CN105771589B - 一种氨和二氧化碳的分离装置 - Google Patents

一种氨和二氧化碳的分离装置 Download PDF

Info

Publication number
CN105771589B
CN105771589B CN201410855247.1A CN201410855247A CN105771589B CN 105771589 B CN105771589 B CN 105771589B CN 201410855247 A CN201410855247 A CN 201410855247A CN 105771589 B CN105771589 B CN 105771589B
Authority
CN
China
Prior art keywords
tower
desorber
absorption
carbon dioxide
recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410855247.1A
Other languages
English (en)
Other versions
CN105771589A (zh
Inventor
王讯文
韩晖
刘丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Accelergy Shanghai R & D Center Co Ltd
Original Assignee
Accelergy Shanghai R & D Center Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Accelergy Shanghai R & D Center Co Ltd filed Critical Accelergy Shanghai R & D Center Co Ltd
Priority to CN201410855247.1A priority Critical patent/CN105771589B/zh
Publication of CN105771589A publication Critical patent/CN105771589A/zh
Application granted granted Critical
Publication of CN105771589B publication Critical patent/CN105771589B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Abstract

本发明涉及一种氨和二氧化碳的分离装置,依次包括吸收塔、回收塔和解吸塔,在吸收塔、回收塔和解吸塔的塔釜分别设有再沸器,此外,在回收塔和解吸塔的塔顶连接有冷凝回流装置。利用本发明所提供的装置对氨和二氧化碳的混合气体进行分离时,将混合气体首先送入吸收塔内,然后依次在吸收塔、回收塔和解吸塔内完成二氧化碳的吸收步骤、低沸物的回收步骤和二氧化碳的解吸步骤,最终实现对氨和二氧化碳的分离。采用本发明的分离装置可有效解决氨和二氧化碳易结晶导致无法分离的问题、并提高二氧化碳的回收率。

Description

一种氨和二氧化碳的分离装置
技术领域
[0001] 本发明涉及混合物中脱除二氧化碳的技术领域,特别涉及一种氨和二氧化碳的分 离装置。
背景技术
[0002] 在生产尿素或由尿素合成三聚氰胺生产过程中会产生含有氨和二氧化碳的混合 气体。如何高效地从混合气体中分离出氨和二氧化碳,使其作为循环物料或联产物/副产 物,对生产工艺的效率和经济性起到至关重要的作用。
[0003] 氨和二氧化碳混合物的一个特殊性质在于,常压下低于约59°C,两者易自发反应 生成氨基甲酸铵固体(Ammonium carbamate,简称甲铵),极易导致设备和/或管道堵塞。然 而,由于氨的沸点(常压下为_33°C)和二氧化碳的沸点(常压下为_78°C)远低于甲铵分解温 度,因此无法采用常规精馏方法将氨和二氧化碳等分离而不导致甲铵固体的生成。
[0004] 碳酸二甲酯(Dimethyl Carbonate,简称DMC,结构式
Figure CN105771589BD00041
,是近 年来颇受国内外重视的新型绿色化学品,由于其分子中含有CH3—、CH3O—、CH3O — CO—、一 CO —等多种官能团,因而具有良好的反应活性,符合清洁生产和绿色化工的时代要求,在包 括化工合成、环保溶剂、锂离子电解液尤其是燃油添加剂等诸多领域中有广泛应用。
[0005] 尿素醇解法制备碳酸二甲酯的方法(例如,CN102212009B),因其所用原料尿素和 甲醇价廉易得,且主产品碳酸二甲酯品质高、杂质含量少等优势而成为DMC制备和分离的研 究重点。尿素醇解法的反应输出物质中涉及含有氨、二氧化碳和有机物(例如甲醇)的混合 气体。如何高效地分离反应输出物质中的氨、二氧化碳和有机物,是尿素醇解法生产工艺需 要解决的重要问题。
[0006] 热钾碱法是一种常见的脱除工艺气体中二氧化碳的方法(简称脱碳),被应用于合 成氨、制氢、液化气和天然气等领域酸性混合气体脱除二氧化碳的生产过程,如中国专利申 请CN101168115A“一种脱除变换气中C〇2的方法”、中国专利申请CN1403185A“一种热钾碱脱 除二氧化碳工艺的改进方法”、中国专利申请CN102125795A“一种从合成氨变换气中脱除 CO2的方法及装置”。热钾碱法脱碳是以碳酸钾溶液作为吸收剂,气体混合物通过吸收塔与 逆向流动的碳酸钾溶液接触,二氧化碳及其他酸性杂质气体与碳酸钾溶液反应生成碳酸氢 钾后从混合气体中除去。吸收了二氧化碳的富液进入解吸塔,由于部分溶液加热至沸点,部 分碳酸氢钾分解,产生的蒸汽从溶液中汽提出二氧化碳。为了提高吸收/解吸效率,吸收剂 中还添加一些活化剂或助剂,使吸收和解吸反应速率大大提高。由于活化剂和工艺参数上 的差异,出现了多种热钾碱脱除二氧化碳的工艺,如以三氧化二砷为催化剂的含砷热钾碱 法(G.V.脱碳法)、以氨基乙酸为催化剂的氨基乙酸法(或无毒脱碳法)、以烷基醇胺、二乙撑 三胺(DETA)为催化剂的卡脱卡勃法(或催化热钾碱法)、以二乙醇胺为催化剂的苯菲尔法 (或改良热钾碱法)等。
[0007] 然而上述各种热钾碱法脱除二氧化碳工艺的一个共同点是仅可用于处理酸性气 体,即所处理的混合气体中并不包括氨等碱性物质。目前,将热钾碱脱碳技术应用在含有二 氧化碳和氨的混合气体工艺中脱除二氧化碳,进行氨和二氧化碳分离在国内外尚未见诸报 道。
发明内容
[0008] 本发明的一个目的在于提供一种氨和二氧化碳的分离装置,该分离装置采用吸收 塔、回收塔和解吸塔三个塔构成分离体系,采用该装置对氨和二氧化碳的混合气体进行分 离,可有效解决氨和二氧化碳易结晶导致无法分离的问题,实现氨、二氧化碳的高效分离。
[0009] 为解决上述技术问题,本发明的实施方式提供了一种氨和二氧化碳的分离装置, 该装置依次包括吸收塔、回收塔和解吸塔;所述吸收塔、回收塔和解吸塔的塔釜分别设有再 沸器,且:
[0010] 所述吸收塔设有气相进料口、吸收剂入口、低沸物入口、富液出口和气相出口,所 述吸收塔的富液出口连接回收塔的进料口;
[0011] 所述回收塔设有进料口、液体出口、气相出口和回流口,所述回收塔的气相出口连 接冷凝回流装置,且所述冷凝回流装置的回流液出口同时与回收塔的回流口、吸收塔的低 沸物入口以及液体出料管路相连,所述回收塔的液体出口连接解吸塔的进料口;
[0012] 所述解吸塔设有进料口、贫液出口、气相出口和回流口,所述解吸塔的气相出口连 接冷凝回流装置,所述冷凝回流装置的回流液出口与解吸塔的回流口相连、所述冷凝回流 装置的气体出口与气相出口管路相连,所述解吸塔的贫液出口连接所述吸收塔的吸收剂入 □ 〇
[0013] 在本发明的实施方式所提供的上述氨和二氧化碳的分离装置中,依次设置了吸收 塔、回收塔和解吸塔,以完成对二氧化碳的吸收、对低沸物的回收以及二氧化碳的解吸三个 步骤,具体来说:
[0014] 首先,吸收塔用于进行二氧化碳吸收步骤:将含氨和二氧化碳的混合气体通过气 相进料口送入吸收塔,并通过吸收塔的吸收剂入口引入包含碳酸钾的二氧化碳吸收剂(以 下也称吸收剂)进行逆流吸收,通过吸收塔中部的低沸物入口引入低沸物,自吸收塔顶的气 相出口采出氨等气体;吸收塔塔釜设有再沸器,控制塔釜氨浓度;从吸收塔釜的富液出口采 出含有低沸物的碳酸氢钾富液,并通过富液出口与回收塔进料口的连接将该含有低沸物的 碳酸氢钾富液送往回收塔。值得特别说明的是:本发明的实施方式中的吸收塔比传统吸收 塔增加了塔釜再沸器,再沸器采用蒸汽加热调控所述吸收塔塔釜的温度。该再沸器的作用 如下:一、增加了一个控制手段,即除了吸收剂流量和塔压控制之外,还可采用釜温来调节 所述塔的分离程度,使得塔釜二氧化碳回收率大大增加,并严格控制了釜液中氨含量。二、 在吸收塔的下半段控制溶液的温度可提高反应速率,使气相中绝大部分二氧化碳很快被溶 液吸收。
[0015] 其次,回收塔用于进行低沸物的回收步骤:将前述在吸收塔塔釜所得到的含有低 沸物的碳酸氢钾富液,通过回收塔的进料口送入回收塔,进行低沸物的回收,回收塔塔釜设 有再沸器加热,自回收塔塔顶的气相出口采出低沸物,低沸物进入与气相出口相连接的冷 凝回流装置内进行冷凝回流,由于冷凝回流装置的回流液出口同时与回收塔的回流口、吸 收塔的低沸物入口以及液体出料管路相连,因此经冷凝回流得到的低沸物部分或全部返回 吸收塔中部循环利用,剩余的低沸物或通过回流口返回回收塔顶部再次参与冷凝回流、或 通过液体出料管路采出回收;在回收塔塔釜得到碳酸氢钾富液,并通过回收塔的液体出口 与解吸塔进料口的连接将该碳酸氢钾富液送往解吸塔。
[0016] 再次,解吸塔用于完成二氧化碳的解吸步骤:将前述在回收塔塔釜所得到的碳酸 氢钾富液,通过解吸塔的进料口送入解吸塔,与解吸塔塔釜再沸器产生的水蒸气逆流接触, 从解吸塔塔顶的气相出口释放出含二氧化碳的气相物质,该气相物质进入与解吸塔气相出 口相连接的冷凝回流装置内进行冷凝回流,二氧化碳气体经冷凝回流装置的气体出口排 出,并通过气相出口管路采出;冷凝回流装置的回流液(即液态水)通过解吸塔的回流口,返 回进入解吸塔顶;同时,在解吸塔塔釜得到的贫液返回吸收塔,作为二氧化碳吸收剂循环使 用。由此完成了氨和二氧化碳的分离。
[0017] 上述利用本发明的实施方式所提供的装置对氨和二氧化碳进行分离的过程中,利 用碳酸钾溶液对CO2具有较强化学相互作用的性质,用其吸收混合气体中的C02,这与热钾碱 法的工作原理是一致的;但是由于混合气体中也含有氨,而这些氨也会被吸收液所吸收,因 此常规热钾碱工艺并不能用来分离氨和C02。针对这一技术难点,本发明在吸收塔塔釜设置 再沸器,再沸器采用蒸汽加热调控吸收塔塔釜温度,使得塔釜的碳酸氢钾富液处于沸腾状 态,从而使塔釜采出的富液中氨的含量控制在较低的浓度。但是,部分碳酸氢钾也会在此过 程中分解,导致吸收塔的吸收效率大幅度下降,因此进一步地,我们发现在吸收塔增设了低 沸物入口引入低沸物,降低吸收塔塔釜的再沸温度,从而避免或大幅度减少碳酸氢钾的分 解,使得在控制氨浓度的同时,基本保持了吸收塔的原有吸收效率。采用本发明的实施方式 所提供的装置对氨和二氧化碳的混合气体进行分离,二氧化碳的回收率接近99.95%,塔釜 氨含量低于0.05%,有效解决了氨和二氧化碳易结晶导致无法分离的问题。
[0018] 优选地,本发明的实施方式所提供的氨和二氧化碳的分离装置中,在吸收塔内设 有冷凝器,对吸收塔内上升的低沸物蒸汽进行冷凝。
[0019] 优选地,本发明的实施方式所提供的氨和二氧化碳的分离装置中,吸收塔的吸收 剂入口有两个,所述两个吸收剂入口分别设于吸收塔的上部和中部,即吸收塔采用两段式 吸收的方式,两段式吸收可提高一定量吸收剂对混合气体的吸收效率。在这种情况下,设于 解吸塔的的贫液出口下部同时与吸收塔的两个吸收剂入口相连。
[0020] 优选地,本发明的实施方式所提供的氨和二氧化碳的分离装置中,所述解吸塔除 了贫液出口外,还可增设半贫液出口。当所述解吸塔同时设有贫液出口和半贫液出口时,所 述贫液出口设于解吸塔的下部、所述半贫液出口设于解吸塔的中部,且所述贫液出口与设 于吸收塔的上部的吸收剂入口相连、所述半贫液出口与设于吸收塔的中部的吸收剂入口相 连。采用上述这种两段式解吸时,大部分富液初步解吸为半贫液后送入吸收塔中部,少部分 吸收剂富液进一步解吸为贫液后送入吸收塔上端,两段式解吸的方式使得达到相同二氧化 碳回收率的同时,令解吸塔能耗显著降低并减少了贫液的冷却负荷。
[0021] 优选地,本发明的实施方式所提供的氨和二氧化碳的分离装置中,所述解吸塔的 下部设有补水口。由于解吸塔塔顶蒸出的CO2会带走一部分水蒸汽,因此需要对解吸塔进行 补水。
[0022] 优选地,本发明的实施方式所提供的氨和二氧化碳的分离装置中,所述吸收塔、回 收塔和解吸塔的塔釜均设有釜液循环出口和釜液循环进口:所述吸收塔的釜液循环出口与 吸收塔再沸器的冷侧进口连接,所述吸收塔的釜液循环进口与吸收塔再沸器的冷侧出口连 接;所述回收塔的釜液循环出口与回收塔再沸器的冷侧进口连接,所述回收塔的釜液循环 进口与回收塔再沸器的冷侧出口连接;所述解吸塔的釜液循环出口与解吸塔再沸器的冷侧 进口连接,所述解吸塔的釜液循环进口与解吸塔再沸器的冷侧出口连接。
[0023] 优选地,本发明的实施方式所提供的氨和二氧化碳的分离装置中,所述连接于回 收塔的气相出口的冷凝回流装置依次包括回收塔冷凝器、回收塔回流罐和回收塔回流栗; 所述连接于解吸塔的气相出口的冷凝回流装置依次包括解吸塔冷凝器、解吸塔回流罐和解 吸塔回流栗。
[0024] 优选地,本发明的实施方式所提供的氨和二氧化碳的分离装置中,所述吸收塔的 富液出口与所述回收塔的进料口之间设有吸收塔塔釜出料栗;所述回收塔的液体出口与所 述解吸塔的进料口之间设有回收塔塔釜出料栗;所述解吸塔的贫液出口与所述吸收塔的吸 收剂入口之间设有贫液循环栗和出料冷却器。此外,上述吸收塔、回收塔和解吸塔分别为填 料塔或板式塔。
[0025] 值得补充说明的是:为了达到最佳分离效果,在使用本发明的实施方式所提供的 分离装置对氨和二氧化碳的混合气体进行分离的过程中,影响二氧化碳吸收或解吸过程的 既有反应平衡又有相平衡,其影响因素是多方面的,具体来说在使用该分离装置的基础上, 还可有一系列优选的分离工艺方案,例如:
[0026] 可选地,利用本发明的实施方式所提供的装置对氨和二氧化碳的分离过程中,待 分离的混合气体还可以包含甲醇,所述甲醇也作为低沸物参与分离反应。如果待分离的混 合气体中含有合适的低沸物,例如尿素醇解法制碳酸二甲酯工艺中的混合气体含有甲醇, 那么可利用其作为本发明的低沸物,使得在分离氨和CO2的同时,也将该等低沸物从所述混 合气体中分离。
[0027] 优选地,利用本发明的实施方式所提供的装置对氨和二氧化碳的分离过程中,所 使用的低沸物为醇、酮、醚或酯;且所述醇为含碳数1〜3的醇,所述酮为含碳数3〜5的酮,所 述醚为含碳数2〜6的醚,所述酯为含碳数2〜5的酯。本发明涉及的分离方法中,对于低沸物 的选取,主要考量是其在吸收塔工况下的沸点应尽量低,但应高于自吸收塔顶进入的吸收 剂的温度,以免低沸物从吸收塔顶逃逸。其它考量包括低沸物的化学稳定性、是否与体系内 其它物质有化学相互作用、是否形成共沸物、低沸物是否具有腐蚀性、低沸物原料来源及所 含杂质等等。本发明即是根据上述的原则,选取了上述可作为本发明的低沸物的物质种类。
[0028] 优选地,利用本发明的实施方式所提供的装置对氨和二氧化碳的分离过程中,所 述二氧化碳吸收剂还包含碳酸氢钾、二氧化碳吸收助剂和水,所述二氧化碳吸收剂的总碱 度为20〜50%,且所述二氧化碳吸收剂中:碳酸钾的质量浓度范围为5〜40%、碳酸氢钾质 量浓度范围为5〜45%、二氧化碳吸收助剂的质量范围为1〜8%,余量为水。上述的二氧化 碳吸收助剂一般为胺类物质,例如氨基乙酸、二乙醇胺、二乙撑三胺等;这些胺类物质作为 帮助二氧化碳吸收的添加剂,共同特点是至少有一个氨基团,这种氨基团参与对二氧化碳 的吸收,改变反应历程,使反应速度大大提高。此外,从理论上来说,吸收剂的总碱度越高, 溶液的吸收能力越大,溶液循环量越少,解吸热负荷降低,但是溶液总碱度过大并不会明显 提高吸收速率和推动力,因为溶液黏度随总碱度增大而增大,造成溶液总传质系数下降,导 致吸收速率和吸收能力降低。此外总碱度过高,溶液中碳酸氢钾易结晶析出,会造成设备和 管道的堵塞;总碱度过高也使溶液对碳钢设备的腐蚀性增强。本发明的实施方式将总碱度 控制在20〜50%,有利于顺利实现分离过程。
[0029] 优选地,利用本发明的实施方式所提供的装置对氨和二氧化碳的分离过程中,所 述吸收剂和混合气体的质量比为1〜8:1,所述低沸物和吸收剂的质量比为0.1〜0.4:1。低 沸物的存在使塔釜温度相对较低,增加吸收推动力,吸收效果好,防止了碳酸氢钾富液在吸 收塔塔釜解吸;但吸收温度太低会降低吸收速率。因此,低沸物的使用量对吸收效果和吸收 速率的影响很大。另外,吸收剂循环量大,则喷淋密度大,塔内填料充分润湿,气液接触效果 好,且可提高吸收反应速度,然而循环量过大将增大热耗和动力消耗。此外,吸收剂的循环 量还与吸收剂的总碱度有关,总碱度大,循环量可适当降低。本发明的实施方式中对低沸 物、循环吸收剂和混合气体的质量比进行上述较为合理的限定,保证了分离过程的顺利实 现。
[0030] 优选地,利用本发明的实施方式所提供的装置对氨和二氧化碳的分离过程中,所 述二氧化碳吸收剂中碳酸钾含量的20〜80%转化为碳酸氢钾。二氧化碳吸收剂中碳酸钾转 化为碳酸氢钾的百分比即为转化度。转化度越大(即碳酸钾转化成碳酸氢钾的量越多),则 吸收二氧化碳的量越多,然而,由于受到反应平衡和相平衡的制约,二氧化碳的平衡蒸汽压 增大,吸收传质速率降低,因此转化度增加对溶液的吸收能力是不利的。对吸收来说总是要 求解吸过程进行得越彻底越好,但对于解吸来说,解吸的越彻底,能耗越大,因此,整体来 看,转化度并非越低越好,它受到设备能力和经济性的制约。本发明的实施方式中,碳酸钾 的转化度为20〜80%,实现了增强吸收效果和减少能耗的平衡。
[0031] 优选地,利用本发明的实施方式所提供的装置对氨和二氧化碳的分离过程中,吸 收塔所采用两段式吸收中,第一段吸收的循环吸收剂和第二段吸收的循环吸收剂的质量流 量比为0.1〜0.5:1。此外,在本发明的实施方式中的解吸塔采用两段式解吸的情形下,第一 段解吸的半贫液和第二段解吸的贫液的质量流量比为2〜10:1。本发明的实施方式中,为解 决吸收和解吸过程对转化度要求的矛盾,采用了两段吸收和两段解吸的方法,大部分富液 在解吸塔的上段经初步解吸为半贫液后送往吸收塔下段,小部分富液在解吸塔下段经进一 步解吸为贫液后送往吸收塔上端,这样既解决了吸收速率问题,又降低了解吸塔热负荷消 耗。
[0032] 优选地,利用本发明的实施方式所提供的装置对氨和二氧化碳的分离过程中,所 述吸收塔的操作绝对压力为〇 · 1〜1 · OMPa,所述回收塔的操作绝对压力为0 · 1〜0 · 7MPa,所 述解吸塔的操作绝对压力为0.1〜〇.9MPa。从提高吸收过程的传质推动力来看,操作压力越 高,气相中二氧化碳分压越大,吸收的推动力也越大,因而吸收速率也就越快,同时,提高操 作压力,还可以增加溶液对二氧化碳的吸收能力。而对解吸来说情况正好相反,解吸压力越 低解吸过程进行得越彻底,所有增加溶液的二氧化碳平衡蒸汽压和降低气相中二氧化碳分 压的措施都有利于解吸过程的进行。本发明的实施方式中对吸收塔、回收塔和解吸塔所设 定的操作压力在促进吸收和解吸两方面进行了平衡。
[0033] 优选地,本发明所提供的氨和二氧化碳的分离方法中:吸收塔的二氧化碳吸收剂 进料温度为50〜90 °C,吸收塔塔顶的气体温度为50〜120 °C,吸收塔塔釜的富液温度为80〜 180°C ;回收塔塔顶的气体温度为40〜125°C,回收塔塔釜的液体温度为105〜165°C ;解吸塔 塔顶的气体温度为80〜150°C,解吸塔塔釜的贫液温度为120〜190°C。
附图说明
[0034] 图1是本发明实施例1所示的氨和二氧化碳的分离装置的流程原理图;
[0035] 图2是本发明实施例2中的氨和二氧化碳的分离装置的示意图;
[0036] 图3是本发明实施例3中的氨和二氧化碳的分离装置的示意图;
[0037] 图4是本发明实施例4中的氨和二氧化碳的分离装置的示意图;
[0038] 图5是本发明实施例5中的氨和二氧化碳的分离装置的示意图。
具体实施方式
[0039] 为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的各实 施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施方式中, 为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基 于以下各实施方式的种种变化和修改,也可以实现本申请各权利要求所要求保护的技术方 案。
[0040] 实施例一
[0041] 本发明的第一实施方式涉及一种氨和二氧化碳的分离装置的流程原理,如附图1 所示,该种氨和二氧化碳的分离流程包括:将含氨、二氧化碳的混合气体送入包括吸收塔 1100、回收塔1200和解吸塔1300的三塔分离装置内进行分离。首先,在吸收塔1100内进行二 氧化碳吸收步骤:将包含氨和二氧化碳的混合气体送入吸收塔,同时在吸收塔内分别引入 二氧化碳吸收剂(以下也称吸收剂)和低沸物,二氧化碳吸收剂包含碳酸钾溶液;在吸收塔 的塔釜使用再沸器加热,从吸收塔的塔顶采出含氨的气态物质,从吸收塔的塔釜得到含有 低沸物的碳酸氢钾富液。然后在回收塔1200内进行低沸物回收步骤:将上一步得到的含有 低沸物的碳酸氢钾富液送入回收塔;在回收塔的塔釜使用再沸器加热,从回收塔的塔顶得 到低沸物,所述低沸物经冷凝回流后,返回吸收塔循环利用或采出回收,从回收塔的塔釜得 到脱除了低沸物的碳酸氢钾富液。最后,在解吸塔1300内进行二氧化碳解吸步骤:将步骤 (2)得到的脱除了低沸物的碳酸氢钾富液送入解吸塔,在解吸塔的塔釜使用再沸器加热,使 碳酸氢钾富液与再沸器产生的水蒸气逆流接触,在解吸塔的塔顶得到的气相经冷凝回流后 采出气相二氧化碳,在解吸塔的塔釜得到碳酸钾贫液,返回吸收塔作为二氧化碳吸收剂循 环利用。
[0042] 具体来说,将混合气体送入吸收塔1100塔中下部,所述吸收塔1100采用填料塔或 板式塔,操作压力为0.1〜I. OMPa (A),或进一步为0.15〜0.8MPa㈧,或更进一步为0.2〜 0.6MPa㈧。吸收剂包含碳酸钾溶液(实际体系中包含碳酸钾、碳酸氢钾、二氧化碳吸收助剂 和水),与所述混合气体的质量液气比为1〜8:1,或进一步为2〜7:1,或更进一步为3〜6:1; 所述吸收剂总碱度(碳酸钾和碳酸氢钾质量浓度总和)为20〜50%,或进一步为20〜45%, 或更进一步为20〜40% ;所述吸收剂总碱度中碳酸钾质量浓度范围为5〜40%,或进一步为 10〜35%,或更进一步为20〜30% ;碳酸氢钾质量浓度范围为5〜45%,或进一步为7〜 35%,或更进一步为8〜25%。所述吸收剂中添加的二氧化碳吸收助剂的质量含量为1〜 8%,或进一步为1.5〜7%,或更进一步为2〜5% ;所述吸收剂转化度(碳酸钾转化为碳酸氢 钾的百分率)为20〜80%,或进一步为20〜70%,或更进一步为20〜50%。
[0043] 吸收塔1100采用两段吸收,来自解吸塔1300的循环吸收剂冷却至50〜90°C,或进 一步为55〜85°C,或更进一步为60〜80°C,而后送入吸收塔1100上端进行第一段吸收,另一 部分吸收剂送入所述吸收塔中部进行第二段吸收,所述第一段吸收剂和第二段吸收剂质量 流量比为0.1〜0.5:1,或进一步为0.15〜0.45:1,或更进一步为0.15〜0.4:1。吸收塔内向 上的气相和向下的吸收剂逆流接触,进行气液传质;上升的低沸物气相被内置冷凝器冷凝 返回塔釜。所述吸收塔1100塔顶得到含氨的气态物质,温度为50〜120 °C,或进一步为55〜 ll〇°C,或更进一步为60〜100 °C;吸收塔1100塔釜采出含有低沸物的碳酸氢钾富液,温度为 80〜180°C,或进一步为85〜170°C,或更进一步为90〜160°C。
[0044] 吸收塔1100塔底含有低沸物的碳酸氢钾富液送入回收塔1200中部。回收塔1200采 用填料塔或板式塔,操作压力为0.1〜〇.7MPa㈧,或进一步为0.1〜0.5MPa㈧,或更进一步 为0.1〜0.4MPa㈧。回收塔1200塔顶回收得到低沸物,温度为40〜125°C,或进一步为40〜 110°C,或更进一步为40〜105°C ;部分低沸物循环返回到吸收塔1100中部,随碳酸氢钾富液 在吸收塔塔釜采出,低沸物的存在降低了吸收塔塔釜温度,防止了碳酸氢钾富液在吸收塔 塔釜解吸,并且降低了氨在塔釜的分压,使其从吸收塔塔顶排出。低沸物和循环吸收剂的质 量比为0.1〜0.4:1。回收塔1200塔釜采出碳酸氢钾富液,温度为105〜165°C,或进一步为 105〜155°C,或更进一步为105〜145°C。
[0045] 回收塔1200塔底碳酸氢钾富液送入解吸塔1300上端。解吸塔1300采用填料塔或板 式塔,操作压力为0.1〜〇.9MPa(A),或进一步为0.1〜0.6MPa(A),或更进一步为0.1〜 0.5MPa㈧。溶液加热至沸点使碳酸氢钾分解,产生的蒸汽从溶液中汽提出二氧化碳。解吸 塔1300塔顶得到二氧化碳和水的混合气体,气相温度为80〜150°C,或进一步为85〜140°C, 或更进一步为90〜130°C。解吸塔1300塔釜采出碳酸钾贫液,温度为120〜190°C,或进一步 为120〜170°C,或更进一步为120〜160°C。所述解吸塔1300塔釜贫液返回到吸收塔1100吸 收剂入口循环使用,所述解吸塔塔釜补充一定量的水。
[0046] 实施例二
[0047] 本发明的第二实施方式涉及一种具体的氨和二氧化碳的分离方法及装置。如附图 2所示:本实施例中的氨和二氧化碳分离的装置包括吸收塔2101、吸收塔再沸器2112、吸收 塔塔釜出料栗2131、回收塔2201、回收塔再沸器2212、回收塔冷凝器2211、回收塔回流罐 2221、回收塔回流栗2231、回收塔塔釜出料栗2232、解吸塔2301、解吸塔再沸器2312、解吸塔 冷凝器2311、解吸塔回流罐2321、解吸塔回流栗2331、贫液循环栗2332、解吸塔塔釜出料冷 却器2313。
[0048] 在吸收塔2101的中下部设有供混合气体进入的气相进料口,在吸收塔2101上端和 中部分别设有吸收剂入口,吸收塔2101中部设有低沸物入口。进料管路与吸收塔2101气相 进料口连接,塔顶气相出口与气相出口管路连接。吸收塔2101塔釜液体循环口与吸收塔再 沸器2112冷侧入口连接,吸收塔再沸器2112冷侧出口与塔釜返回口连接。吸收塔2101塔釜 富液出口与吸收塔塔釜出料栗2131入口连接,吸收塔塔釜出料栗2131出口与回收塔进料口 连接。回收塔2101塔顶气相出口与回收塔冷凝器2211热侧入口连接,回收塔冷凝器2211热 侧出口与回收塔回流罐2221入口连接,回收塔回流罐2221液相出口与回收塔回流栗2231入 口连接,回收塔回流栗2231出口分别与塔回流口、吸收塔中部低沸物入口和液体出料管路 连接。所述回收塔2201塔釜液体循环口与回收塔再沸器2212冷侧入口连接,回收塔再沸器 2212冷侧出口与塔釜返回口连接。回收塔塔釜出料口与回收塔塔釜出料栗2232入口连接, 回收塔塔釜出料栗2232出口与解吸塔上端进料口连接。解吸塔塔顶气相出口与解吸塔冷凝 器2311热侧入口连接,解吸塔冷凝器2311热侧出口与解吸塔回流罐2321入口连接,解吸塔 回流罐2321液相出口与解吸塔回流栗2331入口连接,解吸塔回流栗2331出口与解吸塔回流 口连接;解吸塔回流罐2321气相出口与气相出口管路连接。解吸塔2301塔釜液体循环口与 解吸塔再沸器2312冷侧入口连接,解吸塔再沸器2312冷侧出口与塔釜返回口连接。所述解 吸塔塔釜贫液出口与贫液循环栗2332入口连接,贫液循环栗2332出口分别与解吸塔塔釜出 料冷却器2313热侧入口和吸收塔中部吸收剂入口连接,解吸塔塔釜出料冷却器2313热侧出 口与吸收塔上端吸收剂入口连接。补水管路与所述解吸塔下端补水口连接。
[0049] 本实施例的分离方法如下:
[0050] 来自尿素醇解法工艺上游的混合气体,包括氨、二氧化碳、甲醇等,送入吸收塔 2101塔中下部,所述吸收塔2101采用填料塔,操作压力为0.2MPa (A)。吸收剂与所述混合气 体的质量液气比为3:1;所述吸收剂总碱度为30% ;所述吸收剂总碱度中碳酸钾质量浓度为 24%;碳酸氢钾质量浓度为8.7%。所述吸收剂中添加的二氧化碳吸收助剂质量含量为3%; 所述吸收剂转化度为20%。低沸物甲醇和吸收剂的质量比为0.35:1。所述吸收塔采用两段 吸收。所述吸收剂经贫液循环栗2332增压后一部分送入解吸塔釜出料冷却器2313冷却至60 °C,而后送入吸收塔2101上端进行第一段吸收,另一部分吸收剂送入所述吸收塔中部进行 第二段吸收,所述第一段吸收剂和第二段吸收剂质量流量比为0.3:1。吸收塔内向上的气相 和向下的吸收剂逆流接触,进行气液传质;上升的甲醇气相被内置冷凝器冷凝返回塔釜。所 述吸收塔2101塔顶得到气相氨,温度为60°C;吸收塔2101塔釜采出含有甲醇的碳酸氢钾富 液,温度为96 °C。
[0051] 吸收塔2101塔底富液经过吸收塔塔釜出料栗2131送入回收塔2201中部。回收塔 2201采用填料塔,操作压力为0. IMPa㈧。回收塔2201塔顶得到甲醇气相,温度为65°C,送入 回收塔冷凝器2211冷凝后进入回收塔回流罐2221,被冷凝下来的甲醇一部分作为回流由回 收塔回流栗2231返回塔,一部分作为出料从液相口排出,另一部分甲醇循环返回到吸收塔 2101中部,随碳酸氢钾富液在吸收塔塔釜采出,甲醇的存在降低了吸收塔塔釜温度,防止了 碳酸氢钾富液在吸收塔塔釜解吸,并且降低了氨在塔釜的分压,使其从吸收塔塔顶排出。回 收塔2201塔釜采出碳酸氢钾富液,温度为110°C。所述回收塔2201塔釜液体经过回收塔塔釜 出料栗2232送入解吸塔2301上端。解吸塔2301采用填料塔,操作压力为0. IMPa (A)。溶液加 热至沸点使碳酸氢钾分解,产生的蒸汽从溶液中汽提出二氧化碳。解吸塔2301塔顶得到二 氧化碳和水的混合气体,气相温度为105°C;送入解吸塔冷凝器2311冷凝后进入解吸塔回流 罐2321,被冷凝下来的水由解吸塔回流栗2331送到所述解吸塔上端,未被冷凝的二氧化碳 从解吸塔回流罐2321气相口排出。解吸塔2301塔釜采出碳酸钾贫液,温度为120°C。所述解 吸塔2301塔釜贫液返回到吸收塔2101吸收剂入口循环使用。所述解吸塔塔釜补充一定量的 水。
[0052] 本实施例中,吸收塔2101塔底二氧化碳的分离回收率多99.99%,塔底氨质量组成 彡 0.03%〇
[0053] 实施例三
[0054] 本发明的实施例三所涉及的分离装置的示意图如附图3所示,本实施例的氨和二 氧化碳分离装置与实施例二相同,本实施例的分离方法与实施例二的区别之处在于:本实 施例要分离的混合气体包含氨和二氧化碳,但不包含可以作为低沸物参与分离反应的组 份,此外,本实施例选用甲酸甲酯作为低沸物。具体来说本实施例的分离方法如下:
[0055] 将氨和二氧化碳的混合气体,送入吸收塔3101塔中下部,所述吸收塔3101采用填 料塔,操作压力为〇. 2MPa (A)。吸收剂与所述混合气体的质量液气比为3:1;所述吸收剂总碱 度为30 % ;所述吸收剂总碱度中碳酸钾质量浓度为24% ;碳酸氢钾质量浓度为8.7 %。所述 吸收剂中添加的二氧化碳吸收助剂质量含量为3%;所述吸收剂转化度为20%。低沸物甲酸 甲酯和吸收剂的质量比为0.15:1。所述吸收塔采用两段吸收。所述吸收剂经贫液循环栗 3332增压后一部分送入解吸塔釜出料冷却器3313冷却至65°C,而后送入吸收塔3101上端进 行第一段吸收,另一部分吸收剂送入所述吸收塔中部进行第二段吸收,所述第一段吸收剂 和第二段吸收剂质量流量比为0.3:1。吸收塔内向上的气相和向下的吸收剂逆流接触,进行 气液传质;上升的甲酸甲酯气相被内置冷凝器冷凝返回塔釜。所述吸收塔3101塔顶得到气 相氨,温度为60°C;吸收塔3101塔釜采出含有甲酸甲酯的碳酸氢钾富液,温度为90°C。
[0056] 吸收塔3101塔底富液经过吸收塔塔釜出料栗3131送入回收塔3201中部。回收塔 3201采用填料塔,操作压力为0.2MPa㈧。回收塔3201塔顶得到甲酸甲酯气相,温度为51°C, 送入回收塔冷凝器3211冷凝后进入回收塔回流罐3221,被冷凝下来的甲酸甲酯一部分作为 回流由回收塔回流栗3231返回塔,一部分作为出料从液相口排出,另一部分甲酸甲酯循环 返回到吸收塔3101中部,随碳酸氢钾富液在吸收塔塔釜采出,甲酸甲酯的存在降低了吸收 塔塔釜温度,防止了碳酸氢钾富液在吸收塔塔釜解吸,并且降低了氨在塔釜的分压,使其从 吸收塔塔顶排出。回收塔3201塔釜采出碳酸氢钾富液,温度为115°C。所述回收塔3201塔釜 液体经过回收塔塔釜出料栗3232送入解吸塔3301上端。解吸塔3301采用填料塔,操作压力 为0. IMPa (A)。溶液加热至沸点使碳酸氢钾分解,产生的蒸汽从溶液中汽提出二氧化碳。解 吸塔3301塔顶得到二氧化碳和水的混合气体,气相温度为105°C;送入解吸塔冷凝器3311冷 凝后进入解吸塔回流罐3321,被冷凝下来的水由解吸塔回流栗3331送到所述解吸塔上端, 未被冷凝的二氧化碳从解吸塔回流罐3321气相口排出。解吸塔3301塔釜采出碳酸钾贫液, 温度为120°C。所述解吸塔3301塔釜贫液返回到吸收塔3101吸收剂入口循环使用。所述解吸 塔塔釜补充一定量的水。
[0057] 本实施例中,吸收塔3101塔底二氧化碳的分离回收率多99.99%,塔底氨质量组成 彡 0.03%〇
[0058] 实施例四
[0059] 本发明的实施例四所涉及的分离装置的示意图如附图4所示,本实施例的氨和二 氧化碳分离装置与实施例二、三大致相同,本实施例的分离方法与实施例二的区别之处在 于:本实施例要分离的混合气体除了包含氨、二氧化碳和甲醇以外,还包含二甲醚,应此需 要将二甲醚连同氨一起从混合气体中分离出来。具体来说本实施例的分离装置和方法如 下:
[0060] 一种氨和二氧化碳分离的装置包括吸收塔4101、吸收塔再沸器4112、吸收塔塔釜 出料栗4131、回收塔4201、回收塔再沸器4212、回收塔冷凝器4211、回收塔回流罐4221、回收 塔回流栗4231、回收塔塔釜出料栗4232、解吸塔4301、解吸塔再沸器4312、解吸塔冷凝器 4311、解吸塔回流罐4321、解吸塔回流栗4331、贫液循环栗4332、解吸塔塔釜出料冷却器 4313ο
[0061] 所述吸收塔中下部设有气相进料口,吸收塔上端和中部分别设有吸收剂入口,吸 收塔中部设有低沸物入口。进料管路与吸收塔气相进料口连接。所述塔顶气相出口与气相 出口管路连接。所述吸收塔4101塔釜液体循环口与吸收塔再沸器4112冷侧入口连接,吸收 塔再沸器4112冷侧出口与塔釜返回口连接。所述吸收塔塔釜富液出口与吸收塔塔釜出料栗 4131入口连接,吸收塔塔釜出料栗4131出口与回收塔进料口连接。回收塔塔顶气相出口与 回收塔冷凝器4211热侧入口连接,回收塔冷凝器4211热侧出口与回收塔回流罐4221入口连 接,回收塔回流罐4221液相出口与回收塔回流栗4231入口连接,回收塔回流栗4231出口分 别与塔回流口、吸收塔中部低沸物入口和液体出料管路连接。所述回收塔4201塔釜液体循 环口与回收塔再沸器4212冷侧入口连接,回收塔再沸器4212冷侧出口与塔釜返回口连接。 所述回收塔塔釜液体出口与回收塔塔釜出料栗4232入口连接,回收塔塔釜出料栗4232出口 分别与解吸塔进料口连接。解吸塔塔顶气相出口与解吸塔冷凝器4311热侧入口连接,解吸 塔冷凝器4311热侧出口与解吸塔回流罐4321入口连接,解吸塔回流罐4321液相出口与解吸 塔回流栗4331入口连接,解吸塔回流栗4331出口与塔回流口连接;解吸塔回流罐4321气相 出口与气相出口管路连接。所述解吸塔4301塔釜液体循环口与解吸塔再沸器4312冷侧入口 连接,解吸塔再沸器4312冷侧出口与塔釜返回口连接。所述解吸塔塔釜贫液出口与贫液循 环栗4332入口连接,贫液循环栗4332出口分别与解吸塔塔釜出料冷却器4313热侧入口和吸 收塔中部吸收剂入口连接,解吸塔塔釜出料冷却器4313热侧出口与吸收塔上端吸收剂入口 连接。所述解吸塔塔釜补充一定量的水。
[0062] 本实施例的分离方法如下:
[0063] 来自尿素醇解法工艺上游的混合气体,质量流量为2000kg/h,质量组成:氨30%、 二氧化碳1 〇 %、甲醇50 %、二甲醚10 %,送入吸收塔4101塔中下部,所述吸收塔4101采用填 料塔,操作压力为〇. 2MPa (A)。吸收剂与所述混合气体的质量液气比为4:1;所述吸收剂总碱 度为40%;所述吸收剂总碱度中碳酸钾质量浓度为30%;碳酸氢钾质量浓度为14.5%。所述 吸收剂中添加的二氧化碳吸收助剂的质量含量为3%;所述吸收剂转化度为25%。低沸物甲 醇和吸收剂的质量比为0.3:1。所述吸收塔采用两段吸收。所述吸收剂经贫液循环栗4332增 压后一部分送入解吸塔塔釜出料冷却器4313冷却至65°C,而后送入吸收塔4101上端进行第 一段吸收,另一部分吸收剂送入所述吸收塔中部进行第二段吸收,所述第一段吸收剂和第 二段吸收剂质量流量比为0.35:1。吸收塔内向上的气相和向下的吸收剂逆流接触,进行气 液传质;上升的甲醇气相被内置冷凝器冷凝返回塔釜。所述吸收塔4101塔顶得到氨和二甲 醚混合气体,气相温度为68°C;气体质量流量为833kg/h,质量组成:氨72%、二甲醚24%、水 4%。吸收塔4101塔釜采出含有甲醇的碳酸氢钾富液,温度为98°C。吸收塔4101塔底富液经 过吸收塔塔釜出料栗4131送入回收塔4201中部。回收塔4201采用填料塔,操作压力为 O-IMPa(A)。回收塔4201塔顶得到甲醇气体,气相温度为64°C;送入回收塔冷凝器4211冷凝 后进入回收塔回流罐4221,被冷凝下来的甲醇由回收塔回流栗4231—部分作为回流送到所 述回收塔上端,一部分作为出料从液相口排出,质量流量为l〇〇〇kg/h,另一部分甲醇循环返 回到吸收塔4101中部,随碳酸氢钾富液在吸收塔塔釜采出,甲醇的存在降低了吸收塔塔釜 温度,防止了碳酸氢钾富液在吸收塔塔釜解吸,并且降低了氨在塔釜的分压,使其从吸收塔 塔顶排出。回收塔4201塔釜采出碳酸氢钾富液温度为110°C。所述回收塔4201塔釜液体经过 回收塔塔釜出料栗4232送入解吸塔4301上端。解吸塔4301采用填料塔,操作压力为0. IMPa (A)。溶液加热至沸点使碳酸氢钾分解,产生的蒸汽从溶液中汽提出二氧化碳。解吸塔4301 塔顶得到二氧化碳和水的混合气体,气相温度为l〇5°C;送入解吸塔冷凝器4311冷凝后进入 解吸塔回流罐4321,被冷凝下来的水由解吸塔回流栗4331送到所述解吸塔上端,未被冷凝 的气体质量流量为200kg/h,质量组成:二氧化碳98%、水2%,从解吸塔回流罐4321气相口 排出。解吸塔4301塔釜采出碳酸钾贫液,温度为120°C。所述解吸塔4301塔釜贫液返回到吸 收塔4101吸收剂入口循环使用。解吸塔塔釜补充水质量流量约为50kg/h。
[0064]本实施例中,吸收塔4101塔底二氧化碳的分离回收率接近99.95%,塔底氨质量组 成彡0.02%〇 [0065] 实施例五
[0066] 本发明的实施例五所涉及的氨和二氧化碳的分离装置的结构示意图如附图5所 示,本实施例中的分离装置与前述实施例的不同之处在于:分离装置的解吸塔采用两段式 解吸,大部分富液初步解吸为半贫液后送入吸收塔中部作为二段吸收的吸收剂,少部分吸 收剂富液进一步解吸为贫液后送入吸收塔上端作为一段吸收的吸收剂,此法使得达到相同 二氧化碳回收率的同时,使得解吸塔的能耗显著降低并减少了贫液的冷却负荷。
[0067] 具体来说,本实施例中的氨和二氧化碳分离的装置包括吸收塔5101、吸收塔再沸 器5112、吸收塔塔釜出料栗5131、回收塔5201、回收塔再沸器5212、回收塔冷凝器5211、回收 塔回流罐5221、回收塔回流栗5231、回收塔塔釜出料栗5232、解吸塔5301、解吸塔再沸器 5312、解吸塔冷凝器5311、解吸塔回流罐5321、解吸塔回流栗5331、贫液循环栗5332、半贫液 循环栗5333、解吸塔塔釜出料冷却器5313。
[0068] 所述吸收塔5101中下部设有气相进料口,吸收塔5101上端和中部分别设有吸收剂 入口,吸收塔5101中部设有低沸物入口。进料管路与吸收塔气相进料口连接。所述塔顶气相 出口与气相出口管路连接。所述吸收塔5101塔釜液体循环口与吸收塔再沸器5112冷侧入口 连接,吸收塔再沸器5112冷侧出口与塔釜返回口连接。所述吸收塔塔釜富液出口与吸收塔 塔釜出料栗5131入口连接,吸收塔塔釜出料栗5131出口与回收塔进料口连接。回收塔塔顶 气相出口与回收塔冷凝器5211热侧入口连接,回收塔冷凝器5211热侧出口与回收塔回流罐 5221入口连接,回收塔回流罐5221液相出口与回收塔回流栗5231入口连接,回收塔回流栗 5231出口分别与塔回流口、吸收塔中部低沸物入口和液体出料管路连接。所述回收塔5201 塔釜液体循环口与回收塔再沸器5212冷侧入口连接,回收塔再沸器5212冷侧出口与塔釜返 回口连接。所述回收塔塔釜出料口与回收塔塔釜出料栗5232入口连接,回收塔塔釜出料栗 5232出口与解吸塔进料口连接。解吸塔塔顶气相出口与解吸塔冷凝器5311热侧入口连接, 解吸塔冷凝器5311热侧出口与解吸塔回流罐5321入口连接,解吸塔回流罐5321液相出口与 解吸塔回流栗5331入口连接,解吸塔回流栗5331出口与塔回流口连接;解吸塔回流罐5321 气相出口与气相出口管路连接。所述解吸塔5301塔釜液体循环口与解吸塔再沸器5312冷侧 入口连接,解吸塔再沸器5312冷侧出口与塔釜返回口连接。所述解吸塔塔釜贫液出口与贫 液循环栗5332入口连接,贫液循环栗5332出口与解吸塔塔釜出料冷却器5313热侧入口连 接,解吸塔塔釜出料冷却器5313热侧出口与吸收塔上端吸收剂贫液入口连接;所述解吸塔 中部半贫液出口与半贫液循环栗5333入口连接,半贫液循环栗5333出口与吸收塔中部半贫 液吸收剂入口连接。所述解吸塔塔釜补充一定量的水。
[0069] 本实施例的分离方法如下:
[0070] 来自尿素醇解法工艺上游的混合气体,质量流量为21ton/h,质量组成:氨20%、二 氧化碳10 %、甲醇60 %、二甲醚10 %,送入吸收塔5101塔中下部,所述吸收塔5101采用填料 塔,操作压力为0.8MPa (A)。吸收剂与所述混合气体的质量液气比为4:1;所述吸收剂总碱度 为35% ;所述贫液吸收剂中碳酸钾质量浓度为26%,碳酸氢钾质量浓度为13% ;所述半贫液 吸收剂中碳酸钾质量浓度为21%,碳酸氢钾质量浓度为20%。所述吸收剂中添加的二氧化 碳吸收助剂的质量含量为2%。所述吸收塔采用两段吸收、所述解吸塔采用两段解吸;所述 吸收剂半贫液转化度为40%,贫液转化度为26%。低沸物甲醇和吸收剂的质量比为0.16:1。 所述贫液经贫液循环栗5332增压后送入解吸塔塔釜出料冷却器5313冷却至70°C,而后送入 吸收塔5101上端进行吸收,所述半贫液经半贫液循环栗5333增压后送入所述吸收塔中部进 行吸收,所述贫液和半贫液吸收剂质量流量比为〇. 4:1。吸收塔内向上的气相和向下的吸收 剂逆流接触,进行气液传质;上升的甲醇气相被内置冷凝器冷凝返回塔釜。所述吸收塔5101 塔顶得到氨和二甲醚混合气体,气相温度为90°C;质量流量为7.12ton/h,质量组成:氨 57 %、二甲醚30 %、水13 %,吸收塔5101塔釜采出含甲醇的碳酸氢钾富液,温度为160°C。
[0071] 吸收塔5101塔底富液经过吸收塔塔釜出料栗5131送入回收塔5201中部。回收塔 5201采用填料塔,操作压力为0.4MPa (A)。回收塔5201塔顶得到甲醇气体,气相温度为104 °C;送入回收塔冷凝器5211冷凝后进入回收塔回流罐5221,被冷凝下来的甲醇由回收塔回 流栗5231—部分作为回流送到所述回收塔上端,一部分作为出料从液相口排出,质量流量 为12.6ton/h,另一部分甲醇循环返回到吸收塔5101中部,随碳酸氢钾富液在吸收塔塔釜采 出,甲醇的存在降低了吸收塔塔釜温度,防止了碳酸氢钾富液在吸收塔塔釜解吸,并且降低 了氨在塔釜的分压,使其从吸收塔塔顶排出。回收塔5201塔釜采出碳酸氢钾富液温度为145 °C。所述回收塔5201塔釜液体经过回收塔塔釜出料栗5232送入解吸塔5301上端。解吸塔 5301采用填料塔,操作压力为0.7MPa㈧。溶液加热至沸点使碳酸氢钾分解,产生的蒸汽从 溶液中汽提出二氧化碳。解吸塔5301塔顶得到二氧化碳和水的混合气体,气相温度为130 °C;送入解吸塔冷凝器5311冷凝后进入解吸塔回流罐5321,被冷凝下来的水由解吸塔回流 栗5331送到所述解吸塔上端,未被冷凝的气体质量流量为2. lton/h,质量组成:二氧化碳 99%、水1 %,从解吸塔回流罐5321气相口排出。由所述解吸塔5301中部采出半贫液,温度为 140 °C、转化度约为40%,经半贫液循环栗5333增压后送到吸收塔5101中部吸收剂入口循环 使用;由所述解吸塔5301塔釜采出碳酸钾贫液,温度为162°C、转化度约为26%,先后经贫液 循环栗5332增压、解吸塔塔釜出料冷却器5313冷却至80°C后送到吸收塔5101上端吸收剂入 口循环使用。解吸塔塔釜补充水质量流量为900kg/h。
[0072] 本实施例中,吸收塔5101塔底二氧化碳的分离回收率接近99.98%,塔底氨质量组 成彡0.01%。
[0073] 本领域的普通技术人员可以理解,上述各实施方式是实现本发明的具体实施例, 而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。

Claims (10)

1. 一种氨和二氧化碳的分离装置,其特征在于,依次包括吸收塔、回收塔和解吸塔;所 述吸收塔、回收塔和解吸塔的塔釜分别设有再沸器,且: 所述吸收塔设有气相进料口、吸收剂入口、低沸物入口、富液出口和气相出口,所述吸 收塔的富液出口连接回收塔的进料口; 所述回收塔设有进料口、液体出口、气相出口和回流口,所述回收塔的气相出口连接冷 凝回流装置,且所述冷凝回流装置的回流液出口同时与回收塔的回流口、吸收塔的低沸物 入口以及液体出料管路相连,所述回收塔的液体出口连接解吸塔的进料口; 所述解吸塔设有进料口、贫液出口、气相出口和回流口,所述解吸塔的气相出口连接冷 凝回流装置,所述冷凝回流装置的回流液出口与解吸塔的回流口相连、所述冷凝回流装置 的气体出口与气相出口管路相连,所述解吸塔的贫液出口连接所述吸收塔的吸收剂入口; 所述吸收塔的吸收剂入口有两个,所述两个吸收剂入口分别设于吸收塔的上部和中 部,所述解吸塔的贫液出口设于解吸塔的下部且同时与所述吸收塔的两个吸收剂入口相 连。
2. 根据权利要求1所述的氨和二氧化碳的分离装置,其特征在于,所述吸收塔内还设有 冷凝器。
3. 根据权利要求1所述的氨和二氧化碳的分离装置,其特征在于,所述设于吸收塔塔釜 的再沸器采用蒸汽加热调控所述吸收塔塔釜的温度。
4. 根据权利要求3所述的氨和二氧化碳的分离装置,其特征在于,所述解吸塔还设有半 贫液出口。
5. 根据权利要求4所述的氨和二氧化碳的分离装置,其特征在于,所述解吸塔的贫液出 口设于解吸塔的下部、与设于吸收塔的上部的吸收剂入口相连;所述解吸塔的半贫液出口 设于解吸塔的中部、与设于吸收塔的中部的吸收剂入口相连。
6. 根据权利要求1所述的氨和二氧化碳的分离装置,其特征在于,所述解吸塔的下部设 有补水口。
7. 根据权利要求1所述的氨和二氧化碳的分离装置,其特征在于,所述吸收塔、回收塔 和解吸塔的塔釜均设有釜液循环出口和釜液循环进口, 所述吸收塔的釜液循环出口与吸收塔再沸器的冷侧进口连接,所述吸收塔的釜液循环 进口与吸收塔再沸器的冷侧出口连接; 所述回收塔的釜液循环出口与回收塔再沸器的冷侧进口连接,所述回收塔的釜液循环 进口与回收塔再沸器的冷侧出口连接; 所述解吸塔的釜液循环出口与解吸塔再沸器的冷侧进口连接,所述解吸塔的釜液循环 进口与解吸塔再沸器的冷侧出口连接。
8. 根据权利要求1所述的氨和二氧化碳的分离装置,其特征在于,所述连接于回收塔的 气相出口的冷凝回流装置依次包括回收塔冷凝器、回收塔回流罐和回收塔回流栗;所述连 接于解吸塔的气相出口的冷凝回流装置依次包括解吸塔冷凝器、解吸塔回流罐和解吸塔回 流栗。
9. 根据权利要求1所述的氨和二氧化碳的分离装置,其特征在于,所述吸收塔的富液出 口与所述回收塔的进料口之间设有吸收塔塔釜出料栗;所述回收塔的液体出口与所述解吸 塔的进料口之间设有回收塔塔釜出料栗;所述解吸塔的贫液出口与所述吸收塔的吸收剂入 口之间设有贫液循环栗和出料冷却器。
10.根据权利要求1至9中任一项所述的氨和二氧化碳的分离装置,其特征在于,所述吸 收塔、回收塔和解吸塔分别为填料塔或板式塔。
CN201410855247.1A 2014-12-26 2014-12-26 一种氨和二氧化碳的分离装置 Active CN105771589B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410855247.1A CN105771589B (zh) 2014-12-26 2014-12-26 一种氨和二氧化碳的分离装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410855247.1A CN105771589B (zh) 2014-12-26 2014-12-26 一种氨和二氧化碳的分离装置

Publications (2)

Publication Number Publication Date
CN105771589A CN105771589A (zh) 2016-07-20
CN105771589B true CN105771589B (zh) 2018-10-30

Family

ID=56389206

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410855247.1A Active CN105771589B (zh) 2014-12-26 2014-12-26 一种氨和二氧化碳的分离装置

Country Status (1)

Country Link
CN (1) CN105771589B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108970359A (zh) * 2018-06-28 2018-12-11 山东师范大学 一种利用碳酸钾溶液捕集烟道尾气中二氧化碳的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8764892B2 (en) * 2008-11-04 2014-07-01 Alstom Technology Ltd Reabsorber for ammonia stripper offgas
CN104129802A (zh) * 2014-08-06 2014-11-05 中国成达工程有限公司 一种分离含nh3和co2混合气的装置及其分离工艺
CN104142043A (zh) * 2014-08-06 2014-11-12 中国成达工程有限公司 一种氨碳分离装置及其分离工艺

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8764892B2 (en) * 2008-11-04 2014-07-01 Alstom Technology Ltd Reabsorber for ammonia stripper offgas
CN104129802A (zh) * 2014-08-06 2014-11-05 中国成达工程有限公司 一种分离含nh3和co2混合气的装置及其分离工艺
CN104142043A (zh) * 2014-08-06 2014-11-12 中国成达工程有限公司 一种氨碳分离装置及其分离工艺

Also Published As

Publication number Publication date
CN105771589A (zh) 2016-07-20

Similar Documents

Publication Publication Date Title
CN101293812B (zh) 含甲烷合成气联产甲醇和天然气技术
CN103570588A (zh) 一种尿素合成装置及合成方法
CN101862577A (zh) 一种三聚氰胺尾气回收的方法
CN113274755B (zh) 一种碘硫循环中硫酸相热分解制备氧气的工艺与装置
CN103435517A (zh) 一种二氧化碳汽提尿素的增产节能技术及其设备
CN104829494B (zh) 一种节能型尿素生产系统及其生产工艺
CN114634160B (zh) 一种热化学锌硫碘循环耦合甲烷制氢全流程方法与装置
CN101624355B (zh) 一种低水碳比-三段吸收-蒸发式氨冷的尿素生产中压回收工艺
AU2020372526A1 (en) Gas-liquid bubbling bed reactor, reaction system and method for synthesizing carbonate
CN103588615B (zh) 一种回收四氯乙烯的装置及工艺
CN101121709B (zh) 三聚甲醛合成后的初步提浓、净化的方法
CN105026365B (zh) 尿素合成方法和设备
CN105771589B (zh) 一种氨和二氧化碳的分离装置
CN101830807B (zh) 亚硝酸烷基酯的合成装置及工艺
CN109929638A (zh) 一种集水合物法与醇胺法于一体联合脱除天然气中酸气的方法和装置
CN101985349A (zh) 一种制取贫氘水的生产方法
CN102796055A (zh) 一种优化的三聚氰胺与尿素联产的方法
CN105771551B (zh) 一种氨和二氧化碳的分离方法
CN106000000B (zh) 一种合成氨脱碳吸收塔底富液的多级闪蒸解析分离装置及方法
CN112028089A (zh) 一种硝酸铵的生产装置和方法
CN104326866A (zh) 一种乙炔和二氯乙烷催化重整生产氯乙烯工艺
CN1100412A (zh) 新汽提循环法尿素生产工艺及其装置
CN201525815U (zh) 水溶液全循环法制备尿素的装置
CN211863899U (zh) 一种改进型三塔三效的粗甲醇精制工艺系统
CN110218147A (zh) 利用环己酮氨肟化反应热的叔丁醇回收方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant