WO2023153492A1 - Light transmission/diffusion member and light source unit using same - Google Patents

Light transmission/diffusion member and light source unit using same Download PDF

Info

Publication number
WO2023153492A1
WO2023153492A1 PCT/JP2023/004460 JP2023004460W WO2023153492A1 WO 2023153492 A1 WO2023153492 A1 WO 2023153492A1 JP 2023004460 W JP2023004460 W JP 2023004460W WO 2023153492 A1 WO2023153492 A1 WO 2023153492A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
transmitting
diffusing member
diffusion member
light transmission
Prior art date
Application number
PCT/JP2023/004460
Other languages
French (fr)
Japanese (ja)
Inventor
志彦 林
Original Assignee
株式会社 潤工社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 潤工社 filed Critical 株式会社 潤工社
Priority to JP2023580327A priority Critical patent/JPWO2023153492A1/ja
Publication of WO2023153492A1 publication Critical patent/WO2023153492A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements

Definitions

  • the present invention relates to a light transmitting and diffusing member, and more particularly to a light transmitting and diffusing member with high light transmittance and excellent light diffusibility.
  • the present invention also relates to a light source unit using the light transmission diffusion member.
  • Sapphire glass is known as a material with high translucency and excellent wide-angle diffusing properties for diffusing light over a wide range, and lenses made of sapphire glass are often used as illumination lenses for diffusing light.
  • sapphire glass is expensive, it is difficult to use it frequently, and there is a demand for an inexpensive and high-performance material to replace sapphire glass.
  • a frosted diffuser plate is used as one of the inexpensive light transmitting and diffusing members. was there.
  • ultraviolet LEDs have come to be used instead of ultraviolet lamps used for purposes such as sterilization and resin curing.
  • ultraviolet LEDs In order to secure a wide irradiation range, it is necessary to use multiple ultraviolet LEDs arranged in parallel, but LEDs have a strong light propagating property, and when used in parallel, there is a problem that illuminance unevenness occurs. There is Since uneven illuminance causes serious problems such as defective workpieces, inexpensive and high-performance light transmitting and diffusing members are required in such places as well.
  • Patent Document 1 discloses a technique related to a light diffuser capable of diffusing diffused light without yellowing, and an isotropic light diffusing plate and an anisotropic light diffusing plate are combined. A method for adjusting light diffusion properties by optical overlapping is disclosed.
  • the present invention has been made to solve the problems described above, and an object thereof is to provide a light transmitting and diffusing member that achieves both sufficient light transmittance and sufficient wide-angle diffusion of light. be. Another object of the present invention is to provide a light source unit using the light transmission diffusion member.
  • the light transmission and diffusion member in a light transmission and diffusion member made of a material containing a light-transmitting resin and light-transmitting particles, the light transmission and diffusion member includes a surface A serving as a light entrance surface and a light exit surface. At least one of the A surface and the B surface has an uneven structure, and the root mean square gradient Sdq of the uneven structure is 0.8 to 2.0. It is a characteristic light transmission diffusion member.
  • the maximum height Sz of the uneven structure on the surface is preferably 2.0 ⁇ m to 15.0 ⁇ m.
  • the aspect ratio Str of the surface properties of the uneven structure on the surface is 0.8 to 1.0.
  • the material constituting the light transmitting and diffusing member of the present invention preferably contains 75 to 95 wt% of translucent resin and 5 to 25 wt% of translucent particles. Moreover, the difference in refractive index between the translucent resin and the translucent particles is preferably 0.03 to 0.30.
  • the light transmission and diffusion member of the present invention is characterized by having a light transmission amount of 65% or more at a wavelength of 700 nm and a light receiving sensitivity of 0.12 or more at a light receiving angle of 60°.
  • the light transmission and diffusion member of the present invention is made of a material containing a light-transmitting resin and light-transmitting particles. At least one of the A surface and the B surface has a plurality of uneven structures, and the shape of the uneven structure is an irregular cell shape.
  • a light source unit of the present invention comprises a light source, a light guide means for transmitting light introduced from the light source, and a light transmission diffusion member in the vicinity of the light exit side of the light guide means,
  • the light transmission and diffusion member is made of a material containing a light-transmitting resin and light-transmitting particles, the light transmission and diffusion member has a surface A as a light entrance surface and a surface B as a light exit surface, At least one of the A surface and the B surface has an uneven structure, and the light transmission and diffusion member is characterized in that the root mean square gradient Sdq of the uneven structure is 0.8 to 2.0. It is characterized by
  • the transmission diffusion member of the present invention can obtain both sufficient light transmittance and sufficient wide-angle diffusion of light. It is possible to diffuse the light to a wide angle without
  • the light transmitting and diffusing member of the present invention is formed using a material in which translucent particles are dispersed in a translucent resin.
  • the light transmitting and diffusing member has a surface A serving as a light entrance surface and a surface B serving as a light exit surface, and at least one surface of the surface A or surface B has a plurality of irregular uneven structures. formed.
  • FIG. 1 is an SEM image of the uneven structure of the surface of an example of the light transmitting and diffusing member of the present invention.
  • the concave-convex structure of the light transmitting and diffusing member of the present invention has an irregular cell shape, and the cell wall has a plate-like shape with a steep slope.
  • each cell is irregularly arranged with a size of about 2 ⁇ m to about 15 ⁇ m. More preferably, the size of one cell is about 3 ⁇ m to about 10 ⁇ m.
  • the uneven structure on the surface of the light transmitting and diffusing member of the present invention has a unique structure compared to the SEM image of the surface of a frosted diffuser plate conventionally used as a diffusing member shown in FIG. .
  • the light transmitting and diffusing member of the present invention will be described below taking as an example the case where the surface A is provided with an uneven structure.
  • the concave-convex structure formed on the surface of the light transmitting and diffusing member of the present invention is formed over the entire region irradiated with light, and the shape, height, intervals between the concaves and convexes, etc. are formed irregularly.
  • the uneven structure on the surface preferably has a root-mean-square gradient Sdq of 0.8 to 2.0, more preferably 0.8 to 1.5.
  • the root-mean-square gradient Spd is one of the ISO three-dimensional surface texture parameters that represents the average magnitude of the local gradient of the surface irregularities, and the larger this value, the steeper the surface. .
  • the shape of the uneven structure on the surface has a steep shape.
  • the light passes through this uneven structure, the light is refracted and diffused.
  • the root-mean-square gradient Sdq of the concave-convex structure on the B surface is 0.8 to 2.0, a high effect can be obtained for the wide-angle diffusibility of light and the wavelength dependence of the light diffusivity.
  • the inner side of the cell-shaped cell having the uneven surface structure has a finer unevenness structure. For example, in the example shown in FIG. 1, there is almost no flat surface parallel to the B surface inside the cell of the uneven structure on the A surface. It is presumed that this increases the effect of diffusing light over a wide angle.
  • the height of the cell wall has a certain height or more. It is preferable to use the maximum height Sz, which is an ISO three-dimensional surface texture parameter, as an index for the height.
  • the maximum height Sz of the uneven structure-formed surface of the light transmitting and diffusing member of the present invention is preferably 2.0 ⁇ m to 20.0 ⁇ m, more preferably 5.0 ⁇ m to 15.0 ⁇ m.
  • the maximum height Sz of the concave-convex structure is a certain height or more, it is presumed that the wide-angle diffusibility is further enhanced, and the effect of diffusing light over a wide angle without depending on the wavelength of light is obtained. Further, when the maximum height Sz of the uneven structure is too large, the diffused light repeatedly passes through the uneven structure, which may attenuate the transmitted light.
  • the uneven structure on the surface of the light transmitting and diffusing member of the present invention preferably has a surface texture aspect ratio Str, which is an ISO three-dimensional surface texture parameter, of 0.8 to 1.0.
  • the aspect ratio Str of the surface texture indicates the strength of the anisotropy of the surface, and the uneven structure of the surface of the light transmitting and diffusing member of the present invention preferably has isotropy.
  • a light-transmitting resin composition having a phase-separated structure in which light-transmitting particles are dispersed in a light-transmitting resin as the material constituting the light transmitting and diffusing member of the present invention.
  • the translucent resin composition When light enters the translucent resin composition, the light is refracted at the interface between the translucent resin and the translucent particles, causing light scattering.
  • this translucent resin composition By processing this translucent resin composition into a light transmitting and diffusing member, it is possible to further enhance the diffusion effect due to the uneven structure of the surface of the light transmitting and diffusing member, and it is possible to obtain a uniform diffusion effect over a wide angle.
  • the light-transmitting particles dispersed in the light-transmitting resin in the light-transmitting resin composition used in the present invention may be of one type or may be used in combination of a plurality of types.
  • the compounding ratio of the translucent resin composition used in the present invention it is preferable that the translucent resin is 75 to 95 wt % of the total resin composition and the translucent particles are 5 to 25 wt %.
  • the blending ratio of the light-transmitting particles to the entire resin composition is obtained by totaling the blending amounts of all types of light-transmitting particles contained in the light-transmitting resin composition. Calculate When the amount of translucent particles is small, the effect of diffusing light inside the light transmitting and diffusing member is small, and when the amount of translucent particles is large, the light transmittance tends to decrease.
  • the uneven structure on the surface of the light transmission and diffusion member can be formed by molding the translucent resin composition used for the light transmission and diffusion member into a film and directly processing the surface with a laser or the like.
  • the concave-convex structure pattern to be transferred to the surface is processed, and the light-transmitting resin composition is molded using this as a mold.
  • the translucent resin may be either a thermosetting resin or a thermoplastic resin.
  • the difference in refractive index between the translucent resin and the translucent particles used in the light transmission diffusion member of the present invention is preferably 0.03 to 0.30. .
  • Fluoropolymers with excellent heat resistance, UV resistance, chemical resistance, cleanliness, etc. are used as translucent resins when the light transmitting and diffusing materials are used in applications that require heat resistance, such as medical and chemical applications. It is useful to use Specific examples of fluororesins that can be used as the translucent resin of the present invention include tetrafluoroethylene-fluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), and ethylene-tetrafluoro Ethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), ethylene-chlorotrifluoroethylene copolymer (ECTFE), tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer (THV), etc. Fluororesin, polytetrafluoroethylene (PTFE). A resin with high translucency is suitable.
  • a resin material or an inorganic material can be used as the translucent particle material used in the translucent resin composition.
  • the resin material include thermoplastic resins such as fluorine resins, polyolefin resins (polymethylpentene, etc.), acrylic resins, high melting point thermoplastic resins, powders such as PTFE, and thermoset thermosetting resins. Silica (SiO2) or the like can be used as the inorganic material.
  • a method for dispersing the translucent particles in the translucent resin the translucent resin and the translucent particle material are blended and fed into a twin-screw extruder or the like for melt kneading, or blended sufficiently.
  • a method such as stirring and curing can be used.
  • the light transmitting and diffusing member of the present invention is produced by using a thermoplastic fluororesin as a light transmitting resin, a light transmitting resin composition in which light transmitting particles are dispersed is prepared, and then injection molding is performed using a mold.
  • the light transmitting and diffusing member can be produced by forming the constituent resin composition into a film and then pressing the film into a mold for molding.
  • the light transmission and diffusion member of the present invention can be laminated with highly transparent resin, glass, or the like for the purpose of increasing strength or adjusting thickness.
  • the lamination state is not limited to an integrated state, but includes a state in which the layers are overlapped and fixed.
  • the light transmitting and diffusing member of the present invention not only has high light transmittance and wide-angle diffusibility of light, but also has small wavelength dependence of light diffusivity, so that light can be irradiated at a wide angle without changing the color tone of diffused light.
  • Useful for light source units for example, in a light source unit that includes a light source and a light guide (light guide means) that transmits light introduced from the light source, and supplies irradiation light to an object to be irradiated with light through the light guide means, the light guide It is preferable to dispose the light transmitting and diffusing member of the present invention in the vicinity of the light exit side of the means.
  • Examples 1 to 5 and Comparative Examples 1 and 2 Preparation of translucent resin composition
  • a tetrafluoroethylene-hexafluoropropylene-perfluoroalkyl vinyl ether copolymer (FEP-130J manufactured by Mitsui DuPont Fluorochemical) and an ethylene-tetrafluoroethylene copolymer (ETFE C-55AP manufactured by Asahi Glass) were blended as shown in Table 1.
  • the mixture was put into a roller mixer type kneading device (Laboplastomill model 30C120 manufactured by Toyo Seiki Seisakusho) and kneaded at a temperature of 340°C for 10 minutes.
  • the resulting translucent resin composition was taken out from the kneading device and hot-pressed at 340° C. to form a film.
  • the molded film of the resin composition was fixed in a mold having a concave-convex structure pattern, and pressed at 320° C. to transfer the concave-convex structure to the film surface to obtain a light transmitting and diffusing member.
  • the light transmission diffusivity was measured for the light transmission diffusion members obtained in Examples and Comparative Examples.
  • a U-4100 type spectrophotometer manufactured by Hitachi High-Tech Co., Ltd. was used, and an angle-variable absolute reflection attachment was used. The measurement was performed under the following measurement conditions.
  • Measurement wavelength 350-800nm
  • Light receiving angle 0°, 10°, 20°, 30°, 40°, 60°, 80°
  • Integrating sphere used ⁇ 60 standard integrating sphere (BaSO4)
  • Scan speed 300nm/min
  • Sampling interval 1.00 nm
  • Slit 8.00 nm
  • a light receiving sensitivity (diffusivity 60°) of 0.12 or more at a light-receiving angle of 60° with respect to the incident angle of light was evaluated as excellent in wide-angle diffusivity.
  • the ratio of the light receiving sensitivity at a light receiving angle of 60 ° measured at a wavelength of 700 nm (diffusivity 60 ° 700 nm) and the light receiving sensitivity at a light receiving angle of 60 ° measured at a wavelength of 435 nm (diffusivity 60 ° 435 nm) is Wavelength dependence (700 nm/435 nm) was used. The wavelength dependence was evaluated with a preferable range of 1.00 ⁇ 0.10. Table 1 shows the measurement results.
  • the light diffusing and transmitting members of Examples 1 to 5 have a root-mean-square gradient Sdq in the range of 0.8 to 2.0, and all of the transmittance, the diffusivity of 60°, and the wavelength dependence were compatible.
  • Comparative Example 1 had a root-mean-square gradient Sdq of 0.96, but a light-transmitting particle blending ratio of 0% and a low diffusivity of 60°, resulting in insufficient wide-angle diffusivity.
  • the blending ratio of translucent particles was 20%, but the root-mean-square gradient Sdq was 0.17. It was gone.
  • the transmission diffusion member of the present invention can obtain both sufficient light transmittance and sufficient wide-angle diffusion of light, and the wavelength dependency of the light diffusion is small. It is useful for applications such as endoscopes that need to irradiate light and confirm images without changing the color tone of the diffused light. In addition, since it does not cause illuminance unevenness, it is useful for applications such as sterilization and resin curing that require uniform UV irradiation.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

The purposes of the present invention are to provide a light transmission/diffusion member that achieves both sufficient light transmittance and sufficient wide-angle diffusion of light, and to provide a light source unit using the light transmission/diffusion member. This problem is solved by providing a light transmission/diffusion member constituted by a material containing a translucent resin and translucent particles, the light transmission/diffusion member being characterized in that: the light transmission/diffusion member has an A-surface serving as a light entrance surface and a B-surface serving as a light exit surface; at least one of the A-surface and the B-surface has a textured structure; and the root-mean-square gradient Sdq of the textured structure is 0.8 to 2.0.

Description

光透過拡散部材、及びそれを使用した光源ユニットLight transmission diffusion member and light source unit using the same
 本発明は、光透過拡散部材に関し、特に光透過性が高く、光拡散性に優れる光透過拡散部材に関する。また、本発明は、当該光透過拡散部材を使用した光源ユニットに関する。 The present invention relates to a light transmitting and diffusing member, and more particularly to a light transmitting and diffusing member with high light transmittance and excellent light diffusibility. The present invention also relates to a light source unit using the light transmission diffusion member.
 内視鏡等の用途に使用される光源ユニットにおいては、光源からライトガイドへ伝送される直進性の光を、光強度を維持しながら広い範囲に照射することが要求される場合がある。このような要求に対して、ライトガイドの出射側の先端近傍に光を拡散させるための照明用レンズが組み込まれるなどして対処されている。サファイヤガラスは、高い透光性と広範囲に光を拡散する広角拡散性に優れた材料として知られており、光を拡散させる照明用レンズとして、サファイヤガラス製のレンズがしばしば用いられている。しかし、サファイヤガラスは高価なため多用しにくく、サファイヤガラスに代わる安価で高性能な材料が求められている。安価な光透過拡散部材のひとつとして、フロスト型拡散板が用いられているが、光の広角拡散性が十分ではなく、光の波長によりその光拡散性が異なる(波長依存性が高い)という課題があった。 In light source units used for applications such as endoscopes, there are cases where it is required to irradiate straight light transmitted from the light source to the light guide over a wide range while maintaining the light intensity. Such demands are met by, for example, incorporating an illumination lens for diffusing light near the tip of the light guide on the exit side. Sapphire glass is known as a material with high translucency and excellent wide-angle diffusing properties for diffusing light over a wide range, and lenses made of sapphire glass are often used as illumination lenses for diffusing light. However, since sapphire glass is expensive, it is difficult to use it frequently, and there is a demand for an inexpensive and high-performance material to replace sapphire glass. A frosted diffuser plate is used as one of the inexpensive light transmitting and diffusing members. was there.
 また、殺菌や樹脂硬化などの目的で用いられる紫外線ランプに代わり、紫外線LEDが用いられるようになってきている。広い照射範囲を確保するためには複数の紫外線LEDを並列配置して用いたりする必要があるが、LEDは光の直進性が強く、並列配置して用いた場合に照度ムラが発生するという問題がある。照度ムラはワークの不良など大きな問題を引き起こす要因となるため、このようなところでも、安価で高性能な光透過拡散部材が必要とされている。 In addition, ultraviolet LEDs have come to be used instead of ultraviolet lamps used for purposes such as sterilization and resin curing. In order to secure a wide irradiation range, it is necessary to use multiple ultraviolet LEDs arranged in parallel, but LEDs have a strong light propagating property, and when used in parallel, there is a problem that illuminance unevenness occurs. There is Since uneven illuminance causes serious problems such as defective workpieces, inexpensive and high-performance light transmitting and diffusing members are required in such places as well.
 例えば、特許文献1には、拡散光が黄色味を帯びることなく拡散することができる光拡散体に関する技術が開示されており、等方性の光拡散板と異方性の光拡散板とを光学的に重ね合わせることによって光拡散特性を調整する方法が開示されている。 For example, Patent Document 1 discloses a technique related to a light diffuser capable of diffusing diffused light without yellowing, and an isotropic light diffusing plate and an anisotropic light diffusing plate are combined. A method for adjusting light diffusion properties by optical overlapping is disclosed.
 しかし、上述した従来の光透過拡散用部材は、十分な光透過性と十分な広角拡散性の両方を得ることができておらず、サファイヤガラスに代わる材料として用いるには限定されていた。また、複数の特性をもつフィルムを積層して要求特性を実現しているものは、フィルムを積層するほど光拡散部材の透過率が低下することになり、製造工程も複雑になっていた。 However, the above-mentioned conventional light transmission and diffusion members have not been able to obtain both sufficient light transmission and sufficient wide-angle diffusivity, and have been limited in their use as materials to replace sapphire glass. In addition, in the case where films having multiple properties are laminated to achieve the required properties, the more films are laminated, the lower the transmittance of the light diffusion member, and the more complicated the manufacturing process becomes.
特開2002-214409号公報JP-A-2002-214409
 本発明は、上記のような課題を解決するためになされたものであり、その目的は、十分な光透過性と十分な光の広角拡散性が両立された光透過拡散部材を提供することである。また、本発明の別の目的は、当該光透過拡散部材を使用した光源ユニットを提供することである。 The present invention has been made to solve the problems described above, and an object thereof is to provide a light transmitting and diffusing member that achieves both sufficient light transmittance and sufficient wide-angle diffusion of light. be. Another object of the present invention is to provide a light source unit using the light transmission diffusion member.
 上記課題の解決のために、特許請求の範囲に記載の構成を採用できる。例えば本発明の一態様によれば、透光性樹脂と透光性粒子を含む材料で構成される光透過拡散部材において、該光透過拡散部材は、入光面となるA表面と出光面となるB表面とを有し、前記A表面または前記B表面のうち少なくとも片方の表面は、凹凸構造を有し、前記凹凸構造の二乗平均平方根勾配Sdqが0.8~2.0であることを特徴とする光透過拡散部材である。 In order to solve the above problems, the configuration described in the claims can be adopted. For example, according to one aspect of the present invention, in a light transmission and diffusion member made of a material containing a light-transmitting resin and light-transmitting particles, the light transmission and diffusion member includes a surface A serving as a light entrance surface and a light exit surface. At least one of the A surface and the B surface has an uneven structure, and the root mean square gradient Sdq of the uneven structure is 0.8 to 2.0. It is a characteristic light transmission diffusion member.
 また、本発明の光透過拡散部材は、表面の凹凸構造の最大高さSzが 2.0μm~15.0μmであることが好ましい。 Further, in the light transmitting and diffusing member of the present invention, the maximum height Sz of the uneven structure on the surface is preferably 2.0 μm to 15.0 μm.
 また、本発明の光透過拡散部材は、表面の凹凸構造の表面性状のアスペクト比Strが 0.8~1.0であることが好ましい。 Further, in the light transmitting and diffusing member of the present invention, it is preferable that the aspect ratio Str of the surface properties of the uneven structure on the surface is 0.8 to 1.0.
 本発明の光透過拡散部材を構成する材料は、透光性樹脂を75~95wt%含み、透光性粒子を5~25wt%含むものであることが好ましい。また、当該透光性樹脂と当該透光性粒子との屈折率の差は、0.03~0.30であることが好ましい。 The material constituting the light transmitting and diffusing member of the present invention preferably contains 75 to 95 wt% of translucent resin and 5 to 25 wt% of translucent particles. Moreover, the difference in refractive index between the translucent resin and the translucent particles is preferably 0.03 to 0.30.
 本発明の光透過拡散部材は、波長700nmの光透過量が65%以上、かつ受光角度60°における受光感度が0.12以上であることを特徴とする。 The light transmission and diffusion member of the present invention is characterized by having a light transmission amount of 65% or more at a wavelength of 700 nm and a light receiving sensitivity of 0.12 or more at a light receiving angle of 60°.
 また、本発明の光透過拡散部材は、透光性樹脂と透光性粒子を含む材料で構成され、該光透過拡散部材は、入光面となるA表面と出光面となるB表面とを有し、前記A表面または前記B表面の少なくともいずれかの表面は、複数の凹凸構造を有し、該凹凸構造の形状は、不定形のセル形状であることを特徴とする。  The light transmission and diffusion member of the present invention is made of a material containing a light-transmitting resin and light-transmitting particles. At least one of the A surface and the B surface has a plurality of uneven structures, and the shape of the uneven structure is an irregular cell shape. 
 また、本発明の光源ユニットは、光源と、該光源から導入される光を伝送する導光手段とを備え、前記導光手段の出光側近傍に光透過拡散部材を備える光源ユニットであって、 前記光透過拡散部材は、透光性樹脂と透光性粒子を含む材料で構成され、前記光透過拡散部材は、入光面となるA表面と出光面となるB表面とを有し、前記A表面または前記B表面のうち少なくとも片方の表面は、凹凸構造を有し、前記凹凸構造の二乗平均平方根勾配Sdqが0.8~2.0であることを特徴とする光透過拡散部材を備えることを特徴とする。 Further, a light source unit of the present invention comprises a light source, a light guide means for transmitting light introduced from the light source, and a light transmission diffusion member in the vicinity of the light exit side of the light guide means, The light transmission and diffusion member is made of a material containing a light-transmitting resin and light-transmitting particles, the light transmission and diffusion member has a surface A as a light entrance surface and a surface B as a light exit surface, At least one of the A surface and the B surface has an uneven structure, and the light transmission and diffusion member is characterized in that the root mean square gradient Sdq of the uneven structure is 0.8 to 2.0. It is characterized by
 本発明の透過拡散部材は、十分な光透過性と十分な光の広角拡散性の両方を得ることが可能であり、また、その光拡散性の波長依存性は小さく、拡散光の色調を変化させずに広角に光を拡散させることが可能である。 The transmission diffusion member of the present invention can obtain both sufficient light transmittance and sufficient wide-angle diffusion of light. It is possible to diffuse the light to a wide angle without
本発明の光透過拡散部材表面のSEM画像SEM image of the surface of the light transmission diffusion member of the present invention 従来のフロスト型拡散板表面のSEM画像SEM image of conventional frosted diffuser surface
本発明の光透過拡散部材は、透光性樹脂の中に透光性粒子が分散された材料を使用して形成される。光透過拡散部材は、入光面となるA表面と出光面となるB表面とを有しており、そのA表面またはB表面のうち、少なくとも一方の表面には複数の不規則な凹凸構造が形成されている。図1は、本発明の光透過拡散部材の一例について、表面の凹凸構造を撮影したSEM画像である。本発明の光透過拡散部材の凹凸構造の形状は、不定形のセル形状をしており、そのセルの壁は急峻な斜面を有する板状の形状となっている。セル形状は一つのセルが約2μm~約15μmの大きさで不規則に配置されている。一つのセルの大きさは、約3μm~約10μmであることがより好ましい。本発明の光透過拡散部材の表面の凹凸構造は、図2に示した従来から拡散部材として使用されてきたフロスト型拡散板の表面のSEM画像と比較して、特異な構造を有している。 The light transmitting and diffusing member of the present invention is formed using a material in which translucent particles are dispersed in a translucent resin. The light transmitting and diffusing member has a surface A serving as a light entrance surface and a surface B serving as a light exit surface, and at least one surface of the surface A or surface B has a plurality of irregular uneven structures. formed. FIG. 1 is an SEM image of the uneven structure of the surface of an example of the light transmitting and diffusing member of the present invention. The concave-convex structure of the light transmitting and diffusing member of the present invention has an irregular cell shape, and the cell wall has a plate-like shape with a steep slope. As for the cell shape, each cell is irregularly arranged with a size of about 2 μm to about 15 μm. More preferably, the size of one cell is about 3 μm to about 10 μm. The uneven structure on the surface of the light transmitting and diffusing member of the present invention has a unique structure compared to the SEM image of the surface of a frosted diffuser plate conventionally used as a diffusing member shown in FIG. .
 以下、A表面に凹凸構造を形成した場合を例に、本発明の光透過拡散部材について説明する。
 本発明の光透過拡散部材の表面に形成された凹凸構造は、光が照射される領域全体に形成されており、その形状や高さ、凹凸の間隔などが不規則に形成されている。表面の凹凸構造は、二乗平均平方根勾配Sdqが0.8~2.0であることが好ましく、0.8~1.5であることがより好ましい。二乗平均平方根勾配Spdとは、表面の凹凸形状の局所的な勾配の平均的な大きさを表すISO三次元表面性状パラメータのひとつで、この値が大きいほど急峻な表面であることを表している。この値が0.8を超えることは、表面の凹凸構造の形状が急峻な形状を有していることを示している。この凹凸構造を光が通過することにより、光が屈折し拡散する。B表面の凹凸構造の二乗平均平方根勾配Sdqが0.8~2.0であるとき、光の広角拡散性と、その光拡散性の波長依存性について、高い効果が得られる。表面の凹凸構造のセル形状のセル内側には、さらに微細な構造の凹凸を有していることが好ましい。例えば図1に示した例では、A表面の凹凸構造のセル形状のセル内側はB表面と平行な平坦面がほとんど存在していない。これにより、光が広角に拡散する効果がより高くなっていると推察される。
The light transmitting and diffusing member of the present invention will be described below taking as an example the case where the surface A is provided with an uneven structure.
The concave-convex structure formed on the surface of the light transmitting and diffusing member of the present invention is formed over the entire region irradiated with light, and the shape, height, intervals between the concaves and convexes, etc. are formed irregularly. The uneven structure on the surface preferably has a root-mean-square gradient Sdq of 0.8 to 2.0, more preferably 0.8 to 1.5. The root-mean-square gradient Spd is one of the ISO three-dimensional surface texture parameters that represents the average magnitude of the local gradient of the surface irregularities, and the larger this value, the steeper the surface. . When this value exceeds 0.8, it indicates that the shape of the uneven structure on the surface has a steep shape. When light passes through this uneven structure, the light is refracted and diffused. When the root-mean-square gradient Sdq of the concave-convex structure on the B surface is 0.8 to 2.0, a high effect can be obtained for the wide-angle diffusibility of light and the wavelength dependence of the light diffusivity. It is preferable that the inner side of the cell-shaped cell having the uneven surface structure has a finer unevenness structure. For example, in the example shown in FIG. 1, there is almost no flat surface parallel to the B surface inside the cell of the uneven structure on the A surface. It is presumed that this increases the effect of diffusing light over a wide angle.
 本発明の光透過拡散部材の表面に形成されたセル形状の凹凸構造は、セルの壁の高さが、一定以上の高さを有していることがより好ましい。その高さは、ISO三次元表面性状パラメータである最大高さSzを指標とするとよい。本発明の光透過拡散部材の凹凸構造が形成された表面の最大高さSzは、2.0μm~20.0μmであることが好ましく、5.0μm~15.0μmであることがより好ましい。凹凸構造の最大高さSzが一定以上の高さであることで、より広角拡散性が高められ、光の波長に依存せず光を広角に拡散させる効果が得られると推察される。また、凹凸構造の最大高さSzが大きすぎるとき、拡散した光が繰り返し凹凸構造を通過することになり、透過光が減衰する虞がある。 In the cell-shaped uneven structure formed on the surface of the light transmission and diffusion member of the present invention, it is more preferable that the height of the cell wall has a certain height or more. It is preferable to use the maximum height Sz, which is an ISO three-dimensional surface texture parameter, as an index for the height. The maximum height Sz of the uneven structure-formed surface of the light transmitting and diffusing member of the present invention is preferably 2.0 μm to 20.0 μm, more preferably 5.0 μm to 15.0 μm. When the maximum height Sz of the concave-convex structure is a certain height or more, it is presumed that the wide-angle diffusibility is further enhanced, and the effect of diffusing light over a wide angle without depending on the wavelength of light is obtained. Further, when the maximum height Sz of the uneven structure is too large, the diffused light repeatedly passes through the uneven structure, which may attenuate the transmitted light.
 本発明の光透過拡散部材の表面の凹凸構造は、ISO三次元表面性状パラメータである表面性状のアスペクト比Strが0.8~1.0であることが好ましい。表面性状のアスペクト比Strは、表面の異方性の強さを示すもので、本発明の光透過拡散部材の表面の凹凸構造は、等方性を有しているものが好ましい。 The uneven structure on the surface of the light transmitting and diffusing member of the present invention preferably has a surface texture aspect ratio Str, which is an ISO three-dimensional surface texture parameter, of 0.8 to 1.0. The aspect ratio Str of the surface texture indicates the strength of the anisotropy of the surface, and the uneven structure of the surface of the light transmitting and diffusing member of the present invention preferably has isotropy.
 本発明の光透過拡散部材を構成する材料には、透光性樹脂の中に透光性粒子が分散されて相分離構造を有する透光性樹脂組成物を用いることが好ましい。透光性樹脂組成物に光が入射すると、その内部では、透光性樹脂と透光性粒子の界面で光が屈折し、光の散乱が生じる。この透光性樹脂組成物を光透過拡散部材に加工することで、光透過拡散部材表面の凹凸構造による拡散効果をより高めることができ、広角に均一な拡散効果を得ることができる。本発明で使用する透光性樹脂組成物において透光性樹脂に分散させる透光性粒子は、1種類でも良いし、複数種類のものを混合して用いてもよい。本発明で使用する透光性樹脂組成物の配合比は、透光性樹脂が樹脂組成物全体の75~95wt%、透光性粒子は5~25wt%であることが好ましい。透光性粒子を複数種類用いた場合には、透光性樹脂組成物に含まれるすべての種類の透光性粒子の配合量を合計して、樹脂組成物全体に対する透光性粒子の配合比を算出する。透光性粒子が少ないとき光透過拡散部材内部の光拡散の効果が小さく、また透光性粒子が多いとき光の透過率が低下する傾向がある。 It is preferable to use a light-transmitting resin composition having a phase-separated structure in which light-transmitting particles are dispersed in a light-transmitting resin as the material constituting the light transmitting and diffusing member of the present invention. When light enters the translucent resin composition, the light is refracted at the interface between the translucent resin and the translucent particles, causing light scattering. By processing this translucent resin composition into a light transmitting and diffusing member, it is possible to further enhance the diffusion effect due to the uneven structure of the surface of the light transmitting and diffusing member, and it is possible to obtain a uniform diffusion effect over a wide angle. The light-transmitting particles dispersed in the light-transmitting resin in the light-transmitting resin composition used in the present invention may be of one type or may be used in combination of a plurality of types. As for the compounding ratio of the translucent resin composition used in the present invention, it is preferable that the translucent resin is 75 to 95 wt % of the total resin composition and the translucent particles are 5 to 25 wt %. When a plurality of types of light-transmitting particles are used, the blending ratio of the light-transmitting particles to the entire resin composition is obtained by totaling the blending amounts of all types of light-transmitting particles contained in the light-transmitting resin composition. Calculate When the amount of translucent particles is small, the effect of diffusing light inside the light transmitting and diffusing member is small, and when the amount of translucent particles is large, the light transmittance tends to decrease.
 光透過拡散部材の表面の凹凸構造は、光透過拡散部材に使用する透光性樹脂組成物をフィルムに成形して、その表面に直接レーザーなどで加工することが可能である。また、透光性樹脂組成物に対して離形性を有する樹脂材料または金属材料を用いて、その表面に転写したい凹凸構造パターンを加工し、それを成形型として透光性樹脂組成物を成形し、光透過拡散部材の表面の凹凸構造を作成することも可能である。透光性樹脂は、熱硬化性樹脂、熱可塑性樹脂のいずれであってもよい。 The uneven structure on the surface of the light transmission and diffusion member can be formed by molding the translucent resin composition used for the light transmission and diffusion member into a film and directly processing the surface with a laser or the like. In addition, using a resin material or metal material having releasability with respect to the light-transmitting resin composition, the concave-convex structure pattern to be transferred to the surface is processed, and the light-transmitting resin composition is molded using this as a mold. However, it is also possible to create an uneven structure on the surface of the light transmitting and diffusing member. The translucent resin may be either a thermosetting resin or a thermoplastic resin.
 本発明の光透過拡散部材に用いる透光性樹脂と透光性粒子とは、透光性樹脂と透光性粒子との屈折率の差が、0.03~0.30であることが好ましい。 The difference in refractive index between the translucent resin and the translucent particles used in the light transmission diffusion member of the present invention is preferably 0.03 to 0.30. .
 光透過拡散部材が、耐熱性を要する用途、医療系、薬品系などの用途で使用される場合、透光性樹脂として、耐熱性、耐紫外線性、耐薬品性、クリーン性などに優れるフッ素樹脂を用いることは有用である。
本発明の透光性樹脂として使用可能なフッ素樹脂の具体例は、テトラフルオロエチレン-フルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、エチレン-テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン-クロロトリフルオロエチレンコポリマー(ECTFE)、テトラフルオロエチレン‐ヘキサフルオロプロピレン‐ビニリデンフルオライド共重合体(THV)などの熱溶融性フッ素樹脂、ポリテトラフルオロエチレン(PTFE)である。透光性が高い樹脂が適している。
Fluoropolymers with excellent heat resistance, UV resistance, chemical resistance, cleanliness, etc., are used as translucent resins when the light transmitting and diffusing materials are used in applications that require heat resistance, such as medical and chemical applications. It is useful to use
Specific examples of fluororesins that can be used as the translucent resin of the present invention include tetrafluoroethylene-fluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), and ethylene-tetrafluoro Ethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), ethylene-chlorotrifluoroethylene copolymer (ECTFE), tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer (THV), etc. Fluororesin, polytetrafluoroethylene (PTFE). A resin with high translucency is suitable.
 透光性樹脂組成物に用いられる透光性粒子材料として、樹脂材料、または無機材料を用いることが可能である。樹脂材料としては、フッ素樹脂、ポリオレフィン樹脂(ポリメチルペンテンなど)、アクリル樹脂などの熱可塑性樹脂、高融点の熱可塑性樹脂やPTFEまたは熱硬化させた熱硬化性樹脂などのパウダーなどが上げられる。無機材料としては、シリカ(SiO2)などを使用することが可能である。透光性樹脂に透光性粒子を分散させる方法としては、透光性樹脂と透光性粒子材料をブレンドして2軸押出し機などに投入して溶融混錬する、またはブレンドして十分に攪拌し硬化させる、などの方法を用いることができる。 A resin material or an inorganic material can be used as the translucent particle material used in the translucent resin composition. Examples of the resin material include thermoplastic resins such as fluorine resins, polyolefin resins (polymethylpentene, etc.), acrylic resins, high melting point thermoplastic resins, powders such as PTFE, and thermoset thermosetting resins. Silica (SiO2) or the like can be used as the inorganic material. As a method for dispersing the translucent particles in the translucent resin, the translucent resin and the translucent particle material are blended and fed into a twin-screw extruder or the like for melt kneading, or blended sufficiently. A method such as stirring and curing can be used.
 本発明の光透過拡散部材を、透光性樹脂を熱可塑性フッ素樹脂として作成した場合、透光性粒子を分散させた透光性樹脂組成物を作成した後、成形型を使用して射出成型するか、またはと構成樹脂組成物をフィルム状とした後に、そのフィルムを成形型にプレスして成形するなどの方法で光透過拡散部材を作成することができる。本発明の光透過拡散部材は、強度を高める、または厚みを調整する、等の目的で、透明性が高い樹脂やガラス等と積層することが可能である。積層の状態は、一体化させたものに限らず、重ね合わせて固定したものを含む。 When the light transmitting and diffusing member of the present invention is produced by using a thermoplastic fluororesin as a light transmitting resin, a light transmitting resin composition in which light transmitting particles are dispersed is prepared, and then injection molding is performed using a mold. Alternatively, the light transmitting and diffusing member can be produced by forming the constituent resin composition into a film and then pressing the film into a mold for molding. The light transmission and diffusion member of the present invention can be laminated with highly transparent resin, glass, or the like for the purpose of increasing strength or adjusting thickness. The lamination state is not limited to an integrated state, but includes a state in which the layers are overlapped and fixed.
本発明の光透過拡散部材は、光透過性と光の広角拡散性が高いだけではなく、光拡散性の波長依存性が小さいため、拡散光の色調を変化させずに広角に光を照射する光源ユニットに有用である。例えば、光源と、その光源から導入される光を伝送するライトガイド(導光手段)を備え、その導光手段を介して光を照射する対象物へ照射光を供給する光源ユニットにおいて、導光手段の出光側近傍に本発明の光透過拡散部材を配置するとよい。 The light transmitting and diffusing member of the present invention not only has high light transmittance and wide-angle diffusibility of light, but also has small wavelength dependence of light diffusivity, so that light can be irradiated at a wide angle without changing the color tone of diffused light. Useful for light source units. For example, in a light source unit that includes a light source and a light guide (light guide means) that transmits light introduced from the light source, and supplies irradiation light to an object to be irradiated with light through the light guide means, the light guide It is preferable to dispose the light transmitting and diffusing member of the present invention in the vicinity of the light exit side of the means.
 以下、透光性樹脂にFEP、透光性粒子にETFEを用いた場合を例に、実施例により本発明が詳細に説明されるが、本発明はこれらの実施例に限定されない。 Hereinafter, the present invention will be described in detail by way of examples using FEP as the light-transmitting resin and ETFE as the light-transmitting particles, but the present invention is not limited to these examples.
実施例1~5及び比較例1、2
(透光性樹脂組成物の作成)
 テトラフルオロエチレン-ヘキサフルオロプロピレン-パーフルオロアルキルビニルエーテル共重合体(三井デュポンフロロケミカル製FEP-130J)とエチレン‐テトラフルオロエチレン共重合体(旭硝子製 ETFE C-55AP)を、表1に記載した配合比で、ローラミキサ型混練装置(東洋精機製作所製ラボプラストミル モデル 30C120 )に投入し、温度340℃で10分間混練した。その後、得られた透光性樹脂組成物を当該混練装置から取り出し、340℃で熱プレスして、フィルムに成形した。
(光透過拡散部材の作成)
 成形した樹脂組成物のフィルムを、凹凸構造パターンが形成された金型に固定し、320℃でプレスしてフィルム表面に凹凸構造を転写し、光透過拡散部材を得た。
Examples 1 to 5 and Comparative Examples 1 and 2
(Preparation of translucent resin composition)
A tetrafluoroethylene-hexafluoropropylene-perfluoroalkyl vinyl ether copolymer (FEP-130J manufactured by Mitsui DuPont Fluorochemical) and an ethylene-tetrafluoroethylene copolymer (ETFE C-55AP manufactured by Asahi Glass) were blended as shown in Table 1. The mixture was put into a roller mixer type kneading device (Laboplastomill model 30C120 manufactured by Toyo Seiki Seisakusho) and kneaded at a temperature of 340°C for 10 minutes. After that, the resulting translucent resin composition was taken out from the kneading device and hot-pressed at 340° C. to form a film.
(Creation of light transmission diffusion member)
The molded film of the resin composition was fixed in a mold having a concave-convex structure pattern, and pressed at 320° C. to transfer the concave-convex structure to the film surface to obtain a light transmitting and diffusing member.
(ISO三次元表面性状パラメータの測定)
 実施例、比較例で得られた光透過拡散部材の表面の凹凸構造について、三次元表面性状測定を行った。測定にはキーエンス社製 VK-X3000を使用し、光源は白色LEDが使用され、観察倍率を50倍として、測定領域を200X200μmの領域とした。表面フィルター処理にはガウシアンフィルタを適用し、ネスティングインデックスは以下の条件とした。
 Sフィルタ: 0.8μm
 Lフィルタ: 0.01mm
 Fオペレーション(形状補正): なし
 
計測値は、装置付属の解析ソフトにより上記フィルタ条件で処理され、ISO三次元表面性状パラメータ各種が得られる。
測定は、光透過拡散部材の表面で無作為に数か所測定し、計測値として得られた数値を平均し、測定値として用いた。測定して得られた測定値を表1に示す。
(Measurement of ISO three-dimensional surface texture parameters)
Three-dimensional surface properties were measured for the uneven structures of the surfaces of the light transmitting and diffusing members obtained in Examples and Comparative Examples. For the measurement, a Keyence VK-X3000 was used, a white LED was used as the light source, the observation magnification was 50 times, and the measurement area was 200×200 μm. A Gaussian filter was applied to the surface filtering, and the nesting index was set as follows.
S filter: 0.8 μm
L filter: 0.01mm
F operation (shape correction): None
The measured values are processed under the above filter conditions by analysis software attached to the apparatus, and various ISO three-dimensional surface texture parameters are obtained.
The measurements were made at random on the surface of the light transmission diffusion member, and the numerical values obtained as the measured values were averaged and used as the measured values. Table 1 shows the measured values obtained by the measurement.
(光透過拡散部材の透過率の測定)
 実施例、比較例で得られた光透過拡散部材について、その光透過率を測定した。測定には日立ハイテク社製 U-4100形分光光度計を使用し、以下の条件で測定を行った。
測定波長: 240~1000nm
使用積分球: φ60 高感度積分球(スペクトラロン)
スキャンスピード: 300nm/min
サンプリング間隔: 1.00nm
スリット : 8.00nm
 
各測定波長において、測定した光透過率を光透過性として扱い、光透過率が65%以上であるものを十分な光透過性を有するものとして評価した。
光透過率を測定した結果を表1に示す。
(Measurement of transmittance of light transmission diffusion member)
The light transmittance of the light transmitting and diffusing members obtained in Examples and Comparative Examples was measured. A U-4100 spectrophotometer manufactured by Hitachi High-Tech was used for the measurement under the following conditions.
Measurement wavelength: 240-1000nm
Integrating sphere used: φ60 high sensitivity integrating sphere (Spectralon)
Scan speed: 300nm/min
Sampling interval: 1.00 nm
Slit: 8.00 nm

At each measurement wavelength, the measured light transmittance was treated as the light transmittance, and those with a light transmittance of 65% or more were evaluated as having sufficient light transmittance.
Table 1 shows the results of measuring the light transmittance.
(光透過拡散部材の光拡散性の測定)
 実施例、比較例で得られた光透過拡散部材について、その光透過拡散率を測定した。測定には、日立ハイテク社製 U-4100形分光光度計を使用し、角度可変絶対反射付属装置を使用した。測定条件を以下の条件として測定を行った。
測定波長: 350~800nm
受光角度: 0°, 10°, 20°, 30°, 40°, 60°, 80°
使用積分球: φ60 標準積分球(BaSO4)
スキャンスピード: 300nm/min
サンプリング間隔: 1.00nm
スリット : 8.00nm
 
光の広角拡散性の評価は、光の入射角に対して受光角度60°における受光感度(拡散性60°)が0.12以上のものを、広角拡散性に優れるものとして評価した。また、波長700nmで測定した受光角度60°における受光感度(拡散性60° 700nm)と、波長435nmで測定した受光角度60°における受光感度(拡散性60° 435nm)の比を、光拡散性の波長依存性(700nm/435nm)とした。波長依存性は、1.00±0.10を好ましい範囲として評価した。 
測定した結果を表1に示す。
(Measurement of light diffusion of light transmission diffusion member)
The light transmission diffusivity was measured for the light transmission diffusion members obtained in Examples and Comparative Examples. For the measurement, a U-4100 type spectrophotometer manufactured by Hitachi High-Tech Co., Ltd. was used, and an angle-variable absolute reflection attachment was used. The measurement was performed under the following measurement conditions.
Measurement wavelength: 350-800nm
Light receiving angle: 0°, 10°, 20°, 30°, 40°, 60°, 80°
Integrating sphere used: φ60 standard integrating sphere (BaSO4)
Scan speed: 300nm/min
Sampling interval: 1.00 nm
Slit: 8.00 nm

In the evaluation of wide-angle light diffusivity, a light receiving sensitivity (diffusivity 60°) of 0.12 or more at a light-receiving angle of 60° with respect to the incident angle of light was evaluated as excellent in wide-angle diffusivity. In addition, the ratio of the light receiving sensitivity at a light receiving angle of 60 ° measured at a wavelength of 700 nm (diffusivity 60 ° 700 nm) and the light receiving sensitivity at a light receiving angle of 60 ° measured at a wavelength of 435 nm (diffusivity 60 ° 435 nm) is Wavelength dependence (700 nm/435 nm) was used. The wavelength dependence was evaluated with a preferable range of 1.00±0.10.
Table 1 shows the measurement results.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 表1の結果から、実施例1~5の光拡散透過部材は、二乗平均平方根勾配Sdqが0.8~2.0の範囲であり、透過率、拡散性60°、波長依存性のいずれもが両立されていた。比較例1は、二乗平均平方根勾配Sdqは0.96であったが、透光性粒子配合比が0%であり、拡散性60°が低く広角拡散性が十分に得られなかった。比較例2は、透光性粒子配合比が20%であったが、二乗平均平方根勾配Sdqは0.17であり、波長700nmの拡散性60°が小さく、拡散性の波長依存性が大きく表れてしまっていた。 From the results of Table 1, the light diffusing and transmitting members of Examples 1 to 5 have a root-mean-square gradient Sdq in the range of 0.8 to 2.0, and all of the transmittance, the diffusivity of 60°, and the wavelength dependence were compatible. Comparative Example 1 had a root-mean-square gradient Sdq of 0.96, but a light-transmitting particle blending ratio of 0% and a low diffusivity of 60°, resulting in insufficient wide-angle diffusivity. In Comparative Example 2, the blending ratio of translucent particles was 20%, but the root-mean-square gradient Sdq was 0.17. It was gone.
 本発明の透過拡散部材は、十分な光透過性と十分な光の広角拡散性の両方を得ることが可能であり、また、その光拡散性の波長依存性が小さいため、点光源から広角に光を照射し、拡散光の色調を変化させずに画像を確認する必要がある内視鏡等の用途に有用である。また、照度ムラを発生させないため、例えば均一なUV照射が必要な殺菌や樹脂硬化などの用途にも有用である。 The transmission diffusion member of the present invention can obtain both sufficient light transmittance and sufficient wide-angle diffusion of light, and the wavelength dependency of the light diffusion is small. It is useful for applications such as endoscopes that need to irradiate light and confirm images without changing the color tone of the diffused light. In addition, since it does not cause illuminance unevenness, it is useful for applications such as sterilization and resin curing that require uniform UV irradiation.

Claims (10)

  1.  透光性樹脂と透光性粒子を含む材料で構成される光透過拡散部材において、
     該光透過拡散部材は、入光面となるA表面と出光面となるB表面とを有し、
     前記A表面または前記B表面のうち少なくとも片方の表面は、凹凸構造を有し、
    前記凹凸構造の二乗平均平方根勾配Sdqが0.8~2.0であることを特徴とする光透過拡散部材。
     
    A light transmission diffusion member made of a material containing a light-transmitting resin and light-transmitting particles,
    The light transmitting and diffusing member has a surface A serving as a light entrance surface and a surface B serving as a light exit surface,
    At least one of the A surface and the B surface has an uneven structure,
    A light transmitting and diffusing member, wherein the uneven structure has a root-mean-square gradient Sdq of 0.8 to 2.0.
  2.  前記凹凸構造の最大高さSzが 2.0μm~15.0μmであることを特徴とする、請求項1に記載の光透過拡散部材。
     
    2. The light transmitting and diffusing member according to claim 1, wherein the maximum height Sz of said uneven structure is 2.0 μm to 15.0 μm.
  3.  前記凹凸構造の表面性状のアスペクト比Strが 0.8~1.0であることを特徴とする、請求項1に記載の光透過拡散部材。
     
    2. The light transmitting and diffusing member according to claim 1, wherein the aspect ratio Str of the surface texture of said uneven structure is 0.8 to 1.0.
  4.  前記光透過拡散部材を構成する材料は、前記透光性樹脂を75~95wt%含み、前記透光性粒子を5~25wt%含むものであることを特徴とする、請求項1に記載の光透過拡散部材。
     
    2. The light transmission diffusion according to claim 1, wherein the material constituting the light transmission diffusion member contains 75 to 95 wt % of the light transmitting resin and 5 to 25 wt % of the light transmitting particles. Element.
  5.  前記透光性樹脂と前記透光性粒子との屈折率の差が、0.03~0.30であることを特徴とする請求項1に記載の光透過拡散部材。
     
    2. The light transmitting and diffusing member according to claim 1, wherein a difference in refractive index between said translucent resin and said translucent particles is 0.03 to 0.30.
  6.  前記透光性樹脂が、フッ素樹脂であることを特徴とする請求項1に記載の光透過拡散部材。
     
    2. The light transmitting and diffusing member according to claim 1, wherein the translucent resin is a fluororesin.
  7.  前記透光性粒子が、フッ素樹脂であることを特徴とする請求項6に記載の光透過拡散部材。
     
    7. The light transmitting and diffusing member according to claim 6, wherein the translucent particles are fluororesin.
  8.  波長700nmの光透過量が65%以上、かつ受光角度60°における受光感度が0.12以上であることを特徴とする、請求項1~7のいずれか一項に記載の光透過拡散部材。
     
    8. The light transmitting and diffusing member according to claim 1, wherein the amount of light transmitted at a wavelength of 700 nm is 65% or more, and the light receiving sensitivity at a light receiving angle of 60° is 0.12 or more.
  9.  透光性樹脂と透光性粒子を含む材料で構成される光透過拡散部材において、
     該光透過拡散部材は、入光面となるA表面と出光面となるB表面とを有し、
     前記A表面または前記B表面の少なくともいずれかの表面は、複数の凹凸構造を有し、
     該凹凸構造の形状は、不定形のセル形状であることを特徴とする光透過拡散部材。
     
    A light transmission diffusion member made of a material containing a light-transmitting resin and light-transmitting particles,
    The light transmitting and diffusing member has a surface A serving as a light entrance surface and a surface B serving as a light exit surface,
    At least one of the A surface and the B surface has a plurality of uneven structures,
    The light transmitting and diffusing member, wherein the uneven structure has an irregular cell shape.
  10.  光源と、該光源から導入される光を伝送する導光手段とを備え、前記導光手段の出光側近傍に光透過拡散部材を備える光源ユニットであって、
     前記光透過拡散部材は、透光性樹脂と透光性粒子を含む材料で構成され、
     前記光透過拡散部材は、入光面となるA表面と出光面となるB表面とを有し、
     前記A表面または前記B表面のうち少なくとも片方の表面は、凹凸構造を有し、
    前記凹凸構造の二乗平均平方根勾配Sdqが0.8~2.0であることを特徴とする光透過拡散部材を備える光源ユニット。

     
    A light source unit comprising a light source, a light guide means for transmitting light introduced from the light source, and a light transmission diffusion member in the vicinity of the light exit side of the light guide means,
    The light transmission and diffusion member is made of a material containing a translucent resin and translucent particles,
    The light transmission and diffusion member has a surface A serving as a light entrance surface and a surface B serving as a light exit surface,
    At least one of the A surface and the B surface has an uneven structure,
    A light source unit comprising a light transmitting and diffusing member, wherein a root-mean-square gradient Sdq of the concave-convex structure is 0.8 to 2.0.

PCT/JP2023/004460 2022-02-10 2023-02-09 Light transmission/diffusion member and light source unit using same WO2023153492A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023580327A JPWO2023153492A1 (en) 2022-02-10 2023-02-09

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-019910 2022-02-10
JP2022019910 2022-02-10

Publications (1)

Publication Number Publication Date
WO2023153492A1 true WO2023153492A1 (en) 2023-08-17

Family

ID=87564481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004460 WO2023153492A1 (en) 2022-02-10 2023-02-09 Light transmission/diffusion member and light source unit using same

Country Status (2)

Country Link
JP (1) JPWO2023153492A1 (en)
WO (1) WO2023153492A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008026540A1 (en) * 2006-08-29 2008-03-06 Takiron Co., Ltd. Light diffusing sheet and backlight unit
JP2012242636A (en) * 2011-05-20 2012-12-10 Dainippon Printing Co Ltd Light diffusion sheet, surface light source device, and image display device
WO2012173258A1 (en) * 2011-06-17 2012-12-20 三菱レイヨン株式会社 Mould having an uneven surface structure, optical article, manufacturing method therefor, transparent base material for surface-emitting body and surface-emitting body
WO2013015039A1 (en) * 2011-07-26 2013-01-31 株式会社きもと Electrostatic-capacitance-type touch panel and anti-glare film
JP2015069759A (en) * 2013-09-27 2015-04-13 凸版印刷株式会社 Illuminating device and display device
JP2019066842A (en) * 2017-10-02 2019-04-25 凸版印刷株式会社 Liquid crystal panel and method for manufacturing liquid crystal panel
WO2020075835A1 (en) * 2018-10-11 2020-04-16 大日本印刷株式会社 Resin sheet and image display device using same, and transfer sheet
JP2020526794A (en) * 2017-07-12 2020-08-31 スリーエム イノベイティブ プロパティズ カンパニー Faceted microstructured surface

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008026540A1 (en) * 2006-08-29 2008-03-06 Takiron Co., Ltd. Light diffusing sheet and backlight unit
JP2012242636A (en) * 2011-05-20 2012-12-10 Dainippon Printing Co Ltd Light diffusion sheet, surface light source device, and image display device
WO2012173258A1 (en) * 2011-06-17 2012-12-20 三菱レイヨン株式会社 Mould having an uneven surface structure, optical article, manufacturing method therefor, transparent base material for surface-emitting body and surface-emitting body
WO2013015039A1 (en) * 2011-07-26 2013-01-31 株式会社きもと Electrostatic-capacitance-type touch panel and anti-glare film
JP2015069759A (en) * 2013-09-27 2015-04-13 凸版印刷株式会社 Illuminating device and display device
JP2020526794A (en) * 2017-07-12 2020-08-31 スリーエム イノベイティブ プロパティズ カンパニー Faceted microstructured surface
JP2019066842A (en) * 2017-10-02 2019-04-25 凸版印刷株式会社 Liquid crystal panel and method for manufacturing liquid crystal panel
WO2020075835A1 (en) * 2018-10-11 2020-04-16 大日本印刷株式会社 Resin sheet and image display device using same, and transfer sheet

Also Published As

Publication number Publication date
JPWO2023153492A1 (en) 2023-08-17

Similar Documents

Publication Publication Date Title
TWI524096B (en) An optical sheet for a liquid crystal display device, and a backlight unit using the same
CN100504462C (en) Reflective polarizer containing polymer fibers
CN100349027C (en) Light emitting device
CN108349158B (en) Method for producing an optical component by 3D printing, optical component and illumination device
JP2005538395A5 (en)
KR101530452B1 (en) Methods for manufacturing light-diffusing element and polarizing plate with light-diffusing element, and light-diffusing element and polarizing plate with light-diffusing element obtained by same methods
KR101430757B1 (en) Light diffuser plate, surface emission light source apparatus and liquid crystal display
KR20150074013A (en) Multi-layer screen composites
US9304232B2 (en) Sheet for LED light cover application
JP5615701B2 (en) Light guide surface structure
JPWO2015146959A1 (en) Reflective sheet, reflection unit for surface light source device, and surface light source device
JP2005345873A (en) Light diffusion sheet and its manufacturing method
WO2023153492A1 (en) Light transmission/diffusion member and light source unit using same
JPH06123802A (en) Transmission type light diffusion plate and its production
TWI444389B (en) Light diffusion element
SK151597A3 (en) Flexible optical waveguide for lateral lighting application
JP2008015442A (en) Extruded polymer plate for anisotropic light scattering having high dimensional stability
JP4893331B2 (en) Method for producing light diffusing sheet
JP7473293B2 (en) Light diffusion plates and three-dimensional molded products
TWI526751B (en) Viewing angle improvement film and liquid crystal display device
JP2010107867A (en) Optical element and optical device using the same
WO2013062122A1 (en) Light diffusion film, method of specifying surface shape of light diffusion film, and recording medium on which surface shape specification program is recorded
JP2016206581A (en) Light diffusion film
JP7082488B2 (en) Polymer film and light diffusing film for displays using it
JP4914140B2 (en) Light diffusing sheet, manufacturing method thereof, and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23752954

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023580327

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE