WO2023153202A1 - 作業エリア設定システム - Google Patents

作業エリア設定システム Download PDF

Info

Publication number
WO2023153202A1
WO2023153202A1 PCT/JP2023/002152 JP2023002152W WO2023153202A1 WO 2023153202 A1 WO2023153202 A1 WO 2023153202A1 JP 2023002152 W JP2023002152 W JP 2023002152W WO 2023153202 A1 WO2023153202 A1 WO 2023153202A1
Authority
WO
WIPO (PCT)
Prior art keywords
point
work area
work
straight line
turning
Prior art date
Application number
PCT/JP2023/002152
Other languages
English (en)
French (fr)
Inventor
展弘 福尾
龍之介 宮嵜
Original Assignee
コベルコ建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コベルコ建機株式会社 filed Critical コベルコ建機株式会社
Priority to CN202380020108.4A priority Critical patent/CN118647773A/zh
Publication of WO2023153202A1 publication Critical patent/WO2023153202A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices

Definitions

  • the present invention relates to a work area setting system for setting work areas of work machines.
  • Patent Document 1 discloses a technique for calculating the distance from the wheel loader to the ground to be excavated or the angle of repose of the ground based on the measurement data of the three-dimensional measuring device. However, no technique is disclosed for facilitating control for automatically operating a work machine so as to perform repetitive work.
  • An object of the present invention is to provide a work area setting system that enables the work area of a work machine to be easily set.
  • the work machine includes a lower traveling body, an upper revolving body attached to the upper part of the lower traveling body so as to be able to turn about a vertical revolving center axis, and a rotating body that rotates in a direction along an operating surface that is a plane extending in the vertical direction.
  • an attachment movably attached to the upper rotating body to perform the work operation.
  • the work area setting system includes a first straight line setting section, a second straight line setting section, and an area setting section.
  • the first straight line setting unit sets a first straight line, the first straight line passing through a first point where the tip of the attachment is positioned when the upper rotating body faces a first direction, and It is a straight line parallel to the operating surface in a plan view of the work machine viewed from above.
  • the second straight line setting unit sets a second straight line, and the tip of the attachment is positioned on the second straight line when the upper rotating body faces a second direction different from the first direction.
  • the area setting unit sets an area sandwiched between the first straight line and the second straight line in the plan view as the work area.
  • FIG. 1 is a side view of a working machine according to an embodiment
  • FIG. It is a circuit diagram showing a plurality of components of the work area setting system according to the embodiment.
  • FIG. 4 is a plan view of the working machine, showing a working area set for the working machine when a first point and a second point are positioned on the same circle
  • FIG. 4 is a plan view of the work machine, showing a first example of a work area set when the first point and the second point are not on the same circle
  • FIG. 9 is a plan view of the working machine, showing a second example of a work area set when the first point and the second point are not on the same circle
  • FIG. 4 is a plan view of a working machine according to a comparative example, showing a rectangular working area set for the working machine;
  • the work area of the work machine 20 shown in FIG. 1 is set by the work area setting system 1 shown in FIG.
  • FIG. 1 is a side view of the working machine 20.
  • the work machine 20 is a hydraulic excavator and includes a machine body 25, an attachment 30, and a work drive device 40.
  • the attachment 30 performs working motions.
  • the machine main body 25 includes a lower running body 21 and an upper revolving body 22 .
  • the lower running body 21 is a portion that performs a running operation, and includes, for example, a pair of crawlers.
  • the upper revolving body 22 is mounted on the lower traveling body 21 via a revolving drive device 24 so as to be revolvable about the center axis of revolving in the vertical direction.
  • the turning drive device 24 is a device for turning the upper turning body 22 with respect to the lower traveling body 21, and includes, for example, a hydraulic motor.
  • the upper revolving body 22 includes a cab (cab) 23 , and the cab 23 is included in the front portion of the upper revolving body 22 .
  • the attachment 30 is attached to the upper revolving body 22 so as to be rotatable in a direction along an operation plane, which is a plane (vertical plane) extending in the vertical direction.
  • the attachment 30 includes a boom 31 , an arm 32 and a bucket 33 .
  • the boom 31 is attached to the upper revolving body 22 so as to be vertically rotatable (raising and lowering) along the operating plane with respect to the upper revolving body 22 .
  • the arm 32 is attached to the boom 31 so as to be vertically rotatable relative to the boom 31 along the operating plane.
  • the bucket 33 is mounted on the arm 32 so as to be rotatable relative to the arm 32 along the plane of motion.
  • the bucket 33 is a tip attachment that constitutes the tip of the attachment 30, and is a portion that performs the work operation using earth and sand as a work target. Therefore, the tip of the bucket 33 corresponds to the tip of the attachment 30 .
  • the working motion includes, for example, an excavating motion, a leveling motion, and a scooping motion.
  • the work target is not limited to earth and sand, and may be, for example, stones or waste (industrial waste, etc.).
  • the tip attachment is not limited to the bucket 33, and may be, for example, a grapple or a lifting magnet.
  • the work drive device 40 hydraulically rotates the boom 31, the arm 32, and the bucket 33, respectively.
  • the work drive device 40 includes a plurality of hydraulic cylinders capable of telescopic motion, that is, a boom cylinder 41 , an arm cylinder 42 and a bucket cylinder 43 .
  • the boom cylinder 41 rotates the boom 31 with respect to the upper rotating body 22 by performing the telescopic motion.
  • the boom cylinder 41 has a base end and a tip end on the opposite side.
  • the base end portion is rotatably connected to the upper revolving body 22 .
  • the tip portion is rotatably connected to the boom 31 .
  • the arm cylinder 42 rotates the arm 32 with respect to the boom 31 by performing the telescopic motion.
  • the arm cylinder 42 has a proximal end and a distal end on the opposite side.
  • the base end is rotatably connected to the boom 31 .
  • the tip portion is rotatably connected to the arm 32 .
  • the bucket cylinder 43 rotates the bucket 33 with respect to the arm 32 by performing the telescopic motion.
  • the bucket cylinder 43 has a base end and a tip end on the opposite side.
  • the proximal end is rotatably attached to the arm 32 .
  • the tip portion is rotatably attached to the link member 34 , and the link member 34 is rotatably attached to the bucket 33 .
  • the work machine 20 further includes a turning angle detector 52 and an attitude detector 60.
  • the turning angle detector 52 detects the turning angle of the upper turning body 22 with respect to the lower traveling body 21 .
  • the turning angle detector 52 is, for example, an encoder, resolver, or gyro sensor.
  • the turning angle of the upper turning body 22 when the front of the upper turning body 22 coincides with the front of the lower traveling body 21 is 0°.
  • the orientation detector 60 detects the orientation of the attachment 30 .
  • the attitude detector 60 according to this embodiment includes a boom tilt angle sensor 61 , an arm tilt angle sensor 62 and a bucket tilt angle sensor 63 .
  • the boom tilt angle sensor 61 is attached to the boom 31 and detects the attitude of the boom 31 .
  • the boom tilt angle sensor 61 is a sensor that acquires the tilt angle of the boom 31 with respect to the horizontal line.
  • the arm tilt angle sensor 62 is attached to the arm 32 and detects the posture of the arm 32 .
  • the arm tilt angle sensor 62 is a sensor that acquires the tilt angle of the arm 32 with respect to the horizontal line.
  • a sensor is a stroke sensor that detects the stroke of the arm cylinder 42 .
  • the bucket tilt angle sensor 63 is attached to the link member 34 and detects the attitude of the bucket 33 .
  • the bucket tilt angle sensor 63 is a sensor that acquires the tilt angle of the bucket 33 with respect to the horizontal line.
  • FIG. 2 is a circuit diagram showing a plurality of components of the work area setting system 1.
  • the plurality of components include controller 11 and storage device 13 .
  • Turning angle information is input to the controller 11 , and the turning angle information is information about the turning angle (attitude) of the upper turning body 22 with respect to the lower traveling body 21 and is acquired by the turning angle detector 52 .
  • Boom attitude information is input to the controller 11 , and the boom attitude information is information about the attitude of the boom 31 and is acquired by the boom tilt angle sensor 61 .
  • Arm posture information is input to the controller 11 , and the arm posture information is information relating to the posture of the arm 32 and is acquired by the arm tilt angle sensor 62 .
  • Bucket attitude information is input to the controller 11 , and the bucket attitude information is information about the attitude of the bucket 33 and is acquired by the bucket tilt angle sensor 63 .
  • the controller 11 automatically controls the operation of the work machine 20. Specifically, the controller 11 controls the operations of the upper swing body 22 and the attachment 30 so that the upper swing body 22 and the attachment 30 perform repetitive work. More specifically, based on the information acquired by the turning angle detector 52 and the attitude detector 60, the controller 11 controls the turning driving of the upper turning body 22 by the turning driving device 24 and the work driving. The drive of the attachment 30 by the device 40 is automatically controlled.
  • the repeated work is a work of excavating and discharging earth and sand.
  • the storage device 13 stores information necessary for the automatic control.
  • the information includes respective coordinates of a first point PA and a second point PB, which will be described later.
  • the controller 11 can function as a first straight line setting unit, and the first straight line setting unit sets the first straight line L1 shown in FIG. 3 is a plan view of the working machine 20.
  • FIG. The first straight line L1 corresponds to the bucket in a plan view of the work machine 20 from above when the upper revolving body 22 is oriented in a first direction (right oblique direction in the example shown in FIG. 3).
  • 33 is a straight line passing through the first point PA where the tip of the attachment 33 is located and parallel to the operating surface, that is, a straight line parallel to the longitudinal direction of the attachment 30 .
  • the controller 11 can also function as a second straight line setting section, and the second straight line setting section sets the second straight line L2 shown in FIG.
  • the second straight line L2 is the same as that of the bucket in plan view when the upper rotating body 22 faces in a second direction different from the first direction (in the example shown in FIG. 3, a left oblique direction). It is a straight line that passes through the second point PB where the tip of the attachment 33 is located and is parallel to the operating surface, that is, the straight line that is parallel to the longitudinal direction of the attachment 30 .
  • the positions in the width direction of the attachment 30 of the first and second straight lines L1 and L2, which are straight lines parallel to the operating surface, are not particularly limited.
  • the width direction of the attachment 30 is the direction perpendicular to the operating plane, that is, the direction perpendicular to both the longitudinal direction and the vertical direction of the attachment 30 .
  • each of the first and second straight lines L1 and L2 may be a straight line passing through the center of the attachment 30 in the width direction, or a straight line passing through the ends in the width direction, that is, , a straight line along the side of the attachment 30 .
  • the controller 11 can also function as a coordinate calculator. Specifically, the controller 11 calculates a plurality of coordinates of the first point PA for setting the first straight line L1, and calculates a plurality of coordinates of the second point PB for setting the second straight line L2. calculating the coordinates; Specifically, the controller 11 obtains the R coordinate, Z coordinate and ⁇ coordinate of each of the first point PA and the second point PB.
  • the R coordinate is the coordinate in the longitudinal direction of the upper revolving body 22, that is, the coordinate in the turning radial direction of the upper revolving body 22, the Z coordinate is the coordinate in the vertical direction of the lower traveling body 21, and the ⁇
  • the coordinates are coordinates in the turning direction of the upper turning body 22 .
  • the longitudinal coordinate, ie, the R coordinate, and the vertical coordinate, ie, the Z coordinate, of each of the first point PA and the second point PB can be calculated from the posture of the attachment 30, for example. .
  • the attitude of the attachment 30 can be obtained from information acquired by each of the boom tilt angle sensor 61 , the arm tilt angle sensor 62 and the bucket tilt angle sensor 63 .
  • the coordinates of the turning direction of the coordinates of the first point PA and the second point PB, that is, the ⁇ coordinates can be calculated, for example, from the turning attitude, which is the attitude of the upper turning body 22 with respect to the lower traveling body 21. is.
  • the turning attitude can be obtained from information acquired by the turning angle detector 52 .
  • the coordinates of the first point PA and the coordinates of the second point PB with respect to the upper rotating body 22 are simpler than the calculation of the position information using the coordinates with reference to the work site, for example. can be calculated by simple calculation.
  • the earth and sand mound 70 is located between the first point PA and the second point PB and in front of the upper rotating body 22 .
  • the first point PA and the second point PB are set such that the mound 70 is located between them.
  • the first point PA and the second point PB may be located at positions greatly deviated from the earth and sand mound 70 .
  • the first and second points PA and PB are not limited to the excavable positions, and the excavable positions are the turning angles at which the tip of the bucket 33 is positioned at the first and second points PA and PB, respectively. is a position where it is possible to excavate the earth and sand of the earth and sand pile 70 by operating the attachment 30 at .
  • the controller 11 can also function as an area setting unit that sets a work area 80 for the work machine 20 . Specifically, the controller 11 sets the area sandwiched between the first straight line L1 and the second straight line L2 as the work area 80 in the plan view.
  • an excavation operation is actually performed when setting the first straight line L1 and the second straight line L2.
  • This excavation operation is not a special operation only for the purpose of setting the work area 80, but also serves as an operation for excavation work. Therefore, it is not necessary to make the work machine 20 perform a special operation for setting the work area 80 .
  • no special calculation is required for calculating a specific figure, such as a rectangle, for setting the work area 80 . Accordingly, the work area 80 can be easily set.
  • the setting of the first and second points PA, PB for specifying the first and second straight lines L1, L2 is not limited to the actual excavation operation.
  • the first point PA and the second point PB may be taught by teaching or the like.
  • the first point PA and the second point PB may be set based on an image captured by the work machine 20 or a camera installed around the work machine 20, or may be set by an operator or the like.
  • the first point PA and the second point PB may be set by an input.
  • first straight line L1 and the second straight line L2, which are the boundaries of the work area 80, are parallel to the operation plane of the attachment 30 means that the tip of the bucket 33 can be moved without the upper swing body 22 swinging. can be moved along the boundaries of the work area 80.
  • the fact that the tip of the bucket 33 can be moved along the boundary of the work area 80 without requiring the revolving of the upper swing body 22 is advantageous in that unfinished work in the work area 80 (for example, undigged soil) can be reduced.
  • the first point PA and the second point PB are located on the same circle Cc centered on the turning center axis Xs, which is the turning axis of the upper turning body 22 with respect to the lower traveling body 21.
  • the controller 11 serving as the area setting unit causes the upper swing body 22 to swivel the arc 81 connecting the first point PA and the second point PB along the same circle Cc in plan view. Set to the outer boundary of the working area 80 in the radial direction.
  • the height of the first point PA and the height of the second point PB may not be the same.
  • the arc 81 smoothly connects the first point PA and the second point PB in a side view of the working machine 20 from the side.
  • Setting the arc 81 as the boundary of the work area 80 has the following effects.
  • the outermost portion of the work area 80 is It is possible to perform the operations along the boundaries. This eliminates the need for complicated calculations for changing the position of the tip of the bucket 33 as the repetitive work progresses.
  • the controller 11 as the area setting unit forms an arc-shaped curve that smoothly connects the first point PA and the second point PB in a plan view of the work machine 20 from above.
  • 82 is set at the outer boundary of the work area 80 with respect to the turning radial direction. As shown in FIG. 4, the radius Ra of the circle passing through the first point PA is greater than the radius Rb of the circle passing through the second point PB.
  • the height of the first point PA and the height of the second point PB may not be the same.
  • the arc-shaped curve 82 smoothly connects the first point PA and the second point PB in a side view of the working machine 20 from the side.
  • the arc-shaped curve 82 is set, for example, as follows. As shown in FIG. 4, the length of the attachment 30 when the tip of the bucket 33 is positioned at the first point PA, that is, the radius (turning radius) Ra of the first circle Ca, is closer to the second point PB than the radius Ra.
  • Setting the curve 82 at the outer boundary of the work area 80 in the turning radial direction is a repetitive work performed while turning the upper turning body 22 to change the position of the tip of the bucket 33 in the turning direction.
  • the movement of the tip of the bucket 33 in the front-rear direction accompanying the turning can be smoothed, thereby reducing discomfort given to the operator.
  • the controller 11 may set the outer boundary of the work area 80 as shown in FIG. .
  • the controller 11 first sets a third point PC located between the first point PA and the second point PB.
  • the third point PC may be set by actually performing the operation of the attachment 30 corresponding to the excavation work, or may be set by teaching or the like.
  • the third point PC may be positioned exactly midway between the first point PA and the second point PB in the swinging direction of the upper swing body 22, or may be positioned closer to the first point than the midpoint position. It may be located near the point PA or near the second point PB.
  • the controller 11 moves the first point side portion of the boundary of the work area 80, that is, the portion closer to the first point PA than the third point PC, to the first point PA set based on the position of Specifically, the controller 11 causes the first point side portion to have a radius equal to the radius Ra of the first circle Ca passing through the first point PA, that is, the turning radius corresponding to the first point PA. and set to an arc passing through the first point PA.
  • the controller 11 moves the second point side portion of the boundary of the work area 80 in plan view, that is, the portion closer to the second point PB than the third point PC to the second point PB. Set based on location. Specifically, the controller 11 causes the second point side portion to have a radius equal to the radius Rb of the second circle Cb passing through the second point PB, that is, the turning radius corresponding to the second point PB. and set to an arc passing through the second point PB.
  • the height of the first point PA and the height of the second point PB may not be the same.
  • the controller 11 sets the height of the first point side portion of the boundary of the work area 80 based on the height of the first point PA, and sets the height of the second point side portion to the second point side portion. It may be set based on the height of the point PB.
  • Setting the boundaries of the work area 80 in this manner is such that the surrounding conditions of the work machine 20 corresponding to the first point side portion and the surrounding conditions of the work machine 20 corresponding to the second point side portion are different. Even in different cases, it is easy to set an appropriate work area 80 according to each surrounding situation.
  • the second point PB is set so as to avoid the obstacle 90.
  • the radius Ra of the first circle Ca passing through the first point PA and the radius Rb of the second circle Cb passing through the second point PB different.
  • setting the outer boundary of the work area 80 based on the position of the second point PB enables the work machine 20 to repeatedly perform work while avoiding the obstacle 90.
  • FIG. 6 shows a comparative example for explaining the superiority of the work area 80 shown in FIGS. 3 to 5, in which a rectangular work area 85 is set around the mound 75 of sand.
  • a rectangular work area 85 is set around the mound 75 of sand.
  • the first straight line L1 is set when the upper swing body 22 faces the first direction, and the upper swing body 22 is set in the second direction.
  • the work area 80 can be set in the flow of repetitive work. This eliminates the need for the working machine 20 to perform a special operation only for the purpose of setting the work area 80, and eliminates the need for complicated calculations for setting the work area 80. - ⁇ Thereby, the work area 80 can be easily set.
  • the tip of the bucket 33 can be moved without rotating the upper rotating body 22. Allows movement along the boundaries of the working area 80 . This reduces the need for the work machine 20 to perform complicated operations such as excavation and soil removal while rotating the upper rotating body 22 to prevent the tip of the bucket 33 from protruding from the work area 80. can. Further, the tip of the bucket 33 can be moved along the boundary of the work area 80 without rotating the upper rotating body 22, thereby leaving unfinished work in the work area 80 ( For example, it is possible to suppress the occurrence of undigged soil.
  • a work area setting system is provided that enables the work area of the work machine to be easily set.
  • the work machine includes a lower traveling body, an upper revolving body attached to the upper part of the lower traveling body so as to be able to turn about a vertical revolving center axis, and a rotating body that rotates in a direction along an operating surface that is a plane extending in the vertical direction.
  • an attachment movably attached to the upper rotating body to perform the work operation.
  • the work area setting system includes a first straight line setting section, a second straight line setting section, and an area setting section.
  • the first straight line setting unit sets a first straight line, the first straight line passing through a first point where the tip of the attachment is positioned when the upper rotating body faces a first direction, and It is a straight line parallel to the operating surface in a plan view of the work machine viewed from above.
  • the second straight line setting unit sets a second straight line, and the tip of the attachment is positioned on the second straight line when the upper rotating body faces a second direction different from the first direction.
  • the area setting unit sets an area sandwiched between the first straight line and the second straight line in the plan view as the work area.
  • the area setting system includes a first straight line that is set when the upper rotating body faces a first direction, a second straight line that is set when the upper rotating body faces a second direction, allows the work area to be easily set up in a repetitive work flow. Specifically, the setting of the work area eliminates the need for the work machine to perform a special operation for the sole purpose of setting the work area, and the need for a special calculation.
  • both the first straight line and the second straight line, which are the boundaries of the work area, are parallel to the movement plane of the attachment, the tip of the attachment can be moved to the work without the need for turning the upper swing body. Can be moved along the boundaries of areas. This eliminates the need for the work machine to perform complicated operations, such as excavation and earth removal while rotating the upper rotating body so as to prevent the tip of the attachment from protruding from the work area. can be suppressed.
  • the fact that the tip of the attachment can be moved along the first and second straight lines, which are the boundaries of the work area, without accompanying the turning of the upper revolving body is useful for improving the work in the work area. Allows leftovers (such as leftover soil) to be suppressed.
  • the area setting unit moves the second point along the same circle.
  • a circular arc connecting the first point and the second point is set at an outer boundary of the work area in the turning radius direction of the upper turning body.
  • the area setting unit is , an arc-shaped curve connecting the first point and the second point may be set as an outer boundary of the work area in the turning radius direction.
  • the area setting unit sets a third point between the first point and the second point, and the outer boundary of the work area is set to a position higher than the third point.
  • a first point side portion which is a portion closer to the first point, is set based on the position of the first point
  • a second point side portion which is closer to the second point than the third point, is set to the second point. It may be set based on location. This makes it possible to set the outer boundaries different from each other on both sides of the third point. To easily set an appropriate work area according to the surrounding conditions even when the surrounding conditions of a work machine corresponding to a part are different.
  • the work area setting system further includes a coordinate calculation unit that calculates a plurality of coordinates for each of the first point and the second point, the plurality of coordinates being coordinates in the longitudinal direction of the upper rotating body, It is preferable to include coordinates in the vertical direction of the running body and coordinates in the turning direction of the upper turning body.
  • the coordinates in the longitudinal direction of the upper rotating body 22 and the coordinates in the vertical direction of the lower traveling body can be calculated from, for example, the attitude of the attachment, and the coordinates in the turning direction of the upper rotating body are calculated from the attitude of the attachment. , for example, can be calculated from the attitude of the upper rotating body 22 with respect to the lower traveling body 21 . Therefore, the plurality of coordinates of each of the first point and the second point can be calculated by simpler calculation than calculation of position information using coordinates based on the work site, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

提供されるのは、作業エリアが容易に設定されることを可能にする作業エリア設定システムであり、第1直線設定部と、第2直線設定部と、エリア設定部と、を備える。第1直線設定部は、上部旋回体(22)が第1の方向を向いた際に、アタッチメントの先端(33)が位置する第1ポイント(PA)を通り、平面視においてアタッチメント(30)の動作面に平行な第1直線(L1)を設定する。第2直線設定部は、上部旋回体(22)が第1の方向とは異なる第2の方向を向いた際に、アタッチメントの先端(33)が位置する第2ポイント(PB)を通り、平面視において動作面に平行な第2直線(L2)を設定する。エリア設定部は、平面視において第1直線(L1)と第2直線(L2)とで挟まれた領域を作業エリア(80)に設定する。

Description

作業エリア設定システム
 本発明は、作業機械の作業エリアを設定するための作業エリア設定システムに関する。
 特許文献1には、ホイールローダから掘削対象である地山までの距離または地山の安息角を三次元計測装置の計測データに基づいて算出する技術が、開示されている。しかし、繰り返し作業を行うように作業機械を自動運転させるための制御を容易にする技術は開示されていない。
特開2019-178599号公報
 繰り返し作業を行うように作業機械を自動運転させる場合、前記繰り返し作業における作業機械の動きを区分けすることにより、前記自動運転のための作業機械の制御が容易となる。具体的には、作業対象物(例えば土砂山)の周りに作業エリアを設定することが、自動運転制御などにおける作業対象物の特定を容易にする。
 本発明の目的は、作業機械の作業エリアが容易に設定されることを可能にする作業エリア設定システムを提供することである。
 提供されるのは、作業機械が作業動作を行う作業エリアを設定するための作業エリア設定システムである。前記作業機械は、下部走行体と、前記下部走行体の上部に上下方向の旋回中心軸回りに旋回可能に取り付けられた上部旋回体と、上下方向に延びる平面である動作面に沿う方向に回動可能となるように前記上部旋回体に取り付けられて前記作業動作を行うアタッチメントと、を含む。前記作業エリア設定システムは、第1直線設定部と、第2直線設定部と、エリア設定部と、を備える。前記第1直線設定部は第1直線を設定し、前記第1直線は、前記上部旋回体が第1の方向を向いた際に、前記アタッチメントの先端が位置する第1ポイントを通り、かつ、前記作業機械を上方から見た平面視において前記動作面と平行な直線である。前記第2直線設定部は第2直線を設定し、前記第2直線は、前記上部旋回体が前記第1の方向とは異なる第2の方向を向いた際に、前記アタッチメントの先端が位置する第2ポイントを通り、かつ、前記平面視において前記動作面と平行な直線である。前記エリア設定部は、前記平面視において前記第1直線と前記第2直線とで挟まれた領域を前記作業エリアに設定する。
実施形態に係る作業機械の側面図である。 前記実施形態に係る作業エリア設定システムの複数の構成要素を示す回路図である。 前記作業機械の平面図であり、第1ポイントと第2ポイントとが同一円上に位置している場合に前記作業機械について設定される作業エリアを示す。 前記作業機械の平面図であり、前記第1ポイントと前記第2ポイントとが同一円上にない場合に設定される作業エリアの第1の例を示す。 前記作業機械の平面図であり、前記第1ポイントと前記第2ポイントとが同一円上にない場合に設定される作業エリアの第2の例を示す。 比較例に係る作業機械の平面図であり、当該作業機械について設定された長方形の作業エリアを示す。
 以下、本発明の好適な実施の形態について、図面を参照しつつ説明する。
 前記実施形態では、図1に示される作業機械20の作業エリアが図2に示される作業エリア設定システム1により設定される。図1は前記作業機械20の側面図である。
 前記実施形態に係る前記作業機械20は、油圧ショベルであり、機械本体25と、アタッチメント30と、作業駆動装置40、を含む。前記アタッチメント30は作業動作を行う。
 前記機械本体25は、下部走行体21と上部旋回体22とを含む。前記下部走行体21は、走行動作を行う部分であり、例えば一対のクローラを含む。前記上部旋回体22は、前記下部走行体21の上に旋回駆動装置24を介して上下方向の旋回中心軸回りに旋回可能となるように取り付けられる。前記旋回駆動装置24は、前記下部走行体21に対して前記上部旋回体22を旋回させる装置であり、例えば油圧モータを含む。前記上部旋回体22はキャブ(運転室)23を含み、前記キャブ23は前記上部旋回体22の前部に含まれる。
 前記アタッチメント30は、上下方向に延びる平面(鉛直面)である動作面に沿う方向に回動をすることが可能となるように前記上部旋回体22に取り付けられ、前記作業動作は前記回動を含む。前記アタッチメント30は、ブーム31と、アーム32と、バケット33と、を含む。前記ブーム31は、前記上部旋回体22に対し前記動作面に沿って上下方向に回動可能(起伏可能)となるように前記上部旋回体22に取り付けられる。前記アーム32は、前記ブーム31に対し前記動作面に沿って上下方向に回動可能となるように前記ブーム31に取り付けられる。前記バケット33は、前記アーム32に対し前記動作面に沿って回動可能となるように前記アーム32に取り付けられる。前記バケット33は、前記アタッチメント30の先端部を構成する先端アタッチメントであり、土砂を作業対象物とする前記作業動作を行う部分である。従って、前記バケット33の先端は前記アタッチメント30の先端に相当する。前記作業動作は、例えば、掘削動作、均し動作、及びすくい動作を含む。前記作業対象物は、土砂に限定されず、例えば、石または廃棄物(産業廃棄物など)でもよい。前記先端アタッチメントは、前記バケット33に限られず、例えば、グラップルまたはリフティングマグネットであってもよい。
 前記作業駆動装置40は、前記ブーム31、前記アーム32及び前記バケット33のそれぞれを油圧で回動させる。前記作業駆動装置40は、伸縮動作を行うことが可能な複数の油圧シリンダ、すなわち、ブームシリンダ41、アームシリンダ42及びバケットシリンダ43、を含む。
 前記ブームシリンダ41は、前記伸縮動作を行うことにより前記上部旋回体22に対して前記ブーム31を回動させる。前記ブームシリンダ41は、基端部とその反対側の先端部とを有する。前記基端部は、前記上部旋回体22に回動可能に連結される。前記先端部は、前記ブーム31に回動可能に連結される。
 前記アームシリンダ42は、前記伸縮動作を行うことにより前記ブーム31に対して前記アーム32を回動させる。前記アームシリンダ42は、基端部とその反対側の先端部とを有する。前記基端部は、前記ブーム31に回動可能に連結される。前記先端部は、前記アーム32に回動可能に連結される。
 前記バケットシリンダ43は、前記伸縮動作を行うことにより前記アーム32に対して前記バケット33を回動させる。前記バケットシリンダ43は、基端部とその反対側の先端部とを有する。前記基端部は、前記アーム32に回動可能に取り付けられる。前記先端部は、リンク部材34に回動可能に取り付けられ、前記リンク部材34は、前記バケット33に回動可能に取り付けられる。
 前記作業機械20は、旋回角度検出器52と、姿勢検出器60と、をさらに含む。
 前記旋回角度検出器52は、前記下部走行体21に対する前記上部旋回体22の旋回角度を検出する。前記旋回角度検出器52は、例えば、エンコーダ、レゾルバ、又は、ジャイロセンサである。本実施形態では、前記上部旋回体22の前方が前記下部走行体21の前方と一致するときの前記上部旋回体22の旋回角度が0°である。
 前記姿勢検出器60は、前記アタッチメント30の姿勢を検出する。この実施形態に係る前記姿勢検出器60は、ブーム傾斜角センサ61と、アーム傾斜角センサ62と、バケット傾斜角センサ63と、を含む。
 前記ブーム傾斜角センサ61は、前記ブーム31に取り付けられ、前記ブーム31の姿勢を検出する。前記ブーム傾斜角センサ61は、水平線に対する前記ブーム31の傾斜角度を取得するセンサであり、例えば、傾斜センサ、加速度センサ、前記ブーム31の基端にあるブームフットピンの回転角度を検出する回転角度センサ、あるいは、前記ブームシリンダ41のストロークを検出するストロークセンサである。
 前記アーム傾斜角センサ62は、前記アーム32に取り付けられ、前記アーム32の姿勢を検出する。前記アーム傾斜角センサ62は、水平線に対する前記アーム32の傾斜角度を取得するセンサであり、例えば、傾斜センサ、加速度センサ、前記アーム32の基端にあるアーム連結ピンの回転角度を検出する回転角度センサ、前記アームシリンダ42のストロークを検出するストロークセンサである。
 前記バケット傾斜角センサ63は、前記リンク部材34に取り付けられ、前記バケット33の姿勢を検出する。前記バケット傾斜角センサ63は、水平線に対する前記バケット33の傾斜角度を取得するセンサであり、例えば、傾斜センサ、加速度センサ、前記バケット33の基端にあるバケット連結ピンの回転角度を検出する回転角度センサ、あるいは前記バケットシリンダ43のストロークを検出するストロークセンサである。
 図2は、前記作業エリア設定システム1の複数の構成要素を示す回路図である。前記複数の構成要素は、コントローラ11と、記憶装置13と、を含む。
 前記コントローラ11には旋回角度情報が入力され、当該旋回角度情報は、前記下部走行体21に対する前記上部旋回体22の旋回角度(姿勢)に関する情報であって前記旋回角度検出器52によって取得される。前記コントローラ11にはブーム姿勢情報が入力され、当該ブーム姿勢情報は、前記ブーム31の姿勢に関する情報であって前記ブーム傾斜角センサ61により取得される。前記コントローラ11にはアーム姿勢情報が入力され、当該アーム姿勢情報は、前記アーム32の姿勢に関する情報であって前記アーム傾斜角センサ62により取得される。前記コントローラ11にはバケット姿勢情報が入力され、当該バケット姿勢情報は、前記バケット33の姿勢に関する情報であってバケット傾斜角センサ63により取得される。
 前記作業機械20の自動運転のために、前記コントローラ11は前記作業機械20の動作を自動制御する。具体的に、前記コントローラ11は、繰り返し作業を前記上部旋回体22および前記アタッチメント30が行うように前記上部旋回体22および前記アタッチメント30の動作を制御する。前記コントローラ11は、より具体的には、前記旋回角度検出器52および前記姿勢検出器60により取得された情報に基づいて、前記旋回駆動装置24による前記上部旋回体22の旋回駆動および前記作業駆動装置40による前記アタッチメント30の駆動を自動制御する。本実施の形態において、前記繰り返し作業は、土砂を掘削して排土する作業である。
 前記記憶装置13は、前記自動制御のために必要な情報を記憶する。当該情報は、後述する第1ポイントPAおよび第2ポイントPBのそれぞれの座標を含む。
 前記コントローラ11は、第1直線設定部として機能することが可能であり、前記第1直線設定部は、図3に示される第1直線L1を設定する。図3は前記作業機械20の平面図である。前記第1直線L1は、前記上部旋回体22が第1の方向(図3に示される例では右斜め方向)を向いた際に、前記作業機械20を上方から見た平面視において、前記バケット33の先端が位置する前記第1ポイントPAを通り、かつ、前記動作面に平行な直線すなわち前記アタッチメント30の長手方向に平行な直線である。
 また、前記コントローラ11は、第2直線設定部としても機能することが可能であり、前記第2直線設定部は、図3に示される第2直線L2を設定する。前記第2直線L2は、前記上部旋回体22が前記第1の方向とは異なる第2の方向(図3に示される例では左斜め方向)を向いた際に、前記平面視において、前記バケット33の先端が位置する前記第2ポイントPBを通り、かつ、前記動作面に平行な直線すなわち前記アタッチメント30の長手方向に平行な直線である。
 前記動作面に平行な直線である前記第1及び第2直線L1,L2のそれぞれの前記アタッチメント30の幅方向についての位置は特に限定されない。前記アタッチメント30の幅方向は、当該動作面に直交する方向、すなわち、前記アタッチメント30の長手方向および鉛直方向の双方に対して直交する方向である。具体的に、前記幅方向について、前記第1及び第2直線L1,L2のそれぞれは前記アタッチメント30の幅方向の中央を通る直線であってもよいし、前記幅方向の端を通る直線、つまり、前記アタッチメント30の側面に沿った直線、であってもよい。
 前記コントローラ11は、座標算出部としても機能することが可能である。具体的に、前記コントローラ11は、前記第1直線L1を設定するための前記第1ポイントPAの複数の座標の算出と、前記第2直線L2を設定するための前記第2ポイントPBの複数の座標の算出と、を行う。前記コントローラ11は、詳しくは、前記第1ポイントPAおよび前記第2ポイントPBの各々のR座標、Z座標及びθ座標を求める。前記R座標は、前記上部旋回体22の前後方向の座標すなわち前記上部旋回体22の旋回半径方向の座標であり、前記Z座標は、前記下部走行体21の上下方向の座標であり、前記θ座標は、前記上部旋回体22の旋回方向の座標である。
 前記第1ポイントPAおよび前記第2ポイントPBのそれぞれの前後方向の座標すなわち前記R座標と、上下方向の座標すなわち前記Z座標は、例えば、前記アタッチメント30の姿勢から算出されることが可能である。前記アタッチメント30の姿勢は、前記ブーム傾斜角センサ61、前記アーム傾斜角センサ62、および、前記バケット傾斜角センサ63の各々によって取得された情報から求められることが可能である。前記第1ポイントPAおよび前記第2ポイントPBの座標の旋回方向の座標すなわち前記θ座標は、例えば、前記下部走行体21に対する前記上部旋回体22の姿勢である旋回姿勢から算出されることが可能である。前記旋回姿勢は、前記旋回角度検出器52により取得された情報から求められることが可能である。
 このように、前記上部旋回体22を基準とした前記第1ポイントPAの座標および前記第2ポイントPBの座標は、例えば作業現場を基準とした座標を用いた位置情報の演算に比べてより簡易な演算で算出されることが可能である。
 図3に例示される作業現場には土砂山70がある。前記土砂山70は、前記第1ポイントPAと前記第2ポイントPBとの間であって、前記上部旋回体22の前方に位置している。換言すれば、前記第1ポイントPA及び前記第2ポイントPBは、これらの間に土砂山70が位置するように設定される。
 本実施形態では、前記第1ポイントPAに前記バケット33の先端が位置する旋回角度で前記アタッチメント30を前記動作面に沿って動作させることにより、前記土砂山70の土砂を掘削することが可能である。同様に、前記第2ポイントPBに前記バケット33の先端が位置する旋回角度で前記アタッチメント30を前記動作面に沿って動作させることにより、前記土砂山70の土砂を掘削することが可能である。
 前記第1ポイントPAおよび前記第2ポイントPBは、あるいは、前記土砂山70から大きく外れた位置であってもよい。つまり、前記第1及び第2ポイントPA,PBは、掘削可能位置に限定されず、前記掘削可能位置は、前記第1及び第2ポイントPA,PBにそれぞれ前記バケット33の先端が位置する旋回角度で前記アタッチメント30を動作させることにより前記土砂山70の土砂を掘削することが可能である位置である。
 前記コントローラ11は、前記作業機械20のための作業エリア80を設定するエリア設定部としても機能することが可能である。具体的に、前記コントローラ11は、前記平面視において、前記第1直線L1と前記第2直線L2とで挟まれた領域を前記作業エリア80に設定する。
 本実施形態では、前記第1直線L1および前記第2直線L2を設定する際に、実際に掘削動作が行われる。この掘削動作は、前記作業エリア80を設定する目的だけの特別な動作ではなく、掘削作業のための動作を兼ねる。よって、前記作業エリア80の設定のために特別な動作を前記作業機械20に行わせる必要がない。また、前記作業エリア80の設定のために特定の図形、例えば長方形、を算出するための特別な演算を要しない。これにより、前記作業エリア80が容易に設定されることができる。
 前記第1及び第2直線L1,L2を特定するための前記第1及び第2ポイントPA,PBの設定は実際の掘削動作によるものに限られない。例えば、ティーチングなどによって前記第1ポイントPAおよび前記第2ポイントPBが教示されてもよい。あるいは、前記作業機械20または前記作業機械20の周囲に設置されたカメラにより撮像された画像に基づいて前記第1ポイントPAおよび前記第2ポイントPBが設定されてもよいし、オペレータ等による数値の入力によって前記第1ポイントPAおよび前記第2ポイントPBが設定されてもよい。
 前記作業エリア80の境界である前記第1直線L1および前記第2直線L2が前記アタッチメント30の前記動作面に平行であることは、前記上部旋回体22の旋回を伴うことなく前記バケット33の先端を前記作業エリア80の境界に沿って移動させることを可能にする。このことは、前記作業機械20に複雑な動作、例えば、前記バケット33の先端が前記作業エリア80からはみ出すことを防ぐために前記上部旋回体22を旋回させながら掘削または排土を行うといった動作、を行わせる必要を減らす。また、前記上部旋回体22の旋回を要することなく前記バケット33の先端を作業エリア80の境界に沿って移動させることが可能であることは、前記作業エリア80内での作業のやり残し(例えば土の掘り残し)を削減することができる。
 図3に示す例では、前記第1ポイントPA及び前記第2ポイントPBが前記下部走行体21に対する前記上部旋回体22の旋回軸である旋回中心軸Xsを中心とする同一円Cc上に位置している。この場合、前記エリア設定部としての前記コントローラ11は、前記平面視において、前記同一円Ccに沿って前記第1ポイントPAと前記第2ポイントPBとを繋ぐ円弧81を前記上部旋回体22の旋回半径方向について前記作業エリア80の外側の境界に設定する。
 前記第1ポイントPAの高さと前記第2ポイントPBの高さは同一でなくてもよい。前記円弧81は、作業機械20を側方から見た側面視において前記第1ポイントPAと前記第2ポイントPBとを滑らかに繋ぐ。
 前記円弧81を前記作業エリア80の境界に設定することは、以下の効果を奏する。前記バケット33の先端が前記前後方向において最も前側(旋回半径方向において最も外側)に位置する状態を保ったまま前記上部旋回体22を旋回させて繰り返し作業を行う場合、前記作業エリア80の外側の境界に沿って前記作業を行うことが可能である。このことは、前記繰り返し作業の進行に伴って前記バケット33の先端の位置を変更するための複雑な演算を不要にする。また、前記作業エリア80の外側部分で作業のやり残し(例えば土の掘り残しなど)が生じるのを抑制することができる。
 一方、前記第1ポイントPAと前記第2ポイントPBが前記旋回中心軸を中心とする同一円上にない場合、具体的には、図4に示されるように前記第1ポイントPAが前記旋回中心軸を中心とする第1円Ca上に位置し、前記第2ポイントPBが前記旋回中心軸を中心とする第2円Cb上に位置し、且つ、前記第1円Ca及び前記第2円Cbが互いに異なる半径を有する場合、前記エリア設定部としての前記コントローラ11は、前記作業機械20を上方から見た平面視において前記第1ポイントPAと前記第2ポイントPBとを滑らかに繋ぐ弧状の曲線82を前記旋回半径方向について前記作業エリア80の外側の境界に設定する。図4に示されるでは、前記第1ポイントPAを通る円の半径Raが前記第2ポイントPBを通る円の半径Rbよりも大きい。
 図4に示される例においても、前記第1ポイントPAの高さと前記第2ポイントPBの高さとが同一でなくてもよい。前記弧状の曲線82は、前記作業機械20を側方から見た側面視において前記第1ポイントPAと前記第2ポイントPBとを滑らかに繋ぐ。
 前記弧状の曲線82は、例えば、以下のようにして設定される。図4に示すように、前記第1ポイントPAにバケット33の先端が位置するときの前記アタッチメント30の長さすなわち前記第1円Caの半径(旋回半径)Raよりも前記第2ポイントPBにバケット33の先端が位置するときの前記アタッチメント30の長さすなわち前記第2円Cbの半径(旋回半径)RbがΔRだけ小さい場合、つまり、Rb=Ra-ΔRである場合において、前記第1ポイントPAから前記第2ポイントPBまでの前記上部旋回体22の旋回角度が角度θmaxであるとき、前記第1ポイントPAから旋回角度θだけ前記上部旋回体22が旋回したときの前記バケット33の先端の前記前後方向についての位置RはR=R+θ/θmax×(-ΔR)となるように設定される。これにより、前記第1ポイントPAと前記第2ポイントPBとを滑らかに繋ぐ前記曲線82が設定される。
 前記曲線82を前記旋回半径方向について前記作業エリア80の外側の境界に設定することは、前記上部旋回体22を旋回させて前記バケット33の先端の位置を前記旋回方向に変えながら行われる繰り返し作業において、前記旋回に伴う前記バケット33の先端の前記前後方向への動きを滑らかにして作業者に与える違和感を軽減することができる。
 前記のように前記第1ポイントPAと前記第2ポイントPBとが前記旋回中心軸を中心とする同一円周上にない場合、すなわち、前記第1ポイントPAが位置する前記第1円Caの半径Raと前記第2ポイントPBが位置する前記第2円Cbの半径Rbとが異なる場合、前記コントローラ11は、図5に示されるように前記作業エリア80の前記外側の境界を設定してもよい。
 図5において、前記コントローラ11は、まず、前記第1ポイントPAと前記第2ポイントPBとの間に位置する第3ポイントPCを設定する。前記第3ポイントPCは、実際に掘削作業に対応する前記アタッチメント30の動作が行われることにより設定されてもよいし、ティーチングなどによって設定されてもよい。前記第3ポイントPCは、前記上部旋回体22の旋回方向において前記第1ポイントPAと前記第2ポイントPBとのちょうど中間の位置にあってもよいし、前記ちょうど中間の位置よりも前記第1ポイントPAに近い位置または前記第2ポイントPBに近い位置にあってもよい。
 次に、前記コントローラ11は、前記平面視において、前記作業エリア80の境界の第1ポイント側部分、すなわち、前記第3ポイントPCよりも前記第1ポイントPAに近い部分、を前記第1ポイントPAの位置に基づいて設定する。具体的に、前記コントローラ11は、前記第1ポイント側部分を、前記第1ポイントPAを通る前記第1円Caの半径Ra、すなわち前記第1ポイントPAに対応する旋回半径、に等しい半径を有して前記第1ポイントPAを通る円弧に設定する。
 一方、前記コントローラ11は、前記平面視において、前記作業エリア80の境界の第2ポイント側部分、すなわち、前記第3ポイントPCよりも前記第2ポイントPBに近い部分、を前記第2ポイントPBの位置に基づいて設定する。具体的に、前記コントローラ11は、前記第2ポイント側部分を、前記第2ポイントPBを通る前記第2円Cbの半径Rb、すなわち前記第2ポイントPBに対応する旋回半径、と等しい半径を有して前記第2ポイントPBを通る円弧に設定する。
 この例においても、前記第1ポイントPAの高さと前記第2ポイントPBの高さは同一でなくてもよい。前記コントローラ11は、前記作業エリア80の境界のうち、第1ポイント側部分の高さは前記第1ポイントPAの高さに基づいて設定し、前記第2ポイント側部分の高さは前記第2ポイントPBの高さに基づいて設定してもよい。
 このような前記作業エリア80の境界の設定は、前記第1ポイント側部分に対応する前記作業機械20の周囲の状況と前記第2ポイント側部分に対応する前記作業機械20の周囲の状況とが異なる場合にも、それぞれの周囲の状況に応じた適切な作業エリア80を設定することを容易にする。
 例えば、図5に示すように前記第2ポイントPBを通る前記第2直線L2の近傍に柱などの障害物90がある場合、当該障害物90を避けるように前記第2ポイントPBを設定することは、前記第1ポイントPAを通る前記第1円Caの半径Raと前記第2ポイントPBを通る前記第2円Cbの半径Rbとを異ならせる。このような場合に、前記第2ポイントPBの位置に基づいて前記作業エリア80の外側の境界を設定することは、前記障害物90を避けながら前記作業機械20に繰り返し作業を行わせることを可能にする。
 図6は、図3~図5に示される作業エリア80の優位性を説明するための比較例を示し、当該比較例では土砂山75の周りに長方形の作業エリア85が設定される。前記作業エリア85を特定する4つの頂点Pa,Pb,Pc,Pdのうち互いに対角となる一対の頂点Pa,Pcの各々にバケット33の先端を実際に位置させることで、当該一対の頂点Pa,Pcの位置がコントローラに教示される。前記コントローラは、前記一対の頂点Pa,Pcに基づいて残りの2つの頂点Pb、Pdを演算で決定する。このようにして前記作業エリア85が定められる。
 このような設定は、通常の掘削動作や積込動作とは全く別の特別な動作を作業機械に行わせることを要し、煩雑である。また、前記一対の頂点Pa,Pcに基づいて長方形の前記作業エリア85を特定する演算も煩雑である。
 これに対し、前記実施形態に係る前記作業エリア設定システム1は、前記上部旋回体22が第1の方向を向いたときに設定される前記第1直線L1と、前記上部旋回体22が第2の方向を向いたときに設定される前記第2直線L2と、を用いることにより、繰り返し作業の流れの中で前記作業エリア80を設定することができる。このことは、前記作業エリア80の設定のみを目的とした特別な動作を前記作業機械20に行わせる必要をなくし、また、前記作業エリア80の設定のために煩雑な演算を行う必要をなくす。これにより、前記作業エリア80を容易に設定することができる。
 前記作業エリア80の境界である前記第1直線L1および前記第2直線L2は前記アタッチメント30の前記動作面に平行であるため、前記上部旋回体22を旋回させなくても前記バケット33の先端を前記作業エリア80の境界に沿って移動させることを可能にする。このことは、前記バケット33の先端が前記作業エリア80からはみ出すことを防ぐために前記上部旋回体22を旋回させながら掘削や排土といった複雑な動作を前記作業機械20に行わせる必要を減らすことができる。また、前記上部旋回体22を旋回させなくても前記バケット33の先端を前記作業エリア80の境界に沿って移動させることが可能であり、これにより、前記作業エリア80内で作業のやり残し(例えば土の掘り残しなど)が生じるのを抑制することができる。
 以上、本発明の実施形態を説明したが、具体例を例示したに過ぎず、特に本発明を限定するものではなく、具体的構成などは、適宜設計変更可能である。また、発明の実施の形態に記載された、作用及び効果は、本発明から生じる最も好適な作用及び効果を列挙したに過ぎず、本発明による作用及び効果は、本発明の実施の形態に記載されたものに限定されるものではない。
 以上のように、作業機械の作業エリアが容易に設定されることを可能にする作業エリア設定システムが、提供される。
 提供されるのは、作業機械が作業動作を行う作業エリアを設定するための作業エリア設定システムである。前記作業機械は、下部走行体と、前記下部走行体の上部に上下方向の旋回中心軸回りに旋回可能に取り付けられた上部旋回体と、上下方向に延びる平面である動作面に沿う方向に回動可能となるように前記上部旋回体に取り付けられて前記作業動作を行うアタッチメントと、を含む。前記作業エリア設定システムは、第1直線設定部と、第2直線設定部と、エリア設定部と、を備える。前記第1直線設定部は第1直線を設定し、前記第1直線は、前記上部旋回体が第1の方向を向いた際に、前記アタッチメントの先端が位置する第1ポイントを通り、かつ、前記作業機械を上方から見た平面視において前記動作面と平行な直線である。前記第2直線設定部は第2直線を設定し、前記第2直線は、前記上部旋回体が前記第1の方向とは異なる第2の方向を向いた際に、前記アタッチメントの先端が位置する第2ポイントを通り、かつ、前記平面視において前記動作面と平行な直線である。前記エリア設定部は、前記平面視において前記第1直線と前記第2直線とで挟まれた領域を前記作業エリアに設定する。
 前記エリア設定システムは、前記上部旋回体が第1の方向を向いたときに設定される第1直線と、前記上部旋回体が第2の方向を向いたときに設定される第2直線と、を用いることにより、繰り返し作業の流れの中で前記作業エリアが容易に設定されることを可能にする。具体的に、前記作業エリアの設定は、当該作業エリアの設定のみを目的とする特別な動作を作業機械に行わせること、及び、特別な演算を、不要にする。
 それぞれが前記作業エリアの境界である前記第1直線および前記第2直線はいずれも前記アタッチメントの前記動作面に平行であるため、前記上部旋回体の旋回を要することなく前記アタッチメントの先端を前記作業エリアの境界に沿って移動させることができる。このことは、複雑な動作、例えば、前記アタッチメントの先端が前記作業エリアからはみ出すことを防ぐように前記上部旋回体を旋回させながら掘削や排土を行うといった動作、を作業機械に行わせる必要を抑制することができる。また、前記上部旋回体の旋回を伴わずに前記アタッチメントの先端を前記作業エリアの境界である前記第1及び第2直線にそれぞれ沿って移動させることができることは、前記作業エリア内で作業のやり残し(例えば土の掘り残しなど)が抑制されることを可能にする。
 具体的に、前記平面視において前記第1ポイント及び前記第2ポイントの双方が前記旋回中心軸を中心とする同一円上に位置する場合、前記エリア設定部は、前記同一円に沿って前記第1ポイントと前記第2ポイントとを繋ぐ円弧を前記上部旋回体の旋回半径方向についての前記作業エリアの外側の境界に設定するように構成されていることが、好ましい。このことは、前記旋回半径方向つまり前記アタッチメントの前後方向についての前記アタッチメントの先端の位置を変えることなく前記上部旋回体を旋回させるだけの簡単な動作で、前記アタッチメントの先端が前記作業エリアの前記外側の境界に沿って移動する作業が容易に行われることを可能にする。具体的には、繰り返し作業の進行に伴って前記前後方向(旋回半径方向)についての前記アタッチメントの先端の位置を変更するための複雑な演算を不要にする。また、前記作業エリアの前記外側の領域の近傍での作業のやり残し(例えば土の掘り残しなど)が抑制される。
 前記平面視において前記第1ポイント及び前記第2ポイントが前記旋回中心軸を中心とする同一円にない場合、具体的には、前記第1ポイントが前記旋回中心軸を中心とする第1円上に位置し、前記第2ポイントが前記旋回中心軸を中心とする第2円上に位置し、かつ、前記第1円が前記第2円の半径と異なる半径を有する場合、前記エリア設定部は、前記第1ポイントと前記第2ポイントとを繋ぐ弧状の曲線を前記旋回半径方向についての前記作業エリアの外側の境界に設定してもよい。このことは、前記上部旋回体の旋回に伴う前記アタッチメントの先端の位置の前記旋回半径方向における変化を円滑にして作業者に与える違和感を軽減することができる。
 また、前記の場合において、前記エリア設定部は、前記第1ポイントと前記第2ポイントとの間に第3ポイントを設定し、前記作業エリアの前記外側の境界のうち、前記第3ポイントよりも前記第1ポイントに近い部分である第1ポイント側部分は前記第1ポイントの位置に基づいて設定し、前記第3ポイントよりも前記第2ポイントに近い第2ポイント側部分は前記第2ポイントの位置に基づいて設定してもよい。このことは、前記第3ポイントを挟んでその両側に互いに異なる前記外側の境界を設定することを可能にし、前記第1ポイント側部分に対応する前記作業機械の周囲の状況と前記第2ポイント側部分に対応する前記作業機械の周囲の状況とが異なる場合でも当該周囲の状況に応じた適切な作業エリアが容易に設定されることを可能にする。
 前記作業エリア設定システムは、前記第1ポイントおよび前記第2ポイントのそれぞれについて複数の座標を算出する座標算出部をさらに備え、前記複数の座標は、前記上部旋回体の前後方向の座標、前記下部走行体の上下方向の座標、および、前記上部旋回体の旋回方向の座標を含むことが、好ましい。前記上部旋回体22の前後方向の座標、および、前記下部走行体の上下方向の座標は、例えば、前記アタッチメントの姿勢から算出されることが可能であり、前記上部旋回体の旋回方向の座標は、例えば、下部走行体21に対する上部旋回体22の姿勢から算出されることができる。よって、例えば作業現場を基準とした座標を用いた位置情報の演算よりも簡単な演算で前記第1ポイント及び前記第2ポイントのそれぞれの前記複数の座標を算出することができる。

Claims (5)

  1.  作業機械が作業動作を行う作業エリアを設定するための作業エリア設定システムであって、前記作業機械は、下部走行体と、前記下部走行体の上部に上下方向の旋回中心軸回りに旋回可能に取り付けられた上部旋回体と、上下方向に延びる平面である動作面に沿う方向に回動可能となるように前記上部旋回体に取り付けられて前記作業動作を行うアタッチメントと、を含み、前記作業エリア設定システムは、
     前記上部旋回体が第1の方向を向いた際に、前記アタッチメントの先端が位置する第1ポイントを通り、かつ、前記作業機械を上方から見た平面視において前記動作面と平行な第1直線を設定する第1直線設定部と、
     前記上部旋回体が前記第1の方向とは異なる第2の方向を向いた際に、前記アタッチメントの先端が位置する第2ポイントを通り、かつ、前記平面視において前記動作面と平行な第2直線を設定する第2直線設定部と、
     前記平面視において、前記第1直線と前記第2直線とで挟まれた領域を前記作業エリアに設定するエリア設定部と、を備える作業エリア設定システム。
  2.  請求項1に記載の作業エリア設定システムであって、前記エリア設定部は、前記平面視において、前記第1ポイント及び前記第2ポイントの双方が前記旋回中心軸を中心とする同一円上に位置する場合に、前記平面視において前記同一円に沿って前記第1ポイントと前記第2ポイントとを繋ぐ円弧を前記上部旋回体の旋回半径方向についての前記作業エリアの外側の境界に設定するように構成されている、作業エリア設定システム。
  3.  請求項1又は2に記載の作業エリア設定システムであって、前記エリア設定部は、前記平面視において前記第1ポイントが前記旋回中心軸を中心とする第1円上に位置し、かつ、前記第2ポイントが前記旋回中心軸を中心とする円であって前記第1円の半径と異なる半径を有する第2円上に位置する場合に、前記平面視において前記第1ポイントと前記第2ポイントとを繋ぐ円弧状の曲線を前記上部旋回体の旋回半径方向についての前記作業エリアの外側の境界に設定するように構成されている、作業エリア設定システム。
  4.  請求項1又は2に記載の作業エリア設定システムであって、前記エリア設定部は、前記平面視において、前記第1ポイントが前記旋回中心軸を中心とする第1円上に位置しかつ前記第2ポイントが前記旋回中心軸を中心とする円であって前記第1円の半径と異なる半径を有する第2円上に位置する場合に、前記平面視において前記第1ポイントと前記第2ポイントとの間に第3ポイントを設定し、前記上部旋回体の旋回半径方向についての前記作業エリアの外側の境界のうち前記第3ポイントよりも前記第1ポイントに近い第1ポイント側部分は前記第1ポイントの位置に基づいて設定し、前記外側の境界のうち前記第3ポイントよりも前記第2ポイントに近い第2ポイント側部分は前記第2ポイントの位置に基づいて設定するように構成されている、作業エリア設定システム。
  5.  請求項1~4のいずれか1項に記載の作業エリア設定システムであって、前記第1ポイントおよび前記第2ポイントのそれぞれについて複数の座標を算出する座標算出部をさらに備え、前記複数の座標は、前記上部旋回体の前後方向の座標、前記下部走行体の上下方向の座標、および、前記上部旋回体の旋回方向の座標を含む、作業エリア設定システム。
PCT/JP2023/002152 2022-02-10 2023-01-24 作業エリア設定システム WO2023153202A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202380020108.4A CN118647773A (zh) 2022-02-10 2023-01-24 作业区域设定系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-019284 2022-02-10
JP2022019284A JP2023116909A (ja) 2022-02-10 2022-02-10 作業エリア設定システム

Publications (1)

Publication Number Publication Date
WO2023153202A1 true WO2023153202A1 (ja) 2023-08-17

Family

ID=87564057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002152 WO2023153202A1 (ja) 2022-02-10 2023-01-24 作業エリア設定システム

Country Status (3)

Country Link
JP (1) JP2023116909A (ja)
CN (1) CN118647773A (ja)
WO (1) WO2023153202A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0434137A (ja) * 1990-05-29 1992-02-05 Fujita Corp 建設用作業車の作業領域監視装置
JP2019039206A (ja) * 2017-08-24 2019-03-14 日立建機株式会社 作業機械の周囲監視装置
JP2019108722A (ja) * 2017-12-18 2019-07-04 住友重機械工業株式会社 建設機械
JP2019178599A (ja) 2018-03-30 2019-10-17 株式会社小松製作所 作業機械の制御装置、掘削機械の制御装置、及び作業機械の制御方法
JP2021028444A (ja) * 2019-08-09 2021-02-25 株式会社小松製作所 作業機械

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0434137A (ja) * 1990-05-29 1992-02-05 Fujita Corp 建設用作業車の作業領域監視装置
JP2019039206A (ja) * 2017-08-24 2019-03-14 日立建機株式会社 作業機械の周囲監視装置
JP2019108722A (ja) * 2017-12-18 2019-07-04 住友重機械工業株式会社 建設機械
JP2019178599A (ja) 2018-03-30 2019-10-17 株式会社小松製作所 作業機械の制御装置、掘削機械の制御装置、及び作業機械の制御方法
JP2021028444A (ja) * 2019-08-09 2021-02-25 株式会社小松製作所 作業機械

Also Published As

Publication number Publication date
CN118647773A (zh) 2024-09-13
JP2023116909A (ja) 2023-08-23

Similar Documents

Publication Publication Date Title
CN111819331B (zh) 工程机械
US11505918B2 (en) System for remapping a control signal for excavator arm movement to a rotatory degree of freedom of a tool
KR102602948B1 (ko) 작업 기계
WO2021059730A1 (ja) 動作教示システム
JP7360568B2 (ja) 作業機械
JP2020007866A (ja) 旋回式作業機械の安全装置
JP2023543984A (ja) 作業機械のための仮想境界システム
WO2023153202A1 (ja) 作業エリア設定システム
EP4455409A1 (en) Work area setting system
JP4021529B2 (ja) 作業機の制御装置
JP6912687B2 (ja) 油圧ショベル
WO2023074175A1 (ja) 作業機械
US11739499B2 (en) Different boundaries for implement functions with virtual fence to avoid tire or structural damage
US20240018743A1 (en) System for handling the seamless transition of breaklines during an excavation task
WO2023149104A1 (ja) 作業機械および作業機械の制御方法
WO2022070852A1 (ja) 掘削位置決定システム、掘削制御システムおよび作業機械
JP7222492B2 (ja) 高さ制限のある環境でアームおよびブームを用いて作業を行う装置
WO2023053992A1 (ja) 作業機械
CN117980566A (zh) 工程机械
US10392773B2 (en) Linkage assembly for machine
JP2519469Y2 (ja) 掘削装置
JP2024118622A (ja) アタッチメントの目標経路評価システム
JP2537512Y2 (ja) 油圧式パワーショベル
JP2022064000A (ja) アタッチメントの目標軌跡変更システム
JP2023065962A (ja) 作業機械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23752670

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023752670

Country of ref document: EP

Effective date: 20240726

NENP Non-entry into the national phase

Ref country code: DE