JP2008015442A - Extruded polymer plate for anisotropic light scattering having high dimensional stability - Google Patents

Extruded polymer plate for anisotropic light scattering having high dimensional stability Download PDF

Info

Publication number
JP2008015442A
JP2008015442A JP2006214821A JP2006214821A JP2008015442A JP 2008015442 A JP2008015442 A JP 2008015442A JP 2006214821 A JP2006214821 A JP 2006214821A JP 2006214821 A JP2006214821 A JP 2006214821A JP 2008015442 A JP2008015442 A JP 2008015442A
Authority
JP
Japan
Prior art keywords
glass fiber
polymer
diffuser according
inorganic glass
diffuser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006214821A
Other languages
Japanese (ja)
Inventor
Alexander Laschitsch
ラシチュ アレクサンダー
Markus Parusel
パルーゼル マルクス
Herbert Groothues
グローテュス ヘルベルト
Michael Dr Meier-Kaiser
ミヒャエル マイアー−カイザー
Volker Mende
メンデ フォルカー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Roehm GmbH Darmstadt
Original Assignee
Evonik Roehm GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Roehm GmbH filed Critical Evonik Roehm GmbH
Publication of JP2008015442A publication Critical patent/JP2008015442A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0257Diffusing elements; Afocal elements characterised by the diffusing properties creating an anisotropic diffusion characteristic, i.e. distributing output differently in two perpendicular axes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2333/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical diffuser which has improved scattering behavior, furthermore has an excellent mechanical characteristic and accordingly has no problem in processing. <P>SOLUTION: The optical diffuser is constituted of a transparent polymer and glass fiber and is obtained by an extrusion method, wherein the inorganic glass fiber and the polymer are mixed with a mass ratio between 1:10 and 1:10000 and an obtained mixture is extruded. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、拡散体及び/又はガラス繊維を配合導入した後に、半製品の形で押し出された透明プラスチック(透明ポリマー)材料に関する。該プラスチック成形体は、好ましい拡散方向で優れた光拡散特性を有するのと同時に、良好な機械的特性を有する。   The present invention relates to a transparent plastic (transparent polymer) material extruded in the form of a semi-finished product after the introduction of a diffuser and / or glass fiber. The plastic molded body has excellent mechanical properties as well as excellent light diffusion characteristics in a preferable diffusion direction.

異方性光拡散を達成するために、既に種々の原理が用いられている。その際、本発明に関して最も重要なのは、以下の:
1. ポリマー基材にそれとは別のポリマー材料の球状拡散ビーズが含まれるものを、機械的に一軸延伸すること、
2. ガラス繊維がポリマー基材中で互いに平行に配向していること
である。
Various principles have already been used to achieve anisotropic light diffusion. The most important aspects of the present invention are as follows:
1. Mechanically uniaxially stretching a polymer substrate containing spherical diffusion beads of a different polymer material,
2. The glass fibers are oriented parallel to each other in the polymer substrate.

主として3M社によって、球状の拡散粒子がポリマー基材中に配合されており、これらの拡散粒子が基材とは異なる屈折率を有するという構成が調査され、そして提案された。引き続きポリマープレート全体を一軸延伸すると、それと同時に球状粒子の延伸がもたらされ、従って該粒子は楕円形となる。そうして、この形状が材料全体の異方性拡散挙動をもたらす。   A configuration was investigated and proposed, primarily by 3M, in which spherical diffusing particles were formulated in a polymer substrate, and these diffusing particles had a different refractive index than the substrate. Subsequent uniaxial stretching of the entire polymer plate simultaneously results in stretching of the spherical particles, thus making the particles elliptical. This shape thus leads to anisotropic diffusion behavior throughout the material.

WO02/057384号(3M)は、接着剤とその中に埋設された長手方向構造物からなるポリマー組成物を記載している。その接着剤は光学的等方性であり、両者の材料の屈折率は少なくとも0.01だけ相違している。長手方向構造物はプラスチックからなる。   WO 02/057384 (3M) describes a polymer composition consisting of an adhesive and a longitudinal structure embedded therein. The adhesive is optically isotropic and the refractive indices of the two materials differ by at least 0.01. The longitudinal structure is made of plastic.

WO02/071148号(3M)は、長手方向構造物が分散されて入っている接着剤が施与されたスクリーンを記載している。その長手方向構造物はWO02/057384号におけるものと同じである。   WO 02/071148 (3M) describes a screen provided with an adhesive in which longitudinal structures are dispersed. Its longitudinal structure is the same as in WO 02/057384.

WO2004/106989号(Eastman Kodak)は、異方性光学特性を有する2種のポリマーからのポリマーフィルムを記載している。長手方向部材(longitudinale Teil)による重み付き光屈折(gewichteten Lichtbrechung)の他に、光屈折効果は、前記フィルム表面にある三次元構造によって強められる。   WO 2004/106989 (Eastman Kodak) describes polymer films from two polymers with anisotropic optical properties. In addition to weighted refraction by a longitudinal member (longitudinale Teil), the photorefractive effect is enhanced by a three-dimensional structure on the film surface.

US−OS2005/0036199号(3M)は、スクリーン上に接着剤が存在し、その接着剤中に幾らかの縦長構造物が存在するスクリーンを記載している。その接着剤と縦長構造の屈折率は、少なくとも0.01だけ相違する。場合により、偏光子、フレネルレンズ又は反射体が存在してもよい。   US-OS 2005/0036199 (3M) describes a screen in which an adhesive is present on the screen and some longitudinal structures are present in the adhesive. The refractive index of the adhesive and the vertically long structure differ by at least 0.01. In some cases, a polarizer, a Fresnel lens or a reflector may be present.

US−PS5,940,211号(US Philips Corp.)は、通り抜けた光を偏光し、そうして光強度の異方性分布を達成する光学系を記載している。   US-PS 5,940,211 (US Philips Corp.) describes an optical system that polarizes light passing through and thus achieves an anisotropic distribution of light intensity.

US−PS6,123,877号(Nashua Corporation)は、異方性光線を生成するにあたり、異なる屈折率を有するポリマー基材により異方性光線に導く方法を記載している。その屈折率の相違は、球状粒子によって生ずる。   US-PS 6,123,877 (Nashua Corporation) describes a method for directing anisotropic light with polymer substrates having different refractive indices in generating anisotropic light. The difference in refractive index is caused by spherical particles.

US−OS2003/0175466号(Sughrue Mion)は、ポリマー基材中に桿状構造を整列させることによって達成された異方性光拡散を有するフィルムを記載している。該桿状体は、一方向に配向しており、そして桿状体のその軸方向の屈折率と基材の相応の方向での屈折率とは異なる。該桿状体は、200μm未満の直径と800μmより長い長さとを有する。桿状体は、液晶芳香族ポリエステルからなる。異方性プラスチック成形体の機械的特性の改善は先行技術においては議論されていない。   US-OS 2003/0175466 (Suggle Mion) describes a film with anisotropic light diffusion achieved by aligning a cage structure in a polymer substrate. The rod is oriented in one direction, and the refractive index in the axial direction of the rod and the refractive index in the corresponding direction of the substrate are different. The rod has a diameter less than 200 μm and a length longer than 800 μm. The rod-shaped body is made of a liquid crystal aromatic polyester. Improvements in the mechanical properties of anisotropic plastic moldings are not discussed in the prior art.

European Polymer Journal 41(2005)1729−1737.Kimは、ガラス繊維で改質された基材PMMAからなる拡散板に対して熱物理的特性、湿度及び剛性が及ぼす影響を記載している。   European Polymer Journal 41 (2005) 1729-1737. Kim describes the effect of thermophysical properties, humidity and stiffness on a diffuser plate made of substrate PMMA modified with glass fibers.

Kimは、ガラス繊維の添加が前記の周囲条件の作用下に反り(撓み)を劇的に低減することを見出した。そのうえ、光学特性に対する影響がごく僅かに過ぎないことが確認でき、特に異方性拡散特性は見られていない。   Kim found that the addition of glass fiber dramatically reduces warpage (deflection) under the action of the ambient conditions described above. In addition, it can be confirmed that the influence on the optical characteristics is negligible, and no anisotropic diffusion characteristics are observed.

以下の特性を見出している:
1. 貯蔵弾性率は、ガラス繊維の割合が高まるにつれて増大する(T=25℃で2.2→3.2GPa)。
The following properties are found:
1. The storage modulus increases as the proportion of glass fibers increases (2.2 → 3.2 GPa at T = 25 ° C.).

2. ガラス転移温度は上方推移する(T111.7→113.3℃(20%のガラス繊維割合))。 2. The glass transition temperature goes upward (T g 111.7 → 113.3 ° C. (20% glass fiber ratio)).

3. 吸水性が大きく低下する(24時間:0.4%→0.2%)。   3. Water absorption is greatly reduced (24 hours: 0.4% → 0.2%).

4. 反りが低下する。
WO02/057384号 WO02/071148号 WO2004/106989号 US−OS2005/0036199号 US−PS5,940,211号 US−PS6,123,877号 US−OS2003/0175466号 European Polymer Journal 41(2005)1729−1737.Kim
4). Warpage decreases.
WO02 / 057384 WO02 / 071148 WO2004 / 106989 US-OS2005 / 0036199 US-PS 5,940,211 US-PS 6,123,877 US-OS 2003/0175466 European Polymer Journal 41 (2005) 1729-1737. Kim

先行技術を勘案すれば、本発明の課題は、改善された拡散挙動を有し、更になおも良好な機械的特性を有し、従って加工に問題がない更なる光学的拡散体を提供することであった。更なる課題は、異方性プラスチック成形体の簡単かつ廉価な製造方法を提供することであった。   In view of the prior art, the object of the present invention is to provide a further optical diffuser which has an improved diffusion behavior and still has good mechanical properties and thus has no processing problems. Met. A further problem was to provide a simple and inexpensive method for producing anisotropic plastic moldings.

前記課題は、請求項1に記載される透明ポリマーとガラス繊維から構成される拡散体であって、無機ガラス繊維とポリマーとを質量比1:10〜1:10000で混合し、そして押し出すことを特徴とする請求項10記載の押出法により得られる光拡散体によって解決される。   The subject is a diffuser composed of the transparent polymer and glass fiber according to claim 1, wherein the inorganic glass fiber and the polymer are mixed at a mass ratio of 1:10 to 1: 10000 and extruded. This is solved by a light diffuser obtained by the extrusion method according to claim 10.

透明プラスチックとしては、ポリメチルメタクリレート(PMMA)、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)、シクロオレフィン系コポリマー(COC)、ポリスチレン(PS)、ポリエステル、ポリオレフィン及び前記のモノマーをそれぞれ組み合わせたコポリマーが該当する。場合により、プラスチック成形材料は衝撃強さも備えていてよい。特に、透明のPMMA成形材料の使用が好ましい。   Transparent plastics include polymethyl methacrylate (PMMA), polycarbonate (PC), polyethylene terephthalate (PET), cycloolefin copolymer (COC), polystyrene (PS), polyester, polyolefin, and copolymers that combine the above monomers. To do. In some cases, the plastic molding material may also have impact strength. In particular, the use of a transparent PMMA molding material is preferred.

使用されるガラス繊維は、A−ガラス、C−ガラス、D−ガラス、E−ガラス、AR−ガラス、ECR−ガラス及びR−ガラスからなり、それらは組成の点で、従って屈折率の点で互いに相違する。市販されている製品は、更に繊維長及び直径の点で、そして種々のポリマー基材との適合性を保証する特定の被覆(塗装)の点で相違する。これらのガラス繊維は、例えばPPG Industries Glass&Fiber GmbH社又はSaint Gobain社から入手できる。   The glass fibers used consist of A-glass, C-glass, D-glass, E-glass, AR-glass, ECR-glass and R-glass, which are in terms of composition and thus in refractive index. Different from each other. Commercially available products differ further in terms of fiber length and diameter, and in particular coatings (coating) that ensure compatibility with various polymer substrates. These glass fibers are available from, for example, PPG Industries Glass & Fiber GmbH or Saint Gobain.

本発明によれば、ポリマーと無機ガラス繊維との間の屈折率の差は、少なくとも0.01、有利には少なくとも0.05であってよい。   According to the invention, the difference in refractive index between the polymer and the inorganic glass fiber may be at least 0.01, preferably at least 0.05.

本願発明で使用される無機ガラス繊維の直径は、1.0〜100μmであってよい。更に無機ガラス繊維の平均アスペクト比は、1〜10、有利には1〜20、特に1〜50であってよい。   The diameter of the inorganic glass fiber used in the present invention may be 1.0 to 100 μm. Furthermore, the average aspect ratio of the inorganic glass fibers may be 1-10, preferably 1-20, in particular 1-50.

異方性プラスチック成形体について可能な製造方法は、所定量のガラス繊維とその都度のプラスチック成形材料とを混合し、そして商慣習上の押出機を用いて、その都度のプラスチックに適合された条件下で押し出すことにある。ここで、無機ガラス繊維とポリマーとを質量比1:10〜1:10000で混合し、そして押し出すことができる。   A possible production method for anisotropic plastic moldings is to mix a certain amount of glass fibers with the respective plastic molding material, and using commercial extruders, the conditions adapted to the respective plastic There is to push down. Here, the inorganic glass fibers and the polymer can be mixed in a mass ratio of 1:10 to 1: 10000 and extruded.

異方性プラスチック成形体について可能な他の製造方法は、二段階法を介して、所定量のガラス繊維とプラスチック材料の一部を個別に配合して、マスターバッチを製造し、そして第二段階で所定量のマスターバッチとその都度のプラスチック成形材料とを混合し、そして商慣習上の押出機を用いて、その都度のプラスチックに適合された条件下で押し出すことにある。その際、マスターバッチにおいて無機ガラス繊維とポリマーとの質量比は1:5〜1:500であってよい。   Other possible manufacturing methods for anisotropic plastic moldings are the two-stage process, in which a predetermined amount of glass fiber and a portion of the plastic material are individually blended to produce a masterbatch and the second stage In mixing a predetermined amount of the masterbatch with the respective plastic molding material and extruding it using a customary extruder under conditions adapted to the respective plastic. In that case, mass ratio of an inorganic glass fiber and a polymer in a masterbatch may be 1: 5-1: 500.

有利な一実施態様では、マスターバッチの製造において、ガラス繊維を高温のプラスチック溶融物中に側方充填器(Seitenstopfwerk)を介して計量供給しており、これは特に穏やかな処理に即している。   In one advantageous embodiment, in the production of the masterbatch, glass fibers are metered into the hot plastic melt via a side filler (Seitenstopfwerk), which is particularly suitable for gentle processing. .

異方性光拡散するプラスチック混合物を、押出工程において同時押出物としてプラスチック成形体上で少なくとも片側に施与することもできる。   The anisotropic light diffusing plastic mixture can also be applied on at least one side on the plastic molding as a coextrudate in the extrusion process.

異方性光拡散板の主な有用性は、エネルギー効率の向上にある。   The main usefulness of the anisotropic light diffusing plate is to improve energy efficiency.

以下の用途において、この異方性光拡散により、どのようにしてエネルギー効率が高まるかを例示として説明する。   In the following applications, how energy efficiency is increased by this anisotropic light diffusion will be described as an example.

1. 大画面ディスプレイ用途のためのバックライトユニット(大画面の平面ディスプレイ、例えばテレビ受像機)
大きなバックライトユニットは、通常は直下式に後方照明される。それというのもエッジライトは大きな表面にわたって必要な輝度と結びつかないからである。直下式の後方照明は、しばしば、いわゆるCCFL(冷陰極蛍光灯)から構成される。それというのもCCFLは廉価であり、かつ比較的頑丈だからである。該蛍光灯自体は、円筒形構造(長い構造、例えば30cm長で2mm直径)を有し、かつバックライトユニット中に互いに平行に、(鑑賞面に対して)垂直に設置されている。一様に点灯した画像を得るためには、従って拡散板をCCFL光源装置前方に設置せねばならない。光源との間隔(他方では本来のディスプレイとの間隔)は小さく保たねばならない。それというのも、平面ディスプレイでは非常に制限された取り付け空間しか提供されないためである。同様に、拡散板は薄くすることが望ましい(通常は2mm厚)。光源と拡散板との小さい間隔のため、調節された輝度プロフィールの必須の“均一性”は、非常に厚い拡散板によってのみ達成できるにすぎない。しかしながら、全光透過率が40〜60%に過ぎないこと(HWW=70〜86゜)、すなわち高い損失を生ずることは欠点である。今までに、この場合には、全ての空間方向に光を拡散する等方性拡散板のみが使用されている。ここで異方性拡散板は、それが光を有利には鑑賞者の面に、すなわち蛍光灯の方向に垂直に拡散するという利点を有している。これは厳密には、光照射場の均一性に必要な拡散方向である。下方又は上方への拡散(いずれにしても鑑賞者は確認しないが)は、この場合には全く必要がない。それというのも光源はその長さにわたって(広範囲にわたって)均一に放射するからである。従って、高い光拡散は1つの主軸に対してのみ(蛍光灯装置の方向に垂直に)有効でなければならず、別の主軸方向では(光源の延び方向に平行では)、等方性拡散板よりも明らかに光の拡散が少ない(“浪費が少ない”)。従って、鑑賞者面で同じ輝度を達成するために、異方性拡散板の場合には、輝度上昇フィルム(BEF)を有する装置と比較して、必要な入力結合される光エネルギーがより少なくなる。
1. Backlight unit for large-screen display applications (large-screen flat displays such as television receivers)
Large backlight units are usually backlit in a direct manner. This is because edge lights do not combine with the required brightness over a large surface. Direct backlighting is often composed of a so-called CCFL (cold cathode fluorescent lamp). This is because CCFL is inexpensive and relatively robust. The fluorescent lamp itself has a cylindrical structure (long structure, for example, 30 cm long and 2 mm diameter), and is installed in the backlight unit parallel to each other and perpendicular to the viewing surface. Therefore, in order to obtain a uniformly lit image, the diffuser plate must be installed in front of the CCFL light source device. The distance from the light source (on the other hand from the original display) must be kept small. This is because flat displays provide only a very limited mounting space. Similarly, it is desirable to make the diffuser thin (usually 2 mm thick). Due to the small spacing between the light source and the diffuser, the required “uniformity” of the adjusted brightness profile can only be achieved with a very thick diffuser. However, it is a disadvantage that the total light transmittance is only 40-60% (HWW = 70-86 °), that is, high losses are produced. To date, in this case, only isotropic diffusers that diffuse light in all spatial directions have been used. Here, the anisotropic diffuser plate has the advantage that it diffuses light advantageously on the face of the viewer, ie perpendicular to the direction of the fluorescent lamp. Strictly speaking, this is the diffusion direction necessary for the uniformity of the light irradiation field. Downward or upward diffusion (which the viewer does not confirm in any case) is not necessary at all in this case. This is because the light source emits uniformly over its length (over a wide range). Therefore, high light diffusion must be effective only for one main axis (perpendicular to the direction of the fluorescent lamp device) and in another main axis direction (parallel to the direction of extension of the light source), an isotropic diffuser Clearly less light diffusion than “less waste”. Therefore, in order to achieve the same brightness on the viewer side, in the case of an anisotropic diffuser, less light energy is required for input coupling as compared to a device having a brightness enhancement film (BEF). .

2. 異方性拡散する背面投射板
背面投射の場合には、画像はビーマーによって後方から(すなわち鑑賞者と対向する側に)スクリーンに対して投影される。従って、前面投影に対して、背面投影は光透過に基づくものである。かかるスクリーンの場合に、画像は種々の鑑賞角で可能な限り同じ輝度を有することが重要である。このためには、光を相応して空間中に拡散せねばならない。スクリーンの寸法のため、ここでも光の拡散は上方又は下方には必要なく、一方で水平面での拡散が強く望まれる。背面投射の範囲では、前記効果は、鑑賞者側の表面でのレンチキュラレンズの使用によって達成される。光は鑑賞者面に集中して拡散するので、同じ入力結合の出力の場合には、より高い光収率が得られ、かつ鑑賞者面における一様性が達成される。
2. Rear Projection Plate that Diffuses Anisotropically In the case of rear projection, an image is projected onto the screen from behind (ie, on the side facing the viewer) by a beamer. Therefore, rear projection is based on light transmission, as opposed to front projection. In the case of such a screen, it is important that the images have as much brightness as possible at various viewing angles. For this purpose, the light has to be diffused into the space accordingly. Due to the size of the screen, again no light diffusion is needed above or below, while diffusion in the horizontal plane is highly desired. In the range of rear projection, the effect is achieved by the use of lenticular lenses on the viewer side surface. Since light is concentrated and diffused on the viewer's surface, higher output power can be obtained and uniformity on the viewer's surface can be achieved for the same input coupling output.

押出機の加熱領域の温度は、例えばPLEXIGLAS(登録商標)7N(PMMA−成形材料、Roehm GmbHで入手可能)の場合には、T=180℃及びT=230℃であり、ノズルからの溶融物の出口温度は、おおよそT=240℃である。流量の選択は高すぎてはならず(約10kg/時間)、スクリューの回転数は175分−1である。 The temperature in the heating zone of the extruder is T = 180 ° C. and T = 230 ° C., for example in the case of PLEXIGLAS® 7N (PMMA—molding material available from Roehm GmbH), the melt from the nozzle The outlet temperature is approximately T = 240 ° C. The flow rate selection should not be too high (about 10 kg / hour) and the screw speed is 175 min- 1 .

直径D=60mm、ピッチ60mm及び長さ33D=1980mmを有し、供給部に溝付ブシュ(Nutbuchse)が取り付けられた、脱ガススクリューを有するBreyer社製の押出機が重要である。   Of importance is an extruder manufactured by Breyer with a degassing screw having a diameter D = 60 mm, a pitch 60 mm and a length 33D = 1980 mm, and a fluted bush (Nutbuchse) attached to the feed.

プラスチック溶融物の流動により生ずる流動場は、ガラス繊維をポリマー基材中で実質的に平行に配向させる。その流動場は、押出機のノズル内部で、放物線速度プロフィールを示し、これは更に線形剪断場に導き、それによりガラス繊維が回転し、そして押出機のノズル壁面に対して平行に整列する。   The flow field produced by the flow of the plastic melt orients the glass fibers substantially parallel in the polymer substrate. The flow field exhibits a parabolic velocity profile within the extruder nozzle, which further leads to a linear shear field, whereby the glass fibers rotate and align parallel to the extruder nozzle wall.

とりわけ直径において互いに異なる2種類のガラス繊維を使用した。   In particular, two types of glass fibers differing in diameter were used.

Figure 2008015442
Figure 2008015442

無機ガラス繊維の平均アスペクト比は、1〜10、有利には1〜20、特に有利には1〜50である。   The average aspect ratio of the inorganic glass fiber is 1 to 10, preferably 1 to 20, particularly preferably 1 to 50.

ガラス繊維が高い配向性を有するように努める:このために以下の工程条件:
・ 高い剪断速度
・ 狭いリップ間隔
・ より高い溶融物粘度
が押出において必要とされる。
Efforts are made to ensure that the glass fibers have a high orientation: for this the following process conditions:
• High shear rate • Narrow lip spacing • Higher melt viscosity is required in extrusion.

ポリマー中でのガラス繊維の配向は、通常では、配向分布関数で指定される。この場合に、配向方向ごとに、主軸方向(原則的に任意に選択された主軸方向)周りにガラス繊維の数をプロットする;主軸の合理的な選択は、押出方向にあり、その方向は流動プロフィールのため配向の主軸となる。これらのガウス分布曲線は、ガラス繊維の配向度が高まるとともに狭くなる、すなわちその半値幅は減少する。理想的な分布の場合には、すなわち全てのガラス繊維は厳密に押出に対して平行な方向である場合である。理想的な分布(すなわち全てのガラス繊維は押出方向に厳密に平行である)の場合には、ガウス分布曲線は非常に狭い。ガラス繊維と取り出し方向(Vorzugsrichtung)との平均のずれ(mittlere Abweichung)は0゜〜45゜であってよい。   The orientation of the glass fibers in the polymer is usually specified by an orientation distribution function. In this case, for each orientation direction, plot the number of glass fibers around the principal axis direction (in principle the arbitrarily chosen principal axis direction); a reasonable choice of principal axis is in the extrusion direction, which direction is flow It is the main axis of orientation due to the profile. These Gaussian distribution curves become narrower as the degree of orientation of the glass fiber increases, that is, its half-value width decreases. In the case of an ideal distribution, i.e. all glass fibers are strictly in a direction parallel to the extrusion. In the case of an ideal distribution (ie all glass fibers are strictly parallel to the extrusion direction), the Gaussian distribution curve is very narrow. The average deviation between the glass fiber and the removal direction (Vorzugsrichtung) may be between 0 ° and 45 °.

しかしながら配向分布関数は、直接的には規定できず、あるいはかなり労力を要する。しかしながら配向の度合いについての非常に良い尺度は、測定された拡散板の光学異方性である。このためには、相応の測定設定を用いてBTDF(双方向透過分布関数)。配向の実質的な作用の特徴付けのために、両方の配向主軸に沿った二次元的拡散分布曲線を決定することで十分である。両方の曲線の半値角並びに拡散特性は相違し、このことは、配向の異方性についての良好な尺度としての採用を可能にする。異方性比は少なくとも1.1である。   However, the orientation distribution function cannot be defined directly or requires considerable labor. However, a very good measure for the degree of orientation is the measured optical anisotropy of the diffuser. For this purpose, BTDF (bidirectional transmission distribution function) with corresponding measurement settings. For characterization of the substantial effect of orientation, it is sufficient to determine a two-dimensional diffusion distribution curve along both orientation principal axes. The half-value angle as well as the diffusion properties of both curves are different, which allows for adoption as a good measure for orientation anisotropy. The anisotropy ratio is at least 1.1.

一般に、プラスチック混合物の穏やかな処理が選択され、それによりガラス繊維は剪断破壊されず、従って高い微細成分がもたらされる。   In general, a gentle treatment of the plastic mixture is selected, so that the glass fibers are not shear broken, thus resulting in a high fine component.

穏やかな処理とは、ガラス繊維を、剪断による高い負荷に晒さず、それによりガラス繊維をあまり小さな部分に分解させないことを表す。このことは、ガラス繊維を、配合に際してまず押出ノズルの直前で、いわゆる側方充填器(側方供給器)を介して、加熱された液状ポリマーに混加することによって達成される。従って、ガラス繊維は、ポリマーの加熱に際しての全スクリュー過程を通して剪断に晒されない。   Mild treatment means that the glass fibers are not exposed to high loads due to shearing, thereby preventing the glass fibers from breaking down into too small parts. This is achieved by blending the glass fibers with the heated liquid polymer via a so-called side filler (side feeder), just before the extrusion nozzle during compounding. Thus, the glass fibers are not subjected to shear throughout the entire screw process during heating of the polymer.

本発明による拡散体は、照明手段用のカバーとして使用することもできる。   The diffuser according to the invention can also be used as a cover for the illumination means.

実施例1:ガラス繊維としてチョップドストランドEC14 4.5mm−914を含有するPLEXIGLAS(登録商標)7N(PMMA)
押出試験において、種々の質量割合のガラス繊維(10%、20%、30%及び40%)をPMMA−成形材料:PLEXIGLAS(登録商標)7Nに混加し、そして2mm厚のプレートに押し出した。光学的特徴付けの結果を第1表にまとめる:
Example 1: PLEXIGLAS® 7N (PMMA) containing chopped strand EC14 4.5 mm-914 as glass fiber
In the extrusion test, various weight percentages of glass fibers (10%, 20%, 30% and 40%) were mixed with PMMA-molding material: PLEXIGLAS® 7N and extruded into 2 mm thick plates. The optical characterization results are summarized in Table 1:

Figure 2008015442
Figure 2008015442

光学的特徴付けの重要な観点は、ゴニオメトリックな光密度測定による光拡散特性の測定である。   An important aspect of optical characterization is the measurement of light diffusion properties by goniometric light density measurements.

拡散特性と強度半値角は、DIN5036に従って、測定機器LMT−ゴニオメーター測定盤GO−T−1500(LMT社製)を用いて測定した。   The diffusion characteristics and intensity half-value angle were measured according to DIN 5036 using a measuring instrument LMT-goniometer measuring board GO-T-1500 (manufactured by LMT).

これらの測定は、本試験体について、それぞれ押出方向でかつ押出方向を横切って実施し、それにより拡散特性の異方性が確認された。   These measurements were performed on the test specimen in the extrusion direction and across the extrusion direction, respectively, thereby confirming the anisotropy of the diffusion characteristics.

図1〜4は、ガラス繊維割合の増大にともなう異方性を示している。   1-4 show the anisotropy with increasing glass fiber ratio.

図1〜4では、最も強い拡散の異方性は、ガラス繊維割合20%でもたらされることが確認される。限界領域10%並びに40%のガラス繊維割合では、それらの曲線は互いに近づく。   1-4 confirm that the strongest diffusion anisotropy is brought about at a glass fiber ratio of 20%. At a limit area of 10% as well as a glass fiber proportion of 40%, the curves approach each other.

以下の図でそれらの結果を示す:
図5は、ガラス繊維割合の増加に伴う半値角の増大を示している。この場合に、押出方向を横切る半値角は、10質量%のガラス繊維割合と20質量%のガラス繊維割合との間では、押出方向に沿った半値角よりもはるかに著しく増大する。
The following figure shows the results:
FIG. 5 shows the increase in half-value angle with increasing glass fiber proportion. In this case, the half-value angle across the extrusion direction increases far more significantly than the half-value angle along the extrusion direction between 10% by weight glass fiber proportion and 20% by weight glass fiber proportion.

このことは、図6から、異方性係数A=HWW(q):HWW(l)、つまり約20質量%で極大を有する半値角の商でも明らかになる。   This is also apparent from FIG. 6 by the anisotropy coefficient A = HWW (q): HWW (l), that is, the quotient of the half-value angle having a maximum at about 20% by mass.

前記の結果から、以下のことが結論づけられる:
a. 10質量%〜20質量%のガラス繊維割合で、光拡散の著しい増大がもたらされること。
From the above results, it can be concluded that:
a. A glass fiber proportion of 10% to 20% by weight results in a significant increase in light diffusion.

b. ガラス繊維の平均配向の増大は前記の範囲で著しく増大し、その際、より高いガラス繊維割合での一軸配向はもはや激しく改善されないこと。   b. The increase in the average orientation of the glass fibers is significantly increased in the above range, with the uniaxial orientation at higher glass fiber proportions no longer improving drastically.

図7は、ガラス繊維割合の増大に伴う光透過率の低下を示している。   FIG. 7 shows a decrease in light transmittance with increasing glass fiber ratio.

透過率τD65/10゜/反射ρD65/10゜は、DIN(ドイツ工業規格)5036に従って測定機器Lambda19(Perkin Elmer社製)(又はVarian Cary 5000(Varian Inc.社製))を用いて測定した。この場合に、光種D65(ナトリウム光)の照射源を使用した。 Transmittance tau D65 / 10 ° / reflective [rho D65 / 10 °, using the DIN (manufactured by Perkin Elmer Co.) measuring instrument Lambda19 according (German Industrial Standard) 5036 (or a Varian Cary 5000 (Varian Inc. Co.)) measured did. In this case, an irradiation source of photo species D65 (sodium light) was used.

10質量%のガラス繊維ないし40質量%のガラス繊維の範囲において、光透過率は75%から39%に低下し、その際、経過はほぼ線形であった。   In the range of 10% by weight glass fiber to 40% by weight glass fiber, the light transmittance decreased from 75% to 39%, and the course was almost linear.

図8は、ガラス繊維割合増大に伴う黄色値の増加を示している。その可能な説明は、ガラス繊維の添加剤(塗装)であり、該添加剤は処理工程を通して溶解/分解し、そうして相応して黄色作用を生ずる低分子量成分が材料中に生成する。   FIG. 8 shows the increase in yellow value with increasing glass fiber proportion. A possible explanation is a glass fiber additive (coating), which dissolves / decomposes throughout the treatment process, thus producing a low molecular weight component in the material that correspondingly produces a yellowing effect.

黄色値[τD65/10゜又はρD65/10゜]は、DIN6167に従って、測定機器Lambda19(Perkin Elmer社製)(又はVarian Cary 5000(Varian Inc.社製))を用いて測定した。 The yellow value [τ D65 / 10 ° or ρ D65 / 10 ° ] was measured according to DIN 6167 using a measuring instrument Lambda19 (manufactured by Perkin Elmer) (or Varian Cary 5000 (manufactured by Varian Inc.)).

全ての測定結果からまとめると、最適値は約20質量%のガラス繊維割合で生ずる。それというのも、ここでは光透過率の損失と黄色値(不所望な効果)がまだ高すぎず、そして他方では光拡散並びにその異方性が既に非常に著しく顕現しているからである。   Summing up from all the measurement results, the optimum value occurs at a glass fiber proportion of about 20% by weight. This is because here the loss of light transmission and the yellow value (undesirable effect) are still not too high, and on the other hand the light diffusion and its anisotropy are already very pronounced.

図1は、10%のガラス繊維割合での異方性を示しているFIG. 1 shows anisotropy at 10% glass fiber ratio. 図2は、20%のガラス繊維割合での異方性を示しているFIG. 2 shows anisotropy at 20% glass fiber proportion. 図3は、30%のガラス繊維割合での異方性を示しているFIG. 3 shows anisotropy at 30% glass fiber proportion. 図4は、40%のガラス繊維割合での異方性を示しているFIG. 4 shows the anisotropy at 40% glass fiber proportion. 図5は、ガラス繊維割合の増加に伴う半値角の増大を示しているFIG. 5 shows the increase in half-value angle with increasing glass fiber proportion. 図6は、異方性係数(HWW)とガラス繊維割合との関数を示しているFIG. 6 shows a function of anisotropy coefficient (HWW) and glass fiber ratio. 図7は、ガラス繊維割合の増大に伴う光透過率の低下を示しているFIG. 7 shows a decrease in light transmittance with increasing glass fiber ratio. 図8は、ガラス繊維割合に伴う黄色値の増大を示しているFIG. 8 shows the increase in yellow value with glass fiber proportion.

Claims (15)

透明ポリマーとガラス繊維から構成される拡散体。   A diffuser composed of transparent polymer and glass fiber. 透明ポリマーとしてポリメチルメタクリレート、ポリカーボネート、ポリエステル又はポリオレフィンを使用する、請求項1記載の拡散体。   The diffuser according to claim 1, wherein polymethyl methacrylate, polycarbonate, polyester or polyolefin is used as the transparent polymer. ポリマーと無機ガラス繊維との間の屈折率の差が少なくとも0.01である、請求項1記載の拡散体。   The diffuser according to claim 1, wherein the difference in refractive index between the polymer and the inorganic glass fiber is at least 0.01. ポリマーと無機ガラス繊維との間の屈折率の差が少なくとも0.05である、請求項3記載の拡散体。   4. A diffuser according to claim 3, wherein the difference in refractive index between the polymer and the inorganic glass fiber is at least 0.05. 無機ガラス繊維の直径が1.0〜100μmである、請求項1から4までのいずれか1項記載の拡散体。   The diffuser according to any one of claims 1 to 4, wherein the inorganic glass fiber has a diameter of 1.0 to 100 µm. 無機ガラス繊維の平均アスペクト比が1〜10である、請求項1から5までのいずれか1項記載の拡散体。   The diffuser according to any one of claims 1 to 5, wherein the inorganic glass fiber has an average aspect ratio of 1 to 10. 無機ガラス繊維の平均アスペクト比が1〜20である、請求項1から5までのいずれか1項記載の拡散体。   The diffuser according to any one of claims 1 to 5, wherein the inorganic glass fiber has an average aspect ratio of 1 to 20. 無機ガラス繊維の平均アスペクト比が1〜50である、請求項1から5までのいずれか1項記載の拡散体。   The diffuser according to any one of claims 1 to 5, wherein the inorganic glass fiber has an average aspect ratio of 1 to 50. ガラス繊維と取り出し方向との平均のずれが0゜〜45゜である、請求項1から8までのいずれか1項記載の拡散体。   The diffuser according to any one of claims 1 to 8, wherein an average deviation between the glass fiber and the take-out direction is 0 ° to 45 °. 請求項1から9までのいずれか1項記載の拡散体の製造方法であって、無機ガラス繊維とポリマーとを質量比1:10〜1:10000で混合し、そして押し出すことを特徴とする方法。   A method for producing a diffuser according to any one of claims 1 to 9, wherein the inorganic glass fibers and the polymer are mixed in a mass ratio of 1:10 to 1: 10000 and extruded. . 無機ガラス繊維を、マスターバッチの形でポリマーに添加する、請求項10記載の方法。   The method of claim 10, wherein the inorganic glass fibers are added to the polymer in the form of a masterbatch. 無機ガラスとポリマーとの質量比が1:5〜1:500であることを特徴とするマスターバッチ。   A master batch, wherein the mass ratio of the inorganic glass to the polymer is 1: 5 to 1: 500. 異方性比が少なくとも1.1である、請求項1から9までのいずれか1項記載の拡散体。   The diffuser according to claim 1, wherein the anisotropy ratio is at least 1.1. 照明手段用のカバーとしての、請求項1から9まで又は請求項13のいずれか1項記載の拡散体の使用。   Use of a diffuser according to any one of claims 1 to 9 or claim 13 as a cover for a lighting means. 平面ディスプレイ用の構成要素としての、請求項1から9まで又は請求項13のいずれか1項記載の拡散体の使用。   Use of a diffuser according to any one of claims 1 to 9 or claim 13 as a component for a flat display.
JP2006214821A 2006-07-03 2006-08-07 Extruded polymer plate for anisotropic light scattering having high dimensional stability Pending JP2008015442A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006030955A DE102006030955A1 (en) 2006-07-03 2006-07-03 Extruded polymer plates for anisotropic light scattering with high dimensional stability

Publications (1)

Publication Number Publication Date
JP2008015442A true JP2008015442A (en) 2008-01-24

Family

ID=38372383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006214821A Pending JP2008015442A (en) 2006-07-03 2006-08-07 Extruded polymer plate for anisotropic light scattering having high dimensional stability

Country Status (5)

Country Link
JP (1) JP2008015442A (en)
KR (1) KR20080003696A (en)
CN (1) CN101122643A (en)
DE (1) DE102006030955A1 (en)
WO (1) WO2008003537A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009113323A1 (en) * 2008-03-11 2009-09-17 日東電工株式会社 Process for production of light-diffusing films
CN112388931A (en) * 2020-09-29 2021-02-23 东莞市鑫聚光电科技股份有限公司 Diffusion plate suitable for side-entering light source and manufacturing method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100097821A1 (en) * 2008-10-16 2010-04-22 Osram Sylvania, Inc. Light emitting diode-based lamp having a volume scattering element
KR101717812B1 (en) * 2013-11-29 2017-03-17 롯데첨단소재(주) Polyester resin composition having improved anti-discoloration and optical properties
DE102017003361B4 (en) * 2017-04-06 2021-09-30 Carl Freudenberg Kg Element for light manipulation

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2974792B2 (en) * 1990-12-28 1999-11-10 日本ジーイープラスチックス株式会社 Glass reinforced polycarbonate resin composition
JP3447848B2 (en) * 1995-06-19 2003-09-16 帝人化成株式会社 Molded product for light diffusion transmission
JP4410391B2 (en) * 2000-06-22 2010-02-03 ダイセル化学工業株式会社 Laminated film
US6719603B2 (en) * 2001-08-31 2004-04-13 Thinking Technology, Inc. Interactive toy play set with sensors
TW200500739A (en) * 2002-11-14 2005-01-01 Tomoegawa Paper Co Ltd Anisotropic light diffusing adhesive layer, laminated body of anisotropic light diffusing adhesive layers, and illumination device therewith
JP2005029668A (en) * 2003-07-10 2005-02-03 Sumitomo Bakelite Co Ltd Transparent composite composition and display device using the same
JP2006039503A (en) * 2004-01-14 2006-02-09 Sumitomo Bakelite Co Ltd Light diffusion sheet and backlight for liquid crystal display
JP2006040864A (en) * 2004-01-14 2006-02-09 Sumitomo Bakelite Co Ltd Light diffusion plate for projecting backlight and back light system
WO2006031545A1 (en) * 2004-09-09 2006-03-23 Fusion Optix, Inc. Enhanced lcd backlight
US20060215958A1 (en) * 2004-11-17 2006-09-28 Yeo Terence E Enhanced electroluminescent sign

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009113323A1 (en) * 2008-03-11 2009-09-17 日東電工株式会社 Process for production of light-diffusing films
JP2009244851A (en) * 2008-03-11 2009-10-22 Nitto Denko Corp Method for production of light-diffusing film
US20110045177A1 (en) * 2008-03-11 2011-02-24 Nitto Denko Corporation Process for production of light-diffusing films
TWI407152B (en) * 2008-03-11 2013-09-01 Nitto Denko Corp Manufacturing method of light diffusion film
CN112388931A (en) * 2020-09-29 2021-02-23 东莞市鑫聚光电科技股份有限公司 Diffusion plate suitable for side-entering light source and manufacturing method thereof

Also Published As

Publication number Publication date
KR20080003696A (en) 2008-01-08
CN101122643A (en) 2008-02-13
WO2008003537A1 (en) 2008-01-10
DE102006030955A1 (en) 2008-01-10

Similar Documents

Publication Publication Date Title
KR100977321B1 (en) Light transmitting resin board
JP3429384B2 (en) Sidelight type surface light source device
EP1549996B1 (en) Bulk diffuser for flat panel display
TWI446017B (en) Light diffuser plate
KR20020070381A (en) Light guide and method for producing transparent thermoplastic resin composition for light guide
JP4933512B2 (en) Light guide plate
KR20080021043A (en) Light diffusing plate and lighting device using it
CN102197323B (en) Light diffuser plate and use thereof
JP6875127B2 (en) Light diffusion film
JP2008015442A (en) Extruded polymer plate for anisotropic light scattering having high dimensional stability
CN103724974B (en) High-light-reflectivity PC (polycarbonate) film material and preparation method thereof
JP2009036984A (en) Light diffusion film and its manufacturing method
JP2000169722A (en) Light-diffusing thermoplastic resin composition and its molded article
JPH1036655A (en) Light-diffusing polycarbonate resin composition
Kim et al. Characteristics of optical diffusers for light-emitting diodes backlight unit prepared by melt-extrusion process
KR101365626B1 (en) Polymethylmethacrylate Resin Composition for Optical Use
JPH0632973A (en) Light-scattering polycarbonate resin composition
CN115023630A (en) Polypropylene composite resin light diffusion plate
TW200804860A (en) Extruded polymer sheets with high dimensional stability for anisotropic light scattering
KR101102008B1 (en) Diffusion film having diffusing and shielding function and Preparing thereof
JP2000169721A (en) Thermoplastic resin composition excellent in light diffusible and its molded item
KR101082281B1 (en) Direct type backlight unit, preparation method thereof and liquid crystal display containing the same
JP2006343425A (en) Diffusion board for direct backlight made of polycarbonate resin
JP2001272511A (en) Light diffusing film
JP2003227943A (en) Waveguide body and light source device using the same