WO2023153225A1 - コモンモード電圧キャンセラ - Google Patents

コモンモード電圧キャンセラ Download PDF

Info

Publication number
WO2023153225A1
WO2023153225A1 PCT/JP2023/002445 JP2023002445W WO2023153225A1 WO 2023153225 A1 WO2023153225 A1 WO 2023153225A1 JP 2023002445 W JP2023002445 W JP 2023002445W WO 2023153225 A1 WO2023153225 A1 WO 2023153225A1
Authority
WO
WIPO (PCT)
Prior art keywords
common mode
voltage
inverter
mode voltage
transformer
Prior art date
Application number
PCT/JP2023/002445
Other languages
English (en)
French (fr)
Inventor
淳之 蛭間
悟司 小笠原
Original Assignee
株式会社デンソー
国立大学法人北海道大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー, 国立大学法人北海道大学 filed Critical 株式会社デンソー
Publication of WO2023153225A1 publication Critical patent/WO2023153225A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present disclosure relates to a common mode voltage canceller that cancels a common mode voltage that occurs with inverter operation.
  • Non-Patent Document 1 there is a common mode voltage canceller that cancels the common mode voltage generated by the inverter separately for each phase using three common mode transformers.
  • a common-mode transformer is arranged on the three-phase line between the inverter and the motor in order to cancel the common-mode voltage generated on the three-phase line separately for each phase.
  • common mode transformers have leakage inductance. Therefore, if the common mode transformer is arranged on the three-phase line, the AC voltage of the three-phase line may drop due to leakage inductance, and the voltage utilization factor of the inverter may decrease.
  • motors mounted on electric aircraft tend to be multipolar for weight reduction, and have high frequency drive and low inductance. Therefore, even a slight leakage inductance is likely to cause an AC voltage drop.
  • the present disclosure has been made to solve the above problems, and its main purpose is to provide a common mode voltage canceller capable of improving the voltage utilization factor of an inverter.
  • the first means for solving the above problems is A common mode voltage canceller that cancels a common mode voltage generated by the operation of an inverter that converts DC power to AC power, Equipped with a common mode transformer that generates a cancellation voltage having a polarity opposite to that of the common mode voltage,
  • the common mode transformer is arranged on a DC power line that supplies the DC power to the inverter.
  • the common mode voltage canceller cancels the common mode voltage generated along with the operation of the inverter that converts DC power into AC power.
  • the common mode voltage canceller includes a common mode transformer that generates a cancellation voltage having a polarity opposite to that of the common mode voltage. Therefore, the common mode voltage generated by the operation of the inverter can be canceled by the cancel voltage generated by the common mode transformer.
  • the common mode transformer is arranged on a DC power line that supplies the DC power to the inverter. Therefore, even if there is a leakage inductance in the common mode transformer, it is possible to suppress the AC voltage drop due to the leakage inductance of the common mode transformer. Furthermore, the DC power supplied by the DC power line is not subject to voltage drop due to leakage inductance. Therefore, the voltage utilization factor of the inverter can be improved.
  • the common mode transformer when a common mode transformer is arranged in three phase lines, it is necessary to pass three phase lines through the core. You should let it pass through. Therefore, it is possible to reduce the cross-sectional area of the wiring passing through the core, and to downsize the core of the common mode transformer.
  • the common mode voltage canceller is a passive common mode voltage canceller including passive components connected to the common mode transformer.
  • the common mode voltage canceller is an active common mode voltage canceller including active components connected to the common mode transformer.
  • the common mode transformer includes a primary coil to which a voltage correlated with the common mode voltage is input, and a secondary coil that outputs the cancellation voltage to the DC power line.
  • the cancellation voltage can be output to the DC power line by the secondary coil of the common mode transformer to cancel the common mode voltage.
  • the common mode voltage Vc is a voltage obtained by dividing the sum of the voltages of the respective phases by 1/N. Therefore, the common mode voltage can be canceled by the cancel voltage by generating the cancel voltage of the opposite polarity in which the voltage of each phase is 1/N by the common mode transformer.
  • the inverter outputs AC power to N phases, and the turns ratio between the primary coil and the secondary coil is N:1. Therefore, the common mode transformer can generate, in the secondary coil, a cancellation voltage of opposite polarity that is 1/N of the voltage input to the primary coil, and the common mode voltage can be canceled by the cancellation voltage.
  • FIG. 1 is a circuit diagram showing a motor drive system
  • FIG. 2 is a perspective view showing a transformer corresponding to one phase among common mode transformers
  • FIG. 3 is a graph showing the relationship between the coupling coefficient of the common mode transformer and the motor torque
  • FIG. 4 is a circuit diagram showing a prior art motor drive system
  • FIG. 5 is a circuit diagram showing stray capacitance of an inverter
  • FIG. 6 is a circuit diagram showing an equivalent circuit of a conventional common mode voltage and cancellation voltage
  • FIG. 7 is a circuit diagram showing an equivalent circuit of the common mode voltage and the cancellation voltage
  • FIG. 1 is a circuit diagram showing a motor drive system
  • FIG. 2 is a perspective view showing a transformer corresponding to one phase among common mode transformers
  • FIG. 3 is a graph showing the relationship between the coupling coefficient of the common mode transformer and the motor torque
  • FIG. 4 is a circuit diagram showing a prior art motor drive system
  • FIG. 5 is a circuit diagram showing stray capacitance of an
  • FIG. 8 is a circuit diagram showing an equivalent circuit obtained by modifying the equivalent circuit of FIG.
  • FIG. 9 is a circuit diagram showing an equivalent circuit obtained by modifying the equivalent circuit of FIG.
  • FIG. 10 is a circuit diagram showing a modification of the motor drive system
  • FIG. 11 is a circuit diagram showing another modification of the motor drive system
  • FIG. 12 is a circuit diagram showing another modification of the motor drive system
  • FIG. 13 is a circuit diagram showing a modification of the motor drive system and common mode voltage canceller.
  • the motor drive system 10 includes a three-phase motor 11, a power supply 12, an inverter 20, a common mode voltage canceller 40, and the like.
  • the power supply 12 is, for example, a battery that supplies DC power.
  • the inverter 20 converts DC power into AC power and outputs it. Specifically, the inverter 20 sequentially and repeatedly outputs pulse voltages from three output terminals U, V, and W. As shown in FIG.
  • the common mode voltage canceller 40 includes a common mode transformer 50 (passive component) and six Y capacitors 61u, 62u, 61v, 62v, 61w, 62w (passive component).
  • the common mode voltage canceller 40 is composed of passive components and is a passive common mode voltage canceller.
  • each of the Y capacitors 61u, 61v, and 61w is connected to the DC power line 13 on the positive electrode side.
  • the other terminals of the Y capacitors 61u, 61v, 61w are connected to one terminals of the Y capacitors 62u, 62v, 62w, respectively.
  • the other terminals of the Y capacitors 62u, 62v, and 62w are connected to the negative DC power line 14, respectively. That is, a series connection of Y capacitors 61u and 62u, a series connection of Y capacitors 61v and 62v, and a series connection of Y capacitors 61w and 62w are connected in parallel between DC power lines 13 and 14. It is
  • the common mode transformer 50 includes a primary coil 51u, secondary coils 52u and 53u and a core 54u corresponding to the U phase of the inverter 20, and a primary coil 51v, secondary coils 52v and 53v and A core 54v, a primary coil 51w corresponding to the W phase of the inverter 20, secondary coils 52w and 53w, and a core 54w are provided.
  • One end of the primary coil 51u is connected to the output terminal U of the inverter 20, and the other end of the primary coil 51u is connected to the connection point between the Y capacitor 61u and the Y capacitor 62u.
  • a first end of the secondary coil 52u is connected to the negative input terminal of the inverter 20, and a second end of the secondary coil 52u is connected to a first end of the secondary coil 52v.
  • a first end of the secondary coil 53u is connected to the positive input terminal of the inverter 20, and a second end of the secondary coil 53u is connected to a first end of the secondary coil 53v.
  • the turns ratio between the primary coil 51u and the secondary coils 52u, 53u is 3:1:1.
  • a transformer corresponding to the U-phase of the inverter 20 is configured by the primary coil 51u, the secondary coils 52u and 53u, and the core 54u.
  • One end of the primary coil 51v is connected to the output terminal V of the inverter 20, and the other end of the primary coil 51v is connected to the connection point between the Y capacitors 61v and 62v.
  • a second end of the secondary coil 52v is connected to a first end of the secondary coil 52w.
  • a second end of the secondary coil 53u is connected to a first end of the secondary coil 53w.
  • the turns ratio between the primary coil 51v and the secondary coils 52v and 53v is 3:1:1.
  • a transformer corresponding to the V phase of the inverter 20 is configured by the primary coil 51v, the secondary coils 52v and 53v, and the core 54v.
  • One end of the primary coil 51w is connected to the output terminal W of the inverter 20, and the other end of the primary coil 51w is connected to the connection point between the Y capacitors 61w and 62w.
  • a second end of the secondary coil 52w is connected to the DC power line 14 on the negative electrode side.
  • a second end of the secondary coil 53w is connected to the DC power line 13 on the positive electrode side.
  • the turns ratio between the primary coil 51w and the secondary coils 52w, 53w is 3:1:1.
  • a transformer corresponding to the W phase of the inverter 20 is configured by the primary coil 51w, the secondary coils 52w and 53w, and the core 54w.
  • the transformer corresponding to the U phase, the transformer corresponding to the V phase, and the transformer (common mode transformer 50) corresponding to the W phase of the inverter 20 are configured as one transformer unit.
  • Common mode transformer 50 is arranged (inserted) in DC power lines 13 and 14 that supply DC power to inverter 20 .
  • the primary coil 51u, the secondary coils 52u and 53u and the core 54u, the primary coil 51v, the secondary coils 52v and 53v and the core 54v, and the primary coil 51w, the secondary coils 52w and 53w and the core 54w are You can replace each other.
  • the series connection body of the Y capacitors 61u and 62u, the series connection body of the Y capacitors 61v and 62v, and the series connection body of the Y capacitors 61w and 62w are connected between the power supply 12 and the common mode transformer 50 in the DC power lines 13 and 14. It may be connected between the common mode transformer 50 and the inverter 20 instead of between the common mode transformer 50 and the inverter 20 .
  • FIG. 2 is a perspective view showing a transformer corresponding to one phase of the common mode transformer 50.
  • the primary coil 51u is wound three times around a cylindrical core 54u.
  • the secondary coils 52u and 53u penetrate the core 54u. That is, the primary coil 51u, the secondary coils 52u and 53u, and the core 54u constitute a through-type transformer, and the turns ratio between the primary coil 51u and the secondary coils 52u and 53u is 3:1:1. is.
  • the primary coil 51u is excited according to the output voltage of the inverter 20.
  • common mode voltage Vc is expressed by the following equation.
  • Vc Vu/3+Vv/3+Vw/3
  • inverter 20 outputs phase voltage Vu
  • the common mode voltage Vc is canceled in advance by the cancel voltage Vr on the input side of the inverter 20 instead of on the output side of the inverter 20 .
  • FIG. 3 is a graph showing the relationship between the coupling coefficient of the common mode transformer and the motor torque.
  • the motor torque decreases as the coupling coefficient of the common mode transformer becomes smaller than 1.00. This is because the phase voltage output from the inverter 20 to the three-phase line is alternating current, and the phase voltage drops due to the leakage inductance of the common mode transformer.
  • the common mode transformer 50 is arranged in the DC power lines 13 and 14 between the power supply 12 and the inverter 20 even if the coupling coefficient of the common mode transformer is smaller than 1.00, the motor Torque has not decreased. This is because the input voltage input to the inverter 20 through the DC power lines 13 and 14 is DC and is not subject to voltage drop due to the leakage inductance of the common mode transformer.
  • the present embodiment can reduce the winding cross-sectional area of the common mode transformer 50 compared to the conventional technology.
  • FIG. 4 is a circuit diagram showing a conventional motor drive system.
  • Vdc be the average voltage on the DC input side of the inverter
  • Idc be the current
  • V be the line voltage of the fundamental wave effective value of the three-phase AC side of the inverter
  • I be the line current
  • cos ⁇ be the power factor.
  • the average magnetic path length of the cores 54u, 54v, and 54w can be reduced in this embodiment compared to the conventional technology, and the exciting current can be reduced.
  • the DC current is always smaller than the AC current, and if the winding cross-sectional area is the same, the loss due to the winding resistance can be reduced when the common mode transformer 50 is arranged on the DC side. .
  • FIG. 5 is a circuit diagram showing the stray capacitance of the inverter.
  • Each terminal on the AC side of the inverter is connected only to the collectors of the three IGBTs (stray capacitances Cinv2, Cinv4, Cinv6) on the lower arm. Therefore, the stray capacitance to ground of each phase terminal is also c, and the stray capacitance CAC of the entire AC side of the inverter is 3c.
  • the collectors (stray capacitances Cinv1, Cinv3, Cinv5) of the three IGBTs of the upper arm are connected to the positive terminal on the DC side of the inverter, and the floating capacitance between the positive terminal on the DC side and the ground is is 3c.
  • Vc represents a common mode voltage generated by the inverter
  • stray capacitances CAC and CDC are inserted between the ground and the AC side and the DC side, respectively.
  • ZS and ZL are the common mode impedances of the DC power supply and the load. Ignoring the stray capacitance of the inverter, the common mode voltage Vc generated by the inverter and the cancellation voltage Vr generated by the common mode transformer are connected in series with opposite polarities. Therefore, there is no difference in the effect of the common mode transformer between the prior art and this embodiment.
  • FIGS. 6 and 7 since the common mode transformer generates a cancellation voltage Vr having the same magnitude as the common mode voltage Vc generated by the inverter and having the opposite polarity, points A and B are at the same potential, and point A' and point B' are at the same potential. Therefore, the equivalent circuits of FIGS. 6 and 7 can be rewritten as shown in FIGS. 8 and 9, respectively.
  • ZS and ZL include inductance components such as wiring in series, they can be ignored with respect to the impedance of CAC and CDC in the high frequency region.
  • the voltage applied to ZS related to conducted EMI is determined by the voltage division between CAC and CDC. Therefore, the ratio between the voltage applied to ZS when a common mode transformer is inserted on the AC side and the voltage applied to ZS when a common mode transformer is inserted on the DC side is CAC/(CAC+CDC):CDC /(CAC+CDC).
  • the common mode voltage canceller 40 includes a common mode transformer 50 that generates a cancel voltage Vr having a polarity opposite to that of the common mode voltage Vc. Therefore, the common mode voltage Vc generated by the operation of the inverter 20 can be canceled by the cancel voltage Vr generated by the common mode transformer 50 .
  • the common mode transformer 50 is arranged on the DC power lines 13 and 14 that supply DC power to the inverter 20 . Therefore, even if the common mode transformer 50 has a leakage inductance, it is possible to suppress a drop in the AC voltage due to the leakage inductance of the common mode transformer 50 . Furthermore, the DC power supplied by the DC power lines 13, 14 does not experience voltage drops due to leakage inductance. Therefore, the voltage utilization factor of inverter 20 can be improved. In particular, the above effect is advantageous in applications where a high-frequency drive and low-inductance motor is employed.
  • the inverter 20 when the common mode transformer 50 is arranged in three phase lines, the three phase lines need to be passed through the core, whereas the two DC power lines 13 and 14 are passed through the cores 54u, 54v, 54w.
  • the cross-sectional area of the wires passing through the cores 54u, 54v, and 54w can be reduced, and the cores 54u, 54v, and 54w of the common mode transformer 50 can be miniaturized.
  • the common mode transformer 50 includes primary coils 51u, 51v, and 51w to which a common mode voltage Vc (a voltage correlated with the common mode voltage Vc) is input, and secondary coils to output a cancellation voltage Vr to the DC power lines 13 and 14.
  • Vc a voltage correlated with the common mode voltage Vc
  • the secondary coils 52u, 53u, 52v, 53v, 52w, 53w of the common mode transformer 50 output the cancellation voltage Vr to the DC power lines 13, 14, Common mode voltage Vc can be canceled.
  • the inverter 20 outputs AC power in three phases (N phase), and the turns ratio between the primary coils 51u, 51v, 51w and the secondary coils 52u, 53u, 52v, 53v, 52w, 53w is 3:1 (N : 1). Therefore, the common mode transformer 50 applies the cancel voltage Vr of opposite polarity, which is 1/3 (1/N) of the voltage input to the primary coils 51u, 51v, 51w, to the secondary coils 52u, 53u, 52v, 53v, 52w and 53w, and the common mode voltage Vc can be canceled by the cancellation voltage Vr.
  • the cross-sectional area of the winding when the common mode transformer is placed on the DC side may be smaller than when the common mode transformer is placed on the AC side. Therefore, the window areas of the cores 54u, 54v, 54w of the common mode transformer 50 can be reduced, and the cores 54u, 54v, 54w can be miniaturized.
  • this embodiment can reduce the average magnetic path length of the cores 54u, 54v, and 54w, and can reduce the excitation current. Therefore, it is possible to reduce the size of the common mode transformer 50 by thinning the windings, or to reduce the loss if the thickness of the windings is the same.
  • Unlike a noise filter, it does not generate (cancel) the common mode voltage Vc itself, so it is possible to suppress radiation noise and bearing electrolytic corrosion caused by the common current. Furthermore, since radiation noise is not generated, it is possible to eliminate the need for shielding the harness (wiring).
  • the first embodiment can also be implemented with the following modifications. Parts that are the same as those in the above embodiment are denoted by the same reference numerals, and descriptions thereof are omitted.
  • a common mode voltage canceller 40 similar to that of the above embodiment may be applied to a configuration in which DC power is supplied from an AC power supply 15 to DC power lines 13 and 14 via an AC/DC converter 16. can.
  • a common mode voltage canceller 140 similar to that of the above embodiment is applied to a motor drive system 110 including two (plural) three-phase motors 11 and two (plural) inverters 20. can also
  • a common mode voltage canceller 240 similar to that of the above embodiment can also be applied to a motor drive system 210 that includes a dual winding motor 211 and two inverters 20 .
  • the carriers of the two inverters 20 are synchronous and have a phase difference of 90 degrees.
  • the common mode transformer 250 includes transformers corresponding to the two inverters 20 respectively.
  • the active common mode voltage canceller 340 includes an emitter follower circuit 341 (active component), a common mode transformer 350, a capacitor C and the like.
  • a common mode transformer 350 is arranged on the DC power lines 13 and 14 and has a primary coil 351 and secondary coils 352 and 353 . With such a configuration as well, it is possible to obtain the effects according to the above-described embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Inverter Devices (AREA)
  • Power Conversion In General (AREA)

Abstract

コモンモード電圧キャンセラ(40)は、直流電力を交流電力に変換するインバータ(20)の動作に伴い発生するコモンモード電圧をキャンセルする。コモンモード電圧キャンセラ、コモンモード電圧と逆極性のキャンセル電圧を発生するコモンモードトランス(50)を備えている。コモンモードトランスは、インバータに直流電力を供給する直流電力線(13,14)に配置されている。

Description

コモンモード電圧キャンセラ 関連出願の相互参照
 本出願は、2022年2月9日に出願された日本出願番号2022-019120号に基づくもので、ここにその記載内容を援用する。
 本開示は、インバータの動作に伴い発生するコモンモード電圧をキャンセルするコモンモード電圧キャンセラに関する。
 従来、インバータが発生するコモンモード電圧を、3つのコモンモードトランスを用いて各相別々にキャンセルするコモンモード電圧キャンセラがある(非特許文献1参照)。非特許文献1に記載のコモンモード電圧キャンセラでは、3相線に発生するコモンモード電圧を各相別々にキャンセルするために、コモンモードトランスをインバータとモータとの間の3相線に配置している。
電気学会「電磁環境/半導体電力変換合同研究会」資料2020年  12月11日21-26頁
 ところで、コモンモードトランスには漏れインダクタンスが存在する。このため、コモンモードトランスが3相線に配置されていると、漏れインダクタンスにより3相線の交流電圧が降下し、インバータの電圧利用率が低下するおそれがある。特に、電動航空機に搭載されるモータは、軽量化のために多極化される傾向にあり、高周波駆動且つ低インダクタンスとなっている。このため、僅かな漏れインダクタンスによっても、交流電圧が降下する影響を受けやすい。
 本開示は、上記課題を解決するためになされたものであり、その主たる目的は、インバータの電圧利用率を向上させることができるコモンモード電圧キャンセラを提供することにある。
 上記課題を解決するための第1の手段は、
 直流電力を交流電力に変換するインバータの動作に伴い発生するコモンモード電圧をキャンセルするコモンモード電圧キャンセラであって、
 前記コモンモード電圧と逆極性のキャンセル電圧を発生するコモンモードトランスを備え、
 前記コモンモードトランスは、前記インバータに前記直流電力を供給する直流電力線に配置されている。
 上記構成によれば、コモンモード電圧キャンセラは、直流電力を交流電力に変換するインバータの動作に伴い発生するコモンモード電圧をキャンセルする。詳しくは、コモンモード電圧キャンセラは、前記コモンモード電圧と逆極性のキャンセル電圧を発生するコモンモードトランスを備えている。このため、インバータの動作に伴い発生するコモンモード電圧を、コモンモードトランスが発生するキャンセル電圧によりキャンセルすることができる。
 ここで、前記コモンモードトランスは、前記インバータに前記直流電力を供給する直流電力線に配置されている。このため、コモンモードトランスに漏れインダクタンスが存在したとしても、コモンモードトランスの漏れインダクタンスによる交流電圧の降下を抑制することができる。さらに、直流電力線により供給される直流電力は、漏れインダクタンスによる電圧降下を受けない。したがって、インバータの電圧利用率を向上させることができる。しかも、例えばインバータが3相に出力する構成において3相線にコモンモードトランスを配置する場合は3本の相線をコアに貫通させる必要があるのに対して、2本の直流電力線をコアに貫通させればよい。このため、コアに貫通させる配線の断面積を減少させることができ、コモンモードトランスのコアを小型化することができる。
 具体的には、第2の手段のように、前記コモンモード電圧キャンセラは、前記コモンモードトランスに接続された受動部品を備えるパッシブコモンモード電圧キャンセラである、といった構成を採用することができる。
 また、第3の手段のように、前記コモンモード電圧キャンセラは、前記コモンモードトランスに接続された能動部品を備えるアクティブコモンモード電圧キャンセラである、といった構成を採用することもできる。
 第4の手段では、前記コモンモードトランスは、前記コモンモード電圧に相関する電圧が入力される1次コイルと、前記キャンセル電圧を前記直流電力線に出力する2次コイルとを備える。
 上記構成によれば、コモンモード電圧が発生した際に、コモンモードトランスの2次コイルにより前記キャンセル電圧を前記直流電力線に出力して、コモンモード電圧をキャンセルすることができる。
 インバータがN相に交流電力を出力する場合、コモンモード電圧Vcは各相の電圧の和を1/Nにした電圧となる。このため、コモンモードトランスが、各相の電圧を1/Nにした逆極性のキャンセル電圧を発生することにより、コモンモード電圧をキャンセル電圧によりキャンセルすることができる。
 この点、第5の手段では、前記インバータはN相に交流電力を出力し、前記1次コイルと前記2次コイルとの巻数比はN:1である。したがって、コモンモードトランスは、1次コイルに入力された電圧を1/Nにした逆極性のキャンセル電圧を2次コイルに発生することができ、コモンモード電圧をキャンセル電圧によりキャンセルすることができる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、モータ駆動システムを示す回路図であり、 図2は、コモンモードトランスのうち1相に対応するトランスを示す斜視図であり、 図3は、コモンモードトランスの結合係数とモータトルクとの関係を示すグラフであり、 図4は、従来技術のモータ駆動システムを示す回路図であり、 図5は、インバータの浮遊容量を示す回路図であり、 図6は、従来技術のコモンモード電圧及びキャンセル電圧の等価回路を示す回路図であり、 図7は、コモンモード電圧及びキャンセル電圧の等価回路を示す回路図であり、 図8は、図6の等価回路を変形した等価回路を示す回路図であり、 図9は、図7の等価回路を変形した等価回路を示す回路図であり、 図10は、モータ駆動システムの変更例を示す回路図であり、 図11は、モータ駆動システムの他の変更例を示す回路図であり、 図12は、モータ駆動システムの他の変更例を示す回路図であり、 図13は、モータ駆動システム及びコモンモード電圧キャンセラの変更例を示す回路図である。
 以下、モータ駆動システムに具現化した一実施形態について、図面を参照して説明する。
 図1に示すように、モータ駆動システム10は、3相モータ11、電源12、インバータ20、及びコモンモード電圧キャンセラ40等を備えている。電源12は、例えば直流電力を供給するバッテリである。
 インバータ20は、直流電力を交流電力に変換して出力する。詳しくは、インバータ20は、3つの出力端子U,V,Wから順番にパルス電圧を繰り返し出力する。
 コモンモード電圧キャンセラ40は、コモンモードトランス50(受動部品)と、6つのYコンデンサ61u,62u,61v,62v,61w,62w(受動部品)とを備えている。コモンモード電圧キャンセラ40は、受動部品により構成されており、パッシブコモンモード電圧キャンセラである。
 Yコンデンサ61u,61v,61wの一方の端子は、それぞれ正極側の直流電力線13に接続されている。Yコンデンサ61u,61v,61wの他方の端子は、それぞれYコンデンサ62u,62v,62wの一方の端子に接続されている。Yコンデンサ62u,62v,62wの他方の端子は、それぞれ負極側の直流電力線14に接続されている。すなわち、Yコンデンサ61u,62uの直列接続体と、Yコンデンサ61v,62vの直列接続体と、Yコンデンサ61w,62wの直列接続体とが、直流電力線13と直流電力線14との間に並列に接続されている。
 コモンモードトランス50は、インバータ20のU相に対応する1次コイル51u、2次コイル52u,53u及びコア54uと、インバータ20のV相に対応する1次コイル51v、2次コイル52v,53v及びコア54vと、インバータ20のW相に対応する1次コイル51w、2次コイル52w,53w及びコア54wと、を備えている。
 1次コイル51uの一端はインバータ20の出力端子Uに接続され、1次コイル51uの他端はYコンデンサ61uとYコンデンサ62uとの接続点に接続されている。2次コイル52uの第1端はインバータ20の負極入力端子に接続され、2次コイル52uの第2端は2次コイル52vの第1端に接続されている。2次コイル53uの第1端はインバータ20の正極入力端子に接続され、2次コイル53uの第2端は2次コイル53vの第1端に接続されている。1次コイル51uと2次コイル52u,53uとの巻数比は、3:1:1である。1次コイル51u、2次コイル52u,53u、及びコア54uによりインバータ20のU相に対応するトランスが構成されている。
 1次コイル51vの一端はインバータ20の出力端子Vに接続され、1次コイル51vの他端はYコンデンサ61vとYコンデンサ62vとの接続点に接続されている。2次コイル52vの第2端は2次コイル52wの第1端に接続されている。2次コイル53uの第2端は2次コイル53wの第1端に接続されている。1次コイル51vと2次コイル52v,53vとの巻数比は、3:1:1である。1次コイル51v、2次コイル52v,53v、及びコア54vによりインバータ20のV相に対応するトランスが構成されている。
 1次コイル51wの一端はインバータ20の出力端子Wに接続され、1次コイル51wの他端はYコンデンサ61wとYコンデンサ62wとの接続点に接続されている。2次コイル52wの第2端は負極側の直流電力線14に接続されている。2次コイル53wの第2端は正極側の直流電力線13に接続されている。1次コイル51wと2次コイル52w,53wとの巻数比は、3:1:1である。1次コイル51w、2次コイル52w,53w、及びコア54wによりインバータ20のW相に対応するトランスが構成されている。
 インバータ20のU相に対応するトランス、V相に対応するトランス、及びW相に対応するトランス(コモンモードトランス50)は、1つのトランスユニットとして構成されている。そして、コモンモードトランス50は、インバータ20に直流電力を供給する直流電力線13,14に配置(挿入)されている。
 なお、1次コイル51u、2次コイル52u,53u及びコア54uと、1次コイル51v、2次コイル52v,53v及びコア54vと、1次コイル51w、2次コイル52w,53w及びコア54wとを互いに入れ替えてもよい。Yコンデンサ61u,62uの直列接続体と、Yコンデンサ61v,62vの直列接続体と、Yコンデンサ61w,62wの直列接続体とは、直流電力線13,14において、電源12とコモンモードトランス50との間に限らず、コモンモードトランス50とインバータ20との間に接続してもよい。
 図2は、コモンモードトランス50のうち1相に対応するトランスを示す斜視図である。ここでは、U相を例にして説明する。
 1次コイル51uは、円筒状のコア54uに3回巻かれている。2次コイル52u,53uは、コア54uを貫通している。すなわち、1次コイル51u、2次コイル52u,53u、及びコア54uは貫通型のトランスを構成しており、1次コイル51uと2次コイル52u,53uとの巻数比は、3:1:1である。
 1次コイル51uは、インバータ20の出力電圧に応じて励磁される。各相に相電圧Vu,Vv,Vwが出力される場合、コモンモード電圧Vcは以下の式で表される。
 Vc=Vu/3+Vv/3+Vw/3
 例えば、インバータ20が相電圧Vuを出力すると、コモンモード電圧Vc=Vu/3が発生する。このとき、1次コイル51uに相電圧Vuが入力され、2次コイル52u,53uがキャンセル電圧Vr=-Vu/3を発生する。これにより、コモンモード電圧Vcが、インバータ20の出力側ではなく、インバータ20の入力側でキャンセル電圧Vrにより予めキャンセルされる。
 図3は、コモンモードトランスの結合係数とモータトルクとの関係を示すグラフである。
 コモンモードトランスをインバータ20と3相モータ11との間の3相線に配置した従来技術では、コモンモードトランスの結合係数が1.00よりも小さくなるに従って、モータトルクが低下している。これは、インバータ20が3相線に出力する相電圧は交流であり、コモンモードトランスの漏れインダクタンスにより相電圧が降下することによる。
 これに対して、コモンモードトランス50を電源12とインバータ20との間の直流電力線13,14に配置した本実施形態では、コモンモードトランスの結合係数が1.00よりも小さくなっても、モータトルクが低下していない。これは、直流電力線13,14によりインバータ20に入力される入力電圧は直流であり、コモンモードトランスの漏れインダクタンスによる電圧降下を受けないことによる。
 次に、本実施形態は、従来技術と比較してコモンモードトランス50の巻線断面積を小さくすることができることを説明する。
 図4は、従来技術のモータ駆動システムを示す回路図である。インバータの直流入力側の平均電圧をVdc、電流をIdcとし、インバータの三相交流側の基本波実効値の線間電圧をV、線電流をI、力率をcosθとすると、有効電力Pの関係から次式を得る。
 P=Vdc・Idc=√3・V・I・cosθ  ・・・(1)
 インバータ出力の最大線間実効値電圧は、以下の関係を満たす必要がある。
 Vdc>√2・V  ・・・(2)
 (1)式及び(2)式から、直流電流Idcと交流実効値電流Iとの間には、以下の関係が成立する。
 Idc<√(3/2)・I・cosθ  ・・・(3)
 コモンモードトランスを直流側に挿入した場合には、直流電力線が2本であるため、コモンモードトランスの巻線断面積は直流電流Idcの2倍の電流を流すだけ必要である。一方、コモンモードトランスを交流側に挿入した場合には、相線が3本であるため(3相の場合)、コモンモードトランスの巻線断面積は交流電流の3倍の電流を流すだけ必要である。(3)式の左辺のIdcを2倍し、右辺のIを3倍して比較すると以下の式が成立する。
 2Idc<√6I・cosθ≒2.449I・cosθ
 このため、交流出力電圧が最大で力率cosθ=1の場合においても、直流側にコモンモードトランスを配置した場合の巻線断面積は、交流側にコモンモードトランスを配置した場合の巻線断面積よりも2.449/3=0.816倍小さくてよい。したがって、コモンモードトランス50におけるコア54u,54v,54wの窓面積を小さくすることができ、コア54u,54v,54wを小型化することができる。実際のモータでは力率cosθ<1であり、通常はcosθ=0.6~0.8程度である。このため、交流側にコモンモードトランスを配置した場合は、線電流Iをさらに大きくする必要があり、巻線断面積をさらに大きくする必要がある。
 このことは、本実施形態は従来技術と比較して、コア54u,54v,54wの平均磁路長を小さくできることを意味し、励磁電流を低減することができる。また、交流側電流に比べて直流側電流は常に小さく、巻線断面積が同じであれば、直流側にコモンモードトランス50を配置した場合は巻線抵抗による損失を小さくすることが可能である。
 次に、本実施形態と従来技術とで、パワー半導体デバイスの浮遊容量による影響が変わらないことを説明する。
 パワー半導体デバイスでは、スイッチング損失や導通損失による過熱を防止するために、放熱フィンを取り付けることが一般的である。放熱フィンは、装置筐体に直接取り付けられ、筐体は接地される。このため、デバイスと大地との間に浮遊容量が存在する。例えば、パワー半導体デバイスとしてIGBT(Insulated Gate Bipolar Transistor)を使用した場合には、デバイスの損失のほとんどはコレクタ側で発生し、この熱を効率よく放熱するために、コレクタ部が放熱フィンのベース部に対向するように取り付けられている。その結果、デバイスと大地との間の浮遊容量は、主にIGBTのコレクタ側に存在する。
 図5は、インバータの浮遊容量を示す回路図である。ここでは、各IGBTの浮遊容量をCinv1,Cinv2,・・・Cinv6=cで表している。
 インバータの交流側各端子には、下アームの3つのIGBTのコレクタ(浮遊容量Cinv2,Cinv4,Cinv6)だけが接続されている。このため、各相端子の対地浮遊容量もcとなり、インバータの交流側全体の浮遊容量CAC=3cである。
 一方、インバータの直流側の正側端子には、上アームの3つのIGBTのコレクタ(浮遊容量Cinv1,Cinv3,Cinv5)が接続されており、直流側の正側端子と大地との間の浮遊容量は3cである。しかし、インバータの直流側の負側端子には、IGBTのコレクタが接続されていないため、直流側の負側端子の浮遊容量は0である。したがって、インバータの直流側全体の浮遊容量CDC=3cであり、CAC=CDCである。
 次に、本実施形態と従来技術とで、高周波領域の伝導性EMI(Electromagnetic Interference)に差が生じないことを説明する。
 図6,7は、従来技術,本実施形態のコモンモード電圧Vc及びキャンセル電圧Vrの等価回路を示す回路図である。ここで、Vcはインバータが発生するコモンモード電圧を表し、その交流側と直流側とにおいて、それぞれ浮遊容量CAC及びCDCを大地との間に挿入している。ZSとZLは、直流電源と負荷のコモンモードインピーダンスである。インバータの浮遊容量を無視すると、インバータが発生するコモンモード電圧Vcとコモンモードトランスが発生するキャンセル電圧Vrとは、極性が逆向きで直列接続となる。このため、従来技術と本実施形態とで、コモンモードトランスの効果は全く変わらない。
 図6,7において、コモンモードトランスはインバータが発生するコモンモード電圧Vcと同じ大きさで逆極性のキャンセル電圧Vrを発生するため、A点とB点とは同電位であり、またA’点とB’点とは同電位である。したがって、図6,7の等価回路をそれぞれ図8,9のように書換えることができる。
 また、ZSとZLは配線等のインダクタンス成分を直列に含んでいるため、高周波領域においてはCACとCDCのインピーダンスに対して無視することができる。このため、伝導性EMIに関係するZSに印加される電圧は、CACとCDCとの分圧で決定される。したがって、交流側にコモンモードトランスを挿入した場合にZSに印加される電圧と、直流側にコモンモードトランスを挿入した場合にZSに印加される電圧との比は、CAC/(CAC+CDC):CDC/(CAC+CDC)である。ここで、CAC=CDCであるため、コモンモードトランスを交流側に挿入した場合と直流側に挿入した場合とでは、高周波領域の伝導性EMIにほとんど差が生じないと考えられる。
 以上詳述した本実施形態は、以下の利点を有する。
 ・コモンモード電圧キャンセラ40は、コモンモード電圧Vcと逆極性のキャンセル電圧Vrを発生するコモンモードトランス50を備えている。このため、インバータ20の動作に伴い発生するコモンモード電圧Vcを、コモンモードトランス50が発生するキャンセル電圧Vrによりキャンセルすることができる。
 ・コモンモードトランス50は、インバータ20に直流電力を供給する直流電力線13,14に配置されている。このため、コモンモードトランス50に漏れインダクタンスが存在したとしても、コモンモードトランス50の漏れインダクタンスによる交流電圧の降下を抑制することができる。さらに、直流電力線13,14により供給される直流電力は、漏れインダクタンスによる電圧降下を受けない。したがって、インバータ20の電圧利用率を向上させることができる。特に、高周波駆動且つ低インダクタンスのモータが採用される用途において、上記効果は有利となる。
 ・インバータ20が3相に出力する構成において3相線にコモンモードトランス50を配置する場合は3本の相線をコアに貫通させる必要があるのに対して、2本の直流電力線13,14をコア54u,54v,54wに貫通させればよい。このため、コア54u,54v,54wに貫通させる配線の断面積を減少させることができ、コモンモードトランス50のコア54u,54v,54wを小型化することができる。
 ・コモンモードトランス50は、コモンモード電圧Vc(コモンモード電圧Vcに相関する電圧)が入力される1次コイル51u,51v,51wと、キャンセル電圧Vrを直流電力線13,14に出力する2次コイル52u,53u,52v,53v,52w,53wとを備えている。こうした構成によれば、コモンモード電圧Vcが発生した際に、コモンモードトランス50の2次コイル52u,53u,52v,53v,52w,53wによりキャンセル電圧Vrを直流電力線13,14に出力して、コモンモード電圧Vcをキャンセルすることができる。
 ・インバータ20は3相(N相)に交流電力を出力し、1次コイル51u,51v,51wと2次コイル52u,53u,52v,53v,52w,53wとの巻数比は3:1(N:1)である。したがって、コモンモードトランス50は、1次コイル51u,51v,51wに入力された電圧を1/3(1/N)にした逆極性のキャンセル電圧Vrを2次コイル52u,53u,52v,53v,52w,53wに発生することができ、コモンモード電圧Vcをキャンセル電圧Vrによりキャンセルすることができる。
 ・直流側にコモンモードトランスを配置した場合の巻線断面積は、交流側にコモンモードトランスを配置した場合よりも小さくてよい。したがって、コモンモードトランス50におけるコモンモードトランス50のコア54u,54v,54wの窓面積を小さくすることができ、コア54u,54v,54wを小型化することができる。本実施形態は従来技術と比較して、コア54u,54v,54wの平均磁路長を小さくできることができ、励磁電流を低減することができる。したがって、巻線を細くしてコモンモードトランス50を小型化することができる、あるいは巻線の太さが同じであれば低損失にすることができる。
 ・ノイズフィルタと異なり、コモンモード電圧Vcそのものを生じない(キャンセルする)ため、コモン電流に起因する輻射ノイズやベアリング電食を抑制することができる。さらに、輻射ノイズを生じないため、ハーネス(配線)のシールドを不要にすることができる。
 なお、第1実施形態を、以下のように変更して実施することもできる。上記実施形態と同一の部分については、同一の符号を付すことにより説明を省略する。
 ・図10に示すように、交流電源15からAC/DCコンバータ16を介して直流電力線13,14に直流電力を供給する構成に、上記実施形態と同様のコモンモード電圧キャンセラ40を適用することもできる。
 ・図11に示すように、2つ(複数)の3相モータ11及び2つ(複数)のインバータ20を備えるモータ駆動システム110に、上記実施形態と同様のコモンモード電圧キャンセラ140を適用することもできる。
 ・図12に示すように、デュアル巻線モータ211及び2つのインバータ20を備えるモータ駆動システム210に、上記実施形態と同様のコモンモード電圧キャンセラ240を適用することもできる。2つのインバータ20のキャリアは同期して90度の位相差を有している。コモンモードトランス250は、2つのインバータ20にそれぞれ対応したトランスを備えている。
 ・図13に示すように、特許第2863833号公報に記載されたアクティブコモンモード電圧キャンセラ340において、コモンモードトランス350を直流電力線13,14に配置することにより、上記実施形態に準じた構成を実現することもできる。アクティブコモンモード電圧キャンセラ340は、エミッタホロワ回路341(能動部品)、コモンモードトランス350、コンデンサC等を備えている。コモンモードトランス350は、直流電力線13,14に配置され、1次コイル351、及び2次コイル352,353を備えている。こうした構成によっても、上記実施形態に準じた作用効果を奏することができる。
 ・インバータにより駆動されるモータを備えるモータ駆動システム全般に、上記実施形態及び上記変更例を適用することができる。
 なお、上記の各変更例を組み合わせて実施することもできる。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (5)

  1.  直流電力を交流電力に変換するインバータ(20)の動作に伴い発生するコモンモード電圧をキャンセルするコモンモード電圧キャンセラ(40、140、240、340)であって、
     前記コモンモード電圧と逆極性のキャンセル電圧を発生するコモンモードトランス(50、250、350)を備え、
     前記コモンモードトランスは、前記インバータに前記直流電力を供給する直流電力線(13、14)に配置されている、コモンモード電圧キャンセラ。
  2.  前記コモンモード電圧キャンセラは、前記コモンモードトランスに接続された受動部品を備えるパッシブコモンモード電圧キャンセラ(40、140、240)である、請求項1に記載のコモンモード電圧キャンセラ。
  3.  前記コモンモード電圧キャンセラは、前記コモンモードトランスに接続された能動部品を備えるアクティブコモンモード電圧キャンセラ(340)である、請求項1に記載のコモンモード電圧キャンセラ。
  4.  前記コモンモードトランスは、前記コモンモード電圧に相関する電圧が入力される1次コイル(51u、51v、51w、351)と、前記キャンセル電圧を前記直流電力線に出力する2次コイル(52u、53u、52v、53v、52w、53w、352、353)とを備える、請求項1~3のいずれか1項に記載のコモンモード電圧キャンセラ。
  5.  前記インバータはN相に交流電力を出力し、
     前記1次コイルと前記2次コイルとの巻数比はN:1である、請求項4に記載のコモンモード電圧キャンセラ。
PCT/JP2023/002445 2022-02-09 2023-01-26 コモンモード電圧キャンセラ WO2023153225A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-019120 2022-02-09
JP2022019120A JP2023116356A (ja) 2022-02-09 2022-02-09 コモンモード電圧キャンセラ

Publications (1)

Publication Number Publication Date
WO2023153225A1 true WO2023153225A1 (ja) 2023-08-17

Family

ID=87564121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002445 WO2023153225A1 (ja) 2022-02-09 2023-01-26 コモンモード電圧キャンセラ

Country Status (2)

Country Link
JP (1) JP2023116356A (ja)
WO (1) WO2023153225A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007181341A (ja) * 2005-12-28 2007-07-12 Yaskawa Electric Corp コンバータ装置
JP2008220109A (ja) * 2007-03-07 2008-09-18 Doshisha 電力変換機器に適用されるコモンモード漏れ電流抑制回路
JP2010041908A (ja) * 2008-07-08 2010-02-18 Calsonic Kansei Corp モータ駆動装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007181341A (ja) * 2005-12-28 2007-07-12 Yaskawa Electric Corp コンバータ装置
JP2008220109A (ja) * 2007-03-07 2008-09-18 Doshisha 電力変換機器に適用されるコモンモード漏れ電流抑制回路
JP2010041908A (ja) * 2008-07-08 2010-02-18 Calsonic Kansei Corp モータ駆動装置

Also Published As

Publication number Publication date
JP2023116356A (ja) 2023-08-22

Similar Documents

Publication Publication Date Title
JP4260110B2 (ja) フィルタ装置
Chen et al. A novel inverter-output passive filter for reducing both differential-and common-mode $ dv/dt $ at the motor terminals in PWM drive systems
US9455646B2 (en) Filter device, power converter and common mode noise suppression method
US11404215B2 (en) Capacitor
US11398772B2 (en) Circuit device for reducing common-mode interference of a power converter
CN107404218B (zh) 电力转换装置
CN108377666A (zh) 电力转换装置
CN106575927B (zh) 功率转换装置
EP3038246A2 (en) Dc-ac conversion circuit topologie
CN111630616B (zh) 用于电容器组件的非常低的电感汇流排
JP6786370B2 (ja) 電力変換装置
JP2007181341A (ja) コンバータ装置
CN107949980B (zh) 电压转换器,电的驱动系统和用于减小干扰电压的方法
WO2020066222A1 (ja) 高電圧フィルタおよび電力変換装置
WO2021152888A1 (ja) ノイズフィルタ、ノイズフィルタ装置、および電力変換装置
WO2023153225A1 (ja) コモンモード電圧キャンセラ
WO2024001124A1 (zh) 一种隔离式acdc变换器、充电设备及电源系统
US20200373849A1 (en) Power converter
US11456678B2 (en) Power conversion device
JP3765378B2 (ja) 電力変換装置のノイズ防止装置
JP2019193375A (ja) 車両用電圧変換回路
US20180097455A1 (en) Pulse-controlled inverter
CN216599430U (zh) 开关电源
JPH06292369A (ja) 無停電電源装置
JP6492992B2 (ja) 電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23752690

Country of ref document: EP

Kind code of ref document: A1