TWI524096B - An optical sheet for a liquid crystal display device, and a backlight unit using the same - Google Patents

An optical sheet for a liquid crystal display device, and a backlight unit using the same Download PDF

Info

Publication number
TWI524096B
TWI524096B TW099102004A TW99102004A TWI524096B TW I524096 B TWI524096 B TW I524096B TW 099102004 A TW099102004 A TW 099102004A TW 99102004 A TW99102004 A TW 99102004A TW I524096 B TWI524096 B TW I524096B
Authority
TW
Taiwan
Prior art keywords
liquid crystal
crystal display
microlens
display device
optical sheet
Prior art date
Application number
TW099102004A
Other languages
Chinese (zh)
Other versions
TW201030382A (en
Inventor
Keiichi Osamura
Toshiro Kobayashi
Motohiko Okabe
Yutaka Mineo
Kenichi Harada
Original Assignee
Keiwa Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keiwa Inc filed Critical Keiwa Inc
Publication of TW201030382A publication Critical patent/TW201030382A/en
Application granted granted Critical
Publication of TWI524096B publication Critical patent/TWI524096B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133526Lenses, e.g. microlenses or Fresnel lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0062Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between
    • G02B3/0068Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between arranged in a single integral body or plate, e.g. laminates or hybrid structures with other optical elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Planar Illumination Modules (AREA)

Description

液晶顯示裝置用光學片及使用其之背光單元Optical sheet for liquid crystal display device and backlight unit using the same

本發明係關於一種具有聚光、光擴散、使光線朝法線方向折射等各種機能,特別是適用於液晶顯示裝置用背光單元之光學片,及使用其之背光單元。The present invention relates to an optical sheet having a function of collecting light, diffusing light, refracting light in a normal direction, and particularly, an optical sheet suitable for a backlight unit for a liquid crystal display device, and a backlight unit using the same.

液晶顯示裝置,係普遍採用自背面照射液晶層之背光方式,液晶層之下面側裝有邊光型(側光型)、直下型等之背光單元。該邊光型之背光單元40,一般而言係如圖9(a)所示,具備:作為光源之棒狀燈源41、以端部沿著該燈源41的方式進行配置的方形板狀之導光板42、積層於該導光板42表面側之複數片光學片43。該光學片43,係具有折射、光擴散等特定之光學機能,具體而言係具備以下等之元件:(1)微透鏡片44,係配設於導光板42之表面側,主要具有光擴散機能與聚光機能;(2)稜鏡片45,係配設於微透鏡片44之表面側,主要具有朝法線方向側折射的機能。In the liquid crystal display device, a backlight method in which a liquid crystal layer is irradiated from the back surface is generally used, and a backlight unit such as a side light type (side light type) or a direct type is mounted on the lower side of the liquid crystal layer. As shown in FIG. 9(a), the edge type backlight unit 40 is generally provided with a rod-shaped light source 41 as a light source and a square plate shape in which the end portions are arranged along the light source 41. The light guide plate 42 and a plurality of optical sheets 43 laminated on the surface side of the light guide plate 42. The optical sheet 43 has specific optical functions such as refraction and light diffusion, and specifically includes the following elements: (1) The lenticular sheet 44 is disposed on the surface side of the light guide plate 42 and mainly has light diffusion. The function and the concentrating function; (2) the cymbal 45 is disposed on the surface side of the lenticular sheet 44, and mainly has a function of refracting toward the normal side.

以下對該背光單元40之機能加以說明,首先,自燈源41入射至導光板42之光線,被導光板42背面的反射點或反射片(未圖示)以及各側面所反射,而於導光板42表面出射。自導光板42出射之光線,入射至微透鏡片44,於表面所設之微透鏡界面擴散、出射。然後,從微透鏡片44出射之光線,入射至稜鏡片45,藉由形成於表面上之稜鏡部46而在大致正上方向作為顯示峰值之分布的光線而出射。背光單元40,如上所述,係使自燈源41出射之光線藉由光學片43加以擴散,在大致正上方向顯示出峰值的方式進行折射,進而照明於上方未圖示之液晶層整面。Hereinafter, the function of the backlight unit 40 will be described. First, the light incident from the light source 41 to the light guide plate 42 is reflected by the reflection point or the reflection sheet (not shown) on the back surface of the light guide plate 42 and the side surfaces. The surface of the light plate 42 is emitted. The light emitted from the light guide plate 42 is incident on the lenticular sheet 44, and is diffused and emitted at the microlens interface provided on the surface. Then, the light emitted from the lenticular sheet 44 is incident on the cymbal sheet 45, and is emitted as a light beam showing a distribution of peaks in a substantially upper direction by the dam portion 46 formed on the surface. As described above, the backlight unit 40 diffuses the light emitted from the light source 41 by the optical sheet 43 and refracts the peak in a substantially normal direction, and illuminates the entire surface of the liquid crystal layer (not shown). .

此外雖未圖示,考量到上述導光板42的導光特性與光學片43的光學機能等,亦有配設更多微透鏡片與稜鏡片等之光學片43的背光單元。Further, although not shown, the light guide characteristics of the light guide plate 42 and the optical function of the optical sheet 43 are considered, and a backlight unit in which a plurality of optical sheets 43 such as a lenticular sheet and a cymbal sheet are disposed is also provided.

上述以往之微透鏡片44,一般而言係如圖9(b)所示,於表面具備有由複數個微透鏡所構成之微透鏡陣列47,於背面具有平面形狀(例如,參考日本專利特開2004-191611號公報等)。設置於上述微透鏡片表面之該微透鏡界面中,自燈源發射之光線係朝正面側聚光、擴散、朝法線方向側變角等。As shown in FIG. 9(b), the conventional microlens sheet 44 is generally provided with a microlens array 47 composed of a plurality of microlenses on the surface, and has a planar shape on the back surface (for example, refer to Japanese Patent Application) Japanese Patent Publication No. 2004-191611, etc.). In the microlens interface disposed on the surface of the lenticular sheet, the light emitted from the light source is concentrated toward the front side, diffused, and angled toward the normal side.

然而,該微透鏡片之聚光、光擴散、變角等光學機能,係因表面形狀以及折射率而定,故對於提升機能有一定的限界。特別是,直下型背光中,光學片的光擴散機能不充分的情況下,燈源影像的消去效果較小,故有燈源影像出現在液晶畫面表面之缺點。因此,以往之背光單元40,儘管昂貴且操作困難,仍有必要具備複數片之光學片。如上所述具備複數片之光學片的情形,除了有液晶顯示裝置之亮度降低之缺點,亦妨礙了背光單元的薄型化。However, the optical functions such as condensing, light diffusing, and variable angle of the lenticular sheet are determined by the surface shape and the refractive index, and thus have a certain limit on the lifting function. In particular, in the direct type backlight, when the light diffusing function of the optical sheet is insufficient, the erasing effect of the light source image is small, so that the light source image appears on the surface of the liquid crystal screen. Therefore, in the conventional backlight unit 40, although it is expensive and difficult to operate, it is necessary to have a plurality of optical sheets. In the case of the optical sheet having a plurality of sheets as described above, in addition to the disadvantage that the brightness of the liquid crystal display device is lowered, the thickness of the backlight unit is hindered.

先前技術文獻Prior technical literature

[專利文獻1]日本專利特開2004-191611號公報[Patent Document 1] Japanese Patent Laid-Open Publication No. 2004-191611

本發明有鑑於該等缺點,其目的在於提供一種液晶顯示裝置用光學片,及使用其之背光單元;該液晶顯示裝置用光學片,其光學機能,特別是光擴散機能格外優異;該背光單元,其增進視野角的最佳化、燈源影像的去除、薄型化等品質的提升。The present invention has an object to provide an optical sheet for a liquid crystal display device and a backlight unit using the same, and an optical sheet for the liquid crystal display device, which is particularly excellent in optical function, particularly a light diffusing device; It improves the quality of the viewing angle, the removal of the light source image, and the thinning.

用以解決上述課題之發明,係一種液晶顯示裝置用光學片,其具備:透明基材層;以及微透鏡陣列,係由該基材層表面以及背面所形成之複數個微透鏡所構成。The invention for solving the above problems is an optical sheet for a liquid crystal display device comprising: a transparent base material layer; and a microlens array comprising a plurality of microlenses formed on the surface and the back surface of the base material layer.

該液晶顯示裝置用光學片,因不僅於表面,於背面亦具備微透鏡陣列,故即使於液晶顯示裝置用光學片背面之界面,亦可將來自背光的光線加以折射、擴散等。因此,該液晶顯示裝置用光學片,於表裏兩面之界面可將來自背光的光線加以折射、擴散,可將光擴散機能等之光學機能進一步提高。此外,依照該液晶顯示裝置用光學片,藉由表裏兩面之界面之折射來使光線折射、擴散,故可將液晶顯示裝置用光學片中光線的損失抑制在最小限度,而提高光穿透率。Since the optical sheet for a liquid crystal display device includes a microlens array on the back surface not only on the surface, it is possible to refract or diffuse light from the backlight even at the interface of the back surface of the optical sheet for a liquid crystal display device. Therefore, the optical sheet for a liquid crystal display device can refract and diffuse light from the backlight at the interface between the front and back surfaces, and can further improve the optical function of the light diffusing function or the like. Further, according to the optical sheet for a liquid crystal display device, light is refracted and diffused by the refraction of the interface between the front and back surfaces, so that the loss of light in the optical sheet for a liquid crystal display device can be minimized, and the light transmittance can be improved. .

背面之微透鏡,可為凹透鏡。藉由背面之微透鏡為凹透鏡,來自背光的光線會於入射至光學片背面之際,於界面光線會朝分散之方向折射、擴散。因此,藉由該液晶顯示裝置用光學片,可更進一步提高光擴散機能等光學機能。The microlens on the back can be a concave lens. Since the microlens on the back side is a concave lens, the light from the backlight will refract and diffuse in the direction of dispersion when the light is incident on the back side of the optical sheet. Therefore, with the optical sheet for a liquid crystal display device, optical functions such as a light diffusing function can be further improved.

背面之微透鏡陣列,較佳為具有隨機直徑之由複數個微透鏡所構成者。藉由背面之微透鏡具有隨機的直徑之該液晶顯示裝置用光學片,於光學片背面中,來自背光的光線所折射、擴散之方向以及角度會呈現隨機分布,故光擴散機能可更進一步提升,而增進亮度的均勻性、燈源影像的去除性。The microlens array on the back side is preferably composed of a plurality of microlenses having a random diameter. The optical sheet for a liquid crystal display device having a random diameter on the back side of the microlens, in the back surface of the optical sheet, the direction and angle of refraction and diffusion of light from the backlight are randomly distributed, so that the light diffusing device can be further improved. , to improve the uniformity of brightness, the removal of the light source image.

表面之微透鏡的平均半徑,可為3μm以上90μm以下;背面之微透鏡的平均半徑可為2μm以上60μm以下。藉由該液晶顯示裝置用光學片,因表面以及背面之微透鏡具有上述範圍的平均半徑,可使光擴散等之光學機能進一步提升,可簡單且確實地調控該光學機能。The average radius of the surface microlens may be 3 μm or more and 90 μm or less; and the microlens of the back surface may have an average radius of 2 μm or more and 60 μm or less. According to the optical sheet for a liquid crystal display device, since the microlens on the front surface and the back surface have an average radius in the above range, the optical function such as light diffusion can be further improved, and the optical function can be easily and surely adjusted.

背面之微透鏡的平均半徑,可為表面之微透鏡的平均半徑的1/12以上1以下。藉由背面與表面之微透鏡的平均半徑比位於上述範圍之該液晶顯示裝置用光學片,因兩面之微透鏡的相乘效果,可進一步提升光擴散效果。The average radius of the microlenses on the back surface may be 1/12 or more and 1 or less of the average radius of the microlenses on the surface. The optical sheet for a liquid crystal display device having an average radius ratio of the microlens on the back surface and the surface is in the above range, and the light diffusion effect can be further enhanced by the multiplication effect of the microlenses on both sides.

基材層與該基材層表面以及背面之微透鏡陣列可為一體成形。藉由使該光學片如上所述一體成形,於片的內部不會產生光的折射、散射,而將光線的損失抑制在最小限度,故可提升光穿透率以及亮度。The base material layer and the microlens array of the surface of the base material layer and the back surface may be integrally formed. By integrally molding the optical sheet as described above, light is not refracted or scattered inside the sheet, and light loss is suppressed to a minimum, so that light transmittance and brightness can be improved.

至少表面之微透鏡陣列中之微透鏡的配設圖案,較佳為正三角形格子圖案或隨機圖案。該正三角形格子圖案,因可將微透鏡更緊密地配設,故該液晶顯示裝置用光學片的透鏡充填率可簡單地提升,聚光、光擴散等光學機能會格外地提高。此外,藉由以隨機圖案的方式配設微透鏡,於該液晶顯示裝置用光學片與其他光學構件重合之際可減低疊紋的產生。The arrangement pattern of the microlenses in at least the surface microlens array is preferably an equilateral triangle lattice pattern or a random pattern. In the regular triangular lattice pattern, since the microlenses can be more closely arranged, the lens filling rate of the optical sheet for a liquid crystal display device can be easily improved, and optical functions such as condensing and light diffusion can be particularly improved. Further, by arranging the microlenses in a random pattern, the occurrence of the moiré can be reduced when the optical sheet for the liquid crystal display device overlaps with other optical members.

該液晶顯示裝置用光學片,係可藉由擠製片成形法而形成(該擠製片成形法係使用具有該表面之微透鏡陣列之反轉形狀之壓紋輥、以及與該壓紋輥平行配置且具有該背面之微透鏡陣列之反轉形狀之壓紋輥)。藉由該手段,可簡單且高精度地形成於兩面具有特定之微透鏡陣列之光學片,並可簡單地利用同一材質加以一體成形。The optical sheet for a liquid crystal display device can be formed by an extrusion sheet forming method using an embossing roll having an inverted shape of the microlens array having the surface, and the embossing roll An embossing roll arranged in parallel and having an inverted shape of the microlens array of the back surface). By this means, an optical sheet having a specific microlens array on both sides can be formed simply and accurately, and can be integrally formed by simply using the same material.

因此,在將自燈源發射之光線分散引導至該表面側之液晶顯示裝置用背光單元,藉由具備光學機能、特別是光擴散機能以及其控制機能格外優異之該液晶顯示裝置用光學片,品質可因亮度的統一化以及高度化而提升。Therefore, the optical unit for a liquid crystal display device which is excellent in the optical function, particularly the light diffusing function and the control function thereof, is provided by the backlight unit for the liquid crystal display device which is guided by the light source from the light source. Quality can be improved by the uniformity and height of brightness.

此處,所謂液晶顯示裝置用光學片之「表面」以及「背面」,意指於液晶顯示裝置之背光單元上具備有通常之液晶顯示裝置用光學片時,面向表側(液晶層側)之面作為「表面」;其相對側(導光板側)之面作為「背面」。所謂「微透鏡」,意指含有凸透鏡以及凹透鏡之概念。所謂「正三角形格子圖案」,意指表面被區分為同一形狀之正三角形,於該正三角形之各頂點配設有微透鏡之圖案。Here, the "surface" and the "back surface" of the optical sheet for a liquid crystal display device mean that the surface of the backlight unit of the liquid crystal display device is provided on the front side (the liquid crystal layer side) when the optical sheet for a liquid crystal display device is provided. As the "surface", the surface on the opposite side (light guide plate side) serves as the "back surface". The term "microlens" means the concept of a convex lens and a concave lens. The "triangular lattice pattern" means an equilateral triangle whose surface is divided into the same shape, and a pattern of microlenses is arranged at each vertex of the equilateral triangle.

如以上之說明,依據本發明之液晶表示用光學片,其光學機能、特別是光擴散機能格外優異,並可簡單且確實地控制該光學機能。此外,使用該液晶顯示裝置用光學片之背光,可增進視野角的最佳化、燈源影像的去除、薄型化等品質的提升,以及低成本化。As described above, according to the optical sheet for liquid crystal display of the present invention, the optical function, particularly the light diffusing device, can be exceptionally excellent, and the optical function can be controlled simply and surely. Further, by using the backlight of the optical sheet for a liquid crystal display device, it is possible to improve the quality of the viewing angle, to remove the light source image, to reduce the thickness, and to reduce the cost.

以下,一邊參照適當圖式,一邊詳細說明本發明之實施形態。Hereinafter, embodiments of the present invention will be described in detail with reference to the appropriate drawings.

圖1之液晶顯示裝置用光學片1,係具備基材層2、於該基材層2表面所形成之微透鏡陣列3、以及於基材層2背面所形成之微透鏡陣列4。The optical sheet 1 for a liquid crystal display device of FIG. 1 includes a base material layer 2, a microlens array 3 formed on the surface of the base material layer 2, and a microlens array 4 formed on the back surface of the base material layer 2.

基材層2,因必須使光線透過,故係由透明、特別是由無色透明的合成樹脂所形成。作為基材層2所用之合成樹脂,並無特別限定,例如可列舉聚對苯二甲酸乙二酯、聚萘二甲酸乙二酯、丙烯酸樹脂、聚碳酸酯、聚苯乙烯、聚烯烴、乙酸纖維素、耐候性氯乙烯、放射線硬化型樹脂等。其中,較佳為對於微透鏡陣列3以及4之成形性優異之紫外線硬化型樹脂、電子線硬化型樹脂等放射線硬化型樹脂或聚碳酸酯、聚烯烴等熱可塑性樹脂。Since the base material layer 2 is required to transmit light, it is formed of a transparent, particularly colorless, transparent synthetic resin. The synthetic resin used for the base material layer 2 is not particularly limited, and examples thereof include polyethylene terephthalate, polyethylene naphthalate, acrylic resin, polycarbonate, polystyrene, polyolefin, and acetic acid. Cellulose, weather resistant vinyl chloride, radiation curable resin, and the like. Among them, a radiation curable resin such as an ultraviolet curable resin or an electron beam curable resin which is excellent in moldability of the microlens arrays 3 and 4, or a thermoplastic resin such as polycarbonate or polyolefin is preferable.

基材層2的厚度(平均厚度)並無特別限定,例如為10μm以上500μm以下,較佳為35μm以上250μm以下,特佳為50μm以上188μm以下。基材層2的厚度若低於上述範圍,則背光單元等暴露於熱時會容易發生彎曲,而產生難以使用等缺點。相對地,基材層2的厚度若超出上述範圍,則有時液晶顯示裝置的亮度會降低,此外背光單元的厚度會變大而不符合液晶顯示裝置薄型化的需求。The thickness (average thickness) of the base material layer 2 is not particularly limited, and is, for example, 10 μm or more and 500 μm or less, preferably 35 μm or more and 250 μm or less, and particularly preferably 50 μm or more and 188 μm or less. When the thickness of the base material layer 2 is less than the above range, the backlight unit or the like is likely to be bent when exposed to heat, which causes disadvantages such as difficulty in use. On the other hand, when the thickness of the base material layer 2 is outside the above range, the brightness of the liquid crystal display device may be lowered, and the thickness of the backlight unit may become large, which does not meet the demand for thinning of the liquid crystal display device.

形成基材層2之聚合物樹脂中亦可含有微小無機充填劑。如上所述藉由於基材層2中含有微小無機充填劑,可提升基材層2進而液晶顯示裝置用光學片1的耐熱性。作為構成該微小無機充填劑之無機物並無特別限定,較佳為無機氧化物。該無機氧化物,係定義為各種含氧金屬化合物,其金屬元素透過主要為與氧原子鍵結而構成3維網狀結構。作為構成無機氧化物之金屬元素,例如較佳為選自元素周期表第2族~第6族之元素,更佳為選自元素周期表第3族~第5族之元素。特別是以選自Si、Al、Ti以及Zr之元素較佳,又以金屬元素為Si之膠體二氧化矽對於耐熱性提升效果以及均勻分散性方面最適於作為微小無機充填劑。此外,微小無機充填劑的形狀可為球狀、針狀、板狀、鱗片狀、破碎狀等任意的粒子形狀,並無特別限定。The polymer resin forming the base material layer 2 may also contain a fine inorganic filler. As described above, the base material layer 2 and the optical sheet 1 for a liquid crystal display device can be improved in heat resistance by containing a fine inorganic filler in the base material layer 2. The inorganic substance constituting the micro inorganic filler is not particularly limited, and is preferably an inorganic oxide. The inorganic oxide is defined as various oxygen-containing metal compounds whose metal element is mainly bonded to an oxygen atom to form a three-dimensional network structure. The metal element constituting the inorganic oxide is preferably, for example, an element selected from Groups 2 to 6 of the periodic table, and more preferably an element selected from Groups 3 to 5 of the periodic table. In particular, a colloidal cerium oxide which is preferably an element selected from the group consisting of Si, Al, Ti, and Zr and a metal element of Si is most suitable as a fine inorganic filler for heat resistance improving effect and uniform dispersibility. Further, the shape of the fine inorganic filler may be any particle shape such as a spherical shape, a needle shape, a plate shape, a scale shape, or a crushed shape, and is not particularly limited.

作為微小無機充填劑之平均粒子徑的下限,較佳為5nm,特佳為10nm。另一方面,作為微小無機充填劑之平均粒子徑的上限,較佳為50nm,特佳為25nm。其理由在於,微小無機充填劑之平均粒子徑若低於上述範圍,則微小無機充填劑的表面能量會變高,而容易引起凝集等;相反地,平均粒子徑若超出上述範圍,則因短波長影響而產生白濁,基材層2的透明性會降低,而影響穿透率。The lower limit of the average particle diameter of the fine inorganic filler is preferably 5 nm, and particularly preferably 10 nm. On the other hand, the upper limit of the average particle diameter of the fine inorganic filler is preferably 50 nm, and particularly preferably 25 nm. When the average particle diameter of the fine inorganic filler is less than the above range, the surface energy of the fine inorganic filler becomes high, and aggregation or the like is likely to occur. Conversely, if the average particle diameter exceeds the above range, it is short. When the wavelength is affected and white turbidity occurs, the transparency of the substrate layer 2 is lowered to affect the transmittance.

此外,基材層2中可含有抗靜電劑。如上所述藉由混練有抗靜電劑之聚合物樹脂來形成基材層2,該液晶顯示裝置用光學片1可表現抗靜電效果,而可防止吸附雜質、或不易與其他光學片等重合等因帶有静電所產生之缺點。此外,若將抗靜電劑塗佈於表面,則雖會產生表面黏稠或污濁,但如上所述藉由於基材層2中混練抗靜電劑可減低其弊害。作為該抗靜電劑並無特別限定,例如可使用烷基硫酸鹽、烷基磷酸鹽等陰離子系抗靜電劑;第四銨鹽、咪唑啉化合物等陽離子系抗靜電劑;聚乙二醇系、聚氧乙烯山梨糖醇單硬脂酸酯、乙醇胺類等非離子系抗靜電劑、聚丙烯酸等高分子系抗靜電劑等。其中,較佳為抗靜電效果比較的大的陽離子系抗靜電劑,少量添加即可發揮抗靜電效果。Further, the base material layer 2 may contain an antistatic agent. By forming the base material layer 2 by kneading a polymer resin having an antistatic agent as described above, the optical sheet 1 for a liquid crystal display device can exhibit an antistatic effect, and can prevent adsorption of impurities or hardly overlap with other optical sheets. Due to the shortcomings caused by static electricity. Further, when the antistatic agent is applied to the surface, the surface is sticky or dirty, but the antistatic agent can be reduced by the kneading of the antistatic agent in the substrate layer 2 as described above. The antistatic agent is not particularly limited, and examples thereof include an anionic antistatic agent such as an alkyl sulfate or an alkyl phosphate; a cationic antistatic agent such as a fourth ammonium salt or an imidazoline compound; and a polyethylene glycol system. A nonionic antistatic agent such as polyoxyethylene sorbitan monostearate or ethanolamine, or a polymer antistatic agent such as polyacrylic acid. Among them, a large cationic antistatic agent which is preferable in comparison with an antistatic effect is preferable, and an antistatic effect can be exhibited by adding a small amount.

此外,基材層2中可含有紫外線吸收劑。藉由形成含有上述紫外線吸收劑之基材層2,可賦予該液晶顯示裝置用光學片1阻隔紫外線的機能,可將來自背光單元之燈源發射之微量紫外線加以阻隔,防止紫外線對液晶層的破壞。Further, the base material layer 2 may contain an ultraviolet absorber. By forming the base material layer 2 containing the ultraviolet absorber, the optical film 1 for the liquid crystal display device can be shielded from ultraviolet rays, and a small amount of ultraviolet light emitted from the light source of the backlight unit can be blocked to prevent ultraviolet rays from being applied to the liquid crystal layer. damage.

亦可使用紫外線安定劑(分子鏈含結合有紫外線安定基之基材聚合物),來取代上述紫外線吸收劑,或與紫外線吸收劑同時使用。藉由該紫外線安定劑,可使紫外線所產生之自由基、活性氧等去活化,以提升紫外線安定性、耐候性等。作為該紫外線安定劑,可較佳使用對紫外線具有高安定性之受阻胺(hindered amine)系紫外線安定劑。此外,藉由併用紫外線吸收劑與紫外線安定劑,可防止紫外線所造成之劣化以及使耐候性格外地提高。It is also possible to use an ultraviolet stabilizer (the molecular chain contains a base polymer having a UV stabilizer) in place of or in addition to the ultraviolet absorber. The ultraviolet stabilizer can deactivate free radicals, active oxygen, and the like generated by ultraviolet rays to enhance ultraviolet stability, weather resistance, and the like. As the ultraviolet stabilizer, a hindered amine-based ultraviolet stabilizer which has high stability to ultraviolet rays can be preferably used. Further, by using an ultraviolet absorber and an ultraviolet stabilizer together, it is possible to prevent deterioration due to ultraviolet rays and to improve weather resistance.

微透鏡陣列3,係由具有大致相同直徑之多數個微透鏡5所構成。The microlens array 3 is composed of a plurality of microlenses 5 having substantially the same diameter.

微透鏡陣列4,係由具有隨機直徑之多數個微透鏡6所構成。此外,微透鏡陣列4中之多數個微透鏡6,係以隨機圖案且相對緻密的方式所形成。The microlens array 4 is composed of a plurality of microlenses 6 having a random diameter. Further, a plurality of microlenses 6 in the microlens array 4 are formed in a random pattern and in a relatively dense manner.

微透鏡陣列3以及4,可與基材層2一體成形,亦可與基材層2各別地成形。微透鏡陣列3以及4,因必須使光線透過,故係由透明、特別是由無色透明的合成樹脂所形成,具體而言可使用與上述基材層2相同之合成樹脂。此外,作為基材層2,可使用聚對苯二甲酸乙二酯膜、聚萘二甲酸乙二酯膜或聚碳酸酯膜,於其上利用紫外線硬化性樹脂等形成微透鏡5以及6。The microlens arrays 3 and 4 may be integrally formed with the base material layer 2 or may be formed separately from the base material layer 2. Since the microlens arrays 3 and 4 are required to transmit light, they are formed of a transparent, particularly colorless, transparent synthetic resin. Specifically, the same synthetic resin as the above-mentioned base material layer 2 can be used. Further, as the base material layer 2, a polyethylene terephthalate film, a polyethylene naphthalate film or a polycarbonate film can be used, and the microlenses 5 and 6 are formed thereon by an ultraviolet curable resin or the like.

此外,於基材層2、微透鏡5以及6,除了上述合成樹脂以外,亦可配合例如填料、可塑劑、安定化劑、劣化防止劑、分散劑等。Further, in addition to the above synthetic resin, the base material layer 2 and the microlenses 5 and 6 may be blended with, for example, a filler, a plasticizer, a stabilizer, a deterioration preventive agent, a dispersant or the like.

微透鏡5,係具有凸狀之局部為大致球形之形狀,亦即凸透鏡。作為微透鏡5的平均半徑為3μm以上90μm以下、特別是10μm以上75μm以下較佳。微透鏡5的平均半徑若低於上述範圍,則因受燈源所發出之光線的波長的影響而有產生繞射現象之虞,相反地若超出上述範圍,則於界面會不具有充分的光擴散性。The microlens 5 has a convex shape and a substantially spherical shape, that is, a convex lens. The average radius of the microlens 5 is preferably 3 μm or more and 90 μm or less, and particularly preferably 10 μm or more and 75 μm or less. If the average radius of the microlens 5 is lower than the above range, the diffraction phenomenon may occur due to the influence of the wavelength of the light emitted by the light source. Conversely, if the radius exceeds the above range, the light may not have sufficient light at the interface. Diffusion.

微透鏡5,係以相對緻密且以幾何學的方式配設於基材層2表面。微透鏡5,於基材層2表面係以正三角形格子圖案的方式配設。因此,微透鏡5的間距以及透鏡間距離皆為固定。該配設圖案,可使微透鏡5以最密集的方式配設,可提升該液晶顯示裝置用光學片1的聚光機能、光擴散機能、變角機能等光學機能。The microlens 5 is disposed on the surface of the substrate layer 2 in a relatively dense and geometric manner. The microlens 5 is disposed on the surface of the base material layer 2 in a regular triangular lattice pattern. Therefore, the pitch of the microlens 5 and the distance between the lenses are both fixed. By arranging the pattern, the microlens 5 can be disposed in the most dense manner, and the optical function such as the condensing function, the light diffusing function, and the variable angle function of the optical sheet 1 for a liquid crystal display device can be improved.

作為微透鏡5之充填率的下限,較佳為40%,特佳為60%,最佳為70%。如上所述藉由使微透鏡5之充填率設為上述下限以上,可提升該液晶顯示裝置用光學片1表面中微透鏡5的占有面積,使該液晶顯示裝置用光學片1之聚光、光擴散等光學機能格外地提高。The lower limit of the filling ratio of the microlens 5 is preferably 40%, particularly preferably 60%, and most preferably 70%. By setting the filling ratio of the microlens 5 to the lower limit or more, the area occupied by the microlenses 5 on the surface of the optical sheet 1 for a liquid crystal display device can be increased, and the optical sheet 1 for the liquid crystal display device can be collected. Optical functions such as light diffusion are particularly improved.

作為微透鏡5之透鏡高度(H)對曲率半徑(R)之高度比(H/R)的下限,較佳為5/8,特佳為3/4。另一方面,作為該高度比(H/R)的上限,較佳為1。此處所謂「透鏡高度」,意指自微透鏡5基底面至最頂部為止之垂直距離。如上所述藉由使微透鏡5之高度比(H/R)位於上述範圍,可有效發揮微透鏡5中透鏡的折射作用,使該液晶顯示裝置用光學片1之聚光、光擴散等光學機能格外地提高。The lower limit of the height ratio (H/R) of the lens height (H) to the radius of curvature (R) of the microlens 5 is preferably 5/8, particularly preferably 3/4. On the other hand, the upper limit of the height ratio (H/R) is preferably 1. The term "lens height" as used herein means the vertical distance from the base surface to the topmost portion of the microlens 5. By setting the height ratio (H/R) of the microlens 5 to the above range, the refractive action of the lens in the microlens 5 can be effectively exhibited, and the optical sheet 1 for the liquid crystal display device can be optically concentrated or diffused. The function is exceptionally improved.

作為微透鏡5之透鏡間距離(S;P-D)對直徑(D)之間隔比(S/D)的上限,較佳為1/2,特佳為1/5。此處所謂「透鏡間距離」,意指比鄰之一對微透鏡5間的最短距離。如上所述藉由使微透鏡5之透鏡間距離(S)設為上述上限以下,可減少不賦予光學機能之平坦部,使該液晶顯示裝置用光學片1之聚光、光擴散等光學機能格外地提高。The upper limit of the ratio (S/D) of the inter-lens distance (S; P-D) to the diameter (D) of the microlens 5 is preferably 1/2, particularly preferably 1/5. Here, the "inter-lens distance" means the shortest distance between one of the adjacent microlenses 5. By setting the inter-lens distance (S) of the microlens 5 to be equal to or less than the above-described upper limit, the flat portion that does not impart optical function can be reduced, and optical functions such as light collection and light diffusion of the optical sheet 1 for liquid crystal display device can be reduced. Extraordinarily improved.

微透鏡5之各個光線出射角度的平均,相對於液晶顯示裝置用光學片1平面之法線,較佳為±25°以上,特佳為±40°。藉由以具有上述光線出射角度之微透鏡5來形成微透鏡陣列3,可獲得作為液晶顯示裝置用光學片所需之視野角特性。The average of the light emission angles of the microlenses 5 is preferably ±25° or more, and particularly preferably ±40° with respect to the normal to the plane of the optical sheet 1 for a liquid crystal display device. By forming the microlens array 3 with the microlens 5 having the above-described light emission angle, the viewing angle characteristic required for the optical sheet for a liquid crystal display device can be obtained.

微透鏡6,係具有局部為大致球形之反轉形狀,亦即凹透鏡。如上所述,因設置於基材層2背面之微透鏡陣列4的微透鏡6為凹透鏡,故該液晶顯示裝置用光學片1的光擴散性會格外地提高。亦即,藉由該液晶顯示裝置用光學片1,來自背光的光線入射光學片1的背面時,因微透鏡6凹狀之界面,使光線朝分散之方向(光擴散方向)折射,故可提升光擴散性。The microlens 6 has an inverted shape which is partially spherical in shape, that is, a concave lens. As described above, since the microlens 6 of the microlens array 4 provided on the back surface of the base material layer 2 is a concave lens, the light diffusibility of the optical sheet 1 for a liquid crystal display device is particularly improved. In other words, when the light from the backlight is incident on the back surface of the optical sheet 1 by the optical sheet 1 for a liquid crystal display device, the light is refracted toward the direction of dispersion (light diffusion direction) due to the concave interface of the microlens 6. Improve light diffusivity.

如上所述,藉由於該液晶顯示裝置用光學片1的兩面形成微透鏡陣列3以及4,於光入射之背面,因凹狀之微透鏡6將光擴散而可獲得廣視野角;而於光出射之表面,因凸狀之微透鏡5將光朝法線方向折射而可保持正面亮度。特別是,基材層2與微透鏡陣列3以及4以相同材料一體化形成時,該等折射係僅發生於液晶顯示裝置用光學片1表面與背面之界面,亦即液晶顯示裝置用光學片1內部不會發生光的折射、散射等,故可使光於液晶顯示裝置用光學片1內部的損失減到最小,提高光穿透率以及正面亮度。As described above, since the microlens arrays 3 and 4 are formed on both surfaces of the optical sheet 1 for a liquid crystal display device, a wide viewing angle can be obtained by diffusing the light by the concave microlens 6 on the back surface of the light incident; The surface to be emitted maintains the front luminance by the convex microlens 5 refracting the light toward the normal direction. In particular, when the base material layer 2 and the microlens arrays 3 and 4 are integrally formed of the same material, the refraction only occurs at the interface between the surface and the back surface of the optical sheet 1 for a liquid crystal display device, that is, an optical sheet for a liquid crystal display device. (1) Light refraction, scattering, and the like do not occur inside, so that loss of light inside the optical sheet 1 for liquid crystal display device can be minimized, and light transmittance and front luminance can be improved.

作為微透鏡6的平均半徑,較佳為2μm以上60μm以下,特佳為6μm以上40μm以下。藉由使微透鏡6的平均半徑位於上述範圍,於液晶顯示裝置用光學片1背面之微透鏡陣列4可有效使進入之來自背光的光線朝分散方向(光擴散方向)折射,以提升光擴散性。微透鏡6的平均半徑若低於上述範圍,則因受燈源所發出之光線的波長的影響而有產生繞射現象之虞;若超出上述範圍,則不具有充分的光擴散性。The average radius of the microlens 6 is preferably 2 μm or more and 60 μm or less, and particularly preferably 6 μm or more and 40 μm or less. By making the average radius of the microlens 6 within the above range, the microlens array 4 on the back surface of the optical sheet 1 for liquid crystal display device can effectively refract light entering the backlight from the dispersion direction (light diffusion direction) to enhance light diffusion. Sex. When the average radius of the microlens 6 is less than the above range, the diffraction phenomenon may occur due to the influence of the wavelength of the light emitted from the lamp source; if it exceeds the above range, it does not have sufficient light diffusibility.

微透鏡6的平均半徑,較佳為微透鏡5的平均半徑的1/12以上1以下。藉由使背面之微透鏡6與表面之微透鏡5的平均半徑比設定於上述範圍,可一方面確保一定的正面亮度,一方面提升光擴散性。微透鏡6的平均半徑若低於微透鏡5的平均半徑的1/12時,因散射以及繞射現象故正面亮度會大幅減少,相反地若超過1,則不具有充分的光擴散性,亮度的均勻性會減少。The average radius of the microlens 6 is preferably 1/12 or more and 1 or less of the average radius of the microlens 5. By setting the average radius ratio of the microlens 6 on the back surface and the microlens 5 on the surface to the above range, it is possible to ensure a certain front luminance on the one hand and to improve light diffusibility on the other hand. When the average radius of the microlens 6 is less than 1/12 of the average radius of the microlens 5, the front luminance is greatly reduced due to scattering and diffraction, and conversely, if it exceeds 1, there is no sufficient light diffusibility and brightness. The uniformity will be reduced.

作為微透鏡6之充填率的下限,較佳為50%,特佳為70%,最佳為80%。藉由使上述微透鏡6之充填率設為上述下限以上,可提高於該光學片1表面中微透鏡6的占有面積,使該液晶顯示裝置用光學片1之光擴散等光學機能格外地提高。The lower limit of the filling ratio of the microlens 6 is preferably 50%, particularly preferably 70%, and most preferably 80%. By setting the filling ratio of the microlens 6 to the lower limit or more, the area occupied by the microlenses 6 on the surface of the optical sheet 1 can be increased, and the optical function such as light diffusion of the optical sheet 1 for a liquid crystal display device can be particularly improved. .

作為該液晶顯示裝置用光學片1之製造方法,只要可形成上述構造者則無特別限定,可採用各種方法。做為該液晶顯示裝置用光學片1之製造方法,可為:製作基材層2之後,另外再形成微透鏡陣列3以及微透鏡陣列4之方法;將基材層2、微透鏡陣列3以及微透鏡陣列4一體成形之方法,具體而言有如下之方法:The method for producing the optical sheet 1 for a liquid crystal display device is not particularly limited as long as the above-described structure can be formed, and various methods can be employed. As a method of manufacturing the optical sheet 1 for a liquid crystal display device, a method of separately forming the microlens array 3 and the microlens array 4 after the base layer 2 is formed; the base layer 2, the microlens array 3, and The method for integrally forming the microlens array 4 has, in particular, the following method:

(a)於具有微透鏡陣列3以及4表面之反轉形狀之片模具積層合成樹脂,然後去除該片模具,形成該液晶顯示裝置用光學片1之方法;(a) a method of laminating a synthetic resin on a sheet mold having inverted shapes of the surfaces of the microlens arrays 3 and 4, and then removing the sheet mold to form the optical sheet 1 for a liquid crystal display device;

(b)於具有微透鏡陣列3以及4表面之反轉形狀之金屬模具,注入熔融樹脂之射出成型法;(b) an injection molding method in which a molten metal is injected into a metal mold having inverted shapes of the surfaces of the microlens arrays 3 and 4;

(c)將板片化之樹脂再加熱,挾持於與前述相同之金屬模具與金屬板之間,進行加壓轉印形狀之方法;(c) reheating the slab-formed resin, holding it between the same metal mold and the metal plate as described above, and performing a method of press-transferring the shape;

(d)使熔融狀態之樹脂通過於周面具有微透鏡陣列3以及4表面之反轉形狀的2個輥模具之間,以轉印上述形狀之擠製片成形法;(d) passing the resin in a molten state between two roll molds having a reverse shape of the surface of the microlens arrays 3 and 4 on the circumferential surface to transfer the extruded sheet forming method of the above shape;

(e)於基材層上塗布紫外線硬化型樹脂,將其緊壓於具有與上述相同之反轉形狀之片模具、金屬模具或輥模具,使形狀轉印至未硬化之紫外線硬化型樹脂上,然後照射紫外線,再使紫外線硬化型樹脂硬化之方法;(e) applying an ultraviolet curable resin to the base material layer, pressing it against a sheet mold, a metal mold or a roll mold having the same reverse shape as described above, and transferring the shape to the uncured ultraviolet curable resin And then irradiating ultraviolet rays, and then curing the ultraviolet curable resin;

(f)將未硬化之紫外線硬化性樹脂充填塗布於具有與上述相同之反轉形狀之金屬模具或輥模具上,再以基材層均勻緊壓,然後照射紫外線使紫外線硬化型樹脂硬化之方法;(f) a method of applying an uncured ultraviolet curable resin to a metal mold or a roll mold having the same reverse shape as described above, and uniformly pressing the base material layer, and then irradiating the ultraviolet ray to cure the ultraviolet curable resin ;

(g)使用電子線硬化型樹脂取代紫外線硬化型樹脂之方法。(g) A method of replacing an ultraviolet curable resin with an electron beam curing resin.

以下針對上述(d)~(f)中使用輥模具之方法進行說明。使用於表面具有微透鏡陣列3之反轉形狀之壓紋輥、以及與該壓紋輥以既定的間隔平行配置,於表面具有微透鏡陣列4之反轉形狀之壓紋輥,將膜狀樹脂通過上述2個壓紋輥之間,藉此可一體形成表面之微透鏡陣列3與背面之微透鏡陣列4。藉由該方法,可簡單且高精度地形成具有特定之微透鏡陣列3以及4之光學片,並可簡單地利用同一材質加以一體成形。進而,由於利用壓紋輥進行成形,故於微透鏡陣列3以及4不會產生不連續之接軌部分,而可製造無接縫之光學片。Hereinafter, a method of using a roll mold in the above (d) to (f) will be described. An embossing roll having an inverted shape of the microlens array 3 on the surface, and an embossing roll having a reversed shape of the microlens array 4 on the surface in parallel with the embossing roll at a predetermined interval, the film-like resin By passing between the above two embossing rolls, the microlens array 3 on the surface and the microlens array 4 on the back side can be integrally formed. According to this method, the optical sheets having the specific microlens arrays 3 and 4 can be formed simply and accurately, and can be integrally formed by simply using the same material. Further, since the embossing roll is used for molding, the microlens arrays 3 and 4 do not generate discontinuous portions, and a seamless optical sheet can be produced.

作為通過2個壓紋輥之間之膜狀樹脂,可為熔融樹脂,亦可為片狀樹脂的兩面積層有未硬化樹脂者等,較佳為熔融之熱可塑性樹脂自T字模擠製成為膜狀者。如上所述,藉由所謂擠製片成形法來製造,因可將於熔融狀態擠製之樹脂利用壓紋輥進行成形,故可於膜成形時同時形成表面以及背面之微透鏡陣列3以及4,因而可簡單且有效率地製造該光學片。The film-like resin passing between the two embossing rolls may be a molten resin, or may be an unhardened resin in a two-layer layer of a sheet-like resin. Preferably, the molten thermoplastic resin is extruded into a film from a T-die. Shape. As described above, by the so-called extrusion sheet forming method, since the resin which can be extruded in a molten state is formed by the embossing roll, the surface and the back surface microlens arrays 3 and 4 can be simultaneously formed at the time of film formation. Thus, the optical sheet can be manufactured simply and efficiently.

作為上述具有微透鏡陣列3以及4之反轉形狀之模具(金屬模具、模型等)之製造方法,例如可利用以下方式製造:於基材上藉由光阻材料形成斑點狀之立體圖案,並對該立體圖案加熱流體化使其曲面化,以製作微透鏡陣列模型,再於該微透鏡陣列模型的表面利用電鍍法積層金屬層,然後將該金屬層剝離。The method for producing the mold (metal mold, mold, etc.) having the inverted shape of the microlens arrays 3 and 4 can be manufactured, for example, by forming a speckled three-dimensional pattern on a substrate by a photoresist material, and The three-dimensional pattern is heated and fluidized to be curved to form a microlens array model, and a metal layer is laminated on the surface of the microlens array model by electroplating, and then the metal layer is peeled off.

藉由上述製造方法,可簡單且確實地形成任意形狀之微透鏡陣列3以及4。因此,構成微透鏡陣列3以及4之微透鏡5以及6的大小、充填率、配設圖案等可簡單且確實地調整、結果使得該液晶顯示裝置用光學片1之光學機能可簡單且確實地受到控制。According to the above manufacturing method, the microlens arrays 3 and 4 of any shape can be formed simply and surely. Therefore, the size, the filling ratio, the arrangement pattern, and the like of the microlenses 5 and 6 constituting the microlens arrays 3 and 4 can be easily and surely adjusted, and as a result, the optical function of the optical sheet 1 for liquid crystal display device can be simply and surely Be controlled.

作為上述具有微透鏡陣列3以及微透鏡陣列4之反轉形狀之模具(片模具等)之其他製造方法,可利用以下方式製造:使用於表面具有微透鏡陣列形狀之光學片原版,於光學片原版的表面藉由擠製積層法來積層模具用合成樹脂層,然後將光學片原版自模具用合成樹脂層剝離。擠製積層法中,可藉由特別是三明治擠製積層法,於光學片原版與模具用基材片之間積層模具用合成樹脂層。Another manufacturing method of the above-described mold (sheet mold or the like) having the inverted shape of the microlens array 3 and the microlens array 4 can be manufactured by using an optical sheet original having a microlens array shape on the surface, and an optical sheet. The surface of the original plate is laminated with a synthetic resin layer for the mold by an extrusion lamination method, and then the optical sheet original is peeled off from the synthetic resin layer for the mold. In the extrusion lamination method, a synthetic resin layer for a mold can be laminated between the optical sheet original sheet and the substrate sheet for a mold by a sandwich extrusion method.

藉由上述製造方法,可利用擠製積層法將於表面具有微透鏡陣列形狀之光學片原版的表面形狀忠實地轉印,故可使具有高光擴散機能等光學性能的光學片生產性良好地製造。特別是,藉由三明治擠製積層法,可利用模具用基材片確保光學片形成模具的強度,並可以光學片原版的表面形狀的轉印性、耐熱性、與光學層用合成樹脂層之剝離性為重點來選擇構成模具用合成樹脂層之合成樹脂,而有助於經精密計算之光學片材的表面形狀的精密追隨模具性與光學片形成模具的高壽命化。According to the above-described manufacturing method, the surface shape of the optical sheet precursor having the shape of the microlens array on the surface can be faithfully transferred by the extrusion lamination method, so that the optical sheet having optical properties such as high light diffusion function can be produced with good productivity. . In particular, by the sandwich extrusion lamination method, the strength of the optical sheet forming mold can be ensured by the substrate sheet for a mold, and the transfer property of the surface shape of the optical sheet original, heat resistance, and the synthetic resin layer for the optical layer can be used. In order to select the synthetic resin constituting the synthetic resin layer for the mold, the precision of the surface shape of the optical sheet which is precisely calculated and the moldability of the optical sheet forming mold are increased.

此外,藉由上述擠製積層法之製造方法,即使為具有背面之微透鏡陣列4的反轉形狀的模具(微透鏡陣列4係由具有隨機直徑之複數個微透鏡6所構成),亦可藉由塗佈具有複數個直徑之珠粒所形成之光擴散片作為原版,再進行轉印的方式簡單地製造。Further, by the above-described manufacturing method of the extrusion lamination method, even if it is a mold having a reverse shape of the microlens array 4 on the back surface (the microlens array 4 is composed of a plurality of microlenses 6 having a random diameter), The light-diffusing sheet formed by coating beads having a plurality of diameters is simply used as a master and then transferred.

圖2所示之邊光型背光單元,係具備導光板7、配設於該導光板7的對偶邊之一對線狀燈源8、重疊配設於導光板7表面側之液晶顯示裝置用光學片1。自燈源8所發射而從導光板7表面出射之光線,雖具有相對法線方向傾斜既定角度之比較強的峰值,但藉由該背光單元,在朝正面側的聚光機能、朝法線方向側的變角機能方面,除了具有以往的機能,且因具有格外優異之光擴散機能之該液晶顯示裝置用光學片1,而可謀求亮度的均勻化,使其變換成具有寬廣的視野角的光。因此,該背光單元,可謀求降低以往所需光學片(珠粒塗覆片等)的裝設片數,增進薄型化、高品質化、以及低成本化。進而,因降低光學片裝設片數,可增進亮度的提升。此外,邊光型背光單元,亦可裝備4管、6管等燈源8。The edge light type backlight unit shown in FIG. 2 is provided with a light guide plate 7, a pair of paired side light sources 8 disposed on the light guide plate 7, and a liquid crystal display device which is disposed on the surface side of the light guide plate 7 in a superposed manner. Optical sheet 1. The light emitted from the light source 8 and emitted from the surface of the light guide plate 7 has a relatively strong peak inclined at a predetermined angle with respect to the normal direction. However, the backlight unit has a concentrating function toward the front side and toward the normal line. In addition to the conventional function, the optical sheet 1 for a liquid crystal display device having an excellent light diffusing function can be used to achieve a uniform viewing angle and a wide viewing angle. Light. Therefore, the number of the optical sheets (bead coated sheets, etc.) required for the conventional backlight unit can be reduced, and the thickness, the quality, and the cost can be reduced. Further, by reducing the number of optical sheets mounted, the brightness can be improved. In addition, the edge light type backlight unit can also be equipped with a light source 8 such as 4 tubes or 6 tubes.

圖3之液晶顯示裝置用光學片11,係具備基材層2、於該基材層2表面所形成之微透鏡陣列3、以及該基材層2背面所形成之微透鏡陣列12。該基材層以及微透鏡陣列3,係與上述圖1之液晶顯示裝置用光學片1相同,故賦予相同元件符號而省略其說明。The optical sheet 11 for a liquid crystal display device of FIG. 3 includes a base material layer 2, a microlens array 3 formed on the surface of the base material layer 2, and a microlens array 12 formed on the back surface of the base material layer 2. The base material layer and the microlens array 3 are the same as those of the optical sheet 1 for a liquid crystal display device of FIG. 1 described above, and the same reference numerals will be given thereto, and description thereof will be omitted.

微透鏡陣列12,係由具有大致相同直徑之多數個微透鏡13所構成。The microlens array 12 is composed of a plurality of microlenses 13 having substantially the same diameter.

微透鏡13,係凹透鏡。此外,微透鏡13之直徑,較佳為與構成表面之微透鏡陣列3之微透鏡5相同直徑或低於其直徑。The microlens 13 is a concave lens. Further, the diameter of the microlens 13 is preferably the same as or smaller than the diameter of the microlens 5 of the microlens array 3 constituting the surface.

微透鏡13,係以相對緻密且以幾何學的方式配設於基材層2背面。微透鏡13,於基材層2背面係以正三角形格子圖案的方式配設。因此,微透鏡13的間距以及透鏡間距離皆為固定。該配設圖案,可使微透鏡13以最密集的方式配設,可提升該液晶顯示裝置用光學片1的光擴散機能等光學機能。特別是,藉由以表面之微透鏡5的中心位於背面之微透鏡13的中心的方式配設,或以構成表面之微透鏡陣列3之正三角形格子圖案的各個三角形的中心位於背面之微透鏡13的中心位置的方式配設,可提高表裏兩面的微透鏡陣列的相乘效果,使光擴散機能等光學機能格外地提高。The microlens 13 is disposed on the back surface of the substrate layer 2 in a relatively dense and geometric manner. The microlens 13 is disposed on the back surface of the base material layer 2 in a regular triangular lattice pattern. Therefore, the pitch of the microlenses 13 and the distance between the lenses are both fixed. In this arrangement pattern, the microlenses 13 can be disposed in the most dense manner, and the optical function such as the light diffusing function of the optical sheet 1 for a liquid crystal display device can be improved. In particular, it is disposed such that the center of the microlens 5 on the surface is located at the center of the microlens 13 on the back side, or the microlens having the center of each triangle of the equilateral triangle lattice pattern constituting the surface of the microlens array 3 on the back side. The center position of the 13 is arranged to increase the multiplying effect of the microlens array on both sides of the watch, and the optical function such as the light diffusing function can be particularly improved.

圖4之液晶顯示裝置用光學片21,係具備基材層2、於該基材層2表面所形成之微透鏡陣列3、以及於該基材層2背面所形成之微透鏡陣列22。該基材層以及微透鏡陣列3,係與上述圖1之液晶顯示裝置用光學片1相同,故賦予相同元件符號而省略其說明。The optical sheet 21 for a liquid crystal display device of FIG. 4 includes a base material layer 2, a microlens array 3 formed on the surface of the base material layer 2, and a microlens array 22 formed on the back surface of the base material layer 2. The base material layer and the microlens array 3 are the same as those of the optical sheet 1 for a liquid crystal display device of FIG. 1 described above, and the same reference numerals will be given thereto, and description thereof will be omitted.

微透鏡陣列22,係由具有隨機直徑之多數個微透鏡23所構成。The microlens array 22 is composed of a plurality of microlenses 23 having a random diameter.

微透鏡23,係凸透鏡。作為微透鏡23的平均半徑,係與液晶顯示裝置用光學片1之微透鏡6相同,較佳為2μm以上24μm以下,特佳為6μm以上18μm以下,其中又以表面所設置之微透鏡5的平均半徑的1/12以上1以下較佳。此外,作為微透鏡23的充填率的下限,較佳為50%,特佳為70%、最佳為80%。The microlens 23 is a convex lens. The average radius of the microlens 23 is the same as that of the microlens 6 of the optical sheet 1 for a liquid crystal display device, and is preferably 2 μm or more and 24 μm or less, particularly preferably 6 μm or more and 18 μm or less, wherein the microlens 5 provided on the surface is further used. It is preferable that the average radius is 1/12 or more and 1 or less. Further, the lower limit of the filling ratio of the microlens 23 is preferably 50%, particularly preferably 70%, and most preferably 80%.

此外,微透鏡23的平均焦點距離,可為基材層2的平均厚度的1/2以下。藉由具有上述焦點距離之微透鏡23,來自液晶顯示裝置用光學片21背面所入射之光線,經過背面之微透鏡陣列22界面折射之後,於抵達表面所形成之微透鏡陣列3前會被分散,故可提升該液晶顯示裝置用光學片21的光擴散機能。Further, the average focal length of the microlens 23 may be 1/2 or less of the average thickness of the base material layer 2. By the microlens 23 having the above focal length, the light incident from the back surface of the optical sheet 21 for liquid crystal display device is refracted through the interface of the microlens array 22 on the back surface, and is dispersed before the microlens array 3 formed on the surface is formed. Therefore, the light diffusing function of the optical sheet 21 for a liquid crystal display device can be improved.

圖5之液晶顯示裝置用光學片31,係具備基材層2、於該基材層2表面所形成之微透鏡陣列3、以及於該基材層2背面所形成之微透鏡陣列32。該基材層以及微透鏡陣列3,係與上述圖1之液晶顯示裝置用光學片1相同,故賦予相同元件符號而省略其說明。The optical sheet 31 for a liquid crystal display device of FIG. 5 includes a base material layer 2, a microlens array 3 formed on the surface of the base material layer 2, and a microlens array 32 formed on the back surface of the base material layer 2. The base material layer and the microlens array 3 are the same as those of the optical sheet 1 for a liquid crystal display device of FIG. 1 described above, and the same reference numerals will be given thereto, and description thereof will be omitted.

微透鏡陣列32,係由具有大致相同直徑之多數個微透鏡33所構成。The microlens array 32 is composed of a plurality of microlenses 33 having substantially the same diameter.

微透鏡33,係凸透鏡。微透鏡33之直徑,較佳為與構成表面之微透鏡陣列3之微透鏡5相同直徑或低於其直徑。藉由使微透鏡33之直徑設為與表面側之微透鏡5不同大小,可進行因應對象物焦點距離之調整,而藉由組合表面與背面之微透鏡可進一步提升光擴散性以及面均勻性。The microlens 33 is a convex lens. The diameter of the microlens 33 is preferably the same as or smaller than the diameter of the microlens 5 of the microlens array 3 constituting the surface. By making the diameter of the microlens 33 different from the size of the microlens 5 on the surface side, it is possible to adjust the focal length of the object, and the light diffusion and surface uniformity can be further improved by combining the microlenses on the surface and the back surface. .

微透鏡33,係以相對緻密且以幾何學的方式配設於基材層2背面。微透鏡33,於基材層2背面係以正三角形格子圖案的方式配設。因此,微透鏡33的間距以及透鏡間距離皆為固定。該配設圖案,可使微透鏡33以最密集的方式配設,可提升該液晶顯示裝置用光學片1的光擴散機能等光學機能。特別是,藉由以表面之微透鏡5的中心位於背面之微透鏡33的中心的方式配設,或以構成表面之微透鏡陣列3之正三角形格子圖案的各個三角形的中心位於背面之微透鏡33的中心位置的方式配設,可提高表裏兩面的微透鏡陣列的相乘效果,使光擴散機能等光學機能格外地提高。The microlens 33 is disposed on the back surface of the substrate layer 2 in a relatively dense and geometric manner. The microlens 33 is disposed on the back surface of the base material layer 2 in a regular triangular lattice pattern. Therefore, the pitch of the microlens 33 and the distance between the lenses are both fixed. By arranging the pattern, the microlenses 33 can be arranged in the most dense manner, and the optical function such as the light diffusing function of the optical sheet 1 for a liquid crystal display device can be improved. In particular, it is disposed such that the center of the surface microlens 5 is located at the center of the microlens 33 on the back side, or the microlens having the center of each triangle of the equilateral triangle lattice pattern constituting the surface of the microlens array 3 is located at the back side. The center position of 33 is arranged to improve the multiplying effect of the microlens array on both sides of the watch, and the optical function such as the light diffusing function can be particularly improved.

此外,微透鏡33的平均焦點距離,可為基材層2的平均厚度的1/2以下。藉由具有上述焦點距離之微透鏡33,來自液晶顯示裝置用光學片31背面所入射之光線,經過背面之微透鏡陣列32界面折射之後,於抵達表面之微透鏡陣列3前會被分散,故可提升該液晶顯示裝置用光學片31的光擴散機能。Further, the average focal length of the microlens 33 may be 1/2 or less of the average thickness of the base material layer 2. By the microlens 33 having the above-described focal length, the light incident from the back surface of the optical sheet 31 for liquid crystal display device is refracted through the interface of the microlens array 32 on the back surface, and is dispersed before the microlens array 3 reaching the surface. The light diffusing function of the optical sheet 31 for a liquid crystal display device can be improved.

上述液晶顯示裝置用光學片11、21以及31之任一者中,藉由液晶顯示裝置用光學片的兩面形成有微透鏡陣列,於光入射之背面,因微透鏡13、23或33將光擴散而可獲得亮度的均勻化以及廣視野角;而於光出射之表面,因凸狀之微透鏡5將光朝法線方向折射而可保持高度正面亮度。In any of the optical sheets 11, 21, and 31 for liquid crystal display devices, a microlens array is formed on both surfaces of an optical sheet for a liquid crystal display device, and light is incident on the back surface of the light by the microlenses 13, 23, or 33. Diffusion allows uniformity of brightness and wide viewing angle; on the surface where light is emitted, the convex microlens 5 refracts light in the normal direction to maintain a high frontal brightness.

此外,本發明之液晶顯示裝置用光學片並無限定於上述實施形態,例如,以表面之微透鏡之配設圖案而言,並未限定於可稠密充填之上述正三角形格子圖案,亦可為正方形格子圖案或隨機圖案。若為隨機圖案,於該液晶顯示裝置用光學片與其他光學構件重合時可減少疊紋的產生。此外,亦可於表面設置由凹透鏡之微透鏡所構成之微透鏡陣列。於表面設置凹透鏡之微透鏡陣列時,亦具有與設置上述凸透鏡之微透鏡陣列時同様優異之光擴散性等光學機能。此外,表面之微透鏡與背面之微透鏡,亦可由分別不同折射率之材料來形成。如上所述藉由使表面與背面由不同折射率材質所構成之微透鏡來形成,於材質間之界面亦會產生光的折射等,故可提升該液晶表示用光學片的光擴散性以及面均勻性。Further, the optical sheet for a liquid crystal display device of the present invention is not limited to the above embodiment, and for example, the arrangement pattern of the microlenses on the surface is not limited to the above-mentioned equilateral triangular lattice pattern which can be densely filled, or Square grid pattern or random pattern. If it is a random pattern, the generation of the moiré can be reduced when the optical sheet for the liquid crystal display device is overlapped with other optical members. Further, a microlens array composed of microlenses of concave lenses may be provided on the surface. When a microlens array having a concave lens is provided on the surface, it also has an optical function such as light diffusibility which is excellent in comparison with a microlens array in which the above-mentioned convex lens is provided. Further, the microlens on the surface and the microlens on the back may be formed of materials having different refractive indices. Since the surface and the back surface are formed by microlenses having different refractive index materials as described above, light refraction or the like is also generated at the interface between the materials, so that the light diffusibility and surface of the liquid crystal display optical sheet can be improved. Uniformity.

實施例Example

以下根據實施例詳述本發明,但本發明並因本實施例之記載而受限解釋。Hereinafter, the present invention will be described in detail based on the examples, but the present invention is limited by the description of the examples.

[比較例][Comparative example]

於厚度100μm之透明聚對苯二甲酸乙二酯製膜的表面,使用設置有由凸透鏡之微透鏡所構成的微透鏡陣列之液晶顯示裝置用光學片。將比較例之微透鏡片的微透鏡之平均直徑設為60μm、充填率設為70%的方式加以成形。An optical sheet for a liquid crystal display device in which a microlens array composed of a microlens of a convex lens is provided on a surface of a transparent polyethylene terephthalate film having a thickness of 100 μm is used. The microlens of the microlens sheet of the comparative example was molded so that the average diameter of the microlenses was 60 μm and the filling ratio was 70%.

[實施例1~4][Examples 1 to 4]

於厚度100μm之透明聚對苯二甲酸乙二酯製膜的表面,設置由凸透鏡之微透鏡所構成之微透鏡陣列,於背面分別設置以下形狀之微透鏡陣列。藉由於背面設置由具有隨機直徑之凹透鏡的微透鏡所構成之微透鏡陣列,得到實施例1之液晶顯示裝置用光學片。藉由於背面設置由具有大致相同直徑之凹透鏡的微透鏡所構成之微透鏡陣列,得到實施例2之液晶顯示裝置用光學片。藉由於背面設置由具有隨機直徑之凸透鏡的微透鏡所構成之微透鏡陣列,得到實施例3之液晶顯示裝置用光學片。藉由於背面設置由具有大致相同直徑之凸透鏡的微透鏡所構成之微透鏡陣列,得到實施例4之液晶顯示裝置用光學片。A microlens array composed of a microlens of a convex lens was provided on the surface of a film made of a transparent polyethylene terephthalate having a thickness of 100 μm, and a microlens array having the following shape was provided on the back surface. An optical sheet for a liquid crystal display device of Example 1 was obtained by providing a microlens array composed of a microlens having a concave lens having a random diameter on the back surface. An optical sheet for a liquid crystal display device of Example 2 was obtained by providing a microlens array composed of microlenses having concave lenses having substantially the same diameter on the back surface. An optical sheet for a liquid crystal display device of Example 3 was obtained by providing a microlens array composed of microlenses having a convex lens having a random diameter on the back surface. An optical sheet for a liquid crystal display device of Example 4 was obtained by providing a microlens array composed of microlenses having convex lenses having substantially the same diameter on the back surface.

於背面之微透鏡陣列中,將具有大致相同直徑之微透鏡的平均直徑設為60μm、將具有隨機直徑之微透鏡的平均直徑設為12μm、將充填率全部設為70%的方式加以成形。In the microlens array on the back surface, the average diameter of the microlenses having substantially the same diameter was 60 μm, the average diameter of the microlenses having a random diameter was 12 μm, and the filling ratio was 70%.

[特性之評價][Feature evaluation]

使用上述實施例1~4之液晶顯示裝置用光學片以及比較例之液晶顯示裝置用光學片,測定此等之霧度。霧度依據JIS-K7136所規定之測定方法,藉由Suga Test Instruments Co.,Ltd.之霧度試驗儀器加以測定。此外,使用上述實施例2、4以及比較例之液晶顯示裝置用光學片,測定該等之亮度半值角。進一步,使用上述實施例2、4以及比較例之液晶顯示裝置用光學片,將該等之光學片實際裝入直下型背光單元中,評價其光擴散性。光擴散性之評價,係以目視確認從照射背光時的表面側之燈源影像的消去度,藉由下述之基準進行評價。The optical sheets for liquid crystal display devices of Examples 1 to 4 and the optical sheets for liquid crystal display devices of Comparative Examples were used to measure the haze. The haze was measured by a haze tester of Suga Test Instruments Co., Ltd. in accordance with the measurement method specified in JIS-K7136. Further, using the optical sheets for liquid crystal display devices of Examples 2 and 4 and Comparative Examples described above, the half value angles of the luminances were measured. Further, using the optical sheets for liquid crystal display devices of the above-described Examples 2 and 4 and Comparative Examples, the optical sheets were actually incorporated in a direct type backlight unit, and the light diffusibility thereof was evaluated. The evaluation of the light diffusibility was performed by visually confirming the degree of erasure of the light source image on the surface side when the backlight was irradiated, and the evaluation was performed based on the following criteria.

(a)幾乎看不見燈源影像的情況為◎(a) The situation where the light source image is almost invisible is ◎

(b)不易看見燈源影像的情況為○(b) The case where the light source image is not easily seen is ○

(c)稍微能夠看見燈源影像的情況為△(c) The situation where the light source image can be seen slightly is △

(d)能夠清楚看見燈源影像的情況為×(d) The situation in which the light source image can be clearly seen is ×

其結果示於表1。此外,分別將比較例之液晶顯示裝置用光學片裝入直下型背光單元時的燈源影像照片示於圖6、將實施例2之液晶顯示裝置用光學片裝入直下型背光單元時的燈源影像照片示於圖7、將實施例4之液晶顯示裝置用光學片裝入直下型背光單元時的燈源影像照片示於圖8。The results are shown in Table 1. Further, the light source image of the liquid crystal display device for a liquid crystal display device of the comparative example is shown in FIG. 6, and the light for the liquid crystal display device of the second embodiment is incorporated in the direct type backlight unit. The source image photograph is shown in Fig. 7. The light source image of the liquid crystal display device of Example 4 is shown in Fig. 8 when it is incorporated in the direct type backlight unit.

如上述表1所示,實施例1~4的液晶顯示裝置用光學片,相較於背面不具備微透鏡陣列之比較例的液晶顯示裝置用光學片,顯示了較高的霧度,亦即表示具有較高的光擴散性以及寬廣的視野角。此外,若於實施例1~4之間比較,則背面之微透鏡具有隨機直徑,且具有凹透鏡形狀者顯示了較高的霧度,亦即顯示具有較高的光擴散性以及寛廣的視野角。As shown in the above Table 1, the optical sheets for liquid crystal display devices of Examples 1 to 4 exhibited higher haze than the optical sheets for liquid crystal display devices of Comparative Examples having no microlens array on the back surface, that is, Indicates high light diffusivity and a wide viewing angle. Further, if compared between Examples 1 to 4, the microlenses on the back side have a random diameter, and those having a concave lens shape exhibit a high haze, that is, a display having a high light diffusibility and a wide field of view. angle.

此外,如表1所示,實施例2以及4之液晶顯示裝置用光學片,相較於背面不具備微透鏡陣列之比較例的液晶顯示裝置用光學片,具有較寬的亮度半值角。Further, as shown in Table 1, the optical sheets for liquid crystal display devices of Examples 2 and 4 have a wide half angle of brightness compared to the optical sheets for liquid crystal display devices of Comparative Examples in which the back surface does not have a microlens array.

進而,如表1以及圖7~9所示,實施例2以及4的液晶顯示裝置用光學片,其燈源影像之消去度亦較高。亦即,顯示實施例2以及4之液晶顯示裝置用光學片,具有較高之光擴散性以及寬廣的視野角。此外,從燈源影像之消去度(圖8與圖9之比較)中,顯示背面具有凹透鏡形狀之微透鏡的液晶顯示裝置用光學片,具有較高之光擴散性以及廣視野角。Further, as shown in Table 1 and FIGS. 7 to 9, the optical sheets for liquid crystal display devices of Examples 2 and 4 have high erasure of the light source image. That is, the optical sheets for liquid crystal display devices of Examples 2 and 4 were shown to have high light diffusibility and a wide viewing angle. Further, in the erasing degree of the light source image (comparison between FIG. 8 and FIG. 9), the optical sheet for a liquid crystal display device having a microlens having a concave lens shape on the back surface has high light diffusibility and a wide viewing angle.

Production 業上之可利用性Industry availability

如上所述,本發明之液晶顯示裝置用光學片,可作為液晶顯示裝置之背光單元的構成要素,特別是適合用於穿透型液晶顯示裝置。As described above, the optical sheet for a liquid crystal display device of the present invention can be used as a constituent element of a backlight unit of a liquid crystal display device, and is particularly suitable for use in a transmissive liquid crystal display device.

1...液晶顯示裝置用光學片1. . . Optical sheet for liquid crystal display device

2...基材層2. . . Substrate layer

3...微透鏡陣列3. . . Microlens array

4...微透鏡陣列4. . . Microlens array

5...微透鏡5. . . Microlens

6...微透鏡6. . . Microlens

7...導光板7. . . Light guide

8...燈源8. . . Light source

11...液晶顯示裝置用光學片11. . . Optical sheet for liquid crystal display device

12...微透鏡陣列12. . . Microlens array

13...微透鏡13. . . Microlens

21...液晶顯示裝置用光學片twenty one. . . Optical sheet for liquid crystal display device

22...微透鏡陣列twenty two. . . Microlens array

23...微透鏡twenty three. . . Microlens

31...液晶顯示裝置用光學片31. . . Optical sheet for liquid crystal display device

32...微透鏡陣列32. . . Microlens array

33...微透鏡33. . . Microlens

40...背光單元40. . . Backlight unit

41...燈源41. . . Light source

42...導光板42. . . Light guide

43...光學片43. . . Optical sheet

44...微透鏡片44. . . Microlens sheet

45...稜鏡片45. . . Bract

46...稜鏡部46. . . Crotch

47...微透鏡陣列47. . . Microlens array

圖1係表示本發明之一特定實施形態之液晶顯示裝置用光學片之示意性的局部截面圖。Fig. 1 is a schematic partial cross-sectional view showing an optical sheet for a liquid crystal display device according to a specific embodiment of the present invention.

圖2係表示具備圖1之液晶顯示裝置用光學片之背光單元之示意性的截面圖。Fig. 2 is a schematic cross-sectional view showing a backlight unit including the optical sheet for a liquid crystal display device of Fig. 1.

圖3係表示與圖1之液晶顯示裝置用光學片不同形態之液晶顯示裝置用光學片之示意性的局部截面圖。Fig. 3 is a schematic partial cross-sectional view showing an optical sheet for a liquid crystal display device which is different from the optical sheet for a liquid crystal display device of Fig. 1.

圖4係表示與圖1以及圖3之液晶顯示裝置用光學片不同之液晶顯示裝置用光學片之示意性的局部截面圖。4 is a schematic partial cross-sectional view showing an optical sheet for a liquid crystal display device which is different from the optical sheet for a liquid crystal display device of FIGS. 1 and 3.

圖5係表示與圖1、圖3以及圖4之液晶顯示裝置用光學片不同之液晶顯示裝置用光學片之示意性的局部截面圖。Fig. 5 is a schematic partial cross-sectional view showing an optical sheet for a liquid crystal display device which is different from the optical sheets for liquid crystal display devices of Figs. 1, 3 and 4.

圖6係表示比較例之液晶顯示裝置用光學片裝入直下型背光單元時的燈源影像照片。Fig. 6 is a photograph showing a light source image when an optical sheet for a liquid crystal display device of a comparative example is incorporated in a direct type backlight unit.

圖7係表示實施例2之液晶顯示裝置用光學片裝入直下型背光單元時的燈源影像照片。Fig. 7 is a view showing a light source image when the optical sheet for a liquid crystal display device of the second embodiment is incorporated in a direct type backlight unit.

圖8係表示實施例4之液晶顯示裝置用光學片裝入直下型背光單元時的燈源影像照片。Fig. 8 is a view showing a light source image when the optical sheet for a liquid crystal display device of the fourth embodiment is incorporated in a direct type backlight unit.

圖9(a)以及(b)係表示一般背光單元之示意性的透視圖,以及表示以往之一般微透鏡片之示意性的截面圖。9(a) and 9(b) are schematic perspective views showing a general backlight unit, and a schematic cross-sectional view showing a conventional general lenticular sheet.

1...液晶顯示裝置用光學片1. . . Optical sheet for liquid crystal display device

2...基材層2. . . Substrate layer

3...微透鏡陣列3. . . Microlens array

4...微透鏡陣列4. . . Microlens array

5...微透鏡5. . . Microlens

6...微透鏡6. . . Microlens

D...微透鏡直徑D. . . Microlens diameter

H...微透鏡高度H. . . Microlens height

P...微透鏡之間距P. . . Distance between microlenses

R...微透鏡曲率半徑R. . . Microlens radius of curvature

S...微透鏡間距離S. . . Distance between microlenses

Claims (8)

一種液晶顯示裝置用光學片,其具備:透明基材層;以及微透鏡陣列,係由該基材層表面以及背面所形成之複數個微透鏡所構成;該背面之微透鏡陣列係由具有隨機直徑之複數個微透鏡所構成,該背面之微透鏡為凹透鏡,該背面之微透鏡的平均半徑小於表面之微透鏡的平均半徑。 An optical sheet for a liquid crystal display device, comprising: a transparent substrate layer; and a microlens array comprising a plurality of microlenses formed on a surface and a back surface of the substrate layer; the microlens array on the back surface is randomly The microlens of the back surface is a concave lens, and the microlens of the back surface has an average radius smaller than an average radius of the microlenses of the surface. 如申請專利範圍第1項之液晶顯示裝置用光學片,其中表面之微透鏡的平均半徑為3μm以上90μm以下。 The optical sheet for a liquid crystal display device according to claim 1, wherein the surface microlens has an average radius of 3 μm or more and 90 μm or less. 如申請專利範圍第1項之液晶顯示裝置用光學片,其中背面之微透鏡的平均半徑為2μm以上60μm以下。 The optical sheet for a liquid crystal display device according to claim 1, wherein the microlens on the back surface has an average radius of 2 μm or more and 60 μm or less. 如申請專利範圍第1項之液晶顯示裝置用光學片,其中背面之微透鏡的平均半徑為表面之微透鏡的平均半徑的1/12以上且未達1。 The optical sheet for a liquid crystal display device of claim 1, wherein the average radius of the microlenses on the back surface is 1/12 or more of the average radius of the surface microlenses and is less than 1. 如申請專利範圍第1項之液晶顯示裝置用光學片,其中基材層與該基材層表面以及背面之微透鏡陣列係一體成形。 The optical sheet for a liquid crystal display device according to claim 1, wherein the substrate layer is integrally formed with the microlens array of the surface of the substrate layer and the back surface. 如申請專利範圍第1項之液晶顯示裝置用光學片,其中至少表面之微透鏡陣列中之微透鏡的配設圖案為正三角形格子圖案或隨機圖案。 The optical sheet for a liquid crystal display device of claim 1, wherein the arrangement pattern of the microlenses in at least the surface microlens array is an equilateral triangle lattice pattern or a random pattern. 如申請專利範圍第1項之液晶顯示裝置用光學片,其係藉由擠製片成形法而形成者;該擠製片成形法係使用具 有該表面之微透鏡陣列之反轉形狀之壓紋輥、以及與該壓紋輥平行配置且具有該背面之微透鏡陣列之反轉形狀之壓紋輥。 An optical sheet for a liquid crystal display device according to claim 1, which is formed by an extrusion sheet forming method; the extruded sheet forming method is used An embossing roll having an inverted shape of the microlens array of the surface, and an embossing roll disposed in parallel with the embossing roll and having an inverted shape of the microlens array of the back surface. 一種液晶顯示裝置用背光單元,係使自燈源發射之光線分散引導至表面側;其特徵在於:具備申請專利範圍第1項之液晶顯示裝置用光學片。 A backlight unit for a liquid crystal display device that disperses and guides light emitted from a light source to a surface side, and is characterized by comprising the optical sheet for a liquid crystal display device of claim 1 of the patent application.
TW099102004A 2009-01-30 2010-01-26 An optical sheet for a liquid crystal display device, and a backlight unit using the same TWI524096B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009020854A JP5498027B2 (en) 2009-01-30 2009-01-30 Optical sheet for liquid crystal display device and backlight unit using the same

Publications (2)

Publication Number Publication Date
TW201030382A TW201030382A (en) 2010-08-16
TWI524096B true TWI524096B (en) 2016-03-01

Family

ID=42586221

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099102004A TWI524096B (en) 2009-01-30 2010-01-26 An optical sheet for a liquid crystal display device, and a backlight unit using the same

Country Status (4)

Country Link
JP (1) JP5498027B2 (en)
KR (1) KR20100088570A (en)
CN (1) CN101793379B (en)
TW (1) TWI524096B (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012053571A1 (en) * 2010-10-22 2012-04-26 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and lighting device
JP6293114B2 (en) * 2012-03-20 2018-03-14 スリーエム イノベイティブ プロパティズ カンパニー Structured optical film
KR20140021748A (en) 2012-08-09 2014-02-20 삼성디스플레이 주식회사 Lighting unit for display device and display device including lighting unit
JP2014160616A (en) * 2013-02-20 2014-09-04 Panasonic Corp Illumination device
EP3203275A4 (en) * 2014-09-30 2018-05-30 Kuraray Co., Ltd. Diffusing plate and method for producing diffusing plate
EP3282293A4 (en) * 2015-04-08 2018-12-05 Kuraray Co., Ltd. Composite diffusion plate
DE102016111600B4 (en) * 2015-06-26 2021-12-30 Cognex Corporation Lighting arrangement
CN107179572B (en) * 2016-03-11 2020-11-13 台达电子工业股份有限公司 Diffuser, laser light source module using same and manufacturing method thereof
JP6766536B2 (en) * 2016-09-07 2020-10-14 富士ゼロックス株式会社 Optical member manufacturing equipment, optical member manufacturing method
JP6790620B2 (en) * 2016-09-07 2020-11-25 富士ゼロックス株式会社 Manufacturing method of molded products, manufacturing method of optical members
CN107543500B (en) * 2017-08-22 2020-06-02 苏州大学 Precise micro-displacement detection device and method based on micro-lens Moire imaging
CN111051974A (en) * 2017-09-26 2020-04-21 苹果公司 Electronic device having display with direct-lit backlight unit
WO2019118736A1 (en) * 2017-12-14 2019-06-20 Viavi Solutions Inc. Optical system
JP6430048B1 (en) * 2018-01-25 2018-11-28 デクセリアルズ株式会社 Diffusion plate and optical equipment
WO2019177755A1 (en) * 2018-03-13 2019-09-19 Apple Inc. Displays with direct-lit backlight units
JP6886992B2 (en) * 2018-03-30 2021-06-16 恵和株式会社 Light diffusing plate laminate, backlight unit, and liquid crystal display device
JP2020118920A (en) * 2019-01-28 2020-08-06 日亜化学工業株式会社 Fly-eye lens and illumination optical device
CN110941036B (en) * 2019-12-20 2022-05-03 宁波舜宇奥来技术有限公司 Infrared light diffusion sheet
CN111025670B (en) * 2019-12-20 2022-05-03 宁波舜宇奥来技术有限公司 Infrared light diffusion sheet and optical system
CN111239869B (en) * 2020-03-19 2022-02-22 宁波舜宇车载光学技术有限公司 Diffusion plate
CN112782865B (en) * 2020-07-06 2023-07-25 温国梁 Optical concave-convex grain superimposed film
CN111856631A (en) * 2020-08-28 2020-10-30 宁波舜宇奥来技术有限公司 Light homogenizing sheet and TOF module
CN113009605A (en) * 2021-03-19 2021-06-22 苏州维旺科技有限公司 Mini LED micro-lens light-homogenizing sheet, preparation process thereof and backlight module
CN113156550A (en) * 2021-03-19 2021-07-23 苏州维旺科技有限公司 Mini LED light homogenizing sheet, preparation process thereof and backlight module
CN114973985B (en) * 2022-06-01 2023-06-27 Tcl华星光电技术有限公司 Spliced display panel

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6435416A (en) * 1987-07-30 1989-02-06 Matsushita Electric Ind Co Ltd Liquid crystal panel
JPH0682634A (en) * 1992-07-07 1994-03-25 Sekisui Chem Co Ltd Surface light source device
JPH06250172A (en) * 1993-02-23 1994-09-09 Tosoh Corp Back light
JPH08248403A (en) * 1995-03-14 1996-09-27 Kuraray Co Ltd Liquid crystal display device
JP2002148603A (en) * 2000-11-10 2002-05-22 Sony Corp Liquid crystal display element and projection liquid crystal display device
JP3958085B2 (en) * 2002-03-20 2007-08-15 株式会社リコー Image display apparatus and image projection apparatus using microlens array
US6846098B2 (en) * 2002-05-16 2005-01-25 Eastman Kodak Company Light diffuser with variable diffusion
JP4394919B2 (en) * 2002-10-04 2010-01-06 恵和株式会社 Optical sheet and backlight unit using the same
CN1503014A (en) * 2002-11-22 2004-06-09 鸿富锦精密工业(深圳)有限公司 Polarization device, polarization light source and LCD device
CN2639917Y (en) * 2003-07-08 2004-09-08 华中科技大学 Array type angle extender
JP2005070631A (en) * 2003-08-27 2005-03-17 Seiko Epson Corp Screen and projector
JP4211689B2 (en) * 2004-06-14 2009-01-21 オムロン株式会社 Diffuser and surface light source device
CN1948822A (en) * 2005-10-14 2007-04-18 株式会社东芝 Illuminating system
CN101520522B (en) * 2009-04-17 2011-04-06 苏州大学 Integrated brightening diffusion sheet

Also Published As

Publication number Publication date
JP2010176029A (en) 2010-08-12
JP5498027B2 (en) 2014-05-21
CN101793379A (en) 2010-08-04
TW201030382A (en) 2010-08-16
KR20100088570A (en) 2010-08-09
CN101793379B (en) 2013-06-12

Similar Documents

Publication Publication Date Title
TWI524096B (en) An optical sheet for a liquid crystal display device, and a backlight unit using the same
KR101094690B1 (en) Optical sheet for liquid crystal display apparatus and backlight unit using the same
JP5402486B2 (en) Optical sheet, surface light source device, and transmissive display device
TW200409961A (en) Light control film
TWI432793B (en) Diffuser sheet and backlight unit using it
JP4294306B2 (en) Optical sheet and backlight unit using the same
JP2010211027A (en) Moire fringe suppression film and prism sheet with moire fringe suppression function
JP2010210882A (en) Optical sheet and display using the same
JP4551611B2 (en) Optical unit and backlight unit using the same
JP4316281B2 (en) Optical unit and backlight unit using the same
JP2010160437A (en) Optical sheet, back light unit and display
JP4394919B2 (en) Optical sheet and backlight unit using the same
JP2017207736A (en) Optical sheet for liquid crystal display device, backlight unit for liquid crystal display device and production method of optical sheet for liquid crystal display device
JP6974004B2 (en) Optical sheet for backlight unit and backlight unit
JP2004309557A (en) Optical sheet and back light unit using optical sheet
JP2004145328A (en) Optical sheet and back light unit using the same
WO2021235491A1 (en) Optical sheet, backlight unit, liquid crystal display apparatus, and information device
WO2017104677A1 (en) Optical sheet for backlight unit and backlight unit
JP2004145329A (en) Optical sheet and back light unit using the same
JP2011145476A (en) Optical sheet, surface light source device, and transmission type display device
KR20110001925A (en) Brightness enhancing diffusion film
JP2009265498A (en) Abrasion-proof lens sheet
CN220568955U (en) Light diffusion membrane and display device
JP2011090104A (en) Optical sheet, surface light source device, and transmission type display device
US20070297728A1 (en) Anti-reflective optical film