WO2023155330A1 - 制冷系统及制冷设备 - Google Patents

制冷系统及制冷设备 Download PDF

Info

Publication number
WO2023155330A1
WO2023155330A1 PCT/CN2022/095995 CN2022095995W WO2023155330A1 WO 2023155330 A1 WO2023155330 A1 WO 2023155330A1 CN 2022095995 W CN2022095995 W CN 2022095995W WO 2023155330 A1 WO2023155330 A1 WO 2023155330A1
Authority
WO
WIPO (PCT)
Prior art keywords
branch
suction hole
evaporator
suction
compressor
Prior art date
Application number
PCT/CN2022/095995
Other languages
English (en)
French (fr)
Inventor
张洋洋
晏子涵
汪坤
李娟�
马涛
黄刚
Original Assignee
安徽美芝制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210155536.5A external-priority patent/CN116164433A/zh
Priority claimed from CN202220372515.4U external-priority patent/CN216814667U/zh
Application filed by 安徽美芝制冷设备有限公司 filed Critical 安徽美芝制冷设备有限公司
Publication of WO2023155330A1 publication Critical patent/WO2023155330A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/02Compressor arrangements of motor-compressor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel

Definitions

  • the present application relates to the technical field of refrigeration systems, in particular to refrigeration systems and refrigeration equipment.
  • the main purpose of this application is to propose a refrigeration system and refrigeration equipment.
  • the refrigeration system with double suction compressors and double evaporators can meet the needs of more functions and higher performance.
  • the application proposes a refrigeration system, including a circulation loop, the circulation loop includes a main flow, and a first branch and a second branch connected to the main flow and arranged in parallel, the main flow A condenser and a compressor are provided, the output end of the condenser communicates with one end of the first branch circuit and the second branch circuit, the compressor has two suction holes, and the two suction holes of the compressor The two suction holes correspond to communicate with the other ends of the first branch and the second branch, and the first evaporator and the second evaporator are correspondingly arranged on the first branch and the second branch.
  • the compressor includes:
  • the cylinder body includes a working chamber opened inside, the bottom of the working chamber is provided with a first suction hole, and the side wall is provided with a second suction hole, the first suction hole and the second suction hole air holes communicate with the first branch and the second branch respectively; and,
  • the piston assembly includes a piston movably arranged in the working chamber, and the piston has a first dead center at the bottom of the working chamber and a second dead center away from the bottom of the working chamber during a moving stroke.
  • the distance between the second suction hole and the first dead point is L, and the distance between the first dead point and the second dead point is S, wherein, 0.5S ⁇ L.
  • the suction pressure of the first suction hole is lower than the suction pressure of the second suction hole
  • the temperature of the first evaporator is lower than the temperature of the second evaporator.
  • the temperature of the second evaporator is T1
  • the temperature of the first evaporator is T2 wherein, 0 ⁇ T1-T2 ⁇ 25°C.
  • the refrigerating system further includes at least one diverter valve, and the diverter valve is arranged at the junction of the first branch, the second branch and the main flow; or,
  • a control valve is provided on the first branch and/or the second branch.
  • the refrigeration system further includes two throttling elements respectively arranged on the first branch and the second branch, one of the throttling elements is located in the corresponding condenser Between the first evaporator, another throttling element is located between the corresponding condenser and the second evaporator.
  • each of the throttling elements is a capillary or an expansion valve.
  • the present application also proposes a refrigerating device, including the above-mentioned refrigerating system, the refrigerating system includes a circulation circuit, and the circulation circuit includes a main flow path and a first branch circuit and a second branch circuit connected to the main flow path and arranged in parallel.
  • a condenser and a compressor are arranged on the main flow, the output end of the condenser communicates with one end of the first branch and the second branch, and the compressor has two suction holes, The two suction holes of the compressor correspond to communicate with the other ends of the first branch and the second branch, and the first evaporator is correspondingly arranged on the first branch and the second branch and a second evaporator.
  • the refrigeration device is a refrigerator.
  • the first evaporator and the second evaporator can be independent of each other, and the overall efficiency of the refrigeration system is higher.
  • the first branch and the second branch can communicate with the first evaporator and the second evaporator at the same time under the double-suction structure of the compressor, so that the two evaporators work at the same time, increasing Compared with the existing single-suction single-row compressor and series-parallel double evaporator refrigeration system, the refrigeration capacity of the system has greater refrigeration capacity and higher refrigeration performance, which can better meet future technical needs.
  • Fig. 1 is the schematic diagram of an embodiment of the refrigeration system provided by the application.
  • Fig. 2 is the schematic diagram of another embodiment of the refrigeration system in Fig. 1;
  • Fig. 3 is a schematic diagram of another embodiment of the refrigeration system in Fig. 1;
  • Fig. 4 is a schematic diagram of the internal structure of an embodiment of the compressor in Fig. 1;
  • FIG. 5 is a schematic partial cross-sectional view of the compressor in FIG. 4 .
  • the directional indication is only used to explain the relative positional relationship, movement conditions, etc. between the components in a specific posture. If the specific posture changes , then the directional indication changes accordingly.
  • the present application provides a refrigerating system and refrigerating equipment.
  • the refrigerating system with double suction compressors and double evaporators can meet the needs of more functions and higher performance.
  • Fig. 1 to Fig. 5 are the embodiments of the refrigeration system provided by the present application.
  • the refrigeration system 100 includes a circulation circuit, the circulation circuit includes a main flow 21 and a first branch 22 and a second branch 23 connected to the main flow 21 and arranged in parallel.
  • the main flow 21 is provided with a condenser 3 and a compressor 1, the output end of the condenser 3 communicates with one end of the first branch 22 and the second branch 23, and the compressor 1 has two suction hole, the two suction holes of the compressor 1 correspond to the other ends of the first branch 22 and the second branch 23, and the first branch 22 and the second branch A first evaporator 41 and a second evaporator 42 are correspondingly arranged on the road 23 .
  • the first evaporator 41 and the second evaporator 42 can be independent of each other, and the overall efficiency of the refrigeration system 100 is higher Specifically, the first branch 22 and the second branch 23 can communicate with the first evaporator 41 and the second evaporator 42 at the same time under the double suction structure of the compressor 1, Two first evaporators 41 and second evaporators 42 with different temperatures work at the same time to increase the cooling capacity of the system. Large cooling capacity and higher cooling performance can better meet the technical needs of the future.
  • the compressor 1 provided by the present application includes a cylinder body and a piston assembly, and the cylinder body includes a working chamber 11 opened inside it, so The bottom of the working chamber 11 is provided with a first suction hole 1a, and the side wall is provided with a second suction hole 1b, and the first suction hole 1a and the second suction hole 1b are respectively connected with the first suction hole 1b.
  • the branch 22 communicates with the second branch 23, the piston assembly includes a piston 12 movably arranged in the working chamber 11, and the piston 12 has a first dead point and a second dead point away from the bottom of the working chamber 11 .
  • the working chamber 11 communicates with the first suction hole 1a and the second suction hole 1b at the same time, so as to be able to pass through the first suction hole 1a and the second suction hole 1a.
  • the first branch 22 and the second branch 23 connected to the suction hole 1b simultaneously supply air to the working chamber 11, which increases the suction volume of the working chamber 11, thereby increasing the compression
  • the first suction hole 1a and the second suction hole 1b are respectively connected to two parallel flow paths to realize respective working conditions and reduce power consumption.
  • the compressor 1 has the advantages of simple structure, lower cost, higher performance and better practicability.
  • the compressor 1 is a double-suction compressor. Due to the positions of the first suction hole 1a and the second suction hole 1b in the working chamber 11, the first suction hole 1a The suction pressure is lower than the suction pressure of the second suction hole 1b, so that the first suction hole 1a communicates with the external pipeline to form a first suction channel with a lower airflow pressure, and the second suction hole The air hole 1b communicates with the external pipeline to form a second suction air passage with a higher air pressure, which can effectively improve the energy efficiency of the refrigeration system 100 and reduce power consumption.
  • the first evaporator 41 and the second evaporator 42 correspond to different cold rooms in the refrigeration equipment, and are used for keeping fresh or refrigerated food separately. Therefore, considering the different evaporation temperatures of different evaporators, The temperature of the first evaporator 41 connected to the first air intake passage with a lower airflow pressure should be lower, and the temperature of the second evaporator 42 connected with the second air intake passage with a higher airflow pressure should be lower. for higher temperature.
  • the temperature difference requirements between the first evaporator 41 and the second evaporator 42 are as follows: the temperature of the second evaporator 42 is T1, and the temperature of the first evaporator 41 is T2, wherein, 0 ⁇ T1-T2 ⁇ 25°C.
  • first evaporator 41 in this application is a refrigeration evaporator
  • second evaporator 42 is a refrigeration evaporator.
  • -15°C ⁇ T1 ⁇ 0°C, -30°C ⁇ T2 ⁇ -15°C, and 10 ⁇ T1-T2 ⁇ 20°C this is because the cooling requirements of the cold room corresponding to the refrigeration evaporator and the freezing evaporator are different, so they have different temperature settings.
  • the piston assembly further includes a crankshaft and a connecting rod, the crankshaft is in transmission connection with one end of the connecting rod, and the end of the connecting rod far away from the crankshaft is in transmission with the piston 12 connect. Therefore, the crankshaft drives the connecting rod to move under the drive of the motor, and then drives the piston 12 to reciprocate in the working chamber 11 to complete the action of sucking in airflow and compressing airflow.
  • the high-temperature and high-pressure refrigerant gas is transported from the compressor to the evaporator of the corresponding freezer and refrigerator for evaporation and heat absorption to realize the refrigeration of the freezer and refrigerator, but the refrigeration
  • the temperature set in the room and the refrigerating room is different, the evaporation temperature of the two is different, and the temperature and pressure of the refrigerant after heat exchange between the freezing room and the refrigerating room are different.
  • the first evaporator 41 and the second evaporator 41 in this embodiment corresponds to the freezing chamber and the refrigerating chamber respectively, and in the prior art, the compressor realizes the refrigeration function of freezing and refrigerating through one flow path, so that when the freezing chamber or the refrigerating chamber needs to be refrigerated, the entire heat exchange The system needs to participate in the work, which makes the energy consumption larger and the energy efficiency lower.
  • the distance between the second suction hole 1b and the first dead point is L
  • the distance between the first dead point and the second dead point is S
  • 0.5S ⁇ L the opening and closing states of the first suction hole 1a and the second suction hole 1b are as follows:
  • the suction stroke of the compressor 1 includes:
  • First stroke the piston 12 moves from the first dead center to the second dead center, and the distance from the first dead center is less than 0.5S.
  • the control valve group is opened, so that the first suction hole 1 a is connected, and the second suction hole 1 b is blocked by the piston 12 .
  • the working chamber 11 only realizes suction through the first suction hole 1a, and at this time, the total amount of refrigerant in the working chamber 11 comes from the refrigerant in the first suction hole 1a.
  • Second stroke when the piston 12 moves from the first dead center to the second dead center, and the distance from the first dead center is greater than 0.5S.
  • the piston 12 does not block the second suction hole 1 b, so that the second suction hole 1 b communicates with the working chamber 11 .
  • the control valve group is switched between an open state and a closed state according to actual requirements.
  • the control valve group is in an open state, the first suction hole 1a and the second suction hole 1b input airflow to the working chamber 11 at the same time. Because in the first stroke, a certain amount of airflow is sucked into the space of the working chamber 11 through the first suction hole 1a, so that there is a certain airflow pressure in the compression space.
  • the air flow in the first air suction hole 1 a is less affected.
  • the distance from the second suction hole 1b to the first dead center is greater than 0.5S, that is, the distance to the first suction hole 1a is greater than 0.5S, there is an appropriate buffer distance between the two , the influence of the airflow of the second suction hole 1b on the airflow of the first suction hole 1a is reduced, and the energy efficiency of compression is improved.
  • the control valve group is in a closed state, the second suction hole 1b supplies airflow to the working chamber 11 . At this time, the refrigerant supplemented into the working chamber 11 comes from the second suction hole 1b.
  • the high-pressure refrigerant provided by the corresponding flow path has a long time and a large amount of supplementary air; when the second suction hole 1b is closer to the second dead point, the second suction hole 1b opens later and closes earlier , the high-pressure refrigerant provided by the corresponding flow rate is short, and the air replenishment time is short, so the amount of air replenishment is also small.
  • the position of the second inhalation hole 1b can be set according to the requirement of the amount of supplementary air.
  • the compression stroke of the compressor 1 includes:
  • the third stroke the piston 12 moves from the second dead center to the direction close to the first dead center, and the distance from the first dead center is greater than 0.5S.
  • the control valve group is closed, and the piston 12 moves rapidly toward the first dead center.
  • the second suction hole 1n is still inputting airflow to the working chamber 11, and the refrigerant supplemented into the working chamber 11 comes from the second suction hole 1b. Therefore, in the third stroke , when the airflow in the working chamber 11 is compressed, the airflow input into the working chamber 11 through the second suction hole 1b will not be excessively hindered, so that the compressor 1 is still compressed during the compression stroke. Breathable airflow.
  • the pressure of the airflow in the working chamber 11 is lower than that through the second suction hole. air pressure inside.
  • the piston 12 moves from the second dead center to the direction close to the first dead center, and the distance from the first dead center is less than 0.5S.
  • the control valve group is still closed, and the piston 12 blocks the second suction hole 1b.
  • the piston 12 compresses the airflow in the working chamber 11 into a high-pressure airflow.
  • the airflow pressure in the working chamber 11 is compressed to a certain position.
  • the control valve group connected to the output pipeline of the working chamber 11 is switched from the closed state to the open state, so as to output the compressed high-pressure air flow.
  • the compressor 1 includes a housing, a first outer suction pipe 210 , a second outer suction pipe 220 , and a second inner suction pipe connected to the second outer suction pipe 220 .
  • Tube 13 the first suction outer tube 210 and the second suction outer tube 220 are arranged outside the housing, and the second suction inner tube 13 is arranged inside the housing, specifically the The first outer suction tube 210 and the second outer suction tube 220 are used to connect to the first suction hole 1a and the second suction hole 1b.
  • the compressor 1 is arranged in the inner cavity of the housing, wherein the second suction inner pipe 13 is connected to one end of the second suction outer pipe 220 provided on the housing to form a
  • the second inspiratory channel, the first inspiratory outer tube 210 corresponds to form the first inspiratory channel.
  • the flow path of the air flow in the first suction flow path is: the first refrigeration flow path ⁇ the first suction hole 1a ⁇ the working chamber 11 .
  • the air flow path in the second suction flow path is: the second refrigeration flow path ⁇ the second suction hole 1 b ⁇ the working chamber 11 .
  • the compressor 1 also includes an inner exhaust pipe 14 communicating with the working chamber 11 , the inner exhaust pipe 14 communicates with the exhaust outer pipe 230 of the compressor 1 to connect the inner exhaust pipe 14 of the working chamber 11
  • the compressed high-pressure air is discharged from the inner exhaust pipe 14 to the outer exhaust pipe 230 .
  • the first refrigeration flow path corresponds to the freezer compartment of the refrigerator. Because the freezer compartment requires a large amount of cooling and requires a large amount of refrigerant, the pressure of the refrigerant consumed in the work process
  • the second refrigerating flow path corresponds to the refrigerating compartment of the refrigerator. Since the refrigerating capacity required by the refrigerating compartment is relatively small, the pressure of the refrigerant consumed by it is also relatively small. The pressure in the hole 1a is much lower than the pressure in the second suction hole 1b, but the amount of refrigerant in the first refrigeration flow path is relatively large, so that when the compressor 1 is working, the piston 12 first sucks in air.
  • the first suction hole 1a is mainly opened for main suction, which can suck in a relatively large amount of refrigerant on the refrigeration flow path corresponding to the freezer.
  • all The second suction hole 1b communicates with the working chamber 11, the first suction hole 1a is closed, and the second suction hole 1b starts to replenish high-pressure refrigerant gas, and continues to replenish gas in the first half of the stroke of the compression stage , and finally in the second half of the compression stroke, the second suction hole 1b is closed, and the piston 12 compresses the refrigerant in the working chamber 11.
  • the piston By setting the distance from the second suction hole 1b to the The distance between the first dead center and the second dead center can control the intake air volume of the second suction hole 1b, that is, due to the position setting of the second suction hole 1b, the piston can be 12 during the reciprocating movement, to adjust the opening and closing time of the second suction hole 1b, so as to realize the adjustment of the flow ratio of the first suction hole 1a and the second suction hole 1b.
  • the compressor 1 does not need to be specially provided with a control valve group to control the second suction hole 1b.
  • the opening and closing of the air hole 1b, but the automatic opening and closing of the second air suction hole 1b can be realized during the movable stroke of the piston 12, the structural design is ingenious, and the cost is also saved.
  • the distance between the first dead point and the second dead point is S. That is, the first dead point refers to that when the end surface of the piston 12 near the bottom of the working chamber 11 moves to the closest distance to the bottom wall of the cylinder, the piston 12 is close to the cylinder. Where one end of the bottom wall is located.
  • the second dead point means that when the end surface of the piston 12 close to the bottom wall of the cylinder moves to the farthest distance away from the bottom of the working chamber 11, the piston 12 close to the cylinder Where one end of the bottom wall is located. That is, the distance S is the distance between the two limit states of the end surface of the end of the piston 12 close to the bottom wall of the cylinder.
  • the distance between the second suction hole 1b and the first dead point is L, that is, the distance between the center line of the second suction hole 1b and the first dead point is L.
  • a shock-absorbing pipe section can be designed on the second air-absorbing inner pipe 13, and the inner wall surface of the shock-absorbing pipe section is provided with a concave-convex structure in the length direction of the second air-absorbing inner pipe 13.
  • a concavo-convex structure is arranged in the second suction pipe, which can make the sound waves generated by the high-pressure gas passing through the second suction inner pipe 13 change abruptly in the section of the pipeline in the conveying direction, and can be reflected by the concavo-convex structure, so that part of the sound waves propagating forward The sound wave returns to the original point and travels back again, at this point it meets the second forward sound wave that has not been reflected, and the two are equal in amplitude and odd multiples of 180 degrees in phase, so that Interfere with each other and cancel each other, so as to achieve the effect of shock absorption and noise reduction.
  • the throttling element is one of the basic components in the compression refrigeration system. Its function is to decompress the high-pressure refrigerant liquid from the condenser 3 into a low-pressure low-temperature refrigerant, and enter the evaporator to evaporate and absorb heat.
  • the refrigeration system 100 further includes two throttling elements 7 respectively arranged on the first branch circuit 22 and the second branch circuit 23, one of the throttling elements 7 is in a corresponding Between the condenser 3 and the first evaporator 41, the other throttling element 7 is between the corresponding condenser 3 and the second evaporator 42, so as to realize its function, It should be noted that the present application does not limit the specific types of the two throttling elements 7 , and the two throttle elements 7 can be set the same or have different designs.
  • the diverter valve 5 is also called a speed synchronous valve, which is a diverter valve 5, a collecting valve, a one-way diverter valve 5, A general term for one-way collecting valve and proportional splitting valve 5. It has many advantages such as simple structure, low cost, easy manufacture, strong reliability, etc., and has been widely used in hydraulic systems.
  • the design of the diverter valve 5 can make the flow velocity of the liquid in the first branch 22 and the second branch 23 divided by the main flow path 21 be synchronous, and at the same time, the diverter valve 5 can make it One branch is closed, so that the connection and blocking of the first branch 22 and the second branch 23 are controlled according to the actual working state.
  • the second branch 23 is provided with a control valve 6.
  • the first branch 22 is in a normally connected state
  • the second branch 23 is in the Under the control of the control valve 6, it can be selectively connected or closed, so as to realize different working states.
  • the control valve 6 can also be set on the first branch 22 alone, or the control valve 6 can be set on both the first branch 22 and the second branch 23, so as to realize the control of each branch. auto-on and auto-off,
  • the structure of the refrigeration system 100 in this embodiment is as follows:
  • the main flow 21 is provided with a double suction reciprocating compressor and a condenser 3, and the first branch 22 and the second branch 23 are respectively provided with a freezing evaporator and a refrigerating evaporator, correspondingly connected to the two The first suction hole 1a and the second suction hole 1b of the suction reciprocating compressor, wherein the first suction hole 1a and the second suction hole 1b communicate with the first suction outer pipe 210 and the independent first suction hole 1b.
  • the second suction outer pipe 220, and the suction pressure of the second suction hole 1b is greater than the suction pressure of the first suction hole 1a, between the condenser 3 and the first evaporator 41
  • a throttling element 7 on the first branch 22 is provided, and a throttling element 7 on the second branch 23 is provided between the condenser 3 and the second evaporator 42 , the junction of the first branch 22, the second branch 23 and the main flow 21 is provided with the diverter valve 5, so that the refrigeration system 100 has different working states, through the double suction
  • the reciprocating compressor forms two suction channels with different suction pressures and are independent of each other, so that the refrigeration evaporator and the refrigeration evaporator are independent of each other and have different evaporation temperatures.
  • the refrigeration evaporation temperature is improved, and the refrigeration system
  • the overall efficiency is higher, with larger cooling capacity and higher cooling performance, which can better meet future technical requirements, and the double-suction reciprocating compressor and refrigeration system 100 are relatively simple and low-cost, and have better practicability.
  • the first branch 22 and the second branch 23 correspond to the refrigerating flow path and the refrigerating flow path respectively, that is, the high-temperature and high-pressure refrigerant formed by the compression of the compressor 1 can be reasonably
  • the high-temperature and high-pressure refrigerant formed by the compression of the compressor 1 passes through the first evaporator 41 corresponding to the freezing chamber, and its temperature is relatively low when it returns to the compressor 1 , and the pressure is low
  • the high-temperature and high-pressure refrigerant formed by the compression of the compressor 1 passes through the second evaporator 42 corresponding to the refrigerating room, and when it returns to the compressor 1, the temperature is relatively high and the pressure is relatively high .
  • the working cavity 11 of the cylinder body is connected to the first suction hole 1a and the second suction hole 1b at the same time, so as to be able to pass through the first suction flow channel corresponding to the first suction hole 1a, so
  • the second suction flow path corresponding to the second suction hole 1b so that the relatively low temperature and low pressure refrigerant returned from the freezer is delivered to the cylinder of the compressor 1 through the first suction hole 1a
  • the relatively high temperature and high pressure refrigerant that returns to the refrigerator compartment is delivered to the compressor 1 through the second suction hole 1b, so that the refrigerant delivered to the first suction hole 1a in the cylinder body
  • the second suction hole 1b can supply air to the working chamber 11, thereby increasing the suction capacity of the working chamber 11 of the cylinder body, and further improving the compression energy efficiency of the compressor 1 .
  • the present application also provides a refrigeration device, including the above-mentioned refrigeration system 100.
  • the refrigeration device includes all the technical features of the above-mentioned refrigeration system 100, therefore, it also has the technical effects brought by all the above-mentioned technical features, and will not repeat it here. A repeat.
  • the refrigerating device may be a refrigerator, a freezer, a freezer, etc., and there is no limitation here. In this embodiment, the refrigerating device is a refrigerator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)

Abstract

一种制冷系统(100)及制冷设备,所述制冷系统(100)包括循环回路,所述循环回路包括主流路(21)以及与所述主流路(21)连接的且并联设置的第一支路(22)和第二支路(23),所述主流路(21)上设置有冷凝器(3)和压缩机(1),所述冷凝器(3)的输出端与所述第一支路(22)和所述第二支路(23)的一端连通,所述压缩机(1)具有两个吸气孔(1a,1b),所述压缩机(1)的两个吸气孔(1a,1b)对应与所述第一支路(22)和所述第二支路(23)的另一端连通,所述第一支路(22)和所述第二支路(23)上对应设置有第一蒸发器(41)和第二蒸发器(42)。

Description

制冷系统及制冷设备
本申请要求于2022年2月18日申请的、申请号为202210155536.5以及202220372515.4的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及制冷系统技术领域,特别涉及制冷系统及制冷设备。
背景技术
现有冰箱冷柜等制冷设备和往复式压缩机经历几十年的发展,当前设备的技术成熟度很高,性能水平也趋于瓶颈。面临未来对制冷行业的大幅升级,缺乏创新性和突破性的技术进步。比如目前一些独立双循环冰箱,其采用两台压缩机,相应的两套独立的制冷设备和控制,这种简单的组合叠加,导致整机成本高、系统集成度差,仅仅是满足基本功能。
技术问题
本申请的主要目的是提出一种制冷系统及制冷设备,应用双吸气的压缩机设置双蒸发器的制冷系统,可满足更多功能、更高性能的需要。
技术解决方案
为实现上述目的,本申请提出一种制冷系统,包括循环回路,所述循环回路包括主流路以及与所述主流路连接的且并联设置的第一支路和第二支路,所述主流路上设置有冷凝器和压缩机,所述冷凝器的输出端与所述第一支路和所述第二支路的一端连通,所述压缩机具有两个吸气孔,所述压缩机的两个吸气孔对应与所述第一支路和所述第二支路的另一端连通,所述第一支路和所述第二支路上对应设置有第一蒸发器和第二蒸发器。
在一实施例中,所述压缩机包括:
缸体,包括开设于其内部的工作腔,所述工作腔的底部设置有第一吸气孔,且侧壁设置有第二吸气孔,所述第一吸气孔和所述第二吸气孔分别与所述第一支路和所述第二支路连通;以及,
活塞组件,包括活动设于所述工作腔内的活塞,所述活塞在活动行程中具有位于所述工作腔底部的第一止点及远离所述工作腔底部的第二止点。
在一实施例中,所述第二吸气孔与所述第一止点的距离为L,所述第一止点与所述第二止点之间的距离为S,其中,0.5S<L。
在一实施例中,所述第一吸气孔的吸气压力小于所述第二吸气孔的吸气压力;
所述第一蒸发器的温度低于所述第二蒸发器的温度。
在一实施例中,所述第二蒸发器的温度为T1,所述第一蒸发器的温度为T2,其中,0≤T1-T2≤25℃。
在一实施例中,-15℃≤T1≤0℃,-30℃≤T2≤-15℃,且10≤T1-T2≤20℃。
在一实施例中,所述制冷系统还包括至少一分流阀,所述分流阀设于所述第一支路、所述第二支路和所述主流路的连接处;或者,
所述第一支路和/或所述第二支路上设有控制阀。
在一实施例中,所述制冷系统还包括分别设于所述第一支路和所述第二支路上的两个节流元件,其中一所述节流元件处在对应的所述冷凝器与所述第一蒸发器之间,另一所述节流元件处在对应的所述冷凝器与所述第二蒸发器之间。
在一实施例中,各所述节流元件为毛细管、或膨胀阀。
本申请还提出一种制冷设备,包括上述的制冷系统,所述制冷系统包括循环回路,所述循环回路包括主流路以及与所述主流路连接的且并联设置的第一支路和第二支路,所述主流路上设置有冷凝器和压缩机,所述冷凝器的输出端与所述第一支路和所述第二支路的一端连通,所述压缩机具有两个吸气孔,所述压缩机的两个吸气孔对应与所述第一支路和所述第二支路的另一端连通,所述第一支路和所述第二支路上对应设置有第一蒸发器和第二蒸发器。
在一实施例中,所述制冷设备为冰箱。
有益效果
本申请的技术方案中,通过所述压缩机内独立的两个吸气通道,可以实现所述第一蒸发器和所述第二蒸发器相互独立,制冷系统的整体效率更高,具体的,所述第一支路和所述第二支路在所述压缩机双吸气的结构下能够同时流通所述第一蒸发器和所述第二蒸发器,使得两个蒸发器同时工作,增加系统的制冷能力,相较于现有的单吸单排压缩机和串并联双蒸发器的制冷系统,具有更大的制冷量,更高的制冷性能,能更好的满足未来技术需求。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请提供的制冷系统一实施例的示意图;
图2为图1中制冷系统另一实施例的示意图;
图3为图1中制冷系统又一实施例的示意图;
图4为图1中压缩机一实施例的内部结构示意图;
图5为图4中压缩机的局部剖视示意图。
附图标号说明:
标号 名称 标号 名称
100 制冷系统 23 第二支路
1 压缩机 3 冷凝器
1a 第一吸气孔 41 第一蒸发器
1b 第二吸气孔 42 第二蒸发器
11 工作腔 5 分流阀
12 活塞 6 控制阀
13 第二吸气内管 7 节流元件
14 内排管 210 第一吸气外管
21 主流路 220 第二吸气外管
22 第一支路 230 排气外管
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,若本申请实施例中有涉及方向性指示,则该方向性指示仅用于解释在某一特定姿态下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,若本申请实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
随着全球碳排放的限制升级,中国国家炭达峰和碳中和的迫切要求,对制冷行业的节能减排要求也不断提高,各类家电的国家能效标准也不断升级,由此对冰箱冷柜等家用制冷系设备的技术升级要求也越来越高。
现有冰箱、冷柜等制冷设备和往复式压缩机经历几十年的发展,大规模产业化和市场化竞争,当前设备的技术成熟度很高,性能水平也趋于瓶颈。面临未来对制冷行业的大幅升级,缺乏创新性和突破性的技术进步,压缩机作为制冷系统的最核心部件和耗能大件,其在制冷系统中与其他零部件的组合方式,以及整体的制冷系统的循环组成方式,对冰箱冷柜等整机的制冷性能和能效水平有着极大的影响。
鉴于此,本申请提供一种制冷系统及制冷设备,应用双吸气的压缩机设置双蒸发器的制冷系统,可满足更多功能、更高性能的需要。图1至图5为本申请提供的制冷系统的实施例。
请参照图1至图2,制冷系统100包括循环回路,所述循环回路包括主流路21以及与所述主流路21连接的且并联设置的第一支路22和第二支路23,所述主流路21上设置有冷凝器3和压缩机1,所述冷凝器3的输出端与所述第一支路22和所述第二支路23的一端连通,所述压缩机1具有两个吸气孔,所述压缩机1的两个吸气孔对应与所述第一支路22和所述第二支路23的另一端连通,所述第一支路22和所述第二支路23上对应设置有第一蒸发器41和第二蒸发器42。
本申请的技术方案中,通过所述压缩机1内独立的两个吸气通道,可以实现所述第一蒸发器41和所述第二蒸发器42相互独立,制冷系统100的整体效率更高,具体的,所述第一支路22和所述第二支路23在所述压缩机1双吸气的结构下能够同时流通所述第一蒸发器41和所述第二蒸发器42,使得两个温度不同的第一蒸发器41和第二蒸发器42同时工作,增加系统的制冷能力,相较于现有的单吸单排压缩机和串并联双蒸发器的制冷系统,具有更大的制冷量,更高的制冷性能,能更好的满足未来技术需求。
为了实现所述压缩机1的双吸气功能,请参阅图4至图5,本申请提供的压缩机1包括缸体和活塞组件,所述缸体包括开设于其内部的工作腔11,所述工作腔11的底部设置有第一吸气孔1a,且侧壁设置有第二吸气孔1b,所述第一吸气孔1a和所述第二吸气孔1b分别与所述第一支路22和所述第二支路23连通,所述活塞组件包括活动设于所述工作腔11内的活塞12,所述活塞12在活动行程中具有位于所述工作腔11底部的第一止点及远离所述工作腔11底部的第二止点。本申请提供的压缩机1中,所述工作腔11同时连通所述第一吸气孔1a及所述第二吸气孔1b,以能够通过所述第一吸气孔1a和所述第二吸气孔1b对应连通的所述第一支路22和所述第二支路23同时向所述工作腔11内补气,提高了所述工作腔11的吸气量,进而提高所述压缩气缸的压缩能效,所述第一吸气孔1a及所述第二吸气孔1b分别连通两个并联的流路来实现各自的工况条件,降低功率消耗。且该压缩机1具有结构简单、成本较低、性能更高、实用性更好的优点。
具体的,该压缩机1为双吸气压缩机,由于所述第一吸气孔1a和所述第二吸气孔1b在所述工作腔11中的位置,所述第一吸气孔1a的吸气压力小于所述第二吸气孔1b的吸气压力,使得所述第一吸气孔1a与外部管路连通形成气流压力较低的第一吸气流道,所述第二吸气孔1b与外部管路连通形成气流压力较高的第二吸气流道,可以有效提高制冷系统100能效、降低功率消耗。对应的,所述第一蒸发器41和所述第二蒸发器42在制冷设备中对应不同的冷室,用于供保鲜或者冷藏的食物分别方式,因此考虑到不同蒸发器的不同蒸发温度,应当使得连通气流压力较低的第一吸气流道的所述第一蒸发器41为温度较低的,应当使得连通气流压力较高的第二吸气流道的所述第二蒸发器42为温度较高的。
具体的,关于所述第一蒸发器41和所述第二蒸发器42的温差要求如下:所述第二蒸发器42的温度为T1,所述第一蒸发器41的温度为T2,其中,0≤T1-T2≤25℃。
进一步的,本申请中的所述第一蒸发器41为冷冻蒸发器,所述第二蒸发器42为冷藏蒸发器,一般来说,-15℃≤T1≤0℃、-30℃≤T2≤-15℃,且10≤T1-T2≤20℃,这是由于冷藏蒸发器和冷冻蒸发器对应的冷室的制冷需求不同,因此具有不同的温度设定。
需要说明的是,在一实施例中,所述活塞组件还包括曲轴及连杆,所述曲轴与所述连杆一端传动连接,所述连杆远离所述曲轴的一端与所述活塞12传动连接。从而,所述曲轴在电机的驱动下带动所述连杆活动,进而带动所述活塞12在所述工作腔11内进行往复运动,以完成吸入气流及压缩气流的动作。
可以理解的是,以冰箱为例,在制冷过程中,高温高压冷媒气体自压缩机输送至对应的冷冻室和冷藏室的蒸发器进行蒸发吸热,实现冷冻室和冷藏室的制冷,但是冷冻室和冷藏室设置的温度不一致,两者蒸发温度不一样,冷媒在冷冻室和冷藏室进行换热后的温度和压力不相同,本实施例中的所述第一蒸发器41和所述第二蒸发器42分别对应冷冻室和冷藏室,并且现有技术中,压缩机通过一个流路实现冷冻和冷藏的制冷功能,这样不管是冷冻室或是冷藏室需要进行制冷的时候,整个换热系统都需要参与到工作中,使得能耗消耗较大,能效比较低。
因在常规的压缩机中往往需要通过控制阀组来控制各个吸气孔的打开和关闭,当压缩机只有一个吸气孔时,则设置一个控制阀组;当压缩机有多个吸气孔时,一般会对应设置多个控制阀组,这样控制较为繁琐。因此在本申请的一实施例中,所述第二吸气孔1b与所述第一止点的距离为L,所述第一止点与所述第二止点之间的距离为S,其中,0.5S<L。所述活塞12在运动过程中,所述第一吸气孔1a及所述第二吸气孔1b的开闭状态如下:
所述压缩机1的吸气行程,包括:
第一行程:所述活塞12自所述第一止点向所述第二止点活动,且距所述第一止点的距离小于0.5S。在第一行程中,所述控制阀组开启,使得所述第一吸气孔1a导通,且所述第二吸气孔1b被所述活塞12遮挡。此时,所述工作腔11仅通过所述第一吸气孔1a实现吸气,此时所述工作腔11内的冷媒总量均来自于所述第一吸气孔1a的冷媒。可以理解的是,由于所述活塞12在向靠近所述第二止点的位置活动时,所述工作腔11的压缩空间增大,处于负压状态,便于外部的气流自所述第一吸气孔1a进入所述工作腔11。而由于经由所述第一吸气孔1a的气流压力小于经由所述第二吸气孔1b的气流压力。故,在此活动行程中,通过所述活塞12将所述第二吸气孔1b遮挡,以避免所述第二吸气孔1b的气流阻碍所述第一吸气孔1a的气流进入所述工作腔11。
第二行程:在所述活塞12自所述第一止点向所述第二止点活动,且距所述第一止点的距离大于0.5S。在第二行程中,所述活塞12未遮挡所述第二吸气孔1b,使得所述第二吸气孔1b连通所述工作腔11。此时,所述控制阀组按实际需求在开启状态与闭合状态之间切换。在所述控制阀组处于开启状态时,所述第一吸气孔1a及所述第二吸气孔1b同时向所述工作腔11输入气流。由于在第一行程中,所述工作腔11的空间内经由所述第一吸气孔1a吸入了一定量的气流,使得压缩空间中具有一定的气流压力。故,在经由所述第二吸气孔1b向所述工作腔11输入气流时,对所述第一吸气孔1a的气流影响较小。且由于所述第二吸气孔1b到所述第一止点的距离大于0.5S,也即到所述第一吸气孔1a的距离大于0.5S,使得两者之间存在适宜的缓冲距离,减轻了所述第二吸气孔1b的气流对所述第一吸气孔1a气流的阻碍影响,提高压缩能效。在所述控制阀组处于闭合状态时,所述第二吸气孔1b向所述工作腔11输入气流。此时补充至所述工作腔11内的冷媒来自于所述第二吸气孔1b。可以理解的是,所述第二吸气孔1b越靠近所述第一止点与所述第二止点的中点,所述第二吸气孔1b开启时间早,并且关闭的时间晚,相应的流路提供的高压冷媒时间长,补气量大;所述第二吸气孔1b越靠近所述第二止点时,所述第二吸气孔1b开启时间晚,并且关闭的时间早,相应的流量提供的高压冷媒时间短,补气时间短,从而补气量也较少。在现实中,可以依据补气量的需求,来设置所述第二吸气孔1b的位置。
所述压缩机1的压缩行程,包括:
第三行程:所述活塞12自所述第二止点向靠近所述第一止点的方向活动,且距所述第一止点大于0.5S。在第三行程中,所述控制阀组关闭,所述活塞12向靠近所述第一止点的方向快速活动。此时,所述第二吸气孔1n仍然向所述工作腔11输入气流,此时补充至所述工作腔11内的冷媒来自于所述第二吸气孔1b,因此,在第三行程中,所述工作腔11中的气流被压缩时,尚不会过度阻碍经由所述第二吸气孔1b输入所述工作腔11内的气流,使得所述压缩机1在压缩行程中,仍可吸入气流。并且,由于所述工作腔11中混合有来自所述第一吸气孔1a及所述第二吸气孔1b的气流,使得所述工作腔11中气流压力小于经由所述第二吸气孔内的气流压力。
第四行程:所述活塞12自所述第二止点向靠近所述第一止点的方向活动,且距所述第一止点的距离小于0.5S。在第四行程中,所述控制阀组仍关闭,且所述活塞12遮挡所述第二吸气孔1b。此过程中,所述活塞12将所述工作腔11中的气流压缩成高压气流。并在所述活塞12活动至所述第二止点时,所述工作腔11中的气流压力压缩到位。此时,连通所述工作腔11的输出管道的控制阀组从关闭状态切换为打开状态,以输出压缩好的高压气流。
此外,在本实施例中,所述压缩机1包括还壳体、第一吸气外管210、第二吸气外管220以及连通所述第二吸气外管220的第二吸气内管13,所述第一吸气外管210及所述第二吸气外管220设于所述壳体外,所述第二吸气内管13设置在所述壳体内侧,具体的所述第一吸气外管210及所述第二吸气外管220用以连接到所述第一吸气孔1a和所述第二吸气孔1b。所述压缩机1设于所述壳体的内腔中,其中,所述第二吸气内管13连接于所述第二吸气外管220设于所述壳体上的一端,以形成第二吸气流道,所述第一吸气外管210对应形成第一吸气流道。
其对应两个制冷流路的工作线路为:
第一吸气流道中气流的流路为:第一制冷流路→所述第一吸气孔1a→所述工作腔11。
所述第二吸气流道中气流流路为:第二制冷流路→所述第二吸气孔1b→所述工作腔11。
且所述压缩机1还包括与所述工作腔11连通的内排管14,所述内排管14用以所述压缩机1的排气外管230连通,以将所述工作腔11内压缩好的高压气流自所述内排管14排出至排气外管230。
在具体现实中,所述第一制冷流路对应的是冰箱冷冻室,因冷冻室所需的制冷量较大,所需的冷媒量较多,在工作工程中,其消耗掉的冷媒的压力也较多,而所述第二制冷流路对应的是冰箱冷藏室,因冷藏室所需的制冷量较小,其消耗掉的冷媒的压力也较少,这样回流至所述第一吸气孔1a内的压力是远小于所述第二吸气孔1b的压力,但是第一制冷流路的冷媒量较大,这样在所述压缩机1工作时,通过所述活塞12先在吸气的前大半段的吸气行程中主要是打开第一吸气孔1a进行主吸气,能够吸入冷冻室对应的制冷流路上的较大的冷媒量,在后面小半段的吸气行程中,所述第二吸气孔1b与所述工作腔11连通,第一吸气孔1a关闭,所述第二吸气孔1b开始补入高压冷媒气体,并在压缩阶段的前小半段行程继续补气,最后在压缩的后大半段行程中,所述第二吸气孔1b关闭,所述活塞12将所述工作腔11内的冷媒进行压缩,通过设置所述第二吸气孔1b距离所述第一止点和所述第二止点的距离,可以控制所述第二吸气孔1b的进气量,即,因所述第二吸气孔1b的位置设定,可以使得所述活塞12在往复运动的时候,来调整所述第二吸气孔1b开闭的时长,从而实现调节所述第一吸气孔1a和所述第二吸气孔1b的流量配比。并且通过将所述第二吸气孔1b设置于所述缸体的侧壁上,且靠近第二止点设置,从而使得所述压缩机1无需专门设置控制阀组来控制所述第二吸气孔1b的开闭,而是在所述活塞12的活动行程中就能实现对所述第二吸气孔1b的自动开闭,结构设计巧妙,还节约了成本。
需要说明的是,所述第一止点与所述第二止点之间的距离为S。即所述第一止点是指所述活塞12靠近所述工作腔11底部的一端的端面运动至靠近所述缸体的底壁的最近的距离时,所述活塞12靠近所述缸体的底壁的一端所在的位置。所述第二止点是指所述活塞12靠近所述缸体的底壁的一端的端面运动至远离所述工作腔11底部的最远的距离时,所述活塞12靠近所述缸体的底壁的一端所在的位置。也即距离S为所述活塞12靠近所述缸体的底壁的一端的端面两种极限状态下之间的距离。所述第二吸气孔1b与所述第一止点的距离为L,也即,所述第二吸气孔1b的中心线与所述第一止点的距离为L。
需要说明的是,可以在所述第二吸气内管13设计减震管段,所述减震管段的内壁面在所述第二吸气内管13的长度方向上设有凹凸结构,通过在第二吸气管内设置凹凸结构,可使得经过第二吸气内管13的高压气体产生的声波,在输送方向上管道的截面发生突变,能够被所述凹凸结构反射,使得部分向前传播的声波又回到原点,并再次折回向前传播,该点与尚未被反射的第二个向前传播的声波汇合,而且两者在震幅上相等,在相位上差180度的奇数倍,从而互相干涉而抵消,从而达到减震消音的效果。
节流元件是压缩式制冷系统中的基本部件之一。其功能是把来自冷凝器3的高压制冷剂液体降压成低压低温制冷剂,并进入蒸发器蒸发吸热。主要有毛细管、节流短管、热力膨胀阀、电子膨胀阀、浮球阀等。一实施例中,所述制冷系统100还包括分别设于所述第一支路22和所述第二支路23上的两个节流元件7,其中一所述节流元件7处在对应的所述冷凝器3与所述第一蒸发器41之间,另一所述节流元件7处在对应的所述冷凝器3与所述第二蒸发器42之间,从而实现其功能,需要说明的是,本申请不限制两个所述节流元件7的具体类型,二者可以设置相同也可以设计不同。
为了便于控制所述第一支路22和所述第二支路23选择性的开启和关闭,请参照图2,所述制冷系统100还包括分流阀5,所述分流阀5设于所述第一支路22、所述第二支路23和所述主流路21的连接处,分流阀5也称速度同步阀,是液压阀中分流阀5、集流阀、单向分流阀5、单向集流阀和比例分流阀5的总称。具有结构简单、成本低、制造容易、可靠性强等许多优点,在液压系统中得到了广泛的应用。所述分流阀5的设计可以使得所述主流路21分在所述第一支路22和所述第二支路23的液体的流动速度是同步的,同时,所述分流阀5可使得其中一个支路为关闭状态,从而根据实际工作状态控制所述第一支路22和所述第二支路23的连通和阻断。
在其他实施例中,请参照图3,所述第二支路23上设有控制阀6,此时,所述第一支路22为常连通状态,而所述第二支路23在所述控制阀6的控制下可以选择性的连通或者关闭,从而实现不同的工作状态。不仅如此,还可以单独在所述第一支路22上设置控制阀6,或者在所述第一支路22和所述第二支路23上均设置控制阀6,从而实现各支路的自动开启和自动关闭,
具体的,本实施例中所述制冷系统100的结构如下:
所述主流路21上设置有双吸气往复式压缩机和冷凝器3,所述第一支路22和所述第二支路23上分别设置冷冻蒸发器和冷藏蒸发器,对应连通该双吸气往复式压缩机的第一吸气孔1a和第二吸气孔1b,其中,所述第一吸气孔1a和第二吸气孔1b连通相互独立的第一吸气外管210和第二吸气外管220,且所述第二吸气孔1b的吸气压力大于所述第一吸气孔1a的吸气压力,所述冷凝器3与所述第一蒸发器41之间设有处在所述第一支路22上的节流元件7,所述冷凝器3与所述第二蒸发器42之间设有处在所述第二支路23上的节流元件7,所述第一支路22、所述第二支路23和所述主流路21的连接处设置有所述分流阀5,从而使得该制冷系统100具有不同的工作状态,通过该双吸气往复式压缩机形成的两个吸气压力不同且相互独立的吸气通道,实现冷藏蒸发器和冷冻蒸发器相互独立且蒸发温度不同,较现有制冷系统100提升了冷藏蒸发温度,制冷系统的整体效率更高,具有更大的制冷量,更高的制冷性能,能更好的满足未来技术需求,且该双吸气往复式压缩机和制冷系统100相对简单低成本,实用性更优。
本申请提供的技术方案中,所述第一支路22和所述第二支路23分别对应冷冻制冷流路和冷藏制冷流路,即所述压缩机1将压缩形成的高温高压冷媒可以合理的分配至冷冻流路和冷藏流路,因所述压缩机1压缩形成的高温高压冷媒经冷冻室对应的所述第一蒸发器41后,其回至所述压缩机1时的温度较低,且压力较小,而所述压缩机1压缩形成的高温高压冷媒经冷藏室对应的所述第二蒸发器42后,其回至所述压缩机1时的温度较高,且压力较大。将所述缸体的工作腔11同时连通所述第一吸气孔1a及所述第二吸气孔1b,以能够通过所述第一吸气孔1a对应的第一吸气流道,所述第二吸气孔1b对应的第二吸气流道,这样将冷冻室回流的相对较低温较低压力的冷媒通过所述第一吸气孔1a输送至所述压缩机1的所述缸体内,而将冷藏室回流的相对较高温较高压力的冷媒通过所述第二吸气孔1b输送至所述压缩机1,这样在所述缸体对第一吸气孔1a输送的冷媒气体压缩时,所述第二吸气孔1b可以对所述工作腔11内进行补气,从而提高了所述缸体的工作腔11的吸气量,进而提高所述压缩机1的压缩能效。
本申请还提供一种制冷设备,包括上述的制冷系统100,所述制冷设备包括上述的制冷系统100的全部技术特征,因此,也具有上述全部技术特征带来的技术效果,此处不再一一赘述。需要说明的是,该制冷设备可以是冰箱、冷柜、冷藏箱等,在此不做限制,本实施例中,所述制冷设备为冰箱。
以上所述仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是在本申请的发明构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (11)

  1. 一种冷系统,其中,包括循环回路,所述循环回路包括主流路以及与所述主流路连接的且并联设置的第一支路和第二支路,所述主流路上设置有冷凝器和压缩机,所述冷凝器的输出端与所述第一支路和所述第二支路的一端连通,所述压缩机具有两个吸气孔,所述压缩机的两个吸气孔对应与所述第一支路和所述第二支路的另一端连通,所述第一支路和所述第二支路上对应设置有第一蒸发器和第二蒸发器。
  2. 如权利要求1所述的制冷系统,其中,所述压缩机包括:
    缸体,包括开设于其内部的工作腔,所述工作腔的底部设置有第一吸气孔,且侧壁设置有第二吸气孔,所述第一吸气孔和所述第二吸气孔分别与所述第一支路和所述第二支路连通;以及,
    活塞组件,包括活动设于所述工作腔内的活塞,所述活塞在活动行程中具有位于所述工作腔底部的第一止点及远离所述工作腔底部的第二止点。
  3. 如权利要求2所述的制冷系统,其中,所述第二吸气孔与所述第一止点的距离为L,所述第一止点与所述第二止点之间的距离为S,其中,0.5S<L。
  4. 如权利要求2所述的制冷系统,其中,所述第一吸气孔的吸气压力小于所述第二吸气孔的吸气压力;
    所述第一蒸发器的温度低于所述第二蒸发器的温度。
  5. 如权利要求1所述的制冷系统,其中,所述第二蒸发器的温度为T1,所述第一蒸发器的温度为T2,其中,0≤T1-T2≤25℃。
  6. 如权利要求1或5所述的制冷系统,其中,-15℃≤T1≤0℃,-30℃≤T2≤-15℃,且10≤T1-T2≤20℃。
  7. 如权利要求1所述的制冷系统,其中,所述制冷系统还包括至少一分流阀,所述分流阀设于所述第一支路、所述第二支路和所述主流路的连接处;或者,
    所述第一支路和/或所述第二支路上设有控制阀。
  8. 如权利要求1所述的制冷系统,其中,所述制冷系统还包括分别设于所述第一支路和所述第二支路上的两个节流元件,其中一所述节流元件处在对应的所述冷凝器与所述第一蒸发器之间,另一所述节流元件处在对应的所述冷凝器与所述第二蒸发器之间。
  9. 如权利要求8所述的制冷系统,其中,各所述节流元件为毛细管、或膨胀阀。
  10. 一种制冷设备,其中,包括如权利要求1至9任意一项所述的制冷系统。
  11. 如权利要求10所述的制冷设备,其中,所述制冷设备为冰箱。
PCT/CN2022/095995 2022-02-18 2022-05-30 制冷系统及制冷设备 WO2023155330A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202220372515.4 2022-02-18
CN202210155536.5A CN116164433A (zh) 2022-02-18 2022-02-18 制冷系统及制冷设备
CN202220372515.4U CN216814667U (zh) 2022-02-18 2022-02-18 制冷系统及制冷设备
CN202210155536.5 2022-02-18

Publications (1)

Publication Number Publication Date
WO2023155330A1 true WO2023155330A1 (zh) 2023-08-24

Family

ID=87577439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095995 WO2023155330A1 (zh) 2022-02-18 2022-05-30 制冷系统及制冷设备

Country Status (1)

Country Link
WO (1) WO2023155330A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101251282A (zh) * 2008-04-03 2008-08-27 东南大学 基于热湿独立处理的冷水机组及其空气处理方法
CN105004100A (zh) * 2015-07-21 2015-10-28 同济大学 单制冷剂回路、多吸气压力的蒸气压缩制冷/热泵系统
US20180258922A1 (en) * 2014-12-11 2018-09-13 Angelantoni Test Technologies S.R.L., In Short Att S.R.L. Reciprocating compressor for a cooling device
CN208475718U (zh) * 2018-06-08 2019-02-05 贺吉军 一种喷气增焓制冷机
CN110762580A (zh) * 2019-07-09 2020-02-07 青岛易可润能源科技有限公司 双蒸发器喷气增焓冷热水机组
CN215951838U (zh) * 2021-05-27 2022-03-04 青岛海尔智能技术研发有限公司 制冷系统及家用电器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101251282A (zh) * 2008-04-03 2008-08-27 东南大学 基于热湿独立处理的冷水机组及其空气处理方法
US20180258922A1 (en) * 2014-12-11 2018-09-13 Angelantoni Test Technologies S.R.L., In Short Att S.R.L. Reciprocating compressor for a cooling device
CN105004100A (zh) * 2015-07-21 2015-10-28 同济大学 单制冷剂回路、多吸气压力的蒸气压缩制冷/热泵系统
CN208475718U (zh) * 2018-06-08 2019-02-05 贺吉军 一种喷气增焓制冷机
CN110762580A (zh) * 2019-07-09 2020-02-07 青岛易可润能源科技有限公司 双蒸发器喷气增焓冷热水机组
CN215951838U (zh) * 2021-05-27 2022-03-04 青岛海尔智能技术研发有限公司 制冷系统及家用电器

Similar Documents

Publication Publication Date Title
WO2019200945A1 (zh) 压缩机及制冷循环系统及空调器
WO2023155330A1 (zh) 制冷系统及制冷设备
CN211120093U (zh) 一种带双喷射器的双温制冷系统
CN208765229U (zh) 换热装置及设有其的空调机组
CN216894805U (zh) 缓冲座、压缩机及制冷设备
CN108167184B (zh) 一种涡旋压缩机广域自适应系统
CN216814667U (zh) 制冷系统及制冷设备
CN216812089U (zh) 压缩气缸、压缩机及制冷设备
CN216812092U (zh) 压缩机和制冷设备
CN216897888U (zh) 制冷系统及制冷设备
CN216897887U (zh) 制冷系统及制冷设备
WO2023155331A1 (zh) 压缩机和制冷设备
CN216812088U (zh) 压缩气缸、压缩机及制冷设备
CN216812096U (zh) 压缩机及制冷设备
CN217300843U (zh) 压缩气缸、压缩机及制冷设备
CN216897884U (zh) 制冷系统及制冷设备
CN216812097U (zh) 压缩机和制冷设备
WO2023155313A1 (zh) 压缩气缸、压缩机及制冷设备
CN116164433A (zh) 制冷系统及制冷设备
CN216812095U (zh) 一种连接管、压缩机及制冷设备
CN210345946U (zh) 一种可实现循环加热的二氧化碳热泵装置
CN107192154A (zh) 一种高脉管膨胀效率的脉管制冷机
CN116163928A (zh) 压缩气缸、压缩机及制冷设备
CN112594956A (zh) 一种降低回液风险的控制系统以及空调器、运行方法
WO2023155329A1 (zh) 压缩气缸、压缩机及制冷设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926640

Country of ref document: EP

Kind code of ref document: A1