104560201 B公开了高纯度氢气生产工艺和系统,其中高纯度的氢气需要经过烟煤生产水煤气,水煤气生产变化气,变换气脱硫脱碳提纯等步骤后,再用于下游的合成氨过程。以上的专利都需要特定的繁琐的过程来获取大规模高纯度的氢气,氢气的获取过程无疑会会存在设备投资费用高,占地面积大等问题。
发明内容
本发明公开了一种丙烷脱氢与合成氨耦合系统和工艺,通过对丙烷脱氢反应副产氢气和合成氨反应需要高纯度氢气作为原料的耦合,实现降低设备投资、降低装置能耗、减少建设用地的目的,有利于长周期稳定生产。
为了解决上述技术问题,本发明通过以下的技术方案予以实现:
根据本发明的一个方面,提供了一种丙烷脱氢与合成氨耦合系统,包括脱C4精馏塔(101),丙烷预加热单元(102),丙烷脱氢反应单元(103),脱氢反应气压缩单元(104),脱氢反应气干燥单元(105),脱氢反应气冷箱单元(106),脱氢反应物分离单元(107),脱C2精馏塔(108),丙炔加氢反应单元(109),丙烷丙烯精馏塔(110),空气压缩机 (201),深冷空气分离单元(202),变压吸附单元(301);氮氢混合器单元(302),氮氢混合气压缩单元Ⅰ(303),氮氢混合气预加热单元(304),合成氨反应单元(305),合成氨反应气冷凝单元(306),合成氨反应物分离单元(307),氮氢混合气压缩单元Ⅱ(308);
所述脱C4精馏塔(101)的入口用于通入丙烷原料(1),所述脱C4精馏塔(101)的塔顶气相出口与丙烷预加热单元(102)的气相入口连接,所述脱C4精馏塔(101)的塔釜液相出口用于得到C4等重组分液体(2);所述丙烷预加热单元(102)的出口与所述丙烷脱氢反应单元(103)的入口连接,所述丙烷脱氢反应单元(103)的出口与所述脱氢反应气压缩单元(104)的入口连接,所述脱氢反应气压缩单元(104)的出口与所述脱氢反应气干燥单元(105)的入口连接,所述脱氢反应气干燥单元(105)的出口与所述脱氢反应气冷箱单元(106)的入口连接,所述脱氢反应气冷箱单元(106)的出口与所述脱氢反应物分离单元(107)的入口连接,所述脱氢反应物分离单元(107)的气相出口与变压吸附单元(301)的入口连接,所述脱氢反应物分离单元(107)的液相出口与所述脱C2精馏塔(108)的入口连接,所述脱C2精馏塔(108)的塔顶气相出口用于得到C2轻组分气体(12),所述脱C2精馏塔(108)的塔釜液相出口与所述丙炔加氢反应单元(109)的液相入口连接,所述丙炔加氢反应单元(109)的气相入口用于通入氢气(14),所述丙炔加氢反应单元(109)的出口与所述丙烷丙烯精馏塔(110)的入口连接,所述丙烷丙烯精馏塔(110)的塔顶气相出口用于得到丙烯产品(16),所述丙烷丙烯精馏塔(110)的塔釜液相出口与所述丙烷预加热单元(102)的液相入口连接;
所述空气压缩机(201)的入口用于通入空气(17),所述空气压缩机(201)的出口与所述深冷空气分离单元(202)的入口连接,所述深冷空气分离单元(202)的液相出口用于得到氧气(20),所述深冷空气分离单元(202)的气相出口与所述氮氢混合器单元(302)的第一气相入口连接;所述变压吸附单元(301)的甲烷和氢气混合气出口用于得到氢气混合气(22),所述变压吸附单元(301)的纯氢气出口与所述氮氢混合器单元(302)的第二气相入口连接;
所述氮氢混合器单元(302)的出口与所述氮氢混合气压缩单元Ⅰ(303)的入口连接,所述氮氢混合气压缩单元Ⅰ(303)的出口与所述氮氢混合气预加热单元(304)的第一气 相入口连接,所述氮氢混合气预加热单元(304)的出口与所述合成氨反应单元(305)的入口连接,所述合成氨反应单元(305)的出口与所述合成氨反应气冷凝单元(306)的入口连接,所述合成氨反应气冷凝单元(306)出口与所述合成氨反应物分离单元(307)的入口连接,所述合成氨反应物分离单元(307)的气相出口与所述氮氢混合气压缩单元Ⅱ(308)的入口连接,所述氮氢混合气压缩单元Ⅱ(308)的出口与所述氮氢混合气预加热单元(304)的第二气相入口连接,所述合成氨反应物分离单元(307)的液相出口用于得到液氨产品(28)。
根据本发明的另一个方面,提供了一种丙烷脱氢与合成氨耦合工艺,包括如下反应过程:
丙烷原料(1)进入脱C4精馏塔(101)脱除C4重组分液体,所述脱C4精馏塔(101)的塔釜得到C4等重组分液体(2)、塔顶得到C3轻组分气体(3);
C3轻组分气体(3)与丙烷丙烯精馏塔(110)塔釜得到的循环丙烷(4)进入丙烷预加热单元(102)加热后得到气相丙烷(5);
所述气相丙烷(5)进入丙烷脱氢反应单元(103)进行丙烷脱氢反应,得到的丙烷脱氢反应气(6)进入脱氢反应气压缩单元(104)压缩,得到的脱氢反应压缩气体进入脱氢反应气干燥单元(105)脱除水分,得到的脱氢反应干燥气体(8)送往脱氢反应气冷箱单元(106)降温冷凝,得到的冷凝产物(9)进入脱氢反应物分离单元(107)闪蒸分离,所述脱氢反应物分离单元(107)的塔顶得到含氢尾气(11),塔底得到C2/C3液体(10)和含氢尾气(11);
C2/C3液体(10)进入脱C2精馏塔(108)进行精馏分离,所述脱C2精馏塔(108)塔顶得到C2轻组分气体(12),塔釜得到C3液体Ⅰ(13);C3液体Ⅰ(13)和氢气Ⅰ(14)送入丙炔加氢反应单元(109)进行丙炔加氢反应,得到的C3液体Ⅱ(15)送入所述丙烷丙烯精馏塔(110)精馏分离,所述丙烷丙烯精馏塔(110)的塔顶得到丙烯产品(16),塔釜得到循环丙烷(4);
空气(17)经空气压缩机(201)压缩,得到的压缩空气(18)送入深冷空气分离单元(202)精馏分离得到氮气(19)和氧气(20);
所述脱氢反应物分离单元(107)塔顶得到的含氢尾气(11)送入变压吸附单元(301) 分离过程后得到氢气Ⅱ(21)和甲烷和氢气混合气(22);
氮气(19)和氢气Ⅱ(21)送入氮氢混合器单元(302)均匀混合,得到的氮氢混合气(23)通过氮氢混合气压缩单元Ⅰ(303)压缩,得到的氮氢混合压缩气体(24)与氮氢混合气压缩单元Ⅱ(308)得到的加压循环氮氢混合气体(30)进入氮氢混合气预加热单元(304)加热,得到的高温混合压缩气体(25)进入合成氨反应单元(305)进行合成氨反应,得到的合成氨反应气(26)进入合成氨反应气冷凝单元(306)降温冷凝,得到的低温合成氨反应物(27)进入合成氨反应物分离单元(307)闪蒸分离得到液氨产品(28)和氮氢循环混合气(29);氮氢循环混合气(29)进入所述氮氢混合气压缩单元Ⅱ(308)压缩得到加压循环氮氢混合气体(30)。
进一步地,所述丙烷脱氢反应单元(103)中脱氢反应器的反应压力为0.1~1.0MPaA,反应温度为550~650℃。
进一步地,所述脱氢反应气冷箱单元(106)的操作压力为1.0~1.5MPaA,操作温度为-110~-60℃。
进一步地,所述合成氨反应单元(305)中合成氨反应器的反应压力为15.0~20.0MPaA,反应温度为350~500℃。
进一步地,所述合成氨反应物分离单元(307)的操作压力为2.0~18.0MPaA,操作温度20~50℃。
本发明的有益效果是:
本发明的丙烷脱氢与合成氨耦合系统和工艺,能够在生产高质量丙烯产物的同时联产液氨;其脱氢反应气冷箱单元分离出的含氢尾气,只需要经过简单的变压吸附过程就可以获取高纯度氢气,相比于传统的合成氨工艺技术,可以避免化石燃料制氢等繁琐的生产过程,操作工艺变得更为简单;并且只需要提供变压吸附单元和深冷空气分离单元,避免了化石燃料制氢设备的使用,也减少化石燃料的使用,提高能量利用效率,降低设备投资和运行成本,减少建设用地,装置经济效益更好。
附图说明
图1为本发明提供的丙烷脱氢与合成氨耦合系统的结构示意图。
上述图中:1-丙烷原料,2-C4等重组分液体,3-C3轻组分气体,4-循环丙烷,5-气相丙烷,6-丙烷脱氢反应气,7-脱氢反应压缩气体,8-脱氢反应干燥气体,9-冷凝产物,10-冷凝的C2/C3液体,11-含氢尾气,12-C2轻组分气体,13-C3液体Ⅰ,14-氢气Ⅰ,15-C3液体Ⅱ,16-丙烯产品,17-空气,18-压缩空气,19-氮气,20-氧气产品,21-氢气Ⅱ,22-甲烷和氢气混合气,23-氮氢混合气,24-氮氢混合压缩气体,25-高温混合压缩气体,26-合成氨反应气,27-低温合成氨反应物,28-液氨产品,29-循环氮氢混合气体,30-加压循环氮氢混合气体;101-脱C4精馏塔,102-丙烷预加热单元,103-丙烷脱氢反应单元,104-脱氢反应气压缩单元,105-脱氢反应气干燥单元,106-脱氢反应气冷箱单元,107-脱氢反应物分离单元,108-脱C2精馏塔,109-丙炔加氢反应单元,110-丙烷丙烯精馏塔,201-空气压缩机,202-深冷空气分离单元,301-变压吸附单元,302-氮氢混合器单元,303-氮氢混合气压缩单元Ⅰ,304-氮氢混合气预加热单元,305-合成氨反应单元,306-合成氨反应气冷凝单元,307-合成氨反应物分离单元,308-氮氢混合气压缩单元Ⅱ。
具体实施方式
为能进一步了解本发明的发明内容、特点及效果,兹例举以下实施例,并配合附图详细说明如下:
如图1所示,本实施例提供一种丙烷脱氢与合成氨耦合系统,包括脱C4精馏塔101,丙烷预加热单元102,丙烷脱氢反应单元103,脱氢反应气压缩单元104,脱氢反应气干燥单元105,脱氢反应气冷箱单元106,脱氢反应物分离单元107,脱C2精馏塔108,丙炔加氢反应单元109,丙烷丙烯精馏塔110,空气压缩机201,深冷空气分离单元202,变压吸附单元301;氮氢混合器单元302,氮氢混合气压缩单元Ⅰ303,氮氢混合气预加热单元304,合成氨反应单元305,合成氨反应气冷凝单元306,合成氨反应物分离单元307,氮氢混合气压缩单元Ⅱ308。
脱C4精馏塔101的入口用于通入丙烷原料1,脱C4精馏塔101的塔顶气相出口与丙烷预加热单元102的气相入口连接,脱C4精馏塔101的塔釜液相出口用于得到C4等重组分液体2。丙烷预加热单元102的出口与丙烷脱氢反应单元103的入口连接,丙烷脱氢反应单元103的出口与脱氢反应气压缩单元104的入口连接,脱氢反应气压缩单元104的 出口与脱氢反应气干燥单元105的入口连接,脱氢反应气干燥单元105的出口与脱氢反应气冷箱单元106的入口连接,脱氢反应气冷箱单元106的出口与脱氢反应物分离单元107的入口连接,脱氢反应物分离单元107的气相出口与变压吸附单元301的入口连接,脱氢反应物分离单元107的液相出口与脱C2精馏塔108的入口连接,脱C2精馏塔108的塔顶气相出口用于得到C2轻组分气体12,脱C2精馏塔108的塔釜液相出口与丙炔加氢反应单元109的液相入口连接,丙炔加氢反应单元109的气相入口用于通入氢气14,丙炔加氢反应单元109的出口与丙烷丙烯精馏塔110的入口连接,丙烷丙烯精馏塔110的塔顶气相出口用于得到丙烯产品16,丙烷丙烯精馏塔110的塔釜液相出口与丙烷预加热单元102的液相入口连接。
空气压缩机201的入口用于通入空气17,空气压缩机201的出口与深冷空气分离单元202的入口连接,深冷空气分离单元202的液相出口用于得到氧气20,深冷空气分离单元202的气相出口与氮氢混合器单元302的第一气相入口连接。
变压吸附单元301的甲烷和氢气混合气出口用于得到氢气混合气22,变压吸附单元301的纯氢气出口与氮氢混合器单元302的第二气相入口连接。
氮氢混合器单元302的出口与氮氢混合气压缩单元Ⅰ303的入口连接,氮氢混合气压缩单元Ⅰ303的出口与氮氢混合气预加热单元304的第一气相入口连接,氮氢混合气预加热单元304的出口与合成氨反应单元305的入口连接,合成氨反应单元305的出口与合成氨反应气冷凝单元306的入口连接,合成氨反应气冷凝单元306出口与合成氨反应物分离单元307的入口连接,合成氨反应物分离单元307的气相出口与氮氢混合气压缩单元Ⅱ308的入口连接,氮氢混合气压缩单元Ⅱ308的出口与氮氢混合气预加热单元304的第二气相入口连接,合成氨反应物分离单元307的液相出口用于得到液氨产品28。
基于上述丙烷脱氢与合成氨耦合系统的工艺,包括如下反应过程:
丙烷原料1首先进入脱C4精馏塔101脱除C4重组分液体,其中丙烷原料包括乙烷、丙烷、丁烷。脱C4精馏塔101的塔釜得到C4等重组分液体2,脱C4精馏塔101的塔顶得到C3轻组分气体3。
C3轻组分气体3与丙烷丙烯精馏塔110塔釜来的循环丙烷4一起进入丙烷预加热单元102进行加热,得到气相丙烷5。
气相丙烷5进入丙烷脱氢反应单元103进行丙烷脱氢反应,得到丙烷脱氢反应气6;丙烷脱氢反应单元103中脱氢反应器的操作条件为反应压力0.1~1.0MPaA,反应温度550~650℃;该反应压力和反应温度能够确保丙烷脱氢的转化率和丙烯的选择性较佳,从而使副产的氢气产量也较佳。
丙烷脱氢反应气6进入脱氢反应气压缩单元104进行压缩,得到脱氢反应压缩气体7。
脱氢反应压缩气体7再进入脱氢反应气干燥单元105脱除水分,得到脱氢反应干燥气体8。
脱氢反应干燥气体8送往脱氢反应气冷箱单元106进行降温冷凝,得到冷凝产物9。脱氢反应气冷箱单元106的操作压力为1.0~1.5MPaA,操作温度为-110~-60℃,该操作压力和操作温度使得含氢尾气的浓度和能耗均较为合适。
冷凝产物9进入脱氢反应物分离单元107进行闪蒸分离,脱氢反应物分离单元107的塔顶得到含氢尾气11,塔底得到C2/C3液体10和含氢尾气11。
C2/C3液体10进入脱C2精馏塔108进行精馏分离,脱C2精馏塔108塔顶得到C2轻组分气体12,塔釜得到C3液体Ⅰ13。
将C3液体Ⅰ13和氢气Ⅰ14一起送入丙炔加氢反应单元109进行丙炔加氢反应,得到C3液体Ⅱ15。
C3液体Ⅱ15送入丙烷丙烯精馏塔110进行精馏分离,丙烷丙烯精馏塔110的塔顶为丙烯产品16,丙烯产品16送出界区外;丙烷丙烯精馏塔110的塔釜为循环丙烷4,循环回到丙烷预加热单元102。
空气17送入空气压缩机201,经过空气压缩机201压缩后得到压缩空气18。压缩空气18送入深冷空气分离单元202进行精馏分离,得到氮气19和氧气20,氮气19送往合成氨反应单元,氧气产品20,送出界区外。
脱氢反应物分离单元107的塔顶含氢尾气11送往变压吸附单元301进行分离过程,变压吸附单元301的出口得到氢气Ⅱ21和甲烷和氢气混合气22。
将氮气19和氢气Ⅱ21一起送入氮氢混合器单元302进行气体均匀混合,得到氮氢混合气23。
氮氢混合气23通过氮氢混合气压缩单元Ⅰ303压缩,得到氮氢混合压缩气体24。
氮氢混合压缩气体24与氮氢混合气压缩单元Ⅱ308得到的加压循环氮氢混合气体30一起进入氮氢混合气预加热单元304进行加热,得到高温混合压缩气体25。
高温混合压缩气体25进入合成氨反应单元305进行合成氨反应,得到合成氨反应气26。合成氨反应单元305中合成氨反应器的操作条件为反应压力15.0~20.0MPaA,反应温度350~500℃;该反应压力和反应温度能确保较佳的合成氨反应转化率,在提升氨产量的同时保证合理能耗。
合成氨反应气26进入合成氨反应气冷凝单元306进行降温冷凝,得到低温合成氨反应物27。
低温合成氨反应物27进入合成氨反应物分离单元307进行闪蒸分离,得到液氨产品28和氮氢循环混合气29;氮氢循环混合气29进入氮氢混合气压缩单元Ⅱ308压缩,得到加压循环氮氢混合气体30;加压循环氮氢混合气体30循环回到氮氢混合气预加热单元304,液氨产品28送出界区外。其中,合成氨反应物分离单元307的操作压力为2.0~18.0MPaA,操作温度20~50℃;该操作压力和反应温度能够确保液氨和氮氢气体尽可能分离,提升液氨的纯度的产量。
可见,本发明的丙烷脱氢与合成氨耦合系统和工艺,根据丙烷脱氢与合成氨反应气的特点进行耦合,避免了工业上常用的化石燃料制氢的繁琐过程,实现提高能量利用效率、降低设备投资、降低装置能耗、减少建设用地的目的,并且有利于长周期稳定生产,提高反应系统的经济效益。
尽管上面结合附图对本发明的优选实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,并不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可以作出很多形式的具体变换,这些均属于本发明的保护范围之内。

Claims (6)

  1. 一种丙烷脱氢与合成氨耦合系统,其特征在于,包括脱C4精馏塔(101),丙烷预加热单元(102),丙烷脱氢反应单元(103),脱氢反应气压缩单元(104),脱氢反应气干燥单元(105),脱氢反应气冷箱单元(106),脱氢反应物分离单元(107),脱C2精馏塔(108),丙炔加氢反应单元(109),丙烷丙烯精馏塔(110),空气压缩机(201),深冷空气分离单元(202),变压吸附单元(301);氮氢混合器单元(302),氮氢混合气压缩单元Ⅰ(303),氮氢混合气预加热单元(304),合成氨反应单元(305),合成氨反应气冷凝单元(306),合成氨反应物分离单元(307),氮氢混合气压缩单元Ⅱ(308);
    所述脱C4精馏塔(101)的入口用于通入丙烷原料(1),所述脱C4精馏塔(101)的塔顶气相出口与丙烷预加热单元(102)的气相入口连接,所述脱C4精馏塔(101)的塔釜液相出口用于得到C4等重组分液体(2);所述丙烷预加热单元(102)的出口与所述丙烷脱氢反应单元(103)的入口连接,所述丙烷脱氢反应单元(103)的出口与所述脱氢反应气压缩单元(104)的入口连接,所述脱氢反应气压缩单元(104)的出口与所述脱氢反应气干燥单元(105)的入口连接,所述脱氢反应气干燥单元(105)的出口与所述脱氢反应气冷箱单元(106)的入口连接,所述脱氢反应气冷箱单元(106)的出口与所述脱氢反应物分离单元(107)的入口连接,所述脱氢反应物分离单元(107)的气相出口与变压吸附单元(301)的入口连接,所述脱氢反应物分离单元(107)的液相出口与所述脱C2精馏塔(108)的入口连接,所述脱C2精馏塔(108)的塔顶气相出口用于得到C2轻组分气体(12),所述脱C2精馏塔(108)的塔釜液相出口与所述丙炔加氢反应单元(109)的液相入口连接,所述丙炔加氢反应单元(109)的气相入口用于通入氢气(14),所述丙炔加氢反应单元(109)的出口与所述丙烷丙烯精馏塔(110)的入口连接,所述丙烷丙烯精馏塔(110)的塔顶气相出口用于得到丙烯产品(16),所述丙烷丙烯精馏塔(110)的塔釜液相出口与所述丙烷预加热单元(102)的液相入口连接;
    所述空气压缩机(201)的入口用于通入空气(17),所述空气压缩机(201)的出口与所述深冷空气分离单元(202)的入口连接,所述深冷空气分离单元(202)的液相出口用于得到氧气(20),所述深冷空气分离单元(202)的气相出口与所述氮氢混合 器单元(302)的第一气相入口连接;所述变压吸附单元(301)的甲烷和氢气混合气出口用于得到氢气混合气(22),所述变压吸附单元(301)的纯氢气出口与所述氮氢混合器单元(302)的第二气相入口连接;
    所述氮氢混合器单元(302)的出口与所述氮氢混合气压缩单元Ⅰ(303)的入口连接,所述氮氢混合气压缩单元Ⅰ(303)的出口与所述氮氢混合气预加热单元(304)的第一气相入口连接,所述氮氢混合气预加热单元(304)的出口与所述合成氨反应单元(305)的入口连接,所述合成氨反应单元(305)的出口与所述合成氨反应气冷凝单元(306)的入口连接,所述合成氨反应气冷凝单元(306)出口与所述合成氨反应物分离单元(307)的入口连接,所述合成氨反应物分离单元(307)的气相出口与所述氮氢混合气压缩单元Ⅱ(308)的入口连接,所述氮氢混合气压缩单元Ⅱ(308)的出口与所述氮氢混合气预加热单元(304)的第二气相入口连接,所述合成氨反应物分离单元(307)的液相出口用于得到液氨产品(28)。
  2. 一种丙烷脱氢与合成氨耦合工艺,其特征在于,包括如下反应过程:
    丙烷原料(1)进入脱C4精馏塔(101)脱除C4重组分液体,所述脱C4精馏塔(101)的塔釜得到C4等重组分液体(2)、塔顶得到C3轻组分气体(3);
    C3轻组分气体(3)与丙烷丙烯精馏塔(110)塔釜得到的循环丙烷(4)进入丙烷预加热单元(102)加热后得到气相丙烷(5);
    所述气相丙烷(5)进入丙烷脱氢反应单元(103)进行丙烷脱氢反应,得到的丙烷脱氢反应气(6)进入脱氢反应气压缩单元(104)压缩,得到的脱氢反应压缩气体进入脱氢反应气干燥单元(105)脱除水分,得到的脱氢反应干燥气体(8)送往脱氢反应气冷箱单元(106)降温冷凝,得到的冷凝产物(9)进入脱氢反应物分离单元(107)闪蒸分离,所述脱氢反应物分离单元(107)的塔顶得到含氢尾气(11),塔底得到C2/C3液体(10)和含氢尾气(11);
    C2/C3液体(10)进入脱C2精馏塔(108)进行精馏分离,所述脱C2精馏塔(108)塔顶得到C2轻组分气体(12),塔釜得到C3液体Ⅰ(13);C3液体Ⅰ(13)和氢气Ⅰ(14)送入丙炔加氢反应单元(109)进行丙炔加氢反应,得到的C3液体Ⅱ(15)送入所述丙烷丙烯精馏塔(110)精馏分离,所述丙烷丙烯精馏塔(110)的塔顶得到丙烯产品(16),塔釜得到循环丙烷(4);
    空气(17)经空气压缩机(201)压缩,得到的压缩空气(18)送入深冷空气分离单元(202)精馏分离得到氮气(19)和氧气(20);
    所述脱氢反应物分离单元(107)塔顶得到的含氢尾气(11)送入变压吸附单元(301)分离过程后得到氢气Ⅱ(21)和甲烷和氢气混合气(22);
    氮气(19)和氢气Ⅱ(21)送入氮氢混合器单元(302)均匀混合,得到的氮氢混合气(23)通过氮氢混合气压缩单元Ⅰ(303)压缩,得到的氮氢混合压缩气体(24)与氮氢混合气压缩单元Ⅱ(308)得到的加压循环氮氢混合气体(30)进入氮氢混合气预加热单元(304)加热,得到的高温混合压缩气体(25)进入合成氨反应单元(305)进行合成氨反应,得到的合成氨反应气(26)进入合成氨反应气冷凝单元(306)降温冷凝,得到的低温合成氨反应物(27)进入合成氨反应物分离单元(307)闪蒸分离得到液氨产品(28)和氮氢循环混合气(29);氮氢循环混合气(29)进入所述氮氢混合气压缩单元Ⅱ(308)压缩得到加压循环氮氢混合气体(30)。
  3. 根据权利要求2所述的一种丙烷脱氢与合成氨耦合工艺,其特征在于,所述丙烷脱氢反应单元(103)中脱氢反应器的反应压力为0.1~1.0MPaA,反应温度为550~650℃。
  4. 根据权利要求2所述的一种丙烷脱氢与合成氨耦合工艺,其特征在于,所述脱氢反应气冷箱单元(106)的操作压力为1.0~1.5MPaA,操作温度为-110~-60℃。
  5. 根据权利要求2所述的一种丙烷脱氢与合成氨耦合工艺,其特征在于,所述合成氨反应单元(305)中合成氨反应器的反应压力为15.0~20.0MPaA,反应温度为350~500℃。
  6. 根据权利要求2所述的一种丙烷脱氢与合成氨耦合工艺,其特征在于,所述合成氨反应物分离单元(307)的操作压力为2.0~18.0MPaA,操作温度20~50℃。
PCT/CN2022/098813 2022-02-16 2022-06-15 丙烷脱氢与合成氨耦合系统和工艺 WO2023155343A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210143377.7A CN114534653B (zh) 2022-02-16 2022-02-16 丙烷脱氢与合成氨耦合系统和工艺
CN202210143377.7 2022-02-16

Publications (1)

Publication Number Publication Date
WO2023155343A1 true WO2023155343A1 (zh) 2023-08-24

Family

ID=81676064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/098813 WO2023155343A1 (zh) 2022-02-16 2022-06-15 丙烷脱氢与合成氨耦合系统和工艺

Country Status (2)

Country Link
CN (1) CN114534653B (zh)
WO (1) WO2023155343A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114534653B (zh) * 2022-02-16 2024-05-10 天津大学 丙烷脱氢与合成氨耦合系统和工艺
CN115745741A (zh) * 2022-11-16 2023-03-07 山东大学 丙烷脱氢与二氧化碳加氢合成甲醇的耦合系统及工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140018594A1 (en) * 2011-03-29 2014-01-16 Stamicarbon B.V. Acting Under The Name Of Mt Innovation Center Method for olefins production
CN103664455A (zh) * 2012-09-05 2014-03-26 中国石油化工股份有限公司 丙烯的制备方法
CN107253895A (zh) * 2017-06-14 2017-10-17 上海交通大学 一种由低碳烷烃联产低碳烯烃和氨的系统和方法
US20180162790A1 (en) * 2016-12-11 2018-06-14 Thyssenkrupp Industrial Solutions Ag Modified propane dehydrogenation system and method for producing one or more chemical products from propane
CN114534653A (zh) * 2022-02-16 2022-05-27 天津大学 丙烷脱氢与合成氨耦合系统和工艺

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108745337A (zh) * 2018-07-18 2018-11-06 天津科技大学 一种用于丙烷脱氢的非金属催化剂及制备方法及用途
CN111215045B (zh) * 2018-11-26 2023-05-09 天津大学 一种铈基双金属氧化物催化剂及其制备方法和在低碳烷烃脱氢中的应用
CN111440044A (zh) * 2020-05-25 2020-07-24 上海卓然工程技术股份有限公司 一种丙烷脱氢装置与乙烯装置联产的工艺方法及系统
CN111848327B (zh) * 2020-07-08 2023-07-11 中国石油化工股份有限公司 烃类蒸汽裂解前脱丙烷工艺与丙烷脱氢工艺耦合的方法
CN111875466B (zh) * 2020-07-08 2022-10-14 中国石油化工股份有限公司 一种烃类蒸汽裂解前脱丙烷工艺与丙烷脱氢工艺耦合方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140018594A1 (en) * 2011-03-29 2014-01-16 Stamicarbon B.V. Acting Under The Name Of Mt Innovation Center Method for olefins production
CN103664455A (zh) * 2012-09-05 2014-03-26 中国石油化工股份有限公司 丙烯的制备方法
US20180162790A1 (en) * 2016-12-11 2018-06-14 Thyssenkrupp Industrial Solutions Ag Modified propane dehydrogenation system and method for producing one or more chemical products from propane
CN107253895A (zh) * 2017-06-14 2017-10-17 上海交通大学 一种由低碳烷烃联产低碳烯烃和氨的系统和方法
CN114534653A (zh) * 2022-02-16 2022-05-27 天津大学 丙烷脱氢与合成氨耦合系统和工艺

Also Published As

Publication number Publication date
CN114534653A (zh) 2022-05-27
CN114534653B (zh) 2024-05-10

Similar Documents

Publication Publication Date Title
WO2023155343A1 (zh) 丙烷脱氢与合成氨耦合系统和工艺
CN102533365B (zh) 一种液化天然气及合成氨联产工艺
CN101293812B (zh) 含甲烷合成气联产甲醇和天然气技术
CN100526273C (zh) 以焦炉气为原料一体化生产液氨和甲醇和/或二甲醚的方法
CN104528647B (zh) 一种合成气分离制取氢气及高纯一氧化碳的方法和装置
CN102585951B (zh) 一种由焦炉气联产液化合成天然气、纯氢和甲醇的新工艺
WO2022011865A1 (zh) 一种采用合成气制乙醇的反应系统及方法
CN104986734B (zh) 一种合成氨合成气自循环深冷分离净化装置及其净化方法
US6340451B1 (en) Method for the simultaneous modernization of a plant for ammonia production and a plant for urea production
CN204508803U (zh) 一种高效分离合成气制取氢气及一氧化碳的装置
NO315938B1 (no) Fremgangsmåte for frembringelse av metanol fra naturgass
CN204702504U (zh) 一种合成气分离制取氢气及高纯一氧化碳装置
CN104495751A (zh) 一种高效分离合成气制取氢气及一氧化碳的方法及装置
CN114804148B (zh) 丙烷脱氢与化学链燃烧以及合成氨耦合系统和工艺
CN211734222U (zh) 一种利用乙二醇装置尾气生产甲醇的装置
CN107473223A (zh) 一种采用氮循环的co深冷分离系统及其方法
CN209558777U (zh) 一种兰炭尾气的深冷液化分离装置
CN104974810A (zh) 一种兰炭尾气与电石炉气生产液化天然气的方法
CN105771589B (zh) 一种氨和二氧化碳的分离装置
CN215757175U (zh) 一种合成氨系统联产低压甲醇系统
CN111153769A (zh) 一种利用乙二醇装置尾气生产甲醇的方法和装置
CN107118818B (zh) 一种利用甲醇驰放气合成lng的工艺
CN114276846B (zh) 一种利用焦炉煤气制备lng联产合成氨的方法及系统
CN214881194U (zh) 一种甲醇精馏萃取水改造系统
CN220609130U (zh) 丙烷脱氢副产碳四生产mtbe和1-丁烯的系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926653

Country of ref document: EP

Kind code of ref document: A1