WO2017104677A1 - Optical sheet for backlight unit and backlight unit - Google Patents

Optical sheet for backlight unit and backlight unit Download PDF

Info

Publication number
WO2017104677A1
WO2017104677A1 PCT/JP2016/087122 JP2016087122W WO2017104677A1 WO 2017104677 A1 WO2017104677 A1 WO 2017104677A1 JP 2016087122 W JP2016087122 W JP 2016087122W WO 2017104677 A1 WO2017104677 A1 WO 2017104677A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine grooves
light
light diffusion
sheet
backlight unit
Prior art date
Application number
PCT/JP2016/087122
Other languages
French (fr)
Japanese (ja)
Inventor
原田 賢一
啓土 波川
忠仁 福田
有希 松野
Original Assignee
恵和株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 恵和株式会社 filed Critical 恵和株式会社
Priority to CN201680072888.7A priority Critical patent/CN108474876B/en
Priority to US16/061,706 priority patent/US10754083B2/en
Priority to KR1020187020002A priority patent/KR102097667B1/en
Priority claimed from JP2016240993A external-priority patent/JP6974004B2/en
Publication of WO2017104677A1 publication Critical patent/WO2017104677A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/04Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings

Definitions

  • the present invention relates to an optical sheet for a backlight unit and a backlight unit.
  • Liquid crystal display devices are widely used as flat panel displays taking advantage of thin, lightweight, low power consumption, etc., and their applications are such as TVs, personal computers, mobile phone terminals such as smartphones, and portable information terminals such as tablet terminals every year. It is expanding.
  • Such a liquid crystal display device is widely used as a backlight system that irradiates a liquid crystal panel from the back side, and is equipped with backlight units such as an edge light type (side light type) and a direct type.
  • backlight units such as an edge light type (side light type) and a direct type.
  • an edge light type backlight unit 101 provided in such a liquid crystal display device, generally, as shown in FIG. 18, a light source 102 and a rectangular plate shape disposed so that an end thereof is along the light source 102.
  • the optical sheet 104 (1) a light diffusion sheet 106 that is superimposed on the surface side of the light guide sheet 103 and mainly has a light diffusion function, and (2) is superimposed on the surface side of the light diffusion sheet 106 for bottom, Prism sheet 107 having a function of refraction in the normal direction side, (3) Superimposing on the surface side of the prism sheet 107, and slightly diffusing the light rays, uneven brightness due to the shape of the prism portion of the prism sheet 107, etc.
  • An upper light diffusion sheet 108 for suppression is used (see Japanese Patent Application Laid-Open No. 2005-77448).
  • a backlight unit using LEDs has a hot spot (on the display screen).
  • a phenomenon in which bright and dark portions occur due to the local increase in luminance in the vicinity of the light source occurs, and this hot spot causes luminance unevenness of the liquid crystal display device.
  • the cause of this is not clear, but although the conventional light diffusion sheet diffuses, it is considered that the hot spot is generated when the light beam of the highly directional LED is diffused.
  • the occurrence of luminance unevenness due to the hot spots described above may become more conspicuous due to the thinning of the backlight unit, the use of high-brightness LEDs, the reduction in the number of LEDs, the enlargement of the liquid crystal display device, and the like.
  • the present inventors diligently studied and found that hot spots can be suppressed by disposing a predetermined plurality of fine grooves in the optical path in the backlight unit.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide an optical sheet for a backlight unit and a backlight unit capable of suppressing hot spots.
  • An optical sheet for a backlight unit according to the present invention made to solve the above problems is an optical sheet for a backlight unit of a liquid crystal display device that guides a light beam emitted from an LED light source to the surface side.
  • the resin layer is characterized in that a plurality of fine grooves oriented in a specific direction are formed on the front surface side or the back surface side of at least one of these resin layers.
  • the backlight unit optical sheet can suppress the occurrence of hot spots when used in a backlight unit using LEDs as a light source.
  • a plurality of fine grooves oriented in a specific direction are formed in the resin layer of the backlight unit optical sheet, the light beam that passes through the region defined by the plurality of fine grooves Is propagated in the width direction of a plurality of microgrooves, and it is considered that the generation of hot spots can be suppressed even for light beams of LEDs with high directivity.
  • the average number of the plurality of fine grooves per unit length in the direction perpendicular to the average orientation direction of the plurality of fine grooves is preferably 10 pieces / mm or more and 10,000 pieces / mm or less.
  • the transmitted light is sufficiently propagated in the width direction of the plurality of fine grooves, and the generation of hot spots can be more reliably suppressed.
  • the arithmetic average roughness (Ra) in the direction perpendicular to the orientation direction of the plurality of fine grooves on the surface where the plurality of fine grooves of the resin layer is formed is preferably 0.01 ⁇ m or more and 5 ⁇ m or less.
  • the occurrence of hot spots occurs when the arithmetic mean roughness (Ra) in the direction perpendicular to the orientation direction of the plurality of fine grooves on the surface of the resin layer on which the plurality of fine grooves are formed is within the above range. Can be easily and reliably suppressed.
  • the plurality of fine grooves may constitute a diffraction grating.
  • a diffraction phenomenon occurs in which a certain path difference occurs between light beams passing through a region defined by the plurality of micro grooves, and this diffraction phenomenon causes a hot spot. It is easy to suppress generation
  • the optical sheet includes a base film, a light diffusion layer having a plurality of beads and a binder stacked on the base film, and a protective layer stacked on the back side of the base film. It may be a light diffusion sheet. Thus, when the optical sheet is a light diffusing sheet, it is easy to emit a light beam that is substantially uniform over the entire surface.
  • the plurality of fine grooves may be formed on the back side of the protective layer.
  • the light beam passing through the region partitioned by the plurality of fine grooves is easily propagated sufficiently in the width direction of the plurality of fine grooves using the difference in refractive index.
  • the optical sheet may include a functional layer having an uneven shape on the surface.
  • a functional layer having a concavo-convex shape on the surface it is easy to emit light that is substantially uniform over the entire surface.
  • one resin layer has a plurality of fine irregularities on the surface, and the plurality of fine grooves are formed on the surface of the resin layer having the plurality of fine irregularities.
  • one resin layer has a plurality of fine irregularities on the surface, and the plurality of fine grooves are formed on the surface of the resin layer having the plurality of fine irregularities.
  • Can be propagated in the width direction of the plurality of fine grooves and light can be diffused by the plurality of fine irregularities. Thereby, a moire prevention effect, a color separation prevention effect, a viewing angle expansion effect, etc. can be improved.
  • the backlight unit of the liquid crystal display device includes a light guide film or light guide plate that guides light incident from the end face side to the surface side, and the light guide film or light One or a plurality of LED light sources disposed on the end face side of the guide plate and emitting light to the end face of the light guide film or the light guide plate, and the optical sheet superimposed on the surface side of the light guide film or the light guide plate With.
  • the backlight unit of the liquid crystal display device includes the optical sheet, generation of hot spots can be suppressed as described above.
  • the optical sheet may be directly superimposed on the surface of the light guide film or light guide plate. As described above, the optical sheet is directly superimposed on the surface of the light guide film or the light guide plate, so that generation of hot spots can be sufficiently suppressed.
  • the average orientation direction of the plurality of fine grooves of the optical sheet on the basis of the average direction of light rays from the LED light source in the light guide film or light guide plate is preferably ⁇ 45 ° or less.
  • the average orientation direction of the plurality of fine grooves of the optical sheet is equal to or less than the upper limit, the occurrence of hot spots can be easily and reliably suppressed.
  • front side means the viewer side in the liquid crystal display device, and “back side” means the opposite.
  • Specific direction means a specific direction.
  • Resin layer refers to a layer mainly composed of synthetic resin.
  • the “main component” refers to a component having the highest content, for example, a component having a content of 50% by mass or more.
  • Diffraction grating refers to a structure that diffracts incident light.
  • the “average orientation direction of a plurality of microgrooves” refers to a value obtained by arbitrarily extracting 20 microgrooves and averaging the orientation directions of straight lines passing through both ends of the extracted microgrooves in the longitudinal direction.
  • the “average number of a plurality of fine grooves” means an average value of the number of a plurality of fine grooves present at any ten locations.
  • “Arithmetic average roughness (Ra)” refers to a value with a cutoff ⁇ c of 0.8 mm and an evaluation length of 4 mm in accordance with JIS-B0601: 1994.
  • the average direction of the light beam from the LED light source in the light guide film or light guide plate means the maximum intensity of the incident direction of the light beam emitted from the LED light source in the light guide film or light guide plate when viewed from the surface side. The direction in which light is emitted.
  • the optical sheet for a backlight unit and the backlight unit of the present invention can suppress the occurrence of hot spots.
  • FIG. 3 is a schematic enlarged back view of the optical sheet in FIG. 2.
  • FIG. 3 is an enlarged end view taken along line AA of the optical sheet of FIG.
  • FIG. 2 is a schematic plan view showing hot spots in the backlight unit of FIG. 1.
  • It is a typical top view for demonstrating the brightness nonuniformity reduction function in the backlight unit of FIG.
  • FIG. 10 is a schematic end view showing an optical sheet according to a different form from the optical sheets of FIG. 2 and FIGS.
  • FIG. 11 is a schematic end view showing an optical sheet according to a different form from the optical sheets of FIGS. 2 and 7 to 10.
  • FIG. 12 is a schematic end view showing an optical sheet according to a different form from the optical sheets of FIGS. 2 and 7 to 11.
  • FIG. 13 is a schematic enlarged back view of the optical sheet of FIG. 12.
  • FIG. 13 is a schematic enlarged back view for explaining a plurality of fine grooves of an optical sheet according to a different form from the optical sheets of FIGS. 2 and 7 to 12.
  • FIG. 6 is a schematic end view showing a fine groove according to another embodiment of the present invention.
  • FIG. 16 is a schematic end view showing a fine groove according to a form different from the fine groove of FIG. 15.
  • FIG. 17 is a schematic end view showing a fine groove according to a form different from the fine groove of FIGS. 15 and 16.
  • It is a typical perspective view which shows the conventional edge light type backlight unit.
  • No. It is a partial expansion plane photograph of 1 base film.
  • No. 2 is a partially enlarged plan view of a base film of No. 2;
  • No. 3 is a partially enlarged plan view of a substrate film 3.
  • No. 1 in Example 1. It is a side view photograph of 1 light diffusion sheet.
  • No. in the comparative example. 5 is a side photograph of the light diffusing sheet
  • the backlight unit of the liquid crystal display device of FIG. 1 is an edge light type backlight unit, and is a backlight unit of a liquid crystal display device that guides light emitted from one or a plurality of LED light sources 2 to the surface side.
  • the backlight unit includes a light guide film 1 that guides light incident from the end surface to the surface side, and a plurality of LED light sources 2 that are disposed on the end surface side of the light guide film 1 and emit light to the end surface of the light guide film 1. And a plurality of optical sheets 3 superimposed on the surface side of the ride guide film 1.
  • a light diffusion sheet (lower light diffusion sheet 4) disposed on the surface side of the light guide film 1 and a first disposed on the surface side of the lower light diffusion sheet 4.
  • the backlight unit further includes a reflection sheet 8 disposed on the back side of the light guide film 1.
  • the lower light diffusion sheet 4 condenses (condenses and diffuses) the light incident from the back surface side while diffusing the light rays.
  • the first prism sheet 5 and the second prism sheet 6 refract light rays incident from the back side toward the normal direction side.
  • the ridge line directions of the projecting prism portions are orthogonal, and the first prism sheet 5 radiates the light incident from the lower light diffusion sheet 4. Refracted in the direction perpendicular to the direction and in the normal direction, and further refracts the light emitted from the first prism sheet 5 so that the second prism sheet 6 travels substantially perpendicular to the back surface of the liquid crystal display element.
  • the upper light diffusing sheet 7 diffuses light incident from the back side to some extent to suppress luminance unevenness caused by the shape of the protruding prism portions of the first prism sheet 5 and the second prism sheet 6.
  • the reflection sheet 8 reflects the light beam emitted from the back surface side of the light guide film 1 to the front surface side and makes it incident on the light guide film 1 again.
  • the lower light diffusion sheet 4 is directly superimposed on the surface of the light guide film 1 (without other sheets or the like).
  • the lower light diffusion sheet 4 is laminated on the base film 11, the surface side of the base film 11, the light diffusion layer 12 having a plurality of beads 14 and its binder 15, and the back side of the base film 11.
  • the protective layer 13 is provided.
  • the lower light diffusion sheet 4 is composed of three layers: a base film 11, a light diffusion layer 12 that is directly laminated on the surface of the base film 11, and a protective layer 13 that is directly laminated on the back surface of the base film 11. (There are no layers other than the base film 11, the light diffusion layer 12, and the protective layer 13).
  • the lower light diffusion sheet 4 is formed in a planar view shape. As will be described later, the lower light diffusion sheet 4 has a plurality of fine grooves 16 formed on the back surface of the protective layer 13, and is configured as an optical sheet for a backlight unit of the present invention.
  • the base film 11 is a resin layer mainly composed of a synthetic resin. Since the base film 11 is required to transmit light, the base film 11 is formed mainly of a transparent, particularly colorless and transparent synthetic resin.
  • the main component of the base film 11 is not particularly limited, and examples thereof include polyethylene terephthalate, polyethylene naphthalate, acrylic resin, polycarbonate, polystyrene, polyolefin, cellulose acetate, and weather resistant vinyl chloride. Among them, polyethylene terephthalate having excellent transparency and high strength is preferable, and polyethylene terephthalate having improved bending performance is particularly preferable.
  • the lower limit of the average thickness of the base film 11 is preferably 10 ⁇ m, more preferably 35 ⁇ m, and even more preferably 50 ⁇ m.
  • the upper limit of the average thickness of the base film 11 is preferably 500 ⁇ m, more preferably 250 ⁇ m, and even more preferably 188 ⁇ m. If the average thickness of the base film 11 is less than the lower limit, curling may occur when the light diffusion layer 12 is formed by coating. Further, if the average thickness of the base film 11 is less than the lower limit, there is a possibility that bending is likely to occur.
  • average thickness refers to an average value of thicknesses at arbitrary 10 points.
  • the light diffusion layer 12 is a resin layer mainly composed of a synthetic resin.
  • the light diffusion layer 12 constitutes the outermost surface of the lower light diffusion sheet 4.
  • the light diffusion layer 12 contains a plurality of beads 14 dispersed at substantially equal density.
  • the beads 14 are surrounded by a binder 15.
  • the light diffusion layer 12 includes a plurality of beads 14 in a dispersed manner, thereby diffusing light transmitted from the back surface side to the front surface side substantially uniformly. Further, the light diffusion layer 12 has fine irregularities formed substantially uniformly on the surface by a plurality of beads 14, and the concave and convex portions of the fine irregularities are formed in a lens shape.
  • the light diffusing layer 12 exhibits an excellent light diffusing function due to the lens action of such fine unevenness, and the refractive function that refracts the transmitted light to the normal direction side due to this light diffusing function and the transmitted light to the normal line. It has a light condensing function that condenses macroscopically in the direction.
  • the beads 14 are resin particles having a property of diffusing light rays.
  • the main component of the beads 14 include acrylic resin, acrylonitrile resin, polyurethane, polyvinyl chloride, polystyrene, polyamide, polyacrylonitrile, and the like. Among them, an acrylic resin having high transparency is preferable, and polymethyl methacrylate (PMMA) is particularly preferable.
  • the shape of the beads 14 is not particularly limited, and examples thereof include a spherical shape, a cubic shape, a needle shape, a rod shape, a spindle shape, a plate shape, a scale shape, and a fiber shape. Among them, a spherical shape having excellent light diffusibility is preferable. .
  • the lower limit of the average particle diameter of the beads 14 is preferably 1 ⁇ m, more preferably 2 ⁇ m, and even more preferably 5 ⁇ m.
  • the upper limit of the average particle diameter of the beads 14 is preferably 50 ⁇ m, more preferably 20 ⁇ m, and even more preferably 15 ⁇ m. If the average particle diameter of the beads 14 is less than the above lower limit, the unevenness of the surface of the light diffusion layer 12 becomes small, and the light diffusibility necessary for the light diffusion sheet may not be satisfied. On the contrary, if the average particle diameter of the beads 14 exceeds the upper limit, the thickness of the lower light diffusion sheet 4 may increase, and uniform diffusion may be difficult.
  • the lower limit of the blending amount of the beads 14 (the blending amount in terms of solid content with respect to 100 parts by mass of the polymer in the polymer composition that is the forming material of the binder 15) is preferably 10 parts by mass, more preferably 20 parts by mass, 50 Part by mass is more preferable.
  • the upper limit of the amount of the beads 14 is preferably 500 parts by mass, more preferably 300 parts by mass, and even more preferably 200 parts by mass. If the blending amount of the beads 14 is less than the lower limit, the light diffusibility may be insufficient. On the contrary, if the blending amount of the beads 14 exceeds the upper limit, the beads 14 may not be fixed accurately by the binder 15.
  • the binder 15 is formed by curing (crosslinking or the like) a polymer composition containing a base polymer.
  • the beads 14 are arranged and fixed on the entire surface of the base film 11 at a substantially equal density by the binder 15.
  • the polymer composition for forming the binder 15 includes, for example, a fine inorganic filler, a curing agent, a plasticizer, a dispersant, various leveling agents, an antistatic agent, an ultraviolet absorber, an antioxidant, and a viscosity modifier.
  • An agent, a lubricant, a light stabilizer and the like may be appropriately blended.
  • the protective layer 13 is a resin layer mainly composed of synthetic resin.
  • a plurality of fine grooves 16 are formed on the back surface of the protective layer 13.
  • the plurality of fine grooves 16 preferably constitute a diffraction grating.
  • the fine groove 16 is preferably formed in a hairline shape.
  • the lower light diffusion sheet 4 has a plurality of fine grooves 16 formed on the back surface side of the protective layer 13, so that the back surface of the protective layer 13 is used when the lower light diffusion sheet 4 is used in a backlight unit.
  • a light beam passing through a region defined by the plurality of microgrooves 16 is easily propagated sufficiently in the width direction of the plurality of microgrooves using a difference in refractive index with the air layer present on the side.
  • the lower light diffusion sheet 4 can prevent sticking with the light guide film 1. Further, the lower light diffusing sheet 4 has a diffraction phenomenon in which a certain path difference is generated between light beams passing through a region defined by the plurality of fine grooves 16 by the plurality of fine grooves 16 constituting a diffraction grating. Occurring and it is easy to suppress the occurrence of hot spots easily and reliably by this diffraction phenomenon.
  • the plurality of fine grooves 16 are formed substantially uniformly (substantially at the same density) over the entire area of the back surface of the protective layer 13.
  • Each fine groove 16 has a substantially U-shaped cross section (that is, each fine groove 16 is not formed in a triangular cross section). Since each fine groove 16 is configured to have a substantially U-shaped cross section, the diffusion direction of light rays is appropriately adjusted, and the hot spot relaxation effect can be improved. Moreover, the mass productivity of the lower light diffusion sheet 4 can be improved because each fine groove 16 has a substantially U-shaped cross section.
  • the plurality of fine grooves 16 have a longitudinal direction along a direction parallel to one end of the back surface of the protective layer 13.
  • the plurality of fine grooves 16 have a longitudinal direction along the average direction of light rays from the plurality of LED light sources 2. Further, the orientation direction of each fine groove 16 is random (that is, the orientation direction of each fine groove 16 is not completely coincident). Thus, by making the orientation direction of each microgroove 16 random, it is possible to suppress the occurrence of rainbow unevenness in the liquid crystal display device due to the plurality of microgrooves 16.
  • the plurality of fine grooves 16 are preferably formed independently for controlling the light diffusion direction, but some of the fine grooves 16 may cross each other.
  • the upper limit of the average orientation direction of the plurality of fine grooves 16 on the basis of the average direction of light rays from the LED light source 2 in the light guide film 1 is preferably ⁇ 45 °, more preferably ⁇ 15 °, ⁇ 0 ° is more preferable. If the average orientation direction exceeds the upper limit, it may be difficult to propagate light rays in a direction perpendicular to the light emission direction of the plurality of LED light sources 2 and in a horizontal direction. In contrast, the backlight unit can easily and reliably suppress the occurrence of hot spots when the average orientation direction is not more than the upper limit.
  • the plurality of fine grooves 16 are formed in an elongated and substantially linear shape in plan view. Further, the width of each fine groove 16 changes randomly along the longitudinal direction of the fine groove 16.
  • the longitudinal lower limit of the average length L 1 of the plurality of fine grooves 16 is preferably at least 2 times the average width L 2, 3 times or more is more preferable.
  • it is preferably 10,000 times or less and more preferably 5000 times or less.
  • the “average length in the longitudinal direction of the plurality of fine grooves” refers to the average value of the lengths in the longitudinal direction at the average interface of the resin layers of the 20 fine grooves extracted arbitrarily.
  • the lower limit of the average width L 2 of the plurality of fine grooves 16, 10 nm are preferred, more preferably 50 nm, more preferably 100 nm.
  • the upper limit of the average width L 2 of the plurality of fine grooves 16, 40 [mu] m is preferred, 30 [mu] m is more preferable, still more preferably 20 [mu] m, 10 [mu] m is particularly preferred. If the average width L 2 of the plurality of fine grooves 16 is less than the above lower limit, there is a risk of lowering the moldability of the fine groove 16.
  • the average width L 2 of the plurality of fine grooves 16 exceeds the above upper limit, there may not be sufficiently increased the amount of light propagating in the width direction of the plurality of fine grooves 16.
  • the width L 2 of each of the fine grooves 16 are preferably formed at random in the longitudinal direction in the above range. Width L 2 of each of the fine grooves 16 it is possible to prevent the moire caused by interference with other members (a prism sheet or a liquid crystal cell) or the like having a periodic pitch by being formed at random in the above range, color It is possible to prevent rainbow unevenness and the like by preventing the decomposition from occurring regularly.
  • the “average width of the plurality of fine grooves” refers to the average value of the widths at the average interface of the resin layers at arbitrary points excluding both ends in the longitudinal direction of the 20 fine grooves arbitrarily extracted.
  • the lower limit of the average pitch of the plurality of fine grooves 16 is preferably 10 nm, more preferably 50 nm, and even more preferably 100 nm.
  • the upper limit of the average pitch of the plurality of fine grooves 16 is preferably 40 ⁇ m, more preferably 30 ⁇ m, still more preferably 20 ⁇ m, and particularly preferably 10 ⁇ m. If the average pitch of the plurality of fine grooves 16 is less than the lower limit, the moldability of the plurality of fine grooves 16 may be reduced. Conversely, if the average pitch of the plurality of fine grooves 16 exceeds the above upper limit, the amount of light propagated in the width direction of the plurality of fine grooves 16 may not be increased sufficiently.
  • the “average pitch of the plurality of fine grooves” refers to the average value of the pitches of any ten adjacent fine grooves in the direction perpendicular to the average orientation direction of the plurality of fine grooves.
  • the upper limit of the standard deviation of the pitch of the plurality of fine grooves 16 is preferably 10 ⁇ m, more preferably 9 ⁇ m, and even more preferably 7 ⁇ m. If the standard deviation of the pitch of the plurality of fine grooves 16 exceeds the upper limit, the pitch of the plurality of fine grooves 16 becomes non-uniform, and the amount of light propagated in the width direction of the plurality of fine grooves 16 cannot be increased uniformly. There is a fear.
  • the lower limit of the standard deviation of the pitch of the plurality of fine grooves 16 can be set to 4 ⁇ m, for example, because the plurality of fine grooves 16 are easily arranged in a relatively random direction.
  • the “standard deviation of the pitch of the plurality of fine grooves” refers to the standard deviation of the pitch of the 20 fine grooves that are arbitrarily extracted.
  • the average width L 2 and the average pitch of the plurality of fine grooves 16 are preferably both included in the above range.
  • the lower light diffusion sheet 4, by the average width L 2 and the average pitch of the plurality of fine grooves 16 are included in both the above-mentioned range, sufficient amount of light is propagated in the width direction of the plurality of fine grooves 16 It can be easily and reliably increased.
  • the lower limit of the average number of the micro-grooves 16 per unit length in the direction perpendicular to the average orientation direction of the micro-grooves 16 is preferably 10 / mm, more preferably 50 / mm, and 100 / mm is more preferable.
  • the upper limit of the average number is preferably 10000 / mm, more preferably 5000 / mm, and still more preferably 1000 / mm. If the average existence number is less than the lower limit, the amount of light propagated in the width direction of the plurality of fine grooves 16 may not be sufficiently increased. On the other hand, if the average number exceeds the upper limit, the moldability of the plurality of fine grooves 16 may be reduced.
  • the lower limit of the average depth D 1 of the plurality of fine grooves 16, 10 nm are preferred, 500 nm are more preferable, and more preferably 1 [mu] m, 2 [mu] m is particularly preferred.
  • the upper limit of the average depth D 1 of the plurality of fine grooves 16, 30 [mu] m is preferred, 10 [mu] m is more preferable, still more preferably 5 [mu] m, 3 [mu] m is particularly preferred. If the average depth D 1 of the plurality of fine grooves 16 is less than the above lower limit, there may not be sufficiently increased the amount of light propagating in the width direction of the plurality of fine grooves 16.
  • the “average depth of the plurality of fine grooves” refers to an average value of the depth from the average interface to the bottom of the resin layer of 20 fine grooves that are arbitrarily extracted.
  • the upper limit of the standard deviation of the depth of the plurality of fine grooves 16 is preferably 4 ⁇ m, more preferably 3 ⁇ m, and even more preferably 2.5 ⁇ m.
  • the lower limit of the standard deviation of the depth of the plurality of fine grooves 16 is not particularly limited, and can be, for example, 0.3 ⁇ m.
  • the “standard deviation of the depth of a plurality of fine grooves” refers to a standard deviation of the depth of 20 fine grooves that are arbitrarily extracted.
  • the lower limit of the arithmetic average roughness (Ra) in the direction parallel to the orientation direction of the plurality of fine grooves 16 on the surface (back surface) where the plurality of fine grooves 16 of the protective layer 13 are formed is preferably 0.005 ⁇ m. 05 ⁇ m is more preferable, and 0.1 ⁇ m is even more preferable.
  • the upper limit of the arithmetic average roughness (Ra) in the direction parallel to the orientation direction of the plurality of fine grooves 16 on the surface (back surface) where the plurality of fine grooves 16 of the protective layer 13 are formed is preferably 1.5 ⁇ m. 1.2 ⁇ m is more preferable, and 1 ⁇ m is more preferable.
  • the arithmetic average roughness (Ra) is less than the lower limit, the effect of suppressing the occurrence of hot spots may be insufficient. Conversely, when the arithmetic average roughness (Ra) exceeds the upper limit, the amount of light propagated in the direction parallel to the orientation direction of the plurality of microgrooves 16 relative to the amount of light propagated in the width direction of the plurality of microgrooves 16 is large. There is a risk.
  • the lower limit of the arithmetic average roughness (Ra) in the direction perpendicular to the orientation direction of the plurality of fine grooves 16 on the surface (back surface) where the plurality of fine grooves 16 of the protective layer 13 are formed is preferably 0.01 ⁇ m, 1 ⁇ m is more preferable, and 0.5 ⁇ m is more preferable.
  • the upper limit of the arithmetic average roughness (Ra) in the direction perpendicular to the orientation direction of the plurality of fine grooves 16 on the surface (back surface) where the plurality of fine grooves 16 of the protective layer 13 are formed is preferably 5 ⁇ m. More preferably, 1.7 ⁇ m is further preferable, and 1.5 ⁇ m is particularly preferable.
  • the arithmetic average roughness (Ra) is less than the lower limit, the amount of light propagated in the width direction of the plurality of fine grooves 16 may not be increased sufficiently. Conversely, when the arithmetic average roughness (Ra) exceeds the upper limit, it may be difficult to control the light emission angle.
  • the arithmetic average roughness (Ra) in the direction is preferably included in the above range.
  • the lower light diffusing sheet 4 has the arithmetic average roughness (Ra) in the direction parallel to the orientation direction of the plurality of fine grooves 16 and the arithmetic average roughness (Ra) in the direction perpendicular to the orientation direction of the plurality of fine grooves 16.
  • the lower limit of the difference from the arithmetic average roughness (Ra) is preferably 0.5 ⁇ m, more preferably 0.7 ⁇ m, and even more preferably 1 ⁇ m.
  • the difference in the arithmetic average roughness (Ra) is equal to or more than the lower limit, the amount of light propagated in the width direction of the plurality of microgrooves 16 is increased to easily and reliably reduce the luminance unevenness of the liquid crystal display device.
  • the upper limit of the difference in the arithmetic average roughness (Ra) can be set to 1.9 ⁇ m, for example.
  • the lower limit of the maximum height (Ry) in the direction parallel to the orientation direction of the plurality of fine grooves 16 on the surface (back surface) where the plurality of fine grooves 16 of the protective layer 13 are formed is preferably 0.1 ⁇ m, and more preferably 1 ⁇ m. 1.5 ⁇ m is more preferable.
  • the upper limit of the maximum height (Ry) in the direction parallel to the orientation direction of the plurality of fine grooves 16 on the surface (back surface) where the plurality of fine grooves 16 of the protective layer 13 are formed is preferably 3 ⁇ m, and 2.5 ⁇ m. Is more preferable, and 2 ⁇ m is more preferable.
  • the “maximum height (Ry)” is a value with a cutoff ⁇ c of 0.8 mm and an evaluation length of 4 mm in accordance with JIS-B0601: 1994.
  • the lower limit of the maximum height (Ry) in the direction perpendicular to the orientation direction of the plurality of fine grooves 16 on the surface (back surface) where the plurality of fine grooves 16 of the protective layer 13 are formed is preferably 4 ⁇ m, more preferably 5 ⁇ m, 6 ⁇ m is more preferable.
  • the upper limit of the maximum height (Ry) in the direction perpendicular to the orientation direction of the plurality of fine grooves 16 on the surface (back surface) where the plurality of fine grooves 16 of the protective layer 13 are formed is preferably 12 ⁇ m and more preferably 10 ⁇ m. Preferably, 9 ⁇ m is more preferable.
  • the maximum height (Ry) is less than the lower limit, the amount of light propagated in the width direction of the plurality of fine grooves 16 may not be increased sufficiently. Conversely, if the maximum height (Ry) exceeds the upper limit, it may be difficult to control the light emission angle.
  • a difference with height (Ry) 4 micrometers is preferred, 5 micrometers is more preferred, and 6 micrometers is still more preferred.
  • the difference in the maximum height (Ry) is equal to or greater than the lower limit, it is easy to reliably and reliably reduce luminance unevenness of the liquid crystal display device by increasing the amount of light transmitted in the width direction of the plurality of fine grooves 16.
  • the upper limit of the difference in the maximum height (Ry) can be set to 11 ⁇ m, for example.
  • the lower limit of the ten-point average roughness (Rz) in the direction parallel to the orientation direction of the plurality of fine grooves 16 on the surface (back surface) where the plurality of fine grooves 16 of the protective layer 13 are formed is preferably 0.1 ⁇ m. 0.5 ⁇ m is more preferable, and 1 ⁇ m is even more preferable.
  • the upper limit of the ten-point average roughness (Rz) in the direction parallel to the orientation direction of the plurality of fine grooves 16 on the surface (back surface) where the plurality of fine grooves 16 of the protective layer 13 are formed is preferably 2.5 ⁇ m. 2 ⁇ m is more preferable, and 1.5 ⁇ m is more preferable.
  • the “ten-point average roughness (Rz)” is a value with a cutoff ⁇ c of 0.8 mm and an evaluation length of 4 mm according to JIS-B0601: 1994.
  • the lower limit of the ten-point average roughness (Rz) in the direction perpendicular to the orientation direction of the plurality of fine grooves 16 on the surface (back surface) where the plurality of fine grooves 16 of the protective layer 13 are formed is preferably 4 ⁇ m and more preferably 5 ⁇ m. Preferably, 6 ⁇ m is more preferable.
  • the upper limit of the ten-point average roughness (Rz) in the direction perpendicular to the orientation direction of the plurality of fine grooves 16 on the surface where the plurality of fine grooves 16 of the protective layer 13 are formed is preferably 10 ⁇ m, more preferably 8 ⁇ m. 7 ⁇ m is more preferable.
  • the ten-point average roughness (Rz) is less than the lower limit, the amount of light propagated in the width direction of the plurality of fine grooves 16 may not be increased sufficiently. On the other hand, if the ten-point average roughness (Rz) exceeds the upper limit, it may be difficult to control the light emission angle.
  • the lower limit of the difference from the ten-point average roughness (Rz) is preferably 3 ⁇ m, more preferably 4 ⁇ m, and even more preferably 4.5 ⁇ m.
  • the difference in the ten-point average roughness (Rz) is equal to or greater than the lower limit, the amount of light propagated in the width direction of the plurality of microgrooves 16 is increased to easily and reliably reduce the luminance unevenness of the liquid crystal display device. easy.
  • the upper limit of the difference of the ten-point average roughness (Rz) can be set to 9 ⁇ m, for example.
  • the lower limit of the root mean square slope (R ⁇ q) in the direction parallel to the orientation direction of the plurality of fine grooves 16 on the surface (back surface) of the protective layer 13 on which the plurality of fine grooves 16 are formed is preferably 0.05. 2 is more preferable, 0.25 is more preferable, and 0.3 is particularly preferable.
  • the upper limit of the root mean square slope (R ⁇ q) in the direction parallel to the orientation direction of the plurality of fine grooves 16 on the surface (back surface) where the plurality of fine grooves 16 of the protective layer 13 are formed is preferably 0.5, 0.45 is more preferable, and 0.4 is more preferable.
  • root mean square slope (R ⁇ q) is less than the lower limit, the effect of suppressing the occurrence of hot spots may be insufficient. Conversely, when the root mean square slope (R ⁇ q) exceeds the upper limit, the amount of light propagated in a direction parallel to the orientation direction of the plurality of microgrooves 16 relative to the amount of light propagated in the width direction of the plurality of microgrooves 16 is large. There is a risk.
  • the “root mean square slope (R ⁇ q)” is a value according to JIS-B0601: 2001.
  • the lower limit of the root mean square slope (R ⁇ q) in the direction perpendicular to the orientation direction of the plurality of fine grooves 16 on the surface (back surface) where the plurality of fine grooves 16 of the protective layer 13 are formed is preferably 0.5. 7 is more preferable, and 1 is more preferable.
  • the upper limit of the root mean square slope (R ⁇ q) in the direction perpendicular to the orientation direction of the plurality of fine grooves 16 on the surface (back surface) where the plurality of fine grooves 16 of the protective layer 13 are formed is preferably 2.5, 2 is more preferable, and 1.8 is more preferable.
  • the root mean square slope (R ⁇ q) is less than the lower limit, the amount of light propagated in the width direction of the plurality of fine grooves 16 may not be increased sufficiently. Conversely, if the root mean square slope (R ⁇ q) exceeds the upper limit, it may be difficult to control the light emission angle.
  • the lower limit of the difference from the root mean square slope (R ⁇ q) is preferably 0.5, more preferably 0.7, and even more preferably 1.
  • the difference of the root mean square slope (R ⁇ q) is not less than the above lower limit, the amount of light propagated in the width direction of the plurality of fine grooves 16 can be increased to easily and reliably reduce luminance unevenness of the liquid crystal display device.
  • the upper limit of the difference of the root mean square slope (R ⁇ q) can be set to 2.2, for example.
  • Examples of the main component of the protective layer 13 include polycarbonate, acrylic resin, urethane resin, acrylic-urethane copolymer, polyethylene terephthalate, polyethylene naphthalate, polystyrene, methyl (meth) acrylate-styrene copolymer, polyolefin, and cycloolefin.
  • Examples thereof include polymers, cycloolefin copolymers, cellulose acetate, weather resistant vinyl chloride, and active energy ray curable resins.
  • the acrylic resin which raises the intensity
  • the lower limit of the average thickness of the protective layer 13 is preferably 1 ⁇ m and more preferably 5 ⁇ m.
  • the upper limit of the average thickness of the protective layer 13 is preferably 50 ⁇ m and more preferably 10 ⁇ m. If the average thickness of the protective layer 13 is less than the above lower limit, there is a possibility that scratches on the back surface of the lower light diffusion sheet 4 cannot be prevented accurately. Conversely, if the average thickness of the protective layer 13 exceeds the upper limit, the luminance of the liquid crystal display device may be reduced.
  • the lower limit of the refractive index of the protective layer 13 is preferably 1.36, more preferably 1.4, and still more preferably 1.43.
  • the upper limit of the refractive index of the protective layer 23 is preferably 1.7, more preferably 1.5, and even more preferably 1.49.
  • the 1st prism sheet 5 and the 2nd prism sheet 6 have a base material layer and the projection row
  • the base material layer and the protruding prism portion are resin layers mainly composed of a transparent, particularly colorless and transparent synthetic resin, because it is necessary to transmit light.
  • the ridge line directions of the plurality of ridge prism portions of the first prism sheet 5 and the ridge line directions of the plurality of ridge prism portions of the second prism sheet 6 are substantially orthogonal.
  • the lower limit of the thickness of the first prism sheet 5 and the second prism sheet 6 (height from the back surface of the base material layer to the top of the protruding prism portion) is preferably 50 ⁇ m, and more preferably 100 ⁇ m.
  • an upper limit of the thickness of the 1st prism sheet 5 and the 2nd prism sheet 6 200 micrometers is preferable and 180 micrometers is more preferable.
  • a minimum of the pitch of the protrusion prism part in the 1st prism sheet 5 and the 2nd prism sheet 6 30 micrometers is preferable and 40 micrometers is more preferable.
  • the upper limit of the pitch of the protruding prism portions in the first prism sheet 5 and the second prism sheet 6 is preferably 100 ⁇ m, and more preferably 60 ⁇ m. Further, the apex angle of the protruding prism portion is preferably 85 ° or more and 95 ° or less. As a minimum of the refractive index of the 1st prism sheet 5 and the 2nd prism sheet 6, 1.5 is preferred and 1.55 is more preferred. On the other hand, the upper limit of the refractive index of the first prism sheet 5 and the second prism sheet 6 is preferably 1.7.
  • the “refractive index of the prism sheet” refers to the refractive index of the protruding prism portion.
  • the upper light diffusion sheet 7 includes a base film, a light diffusion layer that is laminated on the surface side of the base film, a plurality of beads and a binder thereof, and a protective layer that is laminated on the back side of the base film.
  • the upper light diffusion sheet 7 is composed of three layers: a base film, a light diffusion layer directly laminated on the surface of the base film, and a protective layer directly laminated on the back surface of the base film (base film). And no other layers than the light diffusion layer and the protective layer).
  • the upper light diffusion sheet 7 is formed in a planar view shape.
  • the base film, the light diffusion layer, and the protective layer of the upper light diffusion sheet 7 are all resin layers mainly composed of a synthetic resin.
  • the base film of the upper light diffusion sheet 7 can have the same configuration as the base film 11 of the lower light diffusion sheet 4.
  • the protective layer of the upper light diffusion sheet 7 can have the same configuration as the protective layer 13 of the lower light diffusion sheet 4 except that a plurality of fine grooves are not formed.
  • the light diffusing layer of the upper light diffusing sheet 7 does not require the same high light diffusibility as the light diffusing layer 12 of the lower light diffusing sheet 4, so that the lower limit of the amount of the light diffusing agent is 5 Mass parts are preferred, 10 parts by mass are more preferred, and the upper limit is preferably 40 parts by mass and more preferably 30 parts by mass.
  • the light guide film 1 emits light incident from the end face from the surface substantially uniformly.
  • the light guide film 1 is formed in a substantially square shape in plan view, and is formed in a plate shape (non-wedge shape) having a substantially uniform thickness.
  • the light guide film 1 has a plurality of recesses 17 that are recessed on the front surface side on the back surface.
  • the light guide film 1 has a sticking prevention part on the back surface.
  • the light guide film 1 has a plurality of raised portions 18 that exist around the plurality of recesses 17 and protrude to the back surface side as the sticking prevention portion.
  • the raised portion 18 is provided adjacent to the recessed portion 17, and the inner surface of the raised portion 18 is continuous with the formation surface of the recessed portion 17.
  • the light guide film 1 is a resin layer mainly composed of a synthetic resin.
  • the lower limit of the average thickness of the light guide film 1 is preferably 100 ⁇ m, more preferably 150 ⁇ m, and even more preferably 200 ⁇ m.
  • the upper limit of the average thickness of the light guide film 1 is preferably 600 ⁇ m, more preferably 580 ⁇ m, and even more preferably 550 ⁇ m. If the average thickness of the light guide film 1 is less than the lower limit, the strength of the light guide film 1 may be insufficient, and the light from the LED light source 2 cannot be sufficiently incident on the light guide film 1. There is a fear. On the other hand, if the average thickness of the light guide film 1 exceeds the above upper limit, there is a possibility that the demand for thinning the backlight unit may not be met.
  • the plurality of concave portions 17 function as light scattering portions that scatter incident light to the surface side.
  • Each recess 17 is formed in a substantially circular shape in plan view.
  • each recessed part 17 is formed so that a diameter may be gradually reduced toward the surface side.
  • the shape of the recess 17 is not particularly limited, and may be a hemispherical shape, a semi-ellipsoidal shape, a conical shape, a truncated cone shape, or the like.
  • a shape of the recessed part 17 a hemispherical shape or a semi-ellipsoidal shape is preferable.
  • the concave portion 17 has a hemispherical shape or a semi-ellipsoidal shape, the moldability of the concave portion 17 can be improved, and the light incident on the concave portion 17 can be suitably scattered.
  • the raised portion 18 is formed continuously from a surface perpendicular to the thickness direction of the light guide film 1 on the back surface of the light guide film 1. Specifically, the raised portion 18 is formed continuously from the flat surface on the back surface of the light guide film 1.
  • the raised portion 18 is formed in a substantially annular shape in plan view so as to surround the recessed portion 17.
  • the light guide film 1 is formed in a substantially annular shape in plan view so that the raised portion 18 surrounds the concave portion 17, so that the concave portion 17 and the vicinity of the concave portion 17 are disposed on the back side of the light guide film 1. Can be easily and reliably prevented.
  • the light guide film 1 has flexibility. By having flexibility, the light guide film 1 can suppress damage to the reflective sheet 8 disposed on the back surface side. Since the light guide film 1 needs to transmit light, the light guide film 1 is configured to be transparent, particularly colorless and transparent.
  • the main components of the light guide film 1 are polycarbonate, acrylic resin, polyethylene terephthalate, polyethylene naphthalate, polystyrene, methyl (meth) acrylate-styrene copolymer, polyolefin, cycloolefin polymer, cycloolefin copolymer, cellulose acetate, weather resistance And reactive vinyl chloride, active energy ray-curable resin, and the like.
  • a polycarbonate or an acrylic resin is preferable.
  • Polycarbonate is excellent in transparency and has a high refractive index.
  • the light guide film 1 contains polycarbonate as a main component, total reflection is likely to occur on the front and back surfaces of the light guide film 1, and light can be propagated efficiently. it can. Moreover, since polycarbonate has heat resistance, the LED light source 2 is unlikely to deteriorate due to heat generation. Furthermore, since polycarbonate has less water absorption than acrylic resin, dimensional stability is high. Therefore, the light guide film 1 can suppress aged deterioration by including polycarbonate as a main component. On the other hand, since acrylic resin has high transparency, it is possible to reduce light wear in the light guide film 1.
  • the plurality of LED light sources 2 are disposed along the end surface of the light guide film 1. Each of the plurality of LED light sources 2 is disposed such that the light emitting surface faces (or abuts) the end surface of the light guide film 1.
  • the reflection sheet 8 has a resin layer mainly composed of synthetic resin.
  • the reflection sheet 8 may be configured as a white resin layer in which a filler is dispersed in a base resin such as polyester, and a metal such as aluminum or silver is vapor-deposited on the surface of the resin layer formed from polyester or the like. It may be configured as a specular sheet with improved regular reflection.
  • a region X having an extremely large amount of light is generated particularly in the vicinity of the light beam incident portion of the light guide film 1.
  • the plurality of LED light sources 2 are arranged at predetermined intervals, a region Y with an extremely small amount of light is provided between the light incident portions in the light guide film 1 (between adjacent regions X). Will occur.
  • the luminance unevenness reducing function of the lower light diffusion sheet 4 and the backlight unit will be described with reference to FIG.
  • Most of the light rays emitted from the region X to the surface side of the light guide film 1 are incident on the back surface of the protective layer 13 of the lower light diffusion sheet 4 in a state along the light emission direction of the plurality of LED light sources 2. Is done.
  • the light incident on the back surface of the protective layer 13 of the lower light diffusion sheet 4 propagates in the width direction of the plurality of microgrooves 16 by the plurality of microgrooves 16 along the light emission direction of the plurality of LED light sources 2. It is thought that it is done.
  • the light rays incident on the plurality of fine grooves 16 are propagated in the region Y direction in plan view as shown in FIG.
  • the light amount of the region X and the light amount of the region Y in a plan view are made uniform, and the luminance unevenness of the liquid crystal display device is reduced.
  • the backlight unit optical sheet (the lower light diffusion sheet 4) is used in a backlight unit that uses an LED as a light source, the occurrence of hot spots can be suppressed.
  • a plurality of fine grooves 16 oriented in a specific direction are formed in the resin layer of the backlight unit optical sheet, so that it passes through a region defined by the plurality of fine grooves 16. Therefore, it is considered that the generation of hot spots can be suppressed even when the light beam of the LED having high directivity is propagated in the width direction of the plurality of fine grooves 16.
  • the backlight unit optical sheet (the lower light diffusion sheet 4) is laminated on the surface of the base film 11 and the base film 11, and has a plurality of beads 14 and a binder 15 for the light diffusion. Since the layer 12 and the protective layer 13 laminated on the back side of the base film 11 are provided, it is easy to emit light that is substantially uniform over the entire surface.
  • the backlight unit includes the optical sheet for the backlight unit (the lower light diffusion sheet 4), thereby suppressing the occurrence of hot spots as described above.
  • the backlight unit can sufficiently suppress the occurrence of hot spots.
  • the base film forming step is not particularly limited.
  • a molten thermoplastic resin is extruded from a T die, and then the extruded body is stretched in the layer longitudinal direction and the layer width direction to form a sheet body.
  • the method of doing is mentioned.
  • a known extrusion molding method using a T-die for example, a polishing roll method and a chill roll method can be cited.
  • the stretching method of the extruded product include a tubular film biaxial stretching method and a flat film biaxial stretching method.
  • the protective layer laminating step for example, after applying a coating liquid containing a protective layer forming material to one surface side of the sheet body formed in the base film forming step, the inverted shape of the plurality of fine grooves 16 is formed.
  • a method in which a plurality of fine grooves 16 are transferred to one surface side of a coating film obtained by applying the coating liquid using a mold on the surface is not particularly limited, and various methods such as a spin coating method, a spray method, a slide coating method, a dip method, a bar coating method, a roll coater method, a screen printing method, etc. Is mentioned.
  • the thing by which the reverse shape of the some fine groove 16 was formed in the surface of a metal roll or a metal plate, for example can be used.
  • the coating film may be dried as necessary.
  • a coating film should just be hardened by heating, ultraviolet irradiation, etc.
  • the said base film formation process and a protective layer lamination process can also be performed simultaneously, for example by the coextrusion molding method.
  • a plurality of fine grooves 16 are formed on one surface of the sheet body by laser, file, or the like.
  • a plurality of fine grooves 16 may be formed in the sheet body by using a photolithography method and an etching method.
  • Examples of the light diffusion layer laminating step include a method in which a coating liquid containing a plurality of beads 14 and a binder composition is applied to the other surface side of the sheet body, and the applied coating liquid is dried and cured. It is done.
  • the manufacturing method of the said light diffusion sheet for lower is the corona discharge treatment, the ozone treatment, the low temperature plasma treatment, the glow discharge on the surface of the sheet body on which the light diffusion layer is laminated before the light diffusion layer lamination step.
  • the manufacturing method of the said downward light diffusion sheet can manufacture the said downward light diffusion sheet 4 which can suppress generation
  • the lower light diffusion sheet 24 of FIG. 7 is used in the edge light type backlight unit of FIG. 1 instead of the lower light diffusion sheet 4 of FIG. 7 is laminated on the surface side of the base film 25, the light diffusion layer 12 having a plurality of beads 14 and its binder 15, and the back surface of the base film 25. And a protective layer 26 laminated on the side.
  • the lower light diffusion sheet 24 is composed of three layers: a base film 25, a light diffusion layer 12 directly laminated on the surface of the base film 25, and a protective layer 26 laminated directly on the back surface of the base film 25. (There are no layers other than the base film 25, the light diffusion layer 12, and the protective layer 26).
  • the lower light diffusion sheet 24 is formed in a planar view shape.
  • the light diffusion layer 12 is the same as the lower light diffusion sheet 4 in FIG.
  • the base film 25 is a resin layer mainly composed of a synthetic resin. Since the base film 25 needs to transmit light, it is formed of a synthetic resin that is transparent, particularly colorless and transparent, as a main component.
  • the main component of the base film 25 is not particularly limited, and examples thereof include the same synthetic resin as the main component of the base film 11 of the lower light diffusion sheet 4 in FIG.
  • the average thickness of the base film 25 can be the same as that of the base film 11 of the downward light diffusion sheet 4 in FIG.
  • the base film 25 has a plurality of fine grooves 27 formed on the back surface.
  • the plurality of fine grooves 27 preferably constitute a diffraction grating.
  • the plurality of fine grooves 27 are preferably formed in a hairline shape.
  • the plurality of fine grooves 27 are formed substantially uniformly (with substantially equal density) over the entire area of the back surface of the base film 25.
  • Each fine groove 27 has a substantially U-shaped cross section (that is, each fine groove 27 is not formed in a triangular cross section).
  • the longitudinal direction of the plurality of fine grooves 27 is parallel to one end of the back surface of the base film 25.
  • the plurality of fine grooves 27 have a longitudinal direction along the average direction of light rays from the plurality of LED light sources.
  • the orientation direction of each fine groove 27 is random.
  • the plurality of fine grooves 27 are preferably formed independently for controlling the light diffusion direction, but some of the fine grooves 27 may cross each other.
  • the average orientation direction, the average length in the longitudinal direction, the average width, the average pitch, the standard deviation of the pitch, the number of existing units per unit length, the average depth, and the standard deviation of the depth of the plurality of fine grooves 27 are as follows: 1 can be the same as the plurality of fine grooves 16 of the lower light diffusion sheet 4 in FIG. Also, arithmetic average roughness (Ra), maximum height (Ry), ten points in the direction parallel to the orientation direction of the plurality of fine grooves 27 on the surface (back surface) of the base film 25 where the plurality of fine grooves 27 are formed.
  • Root mean square slope (R ⁇ q) can be the same as that of the back surface of the protective layer 13 of the lower light diffusion sheet 4 in FIG.
  • the lower limit of the refractive index of the base film 25 is preferably 1.51, more preferably 1.53, and even more preferably 1.55.
  • the upper limit of the refractive index of the base film 25 is preferably 1.7, more preferably 1.67, and even more preferably 1.65.
  • the lower light diffusing sheet 24 has a refractive index of the base film 25 and a refractive index of another layer (protective layer 26) laminated on the surface (back surface) where the plurality of fine grooves 27 are formed in the base film 25. The larger the difference is, the easier it is to increase the amount of light transmitted in the width direction of the plurality of fine grooves 27.
  • the refractive index of the base film 25 is less than the lower limit, the difference in refractive index between the base film 25 and the protective layer 26 is not sufficiently increased and propagates in the width direction of the plurality of fine grooves 27. There is a possibility that the amount of light cannot be increased sufficiently. Conversely, if the refractive index of the base film 25 exceeds the above upper limit, the resin that can be used for the base film 25 may be limited.
  • the “refractive index” means a refractive index in light having a wavelength of 589.3 nm (sodium D-line), and was measured at a temperature of 23 ° C. using a flat test piece having a side of 70 mm and a thickness of 2 mm. It means the average value of the number of tests 3 times.
  • the lower limit of the difference between the refractive index of the base film 25 and the refractive index of the other layer (protective layer 26) laminated on the surface (back surface) of the base film 25 on which the plurality of fine grooves 27 are formed is 0. 01 is preferred, 0.05 is more preferred, and 0.07 is even more preferred. If the difference in refractive index is less than the lower limit, the amount of light propagated in the width direction of the plurality of fine grooves 27 may not be increased sufficiently.
  • the upper limit of the difference in refractive index can be set to 0.15, for example.
  • the protective layer 26 is a resin layer mainly composed of synthetic resin.
  • the main component of the protective layer 26 include the same synthetic resin as the main component of the protective layer 26 of the lower light diffusion sheet 4 in FIG.
  • the average thickness of the protective layer 26 can be the same as that of the protective layer 13 of the lower light diffusion sheet 4 in FIG.
  • the lower limit of the refractive index of the protective layer 26 is preferably 1.36, more preferably 1.4, and still more preferably 1.43.
  • the upper limit of the refractive index of the protective layer 26 is preferably 1.51, more preferably 1.5, and even more preferably 1.49. If the refractive index of the protective layer 26 is less than the lower limit, the resin that can be used for the protective layer 26 may be limited. Conversely, if the refractive index of the protective layer 26 exceeds the above upper limit, the difference in refractive index between the base film 25 and the protective layer 26 is not sufficiently increased, and the amount of light propagated in the width direction of the plurality of fine grooves 27 is sufficient. There is a possibility that it cannot be increased.
  • ⁇ Manufacturing method of light diffusion sheet for lower use> As the manufacturing method of the lower light diffusion sheet 24, a step of forming a sheet body constituting the base film 25 (base film forming step), and a protective layer 26 is laminated on one surface side of the sheet body. A step (protective layer laminating step) and a step of laminating the light diffusion layer 12 on the other surface side of the sheet body (light diffusion layer laminating step). In addition, the light diffusion layer lamination process in the manufacturing method of the said lower light diffusion sheet 24 is the same as the light diffusion layer lamination process of the lower light diffusion sheet 4 of FIG.
  • Base film forming process for example, a molten thermoplastic resin is extruded from a T die, and a mold having a reverse shape of a plurality of fine grooves 27 on the surface is used. And an extrusion molding method for transferring the plurality of fine grooves 27. Moreover, in the said base film formation process, you may extend
  • a polishing roll method and a chill roll method can be cited.
  • a metal roll or a metal plate having a plurality of fine grooves 27 with an inverted shape formed on the surface thereof can be used.
  • examples of the stretching method of the extruded product include a tubular film biaxial stretching method and a flat film biaxial stretching method.
  • a plurality of fine grooves 27 may be formed on one surface of the extruded body by laser, file, photolithography, etching, or the like. Good.
  • Examples of the protective layer laminating step include a coating method in which a coating liquid containing a protective layer forming material is applied to one side of the sheet formed in the base film forming step, and then dried and cured. .
  • Examples of the method for applying the coating liquid include the same method as in the protective layer laminating step of the light diffusion sheet 4 for the lower side in FIG.
  • the lower light diffusion sheet 24 can suppress the occurrence of hot spots. Further, the lower light diffusion sheet 34 easily emits light that is substantially uniform over the entire surface.
  • the manufacturing method of the lower light diffusion sheet can easily and reliably manufacture the lower light diffusion sheet 24 capable of suppressing the generation of hot spots.
  • the lower light diffusion sheet 34 in FIG. 8 is used in the edge light type backlight unit of FIG. 1 instead of the lower light diffusion sheets 4 and 24 in FIGS. 8 is laminated on the surface side of the base film 35, the light diffusion layer 36 having a plurality of beads 38 and its binder 39, and the back surface of the base film 35. And a protective layer 37 laminated on the side.
  • the lower light diffusion sheet 34 is composed of three layers: a base film 35, a light diffusion layer 36 that is directly laminated on the surface of the base film 35, and a protective layer 37 that is directly laminated on the back surface of the base film 35. (There are no layers other than the base film 35, the light diffusion layer 36, and the protective layer 37).
  • the lower light diffusion sheet 34 is formed in a planar view shape.
  • the base film 35 is a resin layer mainly composed of a synthetic resin. Since the base film 35 needs to transmit light, it is formed of a synthetic resin that is transparent, particularly colorless and transparent, as a main component.
  • the main component of the base film 35 is not particularly limited, and examples thereof include the same synthetic resin as the main component of the base film 11 of the lower light diffusion sheet 4 in FIG.
  • the average thickness of the base film 35 can be the same as that of the base film 11 of the downward light diffusion sheet 4 in FIG.
  • the base film 35 has a plurality of fine grooves 40 formed on the surface.
  • the plurality of fine grooves 40 preferably constitute a diffraction grating.
  • the specific configuration of the plurality of fine grooves 40 can be the same as that of the plurality of fine grooves 27 of the lower light diffusion sheet 24 in FIG. That is, the surface of the base film 35 of the lower light diffusion sheet 34 is formed in the same manner as the back surface of the lower light diffusion sheet 24 in FIG.
  • the refractive index of the base film 35 can be the same as that of the base film 25 of the lower light diffusion sheet 24 in FIG. Further, the difference between the refractive index of the base film 35 and the refractive index of the binder 39 of the light diffusion layer 36 is the same as the difference between the refractive indexes of the base film 25 and the protective layer 26 of the lower light diffusion sheet 24 in FIG. It can be.
  • the light diffusion layer 36 is a resin layer mainly composed of synthetic resin.
  • the light diffusion layer 36 constitutes the outermost surface of the lower light diffusion sheet 34.
  • the light diffusion layer 36 contains a plurality of beads 38 dispersed at substantially equal density.
  • the beads 38 are surrounded by a binder 39.
  • the light diffusing layer 36 contains a plurality of beads 38 so as to diffuse light transmitted from the back surface side to the front surface side substantially uniformly.
  • the light diffusion layer 36 has fine irregularities formed substantially uniformly on the surface by a plurality of beads 38, and the concave and convex portions of the fine irregularities are formed in a lens shape.
  • the light diffusing layer 36 exhibits an excellent light diffusing function by the lens action of the fine unevenness, and the refractive function and the transmitted light are refracted in the normal direction due to the light diffusing function. It has a light condensing function that condenses macroscopically in the direction.
  • the same beads as the beads 14 of the lower light diffusion sheet 4 in FIG. 1 can be used. Further, the shape, average particle diameter, and blending amount of the beads 38 can be the same as those of the lower light diffusion sheet 4 in FIG.
  • the binder 39 is formed by curing (crosslinking or the like) a polymer composition containing a base polymer.
  • the beads 38 are arranged and fixed at substantially equal density on the entire surface of the base film 35 by the binder 39.
  • the lower limit of the refractive index of the binder 39 is preferably 1.36, more preferably 1.4, and still more preferably 1.43.
  • the upper limit of the refractive index of the binder 39 is preferably 1.7, preferably 1.6, more preferably 1.55, and even more preferably 1.49. If the refractive index of the binder 39 is less than the lower limit, the resin that can be used for the binder 39 may be limited. Conversely, if the refractive index of the binder 39 exceeds the upper limit, the difference in refractive index between the base film 25 and the binder 39 is not sufficiently increased, and the amount of light propagated in the width direction of the plurality of fine grooves 40 is sufficiently increased. There is a risk that it cannot be done.
  • the protective layer 37 is a resin layer mainly composed of synthetic resin.
  • the back surface of the protective layer 37 is formed as a flat surface.
  • the average thickness of the protective layer 37 may be the same as that of the protective layer 13 of the lower light diffusion sheet 4 in FIG.
  • a step of forming a sheet body constituting the base film 35 (base film forming step), and a protective layer 37 is laminated on one surface side of the sheet body.
  • a step (protective layer laminating step) and a step of laminating the light diffusion layer 36 on the other surface side of the sheet body (light diffusion layer laminating step).
  • a plurality of fine grooves 40 are formed on the other surface side of the extrusion-molded body in the base film forming step, and a plurality of fine grooves are formed on one surface of the extrusion-molded body. Except not forming 40, it can carry out similarly to the manufacturing method of the light diffusion sheet 24 for the bottom of FIG.
  • the lower light diffusion sheet 34 can suppress the occurrence of hot spots. Further, the lower light diffusion sheet 34 easily emits light that is substantially uniform over the entire surface.
  • the manufacturing method of the lower light diffusion sheet can easily and reliably manufacture the lower light diffusion sheet 34 capable of suppressing the generation of hot spots.
  • the lower light diffusion sheet 44 in FIG. 9 is used in the edge light type backlight unit of FIG. 1 instead of the lower light diffusion sheets 4, 24 and 34 in FIGS. 9 is laminated on the surface side of the base film 11, the light diffusion layer 45 having a plurality of beads 46 and its binder 47, and the back surface of the base film 11. And a protective layer 37 laminated on the side.
  • the lower light diffusion sheet 44 is composed of three layers: a base film 11, a light diffusion layer 45 that is directly laminated on the surface of the base film 11, and a protective layer 37 that is directly laminated on the back surface of the base film 11. (There are no layers other than the base film 11, the light diffusion layer 45, and the protective layer 37).
  • the lower light diffusion sheet 44 is formed in a planar view shape.
  • the base film 11 of the lower light diffusion sheet 44 has the same configuration as the base film 11 of the lower light diffusion sheet 4 in FIG. 8 has the same configuration as that of the protective layer 37 of the lower light diffusion sheet 34 in FIG.
  • the light diffusion layer 45 is a resin layer mainly composed of a synthetic resin.
  • the light diffusion layer 45 constitutes the outermost surface of the lower light diffusion sheet 44.
  • the light diffusion layer 45 contains a plurality of beads 46 dispersed at substantially equal density.
  • the beads 46 are surrounded by a binder 47.
  • the light diffusion layer 45 disperses and contains a plurality of beads 46 so that light transmitted from the back surface side to the front surface side is diffused substantially uniformly.
  • the light diffusion layer 45 is formed with a plurality of beads 46 having fine irregularities substantially uniformly on the surface, and exhibits an excellent light diffusion function due to the lens action of the fine irregularities, resulting from this light diffusion function.
  • the light diffusion layer 45 has a plurality of fine grooves 48 formed on the surface. That is, the lower light diffusion sheet 44 has a plurality of fine grooves 48 formed on a surface having a plurality of fine irregularities.
  • the lower light diffusing sheet 44 has a plurality of fine grooves 48 formed on a surface having a plurality of fine irregularities, so that the light is propagated in the width direction of the plurality of fine grooves 48 by the plurality of fine grooves 48. Light can be diffused by a plurality of fine irregularities.
  • the plurality of fine grooves 48 preferably constitute a diffraction grating.
  • a specific configuration of the plurality of fine grooves 48 can be the same as that of the plurality of fine grooves 16 of the lower light diffusion sheet 4 in FIG. 1.
  • the “fine unevenness” means that, for example, the arithmetic average roughness (Ra) is 1.0 ⁇ m or more, preferably 1.5 ⁇ m or more, and more preferably 2.0 ⁇ m or more.
  • the main component of the beads 46 may be the same as the main component of the beads 14 of the lower light diffusion sheet 4 in FIG. Further, the shape, average particle diameter, and blending amount of the beads 46 can be the same as those of the lower light diffusion sheet 4 in FIG. Furthermore, the binder 47 can be formed by curing (crosslinking or the like) a polymer composition containing the same base polymer as the binder 15 of the lower light diffusion sheet 1 in FIG.
  • a manufacturing method of the lower light diffusion sheet 44 As a manufacturing method of the lower light diffusion sheet 44, a step of forming a sheet body constituting the base film 11 (base film forming step), and a protective layer 37 is laminated on one surface side of the sheet body. A step (protective layer laminating step) and a step of laminating the light diffusion layer 45 on the other surface side of the sheet body (light diffusion layer laminating step).
  • the base film formation process in the manufacturing method of the said lower light diffusion sheet 44 is the same as the base film formation process of the lower light diffusion sheet 4 of FIG. 1, and the manufacturing method of the said lower light diffusion sheet 44
  • the protective layer laminating step is the same as the protective layer laminating step of the lower light diffusion sheet 24 in FIG.
  • the light diffusion layer laminating step for example, after applying a coating liquid containing a plurality of beads 46 and a binder composition to the other surface side of the sheet body formed in the base film forming step, a plurality of fine grooves There is a method in which a plurality of fine grooves 48 are transferred to one surface side of a coating film obtained by applying a coating liquid using a mold having 48 inversion shapes on the surface. Further, in the light diffusion layer stacking step, a mold having a plurality of fine irregularities on the surface in addition to the inverted shape of the plurality of fine grooves 48 may be used.
  • fine irregularities are formed on the surface of the light diffusion layer 45, and excellent light diffusion is achieved by the lens action of the fine irregularities. It is possible to improve the refraction function for refracting the transmitted light beam to the normal direction side and the condensing function for macroscopically condensing the transmitted light beam in the normal direction due to this light diffusion function.
  • the method for applying the coating liquid include the same method as in the protective layer laminating step of the light diffusion sheet 4 for the lower side in FIG.
  • the mold as in the protective layer laminating step of the lower light diffusion sheet 4 in FIG.
  • a metal roll or a metal plate with a plurality of fine grooves 48 formed in an inverted shape is used. Can do.
  • the coating film may be dried as necessary.
  • a plurality of fine grooves 48 are formed on the other surface of the cured coating liquid by laser, file, or the like. May be formed.
  • the lower light diffusion sheet 44 can suppress the generation of hot spots. Further, the lower light diffusion sheet 44 easily emits light that is substantially uniform over the entire surface. Furthermore, in the backlight unit, the diffraction effect by the diffraction grating generally appears more prominently as the distance between the LED light source and the diffraction grating increases. Therefore, when the diffraction grating is formed on the surface of the light diffusion layer 9 constituting the outermost surface of the lower light diffusion sheet 44, luminance unevenness of the liquid crystal display device can be more reliably reduced.
  • the manufacturing method of the lower light diffusion sheet can easily and reliably manufacture the lower light diffusion sheet 44 capable of suppressing the generation of hot spots.
  • the lower light diffusion sheet 54 of FIG. 10 is used in the edge light type backlight unit of FIG. 1 in place of the lower light diffusion sheets 4, 24, 34, 44 of FIG. 1 and FIGS. 10 is laminated on the surface side of the base film 35, the light diffusion layer 36 having a plurality of beads 38 and a binder 39 thereof, and the back surface of the base film 35. And a protective layer 13 laminated on the side.
  • the lower light diffusion sheet 54 is composed of three layers: a base film 35, a light diffusion layer 36 that is directly laminated on the surface of the base film 35, and a protective layer 13 that is directly laminated on the back surface of the base film 35.
  • the lower light diffusion sheet 54 is formed in a planar view shape.
  • the base film 35 and the light diffusion layer 36 of the lower light diffusion sheet 54 have the same configuration as the base film 35 and the light diffusion layer 36 of the lower light diffusion sheet 34 of FIG.
  • the protective layer 13 of the diffusion sheet 54 has the same configuration as the protective layer 13 of the lower light diffusion sheet 4 in FIG. That is, the lower light diffusion sheet 54 has a plurality of fine grooves formed in a plurality of resin layers, specifically, a plurality of fine grooves are formed in two layers of the base film 35 and the protective layer 13. Yes.
  • a step of forming a sheet body constituting the base film 35 (base film forming step), and the protective layer 13 is laminated on one surface side of the sheet body.
  • a step (protective layer laminating step) and a step of laminating the light diffusion layer 36 on the other surface side of the sheet body (light diffusion layer laminating step).
  • the base film formation step and the light diffusion layer lamination step in the manufacturing method of the lower light diffusion sheet 54 are performed in the same manner as the base film formation step and the light diffusion layer lamination step of the lower light diffusion sheet 34 in FIG. Can do.
  • the protective layer lamination process in the manufacturing method of the said lower light diffusion sheet 54 can be performed similarly to the protective layer lamination process of the lower light diffusion sheet 4 of FIG.
  • the lower light diffusion sheet 54 Since the lower light diffusion sheet 54 has a plurality of fine grooves formed in the two resin layers, generation of hot spots can be more reliably suppressed. Further, the lower light diffusion sheet 54 easily emits light that is substantially uniform over the entire surface.
  • the lower light diffusion sheet 64 of FIG. 11 is used in the edge light type backlight unit of FIG. 1 instead of the lower light diffusion sheets 4, 24, 34, 44, and 54 of FIG. 1 and FIGS. 11 is laminated on the surface side of the base film 35, the light diffusion layer 45 having a plurality of beads 46 and its binder 47, and the back surface of the base film 35. And a protective layer 13 laminated on the side.
  • the lower light diffusion sheet 64 is composed of three layers: a base film 35, a light diffusion layer 45 that is directly laminated on the surface of the base film 35, and a protective layer 13 that is directly laminated on the back surface of the base film 35.
  • the lower light diffusion sheet 64 is formed in a planar view shape.
  • the base film 35 of the lower light diffusion sheet 64 has the same configuration as the base film 35 of the lower light diffusion sheet 34 in FIG.
  • the light diffusion layer 45 of the lower light diffusion sheet 64 has the same configuration as the light diffusion layer 45 of the lower light diffusion sheet 44 of FIG.
  • the protective layer 13 of the lower light diffusion sheet 64 has the same configuration as the protective layer 13 of the lower light diffusion sheet 4 in FIG. That is, the lower light diffusion sheet 64 has a plurality of fine grooves formed in a plurality of resin layers. Specifically, a plurality of fine grooves are formed in three layers of the base film 35, the light diffusion layer 45, and the protective layer 13. Grooves are formed.
  • ⁇ Manufacturing method of light diffusion sheet for lower use> As a manufacturing method of the said light diffusion sheet 64 for the said downward, the process (base film formation process) of forming the sheet body which comprises the base film 35, and the protective layer 13 are laminated
  • the base film forming step in the manufacturing method of the lower light diffusion sheet 64 can be performed in the same manner as the base film forming step of the lower light diffusion sheet 34 in FIG.
  • the protective layer lamination process in the manufacturing method of the said lower light diffusion sheet 64 can be performed similarly to the protective layer lamination process of the lower light diffusion sheet 4 of FIG.
  • the light diffusion layer stacking step in the method for manufacturing the lower light diffusion sheet 64 can be performed in the same manner as the light diffusion layer stacking step of the lower light diffusion sheet 44 of FIG.
  • the lower light diffusion sheet 64 has a plurality of fine grooves formed in the three resin layers, generation of hot spots can be more reliably suppressed. Further, the lower light diffusion sheet 64 easily emits light that is substantially uniform over the entire surface.
  • ⁇ Light diffusion sheet for lower use> 12 and 13 is replaced with the edge light type backlight unit of FIG. 1 instead of the lower light diffusion sheets 4, 24, 34, 44, 54, 64 of FIGS. Used for. 12 is laminated on the surface side of the base film 11, the light diffusion layer 12 having a plurality of beads 14 and their binders 15, and the back surface of the base film 11. And a protective layer 75 laminated on the side.
  • the lower light diffusion sheet 74 is composed of three layers: a base film 11, a light diffusion layer 12 that is directly laminated on the surface of the base film 11, and a protective layer 75 that is directly laminated on the back surface of the base film 11. (There are no layers other than the base film 11, the light diffusion layer 12, and the protective layer 75).
  • the lower light diffusion sheet 74 is formed in a planar view shape.
  • the base film 11 and the light diffusion layer 12 of the lower light diffusion sheet 74 are the same as the base film 11 and the light diffusion layer 12 of the lower light diffusion sheet 4 in FIG. Description is omitted.
  • the protective layer 75 is a resin layer mainly composed of a synthetic resin.
  • a main component of the protective layer 75 the same synthetic resin as the main component of the protective layer 13 of the lower light diffusion sheet 4 in FIG.
  • the average thickness of the protective layer 75 can be the same as that of the protective layer 13 of the lower light diffusion sheet 4 in FIG.
  • the protective layer 75 has a plurality of fine grooves 76 formed on the back surface.
  • the protective layer 75 has a plurality of fine grooves 76 formed in a certain region from one end to the other end of the back surface.
  • the protective layer 75 has a plurality of fine grooves 76 formed in a certain region from the edge facing the plurality of LED light sources in the plan view to the other end side.
  • a region where the plurality of fine grooves 76 are not formed on the back surface of the protective layer 75 is configured as a flat surface.
  • Each fine groove 76 has a substantially U-shaped cross section (that is, each fine groove 76 is not formed in a triangular cross section).
  • the plurality of fine grooves 76 preferably constitute a diffraction grating.
  • the upper limit of the length ratio (L 4 / L 3 ) is preferably 0.5, more preferably 0.45, and still more preferably 0.4. If the length ratio (L 4 / L 3 ) is less than the lower limit, it may be difficult to completely suppress the occurrence of hot spots. On the other hand, when the length ratio (L 4 / L 3 ) exceeds the upper limit, there is a risk that light in a region other than the hot spot is likely to propagate in the width direction of the plurality of fine grooves 76.
  • the longitudinal direction of the plurality of fine grooves 76 is parallel to one end of the back surface of the protective layer 75. Specifically, the plurality of fine grooves 76 have a longitudinal direction along the average direction of light rays from the plurality of LED light sources. Furthermore, the orientation direction of each fine groove 76 is random. The plurality of fine grooves 76 are preferably formed independently for controlling the light diffusion direction, but some of the fine grooves 76 may cross each other.
  • the average orientation direction, the average length in the longitudinal direction, the average width, the average pitch, the standard deviation of the pitch, the average number of units per unit length, the average depth, and the standard deviation of the depth of the plurality of fine grooves 76 Can be the same as the plurality of fine grooves 16 of the lower light diffusion sheet 4 in FIG.
  • the root mean square slope (R ⁇ q) can be the same as that of the back surface of the protective layer 13 of the lower light diffusion sheet 4 in FIG.
  • the lower light diffusion sheet 74 can suppress the occurrence of hot spots. Further, the lower light diffusion sheet 74 has a flat surface in the back surface of the protective layer 75 where the plurality of fine grooves 76 are not formed, and thus is propagated in the width direction of the plurality of fine grooves 76 other than the hot spot. Increase in the amount of light emitted can be suppressed. For this reason, the lower light diffusion sheet 74 easily and reliably emits light that is substantially uniform over the entire surface.
  • the optical sheet for backlight units and the backlight unit according to the present invention can be implemented in various modifications and improvements in addition to the above aspects.
  • the backlight unit may use a light guide plate instead of the light guide film described above.
  • the optical sheet for the backlight unit does not have to be a lower light diffusion sheet, and may be, for example, a light guide film, a prism sheet, an upper light diffusion sheet, or a reflection sheet shown in FIG. It may be a plate. That is, a plurality of fine grooves oriented in a specific direction may be formed on the surface side or the back side of the resin layer of the light guide film, prism sheet, upper light diffusion sheet or reflection sheet or light guide plate described above. .
  • the optical sheet for the backlight unit is an upper light diffusion sheet and a plurality of fine grooves form a diffraction grating
  • the distance between the LED light source and the diffraction grating can be increased. It is easy to improve the effect. For this reason, when the backlight unit optical sheet is an upward light diffusion sheet, it is easier to reliably reduce luminance unevenness of the liquid crystal display device.
  • the optical sheet for the backlight unit is an upper light diffusion sheet, the structure where the plurality of fine grooves are formed and the plurality of fine grooves are the same as those of the above-described light diffusion sheet for the bottom. Can do.
  • the optical sheet for the backlight unit is preferably disposed on the back surface of a sheet body obtained by bonding two prism sheets.
  • a sheet body in which two prism sheets are bonded together has low concealability because an air layer is hardly formed between the prism sheets.
  • the backlight unit in which the optical sheet for the backlight unit is disposed on the back surface of the sheet body can increase the amount of light that is propagated in the width direction of the plurality of fine grooves. The hiding effect can be sufficiently improved.
  • the optical sheet for the backlight unit is a light diffusion sheet (lower light diffusion sheet or upper light diffusion sheet)
  • a plurality of fine grooves may be formed on arbitrary front and / or back surfaces of the plurality of resin layers.
  • this region can be formed in an arbitrary resin layer.
  • the regions where the plurality of fine grooves are formed are the front and back surfaces of the base film, the front and back surfaces of the light diffusion layer, and / or the front and back surfaces of the protective layer. Either of them may be formed.
  • channel is formed may be formed in 2 layers or 3 layers among a base film, a light-diffusion layer, and a protective layer.
  • the plurality of fine grooves may be arranged as shown in FIG. 14, for example.
  • the plurality of fine grooves 86 in FIG. 14 gradually decrease in the ratio of presence from the edge facing the plurality of LED light sources 82 on the front surface and / or back surface of the resin layer to the other end side.
  • the backlight unit optical sheet can suppress the occurrence of hot spots even with this configuration.
  • the optical sheet for the backlight unit has a plurality of fine grooves 86 that gradually decrease from the edge facing the LED light source 82 to the other end side. The amount of light propagating in the width direction 86 can be reduced.
  • the average orientation direction, the average length in the longitudinal direction, the average width, the average pitch, the standard deviation of the pitch, the average number of existing units per unit length, the average depth, and the standard deviation of the depth of the plurality of fine grooves 86 Can be the same as the plurality of fine grooves 16 of the lower light diffusion sheet 4 in FIG. Further, the arithmetic average roughness (Ra), the maximum height (Ry), and the ten-point average roughness (Rz) in the direction parallel to the orientation direction of the plurality of fine grooves 86 on the surface of the resin layer on which the plurality of fine grooves 86 are formed.
  • Root mean square slope (R ⁇ q) and arithmetic mean roughness (Ra), maximum height (Ry), ten-point mean roughness (Rz), root mean square slope in the direction perpendicular to the orientation direction of the plurality of fine grooves 27 (R ⁇ q) can be the same as that of the back surface of the protective layer 13 of the lower light diffusion sheet 4 in FIG.
  • the configuration of the light diffusing sheet is not limited to the three-layered body of the base film, the light diffusing layer, and the protective layer.
  • the light diffusion sheet may have, for example, a sticking prevention layer in which a plurality of beads are dispersed in a resin matrix instead of the protective layer, and a plurality of fine grooves are formed in the sticking prevention layer. May be.
  • the light diffusion layer does not necessarily have a protective layer.
  • the light diffusing layer of the light diffusing sheet does not need to have beads and its binder, and for example, a structure in which the surface of the resin layer is embossed can be adopted. Further, a plurality of fine grooves may be formed on the surface having fine irregularities formed by this embossing.
  • the backlight unit optical sheet may have a functional layer having an uneven shape on the surface.
  • the functional layer may be configured as a resin layer, and a plurality of fine grooves may be formed on the front surface or the back surface of the functional layer. A plurality of fine grooves may be formed on the front surface or the back surface of another layer laminated on the functional layer.
  • corrugated shape an emboss shape, a prism shape, a wave shape etc. are mentioned, for example.
  • the specific shape of the plurality of fine grooves is not limited to the shape of the above-described embodiment.
  • the cross-sectional angle U-shape as shown in FIG. 15 and the cross-sectional triangle shape as shown in FIG. 17 may be formed in a slit shape as shown in FIG.
  • the backlight unit preferably has a plurality of LED light sources, but may have only one LED light source. Further, the specific type of the optical sheet in the backlight unit is not particularly limited.
  • the backlight unit preferably has a plurality of optical sheets on the surface side of the light guide film, but may have only one optical sheet.
  • the backlight unit is not necessarily an edge light type backlight unit, and may be a direct type backlight unit.
  • the backlight unit can be used for relatively large display devices such as personal computers and liquid crystal televisions, mobile phone terminals such as smartphones, and portable information terminals such as tablet terminals.
  • a base film-forming resin mainly composed of polyethylene terephthalate is extruded from a T-die, and a mold having a reverse shape of a plurality of fine grooves on the surface is used.
  • a substrate film having an average thickness of 75 ⁇ m was produced by transferring the grooves.
  • a light diffusion layer having a plurality of beads and a binder is laminated on the surface of the base film on which a plurality of fine grooves are formed. 1 light diffusion sheet was obtained.
  • the difference between the refractive index of the base film of the light diffusion sheet and the refractive index of the binder was 0.09.
  • the average width of the fine grooves of this light diffusion sheet is 9.3 ⁇ m
  • the average depth is 2.8 ⁇ m
  • the average pitch is 9.3 ⁇ m
  • the standard deviation of the pitch of the plurality of fine grooves is 6.54 ⁇ m
  • the plurality of fine grooves The standard deviation of the depth was 1.13 ⁇ m
  • the arithmetic average roughness (Ra) in the direction perpendicular to the orientation direction of the plurality of fine grooves was 1.34 ⁇ m.
  • FIG. It is a partial expansion plane photograph of 1 base film.
  • No. 2 No. A sheet body having an average thickness of 75 ⁇ m was formed using the same resin as in No. 1. Furthermore, a plurality of fine grooves were formed by laser on one surface of the sheet body to produce a base film. Further, on the surface of the base film on which a plurality of fine grooves were formed, No. A light diffusion layer having a plurality of beads and a binder similar to those of No. 1 is laminated. 2 light diffusion sheets were obtained.
  • FIG. 2 is a partially enlarged plan view of a base film of No. 2;
  • No. 3 No. A sheet body having an average thickness of 75 ⁇ m was formed using the same resin as in No. 1. Furthermore, a plurality of fine grooves were formed with a file on one surface of the sheet body to produce a base film. Further, on the surface of the base film on which a plurality of fine grooves were formed, No. A light diffusion layer having a plurality of beads and a binder similar to those of No. 1 is laminated. 3 light diffusion sheet was obtained.
  • the average width of the fine grooves of this light diffusion sheet is 1.0 ⁇ m, the average length is 30 mm, the average depth is 0.5 ⁇ m, the average pitch is 18.84 ⁇ m, the standard deviation of the pitch of the plurality of fine grooves is 8.29 ⁇ m, The standard deviation of the depth of the plurality of fine grooves was 0.56 ⁇ m, and the arithmetic average roughness (Ra) in the direction perpendicular to the orientation direction of the plurality of fine grooves was 0.30 ⁇ m.
  • FIG. 3 is a partially enlarged plan view of a substrate film 3.
  • No. 4 No. A sheet body having an average thickness of 75 ⁇ m was formed using the same resin as in No. 1. Further, a plurality of fine grooves were formed on one surface of the sheet body with a cutting bite to produce a base film. Further, on the surface of the base film on which a plurality of fine grooves were formed, No. A light diffusion layer having a plurality of beads and a binder similar to those of No. 1 is laminated. 4 light diffusion sheets were obtained.
  • the average width of the fine grooves of this light diffusion sheet is 32.7 ⁇ m, the average depth is 28.1 ⁇ m, the average pitch is 31.5 ⁇ m, the standard deviation of the pitch of the plurality of fine grooves is 9.73 ⁇ m, the depth of the plurality of fine grooves The standard deviation of the thickness was 0.89 ⁇ m, and the arithmetic average roughness (Ra) in the direction perpendicular to the orientation direction of the plurality of fine grooves was 4.30 ⁇ m.
  • No. 1-No. Table 1 shows the quality of the light diffusion sheet 5.
  • Examples 1 to 5 No. A liquid crystal having a plurality of LED light sources such that the average orientation direction of the plurality of fine grooves with respect to the average direction of light rays from the plurality of LED light sources in the light guide film is the angle shown in Table 2. It laminated
  • Examples 6 to 10 No.
  • No. 3 is a liquid crystal having a plurality of LED light sources such that the average orientation direction of the plurality of fine grooves based on the average direction of light rays from the plurality of LED light sources in the light guide film is the angle shown in Table 2. It laminated
  • No. 4 is a liquid crystal having a plurality of LED light sources such that the average orientation direction of the plurality of fine grooves based on the average direction of light rays from the plurality of LED light sources in the light guide film is an angle shown in Table 2. It laminated
  • FIG. 5 is a side photograph of the light diffusing sheet of FIG.
  • ⁇ Luminance unevenness> The backlight units of Examples 1 to 20 and the comparative example were incorporated in a liquid crystal display device, and images of the liquid crystal display device were observed. The presence or absence of uneven brightness was confirmed visually and evaluated according to the following criteria. A: No luminance unevenness is confirmed. B: When observed, slight luminance unevenness is confirmed in the vicinity of the light source in plan view. C: Brightness unevenness is slightly observed in the vicinity of the light source in a plan view even when no gaze is observed. D: Brightness unevenness is confirmed without gazing.
  • Examples 1 to 20 in which the average orientation direction of the plurality of fine grooves based on the average direction of light rays from the plurality of LED light sources in the light guide film is 45 ° or less are compared with the comparative example. It has been found that the half-value angle of the luminance in the vertical direction of the light from the LED light source is increased, thereby suppressing luminance unevenness. Moreover, it turned out that the half value angle of the brightness
  • Examples 1 to 5 in which a plurality of fine grooves are formed using a mold examples 6 to 10 in which a plurality of fine grooves are formed by a laser, and Examples 16 to 10 in which a plurality of fine grooves are formed by a cutting tool.
  • No. 20 can form a desired fine groove as compared with Examples 11 to 15 in which a plurality of fine grooves are formed by a file, thereby increasing the half-value angle of the luminance in the vertical direction of the light from the LED light source, and uneven luminance. It turns out that it is easy to suppress.
  • FIGS. 22 and 23 it was found that the occurrence of hot spots caused by the LED light source was suppressed according to the light diffusion sheet in Example 1 as compared with the light diffusion sheet in the comparative example.
  • the optical sheet for a backlight unit and the backlight unit of the present invention can suppress hot spots, they are suitably used for various liquid crystal display devices such as a high-quality transmissive liquid crystal display device. .

Abstract

The purpose of the present invention is to provide an optical sheet for a backlight unit with which the occurrence of hot spots can be suppressed. This optical sheet for a backlight unit is for a liquid crystal display device, with which light rays emitted from an LED light source are guided to the front surface side, the optical sheet being characterized by being provided with one or more resin layers and in that a plurality of fine grooves oriented in a specific direction are formed on the front surface side or reverse surface side of at least one of these resin layers. Preferably, the mean number of the plurality of fine grooves per unit length of the plurality of fine grooves in the direction perpendicular to the mean orientation direction is 10 to 10,000 grooves/mm. Preferably, the arithmetic mean roughness(Ra) of the direction perpendicular to the orientation direction of the plurality of fine grooves on the surface of the resin layer(s) on which the plurality of fine grooves are formed is 0.01 to 5 ìm. The plurality of fine grooves may c onstitute a diffraction grating.

Description

バックライトユニット用光学シート及びバックライトユニットOptical sheet for backlight unit and backlight unit
 本発明は、バックライトユニット用光学シート及びバックライトユニットに関する。 The present invention relates to an optical sheet for a backlight unit and a backlight unit.
 液晶表示装置は、薄型、軽量、低消費電力等の特徴を活かしてフラットパネルディスプレイとして多用され、その用途はテレビ、パーソナルコンピュータ、スマートフォン等の携帯電話端末、タブレット端末等の携帯型情報端末など年々拡大している。 Liquid crystal display devices are widely used as flat panel displays taking advantage of thin, lightweight, low power consumption, etc., and their applications are such as TVs, personal computers, mobile phone terminals such as smartphones, and portable information terminals such as tablet terminals every year. It is expanding.
 このような液晶表示装置は、液晶パネルを裏面側から照射するバックライト方式が普及し、エッジライト型(サイドライト型)、直下型等のバックライトユニットが装備されている。このような液晶表示装置に備えられるエッジライト型バックライトユニット101としては、一般的には図18に示すように、光源102と、この光源102に端部が沿うように配置される方形板状の導光シート103と、この導光シート103の表面側に重ねて配設される複数枚の光学シート104と、導光シート103の裏面側に配設される反射シート105とを備える。光学シート104としては、(1)導光シート103の表面側に重畳され、主に光拡散機能を有する下用光拡散シート106、(2)下用光拡散シート106の表面側に重畳され、法線方向側への屈折機能を有するプリズムシート107、(3)プリズムシート107の表面側に重畳され、光線をわずかに拡散することでプリズムシート107のプリズム部の形状等に起因する輝度ムラを抑制する上用光拡散シート108が用いられている(特開2005-77448号公報参照)。 Such a liquid crystal display device is widely used as a backlight system that irradiates a liquid crystal panel from the back side, and is equipped with backlight units such as an edge light type (side light type) and a direct type. As an edge light type backlight unit 101 provided in such a liquid crystal display device, generally, as shown in FIG. 18, a light source 102 and a rectangular plate shape disposed so that an end thereof is along the light source 102. The light guide sheet 103, a plurality of optical sheets 104 disposed on the front surface side of the light guide sheet 103, and a reflection sheet 105 disposed on the back surface side of the light guide sheet 103. As the optical sheet 104, (1) a light diffusion sheet 106 that is superimposed on the surface side of the light guide sheet 103 and mainly has a light diffusion function, and (2) is superimposed on the surface side of the light diffusion sheet 106 for bottom, Prism sheet 107 having a function of refraction in the normal direction side, (3) Superimposing on the surface side of the prism sheet 107, and slightly diffusing the light rays, uneven brightness due to the shape of the prism portion of the prism sheet 107, etc. An upper light diffusion sheet 108 for suppression is used (see Japanese Patent Application Laid-Open No. 2005-77448).
特開2005-77448号公報JP 2005-77448 A
 このようなバックライトユニット101に備えられる光源102としては、小型化及び省エネルギー化等の観点からLEDが普及しているが、LEDを用いたバックライトユニットにあっては、ホットスポット(ディスプレイ画面上において光源付近で輝度が局所的に高くなることで明暗部が発生する現象)が発生し、このホットスポットによって液晶表示装置の輝度ムラを招いている。この原因は明らかではないが、従来の光拡散シートは拡散を行うものの、指向性の高いLEDの光線を拡散した際に上記ホットスポットが発生しているものと考えられる。上述したホットスポットによる輝度ムラの発生は、バックライトユニットの薄型化、高輝度のLEDの採用、LEDの個数の減少、液晶表示装置の大画面化等によってより顕著となるおそれがある。 As the light source 102 provided in such a backlight unit 101, LEDs are widely used from the viewpoint of miniaturization and energy saving. However, a backlight unit using LEDs has a hot spot (on the display screen). In this case, a phenomenon in which bright and dark portions occur due to the local increase in luminance in the vicinity of the light source occurs, and this hot spot causes luminance unevenness of the liquid crystal display device. The cause of this is not clear, but although the conventional light diffusion sheet diffuses, it is considered that the hot spot is generated when the light beam of the highly directional LED is diffused. The occurrence of luminance unevenness due to the hot spots described above may become more conspicuous due to the thinning of the backlight unit, the use of high-brightness LEDs, the reduction in the number of LEDs, the enlargement of the liquid crystal display device, and the like.
 これらの不都合に鑑み、本発明者が鋭意検討したところ、バックライトユニット内の光学経路内に所定の複数の微細溝を配設することで、ホットスポットを抑制できることが判明した。 In view of these inconveniences, the present inventors diligently studied and found that hot spots can be suppressed by disposing a predetermined plurality of fine grooves in the optical path in the backlight unit.
 本発明は、このような事情に鑑みてなされたものであり、ホットスポットを抑制可能なバックライトユニット用光学シート及びバックライトユニットの提供を目的とするものである。 The present invention has been made in view of such circumstances, and an object thereof is to provide an optical sheet for a backlight unit and a backlight unit capable of suppressing hot spots.
 上記課題を解決するためになされた本発明に係るバックライトユニット用光学シートは、LED光源から出射される光線を表面側に導く液晶表示装置のバックライトユニット用光学シートであって、1又は複数の樹脂層を備え、これらの樹脂層のうち少なくも1つの樹脂層の表面側又は裏面側に特定方向に配向する複数の微細溝が形成されていることを特徴とする。 An optical sheet for a backlight unit according to the present invention made to solve the above problems is an optical sheet for a backlight unit of a liquid crystal display device that guides a light beam emitted from an LED light source to the surface side. The resin layer is characterized in that a plurality of fine grooves oriented in a specific direction are formed on the front surface side or the back surface side of at least one of these resin layers.
 当該バックライトユニット用光学シートは、光源としてLEDを用いるバックライトユニットに用いた際に、ホットスポットの発生を抑制することができる。この原因については必ずしも明らかではないが、当該バックライトユニット用光学シートの樹脂層に特定方向に配向する複数の微細溝が形成されているので、複数の微細溝によって区画される領域を通過する光線が複数の微細溝の幅方向に伝搬され、指向性の高いLEDの光線であってもホットスポットの発生が抑制できるものと考えられる。 The backlight unit optical sheet can suppress the occurrence of hot spots when used in a backlight unit using LEDs as a light source. Although the cause of this is not necessarily clear, since a plurality of fine grooves oriented in a specific direction are formed in the resin layer of the backlight unit optical sheet, the light beam that passes through the region defined by the plurality of fine grooves Is propagated in the width direction of a plurality of microgrooves, and it is considered that the generation of hot spots can be suppressed even for light beams of LEDs with high directivity.
 上記複数の微細溝の平均配向方向と垂直方向における複数の微細溝の単位長さ当たりの平均存在個数としては、10本/mm以上10000本/mm以下が好ましい。このように、上記複数の微細溝の平均配向方向と垂直方向における複数の微細溝の単位長さ当たりの平均存在個数が上記範囲内であることによって、複数の微細溝によって区画される領域を通過する光線が複数の微細溝の幅方向に十分に伝搬され、ホットスポットの発生をより確実に抑制することができる。 The average number of the plurality of fine grooves per unit length in the direction perpendicular to the average orientation direction of the plurality of fine grooves is preferably 10 pieces / mm or more and 10,000 pieces / mm or less. As described above, when the average number of the micro-grooves per unit length in the direction perpendicular to the average orientation direction of the micro-grooves is within the above range, it passes through the region defined by the micro-grooves. The transmitted light is sufficiently propagated in the width direction of the plurality of fine grooves, and the generation of hot spots can be more reliably suppressed.
 上記樹脂層の複数の微細溝が形成される面における上記複数の微細溝の配向方向と垂直方向の算術平均粗さ(Ra)としては、0.01μm以上5μm以下が好ましい。このように、上記樹脂層の複数の微細溝が形成される面における上記複数の微細溝の配向方向と垂直方向の算術平均粗さ(Ra)が上記範囲内であることによって、ホットスポットの発生を容易かつ確実に抑制し易い。 The arithmetic average roughness (Ra) in the direction perpendicular to the orientation direction of the plurality of fine grooves on the surface where the plurality of fine grooves of the resin layer is formed is preferably 0.01 μm or more and 5 μm or less. Thus, the occurrence of hot spots occurs when the arithmetic mean roughness (Ra) in the direction perpendicular to the orientation direction of the plurality of fine grooves on the surface of the resin layer on which the plurality of fine grooves are formed is within the above range. Can be easily and reliably suppressed.
 上記複数の微細溝が回折格子を構成するとよい。このように、上記複数の微細溝が回折格子を構成することによって、複数の微細溝によって区画される領域を通過する光線同士に一定の行路差が生じる回折現象が起こり、この回折現象によってホットスポットの発生を容易かつ確実に抑制し易い。 The plurality of fine grooves may constitute a diffraction grating. As described above, when the plurality of micro grooves constitute a diffraction grating, a diffraction phenomenon occurs in which a certain path difference occurs between light beams passing through a region defined by the plurality of micro grooves, and this diffraction phenomenon causes a hot spot. It is easy to suppress generation | occurrence | production of this easily and reliably.
 上記光学シートが、基材フィルムと、この基材フィルムの表面側に積層され、複数のビーズ及びそのバインダーを有する光拡散層と、上記基材フィルムの裏面側に積層される保護層とを備える光拡散シートであるとよい。このように、当該光学シートが光拡散シートであることによって、全面に亘って略均一化された光線を出射し易い。 The optical sheet includes a base film, a light diffusion layer having a plurality of beads and a binder stacked on the base film, and a protective layer stacked on the back side of the base film. It may be a light diffusion sheet. Thus, when the optical sheet is a light diffusing sheet, it is easy to emit a light beam that is substantially uniform over the entire surface.
 上記保護層の裏面側に上記複数の微細溝が形成されているとよい。このように、上記保護層の裏面側に上記複数の微細溝が形成されていることによって、当該バックライトユニット用光学シートをバックライトユニットに用いた際に保護層の裏面側に存在する空気層との屈折率差を利用して複数の微細溝によって区画される領域を通過する光線を複数の微細溝の幅方向に十分に伝搬し易い。 The plurality of fine grooves may be formed on the back side of the protective layer. Thus, when the plurality of fine grooves are formed on the back side of the protective layer, the air layer present on the back side of the protective layer when the backlight unit optical sheet is used in a backlight unit. The light beam passing through the region partitioned by the plurality of fine grooves is easily propagated sufficiently in the width direction of the plurality of fine grooves using the difference in refractive index.
 当該光学シートは、表面に凹凸形状を有する機能層を備えていてもよい。このように、表面に凹凸形状を有する機能層を備えることによって、全面に亘って略均一化された光線を出射し易い。 The optical sheet may include a functional layer having an uneven shape on the surface. Thus, by providing a functional layer having a concavo-convex shape on the surface, it is easy to emit light that is substantially uniform over the entire surface.
 1つの樹脂層が表面に複数の微細凹凸を有し、この樹脂層の複数の微細凹凸を有する面に上記複数の微細溝が形成されているとよい。このように、1つの樹脂層が表面に複数の微細凹凸を有し、この樹脂層の複数の微細凹凸を有する面に上記複数の微細溝が形成されていることで、複数の微細溝によって光線を複数の微細溝の幅方向に伝搬すると共に複数の微細凹凸によって光を拡散することができる。これにより、モアレ防止効果、色分解防止効果、視野角拡大効果等を向上することができる。 It is preferable that one resin layer has a plurality of fine irregularities on the surface, and the plurality of fine grooves are formed on the surface of the resin layer having the plurality of fine irregularities. Thus, one resin layer has a plurality of fine irregularities on the surface, and the plurality of fine grooves are formed on the surface of the resin layer having the plurality of fine irregularities. Can be propagated in the width direction of the plurality of fine grooves and light can be diffused by the plurality of fine irregularities. Thereby, a moire prevention effect, a color separation prevention effect, a viewing angle expansion effect, etc. can be improved.
 また、上記課題を解決するためになされた本発明に係る液晶表示装置のバックライトユニットは、端面側から入射した光線を表面側に導くライトガイドフィルム又はライトガイドプレートと、このライトガイドフィルム又はライトガイドプレートの端面側に配設され、ライトガイドフィルム又はライトガイドプレートの端面に光線を出射する1又は複数のLED光源と、上記ライトガイドフィルム又はライトガイドプレートの表面側に重畳される当該光学シートとを備える。 Further, the backlight unit of the liquid crystal display device according to the present invention, which has been made to solve the above problems, includes a light guide film or light guide plate that guides light incident from the end face side to the surface side, and the light guide film or light One or a plurality of LED light sources disposed on the end face side of the guide plate and emitting light to the end face of the light guide film or the light guide plate, and the optical sheet superimposed on the surface side of the light guide film or the light guide plate With.
 当該液晶表示装置のバックライトユニットは、当該光学シートを備えるので、上述のようにホットスポットの発生を抑制することができる。 Since the backlight unit of the liquid crystal display device includes the optical sheet, generation of hot spots can be suppressed as described above.
 上記光学シートが上記ライトガイドフィルム又はライトガイドプレートの表面に直接重畳されているとよい。このように、上記光学シートが上記ライトガイドフィルム又はライトガイドプレートの表面に直接重畳されていることによって、ホットスポットの発生を十分に抑制することができる。 The optical sheet may be directly superimposed on the surface of the light guide film or light guide plate. As described above, the optical sheet is directly superimposed on the surface of the light guide film or the light guide plate, so that generation of hot spots can be sufficiently suppressed.
 平面視で、上記ライトガイドフィルム又はライトガイドプレートにおけるLED光源からの光線の平均方向を基準とする上記光学シートの複数の微細溝の平均配向方向としては、±45°以下が好ましい。このように、上記光学シートの複数の微細溝の平均配向方向が上記上限以下であることによって、ホットスポットの発生を容易かつ確実に抑制し易い。 In plan view, the average orientation direction of the plurality of fine grooves of the optical sheet on the basis of the average direction of light rays from the LED light source in the light guide film or light guide plate is preferably ± 45 ° or less. Thus, when the average orientation direction of the plurality of fine grooves of the optical sheet is equal to or less than the upper limit, the occurrence of hot spots can be easily and reliably suppressed.
 なお、本発明において「表面側」とは液晶表示装置における視認者側を意味し、「裏面側」とはその逆を意味する。「特定方向」とは、特定の一方向を意味する。「樹脂層」とは、合成樹脂を主成分とする層をいう。また、「主成分」とは、最も含有量の多い成分をいい、例えば含有量が50質量%以上の成分をいう。「回折格子」とは、入射光に対して回折を生じる構造をいう。「複数の微細溝の平均配向方向」とは、20個の微細溝を任意に抽出し、抽出した各微細溝の長手方向両端を通る直線の配向方向を平均した値をいう。また、「複数の微細溝の平均存在個数」とは、任意の10箇所における複数の微細溝の存在個数の平均値をいう。「算術平均粗さ(Ra)」とは、JIS-B0601:1994に準じ、カットオフλc0.8mm、評価長さ4mmの値をいう。「ライトガイドフィルム又はライトガイドプレートにおけるLED光源からの光線の平均方向」とは、ライトガイドフィルム又はライトガイドプレートにおけるLED光源から出射される光線の入射方向のうち、表面側から見て最大強度の光が発せられる方向をいう。 In the present invention, “front side” means the viewer side in the liquid crystal display device, and “back side” means the opposite. “Specific direction” means a specific direction. “Resin layer” refers to a layer mainly composed of synthetic resin. The “main component” refers to a component having the highest content, for example, a component having a content of 50% by mass or more. “Diffraction grating” refers to a structure that diffracts incident light. The “average orientation direction of a plurality of microgrooves” refers to a value obtained by arbitrarily extracting 20 microgrooves and averaging the orientation directions of straight lines passing through both ends of the extracted microgrooves in the longitudinal direction. Further, the “average number of a plurality of fine grooves” means an average value of the number of a plurality of fine grooves present at any ten locations. “Arithmetic average roughness (Ra)” refers to a value with a cutoff λc of 0.8 mm and an evaluation length of 4 mm in accordance with JIS-B0601: 1994. "The average direction of the light beam from the LED light source in the light guide film or light guide plate" means the maximum intensity of the incident direction of the light beam emitted from the LED light source in the light guide film or light guide plate when viewed from the surface side. The direction in which light is emitted.
 以上説明したように、本発明のバックライトユニット用光学シート及びバックライトユニットは、ホットスポットの発生を抑制することができる。 As described above, the optical sheet for a backlight unit and the backlight unit of the present invention can suppress the occurrence of hot spots.
本発明の一実施形態に係るバックライトユニットを示す模式的端面図である。It is a typical end view showing a backlight unit according to an embodiment of the present invention. 図1のバックライトユニットの光学シート、ライトガイドフィルム及び光源を示す模式的部分拡大図である。It is a typical partial enlarged view which shows the optical sheet, light guide film, and light source of the backlight unit of FIG. 図2の光学シートの模式的拡大裏面図である。FIG. 3 is a schematic enlarged back view of the optical sheet in FIG. 2. 図2の光学シートのA-A線部分拡大端面図である。FIG. 3 is an enlarged end view taken along line AA of the optical sheet of FIG. 図1のバックライトユニットにおけるホットスポットを示す模式的平面図である。FIG. 2 is a schematic plan view showing hot spots in the backlight unit of FIG. 1. 図1のバックライトユニットにおける輝度ムラ低減機能を説明するための模式的平面図である。It is a typical top view for demonstrating the brightness nonuniformity reduction function in the backlight unit of FIG. 図2の光学シートとは異なる形態に係る光学シートを示す模式的端面図である。It is a typical end view which shows the optical sheet which concerns on the form different from the optical sheet of FIG. 図2及び図7の光学シートとは異なる形態に係る光学シートを示す模式的端面図である。It is a typical end view which shows the optical sheet which concerns on the form different from the optical sheet of FIG.2 and FIG.7. 図2、図7及び図8の光学シートとは異なる形態に係る光学シートを示す模式的端面図である。It is a typical end view which shows the optical sheet which concerns on the form different from the optical sheet of FIG.2, FIG7 and FIG.8. 図2及び図7~図9の光学シートとは異なる形態に係る光学シートを示す模式的端面図である。FIG. 10 is a schematic end view showing an optical sheet according to a different form from the optical sheets of FIG. 2 and FIGS. 図2及び図7~図10の光学シートとは異なる形態に係る光学シートを示す模式的端面図である。FIG. 11 is a schematic end view showing an optical sheet according to a different form from the optical sheets of FIGS. 2 and 7 to 10. 図2及び図7~図11の光学シートとは異なる形態に係る光学シートを示す模式的端面図である。FIG. 12 is a schematic end view showing an optical sheet according to a different form from the optical sheets of FIGS. 2 and 7 to 11. 図12の光学シートの模式的拡大裏面図である。FIG. 13 is a schematic enlarged back view of the optical sheet of FIG. 12. 図2及び図7~図12の光学シートとは異なる形態に係る光学シートの複数の微細溝を説明するための模式的拡大裏面図である。FIG. 13 is a schematic enlarged back view for explaining a plurality of fine grooves of an optical sheet according to a different form from the optical sheets of FIGS. 2 and 7 to 12. 本発明の他の実施形態に係る微細溝を示す模式的端面図である。FIG. 6 is a schematic end view showing a fine groove according to another embodiment of the present invention. 図15の微細溝とは異なる形態に係る微細溝を示す模式的端面図である。FIG. 16 is a schematic end view showing a fine groove according to a form different from the fine groove of FIG. 15. 図15及び図16の微細溝とは異なる形態に係る微細溝を示す模式的端面図である。FIG. 17 is a schematic end view showing a fine groove according to a form different from the fine groove of FIGS. 15 and 16. 従来のエッジライト型バックライトユニットを示す模式的斜視図である。It is a typical perspective view which shows the conventional edge light type backlight unit. No.1の基材フィルムの部分拡大平面写真である。No. It is a partial expansion plane photograph of 1 base film. No.2の基材フィルムの部分拡大平面写真である。No. 2 is a partially enlarged plan view of a base film of No. 2; No.3の基材フィルムの部分拡大平面写真である。No. 3 is a partially enlarged plan view of a substrate film 3. 実施例1におけるNo.1の光拡散シートの側面写真である。No. 1 in Example 1. It is a side view photograph of 1 light diffusion sheet. 比較例におけるNo.5の光拡散シートの側面写真である。No. in the comparative example. 5 is a side photograph of the light diffusing sheet of FIG.
 以下、適宜図面を参照しつつ、本発明の実施の形態を詳説する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.
[第一実施形態]
[バックライトユニット]
 図1の液晶表示装置のバックライトユニットは、エッジライト型バックライトユニットであって、1又は複数のLED光源2からの出射される光線を表面側に導く液晶表示装置のバックライトユニットである。当該バックライトユニットは、端面から入射した光線を表面側に導くライトガイドフィルム1と、ライトガイドフィルム1の端面側に配設され、ライトガイドフィルム1の端面に光線を出射する複数のLED光源2と、ライドガイドフィルム1の表面側に重畳される複数の光学シート3とを備える。上記複数の光学シート3としては、ライトガイドフィルム1の表面側に配設される光拡散シート(下用光拡散シート4)と、下用光拡散シート4の表面側に配設される第1プリズムシート5と、第1プリズムシート5の表面側に配設される第2プリズムシート6と、第2プリズムシート6の表面側に配設される光拡散シート(上用光拡散シート7)とを有する。また、当該バックライトユニットは、ライトガイドフィルム1の裏面側に配設される反射シート8をさらに備える。下用光拡散シート4は、裏面側から入射される光線を拡散させつつ法線方向側へ集光させる(集光拡散させる)。第1プリズムシート5及び第2プリズムシート6は、裏面側から入射される光線を法線方向側に屈折させる。具体的には、第1プリズムシート5及び第2プリズムシート6は、突条プリズム部の稜線方向が直交しており、下用光拡散シート4から入射された光線を第1プリズムシート5が稜線方向に対して垂直方向かつ法線方向側に屈折させ、さらに第1プリズムシート5から出射される光線を第2プリズムシート6が液晶表示素子の裏面に対して略垂直に進行するように屈折させる。上用光拡散シート7は、裏面側から入射される光線を若干程度拡散させて第1プリズムシート5及び第2プリズムシート6の突条プリズム部の形状等に起因する輝度ムラを抑制する。反射シート8は、ライトガイドフィルム1の裏面側から出射される光線を表面側に反射させ、再度ライトガイドフィルム1に入射させる。
[First embodiment]
[Backlight unit]
The backlight unit of the liquid crystal display device of FIG. 1 is an edge light type backlight unit, and is a backlight unit of a liquid crystal display device that guides light emitted from one or a plurality of LED light sources 2 to the surface side. The backlight unit includes a light guide film 1 that guides light incident from the end surface to the surface side, and a plurality of LED light sources 2 that are disposed on the end surface side of the light guide film 1 and emit light to the end surface of the light guide film 1. And a plurality of optical sheets 3 superimposed on the surface side of the ride guide film 1. As the plurality of optical sheets 3, a light diffusion sheet (lower light diffusion sheet 4) disposed on the surface side of the light guide film 1 and a first disposed on the surface side of the lower light diffusion sheet 4. A prism sheet 5, a second prism sheet 6 disposed on the surface side of the first prism sheet 5, and a light diffusion sheet (upper light diffusion sheet 7) disposed on the surface side of the second prism sheet 6. Have The backlight unit further includes a reflection sheet 8 disposed on the back side of the light guide film 1. The lower light diffusion sheet 4 condenses (condenses and diffuses) the light incident from the back surface side while diffusing the light rays. The first prism sheet 5 and the second prism sheet 6 refract light rays incident from the back side toward the normal direction side. Specifically, in the first prism sheet 5 and the second prism sheet 6, the ridge line directions of the projecting prism portions are orthogonal, and the first prism sheet 5 radiates the light incident from the lower light diffusion sheet 4. Refracted in the direction perpendicular to the direction and in the normal direction, and further refracts the light emitted from the first prism sheet 5 so that the second prism sheet 6 travels substantially perpendicular to the back surface of the liquid crystal display element. . The upper light diffusing sheet 7 diffuses light incident from the back side to some extent to suppress luminance unevenness caused by the shape of the protruding prism portions of the first prism sheet 5 and the second prism sheet 6. The reflection sheet 8 reflects the light beam emitted from the back surface side of the light guide film 1 to the front surface side and makes it incident on the light guide film 1 again.
<下用光拡散シート>
 図2に示すように、下用光拡散シート4は、ライトガイドフィルム1の表面に直接(他のシート等を介さず)重畳されている。下用光拡散シート4は、基材フィルム11と、基材フィルム11の表面側に積層され、複数のビーズ14及びそのバインダー15を有する光拡散層12と、基材フィルム11の裏面側に積層される保護層13とを備える。下用光拡散シート4は、基材フィルム11、基材フィルム11の表面に直接積層される光拡散層12及び基材フィルム11の裏面に直接積層される保護層13の3層から構成されている(基材フィルム11、光拡散層12及び保護層13以外の他の層を有していない)。下用光拡散シート4は、平面視方形状に形成されている。下用光拡散シート4は、後述するように保護層13の裏面に複数の微細溝16が形成されており、本発明のバックライトユニット用光学シートとして構成されている。
<Light diffusion sheet for lower use>
As shown in FIG. 2, the lower light diffusion sheet 4 is directly superimposed on the surface of the light guide film 1 (without other sheets or the like). The lower light diffusion sheet 4 is laminated on the base film 11, the surface side of the base film 11, the light diffusion layer 12 having a plurality of beads 14 and its binder 15, and the back side of the base film 11. The protective layer 13 is provided. The lower light diffusion sheet 4 is composed of three layers: a base film 11, a light diffusion layer 12 that is directly laminated on the surface of the base film 11, and a protective layer 13 that is directly laminated on the back surface of the base film 11. (There are no layers other than the base film 11, the light diffusion layer 12, and the protective layer 13). The lower light diffusion sheet 4 is formed in a planar view shape. As will be described later, the lower light diffusion sheet 4 has a plurality of fine grooves 16 formed on the back surface of the protective layer 13, and is configured as an optical sheet for a backlight unit of the present invention.
(基材フィルム)
 基材フィルム11は、合成樹脂を主成分とする樹脂層である。基材フィルム11は、光線を透過させる必要があるので透明、特に無色透明の合成樹脂を主成分として形成されている。基材フィルム11の主成分としては、特に限定されるものではなく、例えばポリエチレンテレフタレート、ポリエチレンナフタレート、アクリル樹脂、ポリカーボネート、ポリスチレン、ポリオレフィン、セルロースアセテート、耐候性塩化ビニル等が挙げられる。中でも、透明性に優れ、強度が高いポリエチレンテレフタレートが好ましく、撓み性能が改善されたポリエチレンテレフタレートが特に好ましい。
(Base film)
The base film 11 is a resin layer mainly composed of a synthetic resin. Since the base film 11 is required to transmit light, the base film 11 is formed mainly of a transparent, particularly colorless and transparent synthetic resin. The main component of the base film 11 is not particularly limited, and examples thereof include polyethylene terephthalate, polyethylene naphthalate, acrylic resin, polycarbonate, polystyrene, polyolefin, cellulose acetate, and weather resistant vinyl chloride. Among them, polyethylene terephthalate having excellent transparency and high strength is preferable, and polyethylene terephthalate having improved bending performance is particularly preferable.
 基材フィルム11の平均厚さの下限としては、10μmが好ましく、35μmがより好ましく、50μmがさらに好ましい。一方、基材フィルム11の平均厚さの上限としては、500μmが好ましく、250μmがより好ましく、188μmがさらに好ましい。基材フィルム11の平均厚さが上記下限に満たないと、光拡散層12を塗工によって形成した場合にカールを発生するおそれがある。また、基材フィルム11の平均厚さが上記下限に満たないと、撓みが生じ易くなるおそれがある。逆に、基材フィルム11の平均厚さが上記上限を超えると、液晶表示装置の輝度が低下するおそれがあると共に、液晶表示装置の薄型化の要請に沿えないおそれがある。なお、「平均厚さ」とは、任意の10点の厚さの平均値をいう。 The lower limit of the average thickness of the base film 11 is preferably 10 μm, more preferably 35 μm, and even more preferably 50 μm. On the other hand, the upper limit of the average thickness of the base film 11 is preferably 500 μm, more preferably 250 μm, and even more preferably 188 μm. If the average thickness of the base film 11 is less than the lower limit, curling may occur when the light diffusion layer 12 is formed by coating. Further, if the average thickness of the base film 11 is less than the lower limit, there is a possibility that bending is likely to occur. On the contrary, when the average thickness of the base film 11 exceeds the above upper limit, the luminance of the liquid crystal display device may be lowered and the liquid crystal display device may not be required to be thinned. Note that “average thickness” refers to an average value of thicknesses at arbitrary 10 points.
(光拡散層)
 光拡散層12は、合成樹脂を主成分とする樹脂層である。光拡散層12は、下用光拡散シート4の最表面を構成する。光拡散層12は、複数のビーズ14を略等密度で分散含有している。ビーズ14はバインダー15に囲まれている。光拡散層12は、複数のビーズ14を分散含有することによって、裏面側から表面側に透過する光を略均一に拡散させる。また、光拡散層12は、複数のビーズ14によって表面に微細凹凸が略均一に形成され、この微細凹凸の各凹部及び凸部がレンズ状に形成されている。光拡散層12は、かかる微細凹凸のレンズ的作用によって、優れた光拡散機能を発揮し、この光拡散機能に起因して透過光線を法線方向側へ屈折させる屈折機能及び透過光線を法線方向に巨視的に集光させる集光機能を有している。
(Light diffusion layer)
The light diffusion layer 12 is a resin layer mainly composed of a synthetic resin. The light diffusion layer 12 constitutes the outermost surface of the lower light diffusion sheet 4. The light diffusion layer 12 contains a plurality of beads 14 dispersed at substantially equal density. The beads 14 are surrounded by a binder 15. The light diffusion layer 12 includes a plurality of beads 14 in a dispersed manner, thereby diffusing light transmitted from the back surface side to the front surface side substantially uniformly. Further, the light diffusion layer 12 has fine irregularities formed substantially uniformly on the surface by a plurality of beads 14, and the concave and convex portions of the fine irregularities are formed in a lens shape. The light diffusing layer 12 exhibits an excellent light diffusing function due to the lens action of such fine unevenness, and the refractive function that refracts the transmitted light to the normal direction side due to this light diffusing function and the transmitted light to the normal line. It has a light condensing function that condenses macroscopically in the direction.
 ビーズ14は、光線を拡散させる性質を有する樹脂粒子である。ビーズ14の主成分としては、例えばアクリル樹脂、アクリロニトリル樹脂、ポリウレタン、ポリ塩化ビニル、ポリスチレン、ポリアミド、ポリアクリロニトリル等が挙げられる。中でも、透明性が高いアクリル樹脂が好ましく、ポリメチルメタクリレート(PMMA)が特に好ましい。 The beads 14 are resin particles having a property of diffusing light rays. Examples of the main component of the beads 14 include acrylic resin, acrylonitrile resin, polyurethane, polyvinyl chloride, polystyrene, polyamide, polyacrylonitrile, and the like. Among them, an acrylic resin having high transparency is preferable, and polymethyl methacrylate (PMMA) is particularly preferable.
 ビーズ14の形状は、特に限定されるものではなく、例えば球状、立方状、針状、棒状、紡錘形状、板状、鱗片状、繊維状などが挙げられ、中でも光拡散性に優れる球状が好ましい。 The shape of the beads 14 is not particularly limited, and examples thereof include a spherical shape, a cubic shape, a needle shape, a rod shape, a spindle shape, a plate shape, a scale shape, and a fiber shape. Among them, a spherical shape having excellent light diffusibility is preferable. .
 ビーズ14の平均粒子径の下限としては、1μmが好ましく、2μmがより好ましく、5μmがさらに好ましい。一方、ビーズ14の平均粒子径の上限としては、50μmが好ましく、20μmがより好ましく、15μmがさらに好ましい。ビーズ14の平均粒子径が上記下限に満たないと、光拡散層12の表面の凹凸が小さくなり、光拡散シートとして必要な光拡散性を満たさないおそれがある。逆に、ビーズ14の平均粒子径が上記上限を超えると、下用光拡散シート4の厚さが増大し、かつ、均一な拡散が困難になるおそれがある。 The lower limit of the average particle diameter of the beads 14 is preferably 1 μm, more preferably 2 μm, and even more preferably 5 μm. On the other hand, the upper limit of the average particle diameter of the beads 14 is preferably 50 μm, more preferably 20 μm, and even more preferably 15 μm. If the average particle diameter of the beads 14 is less than the above lower limit, the unevenness of the surface of the light diffusion layer 12 becomes small, and the light diffusibility necessary for the light diffusion sheet may not be satisfied. On the contrary, if the average particle diameter of the beads 14 exceeds the upper limit, the thickness of the lower light diffusion sheet 4 may increase, and uniform diffusion may be difficult.
 ビーズ14の配合量(バインダー15の形成材料であるポリマー組成物中のポリマー分100質量部に対する固形分換算の配合量)の下限としては、10質量部が好ましく、20質量部がより好ましく、50質量部がさらに好ましい。一方、ビーズ14の配合量の上限としては、500質量部が好ましく、300質量部がより好ましく、200質量部がさらに好ましい。ビーズ14の配合量が上記下限に満たないと、光拡散性が不十分となるおそれがある。逆に、ビーズ14の配合量が上記上限を超えると、ビーズ14がバインダー15によって的確に固定されないおそれがある。 The lower limit of the blending amount of the beads 14 (the blending amount in terms of solid content with respect to 100 parts by mass of the polymer in the polymer composition that is the forming material of the binder 15) is preferably 10 parts by mass, more preferably 20 parts by mass, 50 Part by mass is more preferable. On the other hand, the upper limit of the amount of the beads 14 is preferably 500 parts by mass, more preferably 300 parts by mass, and even more preferably 200 parts by mass. If the blending amount of the beads 14 is less than the lower limit, the light diffusibility may be insufficient. On the contrary, if the blending amount of the beads 14 exceeds the upper limit, the beads 14 may not be fixed accurately by the binder 15.
 バインダー15は、基材ポリマーを含むポリマー組成物を硬化(架橋等)させることで形成される。ビーズ14は、バインダー15によって、基材フィルム11の表面全面に略等密度で配置固定される。なお、バインダー15を形成するためのポリマー組成物は、その他に例えば微小無機充填剤、硬化剤、可塑剤、分散剤、各種レベリング剤、帯電防止剤、紫外線吸収剤、抗酸化剤、粘性改質剤、潤滑剤、光安定化剤等が適宜配合されていてもよい。 The binder 15 is formed by curing (crosslinking or the like) a polymer composition containing a base polymer. The beads 14 are arranged and fixed on the entire surface of the base film 11 at a substantially equal density by the binder 15. The polymer composition for forming the binder 15 includes, for example, a fine inorganic filler, a curing agent, a plasticizer, a dispersant, various leveling agents, an antistatic agent, an ultraviolet absorber, an antioxidant, and a viscosity modifier. An agent, a lubricant, a light stabilizer and the like may be appropriately blended.
(保護層)
 保護層13は、合成樹脂を主成分とする樹脂層である。保護層13の裏面には複数の微細溝16が形成されている。また、複数の微細溝16は、回折格子を構成することが好ましい。この微細溝16は、好ましくはヘアライン状に形成されている。当該下用光拡散シート4は、保護層13の裏面側に複数の微細溝16が形成されていることによって、当該下用光拡散シート4をバックライトユニットに用いた際に保護層13の裏面側に存在する空気層との屈折率差を利用して複数の微細溝16によって区画される領域を通過する光線を複数の微細溝の幅方向に十分に伝搬し易い。また、当該下用光拡散シート4は、保護層13の裏面側に複数の微細溝16が形成されているので、ライトガイドフィルム1の表面と保護層13の裏面とが部分的に当接する。そのため、当該下用光拡散シート4は、ライトガイドフィルム1とのスティッキングを防止することができる。さらに、当該下用光拡散シート4は、複数の微細溝16が回折格子を構成することによって、複数の微細溝16によって区画される領域を通過する光線同士に一定の行路差が生じる回折現象が起こり、この回折現象によってホットスポットの発生を容易かつ確実に抑制し易い。
(Protective layer)
The protective layer 13 is a resin layer mainly composed of synthetic resin. A plurality of fine grooves 16 are formed on the back surface of the protective layer 13. The plurality of fine grooves 16 preferably constitute a diffraction grating. The fine groove 16 is preferably formed in a hairline shape. The lower light diffusion sheet 4 has a plurality of fine grooves 16 formed on the back surface side of the protective layer 13, so that the back surface of the protective layer 13 is used when the lower light diffusion sheet 4 is used in a backlight unit. A light beam passing through a region defined by the plurality of microgrooves 16 is easily propagated sufficiently in the width direction of the plurality of microgrooves using a difference in refractive index with the air layer present on the side. Moreover, since the plurality of fine grooves 16 are formed on the back surface side of the protective layer 13 in the lower light diffusion sheet 4, the surface of the light guide film 1 and the back surface of the protective layer 13 are in partial contact. Therefore, the lower light diffusion sheet 4 can prevent sticking with the light guide film 1. Further, the lower light diffusing sheet 4 has a diffraction phenomenon in which a certain path difference is generated between light beams passing through a region defined by the plurality of fine grooves 16 by the plurality of fine grooves 16 constituting a diffraction grating. Occurring and it is easy to suppress the occurrence of hot spots easily and reliably by this diffraction phenomenon.
 図3に示すように、複数の微細溝16は、保護層13の裏面の全領域に亘って略均一に(略等密度で)形成されている。各微細溝16は、断面略U字状に構成されている(つまり、各微細溝16は断面三角形状に形成されていない)。各微細溝16が断面略U字状に構成されることで、光線の拡散方向が適度に調整されホットスポットの緩和効果を向上することができる。また、各微細溝16が断面略U字状に構成されることで、下用光拡散シート4の量産性を向上することができる。また、図2~図4に示すように、複数の微細溝16は、長手方向が保護層13の裏面の一端と平行方向に沿っている。具体的には、複数の微細溝16は、長手方向が複数のLED光源2からの光線の平均方向に沿っている。さらに、各微細溝16の配向方向はランダムとされている(つまり、各微細溝16の配向方向は完全には一致していない)。このように、各微細溝16の配向方向がランダムとされることによって、複数の微細溝16に起因して液晶表示装置に虹ムラが生じることを抑制することができる。なお、複数の微細溝16は、光線の拡散方向を制御するうえでは各々独立して形成されていることが好ましいが、一部の微細溝16は交叉していてもよい。 As shown in FIG. 3, the plurality of fine grooves 16 are formed substantially uniformly (substantially at the same density) over the entire area of the back surface of the protective layer 13. Each fine groove 16 has a substantially U-shaped cross section (that is, each fine groove 16 is not formed in a triangular cross section). Since each fine groove 16 is configured to have a substantially U-shaped cross section, the diffusion direction of light rays is appropriately adjusted, and the hot spot relaxation effect can be improved. Moreover, the mass productivity of the lower light diffusion sheet 4 can be improved because each fine groove 16 has a substantially U-shaped cross section. As shown in FIGS. 2 to 4, the plurality of fine grooves 16 have a longitudinal direction along a direction parallel to one end of the back surface of the protective layer 13. Specifically, the plurality of fine grooves 16 have a longitudinal direction along the average direction of light rays from the plurality of LED light sources 2. Further, the orientation direction of each fine groove 16 is random (that is, the orientation direction of each fine groove 16 is not completely coincident). Thus, by making the orientation direction of each microgroove 16 random, it is possible to suppress the occurrence of rainbow unevenness in the liquid crystal display device due to the plurality of microgrooves 16. The plurality of fine grooves 16 are preferably formed independently for controlling the light diffusion direction, but some of the fine grooves 16 may cross each other.
 平面視で、ライトガイドフィルム1におけるLED光源2からの光線の平均方向を基準とする複数の微細溝16の平均配向方向の上限としては、±45°が好ましく、±15°がより好ましく、±0°がさらに好ましい。上記平均配向方向が上記上限を超えると、複数のLED光源2の光線出射方向と垂直方向かつ水平方向に光線を伝搬し難くなるおそれがある。これに対し、当該バックライトユニットは、上記平均配向方向が上記上限以下であることによって、ホットスポットの発生を容易かつ確実に抑制し易い。 In plan view, the upper limit of the average orientation direction of the plurality of fine grooves 16 on the basis of the average direction of light rays from the LED light source 2 in the light guide film 1 is preferably ± 45 °, more preferably ± 15 °, ± 0 ° is more preferable. If the average orientation direction exceeds the upper limit, it may be difficult to propagate light rays in a direction perpendicular to the light emission direction of the plurality of LED light sources 2 and in a horizontal direction. In contrast, the backlight unit can easily and reliably suppress the occurrence of hot spots when the average orientation direction is not more than the upper limit.
 図3に示すように、複数の微細溝16は、平面視で細長状かつ略直線状に形成されている。また、各微細溝16の幅は、この微細溝16の長手方向に沿ってランダムに変化している。複数の微細溝16の長手方向の平均長さLの下限としては、平均幅Lに対して2倍以上が好ましく、3倍以上がより好ましい。一方、複数の微細溝16の長手方向の平均長さLの上限としては、特に限定されるものではなく保護層13の両端に亘って連続していてもよいが、例えば平均幅Lに対して10000倍以下が好ましく、5000倍以下がより好ましい。複数の微細溝16の長手方向の平均長さLが上記下限に満たないと、複数の微細溝16の幅方向に伝搬される光量を十分に増加させることができないおそれがある。逆に、複数の微細溝16の長手方向の平均長さLが上記上限を超えると、液晶表示装置の虹ムラの発生を抑制すべく複数の微細溝16をランダムな配向方向でかつ高密度に形成し難くなるおそれがある。なお、「複数の微細溝の長手方向の平均長さ」とは、任意に抽出した20個の微細溝の樹脂層の平均界面における長手方向長さの平均値をいう。 As shown in FIG. 3, the plurality of fine grooves 16 are formed in an elongated and substantially linear shape in plan view. Further, the width of each fine groove 16 changes randomly along the longitudinal direction of the fine groove 16. The longitudinal lower limit of the average length L 1 of the plurality of fine grooves 16 is preferably at least 2 times the average width L 2, 3 times or more is more preferable. On the other hand, the longitudinal direction of the average maximum length L 1 of the plurality of fine grooves 16, but may be continuous across the two ends of the protective layer 13 without particularly limited, for example, the average width L 2 On the other hand, it is preferably 10,000 times or less and more preferably 5000 times or less. When the longitudinal direction of the average length L 1 of the plurality of fine grooves 16 is less than the above lower limit, there may not be sufficiently increased the amount of light propagating in the width direction of the plurality of fine grooves 16. Conversely, when the average length L 1 longitudinal plurality of the fine groove 16 exceeds the upper limit, and a plurality of fine grooves 16 in order to suppress the occurrence of rainbow stains of the liquid crystal display device random orientation density It may be difficult to form. The “average length in the longitudinal direction of the plurality of fine grooves” refers to the average value of the lengths in the longitudinal direction at the average interface of the resin layers of the 20 fine grooves extracted arbitrarily.
 複数の微細溝16の平均幅Lの下限としては、10nmが好ましく、50nmがより好ましく、100nmがさらに好ましい。一方、複数の微細溝16の平均幅Lの上限としては、40μmが好ましく、30μmがより好ましく、20μmがさらに好ましく、10μmが特に好ましい。複数の微細溝16の平均幅Lが上記下限に満たないと、微細溝16の成形性が低下するおそれがある。逆に、複数の微細溝16の平均幅Lが上記上限を超えると、複数の微細溝16の幅方向に伝搬される光量を十分に増加させることができないおそれがある。なお、各微細溝16の幅Lは、上記範囲内において長手方向に沿ってランダムに形成されていることが好ましい。各微細溝16の幅Lが上記範囲内においてランダムに形成されていることによって周期的なピッチを持つ他部材(プリズムシートや液晶セル)等との干渉によるモアレを防ぐことができると共に、色分解が規則的に発生するのを防止して虹ムラ等を防止することができる。なお、「複数の微細溝の平均幅」とは、任意に抽出した20個の微細溝の長手方向両端部分を除いた任意の点の樹脂層の平均界面における幅の平均値をいう。 The lower limit of the average width L 2 of the plurality of fine grooves 16, 10 nm are preferred, more preferably 50 nm, more preferably 100 nm. On the other hand, the upper limit of the average width L 2 of the plurality of fine grooves 16, 40 [mu] m is preferred, 30 [mu] m is more preferable, still more preferably 20 [mu] m, 10 [mu] m is particularly preferred. If the average width L 2 of the plurality of fine grooves 16 is less than the above lower limit, there is a risk of lowering the moldability of the fine groove 16. Conversely, if the average width L 2 of the plurality of fine grooves 16 exceeds the above upper limit, there may not be sufficiently increased the amount of light propagating in the width direction of the plurality of fine grooves 16. The width L 2 of each of the fine grooves 16 are preferably formed at random in the longitudinal direction in the above range. Width L 2 of each of the fine grooves 16 it is possible to prevent the moire caused by interference with other members (a prism sheet or a liquid crystal cell) or the like having a periodic pitch by being formed at random in the above range, color It is possible to prevent rainbow unevenness and the like by preventing the decomposition from occurring regularly. The “average width of the plurality of fine grooves” refers to the average value of the widths at the average interface of the resin layers at arbitrary points excluding both ends in the longitudinal direction of the 20 fine grooves arbitrarily extracted.
 複数の微細溝16の平均ピッチの下限としては、10nmが好ましく、50nmがより好ましく、100nmがさらに好ましい。一方、複数の微細溝16の平均ピッチの上限としては、40μmが好ましく、30μmがより好ましく、20μmがさらに好ましく、10μmが特に好ましい。複数の微細溝16の平均ピッチが上記下限に満たないと、複数の微細溝16の成形性が低下するおそれがある。逆に、複数の微細溝16の平均ピッチが上記上限を超えると、複数の微細溝16の幅方向に伝搬される光量を十分に増加させることができないおそれがある。なお、「複数の微細溝の平均ピッチ」とは、複数の微細溝の平均配向方向と垂直方向における隣接する任意の10個の微細溝のピッチの平均値をいう。 The lower limit of the average pitch of the plurality of fine grooves 16 is preferably 10 nm, more preferably 50 nm, and even more preferably 100 nm. On the other hand, the upper limit of the average pitch of the plurality of fine grooves 16 is preferably 40 μm, more preferably 30 μm, still more preferably 20 μm, and particularly preferably 10 μm. If the average pitch of the plurality of fine grooves 16 is less than the lower limit, the moldability of the plurality of fine grooves 16 may be reduced. Conversely, if the average pitch of the plurality of fine grooves 16 exceeds the above upper limit, the amount of light propagated in the width direction of the plurality of fine grooves 16 may not be increased sufficiently. The “average pitch of the plurality of fine grooves” refers to the average value of the pitches of any ten adjacent fine grooves in the direction perpendicular to the average orientation direction of the plurality of fine grooves.
 複数の微細溝16のピッチの標準偏差の上限としては、10μmが好ましく、9μmがより好ましく、7μmがさらに好ましい。複数の微細溝16のピッチの標準偏差が上記上限を超えると、複数の微細溝16のピッチが不均一となり、複数の微細溝16の幅方向に伝搬される光量を均一に増加させることができないおそれがある。一方、複数の微細溝16のピッチの標準偏差の下限としては、複数の微細溝16を比較的ランダムな方向に配設し易い点から、例えば4μmとすることができる。なお、「複数の微細溝のピッチの標準偏差」とは、任意に抽出した20個の微細溝のピッチの標準偏差をいう。 The upper limit of the standard deviation of the pitch of the plurality of fine grooves 16 is preferably 10 μm, more preferably 9 μm, and even more preferably 7 μm. If the standard deviation of the pitch of the plurality of fine grooves 16 exceeds the upper limit, the pitch of the plurality of fine grooves 16 becomes non-uniform, and the amount of light propagated in the width direction of the plurality of fine grooves 16 cannot be increased uniformly. There is a fear. On the other hand, the lower limit of the standard deviation of the pitch of the plurality of fine grooves 16 can be set to 4 μm, for example, because the plurality of fine grooves 16 are easily arranged in a relatively random direction. The “standard deviation of the pitch of the plurality of fine grooves” refers to the standard deviation of the pitch of the 20 fine grooves that are arbitrarily extracted.
 また、複数の微細溝16の平均幅L及び平均ピッチは、いずれも上記範囲内に含まれることが好ましい。当該下用光拡散シート4は、複数の微細溝16の平均幅L及び平均ピッチがいずれも上記範囲内に含まれることによって、複数の微細溝16の幅方向に伝搬される光量を十分に容易かつ確実に増加することができる。 Also, the average width L 2 and the average pitch of the plurality of fine grooves 16 are preferably both included in the above range. The lower light diffusion sheet 4, by the average width L 2 and the average pitch of the plurality of fine grooves 16 are included in both the above-mentioned range, sufficient amount of light is propagated in the width direction of the plurality of fine grooves 16 It can be easily and reliably increased.
 複数の微細溝16の平均配向方向と垂直方向における複数の微細溝16の単位長さ当たりの平均存在個数の下限としては、10本/mmが好ましく、50本/mmがより好ましく、100本/mmがさらに好ましい。一方、上記平均存在個数の上限としては、10000本/mmが好ましく、5000本/mmがより好ましく、1000本/mmがさらに好ましい。上記平均存在個数が上記下限に満たないと、複数の微細溝16の幅方向に伝搬される光量を十分に増加させることができないおそれがある。逆に、上記平均存在個数が上記上限を超えると、複数の微細溝16の成形性が低下するおそれがある。 The lower limit of the average number of the micro-grooves 16 per unit length in the direction perpendicular to the average orientation direction of the micro-grooves 16 is preferably 10 / mm, more preferably 50 / mm, and 100 / mm is more preferable. On the other hand, the upper limit of the average number is preferably 10000 / mm, more preferably 5000 / mm, and still more preferably 1000 / mm. If the average existence number is less than the lower limit, the amount of light propagated in the width direction of the plurality of fine grooves 16 may not be sufficiently increased. On the other hand, if the average number exceeds the upper limit, the moldability of the plurality of fine grooves 16 may be reduced.
 複数の微細溝16の平均深さDの下限としては、10nmが好ましく、500nmがより好ましく、1μmがさらに好ましく、2μmが特に好ましい。一方、複数の微細溝16の平均深さDの上限としては、30μmが好ましく、10μmがより好ましく、5μmがさらに好ましく、3μmが特に好ましい。複数の微細溝16の平均深さDが上記下限に満たないと、複数の微細溝16の幅方向に伝搬される光量を十分に増加させることができないおそれがある。逆に、微細溝16の平均深さDが上記上限を超えると、保護層13の強度が低下するおそれがある。なお、「複数の微細溝の平均深さ」とは、任意に抽出した20個の微細溝の樹脂層の平均界面から底部までの深さの平均値をいう。 The lower limit of the average depth D 1 of the plurality of fine grooves 16, 10 nm are preferred, 500 nm are more preferable, and more preferably 1 [mu] m, 2 [mu] m is particularly preferred. In contrast, the upper limit of the average depth D 1 of the plurality of fine grooves 16, 30 [mu] m is preferred, 10 [mu] m is more preferable, still more preferably 5 [mu] m, 3 [mu] m is particularly preferred. If the average depth D 1 of the plurality of fine grooves 16 is less than the above lower limit, there may not be sufficiently increased the amount of light propagating in the width direction of the plurality of fine grooves 16. Conversely, there is a possibility that the average depth D 1 of the fine groove 16 is more than the upper limit, strength of the protective layer 13 is lowered. The “average depth of the plurality of fine grooves” refers to an average value of the depth from the average interface to the bottom of the resin layer of 20 fine grooves that are arbitrarily extracted.
 また、複数の微細溝16の深さの標準偏差の上限としては、4μmが好ましく、3μmがより好ましく、2.5μmがさらに好ましい。複数の微細溝16の深さの標準偏差が上記上限を超えると、複数の微細溝16の深さが不均一となり、複数の微細溝16の幅方向に伝搬される光量を均一に増加させることができないおそれがある。一方、複数の微細溝16の深さの標準偏差の下限としては、特に限定されるものではなく、例えば0.3μmとすることができる。なお、「複数の微細溝の深さの標準偏差」とは、任意に抽出した20個の微細溝の深さの標準偏差をいう。 Further, the upper limit of the standard deviation of the depth of the plurality of fine grooves 16 is preferably 4 μm, more preferably 3 μm, and even more preferably 2.5 μm. When the standard deviation of the depth of the plurality of fine grooves 16 exceeds the above upper limit, the depth of the plurality of fine grooves 16 becomes non-uniform, and the amount of light propagated in the width direction of the plurality of fine grooves 16 is increased uniformly. You may not be able to. On the other hand, the lower limit of the standard deviation of the depth of the plurality of fine grooves 16 is not particularly limited, and can be, for example, 0.3 μm. The “standard deviation of the depth of a plurality of fine grooves” refers to a standard deviation of the depth of 20 fine grooves that are arbitrarily extracted.
 保護層13の複数の微細溝16が形成される面(裏面)における複数の微細溝16の配向方向と平行方向の算術平均粗さ(Ra)の下限としては、0.005μmが好ましく、0.05μmがより好ましく、0.1μmがさらに好ましい。一方、保護層13の複数の微細溝16が形成される面(裏面)における複数の微細溝16の配向方向と平行方向の算術平均粗さ(Ra)の上限としては、1.5μmが好ましく、1.2μmがより好ましく、1μmがさらに好ましい。上記算術平均粗さ(Ra)が上記下限に満たないと、ホットスポットの発生抑制効果が不十分となるおそれがある。逆に、上記算術平均粗さ(Ra)が上記上限を超えると、複数の微細溝16の幅方向に伝搬される光量に対する複数の微細溝16の配向方向と平行方向に伝搬される光量が大きくなるおそれがある。 The lower limit of the arithmetic average roughness (Ra) in the direction parallel to the orientation direction of the plurality of fine grooves 16 on the surface (back surface) where the plurality of fine grooves 16 of the protective layer 13 are formed is preferably 0.005 μm. 05 μm is more preferable, and 0.1 μm is even more preferable. On the other hand, the upper limit of the arithmetic average roughness (Ra) in the direction parallel to the orientation direction of the plurality of fine grooves 16 on the surface (back surface) where the plurality of fine grooves 16 of the protective layer 13 are formed is preferably 1.5 μm. 1.2 μm is more preferable, and 1 μm is more preferable. If the arithmetic average roughness (Ra) is less than the lower limit, the effect of suppressing the occurrence of hot spots may be insufficient. Conversely, when the arithmetic average roughness (Ra) exceeds the upper limit, the amount of light propagated in the direction parallel to the orientation direction of the plurality of microgrooves 16 relative to the amount of light propagated in the width direction of the plurality of microgrooves 16 is large. There is a risk.
 保護層13の複数の微細溝16が形成される面(裏面)における複数の微細溝16の配向方向と垂直方向の算術平均粗さ(Ra)の下限としては、0.01μmが好ましく、0.1μmがより好ましく、0.5μmがさらに好ましい。一方、保護層13の複数の微細溝16が形成される面(裏面)における複数の微細溝16の配向方向と垂直方向の算術平均粗さ(Ra)の上限としては、5μmが好ましく、2μmがより好ましく、1.7μmがさらに好ましく、1.5μmが特に好ましい。上記算術平均粗さ(Ra)が上記下限に満たないと、複数の微細溝16の幅方向に伝搬される光量を十分に増加させることができないおそれがある。逆に、上記算術平均粗さ(Ra)が上記上限を超えると、光線の出射角度を制御し難くなるおそれがある。 The lower limit of the arithmetic average roughness (Ra) in the direction perpendicular to the orientation direction of the plurality of fine grooves 16 on the surface (back surface) where the plurality of fine grooves 16 of the protective layer 13 are formed is preferably 0.01 μm, 1 μm is more preferable, and 0.5 μm is more preferable. On the other hand, the upper limit of the arithmetic average roughness (Ra) in the direction perpendicular to the orientation direction of the plurality of fine grooves 16 on the surface (back surface) where the plurality of fine grooves 16 of the protective layer 13 are formed is preferably 5 μm. More preferably, 1.7 μm is further preferable, and 1.5 μm is particularly preferable. If the arithmetic average roughness (Ra) is less than the lower limit, the amount of light propagated in the width direction of the plurality of fine grooves 16 may not be increased sufficiently. Conversely, when the arithmetic average roughness (Ra) exceeds the upper limit, it may be difficult to control the light emission angle.
 また、保護層13の複数の微細溝16が形成される面(裏面)における複数の微細溝16の配向方向と平行方向の算術平均粗さ(Ra)及び複数の微細溝16の配向方向と垂直方向の算術平均粗さ(Ra)は、共に上記範囲内に含まれることが好ましい。当該下用光拡散シート4は、複数の微細溝16の配向方向と平行方向の算術平均粗さ(Ra)及び複数の微細溝16の配向方向と垂直方向の算術平均粗さ(Ra)が上記範囲内であることによって、複数の微細溝16の幅方向に伝搬される光量を十分に増加してホットスポットの発生を容易かつ確実に抑制し易い。 In addition, the arithmetic average roughness (Ra) in the direction parallel to the orientation direction of the plurality of microgrooves 16 on the surface (back surface) where the plurality of microgrooves 16 are formed in the protective layer 13 and the direction perpendicular to the orientation direction of the plurality of microgrooves 16. The arithmetic average roughness (Ra) in the direction is preferably included in the above range. The lower light diffusing sheet 4 has the arithmetic average roughness (Ra) in the direction parallel to the orientation direction of the plurality of fine grooves 16 and the arithmetic average roughness (Ra) in the direction perpendicular to the orientation direction of the plurality of fine grooves 16. By being within the range, the amount of light propagating in the width direction of the plurality of fine grooves 16 can be sufficiently increased to easily and reliably suppress the occurrence of hot spots.
 保護層13の複数の微細溝16が形成される面(裏面)における複数の微細溝16の配向方向と垂直方向の算術平均粗さ(Ra)と複数の微細溝16の配向方向と平行方向の算術平均粗さ(Ra)との差の下限としては、0.5μmが好ましく、0.7μmがより好ましく、1μmがさらに好ましい。上記算術平均粗さ(Ra)の差が上記下限以上であることによって、複数の微細溝16の幅方向に伝搬される光量を大きくして液晶表示装置の輝度ムラを容易かつ確実に低減し易い。一方、上記算術平均粗さ(Ra)の差の上限としては、例えば1.9μmとすることができる。 The arithmetic average roughness (Ra) in the direction perpendicular to the orientation direction of the plurality of microgrooves 16 and the direction parallel to the orientation direction of the plurality of microgrooves 16 on the surface (back surface) of the protective layer 13 where the plurality of microgrooves 16 are formed. The lower limit of the difference from the arithmetic average roughness (Ra) is preferably 0.5 μm, more preferably 0.7 μm, and even more preferably 1 μm. When the difference in the arithmetic average roughness (Ra) is equal to or more than the lower limit, the amount of light propagated in the width direction of the plurality of microgrooves 16 is increased to easily and reliably reduce the luminance unevenness of the liquid crystal display device. . On the other hand, the upper limit of the difference in the arithmetic average roughness (Ra) can be set to 1.9 μm, for example.
 保護層13の複数の微細溝16が形成される面(裏面)における複数の微細溝16の配向方向と平行方向の最大高さ(Ry)の下限としては、0.1μmが好ましく、1μmが好ましく、1.5μmがより好ましい。一方、保護層13の複数の微細溝16が形成される面(裏面)における複数の微細溝16の配向方向と平行方向の最大高さ(Ry)の上限としては、3μmが好ましく、2.5μmがより好ましく、2μmがさらに好ましい。上記最大高さ(Ry)が上記下限に満たないと、ホットスポットの発生抑制効果が不十分となるおそれがある。逆に、上記最大高さ(Ry)が上記上限を超えると、複数の微細溝16の幅方向に伝搬される光量に対する複数の微細溝16の配向方向と平行方向に伝搬される光量が大きくなるおそれがある。なお、「最大高さ(Ry)」とは、JIS-B0601:1994に準じ、カットオフλc0.8mm、評価長さ4mmの値をいう。 The lower limit of the maximum height (Ry) in the direction parallel to the orientation direction of the plurality of fine grooves 16 on the surface (back surface) where the plurality of fine grooves 16 of the protective layer 13 are formed is preferably 0.1 μm, and more preferably 1 μm. 1.5 μm is more preferable. On the other hand, the upper limit of the maximum height (Ry) in the direction parallel to the orientation direction of the plurality of fine grooves 16 on the surface (back surface) where the plurality of fine grooves 16 of the protective layer 13 are formed is preferably 3 μm, and 2.5 μm. Is more preferable, and 2 μm is more preferable. If the maximum height (Ry) is less than the lower limit, the effect of suppressing the occurrence of hot spots may be insufficient. Conversely, when the maximum height (Ry) exceeds the upper limit, the amount of light propagated in the direction parallel to the orientation direction of the plurality of microgrooves 16 with respect to the amount of light propagated in the width direction of the plurality of microgrooves 16 increases. There is a fear. The “maximum height (Ry)” is a value with a cutoff λc of 0.8 mm and an evaluation length of 4 mm in accordance with JIS-B0601: 1994.
 保護層13の複数の微細溝16が形成される面(裏面)における複数の微細溝16の配向方向と垂直方向の最大高さ(Ry)の下限としては、4μmが好ましく、5μmがより好ましく、6μmがさらに好ましい。一方、保護層13の複数の微細溝16が形成される面(裏面)における複数の微細溝16の配向方向と垂直方向の最大高さ(Ry)の上限としては、12μmが好ましく、10μmがより好ましく、9μmがさらに好ましい。上記最大高さ(Ry)が上記下限に満たないと、複数の微細溝16の幅方向に伝搬される光量を十分に増加させることができないおそれがある。逆に、上記最大高さ(Ry)が上記上限を超えると、光線の出射角度を制御し難くなるおそれがある。 The lower limit of the maximum height (Ry) in the direction perpendicular to the orientation direction of the plurality of fine grooves 16 on the surface (back surface) where the plurality of fine grooves 16 of the protective layer 13 are formed is preferably 4 μm, more preferably 5 μm, 6 μm is more preferable. On the other hand, the upper limit of the maximum height (Ry) in the direction perpendicular to the orientation direction of the plurality of fine grooves 16 on the surface (back surface) where the plurality of fine grooves 16 of the protective layer 13 are formed is preferably 12 μm and more preferably 10 μm. Preferably, 9 μm is more preferable. If the maximum height (Ry) is less than the lower limit, the amount of light propagated in the width direction of the plurality of fine grooves 16 may not be increased sufficiently. Conversely, if the maximum height (Ry) exceeds the upper limit, it may be difficult to control the light emission angle.
 保護層13の複数の微細溝16が形成される面(裏面)における複数の微細溝16の配向方向と垂直方向の最大高さ(Ry)と複数の微細溝16の配向方向と平行方向の最大高さ(Ry)との差の下限としては、4μmが好ましく、5μmがより好ましく、6μmがさらに好ましい。上記最大高さ(Ry)の差が上記下限以上であることによって、複数の微細溝16の幅方向に伝搬される光量を大きくして液晶表示装置の輝度ムラを容易かつ確実に低減し易い。一方、上記最大高さ(Ry)の差の上限としては、例えば11μmとすることができる。 The maximum height (Ry) in the direction perpendicular to the orientation direction of the plurality of microgrooves 16 and the maximum in the direction parallel to the orientation direction of the plurality of microgrooves 16 on the surface (back surface) of the protective layer 13 where the plurality of microgrooves 16 are formed. As a minimum of a difference with height (Ry), 4 micrometers is preferred, 5 micrometers is more preferred, and 6 micrometers is still more preferred. When the difference in the maximum height (Ry) is equal to or greater than the lower limit, it is easy to reliably and reliably reduce luminance unevenness of the liquid crystal display device by increasing the amount of light transmitted in the width direction of the plurality of fine grooves 16. On the other hand, the upper limit of the difference in the maximum height (Ry) can be set to 11 μm, for example.
 保護層13の複数の微細溝16が形成される面(裏面)における複数の微細溝16の配向方向と平行方向の十点平均粗さ(Rz)の下限としては、0.1μmが好ましく、0.5μmがより好ましく、1μmがさらに好ましい。一方、保護層13の複数の微細溝16が形成される面(裏面)における複数の微細溝16の配向方向と平行方向の十点平均粗さ(Rz)の上限としては、2.5μmが好ましく、2μmがより好ましく、1.5μmがさらに好ましい。上記十点平均粗さ(Rz)が上記下限に満たないと、ホットスポットの発生抑制効果が不十分となるおそれがある。逆に、上記十点平均粗さ(Rz)が上記上限を超えると、複数の微細溝16の幅方向に伝搬される光量に対する複数の微細溝16の配向方向と平行方向に伝搬される光量が大きくなるおそれがある。なお、「十点平均粗さ(Rz)」とは、JIS-B0601:1994に準じ、カットオフλc0.8mm、評価長さ4mmの値をいう。 The lower limit of the ten-point average roughness (Rz) in the direction parallel to the orientation direction of the plurality of fine grooves 16 on the surface (back surface) where the plurality of fine grooves 16 of the protective layer 13 are formed is preferably 0.1 μm. 0.5 μm is more preferable, and 1 μm is even more preferable. On the other hand, the upper limit of the ten-point average roughness (Rz) in the direction parallel to the orientation direction of the plurality of fine grooves 16 on the surface (back surface) where the plurality of fine grooves 16 of the protective layer 13 are formed is preferably 2.5 μm. 2 μm is more preferable, and 1.5 μm is more preferable. If the ten-point average roughness (Rz) is less than the lower limit, the effect of suppressing the occurrence of hot spots may be insufficient. Conversely, when the ten-point average roughness (Rz) exceeds the upper limit, the amount of light propagated in the direction parallel to the orientation direction of the plurality of microgrooves 16 relative to the amount of light propagated in the width direction of the plurality of microgrooves 16 is increased. May grow. The “ten-point average roughness (Rz)” is a value with a cutoff λc of 0.8 mm and an evaluation length of 4 mm according to JIS-B0601: 1994.
 保護層13の複数の微細溝16が形成される面(裏面)における複数の微細溝16の配向方向と垂直方向の十点平均粗さ(Rz)の下限としては、4μmが好ましく、5μmがより好ましく、6μmがさらに好ましい。一方、保護層13の複数の微細溝16が形成される面における複数の微細溝16の配向方向と垂直方向の十点平均粗さ(Rz)の上限としては、10μmが好ましく、8μmがより好ましく、7μmがさらに好ましい。上記十点平均粗さ(Rz)が上記下限に満たないと、複数の微細溝16の幅方向に伝搬される光量を十分に増加させることができないおそれがある。逆に、上記十点平均粗さ(Rz)が上記上限を超えると、光線の出射角度を制御し難くなるおそれがある。 The lower limit of the ten-point average roughness (Rz) in the direction perpendicular to the orientation direction of the plurality of fine grooves 16 on the surface (back surface) where the plurality of fine grooves 16 of the protective layer 13 are formed is preferably 4 μm and more preferably 5 μm. Preferably, 6 μm is more preferable. On the other hand, the upper limit of the ten-point average roughness (Rz) in the direction perpendicular to the orientation direction of the plurality of fine grooves 16 on the surface where the plurality of fine grooves 16 of the protective layer 13 are formed is preferably 10 μm, more preferably 8 μm. 7 μm is more preferable. If the ten-point average roughness (Rz) is less than the lower limit, the amount of light propagated in the width direction of the plurality of fine grooves 16 may not be increased sufficiently. On the other hand, if the ten-point average roughness (Rz) exceeds the upper limit, it may be difficult to control the light emission angle.
 保護層13の複数の微細溝16が形成される面(裏面)における複数の微細溝16の配向方向と垂直方向の十点平均粗さ(Rz)と複数の微細溝16の配向方向と平行方向の十点平均粗さ(Rz)との差の下限としては、3μmが好ましく、4μmがより好ましく、4.5μmがさらに好ましい。上記十点平均粗さ(Rz)の差が上記下限以上であることによって、複数の微細溝16の幅方向に伝搬される光量を大きくして液晶表示装置の輝度ムラを容易かつ確実に低減し易い。一方、上記十点平均粗さ(Rz)の差の上限としては、例えば9μmとすることができる。 The ten-point average roughness (Rz) in the direction perpendicular to the orientation direction of the plurality of fine grooves 16 and the direction parallel to the orientation direction of the plurality of fine grooves 16 on the surface (back surface) where the plurality of fine grooves 16 of the protective layer 13 are formed. The lower limit of the difference from the ten-point average roughness (Rz) is preferably 3 μm, more preferably 4 μm, and even more preferably 4.5 μm. When the difference in the ten-point average roughness (Rz) is equal to or greater than the lower limit, the amount of light propagated in the width direction of the plurality of microgrooves 16 is increased to easily and reliably reduce the luminance unevenness of the liquid crystal display device. easy. On the other hand, the upper limit of the difference of the ten-point average roughness (Rz) can be set to 9 μm, for example.
 保護層13の複数の微細溝16が形成される面(裏面)における複数の微細溝16の配向方向と平行方向の二乗平均平方根傾斜(RΔq)の下限としては、0.05が好ましく、0.2がより好ましく、0.25がさらに好ましく、0.3が特に好ましい。一方、保護層13の複数の微細溝16が形成される面(裏面)における複数の微細溝16の配向方向と平行方向の二乗平均平方根傾斜(RΔq)の上限としては、0.5が好ましく、0.45がより好ましく、0.4がさらに好ましい。上記二乗平均平方根傾斜(RΔq)が上記下限に満たないと、ホットスポットの発生抑制効果が不十分となるおそれがある。逆に、上記二乗平均平方根傾斜(RΔq)が上記上限を超えると、複数の微細溝16の幅方向に伝搬される光量に対する複数の微細溝16の配向方向と平行方向に伝搬される光量が大きくなるおそれがある。なお、「二乗平均平方根傾斜(RΔq)」とは、JIS-B0601:2001に準じた値をいう。 The lower limit of the root mean square slope (RΔq) in the direction parallel to the orientation direction of the plurality of fine grooves 16 on the surface (back surface) of the protective layer 13 on which the plurality of fine grooves 16 are formed is preferably 0.05. 2 is more preferable, 0.25 is more preferable, and 0.3 is particularly preferable. On the other hand, the upper limit of the root mean square slope (RΔq) in the direction parallel to the orientation direction of the plurality of fine grooves 16 on the surface (back surface) where the plurality of fine grooves 16 of the protective layer 13 are formed is preferably 0.5, 0.45 is more preferable, and 0.4 is more preferable. If the root mean square slope (RΔq) is less than the lower limit, the effect of suppressing the occurrence of hot spots may be insufficient. Conversely, when the root mean square slope (RΔq) exceeds the upper limit, the amount of light propagated in a direction parallel to the orientation direction of the plurality of microgrooves 16 relative to the amount of light propagated in the width direction of the plurality of microgrooves 16 is large. There is a risk. The “root mean square slope (RΔq)” is a value according to JIS-B0601: 2001.
 保護層13の複数の微細溝16が形成される面(裏面)における複数の微細溝16の配向方向と垂直方向の二乗平均平方根傾斜(RΔq)の下限としては、0.5が好ましく、0.7がより好ましく、1がさらに好ましい。一方、保護層13の複数の微細溝16が形成される面(裏面)における複数の微細溝16の配向方向と垂直方向の二乗平均平方根傾斜(RΔq)の上限としては、2.5が好ましく、2がより好ましく、1.8がさらに好ましい。上記二乗平均平方根傾斜(RΔq)が上記下限に満たないと、複数の微細溝16の幅方向に伝搬される光量を十分に増加させることができないおそれがある。逆に、上記二乗平均平方根傾斜(RΔq)が上記上限を超えると、光線の出射角度を制御し難くなるおそれがある。 The lower limit of the root mean square slope (RΔq) in the direction perpendicular to the orientation direction of the plurality of fine grooves 16 on the surface (back surface) where the plurality of fine grooves 16 of the protective layer 13 are formed is preferably 0.5. 7 is more preferable, and 1 is more preferable. On the other hand, the upper limit of the root mean square slope (RΔq) in the direction perpendicular to the orientation direction of the plurality of fine grooves 16 on the surface (back surface) where the plurality of fine grooves 16 of the protective layer 13 are formed is preferably 2.5, 2 is more preferable, and 1.8 is more preferable. If the root mean square slope (RΔq) is less than the lower limit, the amount of light propagated in the width direction of the plurality of fine grooves 16 may not be increased sufficiently. Conversely, if the root mean square slope (RΔq) exceeds the upper limit, it may be difficult to control the light emission angle.
 保護層13の複数の微細溝16が形成される面(裏面)における複数の微細溝16の配向方向と垂直方向の二乗平均平方根傾斜(RΔq)と複数の微細溝16の配向方向と平行方向の二乗平均平方根傾斜(RΔq)との差の下限としては、0.5が好ましく、0.7がより好ましく、1がさらに好ましい。上記二乗平均平方根傾斜(RΔq)の差が上記下限以上であることによって、複数の微細溝16の幅方向に伝搬される光量を大きくして液晶表示装置の輝度ムラを容易かつ確実に低減し易い。一方、上記二乗平均平方根傾斜(RΔq)の差の上限としては、例えば2.2とすることができる。 The root mean square slope (RΔq) in the direction perpendicular to the orientation direction of the plurality of fine grooves 16 and the direction parallel to the orientation direction of the plurality of fine grooves 16 on the surface (back surface) of the protective layer 13 on which the plurality of fine grooves 16 are formed. The lower limit of the difference from the root mean square slope (RΔq) is preferably 0.5, more preferably 0.7, and even more preferably 1. When the difference of the root mean square slope (RΔq) is not less than the above lower limit, the amount of light propagated in the width direction of the plurality of fine grooves 16 can be increased to easily and reliably reduce luminance unevenness of the liquid crystal display device. . On the other hand, the upper limit of the difference of the root mean square slope (RΔq) can be set to 2.2, for example.
 保護層13の主成分としては、例えばポリカーボネート、アクリル樹脂、ウレタン樹脂、アクリル-ウレタン共重合体、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリスチレン、(メタ)アクリル酸メチル-スチレン共重合体、ポリオレフィン、シクロオレフィンポリマー、シクロオレフィンコポリマー、セルロースアセテート、耐候性塩化ビニル、活性エネルギー線硬化型樹脂等が挙げられる。中でも、当該下用光拡散シート4の裏面の強度を高め、この裏面の傷付きを防止し易いアクリル樹脂が好ましい。 Examples of the main component of the protective layer 13 include polycarbonate, acrylic resin, urethane resin, acrylic-urethane copolymer, polyethylene terephthalate, polyethylene naphthalate, polystyrene, methyl (meth) acrylate-styrene copolymer, polyolefin, and cycloolefin. Examples thereof include polymers, cycloolefin copolymers, cellulose acetate, weather resistant vinyl chloride, and active energy ray curable resins. Especially, the acrylic resin which raises the intensity | strength of the back surface of the said light diffusion sheet 4 for the said lower, and is easy to prevent this back surface damage is preferable.
 保護層13の平均厚さの下限としては、1μmが好ましく、5μmがより好ましい。一方、保護層13の平均厚さの上限としては、50μmが好ましく、10μmがより好ましい。保護層13の平均厚さが上記下限に満たないと、当該下用光拡散シート4の裏面の傷付きを的確に防止できないおそれがある。逆に、保護層13の平均厚さが上記上限を超えると、液晶表示装置の輝度が低下するおそれがある。 The lower limit of the average thickness of the protective layer 13 is preferably 1 μm and more preferably 5 μm. On the other hand, the upper limit of the average thickness of the protective layer 13 is preferably 50 μm and more preferably 10 μm. If the average thickness of the protective layer 13 is less than the above lower limit, there is a possibility that scratches on the back surface of the lower light diffusion sheet 4 cannot be prevented accurately. Conversely, if the average thickness of the protective layer 13 exceeds the upper limit, the luminance of the liquid crystal display device may be reduced.
 保護層13の屈折率の下限としては、1.36が好ましく、1.4がより好ましく、1.43がさらに好ましい。一方、保護層23の屈折率の上限としては、1.7が好ましく、1.5がより好ましく、1.49がさらに好ましい。保護層13の屈折率が上記範囲内であることによって、保護層13と保護層13の裏面側に存在する空気層との屈折率差を利用して複数の微細溝16の幅方向に伝搬される光量を大きくして液晶表示装置の輝度ムラを容易かつ確実に低減し易い。 The lower limit of the refractive index of the protective layer 13 is preferably 1.36, more preferably 1.4, and still more preferably 1.43. On the other hand, the upper limit of the refractive index of the protective layer 23 is preferably 1.7, more preferably 1.5, and even more preferably 1.49. When the refractive index of the protective layer 13 is within the above range, the refractive index difference between the protective layer 13 and the air layer existing on the back side of the protective layer 13 is utilized to propagate in the width direction of the plurality of fine grooves 16. Therefore, it is easy to reduce the luminance unevenness of the liquid crystal display device easily and surely.
<プリズムシート>
 第1プリズムシート5及び第2プリズムシート6は、基材層と、この基材層の表面に積層される複数の突条プリズム部からなる突起列とを有する。上記基材層及び突条プリズム部は、光線を透過させる必要があるので透明、特に無色透明の合成樹脂を主成分とする樹脂層である。第1プリズムシート5の複数の突条プリズム部の稜線方向と第2プリズムシート6の複数の突条プリズム部の稜線方向とは略直交している。
<Prism sheet>
The 1st prism sheet 5 and the 2nd prism sheet 6 have a base material layer and the projection row | line | column which consists of a some protrusion prism part laminated | stacked on the surface of this base material layer. The base material layer and the protruding prism portion are resin layers mainly composed of a transparent, particularly colorless and transparent synthetic resin, because it is necessary to transmit light. The ridge line directions of the plurality of ridge prism portions of the first prism sheet 5 and the ridge line directions of the plurality of ridge prism portions of the second prism sheet 6 are substantially orthogonal.
 第1プリズムシート5及び第2プリズムシート6の厚さ(基材層の裏面から突条プリズム部の頂点までの高さ)の下限としては、50μmが好ましく、100μmがより好ましい。一方、第1プリズムシート5及び第2プリズムシート6の厚さの上限としては、200μmが好ましく、180μmがより好ましい。また、第1プリズムシート5及び第2プリズムシート6における突条プリズム部のピッチの下限としては、30μmが好ましく、40μmがより好ましい。一方、第1プリズムシート5及び第2プリズムシート6における突条プリズム部のピッチの上限としては、100μmが好ましく、60μmがより好ましい。また、突条プリズム部の頂角としては、85°以上95°以下が好ましい。第1プリズムシート5及び第2プリズムシート6の屈折率の下限としては、1.5が好ましく、1.55がより好ましい。一方、第1プリズムシート5及び第2プリズムシート6の屈折率の上限としては、1.7が好ましい。なお、「プリズムシートの屈折率」とは、突条プリズム部の屈折率をいう。 The lower limit of the thickness of the first prism sheet 5 and the second prism sheet 6 (height from the back surface of the base material layer to the top of the protruding prism portion) is preferably 50 μm, and more preferably 100 μm. On the other hand, as an upper limit of the thickness of the 1st prism sheet 5 and the 2nd prism sheet 6, 200 micrometers is preferable and 180 micrometers is more preferable. Moreover, as a minimum of the pitch of the protrusion prism part in the 1st prism sheet 5 and the 2nd prism sheet 6, 30 micrometers is preferable and 40 micrometers is more preferable. On the other hand, the upper limit of the pitch of the protruding prism portions in the first prism sheet 5 and the second prism sheet 6 is preferably 100 μm, and more preferably 60 μm. Further, the apex angle of the protruding prism portion is preferably 85 ° or more and 95 ° or less. As a minimum of the refractive index of the 1st prism sheet 5 and the 2nd prism sheet 6, 1.5 is preferred and 1.55 is more preferred. On the other hand, the upper limit of the refractive index of the first prism sheet 5 and the second prism sheet 6 is preferably 1.7. The “refractive index of the prism sheet” refers to the refractive index of the protruding prism portion.
<上用光拡散シート>
 上用光拡散シート7は、基材フィルムと、基材フィルムの表面側に積層され、複数のビーズ及びそのバインダーを有する光拡散層と、基材フィルムの裏面側に積層される保護層とを備える。上用光拡散シート7は、基材フィルム、基材フィルムの表面に直接積層される光拡散層及び基材フィルムの裏面に直接積層される保護層の3層から構成されている(基材フィルム、光拡散層及び保護層以外の他の層を有していない)。上用光拡散シート7は、平面視方形状に形成されている。
<Upper light diffusion sheet>
The upper light diffusion sheet 7 includes a base film, a light diffusion layer that is laminated on the surface side of the base film, a plurality of beads and a binder thereof, and a protective layer that is laminated on the back side of the base film. Prepare. The upper light diffusion sheet 7 is composed of three layers: a base film, a light diffusion layer directly laminated on the surface of the base film, and a protective layer directly laminated on the back surface of the base film (base film). And no other layers than the light diffusion layer and the protective layer). The upper light diffusion sheet 7 is formed in a planar view shape.
 上用光拡散シート7の基材フィルム、光拡散層及び保護層は、いずれも合成樹脂を主成分とする樹脂層である。上用光拡散シート7の基材フィルムは、下用光拡散シート4の基材フィルム11と同様の構成とすることができる。また、上用光拡散シート7の保護層は、複数の微細溝が形成されていないこと以外、下用光拡散シート4の保護層13と同様の構成とすることができる。一方、上用光拡散シート7の光拡散層は、下用光拡散シート4の光拡散層12と同様の高い光拡散性を必要とされないため、光拡散剤の配合量の下限としては、5質量部が好ましく、10質量部がより好ましく、また上限としては、40質量部が好ましく、30質量部がより好ましい。 The base film, the light diffusion layer, and the protective layer of the upper light diffusion sheet 7 are all resin layers mainly composed of a synthetic resin. The base film of the upper light diffusion sheet 7 can have the same configuration as the base film 11 of the lower light diffusion sheet 4. Further, the protective layer of the upper light diffusion sheet 7 can have the same configuration as the protective layer 13 of the lower light diffusion sheet 4 except that a plurality of fine grooves are not formed. On the other hand, the light diffusing layer of the upper light diffusing sheet 7 does not require the same high light diffusibility as the light diffusing layer 12 of the lower light diffusing sheet 4, so that the lower limit of the amount of the light diffusing agent is 5 Mass parts are preferred, 10 parts by mass are more preferred, and the upper limit is preferably 40 parts by mass and more preferably 30 parts by mass.
<ライトガイドフィルム>
 ライトガイドフィルム1は、端面から入射される光線を表面から略均一に出射する。ライトガイドフィルム1は、平面視略方形状に形成されており、厚みが略均一の板状(非楔形状)に形成されている。ライトガイドフィルム1は、裏面に表面側に陥没する複数の凹部17を有している。また、ライトガイドフィルム1は、裏面にスティッキング防止部を有している。具体的には、ライトガイドフィルム1は、上記スティッキング防止部として、複数の凹部17の周囲に存在し、裏面側に突出する複数の隆起部18を有している。隆起部18は、凹部17に隣接して設けられ、隆起部18の内側面は凹部17の形成面と連続している。ライトガイドフィルム1は合成樹脂を主成分とする樹脂層である。
<Light guide film>
The light guide film 1 emits light incident from the end face from the surface substantially uniformly. The light guide film 1 is formed in a substantially square shape in plan view, and is formed in a plate shape (non-wedge shape) having a substantially uniform thickness. The light guide film 1 has a plurality of recesses 17 that are recessed on the front surface side on the back surface. Moreover, the light guide film 1 has a sticking prevention part on the back surface. Specifically, the light guide film 1 has a plurality of raised portions 18 that exist around the plurality of recesses 17 and protrude to the back surface side as the sticking prevention portion. The raised portion 18 is provided adjacent to the recessed portion 17, and the inner surface of the raised portion 18 is continuous with the formation surface of the recessed portion 17. The light guide film 1 is a resin layer mainly composed of a synthetic resin.
 ライトガイドフィルム1の平均厚さの下限としては、100μmが好ましく、150μmがより好ましく、200μmがさらに好ましい。一方、ライトガイドフィルム1の平均厚さの上限としては、600μmが好ましく、580μmがより好ましく、550μmがさらに好ましい。ライトガイドフィルム1の平均厚さが上記下限に満たないと、ライトガイドフィルム1の強度が不十分となるおそれがあり、またLED光源2の光線をライトガイドフィルム1に十分に入射させることができないおそれがある。逆に、ライトガイドフィルム1の平均厚さが上記上限を超えると、当該バックライトユニットの薄型化の要望に沿えないおそれがある。 The lower limit of the average thickness of the light guide film 1 is preferably 100 μm, more preferably 150 μm, and even more preferably 200 μm. On the other hand, the upper limit of the average thickness of the light guide film 1 is preferably 600 μm, more preferably 580 μm, and even more preferably 550 μm. If the average thickness of the light guide film 1 is less than the lower limit, the strength of the light guide film 1 may be insufficient, and the light from the LED light source 2 cannot be sufficiently incident on the light guide film 1. There is a fear. On the other hand, if the average thickness of the light guide film 1 exceeds the above upper limit, there is a possibility that the demand for thinning the backlight unit may not be met.
 複数の凹部17は、入射光を表面側に散乱させる光散乱部として機能する。各凹部17は、平面視略円形状に形成されている。また、各凹部17は、表面側に向けて徐々に縮径するように形成されている。凹部17の形状としては、特に限定されるものではなく、半球状、半楕円体状、円錐状、円錐台形状等とすることが可能である。中でも、凹部17の形状としては、半球状又は半楕円体状が好ましい。凹部17が半球状又は半楕円体状であることによって、凹部17の成形性を向上することができると共に、凹部17に入射した光線を好適に散乱させることができる。 The plurality of concave portions 17 function as light scattering portions that scatter incident light to the surface side. Each recess 17 is formed in a substantially circular shape in plan view. Moreover, each recessed part 17 is formed so that a diameter may be gradually reduced toward the surface side. The shape of the recess 17 is not particularly limited, and may be a hemispherical shape, a semi-ellipsoidal shape, a conical shape, a truncated cone shape, or the like. Especially, as a shape of the recessed part 17, a hemispherical shape or a semi-ellipsoidal shape is preferable. When the concave portion 17 has a hemispherical shape or a semi-ellipsoidal shape, the moldability of the concave portion 17 can be improved, and the light incident on the concave portion 17 can be suitably scattered.
 隆起部18は、ライトガイドフィルム1の裏面におけるライトガイドフィルム1の厚さ方向と垂直な面から連続して形成されている。詳細には、隆起部18は、ライトガイドフィルム1の裏面の平坦面から連続して形成されている。隆起部18は、凹部17を囲むように平面視略円環状に形成されている。ライトガイドフィルム1は、隆起部18が凹部17を囲むように平面視略円環状に形成されることによって、凹部17及び凹部17近辺がライトガイドフィルム1の裏面側に配設される反射シート8と密着するのを容易かつ確実に防止することができる。 The raised portion 18 is formed continuously from a surface perpendicular to the thickness direction of the light guide film 1 on the back surface of the light guide film 1. Specifically, the raised portion 18 is formed continuously from the flat surface on the back surface of the light guide film 1. The raised portion 18 is formed in a substantially annular shape in plan view so as to surround the recessed portion 17. The light guide film 1 is formed in a substantially annular shape in plan view so that the raised portion 18 surrounds the concave portion 17, so that the concave portion 17 and the vicinity of the concave portion 17 are disposed on the back side of the light guide film 1. Can be easily and reliably prevented.
 ライトガイドフィルム1は、可撓性を有する。ライトガイドフィルム1は、可撓性を有することによって、裏面側に配設される反射シート8の傷付きを抑制することができる。ライトガイドフィルム1は、光線を透過させる必要があるため、透明、特に無色透明に構成されている。 The light guide film 1 has flexibility. By having flexibility, the light guide film 1 can suppress damage to the reflective sheet 8 disposed on the back surface side. Since the light guide film 1 needs to transmit light, the light guide film 1 is configured to be transparent, particularly colorless and transparent.
 ライトガイドフィルム1の主成分としては、ポリカーボネート、アクリル樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリスチレン、(メタ)アクリル酸メチル-スチレン共重合体、ポリオレフィン、シクロオレフィンポリマー、シクロオレフィンコポリマー、セルロースアセテート、耐候性塩化ビニル、活性エネルギー線硬化型樹脂等が挙げられる。中でも、ライトガイドフィルム1の主成分としては、ポリカーボネート又はアクリル樹脂が好ましい。ポリカーボネートは透明性に優れると共に屈折率が高いため、ライトガイドフィルム1が主成分としてポリカーボネートを含むことによって、ライトガイドフィルム1の表裏面において全反射が起こりやすく、光線を効率的に伝搬させることができる。また、ポリカーボネートは耐熱性を有するため、LED光源2の発熱による劣化等が生じ難い。さらに、ポリカーボネートはアクリル樹脂等に比べて吸水性が少ないため、寸法安定性が高い。従って、ライトガイドフィルム1は、ポリカーボネートを主成分として含むことによって経年劣化を抑止することができる。一方、アクリル樹脂は透明度が高いのでライトガイドフィルム1における光の損耗を少なくすることができる。 The main components of the light guide film 1 are polycarbonate, acrylic resin, polyethylene terephthalate, polyethylene naphthalate, polystyrene, methyl (meth) acrylate-styrene copolymer, polyolefin, cycloolefin polymer, cycloolefin copolymer, cellulose acetate, weather resistance And reactive vinyl chloride, active energy ray-curable resin, and the like. Especially, as a main component of the light guide film 1, a polycarbonate or an acrylic resin is preferable. Polycarbonate is excellent in transparency and has a high refractive index. Therefore, when the light guide film 1 contains polycarbonate as a main component, total reflection is likely to occur on the front and back surfaces of the light guide film 1, and light can be propagated efficiently. it can. Moreover, since polycarbonate has heat resistance, the LED light source 2 is unlikely to deteriorate due to heat generation. Furthermore, since polycarbonate has less water absorption than acrylic resin, dimensional stability is high. Therefore, the light guide film 1 can suppress aged deterioration by including polycarbonate as a main component. On the other hand, since acrylic resin has high transparency, it is possible to reduce light wear in the light guide film 1.
<LED光源>
 複数のLED光源2は、ライトガイドフィルム1の端面に沿って配設されている。複数のLED光源2は、各々光線出射面がライトガイドフィルム1の端面に対向(又は当接)するよう配設されている。
<LED light source>
The plurality of LED light sources 2 are disposed along the end surface of the light guide film 1. Each of the plurality of LED light sources 2 is disposed such that the light emitting surface faces (or abuts) the end surface of the light guide film 1.
<反射シート>
 反射シート8は、合成樹脂を主成分とする樹脂層を有する。反射シート8は、ポリエステル等の基材樹脂にフィラーを分散含有させた白色樹脂層として構成されてもよく、ポリエステル等から形成される樹脂層の表面に、アルミニウム、銀等の金属を蒸着させることで正反射性が高められた鏡面シートとして構成されてもよい。
<Reflection sheet>
The reflection sheet 8 has a resin layer mainly composed of synthetic resin. The reflection sheet 8 may be configured as a white resin layer in which a filler is dispersed in a base resin such as polyester, and a metal such as aluminum or silver is vapor-deposited on the surface of the resin layer formed from polyester or the like. It may be configured as a specular sheet with improved regular reflection.
<輝度ムラ低減機能>
 次に、図5及び図6を参照して、当該下用光拡散シート4及び当該バックライトユニットの輝度ムラ低減機能について説明する。まず、図5を参照して、複数のLED光源2から出射され、ライトガイドフィルム1に入射される光線の光量について説明する。複数のLED光源2から出射された光線は、ライトガイドフィルム1の複数のLED光源2と対向する端面(入射端面)から略垂直に入射され、この入射端面と対向する端面に向けて伝搬される。この際、複数のLED光源2から出射される光線は指向性が強いため、特にライトガイドフィルム1における光線入射部近傍には光量が極端に大きい領域Xが生じる。一方、複数のLED光源2は所定の間隔を開けて配設されているため、ライトガイドフィルム1における上記光線入射部近傍の間(隣接する領域Xの間)には光量の極端に小さい領域Yが発生する。
<Brightness unevenness reduction function>
Next, with reference to FIG. 5 and FIG. 6, the luminance unevenness reducing function of the lower light diffusion sheet 4 and the backlight unit will be described. First, with reference to FIG. 5, the light quantity of the light emitted from the plurality of LED light sources 2 and incident on the light guide film 1 will be described. Light rays emitted from the plurality of LED light sources 2 are incident substantially perpendicularly from an end face (incident end face) facing the plurality of LED light sources 2 of the light guide film 1 and propagate toward an end face facing the incident end face. . At this time, since the light beams emitted from the plurality of LED light sources 2 have high directivity, a region X having an extremely large amount of light is generated particularly in the vicinity of the light beam incident portion of the light guide film 1. On the other hand, since the plurality of LED light sources 2 are arranged at predetermined intervals, a region Y with an extremely small amount of light is provided between the light incident portions in the light guide film 1 (between adjacent regions X). Will occur.
 続いて、図6を参照して、当該下用光拡散シート4及び当該バックライトユニットの輝度ムラ低減機能について説明する。上述の領域Xからライトガイドフィルム1の表面側に出射される光線の多くは、複数のLED光源2の光線出射方向に沿った状態で当該下用光拡散シート4の保護層13の裏面に入射される。そして、当該下用光拡散シート4の保護層13の裏面に入射された光線は、複数のLED光源2の光線出射方向に沿う複数の微細溝16によって、複数の微細溝16の幅方向に伝搬されると考えられる。つまり、複数の微細溝16に入射した光線は、図6に示すように、平面視で領域Y方向に伝搬されると考えられる。これにより、平面視における領域Xの光量及び領域Yの光量が均一化され、液晶表示装置の輝度ムラが低減されると考えられる。 Subsequently, the luminance unevenness reducing function of the lower light diffusion sheet 4 and the backlight unit will be described with reference to FIG. Most of the light rays emitted from the region X to the surface side of the light guide film 1 are incident on the back surface of the protective layer 13 of the lower light diffusion sheet 4 in a state along the light emission direction of the plurality of LED light sources 2. Is done. Then, the light incident on the back surface of the protective layer 13 of the lower light diffusion sheet 4 propagates in the width direction of the plurality of microgrooves 16 by the plurality of microgrooves 16 along the light emission direction of the plurality of LED light sources 2. It is thought that it is done. That is, it is considered that the light rays incident on the plurality of fine grooves 16 are propagated in the region Y direction in plan view as shown in FIG. Thereby, it is considered that the light amount of the region X and the light amount of the region Y in a plan view are made uniform, and the luminance unevenness of the liquid crystal display device is reduced.
<利点>
 当該バックライトユニット用光学シート(当該下用光拡散シート4)は、光源としてLEDを用いるバックライトユニットに用いた際に、ホットスポットの発生を抑制することができる。この原因については必ずしも明らかではないが、当該バックライトユニット用光学シートの樹脂層に特定方向に配向する複数の微細溝16が形成されているので、複数の微細溝16によって区画される領域を通過する光線が複数の微細溝16の幅方向に伝搬され、指向性の高いLEDの光線であってもホットスポットの発生が抑制できるものと考えられる。
<Advantages>
When the backlight unit optical sheet (the lower light diffusion sheet 4) is used in a backlight unit that uses an LED as a light source, the occurrence of hot spots can be suppressed. Although the cause of this is not necessarily clear, a plurality of fine grooves 16 oriented in a specific direction are formed in the resin layer of the backlight unit optical sheet, so that it passes through a region defined by the plurality of fine grooves 16. Therefore, it is considered that the generation of hot spots can be suppressed even when the light beam of the LED having high directivity is propagated in the width direction of the plurality of fine grooves 16.
 また、当該バックライトユニット用光学シート(当該下用光拡散シート4)は、基材フィルム11と、この基材フィルム11の表面側に積層され、複数のビーズ14及びそのバインダー15を有する光拡散層12と、基材フィルム11の裏面側に積層される保護層13とを備えるので、全面に亘って略均一化された光線を出射し易い。 The backlight unit optical sheet (the lower light diffusion sheet 4) is laminated on the surface of the base film 11 and the base film 11, and has a plurality of beads 14 and a binder 15 for the light diffusion. Since the layer 12 and the protective layer 13 laminated on the back side of the base film 11 are provided, it is easy to emit light that is substantially uniform over the entire surface.
 当該バックライトユニットは、当該バックライトユニット用光学シート(当該下用光拡散シート4)を有することで、既述のようにホットスポットの発生を抑制することができる。 The backlight unit includes the optical sheet for the backlight unit (the lower light diffusion sheet 4), thereby suppressing the occurrence of hot spots as described above.
 当該バックライトユニットは、当該光学シート(当該下用光拡散シート4)がライトガイドフィルム1の表面に直接重畳されているので、ホットスポットの発生を十分に抑制することができる。 Since the optical sheet (the lower light diffusion sheet 4) is directly superimposed on the surface of the light guide film 1, the backlight unit can sufficiently suppress the occurrence of hot spots.
<下用光拡散シートの製造方法>
 当該下用光拡散シート4の製造方法としては、基材フィルム11を構成するシート体を形成する工程(基材フィルム形成工程)と、このシート体の一方の面側に保護層13を積層する工程(保護層積層工程)と、このシート体の他方の面側に光拡散層12を積層する工程(光拡散層積層工程)とを備える。
<Manufacturing method of light diffusion sheet for lower use>
As a manufacturing method of the said lower light diffusion sheet 4, the process (base film formation process) which forms the sheet body which comprises the base film 11, and the protective layer 13 are laminated | stacked on the one surface side of this sheet body. A step (protective layer laminating step) and a step of laminating the light diffusion layer 12 on the other surface side of the sheet body (light diffusion layer laminating step).
(基材フィルム形成工程)
 上記基材フィルム形成工程としては、特に限定されないが、例えば溶融した熱可塑性樹脂をTダイから押出成形し、続いてその押出成形体を層長手方向及び層幅方向に延伸してシート体を形成する方法が挙げられる。Tダイを用いた周知の押出成形法としては、例えばポリッシングロール法やチルロール法が挙げられる。また、上記押出成形体の延伸方法としては、例えば、チューブラーフィルム二軸延伸法やフラットフィルム二軸延伸法等が挙げられる。
(Base film forming process)
The base film forming step is not particularly limited. For example, a molten thermoplastic resin is extruded from a T die, and then the extruded body is stretched in the layer longitudinal direction and the layer width direction to form a sheet body. The method of doing is mentioned. As a known extrusion molding method using a T-die, for example, a polishing roll method and a chill roll method can be cited. Examples of the stretching method of the extruded product include a tubular film biaxial stretching method and a flat film biaxial stretching method.
(保護層積層工程)
 上記保護層積層工程としては、例えば保護層形成材料を含む塗工液を上記基材フィルム形成工程で形成されたシート体の一方の面側に塗布した後、複数の微細溝16の反転形状を表面に有する金型を用い、上記塗工液を塗布して得られる塗膜の一方の面側に複数の微細溝16を転写する方法が挙げられる。上記塗工液を塗布する方法としては、特に限定されるものではなく、例えばスピンコート法、スプレー法、スライドコート法、ディップ法、バーコート法、ロールコーター法、スクリーン印刷法等、種々の方法が挙げられる。また、上記金型としては、例えば金属ロールや金属板の表面に複数の微細溝16の反転形状が形成されたものを用いることができる。なお、上記保護層積層工程では、上記塗膜を必要に応じて乾燥してもよい。また、上記保護層積層工程では、上記塗膜の一方の面側に複数の微細溝16を転写した後、加熱、紫外線照射等によって塗膜を硬化させればよい。なお、上記基材フィルム形成工程及び保護層積層工程は、例えば共押出成形法によって同時に行うことも可能である。さらに、上記保護層積層工程では、基材フィルムの一方の面側に保護層形成材料を硬化したシート体を積層した後に、このシート体の一方の面にレーザー、ヤスリ等によって複数の微細溝16を形成してもよく、上記シート体にフォトリソグラフィ法及びエッチング法を用いて複数の微細溝16を形成してもよい。
(Protective layer lamination process)
As the protective layer laminating step, for example, after applying a coating liquid containing a protective layer forming material to one surface side of the sheet body formed in the base film forming step, the inverted shape of the plurality of fine grooves 16 is formed. There is a method in which a plurality of fine grooves 16 are transferred to one surface side of a coating film obtained by applying the coating liquid using a mold on the surface. The method for applying the coating liquid is not particularly limited, and various methods such as a spin coating method, a spray method, a slide coating method, a dip method, a bar coating method, a roll coater method, a screen printing method, etc. Is mentioned. Moreover, as said metal mold | die, the thing by which the reverse shape of the some fine groove 16 was formed in the surface of a metal roll or a metal plate, for example can be used. In the protective layer lamination step, the coating film may be dried as necessary. Moreover, in the said protective layer lamination process, after transferring the some fine groove | channel 16 to the one surface side of the said coating film, a coating film should just be hardened by heating, ultraviolet irradiation, etc. In addition, the said base film formation process and a protective layer lamination process can also be performed simultaneously, for example by the coextrusion molding method. Furthermore, in the protective layer laminating step, after laminating a sheet body obtained by curing the protective layer forming material on one surface side of the base film, a plurality of fine grooves 16 are formed on one surface of the sheet body by laser, file, or the like. A plurality of fine grooves 16 may be formed in the sheet body by using a photolithography method and an etching method.
(光拡散層積層工程)
 上記光拡散層積層工程としては、例えば複数のビーズ14及びバインダー組成物を含む塗工液を上記シート体の他方の面側に塗布し、さらに塗布した塗工液を乾燥及び硬化させる方法が挙げられる。
(Light diffusion layer lamination process)
Examples of the light diffusion layer laminating step include a method in which a coating liquid containing a plurality of beads 14 and a binder composition is applied to the other surface side of the sheet body, and the applied coating liquid is dried and cured. It is done.
 なお、当該下用光拡散シートの製造方法は、上記光拡散層積層工程の前に、上記シート体の光拡散層を積層する側の面にコロナ放電処理、オゾン処理、低温プラズマ処理、グロー放電処理、酸化処理、プライマーコート処理、アンダーコート処理、アンカーコート処理等を施す表面処理工程をさらに備えていてもよい。 In addition, the manufacturing method of the said light diffusion sheet for lower is the corona discharge treatment, the ozone treatment, the low temperature plasma treatment, the glow discharge on the surface of the sheet body on which the light diffusion layer is laminated before the light diffusion layer lamination step. You may further provide the surface treatment process which performs a process, an oxidation process, a primer coat process, an undercoat process, an anchor coat process, etc.
<利点>
 当該下用光拡散シートの製造方法は、既述のようにホットスポットの発生を抑制できる当該下用光拡散シート4を容易かつ確実に製造することができる。
<Advantages>
The manufacturing method of the said downward light diffusion sheet can manufacture the said downward light diffusion sheet 4 which can suppress generation | occurrence | production of a hot spot as mentioned above easily and reliably.
[第二実施形態]
<下用光拡散シート>
 図7の下用光拡散シート24は、図1の下用光拡散シート4に代えて図1のエッジライト型バックライトユニットに用いられる。図7の下用光拡散シート24は、基材フィルム25と、基材フィルム25の表面側に積層され、複数のビーズ14及びそのバインダー15を有する光拡散層12と、基材フィルム25の裏面側に積層される保護層26とを備える。下用光拡散シート24は、基材フィルム25、基材フィルム25の表面に直接積層される光拡散層12及び基材フィルム25の裏面に直接積層される保護層26の3層から構成されている(基材フィルム25、光拡散層12及び保護層26以外の他の層を有していない)。下用光拡散シート24は、平面視方形状に形成されている。なお、光拡散層12については、図1の下用光拡散シート4と同様のため、同一符号を付して説明を省略する。
[Second Embodiment]
<Light diffusion sheet for lower use>
The lower light diffusion sheet 24 of FIG. 7 is used in the edge light type backlight unit of FIG. 1 instead of the lower light diffusion sheet 4 of FIG. 7 is laminated on the surface side of the base film 25, the light diffusion layer 12 having a plurality of beads 14 and its binder 15, and the back surface of the base film 25. And a protective layer 26 laminated on the side. The lower light diffusion sheet 24 is composed of three layers: a base film 25, a light diffusion layer 12 directly laminated on the surface of the base film 25, and a protective layer 26 laminated directly on the back surface of the base film 25. (There are no layers other than the base film 25, the light diffusion layer 12, and the protective layer 26). The lower light diffusion sheet 24 is formed in a planar view shape. The light diffusion layer 12 is the same as the lower light diffusion sheet 4 in FIG.
(基材フィルム)
 基材フィルム25は、合成樹脂を主成分とする樹脂層である。基材フィルム25は、光線を透過させる必要があるので透明、特に無色透明の合成樹脂を主成分として形成されている。基材フィルム25の主成分としては、特に限定されるものではなく、例えば図1の下用光拡散シート4の基材フィルム11の主成分と同様の合成樹脂が挙げられる。また、基材フィルム25の平均厚さとしては、図1の下用光拡散シート4の基材フィルム11と同様とすることができる。
(Base film)
The base film 25 is a resin layer mainly composed of a synthetic resin. Since the base film 25 needs to transmit light, it is formed of a synthetic resin that is transparent, particularly colorless and transparent, as a main component. The main component of the base film 25 is not particularly limited, and examples thereof include the same synthetic resin as the main component of the base film 11 of the lower light diffusion sheet 4 in FIG. The average thickness of the base film 25 can be the same as that of the base film 11 of the downward light diffusion sheet 4 in FIG.
 基材フィルム25は、裏面に複数の微細溝27が形成されている。複数の微細溝27は、回折格子を構成することが好ましい。また、複数の微細溝27は、好ましくはヘアライン状に形成されている。 The base film 25 has a plurality of fine grooves 27 formed on the back surface. The plurality of fine grooves 27 preferably constitute a diffraction grating. The plurality of fine grooves 27 are preferably formed in a hairline shape.
 複数の微細溝27は、基材フィルム25の裏面の全領域に亘って略均一に(略等密度で)形成されている。各微細溝27は、断面略U字状に構成されている(つまり各微細溝27は断面三角形状に形成されていない)。また、複数の微細溝27は、長手方向が基材フィルム25の裏面の一端と平行方向に沿っている。具体的には、複数の微細溝27は、長手方向が複数のLED光源からの光線の平均方向に沿っている。さらに、各微細溝27の配向方向はランダムとされている。また、複数の微細溝27は、光線の拡散方向を制御するうえでは各々独立して形成されていることが好ましいが、一部の微細溝27は交叉していてもよい。なお、複数の微細溝27の平均配向方向、長手方向の平均長さ、平均幅、平均ピッチ、ピッチの標準偏差、単位長さ当たりの存在個数、平均深さ、及び深さの標準偏差としては、図1の下用光拡散シート4の複数の微細溝16と同様とすることができる。また、基材フィルム25の複数の微細溝27が形成される面(裏面)における複数の微細溝27の配向方向と平行方向の算術平均粗さ(Ra)、最大高さ(Ry)、十点平均粗さ(Rz)、二乗平均平方根傾斜(RΔq)及び複数の微細溝27の配向方向と垂直方向の算術平均粗さ(Ra)、最大高さ(Ry)、十点平均粗さ(Rz)、二乗平均平方根傾斜(RΔq)としては、図1の下用光拡散シート4の保護層13の裏面と同様とすることができる。 The plurality of fine grooves 27 are formed substantially uniformly (with substantially equal density) over the entire area of the back surface of the base film 25. Each fine groove 27 has a substantially U-shaped cross section (that is, each fine groove 27 is not formed in a triangular cross section). Moreover, the longitudinal direction of the plurality of fine grooves 27 is parallel to one end of the back surface of the base film 25. Specifically, the plurality of fine grooves 27 have a longitudinal direction along the average direction of light rays from the plurality of LED light sources. Furthermore, the orientation direction of each fine groove 27 is random. The plurality of fine grooves 27 are preferably formed independently for controlling the light diffusion direction, but some of the fine grooves 27 may cross each other. The average orientation direction, the average length in the longitudinal direction, the average width, the average pitch, the standard deviation of the pitch, the number of existing units per unit length, the average depth, and the standard deviation of the depth of the plurality of fine grooves 27 are as follows: 1 can be the same as the plurality of fine grooves 16 of the lower light diffusion sheet 4 in FIG. Also, arithmetic average roughness (Ra), maximum height (Ry), ten points in the direction parallel to the orientation direction of the plurality of fine grooves 27 on the surface (back surface) of the base film 25 where the plurality of fine grooves 27 are formed. Average roughness (Rz), root mean square slope (RΔq), arithmetic average roughness (Ra) in the alignment direction and perpendicular direction of the plurality of fine grooves 27, maximum height (Ry), ten-point average roughness (Rz) The root mean square slope (RΔq) can be the same as that of the back surface of the protective layer 13 of the lower light diffusion sheet 4 in FIG.
 基材フィルム25の屈折率の下限としては、1.51が好ましく、1.53がより好ましく、1.55がさらに好ましい。一方、基材フィルム25の屈折率の上限としては、1.7が好ましく、1.67がより好ましく、1.65がさらに好ましい。当該下用光拡散シート24は、基材フィルム25の屈折率及び基材フィルム25における複数の微細溝27が形成される面(裏面)に積層される他の層(保護層26)の屈折率差が大きい方が複数の微細溝27の幅方向に伝搬される光量を大きくし易い。この点に関し、基材フィルム25の屈折率が上記下限に満たないと、基材フィルム25及び保護層26の屈折率差が十分に大きくならず、複数の微細溝27の幅方向に伝搬される光量を十分に増加することができないおそれがある。逆に、基材フィルム25の屈折率が上記上限を超えると、基材フィルム25に使用できる樹脂が限定されるおそれがある。なお、「屈折率」とは、波長589.3nmの光(ナトリウムのD線)における屈折率をいい、一辺が70mm、厚さが2mmの平板状の試験片を用い、温度23℃で測定した試験回数3回の平均値を意味する。 The lower limit of the refractive index of the base film 25 is preferably 1.51, more preferably 1.53, and even more preferably 1.55. On the other hand, the upper limit of the refractive index of the base film 25 is preferably 1.7, more preferably 1.67, and even more preferably 1.65. The lower light diffusing sheet 24 has a refractive index of the base film 25 and a refractive index of another layer (protective layer 26) laminated on the surface (back surface) where the plurality of fine grooves 27 are formed in the base film 25. The larger the difference is, the easier it is to increase the amount of light transmitted in the width direction of the plurality of fine grooves 27. In this regard, if the refractive index of the base film 25 is less than the lower limit, the difference in refractive index between the base film 25 and the protective layer 26 is not sufficiently increased and propagates in the width direction of the plurality of fine grooves 27. There is a possibility that the amount of light cannot be increased sufficiently. Conversely, if the refractive index of the base film 25 exceeds the above upper limit, the resin that can be used for the base film 25 may be limited. The “refractive index” means a refractive index in light having a wavelength of 589.3 nm (sodium D-line), and was measured at a temperature of 23 ° C. using a flat test piece having a side of 70 mm and a thickness of 2 mm. It means the average value of the number of tests 3 times.
 基材フィルム25の屈折率及び基材フィルム25における複数の微細溝27が形成される面(裏面)に積層される他の層(保護層26)の屈折率の差の下限としては、0.01が好ましく、0.05がより好ましく、0.07がさらに好ましい。上記屈折率の差が上記下限に満たないと、複数の微細溝27の幅方向に伝搬される光量を十分に増加することができないおそれがある。一方、上記屈折率の差の上限としては、例えば0.15とすることができる。 The lower limit of the difference between the refractive index of the base film 25 and the refractive index of the other layer (protective layer 26) laminated on the surface (back surface) of the base film 25 on which the plurality of fine grooves 27 are formed is 0. 01 is preferred, 0.05 is more preferred, and 0.07 is even more preferred. If the difference in refractive index is less than the lower limit, the amount of light propagated in the width direction of the plurality of fine grooves 27 may not be increased sufficiently. On the other hand, the upper limit of the difference in refractive index can be set to 0.15, for example.
(保護層)
 保護層26は、合成樹脂を主成分とする樹脂層である。保護層26の主成分としては、図1の下用光拡散シート4の保護層26の主成分と同様の合成樹脂が挙げられる。また、保護層26の平均厚さとしては、図1の下用光拡散シート4の保護層13と同様とすることができる。
(Protective layer)
The protective layer 26 is a resin layer mainly composed of synthetic resin. Examples of the main component of the protective layer 26 include the same synthetic resin as the main component of the protective layer 26 of the lower light diffusion sheet 4 in FIG. In addition, the average thickness of the protective layer 26 can be the same as that of the protective layer 13 of the lower light diffusion sheet 4 in FIG.
 保護層26の屈折率の下限としては、1.36が好ましく、1.4がより好ましく、1.43がさらに好ましい。一方、保護層26の屈折率の上限としては、1.51が好ましく、1.5がより好ましく、1.49がさらに好ましい。保護層26の屈折率が上記下限に満たないと、保護層26に使用できる樹脂が限定されるおそれがある。逆に、保護層26の屈折率が上記上限を超えると、基材フィルム25及び保護層26の屈折率差が十分に大きくならず、複数の微細溝27の幅方向に伝搬される光量を十分に増加することができないおそれがある。 The lower limit of the refractive index of the protective layer 26 is preferably 1.36, more preferably 1.4, and still more preferably 1.43. On the other hand, the upper limit of the refractive index of the protective layer 26 is preferably 1.51, more preferably 1.5, and even more preferably 1.49. If the refractive index of the protective layer 26 is less than the lower limit, the resin that can be used for the protective layer 26 may be limited. Conversely, if the refractive index of the protective layer 26 exceeds the above upper limit, the difference in refractive index between the base film 25 and the protective layer 26 is not sufficiently increased, and the amount of light propagated in the width direction of the plurality of fine grooves 27 is sufficient. There is a possibility that it cannot be increased.
<下用光拡散シートの製造方法>
 当該下用光拡散シート24の製造方法としては、基材フィルム25を構成するシート体を形成する工程(基材フィルム形成工程)と、このシート体の一方の面側に保護層26を積層する工程(保護層積層工程)と、このシート体の他方の面側に光拡散層12を積層する工程(光拡散層積層工程)とを備える。なお、当該下用光拡散シート24の製造方法における光拡散層積層工程は、図1の下用光拡散シート4の光拡散層積層工程と同様のため、説明を省略する。
<Manufacturing method of light diffusion sheet for lower use>
As the manufacturing method of the lower light diffusion sheet 24, a step of forming a sheet body constituting the base film 25 (base film forming step), and a protective layer 26 is laminated on one surface side of the sheet body. A step (protective layer laminating step) and a step of laminating the light diffusion layer 12 on the other surface side of the sheet body (light diffusion layer laminating step). In addition, the light diffusion layer lamination process in the manufacturing method of the said lower light diffusion sheet 24 is the same as the light diffusion layer lamination process of the lower light diffusion sheet 4 of FIG.
(基材フィルム形成工程)
 上記基材フィルム形成工程としては、例えば溶融した熱可塑性樹脂をTダイから押出成形し、さらに複数の微細溝27の反転形状を表面に有する金型を用い、上記押出成形体の一方の面側に複数の微細溝27を転写する押出成形法が挙げられる。また、上記基材フィルム形成工程では、上記押出成形体を層長手方向及び層幅方向に延伸してもよい。Tダイを用いた周知の押出成形法としては、例えばポリッシングロール法やチルロール法が挙げられる。また、上記金型としては、例えば金属ロールや金属板の表面に複数の微細溝27の反転形状が形成されたものを用いることができる。さらに、上記押出成形体の延伸方法としては、例えばチューブラーフィルム二軸延伸法やフラットフィルム二軸延伸法等が挙げられる。なお、上記基材フィルム形成工程では、押出成形体を形成した後に、この押出成形体の一方の面にレーザー、ヤスリ、又はフォトリソグラフィ法及びエッチング法等によって複数の微細溝27を形成してもよい。
(Base film forming process)
As the base film forming step, for example, a molten thermoplastic resin is extruded from a T die, and a mold having a reverse shape of a plurality of fine grooves 27 on the surface is used. And an extrusion molding method for transferring the plurality of fine grooves 27. Moreover, in the said base film formation process, you may extend | stretch the said extrusion molding in a layer longitudinal direction and a layer width direction. As a known extrusion molding method using a T-die, for example, a polishing roll method and a chill roll method can be cited. In addition, as the mold, for example, a metal roll or a metal plate having a plurality of fine grooves 27 with an inverted shape formed on the surface thereof can be used. Furthermore, examples of the stretching method of the extruded product include a tubular film biaxial stretching method and a flat film biaxial stretching method. In the base film forming step, after forming the extruded body, a plurality of fine grooves 27 may be formed on one surface of the extruded body by laser, file, photolithography, etching, or the like. Good.
(保護層積層工程)
 上記保護層積層工程としては、例えば保護層形成材料を含む塗工液を上記基材フィルム形成工程で形成されたシート体の一方の面側に塗布した後、乾燥、硬化させる塗工法が挙げられる。上記塗工液を塗布する方法としては、図1の下用光拡散シート4の保護層積層工程と同様の方法が挙げられる。
(Protective layer lamination process)
Examples of the protective layer laminating step include a coating method in which a coating liquid containing a protective layer forming material is applied to one side of the sheet formed in the base film forming step, and then dried and cured. . Examples of the method for applying the coating liquid include the same method as in the protective layer laminating step of the light diffusion sheet 4 for the lower side in FIG.
<利点>
 当該下用光拡散シート24は、ホットスポットの発生を抑制することができる。また、当該下用光拡散シート34は、全面に亘って略均一化された光線を出射し易い。
<Advantages>
The lower light diffusion sheet 24 can suppress the occurrence of hot spots. Further, the lower light diffusion sheet 34 easily emits light that is substantially uniform over the entire surface.
 当該下用光拡散シートの製造方法は、ホットスポットの発生を抑制できる当該下用光拡散シート24を容易かつ確実に製造することができる。 The manufacturing method of the lower light diffusion sheet can easily and reliably manufacture the lower light diffusion sheet 24 capable of suppressing the generation of hot spots.
[第三実施形態]
<下用光拡散シート>
 図8の下用光拡散シート34は、図1及び図7の下用光拡散シート4,24に代えて図1のエッジライト型バックライトユニットに用いられる。図8の下用光拡散シート34は、基材フィルム35と、基材フィルム35の表面側に積層され、複数のビーズ38及びそのバインダー39を有する光拡散層36と、基材フィルム35の裏面側に積層される保護層37とを備える。下用光拡散シート34は、基材フィルム35、基材フィルム35の表面に直接積層される光拡散層36及び基材フィルム35の裏面に直接積層される保護層37の3層から構成されている(基材フィルム35、光拡散層36及び保護層37以外の他の層を有していない)。下用光拡散シート34は、平面視方形状に形成されている。
[Third embodiment]
<Light diffusion sheet for lower use>
The lower light diffusion sheet 34 in FIG. 8 is used in the edge light type backlight unit of FIG. 1 instead of the lower light diffusion sheets 4 and 24 in FIGS. 8 is laminated on the surface side of the base film 35, the light diffusion layer 36 having a plurality of beads 38 and its binder 39, and the back surface of the base film 35. And a protective layer 37 laminated on the side. The lower light diffusion sheet 34 is composed of three layers: a base film 35, a light diffusion layer 36 that is directly laminated on the surface of the base film 35, and a protective layer 37 that is directly laminated on the back surface of the base film 35. (There are no layers other than the base film 35, the light diffusion layer 36, and the protective layer 37). The lower light diffusion sheet 34 is formed in a planar view shape.
(基材フィルム)
 基材フィルム35は、合成樹脂を主成分とする樹脂層である。基材フィルム35は、光線を透過させる必要があるので透明、特に無色透明の合成樹脂を主成分として形成されている。基材フィルム35の主成分としては、特に限定されるものではなく、例えば図1の下用光拡散シート4の基材フィルム11の主成分と同様の合成樹脂が挙げられる。また、基材フィルム35の平均厚さとしては、図1の下用光拡散シート4の基材フィルム11と同様とすることができる。
(Base film)
The base film 35 is a resin layer mainly composed of a synthetic resin. Since the base film 35 needs to transmit light, it is formed of a synthetic resin that is transparent, particularly colorless and transparent, as a main component. The main component of the base film 35 is not particularly limited, and examples thereof include the same synthetic resin as the main component of the base film 11 of the lower light diffusion sheet 4 in FIG. The average thickness of the base film 35 can be the same as that of the base film 11 of the downward light diffusion sheet 4 in FIG.
 基材フィルム35は、表面に複数の微細溝40が形成されている。複数の微細溝40は、回折格子を構成することが好ましい。複数の微細溝40の具体的構成としては、図7の下用光拡散シート24の複数の微細溝27と同様とすることができる。つまり、当該下用光拡散シート34の基材フィルム35の表面は、図7の下用光拡散シート24の裏面と同様に形成されている。 The base film 35 has a plurality of fine grooves 40 formed on the surface. The plurality of fine grooves 40 preferably constitute a diffraction grating. The specific configuration of the plurality of fine grooves 40 can be the same as that of the plurality of fine grooves 27 of the lower light diffusion sheet 24 in FIG. That is, the surface of the base film 35 of the lower light diffusion sheet 34 is formed in the same manner as the back surface of the lower light diffusion sheet 24 in FIG.
 基材フィルム35の屈折率としては、図7の下用光拡散シート24の基材フィルム25と同様とすることができる。また、基材フィルム35の屈折率及び光拡散層36のバインダー39の屈折率の差としては、図7の下用光拡散シート24の基材フィルム25及び保護層26の屈折率の差と同様とすることができる。 The refractive index of the base film 35 can be the same as that of the base film 25 of the lower light diffusion sheet 24 in FIG. Further, the difference between the refractive index of the base film 35 and the refractive index of the binder 39 of the light diffusion layer 36 is the same as the difference between the refractive indexes of the base film 25 and the protective layer 26 of the lower light diffusion sheet 24 in FIG. It can be.
(光拡散層)
 光拡散層36は、合成樹脂を主成分とする樹脂層である。光拡散層36は、下用光拡散シート34の最表面を構成する。光拡散層36は、複数のビーズ38を略等密度で分散含有している。ビーズ38はバインダー39に囲まれている。光拡散層36は、複数のビーズ38を分散含有することによって、裏面側から表面側に透過する光を略均一に拡散させる。また、光拡散層36は、複数のビーズ38によって表面に微細凹凸が略均一に形成され、この微細凹凸の各凹部及び凸部がレンズ状に形成されている。光拡散層36は、かかる微細凹凸のレンズ的作用によって、優れた光拡散機能を発揮し、この光拡散機能に起因して透過光線を法線方向側へ屈折させる屈折機能及び透過光線を法線方向に巨視的に集光させる集光機能を有している。
(Light diffusion layer)
The light diffusion layer 36 is a resin layer mainly composed of synthetic resin. The light diffusion layer 36 constitutes the outermost surface of the lower light diffusion sheet 34. The light diffusion layer 36 contains a plurality of beads 38 dispersed at substantially equal density. The beads 38 are surrounded by a binder 39. The light diffusing layer 36 contains a plurality of beads 38 so as to diffuse light transmitted from the back surface side to the front surface side substantially uniformly. The light diffusion layer 36 has fine irregularities formed substantially uniformly on the surface by a plurality of beads 38, and the concave and convex portions of the fine irregularities are formed in a lens shape. The light diffusing layer 36 exhibits an excellent light diffusing function by the lens action of the fine unevenness, and the refractive function and the transmitted light are refracted in the normal direction due to the light diffusing function. It has a light condensing function that condenses macroscopically in the direction.
 ビーズ38の主成分としては、図1の下用光拡散シート4のビーズ14と同様のものを用いることができる。また、ビーズ38の形状、平均粒子径、配合量としては、図1の下用光拡散シート4と同様とすることができる。 As the main component of the beads 38, the same beads as the beads 14 of the lower light diffusion sheet 4 in FIG. 1 can be used. Further, the shape, average particle diameter, and blending amount of the beads 38 can be the same as those of the lower light diffusion sheet 4 in FIG.
 バインダー39は、基材ポリマーを含むポリマー組成物を硬化(架橋等)させることで形成される。ビーズ38は、バインダー39によって、基材フィルム35の表面全面に略等密度で配置固定される。 The binder 39 is formed by curing (crosslinking or the like) a polymer composition containing a base polymer. The beads 38 are arranged and fixed at substantially equal density on the entire surface of the base film 35 by the binder 39.
 バインダー39の屈折率の下限としては、1.36が好ましく、1.4がより好ましく、1.43がさらに好ましい。一方、バインダー39の屈折率の上限としては、1.7が好ましく、1.6が好ましく、1.55がより好ましく、1.49がさらに好ましい。バインダー39の屈折率が上記下限に満たないと、バインダー39に使用できる樹脂が限定されるおそれがある。逆に、バインダー39の屈折率が上記上限を超えると、基材フィルム25及びバインダー39の屈折率差が十分に大きくならず、複数の微細溝40の幅方向に伝搬される光量を十分に増加することができないおそれがある。 The lower limit of the refractive index of the binder 39 is preferably 1.36, more preferably 1.4, and still more preferably 1.43. On the other hand, the upper limit of the refractive index of the binder 39 is preferably 1.7, preferably 1.6, more preferably 1.55, and even more preferably 1.49. If the refractive index of the binder 39 is less than the lower limit, the resin that can be used for the binder 39 may be limited. Conversely, if the refractive index of the binder 39 exceeds the upper limit, the difference in refractive index between the base film 25 and the binder 39 is not sufficiently increased, and the amount of light propagated in the width direction of the plurality of fine grooves 40 is sufficiently increased. There is a risk that it cannot be done.
(保護層)
 保護層37は、合成樹脂を主成分とする樹脂層である。保護層37の裏面は平坦面として形成されている。保護層37の主成分としては、図1の下用光拡散シート4の保護層13の主成分と同様の合成樹脂が挙げられる。また、保護層37の平均厚さとしては、図1の下用光拡散シート4の保護層13と同様とすることができる。
(Protective layer)
The protective layer 37 is a resin layer mainly composed of synthetic resin. The back surface of the protective layer 37 is formed as a flat surface. As a main component of the protective layer 37, the same synthetic resin as the main component of the protective layer 13 of the lower light diffusion sheet 4 in FIG. Further, the average thickness of the protective layer 37 may be the same as that of the protective layer 13 of the lower light diffusion sheet 4 in FIG.
<下用光拡散シートの製造方法>
 当該下用光拡散シート34の製造方法としては、基材フィルム35を構成するシート体を形成する工程(基材フィルム形成工程)と、このシート体の一方の面側に保護層37を積層する工程(保護層積層工程)と、このシート体の他方の面側に光拡散層36を積層する工程(光拡散層積層工程)とを備える。当該下用光拡散シートの製造方法は、上記基材フィルム形成工程で押出成形体の他方の面側に複数の微細溝40を形成し、この押出成形体の一方の面には複数の微細溝40を形成しないこと以外、図7の下用光拡散シート24の製造方法と同様に行うことができる。
<Manufacturing method of light diffusion sheet for lower use>
As the manufacturing method of the lower light diffusion sheet 34, a step of forming a sheet body constituting the base film 35 (base film forming step), and a protective layer 37 is laminated on one surface side of the sheet body. A step (protective layer laminating step) and a step of laminating the light diffusion layer 36 on the other surface side of the sheet body (light diffusion layer laminating step). In the manufacturing method of the lower light diffusion sheet, a plurality of fine grooves 40 are formed on the other surface side of the extrusion-molded body in the base film forming step, and a plurality of fine grooves are formed on one surface of the extrusion-molded body. Except not forming 40, it can carry out similarly to the manufacturing method of the light diffusion sheet 24 for the bottom of FIG.
<利点>
 当該下用光拡散シート34は、ホットスポットの発生を抑制することができる。また、当該下用光拡散シート34は、全面に亘って略均一化された光線を出射し易い。
<Advantages>
The lower light diffusion sheet 34 can suppress the occurrence of hot spots. Further, the lower light diffusion sheet 34 easily emits light that is substantially uniform over the entire surface.
 当該下用光拡散シートの製造方法は、ホットスポットの発生を抑制できる当該下用光拡散シート34を容易かつ確実に製造することができる。 The manufacturing method of the lower light diffusion sheet can easily and reliably manufacture the lower light diffusion sheet 34 capable of suppressing the generation of hot spots.
[第四実施形態]
<下用光拡散シート>
 図9の下用光拡散シート44は、図1、図7及び図8の下用光拡散シート4,24,34に代えて図1のエッジライト型バックライトユニットに用いられる。図9の下用光拡散シート44は、基材フィルム11と、基材フィルム11の表面側に積層され、複数のビーズ46及びそのバインダー47を有する光拡散層45と、基材フィルム11の裏面側に積層される保護層37とを備える。下用光拡散シート44は、基材フィルム11、基材フィルム11の表面に直接積層される光拡散層45及び基材フィルム11の裏面に直接積層される保護層37の3層から構成されている(基材フィルム11、光拡散層45及び保護層37以外の他の層を有していない)。下用光拡散シート44は、平面視方形状に形成されている。なお、当該下用光拡散シート44の基材フィルム11は、図1の下用光拡散シート4の基材フィルム11と同様の構成を有し、当該下用光拡散シート44の保護層37は、図8の下用光拡散シート34の保護層37と同様の構成を有するため、同一符号を付して説明を省略する。
[Fourth embodiment]
<Light diffusion sheet for lower use>
The lower light diffusion sheet 44 in FIG. 9 is used in the edge light type backlight unit of FIG. 1 instead of the lower light diffusion sheets 4, 24 and 34 in FIGS. 9 is laminated on the surface side of the base film 11, the light diffusion layer 45 having a plurality of beads 46 and its binder 47, and the back surface of the base film 11. And a protective layer 37 laminated on the side. The lower light diffusion sheet 44 is composed of three layers: a base film 11, a light diffusion layer 45 that is directly laminated on the surface of the base film 11, and a protective layer 37 that is directly laminated on the back surface of the base film 11. (There are no layers other than the base film 11, the light diffusion layer 45, and the protective layer 37). The lower light diffusion sheet 44 is formed in a planar view shape. The base film 11 of the lower light diffusion sheet 44 has the same configuration as the base film 11 of the lower light diffusion sheet 4 in FIG. 8 has the same configuration as that of the protective layer 37 of the lower light diffusion sheet 34 in FIG.
(光拡散層)
 光拡散層45は、合成樹脂を主成分とする樹脂層である。光拡散層45は、下用光拡散シート44の最表面を構成する。光拡散層45は、複数のビーズ46を略等密度で分散含有している。ビーズ46はバインダー47に囲まれている。光拡散層45は、複数のビーズ46を分散含有することによって、裏面側から表面側に透過する光を略均一に拡散させる。また、光拡散層45は、複数のビーズ46によって表面に微細凹凸が略均一に形成され、この微細凹凸のレンズ的作用によって、優れた光拡散機能を発揮し、この光拡散機能に起因して透過光線を法線方向側へ屈折させる屈折機能及び透過光線を法線方向に巨視的に集光させる集光機能を有している。さらに、光拡散層45は、表面に複数の微細溝48が形成されている。つまり、当該下用光拡散シート44は、複数の微細凹凸を有する面に複数の微細溝48が形成されている。当該下用光拡散シート44は、複数の微細凹凸を有する面に複数の微細溝48が形成されていることで、複数の微細溝48によって光線を複数の微細溝48の幅方向に伝搬すると共に複数の微細凹凸によって光を拡散することができる。これにより、モアレ防止効果、色分解防止効果、視野角拡大効果等を向上することができる。複数の微細溝48は、回折格子を構成することが好ましい。複数の微細溝48の具体的構成としては、図1の下用光拡散シート4の複数の微細溝16と同様とすることができる。なお、上記「微細凹凸」とは、例えば算術平均粗さ(Ra)が1.0μm以上であることをいい、好ましくは1.5μm以上、さらに好ましくは2.0μm以上であることをいう。
(Light diffusion layer)
The light diffusion layer 45 is a resin layer mainly composed of a synthetic resin. The light diffusion layer 45 constitutes the outermost surface of the lower light diffusion sheet 44. The light diffusion layer 45 contains a plurality of beads 46 dispersed at substantially equal density. The beads 46 are surrounded by a binder 47. The light diffusion layer 45 disperses and contains a plurality of beads 46 so that light transmitted from the back surface side to the front surface side is diffused substantially uniformly. Further, the light diffusion layer 45 is formed with a plurality of beads 46 having fine irregularities substantially uniformly on the surface, and exhibits an excellent light diffusion function due to the lens action of the fine irregularities, resulting from this light diffusion function. It has a refraction function that refracts transmitted light in the normal direction and a light condensing function that condenses transmitted light macroscopically in the normal direction. Furthermore, the light diffusion layer 45 has a plurality of fine grooves 48 formed on the surface. That is, the lower light diffusion sheet 44 has a plurality of fine grooves 48 formed on a surface having a plurality of fine irregularities. The lower light diffusing sheet 44 has a plurality of fine grooves 48 formed on a surface having a plurality of fine irregularities, so that the light is propagated in the width direction of the plurality of fine grooves 48 by the plurality of fine grooves 48. Light can be diffused by a plurality of fine irregularities. Thereby, a moire prevention effect, a color separation prevention effect, a viewing angle expansion effect, etc. can be improved. The plurality of fine grooves 48 preferably constitute a diffraction grating. A specific configuration of the plurality of fine grooves 48 can be the same as that of the plurality of fine grooves 16 of the lower light diffusion sheet 4 in FIG. 1. The “fine unevenness” means that, for example, the arithmetic average roughness (Ra) is 1.0 μm or more, preferably 1.5 μm or more, and more preferably 2.0 μm or more.
 ビーズ46の主成分としては、図1の下用光拡散シート4のビーズ14の主成分と同様とすることができる。また、ビーズ46の形状、平均粒子径、配合量としては、図1の下用光拡散シート4と同様とすることができる。さらに、バインダー47としては、図1の下用光拡散シート1のバインダー15と同様の基材ポリマーを含むポリマー組成物を硬化(架橋等)させることで形成することができる。 The main component of the beads 46 may be the same as the main component of the beads 14 of the lower light diffusion sheet 4 in FIG. Further, the shape, average particle diameter, and blending amount of the beads 46 can be the same as those of the lower light diffusion sheet 4 in FIG. Furthermore, the binder 47 can be formed by curing (crosslinking or the like) a polymer composition containing the same base polymer as the binder 15 of the lower light diffusion sheet 1 in FIG.
<下用光拡散シートの製造方法>
 当該下用光拡散シート44の製造方法としては、基材フィルム11を構成するシート体を形成する工程(基材フィルム形成工程)と、このシート体の一方の面側に保護層37を積層する工程(保護層積層工程)と、このシート体の他方の面側に光拡散層45を積層する工程(光拡散層積層工程)とを備える。なお、当該下用光拡散シート44の製造方法における基材フィルム形成工程は、図1の下用光拡散シート4の基材フィルム形成工程と同様であり、当該下用光拡散シート44の製造方法における保護層積層工程は、図7の下用光拡散シート24の保護層積層工程と同様のため、説明を省略する。
<Manufacturing method of light diffusion sheet for lower use>
As a manufacturing method of the lower light diffusion sheet 44, a step of forming a sheet body constituting the base film 11 (base film forming step), and a protective layer 37 is laminated on one surface side of the sheet body. A step (protective layer laminating step) and a step of laminating the light diffusion layer 45 on the other surface side of the sheet body (light diffusion layer laminating step). In addition, the base film formation process in the manufacturing method of the said lower light diffusion sheet 44 is the same as the base film formation process of the lower light diffusion sheet 4 of FIG. 1, and the manufacturing method of the said lower light diffusion sheet 44 The protective layer laminating step is the same as the protective layer laminating step of the lower light diffusion sheet 24 in FIG.
(光拡散層積層工程)
 上記光拡散層積層工程としては、例えば複数のビーズ46及びバインダー組成物を含む塗工液を上記基材フィルム形成工程で形成されたシート体の他方の面側に塗布した後、複数の微細溝48の反転形状を表面に有する金型を用い、上記塗工液を塗布して得られる塗膜の一方の面側に複数の微細溝48を転写する方法が挙げられる。また、上記光拡散層積層工程では、複数の微細溝48の反転形状に加えて複数の微細凹凸形状を表面に有する金型を用いてもよい。上記光拡散層積層工程で、複数の微細凹凸形状を表面に有する金型を用いることによって、光拡散層45の表面に微細凹凸が形成され、かかる微細凹凸のレンズ的作用によって、優れた光拡散機能を発揮し、この光拡散機能に起因して透過光線を法線方向側へ屈折させる屈折機能及び透過光線を法線方向に巨視的に集光させる集光機能を向上することができる。上記塗工液を塗布する方法としては、図1の下用光拡散シート4の保護層積層工程と同様の方法が挙げられる。また、上記金型としては、図1の下用光拡散シート4の保護層積層工程と同様、例えば金属ロールや金属板の表面に複数の微細溝48の反転形状が形成されたものを用いることができる。なお、上記光拡散層積層工程では、上記塗膜を必要に応じて乾燥してもよい。また、上記光拡散層積層工程では、基材フィルムの他方の面側に塗布した塗工液を硬化した後に、この硬化した塗工液の他方の面にレーザー、ヤスリ等によって複数の微細溝48を形成してもよい。
(Light diffusion layer lamination process)
As the light diffusion layer laminating step, for example, after applying a coating liquid containing a plurality of beads 46 and a binder composition to the other surface side of the sheet body formed in the base film forming step, a plurality of fine grooves There is a method in which a plurality of fine grooves 48 are transferred to one surface side of a coating film obtained by applying a coating liquid using a mold having 48 inversion shapes on the surface. Further, in the light diffusion layer stacking step, a mold having a plurality of fine irregularities on the surface in addition to the inverted shape of the plurality of fine grooves 48 may be used. By using a mold having a plurality of fine irregularities on the surface in the light diffusion layer laminating step, fine irregularities are formed on the surface of the light diffusion layer 45, and excellent light diffusion is achieved by the lens action of the fine irregularities. It is possible to improve the refraction function for refracting the transmitted light beam to the normal direction side and the condensing function for macroscopically condensing the transmitted light beam in the normal direction due to this light diffusion function. Examples of the method for applying the coating liquid include the same method as in the protective layer laminating step of the light diffusion sheet 4 for the lower side in FIG. In addition, as the mold, as in the protective layer laminating step of the lower light diffusion sheet 4 in FIG. 1, for example, a metal roll or a metal plate with a plurality of fine grooves 48 formed in an inverted shape is used. Can do. In the light diffusion layer laminating step, the coating film may be dried as necessary. In the light diffusing layer laminating step, after the coating liquid applied to the other surface side of the base film is cured, a plurality of fine grooves 48 are formed on the other surface of the cured coating liquid by laser, file, or the like. May be formed.
<利点>
 当該下用光拡散シート44は、ホットスポットの発生を抑制することができる。また、当該下用光拡散シート44は、全面に亘って略均一化された光線を出射し易い。さらに、当該バックライトユニットにあっては、一般に回折格子による回折効果はLED光源と回折格子との距離が大きくなる程顕著に表れる。そのため、当該下用光拡散シート44の最表面を構成する光拡散層9の表面に上記回折格子を形成する場合、液晶表示装置の輝度ムラをより確実に低減することができる。
<Advantages>
The lower light diffusion sheet 44 can suppress the generation of hot spots. Further, the lower light diffusion sheet 44 easily emits light that is substantially uniform over the entire surface. Furthermore, in the backlight unit, the diffraction effect by the diffraction grating generally appears more prominently as the distance between the LED light source and the diffraction grating increases. Therefore, when the diffraction grating is formed on the surface of the light diffusion layer 9 constituting the outermost surface of the lower light diffusion sheet 44, luminance unevenness of the liquid crystal display device can be more reliably reduced.
 当該下用光拡散シートの製造方法は、ホットスポットの発生を抑制できる当該下用光拡散シート44を容易かつ確実に製造することができる。 The manufacturing method of the lower light diffusion sheet can easily and reliably manufacture the lower light diffusion sheet 44 capable of suppressing the generation of hot spots.
[第五実施形態]
<下用光拡散シート>
 図10の下用光拡散シート54は、図1及び図7~9の下用光拡散シート4,24,34,44に代えて図1のエッジライト型バックライトユニットに用いられる。図10の下用光拡散シート54は、基材フィルム35と、基材フィルム35の表面側に積層され、複数のビーズ38及びそのバインダー39を有する光拡散層36と、基材フィルム35の裏面側に積層される保護層13とを備える。下用光拡散シート54は、基材フィルム35、基材フィルム35の表面に直接積層される光拡散層36及び基材フィルム35の裏面に直接積層される保護層13の3層から構成されている(基材フィルム35、光拡散層36及び保護層13以外の他の層を有していない)。下用光拡散シート54は、平面視方形状に形成されている。当該下用光拡散シート54の基材フィルム35及び光拡散層36は、図8の下用光拡散シート34の基材フィルム35及び光拡散層36と同様の構成を有し、当該下用光拡散シート54の保護層13は、図1の下用光拡散シート4の保護層13と同様の構成を有している。つまり、当該下用光拡散シート54は、複数の樹脂層に複数の微細溝が形成されており、具体的には基材フィルム35及び保護層13の2層に複数の微細溝が形成されている。
[Fifth embodiment]
<Light diffusion sheet for lower use>
The lower light diffusion sheet 54 of FIG. 10 is used in the edge light type backlight unit of FIG. 1 in place of the lower light diffusion sheets 4, 24, 34, 44 of FIG. 1 and FIGS. 10 is laminated on the surface side of the base film 35, the light diffusion layer 36 having a plurality of beads 38 and a binder 39 thereof, and the back surface of the base film 35. And a protective layer 13 laminated on the side. The lower light diffusion sheet 54 is composed of three layers: a base film 35, a light diffusion layer 36 that is directly laminated on the surface of the base film 35, and a protective layer 13 that is directly laminated on the back surface of the base film 35. (There are no layers other than the base film 35, the light diffusion layer 36, and the protective layer 13). The lower light diffusion sheet 54 is formed in a planar view shape. The base film 35 and the light diffusion layer 36 of the lower light diffusion sheet 54 have the same configuration as the base film 35 and the light diffusion layer 36 of the lower light diffusion sheet 34 of FIG. The protective layer 13 of the diffusion sheet 54 has the same configuration as the protective layer 13 of the lower light diffusion sheet 4 in FIG. That is, the lower light diffusion sheet 54 has a plurality of fine grooves formed in a plurality of resin layers, specifically, a plurality of fine grooves are formed in two layers of the base film 35 and the protective layer 13. Yes.
<下用光拡散シートの製造方法>
 当該下用光拡散シート54の製造方法としては、基材フィルム35を構成するシート体を形成する工程(基材フィルム形成工程)と、このシート体の一方の面側に保護層13を積層する工程(保護層積層工程)と、このシート体の他方の面側に光拡散層36を積層する工程(光拡散層積層工程)とを備える。当該下用光拡散シート54の製造方法における基材フィルム形成工程及び光拡散層積層工程は、図8の下用光拡散シート34の基材フィルム形成工程及び光拡散層積層工程と同様に行うことができる。また、当該下用光拡散シート54の製造方法における保護層積層工程は、図1の下用光拡散シート4の保護層積層工程と同様に行うことができる。
<Manufacturing method of light diffusion sheet for lower use>
As the manufacturing method of the lower light diffusion sheet 54, a step of forming a sheet body constituting the base film 35 (base film forming step), and the protective layer 13 is laminated on one surface side of the sheet body. A step (protective layer laminating step) and a step of laminating the light diffusion layer 36 on the other surface side of the sheet body (light diffusion layer laminating step). The base film formation step and the light diffusion layer lamination step in the manufacturing method of the lower light diffusion sheet 54 are performed in the same manner as the base film formation step and the light diffusion layer lamination step of the lower light diffusion sheet 34 in FIG. Can do. Moreover, the protective layer lamination process in the manufacturing method of the said lower light diffusion sheet 54 can be performed similarly to the protective layer lamination process of the lower light diffusion sheet 4 of FIG.
<利点>
 当該下用光拡散シート54は、2層の樹脂層に複数の微細溝が形成されているので、ホットスポットの発生をより確実に抑制することができる。また、当該下用光拡散シート54は、全面に亘って略均一化された光線を出射し易い。
<Advantages>
Since the lower light diffusion sheet 54 has a plurality of fine grooves formed in the two resin layers, generation of hot spots can be more reliably suppressed. Further, the lower light diffusion sheet 54 easily emits light that is substantially uniform over the entire surface.
[第六実施形態]
<下用光拡散シート>
 図11の下用光拡散シート64は、図1及び図7~10の下用光拡散シート4,24,34,44,54に代えて図1のエッジライト型バックライトユニットに用いられる。図11の下用光拡散シート64は、基材フィルム35と、基材フィルム35の表面側に積層され、複数のビーズ46及びそのバインダー47を有する光拡散層45と、基材フィルム35の裏面側に積層される保護層13とを備える。下用光拡散シート64は、基材フィルム35、基材フィルム35の表面に直接積層される光拡散層45及び基材フィルム35の裏面に直接積層される保護層13の3層から構成されている(基材フィルム35、光拡散層45及び保護層13以外の他の層を有していない)。下用光拡散シート64は、平面視方形状に形成されている。当該下用光拡散シート64の基材フィルム35は、図8の下用光拡散シート34の基材フィルム35と同様の構成を有する。当該下用光拡散シート64の光拡散層45は、図9の下用光拡散シート44の光拡散層45と同様の構成を有する。さらに、当該下用光拡散シート64の保護層13は、図1の下用光拡散シート4の保護層13と同様の構成を有する。つまり、当該下用光拡散シート64は、複数の樹脂層に複数の微細溝が形成されており、具体的には基材フィルム35、光拡散層45及び保護層13の3層に複数の微細溝が形成されている。
[Sixth embodiment]
<Light diffusion sheet for lower use>
The lower light diffusion sheet 64 of FIG. 11 is used in the edge light type backlight unit of FIG. 1 instead of the lower light diffusion sheets 4, 24, 34, 44, and 54 of FIG. 1 and FIGS. 11 is laminated on the surface side of the base film 35, the light diffusion layer 45 having a plurality of beads 46 and its binder 47, and the back surface of the base film 35. And a protective layer 13 laminated on the side. The lower light diffusion sheet 64 is composed of three layers: a base film 35, a light diffusion layer 45 that is directly laminated on the surface of the base film 35, and a protective layer 13 that is directly laminated on the back surface of the base film 35. (There are no other layers other than the base film 35, the light diffusion layer 45, and the protective layer 13). The lower light diffusion sheet 64 is formed in a planar view shape. The base film 35 of the lower light diffusion sheet 64 has the same configuration as the base film 35 of the lower light diffusion sheet 34 in FIG. The light diffusion layer 45 of the lower light diffusion sheet 64 has the same configuration as the light diffusion layer 45 of the lower light diffusion sheet 44 of FIG. Further, the protective layer 13 of the lower light diffusion sheet 64 has the same configuration as the protective layer 13 of the lower light diffusion sheet 4 in FIG. That is, the lower light diffusion sheet 64 has a plurality of fine grooves formed in a plurality of resin layers. Specifically, a plurality of fine grooves are formed in three layers of the base film 35, the light diffusion layer 45, and the protective layer 13. Grooves are formed.
<下用光拡散シートの製造方法>
 当該下用光拡散シート64の製造方法としては、基材フィルム35を構成するシート体を形成する工程(基材フィルム形成工程)と、このシート体の一方の面側に保護層13を積層する工程(保護層積層工程)と、このシート体の他方の面側に光拡散層45を積層する工程(光拡散層積層工程)とを備える。当該下用光拡散シート64の製造方法における基材フィルム形成工程は、図8の下用光拡散シート34の基材フィルム形成工程と同様に行うことができる。また、当該下用光拡散シート64の製造方法における保護層積層工程は、図1の下用光拡散シート4の保護層積層工程と同様に行うことができる。さらに、当該下用光拡散シート64の製造方法における光拡散層積層工程は、図9の下用光拡散シート44の光拡散層積層工程と同様に行うことができる。
<Manufacturing method of light diffusion sheet for lower use>
As a manufacturing method of the said light diffusion sheet 64 for the said downward, the process (base film formation process) of forming the sheet body which comprises the base film 35, and the protective layer 13 are laminated | stacked on the one surface side of this sheet body. A step (protective layer laminating step) and a step of laminating the light diffusion layer 45 on the other surface side of the sheet body (light diffusion layer laminating step). The base film forming step in the manufacturing method of the lower light diffusion sheet 64 can be performed in the same manner as the base film forming step of the lower light diffusion sheet 34 in FIG. Moreover, the protective layer lamination process in the manufacturing method of the said lower light diffusion sheet 64 can be performed similarly to the protective layer lamination process of the lower light diffusion sheet 4 of FIG. Furthermore, the light diffusion layer stacking step in the method for manufacturing the lower light diffusion sheet 64 can be performed in the same manner as the light diffusion layer stacking step of the lower light diffusion sheet 44 of FIG.
<利点>
 当該下用光拡散シート64は、3層の樹脂層に複数の微細溝が形成されているので、ホットスポットの発生をさらに確実に抑制することができる。また、当該下用光拡散シート64は、全面に亘って略均一化された光線を出射し易い。
<Advantages>
Since the lower light diffusion sheet 64 has a plurality of fine grooves formed in the three resin layers, generation of hot spots can be more reliably suppressed. Further, the lower light diffusion sheet 64 easily emits light that is substantially uniform over the entire surface.
[第七実施形態]
<下用光拡散シート>
 図12及び図13の下用光拡散シート74は、図1及び図7~11の下用光拡散シート4,24,34,44,54,64に代えて図1のエッジライト型バックライトユニットに用いられる。図12の下用光拡散シート74は、基材フィルム11と、基材フィルム11の表面側に積層され、複数のビーズ14及びそのバインダー15を有する光拡散層12と、基材フィルム11の裏面側に積層される保護層75とを備える。下用光拡散シート74は、基材フィルム11、基材フィルム11の表面に直接積層される光拡散層12及び基材フィルム11の裏面に直接積層される保護層75の3層から構成されている(基材フィルム11、光拡散層12及び保護層75以外の他の層を有していない)。下用光拡散シート74は、平面視方形状に形成されている。当該下用光拡散シート74の基材フィルム11及び光拡散層12は、図1の下用光拡散シート4の基材フィルム11及び光拡散層12と同様であるため、同一符号を付して説明を省略する。
[Seventh embodiment]
<Light diffusion sheet for lower use>
12 and 13 is replaced with the edge light type backlight unit of FIG. 1 instead of the lower light diffusion sheets 4, 24, 34, 44, 54, 64 of FIGS. Used for. 12 is laminated on the surface side of the base film 11, the light diffusion layer 12 having a plurality of beads 14 and their binders 15, and the back surface of the base film 11. And a protective layer 75 laminated on the side. The lower light diffusion sheet 74 is composed of three layers: a base film 11, a light diffusion layer 12 that is directly laminated on the surface of the base film 11, and a protective layer 75 that is directly laminated on the back surface of the base film 11. (There are no layers other than the base film 11, the light diffusion layer 12, and the protective layer 75). The lower light diffusion sheet 74 is formed in a planar view shape. The base film 11 and the light diffusion layer 12 of the lower light diffusion sheet 74 are the same as the base film 11 and the light diffusion layer 12 of the lower light diffusion sheet 4 in FIG. Description is omitted.
(保護層)
 保護層75は、合成樹脂を主成分とする樹脂層である。保護層75の主成分としては、図1の下用光拡散シート4の保護層13の主成分と同様の合成樹脂が挙げられる。また、保護層75の平均厚さとしては、図1の下用光拡散シート4の保護層13と同様とすることができる。
(Protective layer)
The protective layer 75 is a resin layer mainly composed of a synthetic resin. As a main component of the protective layer 75, the same synthetic resin as the main component of the protective layer 13 of the lower light diffusion sheet 4 in FIG. The average thickness of the protective layer 75 can be the same as that of the protective layer 13 of the lower light diffusion sheet 4 in FIG.
 保護層75は、裏面に複数の微細溝76が形成されている。また、保護層75は、裏面の一端から他端側にかけて一定の領域に複数の微細溝76が形成されている。具体的には、保護層75は、平面視で複数のLED光源と対向する端縁から他端側にかけて一定の領域に複数の微細溝76が形成されている。また、保護層75の裏面における複数の微細溝76が形成されていない領域は平坦面として構成されている。各微細溝76は、断面略U字状に構成されている(つまり各微細溝76は断面三角形状に形成されていない)。複数の微細溝76は、回折格子を構成することが好ましい。 The protective layer 75 has a plurality of fine grooves 76 formed on the back surface. The protective layer 75 has a plurality of fine grooves 76 formed in a certain region from one end to the other end of the back surface. Specifically, the protective layer 75 has a plurality of fine grooves 76 formed in a certain region from the edge facing the plurality of LED light sources in the plan view to the other end side. Further, a region where the plurality of fine grooves 76 are not formed on the back surface of the protective layer 75 is configured as a flat surface. Each fine groove 76 has a substantially U-shaped cross section (that is, each fine groove 76 is not formed in a triangular cross section). The plurality of fine grooves 76 preferably constitute a diffraction grating.
 保護層75の裏面の一端及び他端間の長さLに対する複数の微細溝76が形成される領域の一端及び他端間の長さLの比(L/L)の下限としては、0.15が好ましく、0.2がより好ましく、0.25がさらに好ましい。一方、上記長さ比(L/L)の上限としては、0.5が好ましく、0.45がより好ましく、0.4がさらに好ましい。上記長さ比(L/L)が上記下限に満たないと、ホットスポットの発生を全面的に抑制することが困難になるおそれがある。逆に、上記長さ比(L/L)が上記上限を超えると、ホットスポット以外の領域における光線を複数の微細溝76の幅方向に伝搬し易くなるおそれがある。 As a lower limit of the ratio (L 4 / L 3 ) of the length L 4 between one end and the other end of the region where the plurality of fine grooves 76 are formed to the length L 3 between the one end and the other end of the back surface of the protective layer 75 Is preferably 0.15, more preferably 0.2, and even more preferably 0.25. On the other hand, the upper limit of the length ratio (L 4 / L 3 ) is preferably 0.5, more preferably 0.45, and still more preferably 0.4. If the length ratio (L 4 / L 3 ) is less than the lower limit, it may be difficult to completely suppress the occurrence of hot spots. On the other hand, when the length ratio (L 4 / L 3 ) exceeds the upper limit, there is a risk that light in a region other than the hot spot is likely to propagate in the width direction of the plurality of fine grooves 76.
 複数の微細溝76は、長手方向が保護層75の裏面の一端と平行方向に沿っている。具体的には、複数の微細溝76は、長手方向が複数のLED光源からの光線の平均方向に沿っている。さらに、各微細溝76の配向方向はランダムとされている。また、複数の微細溝76は、光線の拡散方向を制御するうえでは各々独立して形成されていることが好ましいが、一部の微細溝76は交叉していてもよい。なお、複数の微細溝76の平均配向方向、長手方向の平均長さ、平均幅、平均ピッチ、ピッチの標準偏差、単位長さ当たりの平均存在個数、平均深さ、及び深さの標準偏差としては、図1の下用光拡散シート4の複数の微細溝16と同様とすることができる。また、保護層75の複数の微細溝76が形成される面(裏面)における複数の微細溝76の配向方向と平行方向の算術平均粗さ(Ra)、最大高さ(Ry)、十点平均粗さ(Rz)、二乗平均平方根傾斜(RΔq)及び複数の微細溝27の配向方向と垂直方向の算術平均粗さ(Ra)、最大高さ(Ry)、十点平均粗さ(Rz)、二乗平均平方根傾斜(RΔq)としては、図1の下用光拡散シート4の保護層13の裏面と同様とすることができる。 The longitudinal direction of the plurality of fine grooves 76 is parallel to one end of the back surface of the protective layer 75. Specifically, the plurality of fine grooves 76 have a longitudinal direction along the average direction of light rays from the plurality of LED light sources. Furthermore, the orientation direction of each fine groove 76 is random. The plurality of fine grooves 76 are preferably formed independently for controlling the light diffusion direction, but some of the fine grooves 76 may cross each other. The average orientation direction, the average length in the longitudinal direction, the average width, the average pitch, the standard deviation of the pitch, the average number of units per unit length, the average depth, and the standard deviation of the depth of the plurality of fine grooves 76 Can be the same as the plurality of fine grooves 16 of the lower light diffusion sheet 4 in FIG. The arithmetic average roughness (Ra), maximum height (Ry), and ten-point average in the direction parallel to the orientation direction of the plurality of fine grooves 76 on the surface (back surface) of the protective layer 75 where the plurality of fine grooves 76 are formed. Roughness (Rz), root mean square slope (RΔq) and arithmetic average roughness (Ra) in the direction perpendicular to the orientation direction of the plurality of fine grooves 27, maximum height (Ry), ten-point average roughness (Rz), The root mean square slope (RΔq) can be the same as that of the back surface of the protective layer 13 of the lower light diffusion sheet 4 in FIG.
<下用光拡散シートの製造方法>
 当該下用光拡散シート74の製造方法としては、例えば図1の下用光拡散シート4の製造方法と同様の方法が挙げられる。
<Manufacturing method of light diffusion sheet for lower use>
As a manufacturing method of the said lower light diffusion sheet 74, the method similar to the manufacturing method of the lower light diffusion sheet 4 of FIG. 1 is mentioned, for example.
<利点>
 当該下用光拡散シート74は、保護層75の裏面の一端から他端側にかけて一定の領域に複数の微細溝76が形成されているので、ホットスポットの発生を抑制することができる。また、当該下用光拡散シート74は、保護層75の裏面の複数の微細溝76が形成されていない領域が平坦面であるので、ホットスポット以外における複数の微細溝76の幅方向に伝搬される光量の増加を抑えることができる。そのため、当該下用光拡散シート74は、全面に亘って略均一化された光線を容易かつ確実に出射し易い。
<Advantages>
Since the plurality of fine grooves 76 are formed in a certain region from one end of the back surface of the protective layer 75 to the other end side, the lower light diffusion sheet 74 can suppress the occurrence of hot spots. Further, the lower light diffusion sheet 74 has a flat surface in the back surface of the protective layer 75 where the plurality of fine grooves 76 are not formed, and thus is propagated in the width direction of the plurality of fine grooves 76 other than the hot spot. Increase in the amount of light emitted can be suppressed. For this reason, the lower light diffusion sheet 74 easily and reliably emits light that is substantially uniform over the entire surface.
[その他の実施形態]
 なお、本発明に係るバックライトユニット用光学シート及びバックライトユニットは、上記態様の他、種々の変更、改良を施した態様で実施することができる。例えば当該バックライトユニットは、上述のライトガイドフィルムに代えてライトガイドプレートを用いてもよい。また、当該バックライトユニット用光学シートは、下用光拡散シートである必要はなく、例えば図1に示すライトガイドフィルム、プリズムシート、上用光拡散シート又は反射シートであってもよく、ライトガイドプレートであってもよい。つまり、上述のライトガイドフィルム、プリズムシート、上用光拡散シート又は反射シートやライトガイドプレートの樹脂層の表面側又は裏面側に、特定方向に配向する複数の微細溝が形成されていてもよい。なお、例えば当該バックライトユニット用光学シートが上用光拡散シートでかつ複数の微細溝が回折格子を構成する場合、LED光源と回折格子との距離を大きくすることができるので、回折格子による回折効果を向上し易い。そのため、当該バックライトユニット用光学シートが上用光拡散シートである場合、液晶表示装置の輝度ムラをより確実に低減し易い。なお、当該バックライトユニット用光学シートが上用光拡散シートである場合、複数の微細溝が形成される部位及び複数の微細溝の構成としては、上述の下用光拡散シートと同様とすることができる。
[Other Embodiments]
In addition, the optical sheet for backlight units and the backlight unit according to the present invention can be implemented in various modifications and improvements in addition to the above aspects. For example, the backlight unit may use a light guide plate instead of the light guide film described above. Further, the optical sheet for the backlight unit does not have to be a lower light diffusion sheet, and may be, for example, a light guide film, a prism sheet, an upper light diffusion sheet, or a reflection sheet shown in FIG. It may be a plate. That is, a plurality of fine grooves oriented in a specific direction may be formed on the surface side or the back side of the resin layer of the light guide film, prism sheet, upper light diffusion sheet or reflection sheet or light guide plate described above. . For example, when the optical sheet for the backlight unit is an upper light diffusion sheet and a plurality of fine grooves form a diffraction grating, the distance between the LED light source and the diffraction grating can be increased. It is easy to improve the effect. For this reason, when the backlight unit optical sheet is an upward light diffusion sheet, it is easier to reliably reduce luminance unevenness of the liquid crystal display device. In addition, when the optical sheet for the backlight unit is an upper light diffusion sheet, the structure where the plurality of fine grooves are formed and the plurality of fine grooves are the same as those of the above-described light diffusion sheet for the bottom. Can do.
 当該バックライトユニット用光学シートは、プリズムシートを2枚貼り合わせたシート体の裏面に配設されることが好ましい。プリズムシートを2枚貼り合わせたシート体は、プリズムシート間に空気層が形成され難いため隠蔽性が低い。これに対し、当該バックライトユニット用光学シートが上記シート体の裏面に配設されたバックライトユニットは、当該光学シートが複数の微細溝の幅方向に伝搬される光量を増加することができるので、隠蔽効果を十分に向上することができる。 The optical sheet for the backlight unit is preferably disposed on the back surface of a sheet body obtained by bonding two prism sheets. A sheet body in which two prism sheets are bonded together has low concealability because an air layer is hardly formed between the prism sheets. In contrast, the backlight unit in which the optical sheet for the backlight unit is disposed on the back surface of the sheet body can increase the amount of light that is propagated in the width direction of the plurality of fine grooves. The hiding effect can be sufficiently improved.
 当該バックライトユニット用光学シートが光拡散シート(下用光拡散シート又は上用光拡散シート)である場合、光拡散層の裏面及び/又は保護層の表面に複数の微細溝が形成されてもよく、また複数の樹脂層の任意の表面及び/裏面に複数の微細溝が形成されてもよい。 When the optical sheet for the backlight unit is a light diffusion sheet (lower light diffusion sheet or upper light diffusion sheet), even if a plurality of fine grooves are formed on the back surface of the light diffusion layer and / or the surface of the protective layer. In addition, a plurality of fine grooves may be formed on arbitrary front and / or back surfaces of the plurality of resin layers.
 当該バックライトユニット用光学シートの樹脂層の一定の領域に複数の微細溝が形成される場合、この領域は任意の樹脂層に形成することができる。例えば、当該バックライトユニット用光学シートが光拡散シートである場合、この複数の微細溝が形成される領域は、基材フィルムの表裏面、光拡散層の表裏面及び/又は保護層の表裏面のいずれに形成されてもよい。また、この複数の微細溝が形成される領域は、基材フィルム、光拡散層及び保護層のうちの2層又は3層に形成されてもよい。 When a plurality of fine grooves are formed in a certain region of the resin layer of the backlight unit optical sheet, this region can be formed in an arbitrary resin layer. For example, when the optical sheet for the backlight unit is a light diffusion sheet, the regions where the plurality of fine grooves are formed are the front and back surfaces of the base film, the front and back surfaces of the light diffusion layer, and / or the front and back surfaces of the protective layer. Either of them may be formed. Moreover, the area | region in which this some fine groove | channel is formed may be formed in 2 layers or 3 layers among a base film, a light-diffusion layer, and a protective layer.
 上記複数の微細溝は、例えば図14に示すように配設されてもよい。図14の複数の微細溝86は、樹脂層の表面及び/又は裏面の複数のLED光源82と対向する端縁から他端側にかけて徐々に存在割合が少なくなっている。当該バックライトユニット用光学シートは、かかる構成によっても、ホットスポットの発生を抑制することができる。また、当該バックライトユニット用光学シートは、LED光源82と対向する端縁から他端側にかけて複数の微細溝86の存在割合が徐々に少なくなっているので、ホットスポット以外においては複数の微細溝86の幅方向に伝搬する光量を減少することができる。なお、複数の微細溝86の平均配向方向、長手方向の平均長さ、平均幅、平均ピッチ、ピッチの標準偏差、単位長さ当たりの平均存在個数、平均深さ、及び深さの標準偏差としては、図1の下用光拡散シート4の複数の微細溝16と同様とすることができる。また、樹脂層の複数の微細溝86が形成される面における複数の微細溝86の配向方向と平行方向の算術平均粗さ(Ra)、最大高さ(Ry)、十点平均粗さ(Rz)、二乗平均平方根傾斜(RΔq)及び複数の微細溝27の配向方向と垂直方向の算術平均粗さ(Ra)、最大高さ(Ry)、十点平均粗さ(Rz)、二乗平均平方根傾斜(RΔq)としては、図1の下用光拡散シート4の保護層13の裏面と同様とすることができる。 The plurality of fine grooves may be arranged as shown in FIG. 14, for example. The plurality of fine grooves 86 in FIG. 14 gradually decrease in the ratio of presence from the edge facing the plurality of LED light sources 82 on the front surface and / or back surface of the resin layer to the other end side. The backlight unit optical sheet can suppress the occurrence of hot spots even with this configuration. In addition, the optical sheet for the backlight unit has a plurality of fine grooves 86 that gradually decrease from the edge facing the LED light source 82 to the other end side. The amount of light propagating in the width direction 86 can be reduced. The average orientation direction, the average length in the longitudinal direction, the average width, the average pitch, the standard deviation of the pitch, the average number of existing units per unit length, the average depth, and the standard deviation of the depth of the plurality of fine grooves 86 Can be the same as the plurality of fine grooves 16 of the lower light diffusion sheet 4 in FIG. Further, the arithmetic average roughness (Ra), the maximum height (Ry), and the ten-point average roughness (Rz) in the direction parallel to the orientation direction of the plurality of fine grooves 86 on the surface of the resin layer on which the plurality of fine grooves 86 are formed. ), Root mean square slope (RΔq) and arithmetic mean roughness (Ra), maximum height (Ry), ten-point mean roughness (Rz), root mean square slope in the direction perpendicular to the orientation direction of the plurality of fine grooves 27 (RΔq) can be the same as that of the back surface of the protective layer 13 of the lower light diffusion sheet 4 in FIG.
 上記光拡散シートの構成は、上述の基材フィルム、光拡散層及び保護層の3層体に限定されるものではなく、例えば基材フィルム及び光拡散層の間や、基材フィルム及び保護層の間に他の層が積層されていてもよい。また、上記光拡散シートは、例えば上記保護層に代えて、樹脂マトリックス中に複数のビーズが分散されるスティッキング防止層を有していてもよく、このスティッキング防止層に複数の微細溝が形成されてもよい。さらに、上記光拡散層は、必ずしも保護層を有していなくてもよい。 The configuration of the light diffusing sheet is not limited to the three-layered body of the base film, the light diffusing layer, and the protective layer. For example, between the base film and the light diffusing layer, or between the base film and the protective layer. Another layer may be laminated between the layers. Further, the light diffusion sheet may have, for example, a sticking prevention layer in which a plurality of beads are dispersed in a resin matrix instead of the protective layer, and a plurality of fine grooves are formed in the sticking prevention layer. May be. Furthermore, the light diffusion layer does not necessarily have a protective layer.
 上記光拡散シートの光拡散層は、ビーズ及びそのバインダーを有している必要はなく、例えば樹脂層の表面にエンボス加工が施された構成を採用することも可能である。また、このエンボス加工によって形成された微細凹凸を有する面に複数の微細溝が形成されてもよい。 The light diffusing layer of the light diffusing sheet does not need to have beads and its binder, and for example, a structure in which the surface of the resin layer is embossed can be adopted. Further, a plurality of fine grooves may be formed on the surface having fine irregularities formed by this embossing.
 当該バックライトユニット用光学シートは、表面に凹凸形状を有する機能層を有していてもよい。また、当該バックライトユニット用光学シートは、このような機能層を有する場合、この機能層が樹脂層として構成され、この機能層の表面又は裏面に複数の微細溝が形成されてもよく、またこの機能層に積層される他の層の表面又は裏面に複数の微細溝が形成されてもよい。なお、このような凹凸形状としては、例えばエンボス形状、プリズム形状、ウェーブ形状等が挙げられる。 The backlight unit optical sheet may have a functional layer having an uneven shape on the surface. Moreover, when the optical sheet for a backlight unit has such a functional layer, the functional layer may be configured as a resin layer, and a plurality of fine grooves may be formed on the front surface or the back surface of the functional layer. A plurality of fine grooves may be formed on the front surface or the back surface of another layer laminated on the functional layer. In addition, as such uneven | corrugated shape, an emboss shape, a prism shape, a wave shape etc. are mentioned, for example.
 また、上記複数の微細溝の具体的形状としては、上述の実施形態の形状に限定されるものではなく、例えば図15に示すような断面角U字状、図16に示すような断面三角形状、図17に示すようなスリット状に形成されていてもよい。 Further, the specific shape of the plurality of fine grooves is not limited to the shape of the above-described embodiment. For example, the cross-sectional angle U-shape as shown in FIG. 15 and the cross-sectional triangle shape as shown in FIG. 17 may be formed in a slit shape as shown in FIG.
 当該バックライトユニットは、複数のLED光源を有することが好ましいが、1つのLED光源のみを有していてもよい。また、当該バックライトユニットにおける光学シートの具体的種類は特に限定されるものではない。当該バックライトユニットは、ライトガイドフィルムの表面側に複数の光学シートを有することが好ましいが、1つの光学シートのみを有していてもよい。 The backlight unit preferably has a plurality of LED light sources, but may have only one LED light source. Further, the specific type of the optical sheet in the backlight unit is not particularly limited. The backlight unit preferably has a plurality of optical sheets on the surface side of the light guide film, but may have only one optical sheet.
 当該バックライトユニットは、必ずしもエッジライト型バックライトユニットである必要はなく、直下型バックライトユニットであってもよい。 The backlight unit is not necessarily an edge light type backlight unit, and may be a direct type backlight unit.
 当該バックライトユニットは、パーソナルコンピュータや液晶テレビ等、比較的大型の表示装置や、スマートフォン等の携帯電話端末や、タブレット端末等の携帯型情報端末に用いることができる。 The backlight unit can be used for relatively large display devices such as personal computers and liquid crystal televisions, mobile phone terminals such as smartphones, and portable information terminals such as tablet terminals.
 以下、実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
[No.1]
 ポリエチレンテレフタレートを主成分とする基材フィルム形成用樹脂をTダイから押出成形し、さらに複数の微細溝の反転形状を表面に有する金型を用い、上記押出成形体の一方の面に複数の微細溝を転写することで平均厚さ75μmの基材フィルムを製造した。さらに、この基材フィルムの複数の微細溝が形成された面に、複数のビーズ及びバインダーを有する光拡散層を積層し、No.1の光拡散シートを得た。この光拡散シートの基材フィルムの屈折率とバインダーの屈折率との差は0.09であった。また、この光拡散シートの微細溝の平均幅は9.3μm、平均深さは2.8μm、平均ピッチは9.3μm、複数の微細溝のピッチの標準偏差は6.54μm、複数の微細溝の深さの標準偏差は1.13μm、複数の微細溝の配向方向と垂直方向の算術平均粗さ(Ra)は1.34μmであった。なお、図19はNo.1の基材フィルムの部分拡大平面写真である。
[No. 1]
A base film-forming resin mainly composed of polyethylene terephthalate is extruded from a T-die, and a mold having a reverse shape of a plurality of fine grooves on the surface is used. A substrate film having an average thickness of 75 μm was produced by transferring the grooves. Further, a light diffusion layer having a plurality of beads and a binder is laminated on the surface of the base film on which a plurality of fine grooves are formed. 1 light diffusion sheet was obtained. The difference between the refractive index of the base film of the light diffusion sheet and the refractive index of the binder was 0.09. The average width of the fine grooves of this light diffusion sheet is 9.3 μm, the average depth is 2.8 μm, the average pitch is 9.3 μm, the standard deviation of the pitch of the plurality of fine grooves is 6.54 μm, and the plurality of fine grooves The standard deviation of the depth was 1.13 μm, and the arithmetic average roughness (Ra) in the direction perpendicular to the orientation direction of the plurality of fine grooves was 1.34 μm. Note that FIG. It is a partial expansion plane photograph of 1 base film.
[No.2]
 No.1と同様の樹脂を用いて平均厚さ75μmのシート体を形成した。さらに、このシート体の一方の面にレーザーにて複数の微細溝を形成し、基材フィルムを製造した。さらに、この基材フィルムの複数の微細溝が形成された面に、No.1と同様の複数のビーズ及びバインダーを有する光拡散層を積層し、No.2の光拡散シートを得た。この光拡散シートの微細溝の平均幅は26.9μm、平均深さは6.44μm、平均ピッチは26.9μm、複数の微細溝のピッチの標準偏差は5.56μm、複数の微細溝の深さの標準偏差は2.38μm、複数の微細溝の配向方向と垂直方向の算術平均粗さ(Ra)は0.92μmであった。なお、図20はNo.2の基材フィルムの部分拡大平面写真である。
[No. 2]
No. A sheet body having an average thickness of 75 μm was formed using the same resin as in No. 1. Furthermore, a plurality of fine grooves were formed by laser on one surface of the sheet body to produce a base film. Further, on the surface of the base film on which a plurality of fine grooves were formed, No. A light diffusion layer having a plurality of beads and a binder similar to those of No. 1 is laminated. 2 light diffusion sheets were obtained. The average width of the fine grooves of this light diffusion sheet is 26.9 μm, the average depth is 6.44 μm, the average pitch is 26.9 μm, the standard deviation of the pitch of the plurality of fine grooves is 5.56 μm, the depth of the plurality of fine grooves The standard deviation of the thickness was 2.38 μm, and the arithmetic average roughness (Ra) in the direction perpendicular to the orientation direction of the plurality of fine grooves was 0.92 μm. Note that FIG. 2 is a partially enlarged plan view of a base film of No. 2;
[No.3]
 No.1と同様の樹脂を用いて平均厚さ75μmのシート体を形成した。さらに、このシート体の一方の面にヤスリにて複数の微細溝を形成し、基材フィルムを製造した。さらに、この基材フィルムの複数の微細溝が形成された面に、No.1と同様の複数のビーズ及びバインダーを有する光拡散層を積層し、No.3の光拡散シートを得た。この光拡散シートの微細溝の平均幅は1.0μm、平均長さは30mm、平均深さは0.5μm、平均ピッチは18.84μm、複数の微細溝のピッチの標準偏差は8.29μm、複数の微細溝の深さの標準偏差は0.56μm、複数の微細溝の配向方向と垂直方向の算術平均粗さ(Ra)は0.30μmであった。なお、図21はNo.3の基材フィルムの部分拡大平面写真である。
[No. 3]
No. A sheet body having an average thickness of 75 μm was formed using the same resin as in No. 1. Furthermore, a plurality of fine grooves were formed with a file on one surface of the sheet body to produce a base film. Further, on the surface of the base film on which a plurality of fine grooves were formed, No. A light diffusion layer having a plurality of beads and a binder similar to those of No. 1 is laminated. 3 light diffusion sheet was obtained. The average width of the fine grooves of this light diffusion sheet is 1.0 μm, the average length is 30 mm, the average depth is 0.5 μm, the average pitch is 18.84 μm, the standard deviation of the pitch of the plurality of fine grooves is 8.29 μm, The standard deviation of the depth of the plurality of fine grooves was 0.56 μm, and the arithmetic average roughness (Ra) in the direction perpendicular to the orientation direction of the plurality of fine grooves was 0.30 μm. Note that FIG. 3 is a partially enlarged plan view of a substrate film 3.
[No.4]
 No.1と同様の樹脂を用いて平均厚さ75μmのシート体を形成した。さらに、このシート体の一方の面に切削バイトにて複数の微細溝を形成し、基材フィルムを製造した。さらに、この基材フィルムの複数の微細溝が形成された面に、No.1と同様の複数のビーズ及びバインダーを有する光拡散層を積層し、No.4の光拡散シートを得た。この光拡散シートの微細溝の平均幅は32.7μm、平均深さは28.1μm、平均ピッチは31.5μm、複数の微細溝のピッチの標準偏差は9.73μm、複数の微細溝の深さの標準偏差は0.89μm、複数の微細溝の配向方向と垂直方向の算術平均粗さ(Ra)は4.30μmであった。
[No. 4]
No. A sheet body having an average thickness of 75 μm was formed using the same resin as in No. 1. Further, a plurality of fine grooves were formed on one surface of the sheet body with a cutting bite to produce a base film. Further, on the surface of the base film on which a plurality of fine grooves were formed, No. A light diffusion layer having a plurality of beads and a binder similar to those of No. 1 is laminated. 4 light diffusion sheets were obtained. The average width of the fine grooves of this light diffusion sheet is 32.7 μm, the average depth is 28.1 μm, the average pitch is 31.5 μm, the standard deviation of the pitch of the plurality of fine grooves is 9.73 μm, the depth of the plurality of fine grooves The standard deviation of the thickness was 0.89 μm, and the arithmetic average roughness (Ra) in the direction perpendicular to the orientation direction of the plurality of fine grooves was 4.30 μm.
[No.5]
 複数の微細溝を形成しない以外はNo.1と同様の方法でNo.5の光拡散シートを得た。
[No. 5]
No. except that a plurality of fine grooves are not formed. 1 in the same manner as in No. 1. 5 light diffusion sheet was obtained.
 No.1~No.5の光拡散シートの品質を表1に示す。
Figure JPOXMLDOC01-appb-T000001
No. 1-No. Table 1 shows the quality of the light diffusion sheet 5.
Figure JPOXMLDOC01-appb-T000001
[実施例1~5]
 No.1の光拡散シートを、ライトガイドフィルムにおける複数のLED光源からの光線の平均方向を基準とする複数の微細溝の平均配向方向が表2の角度となるように、複数のLED光源を有する液晶表示装置のエッジライト型バックライトユニットのライトガイドフィルムの表面側に積層した。なお、図22は、実施例1におけるNo.1の光拡散シートの側面写真である。
[Examples 1 to 5]
No. A liquid crystal having a plurality of LED light sources such that the average orientation direction of the plurality of fine grooves with respect to the average direction of light rays from the plurality of LED light sources in the light guide film is the angle shown in Table 2. It laminated | stacked on the surface side of the light guide film of the edge light type backlight unit of a display apparatus. Note that FIG. It is a side view photograph of 1 light diffusion sheet.
[実施例6~10]
 No.2の光拡散シートを、ライトガイドフィルムにおける複数のLED光源からの光線の平均方向を基準とする複数の微細溝の平均配向方向が表2の角度となるように、複数のLED光源を有する液晶表示装置のエッジライト型バックライトユニットのライトガイドフィルムの表面側に積層した。
[Examples 6 to 10]
No. A liquid crystal having a plurality of LED light sources such that the average orientation direction of the plurality of fine grooves with respect to the average direction of light rays from the plurality of LED light sources in the light guide film is an angle shown in Table 2. It laminated | stacked on the surface side of the light guide film of the edge light type backlight unit of a display apparatus.
[実施例11~15]
 No.3の光拡散シートを、ライトガイドフィルムにおける複数のLED光源からの光線の平均方向を基準とする複数の微細溝の平均配向方向が表2の角度となるように、複数のLED光源を有する液晶表示装置のエッジライト型バックライトユニットのライトガイドフィルムの表面側に積層した。
[Examples 11 to 15]
No. 3 is a liquid crystal having a plurality of LED light sources such that the average orientation direction of the plurality of fine grooves based on the average direction of light rays from the plurality of LED light sources in the light guide film is the angle shown in Table 2. It laminated | stacked on the surface side of the light guide film of the edge light type backlight unit of a display apparatus.
[実施例16~20]
 No.4の光拡散シートを、ライトガイドフィルムにおける複数のLED光源からの光線の平均方向を基準とする複数の微細溝の平均配向方向が表2の角度となるように、複数のLED光源を有する液晶表示装置のエッジライト型バックライトユニットのライトガイドフィルムの表面側に積層した。
[Examples 16 to 20]
No. 4 is a liquid crystal having a plurality of LED light sources such that the average orientation direction of the plurality of fine grooves based on the average direction of light rays from the plurality of LED light sources in the light guide film is an angle shown in Table 2. It laminated | stacked on the surface side of the light guide film of the edge light type backlight unit of a display apparatus.
[比較例]
 No.5の光拡散シートを複数のLED光源を有する液晶表示装置のエッジライト型バックライトユニットのライトガイドフィルムの表面側に積層した。なお、図23は、比較例におけるNo.5の光拡散シートの側面写真である。
[Comparative example]
No. 5 light diffusion sheets were laminated on the surface side of the light guide film of the edge light type backlight unit of the liquid crystal display device having a plurality of LED light sources. Note that FIG. 5 is a side photograph of the light diffusing sheet of FIG.
<半値角>
 実施例1~20及び比較例について、ELDIM社製の「EzContrast」を用い、光拡散シートの正面輝度の半値角を測定した。この測定結果を表2に示す。
<Half angle>
For Examples 1 to 20 and Comparative Example, the half-value angle of the front luminance of the light diffusion sheet was measured using “EzContrast” manufactured by ELDIM. The measurement results are shown in Table 2.
<輝度ムラ>
 実施例1~20及び比較例のバックライトユニットを液晶表示装置に組み込み、この液晶表示装置の画像を観察した。輝度ムラの有無を目視にて確認し、以下の基準で評価した。
A:輝度ムラが全く確認されない。
B:注視すると平面視における光源の近傍に僅かに輝度ムラが確認される。
C:注視しない場合でも僅かに平面視における光源近傍で輝度ムラが確認される。
D:注視しなくても輝度ムラが確認される。
<Luminance unevenness>
The backlight units of Examples 1 to 20 and the comparative example were incorporated in a liquid crystal display device, and images of the liquid crystal display device were observed. The presence or absence of uneven brightness was confirmed visually and evaluated according to the following criteria.
A: No luminance unevenness is confirmed.
B: When observed, slight luminance unevenness is confirmed in the vicinity of the light source in plan view.
C: Brightness unevenness is slightly observed in the vicinity of the light source in a plan view even when no gaze is observed.
D: Brightness unevenness is confirmed without gazing.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<評価結果>
 表2に示すように、ライトガイドフィルムにおける複数のLED光源からの光線の平均方向を基準とする複数の微細溝の平均配向方向が45°以下の実施例1~20は、比較例に比べてLED光源からの光線の垂直方向における輝度の半値角が大きくなり、これにより輝度ムラが抑制できることが分かった。また、複数の微細溝の平均配向方向は小さくなるほど、LED光源からの光線の垂直方向における輝度の半値角が大きくなり、輝度ムラを抑制し易いことが分かった。さらに、金型を用いて複数の微細溝を形成した実施例1~5、レーザーによって複数の微細溝を形成した実施例6~10、及び切削バイトによって複数の微細溝を形成した実施例16~20は、ヤスリによって複数の微細溝を形成した実施例11~15に比べて所望の微細溝が形成でき、これによりLED光源からの光線の垂直方向における輝度の半値角を大きくし、輝度ムラを抑制し易いことが分かった。加えて、図22,23に示すように、実施例1における光拡散シートによると比較例における光拡散シートよりもLED光源に起因するホットスポットの発生が抑制されていることが分かった。
<Evaluation results>
As shown in Table 2, Examples 1 to 20 in which the average orientation direction of the plurality of fine grooves based on the average direction of light rays from the plurality of LED light sources in the light guide film is 45 ° or less are compared with the comparative example. It has been found that the half-value angle of the luminance in the vertical direction of the light from the LED light source is increased, thereby suppressing luminance unevenness. Moreover, it turned out that the half value angle of the brightness | luminance in the perpendicular direction of the light ray from a LED light source becomes large, and a brightness nonuniformity is easy to be suppressed, so that the average orientation direction of a some fine groove becomes small. Further, Examples 1 to 5 in which a plurality of fine grooves are formed using a mold, Examples 6 to 10 in which a plurality of fine grooves are formed by a laser, and Examples 16 to 10 in which a plurality of fine grooves are formed by a cutting tool. No. 20 can form a desired fine groove as compared with Examples 11 to 15 in which a plurality of fine grooves are formed by a file, thereby increasing the half-value angle of the luminance in the vertical direction of the light from the LED light source, and uneven luminance. It turns out that it is easy to suppress. In addition, as shown in FIGS. 22 and 23, it was found that the occurrence of hot spots caused by the LED light source was suppressed according to the light diffusion sheet in Example 1 as compared with the light diffusion sheet in the comparative example.
 以上のように、本発明のバックライトユニット用光学シート及びバックライトユニットは、ホットスポットを抑制することができるので、高品質な透過型液晶表示装置等、種々の液晶表示装置に好適に用いられる。 As described above, since the optical sheet for a backlight unit and the backlight unit of the present invention can suppress hot spots, they are suitably used for various liquid crystal display devices such as a high-quality transmissive liquid crystal display device. .
 1 ライトガイドフィルム
 2,82 LED光源
 3 光学シート
 4,24,34,44,54,64,74 下用光拡散シート
 5 第1プリズムシート
 6 第2プリズムシート
 7 上用光拡散シート
 8 反射シート
 11,25,35 基材フィルム
 12,36,45 光拡散層
 13,26,37,75 保護層
 14,38,46 ビーズ
 15,39,47 バインダー
 16,27,40,48,76,86 微細溝
 17 凹部
 18 隆起部
 101 エッジライト型バックライトユニット
 102 光源
 103 導光シート
 104 光学シート
 105 反射シート
 106 下用光拡散シート
 107 プリズムシート
 108 上用光拡散シート
DESCRIPTION OF SYMBOLS 1 Light guide film 2,82 LED light source 3 Optical sheet 4,24,34,44,54,64,74 Lower light diffusion sheet 5 First prism sheet 6 Second prism sheet 7 Upper light diffusion sheet 8 Reflective sheet 11 , 25, 35 Base film 12, 36, 45 Light diffusion layer 13, 26, 37, 75 Protective layer 14, 38, 46 Beads 15, 39, 47 Binder 16, 27, 40, 48, 76, 86 Fine groove 17 Concave portion 18 Raised portion 101 Edge light type backlight unit 102 Light source 103 Light guide sheet 104 Optical sheet 105 Reflective sheet 106 Light diffusion sheet for lower side 107 Prism sheet 108 Light diffusion sheet for upper side

Claims (11)

  1.  LED光源から出射される光線を表面側に導く液晶表示装置のバックライトユニット用光学シートであって、
     1又は複数の樹脂層を備え、
     これらの樹脂層のうち少なくも1つの樹脂層の表面側又は裏面側に特定方向に配向する複数の微細溝が形成されていることを特徴とするバックライトユニット用光学シート。
    An optical sheet for a backlight unit of a liquid crystal display device for guiding light emitted from an LED light source to the surface side,
    Comprising one or more resin layers,
    An optical sheet for a backlight unit, wherein a plurality of fine grooves oriented in a specific direction are formed on the front side or the back side of at least one of the resin layers.
  2.  上記複数の微細溝の平均配向方向と垂直方向における複数の微細溝の単位長さ当たりの平均存在個数が10本/mm以上10000本/mm以下である請求項1に記載のバックライトユニット用光学シート。 2. The backlight unit optical according to claim 1, wherein an average number of the plurality of fine grooves per unit length in a direction perpendicular to an average orientation direction of the plurality of fine grooves is 10 / mm or more and 10,000 / mm or less. Sheet.
  3.  上記樹脂層の複数の微細溝が形成される面における上記複数の微細溝の配向方向と垂直方向の算術平均粗さ(Ra)が0.01μm以上5μm以下である請求項1又は請求項2に記載のバックライトユニット用光学シート。 The arithmetic average roughness (Ra) in the direction perpendicular to the orientation direction of the plurality of microgrooves on the surface of the resin layer on which the microgrooves are formed is 0.01 μm or more and 5 μm or less. The optical sheet for backlight units as described.
  4.  上記複数の微細溝が回折格子を構成する請求項1、請求項2又は請求項3に記載のバックライトユニット用光学シート。 The optical sheet for a backlight unit according to claim 1, 2 or 3, wherein the plurality of fine grooves constitute a diffraction grating.
  5.  上記光学シートが、
     基材フィルムと、
     この基材フィルムの表面側に積層され、複数のビーズ及びそのバインダーを有する光拡散層と、
     上記基材フィルムの裏面側に積層される保護層と
     を備える光拡散シートである請求項1から請求項4のいずれか1項に記載のバックライトユニット用光学シート。
    The optical sheet is
    A base film;
    Laminated on the surface side of this base film, a light diffusion layer having a plurality of beads and its binder, and
    An optical sheet for a backlight unit according to any one of claims 1 to 4, wherein the optical sheet is a light diffusing sheet comprising a protective layer laminated on the back side of the base film.
  6.  上記保護層の裏面側に上記複数の微細溝が形成されている請求項5に記載のバックライトユニット用光学シート。 The optical sheet for a backlight unit according to claim 5, wherein the plurality of fine grooves are formed on the back side of the protective layer.
  7.  表面に凹凸形状を有する機能層を備える請求項1から請求項4のいずれか1項に記載のバックライトユニット用光学シート。 The optical sheet for a backlight unit according to any one of claims 1 to 4, further comprising a functional layer having a concavo-convex shape on a surface thereof.
  8.  1つの樹脂層が表面に複数の微細凹凸を有し、この樹脂層の複数の微細凹凸を有する面に上記複数の微細溝が形成されている請求項1から請求項7のいずれか1項に記載のバックライトユニット用光学シート。 8. The method according to claim 1, wherein one resin layer has a plurality of fine irregularities on a surface, and the plurality of fine grooves are formed on a surface of the resin layer having the plurality of fine irregularities. The optical sheet for backlight units as described.
  9.  端面側から入射した光線を表面側に導くライトガイドフィルム又はライトガイドプレートと、
     このライトガイドフィルム又はライトガイドプレートの端面側に配設され、ライトガイドフィルム又はライトガイドプレートの端面に光線を出射する1又は複数のLED光源と、
     上記ライトガイドフィルム又はライトガイドプレートの表面側に重畳される請求項1から請求項8のいずれか1項に記載の光学シートと
     を備える液晶表示装置のバックライトユニット。
    A light guide film or a light guide plate that guides light incident from the end surface side to the surface side;
    One or a plurality of LED light sources disposed on the end face side of the light guide film or light guide plate and emitting light rays to the end face of the light guide film or light guide plate;
    The backlight unit of a liquid crystal display device provided with the optical sheet of any one of Claims 1-8 superimposed on the surface side of the said light guide film or light guide plate.
  10.  上記光学シートが上記ライトガイドフィルム又はライトガイドプレートの表面に直接重畳されている請求項9に記載の液晶表示装置のバックライトユニット。 The backlight unit of the liquid crystal display device according to claim 9, wherein the optical sheet is directly superimposed on a surface of the light guide film or the light guide plate.
  11.  平面視で、上記ライトガイドフィルム又はライトガイドプレートにおけるLED光源からの光線の平均方向を基準とする上記光学シートの複数の微細溝の平均配向方向が±45°以下である請求項9又は請求項10に記載のバックライトユニット。 The average orientation direction of the plurality of fine grooves of the optical sheet based on the average direction of light rays from the LED light source in the light guide film or light guide plate in plan view is ± 45 ° or less. The backlight unit according to 10.
PCT/JP2016/087122 2015-12-17 2016-12-13 Optical sheet for backlight unit and backlight unit WO2017104677A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680072888.7A CN108474876B (en) 2015-12-17 2016-12-13 Optical sheet for backlight unit and backlight unit
US16/061,706 US10754083B2 (en) 2015-12-17 2016-12-13 Optical sheet for backlight unit and backlight unit
KR1020187020002A KR102097667B1 (en) 2015-12-17 2016-12-13 Optical sheet and backlight unit for backlight unit

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015246778 2015-12-17
JP2015-246778 2015-12-17
JP2016-240993 2016-12-13
JP2016240993A JP6974004B2 (en) 2015-12-17 2016-12-13 Optical sheet for backlight unit and backlight unit

Publications (1)

Publication Number Publication Date
WO2017104677A1 true WO2017104677A1 (en) 2017-06-22

Family

ID=59056706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087122 WO2017104677A1 (en) 2015-12-17 2016-12-13 Optical sheet for backlight unit and backlight unit

Country Status (1)

Country Link
WO (1) WO2017104677A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190114872A (en) * 2018-03-30 2019-10-10 케이와 인코포레이티드 Light-diffusing laminate, backlight unit, and liquid crystal display device
US11143914B2 (en) 2019-03-13 2021-10-12 Keiwa Inc. Multilayer of light diffusers, backlight unit, and liquid crystal display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098810A (en) * 2000-09-21 2002-04-05 Keiwa Inc Anisotropic diffusing sheet, method for manufacturing the anisotropic diffusing sheet, and back light unit using the anisotropic diffusing sheet
JP2003050306A (en) * 2001-06-01 2003-02-21 Daicel Chem Ind Ltd Anisotropic diffusion film
JP2009300989A (en) * 2008-05-15 2009-12-24 Mitsubishi Rayon Co Ltd Light deflection sheet and surface light source apparatus equipped with the same
JP2012226290A (en) * 2011-04-08 2012-11-15 Asahi Kasei Corp Diffusion sheet and liquid crystal display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098810A (en) * 2000-09-21 2002-04-05 Keiwa Inc Anisotropic diffusing sheet, method for manufacturing the anisotropic diffusing sheet, and back light unit using the anisotropic diffusing sheet
JP2003050306A (en) * 2001-06-01 2003-02-21 Daicel Chem Ind Ltd Anisotropic diffusion film
JP2009300989A (en) * 2008-05-15 2009-12-24 Mitsubishi Rayon Co Ltd Light deflection sheet and surface light source apparatus equipped with the same
JP2012226290A (en) * 2011-04-08 2012-11-15 Asahi Kasei Corp Diffusion sheet and liquid crystal display device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190114872A (en) * 2018-03-30 2019-10-10 케이와 인코포레이티드 Light-diffusing laminate, backlight unit, and liquid crystal display device
KR102342045B1 (en) * 2018-03-30 2021-12-22 케이와 인코포레이티드 Light-diffusing laminate, backlight unit, and liquid crystal display device
US11150512B2 (en) 2018-11-16 2021-10-19 Keiwa Inc. Optical sheet, backlight unit, liquid crystal display device, and information device
US11360350B2 (en) 2018-11-16 2022-06-14 Keiwa Inc. Optical sheet, backlight unit, liquid crystal display device, and information device
US11886075B2 (en) 2018-11-16 2024-01-30 Keiwa Incorporated Optical sheet, backlight unit, liquid crystal display device, and information device
US11143914B2 (en) 2019-03-13 2021-10-12 Keiwa Inc. Multilayer of light diffusers, backlight unit, and liquid crystal display device

Similar Documents

Publication Publication Date Title
US10386567B2 (en) Optical sheet for liquid crystal display device, backlight unit for liquid crystal display device and production method of optical sheet for liquid crystal display device
TWI684049B (en) Optical sheet for liquid crystal display device, and backlight unit for liquid crystal display device
KR20110108316A (en) Optical substrates having light collimating and diffusion structures
WO2006026743A1 (en) Enhanced light diffusing sheet
JP2017107193A (en) Upper light diffusion sheet and backlight unit
KR101094690B1 (en) Optical sheet for liquid crystal display apparatus and backlight unit using the same
KR20080011139A (en) Light-redirecting film containing optical modification layer
TWI639871B (en) Optical sheet for liquid crystal display device, backlight unit for liquid crystal display device and production method of optical sheet for liquid crystal display device
US10459151B2 (en) Optical sheet for liquid crystal display device, and backlight unit for liquid crystal display device
JP2010210882A (en) Optical sheet and display using the same
JP6974004B2 (en) Optical sheet for backlight unit and backlight unit
WO2017104677A1 (en) Optical sheet for backlight unit and backlight unit
WO2021235491A1 (en) Optical sheet, backlight unit, liquid crystal display apparatus, and information device
TW202229935A (en) Light diffusion sheet, backlight unit, liquid crystal display device, information apparatus, and method for manufacturing light diffusion sheet
TWI653472B (en) Prism lens for backlight unit and backlight unit for liquid crystal display device
JP2004145329A (en) Optical sheet and back light unit using the same
WO2022250006A1 (en) Light diffusion sheet, backlight unit, liquid crystal display device and information device
JP7374748B2 (en) Light diffusion sheets and backlight units for liquid crystal display devices
JP2011242419A (en) Optical sheet, metal mold, backlight unit and display device
WO2022196162A1 (en) Light diffusion sheet, backlight unit, liquid crystal display device, and information equipment
JP2021184088A (en) Optical sheet, backlight unit, liquid crystal display device and information apparatus
JP2022183047A (en) Light diffusion sheet, backlight unit, liquid crystal display device, and information device
JP2023174543A (en) Light diffusion sheet, backlight unit, liquid crystal display device, and information apparatus
JP2011150078A (en) Optical sheet, backlight unit and display apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875654

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187020002

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187020002

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 16875654

Country of ref document: EP

Kind code of ref document: A1