WO2023151477A1 - 资源配置方法、通信装置及通信设备 - Google Patents

资源配置方法、通信装置及通信设备 Download PDF

Info

Publication number
WO2023151477A1
WO2023151477A1 PCT/CN2023/073916 CN2023073916W WO2023151477A1 WO 2023151477 A1 WO2023151477 A1 WO 2023151477A1 CN 2023073916 W CN2023073916 W CN 2023073916W WO 2023151477 A1 WO2023151477 A1 WO 2023151477A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency band
cell
carrier frequency
carrier
information
Prior art date
Application number
PCT/CN2023/073916
Other languages
English (en)
French (fr)
Inventor
黄秀璇
李新县
彭金磷
王轶
刘烈海
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023151477A1 publication Critical patent/WO2023151477A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present application relates to the communication field, and more specifically, to a resource allocation method, a communication device, and a communication device.
  • multiple carrier bandwidths from 5 megahertz (mega hertz, MHz), 10 MHz to 400 MHz are defined for different subcarrier spacings.
  • a 6 giga hertz (giga hertz, GHz) communication frequency band when sub When the carrier spacing is 15 kilohertz (kHz), the maximum carrier bandwidth that can be used by the communication device is 50MHz, and when the subcarrier spacing is 30kHz or 60kHz, the maximum carrier bandwidth that can be used is 100MHz.
  • the millimeter wave communication frequency band when the subcarrier spacing is 120kHz, the maximum carrier bandwidth can reach 200MHz.
  • the bandwidth of frequency domain resources that can be allocated by network operators may be different from the available carrier bandwidth defined by the system.
  • the bandwidth of frequency domain resources that can be allocated is 110MHz, but the carrier bandwidth of 110MHz is not defined in the system.
  • Operators set communication equipment to use The available carrier bandwidth defined by the system will lead to the waste of resources and the decrease of the utilization rate of spectrum resources.
  • the present application provides a resource allocation method, a communication device and a communication device, so as to improve resource utilization.
  • a method for resource allocation is provided, which can be executed by a network device or a module (such as a chip) configured on (or used for) the network device, and will be described below taking the execution of the method by the network device as an example.
  • the method includes: the network device sends first information to the first terminal device, the first information is used to indicate that the carrier frequency band of the first cell is updated from the first carrier frequency band to the second carrier frequency band, and the first cell is the first carrier frequency band.
  • the second carrier frequency band includes frequency domain resources other than the first carrier frequency band.
  • the network device communicates with the first terminal device on the second carrier frequency band.
  • the network device may notify the terminal device through the first information to update the carrier frequency band of the first cell from the first carrier frequency band to a second carrier frequency band including resources other than the first carrier frequency band.
  • the network device can configure the terminal equipment that accesses the network through the first cell to communicate with the first cell on different carrier frequency band resources.
  • the carrier frequency band of the first cell may not be the standard carrier bandwidth defined by the system.
  • a cell can communicate with different terminal devices through multiple carrier frequency bands whose carrier bandwidth is the standard carrier bandwidth.
  • the first cell can communicate with the first terminal device through the second carrier frequency band, and communicate with the second terminal device through the first carrier frequency band. It is realized that the cell communicates with different terminal devices by using multiple carrier bandwidths defined by the system, so that the frequency domain resources of the first cell are fully utilized, and the resource utilization rate can be improved.
  • the network device sends third information
  • the third information is used for the terminal device to establish a communication connection with the first cell
  • the third information includes third indication information
  • the third information The third indication information is used to indicate that the carrier frequency band of the first cell is the first carrier frequency band.
  • the third information is broadcast information, for example, the third information is SIB1.
  • the first carrier frequency band may be called a broadcast carrier frequency band of the first cell, and the second carrier frequency band may be called a dedicated carrier frequency band of the first terminal device.
  • the method further includes: the network device sends second information to the first terminal device, where the second information is used to configure the bandwidth part in the second carrier frequency band BWP.
  • the second information includes first indication information, and the first indication information is used to indicate the offset between the start frequency point of the bandwidth part BWP and the BWP reference frequency point.
  • the BWP reference frequency point is the starting frequency point of the first carrier frequency band.
  • the reference frequency point for the network device to configure BWP for the terminal device is the broadcast carrier frequency band used by the terminal device after accessing, which reduces the implementation complexity.
  • the BWP reference frequency point is the start frequency point of the second carrier frequency band.
  • the maximum number of persistent RBs that can be configured by the BWP in the current system can be used, so that the resource utilization rate can be improved while reducing the modification of the existing system as much as possible.
  • the first BWP and the second BWP in the first carrier frequency band include overlapping frequency domain resources, and the starting frequency point of the first BWP is the same as that of the second BWP in the first carrier frequency band.
  • the frequency domain offset between the starting frequency points of the two BWPs is an integer multiple of the resource block group RBG, the RBG is a frequency domain resource allocation unit, the RBG includes at least one resource block, and the second BWP is for the second terminal BWP configured by the device.
  • the frequency domain offset between the starting frequency point of the first BWP and the starting frequency point of the second BWP is an integer multiple of RBG
  • the RBG in the first BWP can be aligned with the RBG in the second BWP , so that the network device can schedule overlapping RBGs to implement MU communication between multiple terminal devices including the first terminal device and the second terminal device and the network device.
  • the BWP reference frequency point is the start frequency point of the first carrier frequency band
  • the second information further includes second indication information
  • the second indication information uses Indicates that the start frequency of the bandwidth part BWP is greater than, less than or equal to the start frequency of the first carrier frequency band.
  • the network can configure the BWP of the second carrier frequency band containing resources greater than, less than or equal to the starting frequency point of the first carrier frequency band, that is, the second
  • the carrier frequency band may include resources greater than, less than or equal to the starting frequency point of the first carrier frequency band, which improves the flexibility of frequency domain resource configuration.
  • the frequency domain offset between the first BWP and the cell reference frequency point of the first cell is the first frequency domain offset
  • the second The frequency domain offset between the BWP and the reference frequency point of the cell is the second frequency domain offset
  • the difference between the first frequency domain offset and the second frequency domain offset is the resource block group Integer multiples of RBG, where the RBG is a frequency domain resource allocation unit, where the RBG includes at least one resource block.
  • the network device configures the first BWP for the first terminal device through the first frequency domain offset, configures the second BWP for the second terminal device through the second frequency domain offset, and configures the second BWP for the second terminal device through the first frequency domain offset.
  • the difference between the amount and the second frequency domain offset is an integer multiple of the RBG, so that the RBG in the first BWP is aligned with the RBG in the second BWP.
  • the method further includes: the network device communicates with the second terminal device on the first carrier frequency band, where the serving cell of the second terminal device is the first In a cell, the carrier frequency band in which the first cell communicates with the second terminal device is the first carrier frequency band.
  • the first cell can communicate with the first terminal device through the second carrier frequency band, and communicate with the second terminal device through the first carrier frequency band.
  • the cell uses multiple carrier bandwidths defined by the system and different terminal equipment
  • the communication enables the frequency domain resources of the first cell to be fully utilized, and the resource utilization rate can be improved.
  • a resource allocation method is provided, which can be executed by a terminal device or a module (such as a chip) configured on (or used in) the terminal device.
  • the method will be executed by the first terminal device as an example below.
  • the method includes: the first terminal device receives first information from the network device, the first information is used to indicate that the carrier frequency band of the first cell is updated from the first carrier frequency band to the second carrier frequency band, and the first cell is the first In the serving cell of the terminal device, the second carrier frequency band includes frequency domain resources other than the first carrier frequency band.
  • the first terminal device communicates with the first cell in the second carrier frequency band.
  • the method further includes: the first terminal device receives second information from the network device, where the second information is used to configure the bandwidth in the second carrier frequency band Part of BWP.
  • the second information includes first indication information, and the first indication information is used to indicate the offset between the starting frequency point of the BWP of the bandwidth part and the reference frequency point of the BWP, and the reference frequency point of the BWP is the The starting frequency of the first carrier frequency band or the starting frequency of the second carrier frequency band.
  • the BWP reference frequency point is the start frequency point of the first carrier frequency band
  • the second information includes second indication information
  • the second indication information is used for Indicates that the start frequency of the bandwidth part BWP is greater than, less than or equal to the start frequency of the first carrier frequency band.
  • the method further includes: the first terminal device sends third information, the third information is used for the terminal device to establish a communication connection with the first cell, and the third The information includes third indication information, where the third indication information is used to indicate that the carrier frequency band of the first cell is the first carrier frequency band.
  • a resource allocation method is provided, which can be executed by a network device or a module (such as a chip) configured on (or used for) the network device.
  • the method is executed by the network device as an example for description below.
  • the method includes: the network device sends fourth information to the first terminal device, where the fourth information is used to indicate to communicate with the first terminal device through carrier aggregation between the first cell and the second cell, and the second cell's
  • the carrier frequency band is a third carrier frequency band, and the second carrier frequency band partially overlaps with the third carrier frequency band.
  • the network device communicates with the first terminal device on the second carrier frequency band and/or the third carrier frequency band.
  • the network device realizes full utilization of the frequency domain resources of the network device by means of carrier aggregation through two cells whose carrier frequency bands partially overlap. For example, if the network device has frequency domain resources that are not defined by the standard bandwidth of the communication system, the network device communicates with the terminal device through carrier aggregation through two cells whose carrier bandwidth is the standard bandwidth and the carrier frequency band partially overlaps, which can make the frequency of the network device Domain resources are fully utilized, improving resource utilization.
  • the method further includes: the network device sends fourth indication information to the first terminal device, where the fourth indication information is used to indicate that the first cell of the first cell The second carrier frequency band partially overlaps with the third carrier frequency band of the second cell.
  • the network device can indicate to the first terminal device a third carrier frequency band of the second cell that partially overlaps with the second carrier frequency band of the first cell through the fourth indication information, so that the network device can pass the second carrier frequency band and
  • the third carrier frequency band communicates with the first terminal device in a carrier aggregation manner, so that frequency domain resources of the network device can be fully utilized and resource utilization can be improved.
  • the frequency domain resource of one resource block of the first cell in the overlapping frequency band of the second carrier frequency band and the third carrier frequency band is the same as that of a resource block of the second cell
  • the frequency domain resources of the resource blocks are the same.
  • the frequency domain resources of one resource block of the first cell in the overlapping frequency band of the second carrier frequency band and the third carrier frequency band are the same as the frequency domain resources of one resource block of the second cell, that is, second carrier frequency band
  • the resource blocks on the above carrier are aligned with the resource blocks on the third carrier frequency band, so that the network device can use the same scheduling unit to schedule part or all of the frequency band resources in the aggregated frequency band after carrier aggregation to communicate with the first terminal device.
  • the frequency domain offset between the start frequency of the second carrier frequency band and the start frequency of the third carrier frequency band is resource block group RBG Integer multiples of , the RBG is a frequency domain resource allocation unit, and the RBG includes at least one resource block.
  • the frequency domain offset between the starting frequency point of the second carrier frequency band and the starting frequency point of the third carrier frequency band is an integer multiple of RBG, and the second carrier frequency band and the third carrier frequency band can be realized
  • the RBGs are aligned, so that the network device and the terminal device can reach a consensus on the RBG included in the BWP, so that the network device allocates PDSCH resources and/or PUSCH resources to the first terminal device in the BWP in units of RBGs.
  • the method further includes: the cell reference frequency point corresponding to the first cell is the same as the cell reference frequency point corresponding to the second cell, and the cell reference frequency point corresponding to the first cell The cell reference frequency point is used to determine the position of the resource block of the first cell, and the cell reference frequency point corresponding to the second cell is used to determine the position of the resource block of the second cell.
  • the reference frequency points used to determine resource blocks in the first cell and the second cell are the same, and the resource blocks of the first cell determined by the first terminal device based on the reference frequency points are aligned with the resource blocks of the second cell.
  • the frequency domain offset between the second carrier frequency band and the cell reference frequency point is a third frequency domain offset
  • the third carrier frequency band and The frequency domain offset between the cell reference frequency points is the fourth frequency domain offset
  • the difference between the third frequency domain offset and the fourth frequency domain offset is the resource block group RBG Integer multiple
  • the RBG is a frequency domain resource allocation unit
  • the RBG includes at least one resource block.
  • the cell reference frequency points of the first cell and the second cell are the same, and the third frequency domain offset between the second carrier frequency band and the cell frequency point is equal to the difference between the third carrier frequency point and the cell frequency point
  • the difference between the fourth frequency domain offset is an integer multiple of RBG
  • the frequency domain offset between the starting frequency of the second carrier frequency band and the starting frequency of the third carrier frequency band can be An integer multiple of the RBG, so that the RBG of the second carrier frequency point is aligned with the RBG of the third carrier frequency point.
  • the method further includes: the network device sends a first reference signal through the first cell and the second cell, where the first reference signal includes a plurality of symbols.
  • the symbols carried in the overlapping frequency band of the second carrier frequency band and the third carrier frequency band in the first reference signal are sent by the first cell or the second cell.
  • Symbols carried in the first reference signal in frequency bands other than the overlapping frequency band in the second carrier frequency band are sent by the first cell.
  • Symbols carried in the first reference signal in frequency bands other than the overlapping frequency band in the third carrier frequency band are sent by the second cell.
  • the symbol of the reference signal carried in the overlapping frequency band is sent by the first cell or the second cell, which provides an optional way to send the reference signal in the overlapping frequency band, which can avoid the symbols carried in the overlapping frequency band from Inconsistent symbols of multiple cells cause the first terminal device to receive incorrectly or fail to receive successfully.
  • the method further includes: the network device sends the second reference signal on the first resource through the first cell. And, the network device sends a third reference signal on the first resource through the second cell.
  • the first resource is a resource in an overlapping frequency band of the second carrier frequency band and the third carrier frequency band
  • the initialization sequence of the second reference signal is the same as that of the third reference signal.
  • the initialization sequence of the second reference signal sent by the first cell is the same as the initialization sequence of the third reference signal sent by the second cell, so that the first cell and the second cell use
  • the second reference signal and the third reference signal respectively generated in the same manner are the same.
  • An optional way of sending reference signals on overlapping frequency bands is specified, which can avoid the situation that the symbols from multiple cells carried in the overlapping frequency bands are inconsistent and cause the first terminal device to receive incorrectly or fail to receive successfully.
  • the method further includes: the network device sends seventh information to the first terminal device, where the seventh information is used to indicate the scrambling code identifier of the second reference signal Information, the scrambling code identification information of the second reference signal is used to generate the initialization sequence of the second reference signal. And, the network device sends eighth information to the first terminal device, where the eighth information is used to indicate the scrambling code identification information of the third reference signal, and the scrambling code identification information of the third reference signal is used to generate the third reference Initialization sequence for signals.
  • the scrambling code identification information of the second reference signal is the same as the scrambling code identification information of the third reference signal.
  • the scrambling code identification information of the second reference signal indicated by the network device to the first terminal device is the same as the scrambling code identification information of the third reference signal, so that the first terminal device determines that the initialization sequence of the second reference signal is the same as that of the third reference signal.
  • the initialization sequences of the reference signals are the same, so as to determine that the second reference signal is the same as the third reference signal, the terminal device can consider that the same reference signal (that is, the fourth reference signal) is carried on the first resource, and perform joint reception and channel state information measurement .
  • the method further includes: the network device receives channel state information from the first terminal device, where the channel state information is the second reference signal and the third reference signal The channel state information corresponding to the signal.
  • the first terminal device only feeds back the channel state information once for the reference signal carried on the first resource, and does not need to feed back the channel state information to the first cell and the second cell respectively.
  • the resource waste caused by the multiple reporting of the same channel state information by the first terminal device can be avoided, and the resource utilization rate is improved.
  • the method further includes: the network device receives ninth information from the first terminal device, where the ninth information is used to indicate the capability of the first terminal device,
  • the ninth information includes one or more of the following indication information:
  • the fifth indication information is used to indicate whether the first terminal device supports or does not support the carrier aggregation mode in which the carrier frequency bands of the cell overlap;
  • the sixth indication information is used to indicate whether the first terminal device supports or does not support carrier aggregation in which carrier frequency bands overlap in the same frequency band;
  • the seventh indication information is used to indicate whether the first terminal device supports or does not support a carrier aggregation mode in which carrier frequency bands overlap between different frequency bands;
  • the eighth indication information is used to indicate the frequency domain position where the first terminal device supports or does not support the carrier aggregation mode in which carrier frequency bands overlap.
  • the terminal device can report to the network device whether it supports the carrier aggregation method with overlapping carrier frequency bands, so that the network device can determine whether to use the carrier aggregation method with overlapping carrier frequency bands in the cell according to the capabilities of the first terminal device.
  • a terminal device communicates to improve resource utilization.
  • the frequency domain interval between the carrier center frequency point of the first cell and the carrier center frequency point of the second cell is equal to the unit interval of the channel grid and the second A common multiple of the subcarrier spacing
  • the channel grid is a candidate set of carrier center frequency points
  • the interval between two carrier center frequency points belonging to the same frequency band in the channel grid is an integer multiple of the unit interval
  • the first The subcarrier spacings of the cell and the second cell are both the first subcarrier spacing.
  • the frequency domain interval between the carrier center frequency point of the first cell and the carrier center frequency point of the second cell is defined as the channel raster The common multiple of the grid unit interval and the first subcarrier interval. This enables the terminal device to search for the first cell and the second cell during cell search.
  • the method further includes: the network device determines, according to the bandwidth of the second carrier frequency band, the bandwidth of the third carrier frequency band, and the first parameter, that the first terminal device The maximum transmission rate of , wherein the first parameter is used to characterize the influence of the overlapping frequency band of the second carrier frequency band and the third carrier frequency band on the maximum transmission rate.
  • the application proposes a communication mechanism in which the carrier frequency bands of multiple cells can overlap, the calculation of the maximum transmission rate of the terminal device needs to consider the influence of overlapping frequency bands on the maximum transmission rate to more accurately determine the data of the terminal device. Transmission rate.
  • a resource allocation method is provided, which can be executed by a terminal device or a module (such as a chip) configured on (or used in) the terminal device.
  • the method will be executed by the first terminal device as an example below.
  • the resource allocation method provided by the fourth aspect reference may be made to the description of the third aspect, which will not be repeated here.
  • the first terminal device receives fourth information from the network device, where the fourth information is used to instruct the network device to communicate with the first terminal device through carrier aggregation between the first cell and the second cell, and the first cell's
  • the second carrier frequency band partially overlaps with the third carrier frequency band of the second cell.
  • the first terminal device communicates with the network device on the second carrier frequency band and/or the third carrier frequency band.
  • the method further includes: the first terminal device receives fourth indication information from the network device, where the fourth indication information is used to indicate the The second carrier frequency band partially overlaps with the third carrier frequency band of the second cell.
  • the frequency domain resource of one resource block of the first cell in the overlapping frequency band of the second carrier frequency band and the third carrier frequency band is the same as that of a resource block of the second cell
  • the frequency domain resources of the resource blocks are the same.
  • the frequency domain offset between the start frequency of the second carrier frequency band and the start frequency of the third carrier frequency band is resource block group RBG Integer multiples of , the RBG is a frequency domain resource allocation unit, and the RBG includes at least one resource block.
  • the method further includes: the cell reference frequency point corresponding to the first cell is the same as the cell reference frequency point corresponding to the second cell.
  • the cell reference frequency point corresponding to the first cell is used to determine the position of the resource block of the first cell
  • the cell reference frequency point corresponding to the second cell is used to determine the position of the resource block of the second cell.
  • the frequency domain offset between the second carrier frequency band and the cell reference frequency point is a third frequency domain offset
  • the third The frequency domain offset between the carrier frequency band and the cell reference frequency point is a fourth frequency domain offset
  • the difference between the third frequency domain offset and the fourth frequency domain offset is an integer multiple of a resource block group RBG
  • the RBG is a frequency domain resource allocation unit
  • the RBG includes at least one resource block.
  • the method further includes: the first terminal device receives a first reference signal, where the first reference signal includes a plurality of symbols.
  • the symbols carried in the overlapping frequency band of the second carrier frequency band and the third carrier frequency band in the first reference signal are sent by the first cell or the second cell.
  • Symbols carried in the first reference signal in frequency bands other than the overlapping frequency band in the second carrier frequency band are sent by the first cell.
  • Symbols carried in the first reference signal in frequency bands other than the overlapping frequency band in the third carrier frequency band are sent by the second cell.
  • the method further includes: the first terminal device receives a fourth reference signal on the first resource, where the fourth reference signal includes the second reference signal from the first cell signal and the third reference signal of the second cell.
  • the first resource is within the overlapping frequency band of the second carrier frequency band and the third carrier frequency band resource, the initialization sequence of the second reference signal is the same as that of the third reference signal.
  • the method further includes: the first terminal device receives seventh information from the network device, where the seventh information is used to indicate the scrambling code of the second reference signal Identification information, where the scrambling code identification information of the second reference signal is used to generate an initialization sequence of the second reference signal. And, the first terminal device receives eighth information from the network device, where the eighth information is used to indicate the scrambling code identification information of the third reference signal, and the scrambling code identification information of the third reference signal is used to generate the third The initialization sequence for the reference signal. Wherein, the scrambling code identification information of the second reference signal is the same as the scrambling code identification information of the third reference signal.
  • the method further includes: the first terminal device obtains channel state information according to the fourth reference signal, and the channel state information is the second reference signal and the first reference signal Channel state information corresponding to the three reference signals. And, the first terminal device sends the channel state information to the network device.
  • the method further includes: the first terminal device receives ninth information from the first terminal device, where the ninth information is used to indicate the first terminal device's capabilities, the ninth information includes one or more of the following indications:
  • the fifth indication information is used to indicate whether the first terminal device supports or does not support the carrier aggregation mode in which the carrier frequency bands of the cell overlap;
  • the sixth indication information is used to indicate whether the first terminal device supports or does not support carrier aggregation in which carrier frequency bands overlap in the same frequency band;
  • the seventh indication information is used to indicate whether the first terminal device supports or does not support a carrier aggregation mode in which carrier frequency bands overlap between different frequency bands;
  • the eighth indication information is used to indicate the frequency domain position where the first terminal device supports or does not support the carrier aggregation mode in which carrier frequency bands overlap.
  • the frequency domain interval between the carrier center frequency point of the first cell and the carrier center frequency point of the second cell is equal to the unit interval of the channel grid and the second A common multiple of subcarrier spacing
  • the channel grid is a candidate set of carrier center frequency points
  • the interval between two carrier center frequency points in the channel grid is an integer multiple of the unit interval
  • the subcarrier spacing of the two cells is the first subcarrier spacing.
  • the method further includes: the first terminal device determines the maximum transmission rate according to the bandwidth of the second carrier frequency band, the bandwidth of the third carrier frequency band, and the first parameter .
  • the first parameter is used to characterize the influence of the overlapping frequency band of the second carrier frequency band and the third carrier frequency band on the maximum transmission rate.
  • a fifth aspect provides a method for resource allocation, which can be executed by a network device or a module (such as a chip) configured on (or used for) the network device, and will be described below taking the execution of the method by the network device as an example.
  • the method includes: the network device sends tenth information, the tenth information is used for the first terminal device to establish a communication connection with the first cell, and the tenth information is used to indicate the first carrier frequency band and the second carrier frequency band of the first cell.
  • the network device receives eleventh information from the first terminal device, where the eleventh information is used to indicate that the first terminal device requests to establish a communication connection with the first cell, where the eleventh information includes ninth indication information, where the first Nine indication information is used to indicate that the first terminal device supports communication with the first cell on the first carrier frequency band and/or the second carrier frequency band.
  • the first cell may include multiple carrier frequency bands, and multiple standard bandwidth frequency bands may form a non-standard bandwidth frequency band of the first cell, thereby improving resource utilization.
  • the network device notifies the terminal device that the first cell contains multiple carrier frequency bands through the tenth information, and the terminal device can communicate with the first cell through the multiple carrier frequency bands, which can improve resource utilization and increase communication transmission rate. Terminals that do not support communication with the first cell via multiple carrier frequency bands
  • the end device or terminal device can also choose to communicate with the first cell through a carrier frequency band according to communication requirements, so that the terminal device can access the network as required, which improves system flexibility.
  • a sixth aspect provides a method for resource allocation, which can be executed by a terminal device or a module (such as a chip) configured on (or used for) the terminal device, and the method will be executed by the first terminal device as an example below.
  • the method includes: the first terminal device receives tenth information from the network device, the tenth information is used for the terminal device to establish a communication connection with the first cell, and the tenth information is used to indicate the first carrier frequency band and the first carrier frequency band of the first cell Two carrier frequency bands.
  • the first terminal device sends eleventh information to the network device, the eleventh information is used to indicate that the first terminal device requests to establish a communication connection with the first cell, the eleventh information includes ninth indication information, and the ninth The indication information is used to indicate that the first terminal device supports communication with the first cell on the first carrier frequency band and/or the second carrier frequency band.
  • a seventh aspect provides a communication device.
  • the device may include a one-to-one corresponding module for executing the method/operation/step/action described in the first aspect.
  • the module may be a hardware circuit or However, software may also be realized by combining hardware circuits with software.
  • the device includes: a processing unit, configured to determine first information, where the first information is used to indicate that the carrier frequency band of the first cell is updated from the first carrier frequency band to the second carrier frequency band, and the first cell is In the serving cell of the first terminal device, the second carrier frequency band includes frequency domain resources other than the first carrier frequency band.
  • a transceiver unit configured to send the first information to the first terminal device. The transceiver unit is also used for communicating with the first terminal device on the second carrier frequency band.
  • the transceiver unit is further configured to send second information to the first terminal device, where the second information is used to configure the bandwidth part BWP in the second carrier frequency band .
  • the second information includes first indication information
  • the first indication information is used to indicate the offset between the starting frequency point of the BWP of the bandwidth part and the BWP reference frequency point
  • the BWP reference frequency point is the first frequency point of the bandwidth part.
  • the first BWP and the second BWP in the first carrier frequency band include overlapping frequency domain resources, and the starting frequency point of the first BWP is the same as that of the second BWP in the first carrier frequency band.
  • the frequency domain offset between the starting frequency points of the two BWPs is an integer multiple of the resource block group RBG, the RBG is a frequency domain resource allocation unit, the RBG includes at least one resource block, and the second BWP is for the second terminal BWP configured by the device.
  • the BWP reference frequency point is the start frequency point of the first carrier frequency band
  • the second information further includes second indication information
  • the second indication information uses Indicates that the start frequency of the bandwidth part BWP is greater than, less than or equal to the start frequency of the first carrier frequency band.
  • the frequency domain offset between the first BWP and the cell reference frequency point of the first cell is the first frequency domain offset
  • the second The frequency domain offset between the BWP and the reference frequency point of the cell is the second frequency domain offset
  • the difference between the first frequency domain offset and the second frequency domain offset is the resource block group Integer multiples of RBG, where the RBG is a frequency domain resource allocation unit, where the RBG includes at least one resource block.
  • the transceiver unit is further configured to send third information, the third information is used for the terminal device to establish a communication connection with the first cell, and the third information includes the first Three indication information, where the third indication information is used to indicate that the carrier frequency band of the first cell is the first carrier frequency band.
  • the transceiving unit is further configured to communicate with the second terminal device on the first carrier frequency band.
  • the serving cell of the second terminal device is the first cell
  • the carrier frequency band for communication between the first cell and the second terminal device is the first carrier frequency band.
  • the eighth aspect provides a communication device.
  • the device may include a one-to-one corresponding module for executing the method/operation/step/action described in the second aspect.
  • the module may be a hardware circuit or But software can also Therefore, the hardware circuit is combined with software to realize.
  • the apparatus includes: the transceiver unit receives first information from the network device, the first information is used to indicate that the carrier frequency band of the first cell is updated from the first carrier frequency band to the second carrier frequency band, and the first cell It is a serving cell of the first terminal device, and the second carrier frequency band includes frequency domain resources other than the first carrier frequency band.
  • the processing unit is configured to determine to update the carrier frequency band of the first cell from the first carrier frequency band to the second carrier frequency band according to the first information.
  • the transceiver unit is also used for communicating with the first cell in the second carrier frequency band.
  • the transceiving unit is further configured to receive second information from the network device, where the second information is used to configure the bandwidth part BWP in the second carrier frequency band.
  • the second information includes first indication information, and the first indication information is used to indicate the offset between the starting frequency point of the BWP of the bandwidth part and the reference frequency point of the BWP, and the reference frequency point of the BWP is the The starting frequency of the first carrier frequency band or the starting frequency of the second carrier frequency band.
  • the BWP reference frequency point is the start frequency point of the first carrier frequency band
  • the second information includes second indication information
  • the second indication information is used for Indicates that the start frequency of the bandwidth part BWP is greater than, less than or equal to the start frequency of the first carrier frequency band.
  • the transceiver unit is further configured to send third information, the third information is used for the terminal device to establish a communication connection with the first cell, and the third information includes the first Three indication information, where the third indication information is used to indicate that the carrier frequency band of the first cell is the first carrier frequency band.
  • a ninth aspect provides a communication device.
  • the device may include a one-to-one corresponding module for performing the method/operation/step/action described in the third aspect.
  • the module may be a hardware circuit or However, software may also be realized by combining hardware circuits with software.
  • the apparatus includes: a processing unit configured to determine fourth information, where the fourth information is used to indicate communication with the first terminal device through carrier aggregation between the first cell and the second cell, and the second The carrier frequency band of the cell is a third carrier frequency band, and the second carrier frequency band partially overlaps with the third carrier frequency band.
  • a transceiving unit configured to send the fourth information to the first terminal device. The transceiver unit is also used for communicating with the first terminal device on the second carrier frequency band and/or the third carrier frequency band.
  • the transceiver unit is further configured to send fourth indication information to the first terminal device, where the fourth indication information is used to indicate that the second The carrier frequency band partially overlaps with the third carrier frequency band of the second cell.
  • the frequency domain resource of one resource block of the first cell in the overlapping frequency band of the second carrier frequency band and the third carrier frequency band is the same as that of a resource block of the second cell
  • the frequency domain resources of the resource blocks are the same.
  • the frequency domain offset between the start frequency of the second carrier frequency band and the start frequency of the third carrier frequency band is resource block group RBG Integer multiples of , the RBG is a frequency domain resource allocation unit, and the RBG includes at least one resource block.
  • the cell reference frequency point corresponding to the first cell is the same as the cell reference frequency point corresponding to the second cell, and the cell reference frequency point corresponding to the first cell is used for determining the position of the resource block of the first cell.
  • the cell reference frequency point corresponding to the second cell is used to determine the position of the resource block of the second cell.
  • the frequency domain offset between the second carrier frequency band and the cell reference frequency point is a third frequency domain offset
  • the third carrier frequency band and The frequency domain offset between the cell reference frequency points is the fourth frequency domain offset
  • the difference between the third frequency domain offset and the fourth frequency domain offset is the resource block group RBG Integer multiple
  • the RBG is a frequency domain resource allocation unit
  • the RBG includes at least one resource block.
  • the transceiver unit is further configured to pass the first cell and The second cell sends a first reference signal, where the first reference signal includes multiple symbols.
  • the symbols carried in the overlapping frequency band of the second carrier frequency band and the third carrier frequency band in the first reference signal are sent by the first cell or the second cell.
  • Symbols carried in the first reference signal in frequency bands other than the overlapping frequency band in the second carrier frequency band are sent by the first cell.
  • Symbols carried in the first reference signal in frequency bands other than the overlapping frequency band in the third carrier frequency band are sent by the second cell.
  • the transceiving unit is further configured to send a second reference signal on the first resource through the first cell. And, the transceiving unit is further configured to send a third reference signal on the first resource through the second cell.
  • the first resource is a resource in an overlapping frequency band of the second carrier frequency band and the third carrier frequency band, and the initialization sequence of the second reference signal is the same as that of the third reference signal.
  • the transceiver unit is further configured to send seventh information to the first terminal device, where the seventh information is used to indicate the scrambling code identification information of the second reference signal , the scrambling code identification information of the second reference signal is used to generate an initialization sequence of the second reference signal.
  • the transceiver unit is further configured to send eighth information to the first terminal device, where the eighth information is used to indicate the scrambling code identification information of the third reference signal, and the scrambling code identification information of the third reference signal is used to generate the The initialization sequence of the third reference signal.
  • the scrambling code identification information of the second reference signal is the same as the scrambling code identification information of the third reference signal.
  • the transceiver unit is further configured to receive channel state information from the first terminal device, where the channel state information is the second reference signal and the third reference signal Corresponding channel state information.
  • the transceiving unit is further configured to receive ninth information from the first terminal device, where the ninth information is used to indicate the capability of the first terminal device, the The ninth information includes one or more of the following instructions:
  • the fifth indication information is used to indicate whether the first terminal device supports or does not support the carrier aggregation mode in which the carrier frequency bands of the cell overlap;
  • the sixth indication information is used to indicate whether the first terminal device supports or does not support carrier aggregation in which carrier frequency bands overlap in the same frequency band;
  • the seventh indication information is used to indicate whether the first terminal device supports or does not support a carrier aggregation mode in which carrier frequency bands overlap between different frequency bands;
  • the eighth indication information is used to indicate the frequency domain position where the first terminal device supports or does not support the carrier aggregation mode in which carrier frequency bands overlap.
  • the frequency domain interval between the carrier center frequency point of the first cell and the carrier center frequency point of the second cell is equal to the unit interval of the channel grid and the second A common multiple of the subcarrier spacing
  • the channel grid is a candidate set of carrier center frequency points
  • the interval between two carrier center frequency points belonging to the same frequency band in the channel grid is an integer multiple of the unit interval
  • the first The subcarrier spacings of the cell and the second cell are both the first subcarrier spacing.
  • the processing unit is further configured to determine, according to the bandwidth of the second carrier frequency band, the bandwidth of the third carrier frequency band, and the first parameter, the The maximum transmission rate, wherein the first parameter is used to characterize the influence of the overlapping frequency band of the second carrier frequency band and the third carrier frequency band on the maximum transmission rate.
  • a communication device in a tenth aspect, may include a one-to-one corresponding module for performing the method/operation/step/action described in the fourth aspect.
  • the module may be a hardware circuit or But software can also Therefore, the hardware circuit is combined with software to realize.
  • the apparatus includes: a transceiver unit, configured to receive fourth information from the network device, where the fourth information is used to instruct the network device to communicate with the first cell and the second cell through carrier aggregation.
  • a terminal device communicates, and the second carrier frequency band of the first cell partially overlaps with the third carrier frequency band of the second cell.
  • a processing unit configured to determine, according to the fourth information, that the network device communicates with the first terminal device through carrier aggregation between the first cell and the second cell.
  • the transceiver unit is also used for communicating with the network device on the second carrier frequency band and/or the third carrier frequency band.
  • the transceiving unit is further configured to receive fourth indication information from the network device, where the fourth indication information is used to indicate the second carrier of the first cell The frequency band partially overlaps with the third carrier frequency band of the second cell.
  • the frequency domain resource of one resource block of the first cell in the overlapping frequency band of the second carrier frequency band and the third carrier frequency band is the same as the frequency domain resource of one resource block of the second cell
  • the frequency domain resources of the resource blocks are the same.
  • the frequency domain offset between the start frequency of the second carrier frequency band and the start frequency of the third carrier frequency band is resource block group RBG Integer multiples of , the RBG is a frequency domain resource allocation unit, and the RBG includes at least one resource block.
  • the reference frequency point corresponding to the first cell is the same as the reference frequency point corresponding to the second cell, and the reference frequency point corresponding to the first cell is used to determine the The location of the resource block of the first cell.
  • the reference frequency point corresponding to the second cell is used to determine the position of the resource block of the second cell.
  • the frequency domain offset between the second carrier frequency band and the cell reference frequency point is a third frequency domain offset
  • the third carrier frequency band and The frequency domain offset between the cell reference frequency points is the fourth frequency domain offset
  • the difference between the third frequency domain offset and the fourth frequency domain offset is the resource block group RBG Integer multiple
  • the RBG is a frequency domain resource allocation unit
  • the RBG includes at least one resource block.
  • the transceiving unit is further configured to receive a first reference signal, where the first reference signal includes a plurality of symbols.
  • the symbols carried in the overlapping frequency band of the second carrier frequency band and the third carrier frequency band in the first reference signal are sent by the first cell or the second cell.
  • Symbols carried in the first reference signal in frequency bands other than the overlapping frequency band in the second carrier frequency band are sent by the first cell.
  • Symbols carried in the first reference signal in frequency bands other than the overlapping frequency band in the third carrier frequency band are sent by the second cell.
  • the transceiver unit is further configured to receive a fourth reference signal on the first resource, where the fourth reference signal includes the second reference signal from the first cell and the first The third reference signal of the second cell.
  • the first resource is a resource in an overlapping frequency band of the second carrier frequency band and the third carrier frequency band, and the initialization sequence of the second reference signal is the same as that of the third reference signal.
  • the transceiver unit is further configured to receive seventh information from the network device, where the seventh information is used to indicate the scrambling code identification information of the second reference signal, The scrambling code identification information of the second reference signal is used to generate an initialization sequence of the second reference signal. And the transceiver unit is further configured to receive eighth information from the network device, the eighth information is used to indicate the scrambling code identification information of the third reference signal, and the scrambling code identification information of the third reference signal is used to generate the first Initialization sequence for three reference signals. Wherein, the scrambling code identification information of the second reference signal is the same as the scrambling code identification information of the third reference signal.
  • the processing unit is further configured to obtain channel state information according to the fourth reference signal, where the channel state information is the second reference signal and the third reference signal corresponding channel status information.
  • the transceiver unit is also used to send the channel state information to the network device.
  • the transceiving unit is further configured to receive ninth information from the first terminal device, where the ninth information is used to indicate the capability of the first terminal device, the The ninth information includes one or more of the following instructions:
  • the fifth indication information is used to indicate whether the first terminal device supports or does not support the carrier aggregation mode in which the carrier frequency bands of the cell overlap;
  • the sixth indication information is used to indicate whether the first terminal device supports or does not support carrier aggregation in which carrier frequency bands overlap in the same frequency band;
  • the seventh indication information is used to indicate whether the first terminal device supports or does not support a carrier aggregation mode in which carrier frequency bands overlap between different frequency bands;
  • the eighth indication information is used to indicate the frequency domain position where the first terminal device supports or does not support the carrier aggregation mode in which carrier frequency bands overlap.
  • the frequency domain interval between the carrier center frequency point of the first cell and the carrier center frequency point of the second cell is equal to the unit interval of the channel grid and the second A common multiple of the subcarrier spacing
  • the channel grid is a candidate set of carrier center frequency points
  • the interval between two carrier center frequency points belonging to the same frequency band in the channel grid is an integer multiple of the unit interval
  • the first The subcarrier spacings of the cell and the second cell are both the first subcarrier spacing.
  • the processing unit is further configured to determine a maximum transmission rate according to the bandwidth of the second carrier frequency band, the bandwidth of the third carrier frequency band, and the first parameter, wherein, The first parameter is used to characterize the influence of the overlapping frequency band of the second carrier frequency band and the third carrier frequency band on the maximum transmission rate.
  • a communication device in an eleventh aspect, may include a one-to-one corresponding module for performing the method/operation/step/action described in the fifth aspect, and the module may be a hardware circuit. Also can be software, also can be that hardware circuit combines software to realize.
  • the apparatus includes: a transceiver unit, configured to send tenth information, the tenth information is used to establish a communication connection between the first terminal device and the first cell, and the tenth information is used to indicate the first a carrier frequency band and a second carrier frequency band.
  • the transceiver unit is also used to receive eleventh information from the first terminal device, the eleventh information is used to indicate that the first terminal device requests to establish a communication connection with the first cell, and the eleventh information includes a ninth indication information, the ninth indication information is used to indicate that the first terminal device supports communication with the first cell on the first carrier frequency band and/or the second carrier frequency band.
  • a processing unit configured to determine according to the eleventh information that the first terminal device requests to establish a communication connection with the first cell, and determine a carrier frequency band supported by the first terminal device for communication with the first cell.
  • a twelfth aspect provides a communication device.
  • the device may include a one-to-one corresponding module for performing the method/operation/step/action described in the sixth aspect, and the module may be a hardware circuit.
  • the apparatus includes: a transceiver unit, configured to receive tenth information from the network device, the tenth information is used to establish a communication connection between the terminal device and the first cell, and the tenth information is used to indicate the A first carrier frequency band and a second carrier frequency band.
  • a processing unit configured to determine to establish a communication connection with the first cell, and to determine a supported carrier frequency band for communication with the first cell.
  • the transceiver unit sends eleventh information to the network device, the eleventh information is used to indicate that the first terminal device requests to establish a communication connection with the first cell, the eleventh information includes ninth indication information, and the ninth indication The information is used to indicate that the first terminal device supports communication with the first cell on the first carrier frequency band and/or the second carrier frequency band.
  • a communication device including a processor.
  • the processor can implement the above first aspect, The third aspect or the fifth aspect and the method in any possible implementation manner of the first aspect, the third aspect or the fifth aspect.
  • the communication device further includes a memory, and the processor is coupled to the memory, and can be used to execute instructions in the memory, so as to realize the above-mentioned first aspect, third aspect or fifth aspect and the first aspect, third aspect or The method in any possible implementation of the fifth aspect.
  • the communication device further includes a communication interface, and the processor is coupled to the communication interface.
  • the communication interface may be a transceiver, a pin, a circuit, a bus, a module or other types of communication interfaces, but the present application is not limited thereto.
  • the communication interface when the communication device is a network device, the communication interface may be a transceiver.
  • the transceiver may be a transceiver circuit.
  • the communication interface when the communication device is a chip configured in a network device, the communication interface may be an input/output interface.
  • a communication device including a processor.
  • the processor may implement the method in the second aspect, the fourth aspect, or the sixth aspect and any possible implementation manner in the second aspect, the fourth aspect, or the sixth aspect.
  • the communication device further includes a memory, the processor is coupled to the memory, and can be used to execute instructions in the memory, so as to realize the above-mentioned second aspect, fourth aspect or sixth aspect and the second aspect, fourth aspect or The method in any possible implementation manner in the sixth aspect.
  • the communication device further includes a communication interface, and the processor is coupled to the communication interface.
  • the communication interface when the communication device is a terminal device, the communication interface may be a transceiver.
  • the transceiver may be a transceiver circuit.
  • the communication interface when the communication device is a chip configured in a terminal device, the communication interface may be an input/output interface.
  • the above-mentioned input/output interface may include an input circuit and an output circuit.
  • the input circuit may be an input pin
  • the output circuit may be an output pin
  • the processor may be a transistor, a gate circuit, a flip-flop, and various logic circuits.
  • the input signal received by the input circuit may be received and input by, for example but not limited to, the receiver
  • the output signal of the output circuit may be, for example but not limited to, output to the transmitter and transmitted by the transmitter
  • the circuit may be the same circuit, which is used as an input circuit and an output circuit respectively at different times.
  • the present disclosure does not limit the specific implementation manners of the processor and various circuits.
  • a computer program product includes: a computer program (also referred to as code, or an instruction), when the computer program is executed, the computer executes the above-mentioned first to sixth aspects. aspect and the method in any possible implementation manner of the first aspect to the sixth aspect.
  • a computer-readable storage medium stores a computer program (also referred to as code, or instruction) when it is run on a computer, so that the computer executes the above-mentioned first aspect to the sixth aspect and the method in any possible implementation manner of the first aspect to the sixth aspect.
  • a computer program also referred to as code, or instruction
  • a communication system including the aforementioned at least one device for implementing the method for a terminal device and at least one device for implementing the method for a network device.
  • FIG. 1 is a schematic diagram of a communication system applicable to an embodiment of the present application
  • Fig. 2 is a schematic flow chart of terminal equipment access network provided by this application.
  • Fig. 3 is a schematic flowchart of the resource allocation method provided by the present application.
  • FIG. 7 is a schematic diagram of a BWP configuration method in the second carrier frequency band provided by the present application.
  • FIG. 8 is another schematic diagram of the BWP configuration method in the second carrier frequency band provided by the present application.
  • Fig. 8A is a schematic diagram of RBG in the BWP provided by the present application.
  • Fig. 8B is a schematic diagram of RBG alignment in the first BWP and the second BWP provided by the present application;
  • FIG. 8C is a schematic diagram of the positional relationship between the carrier frequency band, BWP and reference point A provided by this application;
  • FIG. 8D is a schematic diagram of RBG misalignment between carrier frequency points provided by the present application.
  • FIG. 8E is a schematic diagram of the BWP in the carrier aggregation frequency band provided by the present application.
  • FIG. 8F is a schematic diagram of the positional relationship between the two carrier frequency bands and the same reference frequency point provided by the present application.
  • FIG. 9 is a schematic diagram of a BWP configuration method in the second carrier frequency band provided by the present application.
  • FIG. 10 is another schematic flowchart of the resource allocation method provided by the present application.
  • FIG. 11 is a schematic diagram of carrier aggregation frequency bands provided by the present application.
  • Fig. 15 is a schematic block diagram of an example of a communication device provided by an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of an example of a terminal device provided by an embodiment of the present application.
  • Fig. 17 is a schematic structural diagram of an example of a network device provided by an embodiment of the present application.
  • the technical solution of the embodiment of the present application can be applied to various communication systems, for example: long term evolution (long term evolution, LTE) system, LTE frequency division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex) , TDD), the fifth generation (5th generation, 5G) communication system, such as 5G new radio (new radio, NR) system, etc., and future communication systems (such as the sixth generation (6th generation, 6G) communication system), or more A system in which various communication systems are integrated, etc., are not limited in this embodiment of the present application.
  • FIG. 1 is a schematic diagram of a communication system 100 applicable to the embodiment of the present application.
  • the communication system 100 may include at least one network device, such as the network device 101 shown in FIG. 1 .
  • the communication system 100 may further include at least one terminal device, such as the terminal device 102, the terminal device 103, and the terminal device 104 shown in FIG. 1 .
  • the network device 101 can communicate with the terminal device 102 , the terminal device 103 , and the terminal device 104 respectively by using wireless resources to provide network services for the terminal devices.
  • the network device 101 can manage one or more cells, such as cells 105 and 106 shown in FIG. 1 , and different cells have different coverage and/or frequency domain resources (such as carriers or carrier frequency bands).
  • the network device 101 can communicate with the terminal device 102 by using the wireless transmission resource of the cell 105 , and communicate with the terminal device 103 in the cell 106 by using the transmission resource of the cell 106 . And the network device can also communicate with the terminal device by means of carrier aggregation.
  • the terminal device 104 is within the coverage of the cell 105 and the cell 106, and the network device 101 can use carrier aggregation (carrier aggregation, CA) between the cell 105 and the cell 106. way to communicate with the terminal device 104 .
  • carrier aggregation carrier aggregation, CA
  • FIG. 1 is only an example of a communication system applicable to the embodiment of the present application, and the present application is not limited thereto. As shown in FIG. 1 , the coverage areas of the two cells partially overlap, and the coverage areas of the two cells may also be that the coverage area of one cell may include the coverage area of the other cell.
  • the terminal device involved in this embodiment of the present application may also be referred to as a terminal.
  • a terminal may be a device with a wireless transceiver function. Terminals can be deployed on land, including indoors, outdoors, hand-held, and/or vehicle-mounted; they can also be deployed on water (such as ships, etc.); and they can also be deployed in the air (such as on aircraft, balloons, and satellites, etc.).
  • the terminal device may be user equipment (user equipment, UE). UEs include handheld devices, vehicle-mounted devices, wearable devices, or computing devices with wireless communication capabilities. Exemplarily, the UE may be a mobile phone (mobile phone), a tablet computer or a computer with a wireless transceiver function.
  • the terminal device may also be a virtual reality (virtual reality, VR) terminal device, an augmented Augmented reality (augmented reality, AR) terminal equipment, wireless terminals in industrial control, wireless terminals in unmanned driving, wireless terminals in telemedicine, wireless terminals in smart grids, and wireless terminals in smart cities , and/or a wireless terminal in a smart home (smart home), etc.
  • VR virtual reality
  • AR augmented Augmented reality
  • the network device involved in the embodiment of the present application includes a base station (base station, BS), which may be a device deployed in a wireless access network and capable of performing wireless communication with a terminal device.
  • a base station may come in various forms, such as a macro base station, a micro base station, a relay station, or an access point.
  • the base station involved in this embodiment of the present application may be a base station in a 5G system, a base station in an LTE system, or a base station in another system, without limitation.
  • the base station in the 5G system can also be called a transmission reception point (transmission reception point, TRP) or a next-generation node B (generation Node B, gNB or gNodeB).
  • TRP transmission reception point
  • gNB next-generation node B
  • the base station may be an integrated base station, or may be a base station separated into multiple network elements, without limitation.
  • the base station is a base station in which a centralized unit (CU) and a distributed unit (DU) are separated, that is, the base station includes a CU and a DU.
  • CU centralized unit
  • DU distributed unit
  • words such as “exemplary” or “for example” are used to represent examples, illustrations or illustrations, and any embodiment or design described as “exemplary” or “for example” should not be interpreted It is more preferred or more advantageous than other embodiments or design solutions.
  • the use of words such as “exemplary” or “for example” is intended to present related concepts in a specific manner for easy understanding.
  • At least one (species) can also be described as one (species) or multiple (species), multiple (species) can be two (species), three (species), four (species) ) or more (species), this application does not limit.
  • a cell may be understood as a coverage area of a wireless signal identified by a network device identification code or a global cell identification code.
  • a cell is a unit that manages wireless communication resources from the perspective of resource management.
  • the physical layer resources of a cell include at least one carrier.
  • the carrier is a carrier used to carry wireless signals from the perspective of the physical layer. Wireless signals can include control information, One or more signals among service data and reference signals.
  • the carrier occupies a certain frequency domain resource, which is represented by the carrier frequency point and the bandwidth of the carrier frequency band.
  • At least one carrier in a cell includes at least one downlink carrier, and the downlink carrier is used to carry wireless signals sent by the network to the terminal.
  • At least one carrier in a cell may also include one or more uplink carriers, where the uplink carriers are used to carry wireless signals sent by the terminal to the network.
  • the uplink carriers are used to carry wireless signals sent by the terminal to the network.
  • duplex modes for example, when a cell adopts a frequency division duplex (FDD) mode, the downlink carrier and uplink carrier of a cell may be different.
  • the cell adopts the time division duplex (time division duplex, TDD) mode, and the downlink carrier and the uplink carrier of a cell can be the same.
  • FDD frequency division duplex
  • TDD time division duplex
  • a terminal device can establish a communication connection with a cell, and the cell provides network services for the terminal device, and the cell can be called a serving cell of the terminal device.
  • a terminal device can establish communication connections with multiple cells.
  • the cell initially accessed by the terminal device is called a primary cell (PCell), which is used for the terminal device to establish wireless resources with the network.
  • Control radio resource control, RRC
  • the network may configure a secondary cell (secondary cell, SCell) for the terminal device according to the transmission requirements of the terminal device, so as to provide more uplink transmission resources and/or downlink transmission resources for the terminal device.
  • the secondary cell can be configured through the RRC signaling of the primary cell, and the secondary cell can be configured through the media access control (media access control, MAC) control element (control element, CE) or downlink control information (DCI).
  • media access control media access control
  • MAC media access control
  • CE control element
  • DCI downlink control information
  • Fig. 2 is a schematic flowchart of a terminal device accessing a network provided by this application.
  • the terminal device scans frequency to obtain synchronization signal and physical broadcast channel (physical broadcast channel, PBCH) block (synchronization signal and PBCH block, SSB).
  • PBCH physical broadcast channel
  • SSB synchronization signal and PBCH block
  • the SSB includes a synchronization signal and a PBCH, and the PBCH carries a master information block (master information block, MIB).
  • MIB master information block
  • the terminal device reads the control resource set configuration information and the subcarrier offset configuration information from the MIB.
  • the control resource set configuration information can be recorded as pdcch-Config SIB1-controlResourceSetZero, which is used to configure the resource location of control resource set (control resource set, CORESET) 0.
  • the subcarrier offset configuration information may be recorded as ssb-SubcarrierOffset, and is used to configure the subcarrier offset, which is the frequency domain offset from the lowest subcarrier of the SSB to the reference location (Reference Location).
  • the terminal device can determine the reference position according to the subcarrier offset.
  • the CORESET 0 is used to carry downlink control information (DCI), and the DCI is used to indicate the frequency domain resource carrying the system information block (SIB) 1, and the terminal device can receive the SIB1.
  • DCI downlink control information
  • SIB system information block
  • the terminal device receives SIB 1, which includes reference point offset information, carrier offset information, carrier frequency band bandwidth information, and initial bandwidth part (BWP) configuration information.
  • SIB 1 includes reference point offset information, carrier offset information, carrier frequency band bandwidth information, and initial bandwidth part (BWP) configuration information.
  • the reference point offset information is used to configure the reference point offset, which is the frequency domain offset between the reference point A (Point A) and the reference position, where Point A is a physical frequency
  • the point is a reference point provided by the network for the terminal device to determine the starting frequency point of the downlink carrier frequency band of the cell.
  • the terminal device can determine Point A according to the reference frequency point offset and the reference position in the following step 4.
  • the carrier offset information may be recorded as offsetToCarrier, and is used to configure the carrier offset, which is the frequency domain offset between the starting frequency point of the carrier frequency band and Point A.
  • the bandwidth information of the carrier frequency band may be recorded as carrierBandwidth, and is used to configure the bandwidth of the carrier frequency band.
  • the initial BWP configuration information may be recorded as locationAndBandwidth, which is used to indicate the frequency domain position of the initial BWP in the carrier frequency band.
  • the terminal device determines the frequency domain position of Point A according to the reference point offset and the reference position.
  • Point A is the starting frequency point of the common resource block (common resource block, CRB), that is, the starting frequency point of the CRB numbered 0 (denoted as CRB0).
  • CRB common resource block
  • the terminal device determines the starting frequency point of the carrier frequency band according to Point A and the carrier offset, and determines the position of the carrier frequency band based on the starting frequency point of the carrier frequency band and the bandwidth of the carrier frequency band.
  • the unit of the carrier offset may be CRB
  • the carrier offset information may indicate the number of CRBs by which the starting frequency point of the carrier frequency band is offset from Point A.
  • the terminal device may specifically determine the starting frequency point of the carrier frequency band according to Point A and the number of CRBs indicated by the carrier offset information.
  • the terminal device determines the frequency domain position of the initial BWP in the carrier according to the initial BWP configuration information.
  • the terminal device has acquired the frequency domain position of the carrier frequency band of the cell and the frequency domain position of the initial BWP.
  • the terminal device can establish a communication connection with the network by using the resources of the initial BWP.
  • the terminal device sends random access information to the network device by using the resources of the initial BWP, thereby accessing the network and
  • the network establishes a communication connection.
  • FR1 and FR2 are defined.
  • FR1 is 450MHz-6000MHz, which is usually called sub 6GHz spectrum
  • FR2 is 24250MHz-52600MHz, which is called millimeter wave spectrum.
  • the FR1 spectrum and FR2 spectrum are divided into multiple frequency bands and numbered respectively.
  • the uplink frequency band numbered n1 in the FR1 spectrum includes frequency domain resources of 1920MHz-1980MHz
  • the downlink frequency band numbered n1 includes frequency domain resources of 2110MHz-2170MHz.
  • Both the uplink frequency band and the downlink frequency band numbered n78 include frequency domain resources of 3300MHz–3800MHz.
  • both the uplink frequency band and the downlink frequency band numbered n257 in the FR2 spectrum include frequency domain resources of 26500MHz-29500MHz. But the present application is not limited thereto.
  • the network device may select a part of the frequency bands defined by the system as the carrier frequency band of the cell managed by the network device. For different frequency ranges, the bandwidths of carrier frequency bands (referred to as carrier bandwidths) that can be selected by communication devices are different.
  • Table 1 shows the selectable carrier bandwidth corresponding to different sub-carrier spacing (sub-carrier spacing, SCS) in FR1, where the carrier bandwidth is represented by the number of resource blocks (resource block, RB). As shown in Table 1, in FR1, when the SCS is 15kHz, the maximum carrier bandwidth that communication equipment can use is 50MHz, and when the SCS is 30kHz or 60kHz, the maximum carrier bandwidth that can be used is 100MHz.
  • Table 2 shows the selectable carrier bandwidth corresponding to different SCSs in FR2. As shown in Table 2, in FR2, when the SCS is 60kHz, the maximum carrier bandwidth that communication equipment can use is 200MHz, and when the SCS is 120kHz, the maximum carrier bandwidth that communication equipment can use is 400MHz.
  • FIG. 3 is a schematic flowchart of a resource allocation method 300 provided by an embodiment of the present application.
  • the bandwidth of the frequency domain resource allocated by the network device to the first cell is a non-standard bandwidth, that is, the bandwidth of the frequency domain resource of the first cell does not belong to the bandwidth shown in Table 1 or Table 2.
  • the network device can configure different standard carrier frequency bands for the terminal device establishing a communication connection with the first cell.
  • the bandwidth of the different carrier frequency bands is the bandwidth shown in Table 1 or Table 2.
  • the first cell and the terminal device can communicate on different carrier frequency bands. , so that the frequency domain resources of the first cell can be fully utilized, and resource utilization can be improved.
  • the method includes but is not limited to the following steps:
  • the network device sends first information to the first terminal device, the first information is used to indicate that the carrier frequency band of the first cell is updated from the first carrier frequency band to the second carrier frequency band, and the first cell is the carrier frequency band of the first terminal device.
  • the second carrier frequency band includes frequency domain resources other than the first carrier frequency band.
  • the first terminal device receives the first information from the network device, and determines the first The carrier frequency band of the cell is updated from the first carrier frequency band to the second carrier frequency band.
  • the first information may be carried in an RRC message, but the present application is not limited thereto.
  • the frequency domain resources of the first cell may be shown in Figure 4. If the bandwidth of the frequency domain resources of the first cell is a non-standard bandwidth of 110 MHz, the network device may divide the frequency domain resources of the first cell into two bandwidths belonging to the standard bandwidth. frequency domain bandwidth, for example, both frequency domain bandwidths are 100MHz, wherein the first carrier frequency band can be the 100MHz frequency band starting from the starting frequency of the frequency domain resources of the first cell, and the second carrier frequency band can be the frequency domain of the first cell 100MHz band before the end frequency of the resource.
  • the first carrier frequency band partially overlaps with the second carrier frequency band, including 90MHz overlapping resources
  • the first carrier frequency band includes 10MHz frequency domain resources other than the second carrier frequency band
  • the second carrier frequency band includes 10MHz frequency domain resources other than the first carrier frequency band .
  • the first cell can communicate with some terminal devices on the first carrier frequency band, and communicate with some terminal devices on the second carrier frequency band, so that the terminal devices communicating with the first cell on the first carrier frequency band All terminal devices in the cell communication can use frequency domain resources with a bandwidth of 100MHz, so as to provide sufficient frequency domain resources for the terminal devices and at the same time make full use of the frequency domain resources of the first cell.
  • the network device may update the carrier frequency band for communication between the terminal device and the first cell from one carrier frequency band to another carrier frequency band according to the load condition in the carrier frequency band, for example, the carrier frequency band for terminal device 1 to communicate with the first cell is the first carrier frequency band, the network device may send the first information to the terminal device 1, indicating that the carrier frequency band of the first cell is updated from the first carrier frequency band (that is, an example of the first carrier frequency band) to the second carrier frequency band (that is, an example of the second carrier frequency band). an example).
  • the second carrier frequency band includes frequency domain resources other than the first carrier frequency band
  • FIG. 4 is only an example of the first carrier frequency band and the second carrier frequency band.
  • the first carrier frequency band and the second carrier frequency band overlap, but the present application is not limited thereto, and the first carrier frequency band and the second carrier frequency band may not overlap.
  • FIG. 5 in the frequency domain resources of the first cell, there are two consecutive first carrier frequency bands and second carrier frequency bands, respectively containing different frequency domain resources of the first cell.
  • FIG. 5 in the frequency domain resources of the first cell, there are two consecutive first carrier frequency bands and second carrier frequency bands, respectively containing different frequency domain resources of the first cell.
  • the frequency domain resources of the first cell may include carrier frequency band 1, carrier frequency band 2, and carrier frequency band 3, and the first carrier frequency band and the second carrier frequency band may be two of the three carrier frequency bands.
  • the first carrier frequency band may be carrier frequency band 1
  • the second carrier frequency band may be carrier frequency band 2, that is, the first carrier frequency band may neither overlap nor be continuous with the second carrier frequency band.
  • the network device sends third information, the third information is used for the terminal device to establish a communication connection with the first cell, the third information includes third indication information, and the third indication information is used to indicate the carrier frequency band of the first cell is the first carrier frequency band.
  • the third information is broadcast information, for example, the third information is SIB1.
  • the first carrier frequency band may be referred to as a broadcast carrier frequency band of the first cell.
  • the second carrier frequency band may be configured by a terminal-specific (UE-Specific) RRC message sent by the network device to the terminal device. Therefore, the second carrier frequency band may be called the dedicated carrier frequency band of the first terminal device, but this application Not limited to this.
  • the network device may update the broadcast carrier frequency band of the first cell to a dedicated carrier frequency band through the first information after the first terminal device accesses the first cell, but this application is not limited thereto, and the network device may also notify the first The terminal device updates the carrier frequency band of the first cell from the dedicated carrier frequency band to the broadcast carrier frequency band, or from one dedicated carrier frequency band to another dedicated carrier frequency band.
  • the network device may indicate that the carrier frequency band of the first cell is the first carrier frequency band through the third indication information, and after the first terminal device accesses the first cell, the network device may communicate with the terminal in the first carrier frequency band of the first cell according to requirements.
  • the device communicates, or notifies the terminal device to update the carrier frequency band of the first cell to the second carrier frequency band through the first information.
  • the first terminal device communicates with the first cell on the frequency domain resource of the second carrier frequency band after receiving the first information, and the second terminal device If you fail to connect after connecting to the first cell After receiving the first information, the first cell communicates with the second terminal device on the first carrier frequency band, that is, the carrier frequency band used by the first cell to communicate with the second terminal device is the first carrier frequency band.
  • the first cell provides communication services for the second terminal device in the first carrier frequency band
  • the first cell provides communication services for the first terminal device in the second carrier frequency band
  • the first cell can also communicate with other terminal devices in the first The carrier frequency band, or the second carrier frequency band, or other carrier frequency band communication, in the case of using the carrier bandwidth defined by the system to communicate with the terminal device, makes full use of the frequency domain resources of the first cell and improves resource utilization.
  • the network device communicates with the first terminal device on the second carrier frequency band through the first cell.
  • the first terminal device After the first terminal device receives the first information, the first terminal device communicates with the first cell on the second carrier frequency band. It should be noted that the communication between the cell (such as the first cell or the second cell) and the terminal device described in the embodiment of this application can be understood as the network device communicates with the terminal device through the cell, that is, the network device uses the resources of the cell (such as frequency domain resources, cell identification information, etc.) communicate with the terminal device.
  • the network device may configure one or more BWPs in the second carrier frequency band for the first terminal device, and specifically communicate with the first terminal device through the first cell on the activated BWP.
  • the network device may send second information to the first terminal device, where the second information is used to configure BWP in the second carrier frequency band, where the second information includes first indication information, where the first indication information is used to indicate the start of BWP The offset between the start frequency point and the BWP reference frequency point.
  • the BWP reference frequency point is the starting frequency point of the first carrier frequency band.
  • the network device may use the starting frequency of the broadcast carrier frequency band (the first carrier frequency band) as the BWP reference frequency to configure the BWP for communication with the first cell for the terminal device serving the first cell. So that regardless of whether different terminal devices communicate with the first cell with the same carrier frequency band, the reference frequency point for the network device to configure BWP for the terminal device is the broadcast carrier frequency band used by the terminal device after accessing, which reduces implementation complexity.
  • the first carrier frequency band, the second carrier frequency band, and the BWP configured by the network device for the first terminal device are shown in FIG. 7 .
  • the network device sends second information to the first terminal device, through which the BWP in the second carrier frequency band is configured for the first terminal device.
  • the first indication information in the second information indicates the offset 1 between the start frequency f bwp of the BWP and the start frequency f 1 of the first carrier frequency band, and the first terminal device receives the second information Then, the start frequency of the BWP is determined according to the offset 1 indicated by the first indication information and the start frequency f 1 of the first carrier frequency band.
  • the second information may also include indication information for indicating the frequency domain persistence length of the BWP, so that the first terminal device determines the position of the BWP in the second carrier frequency band according to the BWP start frequency point and the frequency domain persistence length.
  • the system can specify that the starting frequency of the broadcast carrier frequency band (that is, the first carrier frequency band) is the starting frequency of the frequency domain resources of the first cell, and the starting frequency of the dedicated carrier frequency band is greater than or equal to the broadcast frequency
  • the starting frequency of the carrier frequency band, the network device and the terminal device may default that the starting frequency f bwp of the BWP is greater than or equal to the starting frequency f 1 of the first carrier frequency band.
  • the first terminal device After receiving the second information, the first terminal device superimposes the start frequency f 1 of the first carrier frequency band and the offset 1 to obtain the start frequency f bwp of the BWP.
  • the first terminal device determines the frequency domain position of the BWP according to the frequency domain persistence length of the BWP.
  • the second information further includes second indication information, where the second indication information is used to indicate that the start frequency of the BWP is greater than, less than or equal to the start frequency of the first carrier frequency band.
  • the starting frequency point of the broadcast carrier frequency band of the first cell may not be the starting frequency point of the frequency domain resource of the first cell.
  • the network device indicates the offset 2 between the start frequency point f 1 of the first carrier frequency band and the start frequency point f bwp of the BWP through the first indication information in the second information, and through the second The indication information indicates that f bwp is less than f 1 , and after receiving the second information, the first terminal device determines the offset 2 according to the first indication information, If f bwp is determined to be less than f 1 according to the second indication information, the first terminal device may determine that the start frequency point f bwp of the BWP is f 1 minus the offset 2. The first terminal device then determines the frequency domain position of the BWP according to the frequency domain persistence length of the BWP.
  • the second indication information may include 1 bit. When the 1 bit indicates “0”, it indicates that f bwp is smaller than f 1 ; when the 1 bit indicates "1", it indicates that f bwp is greater than f 1 .
  • the second indication information may include 1 bit, when the 1 bit indicates "1”, it indicates that f bwp is smaller than f 1 ; when the 1 bit indicates "0", it indicates that f bwp is greater than f 1 .
  • the second indication information indicates any value of "0" or "1", which may indicate that f bwp is equal to f 1 .
  • the second indication information may include 2 bits.
  • the 2 bits indicate "00”, it means that f bwp is equal to f 1 ; when the 2 bits indicate "01”, it means that f bwp is less than f 1 ; when the 2 bits indicate "10”, Indicates that f bwp is greater than f 1 .
  • the present application is not limited thereto, and the corresponding relationship between the state values "00", “01”, “10", and "11” indicated by the two bits and the sizes of fbwp and f1 can be determined according to specific implementations.
  • the RBs of the first carrier frequency band are aligned with the resource block RBs of the second carrier frequency band, and one RB of the first carrier frequency band has the same frequency domain resources as one RB of the second carrier frequency band.
  • An RB is a frequency domain resource scheduling unit of a cell, and the network device may schedule one or more RBs to bear data of the first terminal device.
  • the starting position of one RB of the first carrier frequency band is the starting position of one RB of the second carrier frequency band, and the frequency domain persistence length of the RB of the first carrier frequency band is the same as the frequency domain persistence length of the second carrier frequency band, so that the second carrier frequency band RBs of one carrier frequency band are aligned with RBs of a second carrier frequency band.
  • the first indication information may indicate the offset between f bwp and f 1 by indicating the number of RBs, so that the first terminal device can determine f bwp according to the number of RBs and the frequency domain persistence length of each RB Offset from f 1 .
  • the number of RBs indicated by the first indication information is 50.
  • the indication information used to indicate the frequency-domain persistence length of the BWP in the second information may indicate the number of persistent RBs of the BWP.
  • the maximum number of persistent RBs that can be configured by the BWP in the current system is 275. Since the second carrier frequency band includes resources other than the first carrier frequency band, the maximum number of configurable persistent RBs in the BWP can be increased to 550 (that is, 275 ⁇ 2) RBs, so that the network device can indicate the resources in the second carrier frequency band Any RB, improving resource utilization.
  • the present application is not limited thereto, and the maximum number of persistent RBs that can be configured by the BWP may also be other values.
  • the network device After the network device configures the BWP for the first terminal device to communicate with the first terminal device in the second carrier frequency band through the second information, the network device uses an RB group (RB group, RBG) as a unit for the first terminal device in each scheduling.
  • the device allocates shared channel (such as physical downlink shared channel (PDSCH) and/or physical uplink shared channel (PUSCH)) resources in the BWP.
  • shared channel such as physical downlink shared channel (PDSCH) and/or physical uplink shared channel (PUSCH)
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • the first terminal device may determine the number N RBG of RBGs contained in the BWP according to the following formula:
  • the first RBG in the BWP that is, the number of RBs contained in RBG 0 is:
  • the frequency domain resource is divided into a plurality of continuous RBGs with every P RBs as a group, and the terminal device according to the first indication information indicated Determine the first RB of the BWP, the RB belonging to the BWP in the RBG where the RB is located is the RBG0 of the BWP, and every P consecutive RBGs after RBG0 are an RBG in the BWP, and if the last RB of the BWP is located Some RBs in the RBG belong to the BWP, and some RBs do not belong to the BWP, then the RBs in the RBG that belong to the BWP are used as the last RB group of the BWP.
  • the network device indicates the number of CRBs offset by the BWP compared to reference point A through the second information That is, the first RB included in the BWP is CRBn+1, and the second information also indicates the number of CRBs included in the BWP Then the terminal device may determine that the BWP includes 41 consecutive CRBs from CRB n+1 to CRB n+41.
  • every 4 CRBs are divided into a group of continuous multiple RBGs, and the terminal device can determine the first RB of the BWP, that is, where CRB n+1 is located Three CRBs among the RBGs belong to the BWP, then the three CRBs (that is, CRB n+1 to CRB n+3) are the first RBG in the BWP, that is, RBG 0 . And, the 9 RBGs following the RBG 0 are RBG 1 to RBG 9 in the BWP in sequence. And the first two RBs in the RBG where the last RB of the BWP is located, namely RBG n+40 and RBG n+41 belong to the BWP, namely
  • RBG n+40 and RBG n+41 constitute the next RBG of the BWP, that is, RBG 10 .
  • the BWP in the second carrier frequency band configured by the network device for the first terminal device through the second information is the first BWP.
  • the first network device may configure a second BWP for the second terminal device communicating on the first carrier frequency band in the same manner, and the second BWP and the first BWP include overlapping frequency domain resources, that is, the second BWP and the first BWP
  • the BWP includes the same at least one RBG, and the at least one RBG is an RBG in an overlapping frequency band of the first carrier frequency band and the second carrier frequency band.
  • the offset between the start frequency of the first BWP and the start frequency of the second BWP is an integer multiple of RBG.
  • BWP is configured in units of RBs
  • network devices allocate PDSCH and/or PUSCH to terminal devices in units of RBGs, so the RBGs in the first BWP and the second BWP may not be aligned Due to the misalignment of the RBGs, the network device cannot schedule the same resource in the overlapping resources of the first BWP and the second BWP to implement multi-user (muti- user, MU) communication.
  • MU multi-user
  • the present application proposes that the network device can use the offset between the start frequency of the first BWP configured for the first terminal device and the start frequency of the second BWP configured for the second terminal device to be an integer of RBG times, the RBG in the first BWP is aligned with the RBG in the second BWP, so that the network device can schedule overlapping RBGs to implement MU communication between multiple terminal devices and the network device.
  • the network device configures the first BWP for the first terminal device and the second BWP configured for the second terminal device.
  • the BWP can be as shown in Figure 8B.
  • the network device can schedule RBG0 to RBG3 in the first BWP for the first terminal device, and schedule RBG15 to RBG18 in the second BWP for the second terminal device, so that the first terminal device and the second terminal device can be in the overlapping 4 Data transmission (such as receiving data or sending data at the same time) on multiple RBGs.
  • RBG0 of the first BWP includes P RBs as an example for illustration, and the frequency domain boundaries of RBG0 of the first BWP and RBG15 of the second BWP are aligned. It should be understood that the present application is not limited thereto. Based on the foregoing description of FIG.
  • the number of RBs contained in the first RBG and the last RBG of the BWP may be less than P. If the first RBG or the last RBG of the BWP contains When the number of RBs is less than P, the RBG alignment of two BWPs in this application refers to the frequency-domain boundary alignment of RBGs including P RBs.
  • the network device can allocate RBGs aligned with frequency domain boundaries to different terminal devices to implement MU communication between multiple terminal devices and the network device.
  • the BWP reference frequency point is the start frequency point of the second carrier frequency band.
  • the network device configures the BWP in the second carrier frequency band for the first terminal device by using the starting frequency point of the dedicated carrier frequency band (that is, the second carrier frequency band) of the first terminal device as the BWP reference frequency point.
  • the resource location of the BWP in the second carrier frequency band segment is shown in Figure 9.
  • the network device configures the BWP for the first terminal device through the second information, and the first indication information in the second information is used to indicate the BWP
  • An offset of 3 between the start frequency f bwp and the start frequency f 2 of the second carrier frequency band the first terminal device can determine the frequency domain position of the BWP according to the offset 3 and f 2 . Since the BWP is in the second carrier frequency band, the start frequency f bwp of the BWP is greater than the start frequency f 2 of the second carrier frequency band, and the first terminal device can obtain f bwp by superimposing f 2 and the offset 3.
  • the second information does not need to indicate the size relationship between f bwp and f2 , and the bandwidth of the second carrier frequency band is the standard bandwidth defined by the system.
  • This embodiment can follow the current system BWP configurable persistent RB The maximum number is 275, and there is no need to modify the maximum number of RBs that can be configured in the current system, so that the resource utilization rate can be improved while reducing the modification of the existing system as much as possible.
  • the network device uses the start frequency point of the second carrier frequency band as the BWP reference frequency point to configure the BWP in the second carrier frequency band for the first terminal device as the first BWP.
  • the network device may also use the starting frequency of the first carrier frequency band as the reference frequency of the BWP to configure a second BWP in the first carrier frequency band for the second terminal device, and the second BWP and the first BWP include overlapping frequency domain resources .
  • the offset between the start frequency of the first BWP and the start frequency of the second BWP is an integer multiple of RBG.
  • the network device indicates that the offset between the second carrier frequency band and the reference frequency point of the first cell (such as Point A of the first cell) is OB , so that the first terminal device can The reference frequency point of the cell and the offset OB determine the position of the second carrier frequency band.
  • the network device indicates the offset OD between the first BWP and the start frequency of the second carrier frequency band, so that the first terminal device can determine the start frequency of the first BWP.
  • the network device may indicate that the offset between the first carrier frequency band and the reference frequency point of the first cell is OA , and the offset between the second BWP and the starting frequency point of the first carrier frequency band is O C , so that the second terminal device determines the start frequency of the second BWP.
  • the offset between the starting frequency points is an integer multiple of RBGs, that is, N 1 RBGs, where P is the number of RBs included in an RBG. Therefore, the network device can schedule RBGs in overlapping frequency bands, and realize communication with the MU of the network device on the RBGs on which the first terminal device and the second terminal device can be scheduled at the same time. improved resources utilization rate.
  • the frequency domain resources of the first cell can be fully utilized, and the resource utilization rate is improved.
  • the previous article introduced that the network device can update the carrier frequency band of the serving cell by notifying the terminal device, so that the network device can configure the terminal devices serving the same cell to communicate in different carrier frequency band resources, so that the frequency domain resources of the cell can be fully utilized. Utilize and improve resource utilization.
  • the embodiment of the present application also provides a resource configuration method, in which the network device can use carrier aggregation in two cells whose carrier bandwidth is the standard bandwidth and the carrier frequency band partially overlaps, so as to realize the allocation of the frequency domain resources of the non-standard bandwidth of the network device Take advantage of.
  • the following describes the resource configuration method 1000 provided by the embodiment of the present application with reference to FIG. 10 .
  • the resource allocation method 1000 includes but not limited to the following steps:
  • the network device sends fourth information to the first terminal device, where the fourth information is used to indicate communication with the first terminal device through carrier aggregation between the first cell and the second cell, where the carrier frequency band of the first cell is the first carrier Frequency band, the carrier frequency band of the second cell is the third carrier frequency band, and the second carrier frequency band partially overlaps with the third carrier frequency band.
  • the first terminal device receives the fourth information from the network device, and determines according to the fourth information that the network device communicates with the first terminal device in a manner of carrier aggregation between the first cell and the second cell.
  • the first terminal device may establish a communication connection with the network through the first cell, where the first cell is a serving cell of the first terminal device.
  • the carrier bandwidth for communication between the first terminal device and the first cell is the second carrier bandwidth, and the second carrier bandwidth is a standard bandwidth defined by the communication system.
  • the network device may use the fourth information to instruct the carrier aggregation mode of the first cell and the second cell to communicate with the first terminal device, and the carrier bandwidth of the second cell (that is, the bandwidth of the third carrier frequency band) is the standard bandwidth, so that the network device passes the standard bandwidth.
  • the method of carrier aggregation of the first cell and the second cell of the carrier bandwidth realizes that the aggregated carrier frequency band is the frequency domain resource of the non-standard bandwidth of the network device, realizes that the network device and the terminal device can communicate on the non-standard bandwidth resource, and can improve resource utilization.
  • the frequency domain resource bandwidth of the network device is 110 MHz.
  • the bandwidth of the second carrier frequency band for communication with the first cell is 100 MHz.
  • the frequency domain resource bandwidth of the network device The starting frequency of the resource is f s
  • the second carrier frequency band is a 100 MHz frequency band with the starting frequency of f s +10 MHz and the ending frequency of f s +110 MHz.
  • the network device may use the fourth information to notify the first terminal device that the first cell and the second cell with a carrier bandwidth of 90 MHz communicate with the first terminal device in a carrier aggregation manner.
  • the third carrier frequency band is a 90MHz frequency band with a start frequency of f s and an end frequency of f s +90MHz
  • the carrier frequency band of the first cell and the carrier frequency band of the second cell include f s +10MHz to f s +90MHz
  • the overlapping frequency band of 80MHz, the carrier aggregation frequency band after aggregation is 110MHz. It is realized that the network equipment and the terminal equipment can communicate through the aggregated carrier frequency band in 110MHz.
  • the network device sends fourth indication information to the first terminal device, where the fourth indication information is used to indicate that the second carrier frequency band of the first cell partially overlaps with the third carrier frequency band of the second cell.
  • the fourth indication information may be carried in an RRC message sent by the network device to the terminal device, and the network device may configure a carrier aggregation candidate cell for the first terminal device through the RRC message, and the candidate cell includes the second cell, wherein , the fourth indication information indicates the frequency domain resource position of the carrier frequency band of the second cell (that is, the third carrier frequency band), and the frequency domain resource position of the third carrier frequency band indicated by the fourth indication information is different from the frequency domain resource position of the second carrier frequency band overlapping.
  • the first terminal device After receiving the RRC message, the first terminal device determines the frequency domain resource of the third carrier frequency band according to the first indication information source location, and determine that the carrier frequency band of the second cell (ie, the third carrier frequency band) partially overlaps with the carrier frequency band of the first cell (ie, the second carrier frequency band).
  • the fourth indication information may be carried in fourth information, and the fourth information specifically indicates that the first cell and the second cell communicate with the first terminal device through carrier aggregation, and the carrier frequency band of the first cell is the same as that of the second cell.
  • the carrier frequency bands of the cells partially overlap.
  • the network device may receive ninth information from the first terminal device, where the ninth information is used to indicate the capability of the first terminal device.
  • the network device may determine whether to communicate with the first terminal device in a carrier aggregation manner in which carrier frequency bands of cells overlap according to the capabilities of the first terminal device.
  • the ninth information may include one or more of the following indication information:
  • the fifth indication information is used to indicate whether the first terminal device supports or does not support a carrier aggregation manner in which carrier frequency bands of cells overlap.
  • the sixth indication information is used to indicate whether the first terminal device supports or does not support carrier aggregation in which carrier frequency bands overlap in the same frequency band;
  • the seventh indication information is used to indicate whether the first terminal device supports or does not support a carrier aggregation mode in which carrier frequency bands overlap between different frequency bands;
  • the eighth indication information is used to indicate the frequency domain position where the first terminal device supports or does not support the carrier aggregation mode in which carrier frequency bands overlap.
  • the ninth information includes fifth indication information.
  • the network device After receiving the fifth indication information from the first terminal device, the network device determines that the first terminal device supports carrier aggregation in which the carrier frequency bands of the cell overlap, so that the fourth information notifies The first terminal device communicates with the first terminal device through carrier aggregation of the first cell and the second cell. If the first terminal device does not support the carrier aggregation method in which the carrier frequency bands of the cells overlap, the network device and the terminal device can communicate through the first cell, or the network device can communicate with the first terminal in the carrier aggregation method of multiple cells with non-overlapping frequency band resources. Device communication.
  • the ninth information may include sixth indication information, and after receiving the sixth indication information, the network device may determine whether the first terminal device supports carrier aggregation in which carrier frequency bands overlap within the same frequency band. If the first terminal device supports carrier aggregation in which carrier frequency bands overlap in the same frequency band, the network device can communicate with the first terminal device through carrier aggregation of multiple cells with overlapping carrier frequency bands and belonging to the same frequency band, so as to improve network device resources. utilization rate. If the first terminal device does not support the carrier aggregation method of overlapping carrier frequency bands in the same frequency band, the network device does not use the carrier aggregation method of multiple cells with overlapping carrier frequency bands and belonging to the same frequency band to communicate with the first terminal device.
  • the ninth information may include seventh indication information, through which the first terminal device may indicate whether the first terminal device supports carrier aggregation in which carrier frequency bands overlap between different frequency bands. If the first terminal device supports carrier aggregation in which carrier frequency bands overlap in different frequency bands, the network device can communicate with the first terminal device through carrier aggregation of multiple cells with overlapping carrier frequency bands and belonging to different frequency bands, so as to improve network device resources. utilization rate. If the first terminal device does not support carrier aggregation in which carrier frequency bands overlap in the same frequency band, the network device does not communicate with the first terminal device in a carrier aggregation mode in which carrier frequency bands overlap multiple cells belonging to different frequency bands.
  • the ninth information may include the sixth indication information and the seventh indication information, or the ninth information may include the fifth indication information, and when the fifth indication information indicates that the first terminal device supports carrier aggregation in which carrier frequency bands of the cell overlap, the ninth information
  • the information may include sixth indication information and/or seventh indication information. But the present application is not limited thereto.
  • the ninth information may also include eighth indication information, and the eighth indication information may indicate that the first terminal device supports the frequency domain resource of the carrier aggregation mode in which the carrier frequency band of the cell overlaps, for example, the eighth indication information may indicate the frequency band or the eighth indication information may indicate that the first terminal device does not support frequency domain resources in a carrier aggregation manner in which carrier frequency bands of cells overlap.
  • the network device may communicate with the first terminal device through multiple cells with overlapping carrier frequency bands on frequency domain resources supported by the first terminal device according to the eighth indication information, so as to improve resource utilization.
  • the frequency domain interval between the carrier center frequency point of the first cell and the carrier center frequency point of the second cell is a common multiple of the unit interval of the channel grid and the first subcarrier interval
  • the channel grid is A candidate set of carrier center frequency points
  • the interval between two carrier center frequency points belonging to the same frequency band in the channel grid is an integer multiple of the unit interval
  • the subcarrier intervals of the first cell and the second cell are both The first subcarrier spacing.
  • the network device can select a part of the frequency bands defined by the system as the carrier frequency band of the cell managed by the network device.
  • the channel grid is defined.
  • the channel grid is a candidate set of carrier center frequency points, and the carrier center frequency points in the communication system belong to this set.
  • the unit interval of the channel grid or may be called the step size of the channel grid, is specified.
  • the interval between two adjacent carrier center frequency points is the unit interval, and the interval between two carrier center frequency points belonging to the same frequency band is an integer multiple of the unit interval.
  • the terminal device can perform cell search based on the channel grid, so as to reduce the power consumption of the initial access of the terminal device. Since this application proposes a communication mechanism in which the carrier frequency bands of multiple cells can overlap, the frequency domain interval between the carrier center frequency point of the first cell and the carrier center frequency point of the second cell is defined as the unit interval of the channel grid Common multiple of spacing from the first subcarrier.
  • the terminal device is enabled to search for the first cell and the second cell found in the cell search.
  • the network device communicates with the first terminal device on the second carrier frequency band and the third carrier frequency band.
  • the network device can schedule the frequency domain resources in the second carrier frequency band and the third carrier frequency band to communicate with the first terminal device, for example, the network device can schedule the frequency domain resources of the aggregated bandwidth of the second carrier frequency band and the third carrier frequency band in one scheduling
  • the resource (that is, the full bandwidth frequency domain resource of the carrier aggregation bandwidth) communicates with the first terminal device.
  • the network device may schedule frequency domain resources in the second carrier frequency band or the third carrier frequency band to communicate with the terminal device in one scheduling.
  • a frequency domain resource of an RB of the first cell in an overlapping frequency band of the second carrier frequency band and the third carrier frequency band is the same as a frequency domain resource of an RB of the second cell.
  • the network device can use the same scheduling unit to schedule part or all of the frequency band resources in the aggregated frequency band to communicate with the first terminal device.
  • the reference frequency point of the first cell is the same as the reference frequency point of the second cell
  • the reference frequency point corresponding to the first cell is used to determine the position of the resource block of the first cell
  • the reference frequency point corresponding to the second cell is used to determine the position of the resource block of the first cell.
  • the points are used to determine the location of the resource blocks of the second cell.
  • the network device sends fifth information and sixth information, where the fifth information is used to indicate a reference frequency point corresponding to the first cell, and the sixth information is used to indicate a reference frequency point corresponding to the second cell.
  • the reference frequency point of the first cell indicated by the fifth information is the same as the reference frequency point of the second cell indicated by the sixth information
  • the fifth information is carried in the SIB1 of the first cell
  • the sixth information is carried in the SIB1 of the second cell.
  • the reference frequency point corresponding to the cell is Point A
  • Point A corresponding to the first cell is the same as Point A corresponding to the second cell, so that the starting frequency point of CRB0 determined by the first terminal device according to Point A is the same
  • the sub-frequency point of the first cell The carrier spacing is the same as the subcarrier spacing of the second cell and the RBs of the first cell and the RBs of the second cell contain the same number of subcarriers, then the alignment of the RBs of the first cell and the RBs of the second cell is realized.
  • the network device may send indication information, where the indication information is used to indicate the parameter corresponding to the first cell.
  • the test frequency point is the same as the reference frequency point corresponding to the second cell.
  • the terminal device may determine, according to the indication information, that the reference frequency point corresponding to the first cell is the same as the reference frequency point corresponding to the second cell. Therefore, the RBs of the first cell determined by the terminal device based on the reference frequency corresponding to the first cell are aligned with the RBs of the second cell determined based on the reference frequency corresponding to the second cell.
  • the offset between the start frequency of the second carrier frequency band and the start frequency of the third carrier frequency band is an integer multiple of RBG.
  • the network device may configure the BWP used for communication for the first terminal device in the carrier aggregation frequency band of the second carrier frequency band and the third carrier frequency band. For example, the network device can configure BWP for the first terminal device in units of RB, and the network device allocates PDSCH resources and/or PUSCH resources for the first terminal device in units of RBGs in each scheduling, if the second carrier frequency band and the third If the RBGs of the carrier frequency band are not aligned, network equipment and terminal equipment will not be able to determine the RBG position within the BWP.
  • the BWP configured by the network device for the first terminal device in the carrier aggregation frequency band includes the overlapping resources of the second carrier frequency band and the third carrier frequency band, and also includes the frequency domain that only belongs to the second carrier frequency band in the aggregation frequency band Resources and frequency domain resources that only belong to the third carrier frequency band, the network device and terminal device will not be able to determine the RBG position in the BWP, and the network device will not be able to accurately indicate the RBGs scheduled in the BWP.
  • this application proposes that the offset between the start frequency of the second carrier frequency band of the first terminal device and the start frequency of the third carrier frequency band be an integer multiple of RBG by configuring the network device to realize the second The carrier frequency band is aligned with the RBG of the third carrier frequency band, so that PDSCH resources and/or PUSCH resources are allocated to the first terminal device in the BWP in units of RBGs.
  • the offset between the start frequency of the second carrier frequency band and the start frequency of the third carrier frequency band is an integer multiple of RBGs, that is, N 2 RBGs, so that the second carrier frequency band and The RBGs of the third carrier frequency band are aligned.
  • the network device can configure a BWP as shown in FIG. 8E for the first terminal device, and the network device can allocate RBG resources to the first terminal device in units of RBGs in the BWP during one scheduling, for example, the network device can allocate resources belonging to the BWP in the BWP.
  • RBG1 of the second carrier frequency band, RBG2 and RBG3 belonging to the overlapping frequency band of the second carrier frequency band and the third carrier, and RBG N belonging to the third carrier frequency band but this application is not limited to this.
  • the cell reference frequency of the first cell is the same as the cell reference frequency of the second cell
  • the offset between the starting frequency of the second carrier frequency band and the reference frequency of the cell is OB
  • the third The offset between the starting frequency of the carrier frequency band and the reference frequency of the cell is O E
  • the difference between the offset OB and the offset O E is an integer multiple of RBG.
  • the position of the RBG in the BWP is determined based on the reference frequency point of the cell (such as reference point A) and the number P of RBs included in the RBG.
  • the network device indicates that the offset between the second carrier frequency band and the reference frequency point of the first cell is OB in units of RB, so that the first terminal device can determine the starting frequency point of the second carrier frequency band, and the first terminal The device may determine the start frequency of the third carrier frequency band by using the offset O E indicated by the network device in units of RBs between the third carrier frequency and the reference frequency of the second cell.
  • the cell reference frequency point of the first cell is the same as the cell reference frequency point of the second cell, and the difference between the offset OB and the offset O E is an integer multiple of RBG, then the start of the second carrier frequency band
  • the offset between the frequency point and the start frequency point of the third carrier frequency band is an integer multiple of RBGs.
  • the difference between the offset OB and the offset O E configured by the network device is 3 RBGs, so that the second carrier frequency band is aligned with the RBG of the third carrier frequency point.
  • the starting frequency of the carrier frequency band is at the starting frequency of one RBG as an example. It should be understood that the application is not limited thereto.
  • the starting frequency of the two carrier frequency bands The point may not be the start frequency point of an RBG, and the difference between the start frequency points is an integer multiple of the RBG, so that the RBG alignment of the two carrier frequency points can be realized
  • the reference frequency of the first cell and the reference frequency of the second cell may also be different, and the offset between the carrier frequency and the reference frequency of the corresponding cell can be configured by the network device to realize the two carrier frequency bands.
  • the difference between the starting frequency points is an integer of RBG.
  • the network device may send the first reference signal through the first cell and the second cell.
  • the first reference signal may be a demodulation reference signal (demodulation reference signal, DMRS) for demodulating a data channel (such as a physical downlink shared channel (PDSCH)), or the first reference signal may be a demodulation reference signal for Channel state information-reference signal (CSI-RS) for terminal equipment to perform channel measurement.
  • DMRS demodulation reference signal
  • CSI-RS Channel state information-reference signal
  • the present application is not limited thereto, and the first reference signal may also be other reference signals.
  • the first reference signal includes a plurality of symbols, wherein the symbols carried in the first reference signal in the overlapping frequency band of the second carrier frequency band and the third carrier frequency band are sent by the first cell or the second cell . Symbols carried in the first reference signal in frequency bands other than the overlapping frequency band in the second carrier frequency band are sent by the first cell. Symbols carried in the first reference signal in frequency bands other than the overlapping frequency band in the third carrier frequency band are sent by the second cell.
  • the bandwidth of the first reference signal is equal to the bandwidth of the frequency band after carrier aggregation
  • the network device can generate the first reference signal with the bandwidth equal to the carrier aggregation bandwidth, and the first reference signal within the bandwidth part is sent by the first cell and the second cell respectively.
  • the first cell sends symbols of the first reference signal in the second carrier frequency band
  • the second cell sends symbols of the first reference signal other than the symbols sent by the first cell.
  • the second cell sends the symbols of the first reference signal in the third carrier frequency band
  • the first cell sends the symbols of the first reference signal other than the symbols sent by the second cell.
  • the first terminal device receives the first reference signal, for example, the first reference signal is a DMRS, and after receiving the DMRS, the first terminal device demodulates the data channel according to the DMRS.
  • the first reference signal is a CSI-RS, and after receiving the CSI-RS, the first terminal device acquires channel state information (channel state information, CSI) according to the CSI-RS.
  • the first terminal device After the first terminal device obtains the channel state information based on the first reference signals from the first cell and the second cell, the first terminal device sends the channel state information to the network device.
  • the first terminal device may only feed back the channel state information to the first cell or the second cell once for the first reference signal, and does not need to feed back the channel state information to the first cell and the second cell respectively.
  • the network device configures the first reference signal for the first terminal device
  • only one uplink resource for carrying channel state information is configured in the reporting configuration associated with the first reference signal.
  • the first terminal device can determine to report the channel state information obtained based on the first reference signal once on the uplink resource.
  • This implementation manner can avoid resource waste caused by the first terminal device reporting the same channel state information multiple times.
  • the network device may send the second reference signal on the first resource through the first cell, and send the third reference signal on the first resource through the second cell, where the first resource is the second carrier frequency band
  • the initialization sequence of the second reference signal is the same as that of the third reference signal.
  • the initialization sequences of the second reference signal and the third reference signal are the same, and the second reference signal carried on the first resource is the same as the third reference signal.
  • the network device may transmit reference signals of the same sequence in overlapping frequency bands through the first cell and the second cell.
  • the network device can send the symbol of the reference signal 1 in the second carrier frequency band through the first cell, and send the reference signal 1 through the second cell.
  • the symbol sequence of reference signal 1 sent by the first cell in the overlapping frequency band that is, an example of the second reference signal
  • the symbol sequence of reference signal 1 sent by the second cell in the overlapping frequency band that is, the symbol sequence of the third reference signal An example
  • the network device sends seventh information to the first terminal device, where the seventh information is used to indicate that the second reference The scrambling code identification information of the signal, the scrambling code identification information of the second reference signal is used to generate the initialization sequence of the second reference signal.
  • the network device sends eighth information to the first terminal device, where the eighth information is used to indicate the scrambling code identification information of the third reference signal, and the scrambling code identification information of the third reference signal is used to generate the scrambling code identification information of the third reference signal Initialization sequence.
  • the scrambling code identification information of the second reference signal is the same as the scrambling code identification information of the third reference signal.
  • sequence generation formula of the reference signal is as follows:
  • c(x) is a Gold sequence
  • the initialization sequence c init of c(x) is:
  • n ID is the scrambling identification information.
  • both the second reference signal and the third reference signal are carried on the first resource, and the time domain parameters and frequency domain parameters of the second reference signal and the third reference signal are the same, so based on the above generation formula, if the scrambling identification information n ID is the same , then the second reference signal is the same as the third reference signal.
  • the network device may generate the second reference signal and the third reference signal based on the same scrambling identification information, and notify the first terminal device of the scrambling identification information, so that the first terminal device generates the second reference signal and the third reference signal based on the scrambling identification information.
  • a sequence of the third reference signal may be generated.
  • the first terminal device receives a fourth reference signal on the first resource, where the fourth reference signal includes the third reference signal and the second reference signal. Since the second reference signal is the same as the third reference signal, the second reference signal sent by the first cell on the first resource and the third reference signal sent by the second cell on the first resource are superimposed in the channel as a fourth reference signal .
  • the first terminal device obtains the channel state information according to the received fourth reference signal, and sends it to the network device.
  • the first terminal device only feeds back the channel state information for the fourth reference signal once, and does not need to feed back the channel state information to the first cell and the second cell respectively. For example, according to the reference signal configuration information from the network device, the first terminal device determines that the time domain resources of the second reference signal and the third reference signal configured by the network device are the same, then the first terminal device can determine the reference signal based on the same time domain resource. For the channel state information obtained from the signal, the first terminal device only reports the channel state information to the network device once. Alternatively, the network device may use the reference signal configuration information to instruct the first terminal device to report the channel state information only once. But the present application is not limited thereto. This implementation manner can avoid resource waste caused by the first terminal device reporting the same channel state information multiple times.
  • the network device and the first terminal device may determine the maximum transmission rate of the first terminal device according to the bandwidth of the second carrier frequency band, the bandwidth of the third carrier frequency band, and a first parameter, where the first parameter It is used to characterize the influence of the overlapping frequency band of the second carrier frequency band and the third carrier frequency band on the maximum transmission rate.
  • the embodiment of the present application proposes that by introducing the first parameter to determine the maximum transmission rate of the first terminal device, it is possible to accurately calculate the maximum transmission rate of the terminal device in the carrier aggregation communication mode with overlapping cell frequency bands.
  • the first parameter is the overlapping bandwidth adjustment coefficient ⁇ scale
  • the network device and the first terminal device can calculate the maximum transmission rate R data of the first terminal device according to the following formula, and the unit of the maximum transmission rate calculated by the following formula is It is megabits per second (megabits per second, Mbps).
  • J is the number of cells (carriers) in the carrier aggregation mode, and j refers to the jth carrier, is the jth
  • the maximum number of data transmission layers supported by a carrier is the maximum modulation order supported by the jth carrier
  • f (j) is the scaling factor of the jth carrier
  • R max is the maximum code rate
  • OH j is the overhead of the link.
  • the first parameter is the number of RBs included in the overlapping frequency band
  • the network device and the first terminal device can calculate the maximum transmission rate R data of the first terminal device according to the following formula.
  • k is the number of carriers with overlapping frequency bands among the J carriers.
  • the previous article introduced how the network device can update the carrier frequency band of the serving cell by notifying the terminal device, and that the network device can use the carrier aggregation method through two cells whose carrier bandwidth is the standard bandwidth and the carrier frequency band partially overlaps to realize the network device.
  • the embodiment of the present application also provides a resource allocation method.
  • a cell may include multiple carrier frequency bands, and a network device may broadcast multiple carrier frequency bands of a cell, so that terminal devices with corresponding capabilities or needs can communicate with each other through multiple carrier frequency bands.
  • the cell communication can fully utilize the frequency domain resources of the non-standard bandwidth of the network equipment, and improve resource utilization.
  • the resource allocation method 1200 provided by the embodiment of the present application will be described below with reference to FIG. 12 .
  • the network device sends tenth information, the tenth information is used to establish a communication connection between the terminal device and the first cell, and the tenth information is used to indicate the first carrier frequency band and the second carrier frequency band of the first cell.
  • the first terminal device receives the tenth information, and determines the first carrier frequency band and the second carrier frequency band of the first cell according to the tenth information.
  • Both the bandwidth of the first carrier frequency band and the bandwidth of the second carrier frequency band are standard bandwidths defined by the system.
  • the first carrier frequency band and the second carrier frequency band form a carrier frequency band of a non-standard bandwidth of the first cell.
  • the tenth information is SIB 1.
  • the network device may broadcast multiple carrier frequency bands of the first cell through the tenth information.
  • the terminal device may choose to communicate with the first cell through one or more carrier frequency bands of the first cell according to the capabilities of the terminal device.
  • the first terminal device sends eleventh information to the network device.
  • the eleventh information is used to indicate that the first terminal device requests to establish a communication connection with the first cell.
  • the eleventh information includes ninth indication information, and the ninth indication information uses Instructing the first terminal device to support communication with the first cell on the first carrier frequency band and/or the second carrier frequency band.
  • the first terminal device After receiving the tenth information in S1201, the first terminal device determines to access the network through the first cell, and sends eleventh information to the network device to request establishment of a communication connection with the first cell.
  • the first terminal device can determine the carrier frequency band for communication after establishing a communication connection with the first cell according to the tenth information. communicate, and notify the network device through the ninth indication information in the eleventh information.
  • the eleventh information may be random access information
  • the ninth indication information may be a random access preamble sequence.
  • the first preamble sequence is used to indicate communication with the first cell at the first carrier frequency band
  • the second preamble sequence is used to indicate communication with the first cell at the second carrier frequency band
  • the third preamble sequence is used to indicate communication with the first cell at the first carrier frequency band.
  • a carrier frequency band and a second carrier frequency band communicate with the first cell.
  • the first terminal device may notify the network device of the carrier frequency band supported by the network device for communication with the first cell through the preamble sequence sent to the network device.
  • the network device receives the eleventh information from the first terminal device, and if the eleventh information includes the first preamble sequence, the network device may determine that the first terminal device supports communication with the first cell in the first carrier frequency band, and the network device After establishing a communication connection with the first terminal device, communicate with the first terminal device in the first carrier frequency band of the first cell; if the eleventh information contains the second preamble sequence, the network device can determine The first terminal device supports communication with the first cell in the second carrier frequency band, and the network device can communicate with the first terminal device in the second carrier frequency band of the first cell after establishing a communication connection with the first terminal device; if the eleventh If the information contains the third preamble sequence, the network device can determine that the first terminal device supports communication with the first cell in the first carrier frequency band and the second carrier frequency band, and after the network device establishes a communication connection with the first terminal device, in the first The first carrier frequency band and the second carrier frequency band of the cell communicate with the first terminal device.
  • the network device may activate the first carrier frequency band and the second carrier frequency band respectively.
  • One BWP in the second carrier frequency band communicates with the first terminal device on the first carrier frequency band and the activated BWP in the second carrier frequency band.
  • the first cell may include multiple carrier frequency bands, and multiple standard bandwidth frequency bands may form a non-standard bandwidth frequency band of the first cell, thereby improving resource utilization.
  • the network device notifies the terminal device that the first cell contains multiple carrier frequency bands through the tenth information, and the terminal device can communicate with the first cell through the multiple carrier frequency bands, which can improve resource utilization and increase communication transmission rate.
  • Terminal devices that do not support communication with the first cell through multiple carrier frequency bands or terminal devices can also choose to communicate with the first cell through one carrier frequency band according to communication requirements, so that terminal devices can access the network as needed, improving system flexibility.
  • a cell may include multiple carrier frequency bands, and the network device may broadcast multiple carrier frequency bands of a cell, and the terminal device notifies the network device to communicate with the cell on one or more carrier frequency bands after accessing the cell.
  • the embodiment of the present application also provides a resource configuration method.
  • a cell may include multiple carrier frequency bands, and the network only broadcasts one carrier frequency band of the cell.
  • the network device configures the cell for the terminal device. other carrier frequency bands, so that the terminal equipment and the cell can communicate on multiple carrier frequency bands.
  • the resource allocation method 1300 provided by the embodiment of the present application will be described below with reference to FIG. 13 .
  • the network device sends twelfth information, the twelfth information is used for the terminal device to establish a communication connection with the first cell, the twelfth information includes tenth indication information, and the tenth indication information is used to indicate that the first The carrier frequency band of the cell is the first carrier frequency band.
  • the first terminal device receives the twelfth information from the network device, and determines that the carrier frequency band of the first cell is the first carrier frequency band according to the tenth indication information in the twelfth information.
  • the twelfth information is SIB1.
  • the first terminal device sends thirteenth information to the network device, where the thirteenth information is used to request to establish a communication connection with the first cell.
  • the network device receives the thirteenth information from the first terminal device, and determines that the terminal device requests to establish a communication connection with the first cell.
  • the network device can establish a communication connection with the first terminal device via the first cell.
  • the network device sends fourteenth information to the first terminal device, where the fourteenth information is used to indicate adding a second carrier frequency band to the carrier frequency band of the first cell.
  • the first terminal device receives the fourteenth information from the network device, and determines that the second carrier frequency band has been added to the carrier frequency band of the first cell.
  • the network device may communicate with the first terminal device in the first carrier frequency band and the second carrier frequency band of the first cell.
  • the bandwidth of the frequency band composed of the first carrier frequency band and the second carrier frequency band may be the non-standard bandwidth of the first cell.
  • the resource utilization rate of the first cell can be improved.
  • the first carrier frequency band may be referred to as a broadcast carrier frequency band, and the second carrier frequency band may be referred to as a proprietary carrier frequency band.
  • the bandwidth of the first carrier frequency band and the bandwidth of the second carrier frequency band may be standard bandwidths defined by the system.
  • the network device can configure the serving cell for the terminal device after the terminal device accesses the network.
  • the other carrier frequency band enables the network device to communicate with the terminal device through multiple carrier frequency bands of the first cell, which can improve the resource utilization rate of the first cell and increase the data rate.
  • the embodiment of the present application also provides a resource allocation method.
  • the network device may send broadcast information indicating that the bandwidth of the carrier frequency band of the first cell is the first bandwidth, and the first bandwidth is a non-standard bandwidth.
  • the BWP bandwidth configured by the network device for the terminal device needs to meet the preset condition.
  • the preset condition is that the BWP bandwidth is less than or equal to the second bandwidth, and the second bandwidth is less than the first bandwidth.
  • the network device may send broadcast information indicating that the bandwidth of the carrier frequency band of the first cell is 110MHz, and 100MHz is the maximum bandwidth in the standard bandwidth less than 110MHz. Therefore, after the terminal device accesses the first cell, the network device configures the bandwidth for the terminal device
  • the bandwidth of the BWP is less than or equal to 100 MHz, that is, less than or equal to 275 RBs.
  • the BWP configured by the network device for multiple terminal devices establishing communication connections with the first cell may respectively occupy frequency domain resources of the 110 MHz frequency band of the first cell.
  • the network device may configure a BWP for a terminal device to occupy the low-frequency 60 MHz of the 110 MHz frequency band, and configure a BWP for one or more other terminal devices to include frequency domain resources in the 110 MHz frequency band except for the 60 MHz.
  • the present application is not limited thereto. This solution enables the network equipment to use the frequency domain resource of the non-standard bandwidth of the first cell to perform communication, thereby improving resource utilization.
  • the network device configures at least two BWPs for the terminal device, the network device can activate multiple BWPs in the at least two BWPs, and the frequency domain resource composed of the activated multiple BWPs is the frequency domain resource of the non-standard frequency band of the cell .
  • the network device communicates with the terminal device over the activated multiple BWPs.
  • the network device and the terminal device can use the non-standard bandwidth frequency band resource of the first cell to communicate.
  • the data rate of the terminal equipment is improved and the resource utilization rate is improved.
  • the embodiment of the present application also provides a resource allocation method.
  • the network device can send broadcast information indicating that the carrier frequency band of the first cell is the first carrier frequency band, the bandwidth of the first carrier frequency band is the third bandwidth, and the third bandwidth is the standard bandwidth.
  • the network device After the terminal device accesses the network through the first cell, the network device notifies the terminal device that the carrier bandwidth of the first cell is updated from the first carrier bandwidth to the second carrier frequency band, the bandwidth of the second carrier frequency band is the fourth bandwidth, and the fourth bandwidth for non-standard bandwidth.
  • the network device communicates with the terminal device on the second carrier bandwidth.
  • the bandwidth of the frequency domain resources of the first cell is a non-standard bandwidth of 13MHz
  • the network device indicates through broadcast information that the bandwidth of the first carrier frequency band of the first cell is 15MHz.
  • the network device After the terminal device accesses the network through the first cell, the network device The terminal device is notified that the carrier bandwidth of the first cell is updated from the first carrier frequency band to the second carrier frequency band, and the bandwidth of the second carrier frequency band is 13 MHz.
  • the network device communicates with the terminal device on the second carrier frequency band. Or, the network device broadcasts information indicating that the bandwidth of the first carrier frequency band of the first cell is 10MHz.
  • the network device After the terminal device accesses the network through the first cell, the network device notifies the terminal device that the carrier bandwidth of the first cell is updated from the first carrier frequency band to 13MHz.
  • the bandwidth of the second carrier frequency band, the network device and the terminal device communicate on the second carrier frequency band.
  • the network device and the terminal device can use the non-standard bandwidth frequency band resource of the first cell to communicate.
  • the data rate of the terminal equipment is improved and the resource utilization rate is improved.
  • the terminal device may receive downlink signals from the network device through multiple radio frequency (radio frequency, RF) links, and frequency domains corresponding to the downlink signals received by at least two RF links in the multiple RF links Resources do not overlap after partially overlapping.
  • RF radio frequency
  • the bandwidth of the carrier frequency band of the serving cell of the terminal device is 13MHz.
  • the terminal device can receive downlink signals from the network device through two RF links, where RF link 1 receives the signal carried in the 13MHz frequency band.
  • the RF link 2 receives the downlink signal carried on the 10 MHz frequency domain resource before the end frequency point of the 13 MHz frequency band.
  • End Devices for RF Link 1 and RF Chain The downlink signals on the overlapping 7MHz frequency domain resources received on the road 2 can be combined for data processing, which can improve the reliability of data processing. But the present application is not limited thereto.
  • the frequency domain resources for receiving downlink signals of RF link 1 and RF link 2 may be 10 MHz and 3 MHz, or 5 MHz and 10 MHz, respectively.
  • the communication device can receive downlink signals on different frequency domain resources by combining multiple RF links, so that the communication device can receive signals on frequency domain resources with non-standard bandwidth.
  • each network element may include a hardware structure and/or a software module, and realize the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module. Whether one of the above-mentioned functions is executed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • Fig. 15 is a schematic block diagram of a communication device provided by the present application. As shown in FIG. 15 , the communication device 1500 may include a transceiver unit 1520 .
  • the communication device 1500 may correspond to the terminal equipment (such as the first terminal equipment and/or the second terminal equipment) in the above method, or a chip configured in (or used in) the terminal equipment , or other devices, modules, circuits or units capable of implementing the method of the terminal device.
  • the communications apparatus 1500 may include a unit for performing the method performed by the terminal device in the methods shown in FIG. 3 , FIG. 10 , FIG. 12 and FIG. 13 .
  • each unit and the above-mentioned other operations and/or functions in the communication device 1500 are respectively for realizing the corresponding flow of the methods shown in FIG. 3 , FIG. 10 , FIG. 12 and FIG. 13 .
  • the communication device 1500 may further include a processing unit 1510, and the processing unit 1510 may be configured to process instructions or data to implement corresponding operations.
  • the transceiver unit 1520 in the communication device 1500 may be an input/output interface or circuit of the chip, and the processing in the communication device 1500 Unit 1510 may be a processor in a chip.
  • the communication device 1500 may further include a storage unit 1530, which may be used to store instructions or data, and the processing unit 1510 may execute the instructions or data stored in the storage unit, so that the communication device realizes corresponding operations .
  • a storage unit 1530 which may be used to store instructions or data
  • the processing unit 1510 may execute the instructions or data stored in the storage unit, so that the communication device realizes corresponding operations .
  • the transceiver unit 1520 in the communication device 1500 can be implemented through a communication interface (such as a transceiver or an input/output interface), for example, it can correspond to the transceiver 1610 in the terminal device 1600 shown in FIG. 16 .
  • the processing unit 1510 in the communication apparatus 1500 may be implemented by at least one processor, for example, may correspond to the processor 1620 in the terminal device 1600 shown in FIG. 16 .
  • the processing unit 1510 in the communication device 1500 may also be implemented by at least one logic circuit.
  • the storage unit 1530 in the communication device 1500 may correspond to the memory in the terminal device 1600 shown in FIG. 16 .
  • the communication device 1500 may correspond to the network device in the above method, for example, a chip configured in (or used in) the network device, or other devices capable of implementing the method of the network device , modules, circuits or units, etc.
  • the communication apparatus 1500 may include a unit for performing the method performed by the network device in the methods shown in FIG. 3 , FIG. 10 , FIG. 12 and FIG. 13 .
  • each unit and the above-mentioned other operations and/or functions in the communication device 1500 are respectively for realizing the corresponding flow of the methods shown in FIG. 3 , FIG. 10 , FIG. 12 and FIG. 13 .
  • the communication device 1500 may further include a processing unit 1510, and the processing unit 1510 may be configured to process instructions or data to implement corresponding operations.
  • the transceiver unit 1520 in the communication device 1500 may be an input/output interface or circuit of the chip, and the processing in the communication device 1500 Unit 1510 may be a processor in a chip.
  • the communication device 1500 may further include a storage unit 1530, which may be used to store instructions or data, and the processing unit 1510 may execute the instructions or data stored in the storage unit, so that the communication device realizes corresponding operations .
  • a storage unit 1530 which may be used to store instructions or data
  • the processing unit 1510 may execute the instructions or data stored in the storage unit, so that the communication device realizes corresponding operations .
  • the transceiver unit 1520 in the communication device 1500 can be realized through a communication interface (such as a transceiver or an input/output interface), for example, it can correspond to the network device shown in FIG. 17 Transceiver 1710 in 1700.
  • the processing unit 1510 in the communication device 1700 can be implemented by at least one processor, for example, it can correspond to the processor 1720 in the network device 1700 shown in FIG. circuit implementation.
  • the storage unit 1530 in the communication device 1500 may correspond to the memory in the network device 1700 shown in FIG. 17 .
  • FIG. 16 is a schematic structural diagram of a terminal device 1600 provided in this application.
  • the terminal device 1600 may be applied to the system shown in FIG. 1 to perform the functions of the terminal device in the above method.
  • the terminal device 1600 includes a processor 1620 and a transceiver 1610 .
  • the terminal device 1600 further includes a memory.
  • the processor 1620, the transceiver 1610, and the memory may communicate with each other through an internal connection path, and transmit control signals and/or data signals.
  • the memory is used to store computer programs, and the processor 1620 is used to execute the computer programs in the memory to control the transceiver 1610 to send and receive signals.
  • the above-mentioned processor 1620 can be used to execute the actions described in the previous methods implemented by the terminal device, and the transceiver 1610 can be used to execute the actions described in the previous methods that the terminal device sends to or receives from the network device.
  • the transceiver 1610 can be used to execute the actions described in the previous methods that the terminal device sends to or receives from the network device.
  • the description in the previous method please refer to the description in the previous method, and will not repeat them here.
  • the terminal device 1600 may further include a power supply, configured to provide power to various devices or circuits in the terminal device.
  • FIG. 17 is a schematic structural diagram of a network device 1700 provided in this application.
  • the network device 1700 may be applied to the system shown in FIG. 1 to perform the function of the second node in the above method.
  • the network device 1700 includes a processor 1720 and a transceiver 1710 .
  • the network device 1700 also includes a memory.
  • the processor 1720, the transceiver 1710, and the memory may communicate with each other through an internal connection path, and transmit control and/or data signals.
  • the memory is used to store computer programs, and the processor 1720 is used to execute the computer programs in the memory to control the transceiver 1710 to send and receive signals.
  • the above-mentioned processor 1720 can be used to execute the actions described in the previous method implemented by the network device, and the transceiver 1710 can be used to perform the actions described in the previous method that the network device sends to or receives from the network device.
  • the transceiver 1710 can be used to perform the actions described in the previous method that the network device sends to or receives from the network device.
  • the foregoing network device 1700 may further include a power supply, configured to provide power to various devices or circuits in the network device.
  • the processor and the memory may be combined into a processing device, and the processor is used to execute the program code stored in the memory to realize the above functions.
  • the stored The memory can also be integrated in the processor, or it can be independent of the processor.
  • the processor may correspond to the processing unit in FIG. 15 .
  • the transceiver may correspond to the transceiver unit in FIG. 15 .
  • the transceiver 1610 may include a receiver (or receiver, receiving circuit) and a transmitter (or transmitter, transmitting circuit). Among them, the receiver is used to receive signals, and the transmitter is used to transmit signals.
  • a processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, and may realize or execute the Each method, step and logical block diagram of the method.
  • a general purpose processor may be a microprocessor or any conventional processor or the like. The steps combined with the method of the present application may be directly implemented by a hardware processor, or implemented by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk (hard disk drive, HDD) or a solid-state drive (solid-state drive, SSD), etc., or a volatile memory (volatile memory), such as random access Memory (random-access memory, RAM).
  • a memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in the present application may also be a circuit or any other device capable of implementing a storage function for storing program instructions and/or data.
  • the present application also provides a processing device, including a processor and a (communication) interface; the processor is configured to execute any of the above methods.
  • the above processing device may be one or more chips.
  • the processing device may be a field programmable gate array (field programmable gate array, FPGA), an application specific integrated circuit (ASIC), or a system chip (system on chip, SoC). It can be a central processor unit (CPU), a network processor (network processor, NP), a digital signal processing circuit (digital signal processor, DSP), or a microcontroller (micro controller unit) , MCU), can also be a programmable controller (programmable logic device, PLD) or other integrated chips.
  • CPU central processor unit
  • NP network processor
  • DSP digital signal processor
  • microcontroller micro controller unit
  • PLD programmable logic device
  • the present application also provides a computer program product, the computer program product comprising: computer program code, when the computer program code is executed by one or more processors, causing the device including the processor to execute The methods shown in Figure 3, Figure 10, Figure 12 and Figure 13.
  • the technical solutions provided in this application may be fully or partially realized by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the processes or functions according to the present application will be generated in whole or in part.
  • the above computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium, and the computer-readable storage medium may be any available medium that can be accessed by a computer or contain One or more data storage devices such as servers and data centers that can be integrated with media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, or a magnetic tape), an optical medium (for example, a digital video disc (digital video disc, DVD)), or a semiconductor medium.
  • the present application also provides a computer-readable storage medium, the computer-readable storage medium stores program code, and when the program code is executed by one or more processors, the The device executes the methods shown in FIG. 3 , FIG. 10 , FIG. 12 and FIG. 13 .
  • the present application also provides a system, which includes the foregoing apparatus for implementing the method for a terminal device and the foregoing at least one apparatus for implementing the method for a network device.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the devices described above are only schematic.
  • the division of the units is only a logical function division.
  • there may be other division methods for example, multiple units or components can be combined or integrated.
  • to another system or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of this solution.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种资源配置方法、通信装置及通信设备,该方法包括:网络设备向第一终端设备发送第一信息,第一信息用于指示将第一小区的载波频带由第一载波频带更新为第二载波频带,第一小区为第一终端设备的服务小区,第二载波频带包括第一载波频带以外的频域资源。网络设备在第二载波频带上与第一终端设备通信,能够提高资源利用率。

Description

资源配置方法、通信装置及通信设备
本申请要求于2022年02月11日提交中国专利局、申请号为202210127591.3、申请名称为“资源配置方法、通信装置及通信设备”的中国专利申请以及于2022年07月13日提交中国专利局、申请号为202210820291.3、申请名称为“资源配置方法、通信装置及通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种资源配置方法、通信装置及通信设备。
背景技术
在移动通信系统中针对不同子载波间隔定义了从5兆赫兹(mega hertz,MHz)、10MHz到400MHz的多种载波带宽,例如,对于6千兆赫兹(giga hertz,GHz)通信频段,当子载波间隔为15千赫兹(kilo hertz,kHz)时,通信装置可以使用的最大载波带宽为50MHz,当子载波间隔为30kHz或60kHz时,可以使用的最大载波带宽为100MHz。对于毫米波通信频段,当子载波间隔为120kHz时,最大载波带宽可以达到200MHz。
然而,网络运营商可分配的频域资源带宽可能与系统定义的可用载波带宽大小不同,如可分配的频域资源的带宽为110MHz,而系统中未定义110MHz载波带宽,运营商设置通信设备使用系统定义的可用载波带宽将导致资源浪费、频谱资源利用率下降的问题。
发明内容
本申请提供了一种资源配置方法、通信装置及通信设备,以提高资源利用率。
第一方面,提供了一种资源分配方法,该方法可以由网络设备或配置于(或用于)网络设备的模块(如芯片)执行,下面以网络设备执行该方法为例进行说明。
该方法包括:网络设备向第一终端设备发送第一信息,该第一信息用于指示将第一小区的载波频带由第一载波频带更新为第二载波频带,该第一小区为该第一终端设备的服务小区,该第二载波频带包括该第一载波频带以外的频域资源。网络设备在该第二载波频带上与该第一终端设备通信。
根据上述方案,网络设备可以通过第一信息通知终端设备将第一小区的载波频带由第一载波频带更新为包含第一载波频带以外的资源的第二载波频带。通过该方式使得网络设备可以将通过第一小区接入网络的终端设备配置在不同的载波频带资源上与第一小区通信,例如,第一小区的载波频带可以不是系统定义的标准载波带宽,第一小区可以通过载波带宽为标准载波带宽的多个载波频带与不同终端设备通信,如第一小区可以通过第二载波频带与第一终端设备通信,通过第一载波频带与第二终端设备通信。实现了小区通过使用系统定义的多个载波带宽与不同终端设备通信,使得第一小区的频域资源得到充分的利用,能够提高资源利用率。
结合第一方面,在第一方面的某些实施方式中,网络设备发送第三信息,该第三信息用于终端设备与第一小区建立通信连接,第三信息包括第三指示信息,该第三指示信息用于指示第一小区的载波频带为第一载波频带。
可选地,第三信息为广播信息,例如,该第三信息为SIB1。第一载波频带可以称为第一小区的广播载波频带,第二载波频带可以称为第一终端设备的专有载波频带。
结合第一方面,在第一方面的某些实施方式中,该方法还包括:网络设备向该第一终端设备发送第二信息,该第二信息用于配置该第二载波频带中的带宽部分BWP。其中,该第二信息包括第一指示信息,该第一指示信息用于指示该带宽部分BWP的起始频点相对于BWP参考频点之间的偏移量。
一种可选实施方式中,该BWP参考频点为该第一载波频带的起始频点。
根据上述方案,无论终端设备与第一小区的通信的载波频带是否相同,网络设备为终端设备配置BWP的参考频点均为终端设备接入后使用的广播载波频带,减小了实现复杂度。
另一种可选实施方式中,该BWP参考频点为该第二载波频带的起始频点。
根据上述方案,可以沿用当前系统中BWP可配置的持续RB的最大个数,使得在尽可能减少对现有系统进行修改的情况下,实现提高资源利用率。
结合第一方面,在第一方面的某些实施方式中,该第一BWP与该第一载波频带中的第二BWP包括重叠的频域资源,该第一BWP的起始频点与该第二BWP的起始频点之间的频域偏移量为资源块组RBG的整数倍,该RBG为频域资源分配单位,该RBG包括至少一个资源块,该第二BWP是为第二终端设备配置的BWP。
根据上述方案,第一BWP的起始频点与第二BWP的起始频点之间的频域偏移量为RBG整数倍,可以实现第一BWP中的RBG与第二BWP中的RBG对齐,从而网络设备可以调度重叠RBG实现包括第一终端设备与第二终端设备在内的多个终端设备与网络设备的MU通信。
结合第一方面,在第一方面的某些实施方式中,该BWP参考频点为该第一载波频带的起始频点,该第二信息还包括第二指示信息,该第二指示信息用于指示该带宽部分BWP的起始频点大于、小于或等于该第一载波频带的起始频点。
根据上述方案,通过在第二信息中的第二指示信息,使得网络可以配置包含大于、小于或等于第一载波频带起始频点的资源的第二载波频带的BWP,也就是说,第二载波频带可以包含大于、小于或等于第一载波频带起始频点的资源,提高了频域资源配置的灵活性。
结合第一方面,在第一方面的某些实施方式中,该第一BWP与该第一小区的小区参考频点之间的频域偏移量为第一频域偏移量,该第二BWP与该小区参考频点之间的频域偏移量为第二频域偏移量,该第一频域偏移量与该第二频域偏移量之间的差值为资源块组RBG的整数倍,该RBG为频域资源分配单位,该RBG包括至少一个资源块。
根据上述方案,网络设备通过第一频域偏移量为第一终端设备配置第一BWP,通过第二频域偏移量为第二终端设备配置第二BWP,通过该第一频域偏移量与该第二频域偏移量之间的差值为RBG的整数倍,实现第一BWP中的RBG与第二BWP中的RBG对齐。
结合第一方面,在第一方面的某些实施方式中,该方法还包括:网络设备在该第一载波频带上与第二终端设备通信,其中,该第二终端设备的服务小区为该第一小区,该第一小区与该第二终端设备通信的载波频带为该第一载波频带。
根据上述方案,第一小区可以通过第二载波频带与第一终端设备通信,通过第一载波频带与第二终端设备通信。实现了小区通过使用系统定义的多个载波带宽与不同终端设备 通信,使得第一小区的频域资源得到充分的利用,能够提高资源利用率。
第二方面,提供了一种资源分配方法,该方法可以由终端设备或配置于(或用于)终端设备的模块(如芯片)执行,下面以第一终端设备执行该方法为例进行说明。该第二方面提供的该资源分配方法的有益效果可以参考第一方面的描述,此处不再赘述。
该方法包括:第一终端设备接收来自网络设备的第一信息,该第一信息用于指示将第一小区的载波频带由第一载波频带更新为第二载波频带,该第一小区为第一终端设备的服务小区,该第二载波频带包括该第一载波频带以外的频域资源。第一终端设备在该第二载波频带与该第一小区通信。
结合第二方面,在第二方面的某些实施方式中,该方法还包括:第一终端设备接收来自该网络设备的第二信息,该第二信息用于配置该第二载波频带中的带宽部分BWP。其中,该第二信息包括第一指示信息,该第一指示信息用于指示该带宽部分BWP的起始频点相对于BWP的参考频点之间的偏移量,该BWP参考频点为该第一载波频带的起始频点或该第二载波频带的起始频点。
结合第二方面,在第二方面的某些实施方式中,该BWP参考频点为该第一载波频带的起始频点,该第二信息包括第二指示信息,该第二指示信息用于指示该带宽部分BWP的起始频点大于、小于或等于该第一载波频带的起始频点。
结合第二方面,在第二方面的某些实施方式中,该方法还包括:第一终端设备发送第三信息,该第三信息用于终端设备与该第一小区建立通信连接,该第三信息包括第三指示信息,该第三指示信息用于指示该第一小区的载波频带为该第一载波频带。
第三方面,提供了一种资源分配方法,该方法可以由网络设备或配置于(或用于)网络设备的模块(如芯片)执行,下面以网络设备执行该方法为例进行说明。
该方法包括:网络设备向该第一终端设备发送第四信息,该第四信息用于指示通过该第一小区与第二小区载波聚合的方式与该第一终端设备通信,该第二小区的载波频带为第三载波频带,该第二载波频带与该第三载波频带部分重叠。网络设备在该第二载波频带和/或第三载波频带上与该第一终端设备通信。
根据上述方案,网络设备通过载波频带部分重叠的两个小区采用载波聚合的方式实现网络设备的频域资源的充分利用。例如,网络设备具有非通信系统定义的标准带宽的频域资源,网络设备通过载波带宽为标准带宽且载波频带部分重叠的两个小区采用载波聚合的方式与终端设备通信,能够使得网络设备的频域资源被充分利用,提高了资源利用率。
结合第三方面,在第三方面的某些实施方式中,该方法还包括:网络设备向该第一终端设备发送第四指示信息,该第四指示信息用于指示该第一小区的该第二载波频带与该第二小区的该第三载波频带部分重叠。
根据上述方案,网络设备可以通过第四指示信息向第一终端设备指示一个与第一小区的第二载波频带部分重叠的第二小区的第三载波频带,使得网络设备可以通过第二载波频带和第三载波频带采用载波聚合的方式与第一终端设备通信,以使得网络设备的频域资源得到充分利用,提高资源利用率。
结合第三方面,在第三方面的某些实施方式中,该第二载波频带与该第三载波频带的重叠频带内该第一小区的一个资源块的频域资源与该第二小区的一个资源块的频域资源相同。根据上述方案,该第二载波频带与该第三载波频带的重叠频带内该第一小区的一个资源块的频域资源与该第二小区的一个资源块的频域资源相同,也就是说,第二载波频带 上的资源块与第三载波频带上的资源块对齐,使得网络设备可以采用相同的调度单位在载波聚合后的聚合频带内调度部分或全部频带资源与第一终端设备通信。
结合第三方面,在第三方面的某些实施方式中,该第二载波频带的起始频点与该第三载波频带的起始频点之间的频域偏移量为资源块组RBG的整数倍,该RBG为频域资源分配单位,该RBG包括至少一个资源块。
根据上述方案,该第二载波频带的起始频点与该第三载波频带的起始频点之间的频域偏移量为RBG的整数倍,能够实现第二载波频带与第三载波频带的RBG对齐,从而使得网络设备与终端设备可以对BWP的包含的RBG达成共识,实现网络设备以RBG为单位在BWP内为第一终端设备分配PDSCH资源和/或PUSCH资源。
结合第三方面,在第三方面的某些实施方式中,该方法还包括:该第一小区对应的小区参考频点与该第二小区对应的小区参考频点相同,该第一小区对应的小区参考频点用于确定该第一小区的资源块的位置,该第二小区对应的小区参考频点用于确定该第二小区的资源块的位置。根据上述方案,第一小区和第二小区中用于确定资源块的参考频点相同,实现第一终端设备基于参考频点确定的第一小区的资源块与第二小区的资源块对齐。
结合第三方面,在第三方面的某些实施方式中,该第二载波频带与该小区参考频点之间的频域偏移量为第三频域偏移量,该第三载波频带与该小区参考频点之间的频域偏移量为第四频域偏移量,该第三频域偏移量与该第四频域偏移量之间的差值为资源块组RBG的整数倍,该RBG为频域资源分配单位,该RBG包括至少一个资源块。
根据上述方案,第一小区和第二小区的小区参考频点相同,且第二载波频带与该小区频点之间的第三频域偏移量与第三载波频点与该小区频点之间的第四频域偏移量的差值为RBG的整数倍,可以实现该第二载波频带的起始频点与该第三载波频带的起始频点之间的频域偏移量为RBG的整数倍,使得第二载波频点与第三载波频点的RBG对齐。
结合第三方面,在第三方面的某些实施方式中,该方法还包括:网络设备通过该第一小区和该第二小区发送第一参考信号,该第一参考信号包括多个符号。其中,该第一参考信号中承载在该第二载波频带与该第三载波频带的重叠频带内的符号是由该第一小区或该第二小区发送的。该第一参考信号中承载在该第二载波频带中除该重叠频带以外的频带内的符号是由该第一小区发送的。该第一参考信号中承载在该第三载波频带中除该重叠频带以外的频带内的符号是由该第二小区发送的。
根据上述方案,承载在重叠频带内的参考信号的符号是由第一小区或第二小区发送的,规定了一种在重叠频带上发送参考信号的可选方式,能够避免重叠频带内承载的来自多个小区的符号不一致而造成第一终端设备接收错误或无法成功接收的情况。
结合第三方面,在第三方面的某些实施方式中,该方法还包括:网络设备通过该第一小区在第一资源上发送第二参考信号。以及,网络设备通过该第二小区在该第一资源上发送第三参考信号。其中,该第一资源为该第二载波频带与该第三载波频带的重叠频带内的资源,该第二参考信号与该第三参考信号的初始化序列相同。
根据上述方案,在重叠频带内的第一资源上,第一小区发送的第二参考信号的初始化序列和第二小区发送的第三参考信号的初始化序列相同,使得第一小区与第二小区采用相同方式分别生成的第二参考信号与第三参考信号相同。规定了一种在重叠频带上发送参考信号的可选方式,能够避免重叠频带内承载的来自多个小区的符号不一致而造成第一终端设备接收错误或无法成功接收的情况。
结合第三方面,在第三方面的某些实施方式中,该方法还包括:网络设备向该第一终端设备发送第七信息,该第七信息用于指示该第二参考信号的扰码标识信息,该第二参考信号的扰码标识信息用于生成该第二参考信号的初始化序列。以及,网络设备向该第一终端设备发送第八信息,该第八信息用于指示该第三参考信号的扰码标识信息,该第三参考信号的扰码标识信息用于生成该第三参考信号的初始化序列。其中,该第二参考信号的扰码标识信息与该第三参考信号的扰码标识信息相同。
根据上述方案,网络设备向第一终端设备指示的第二参考信号的扰码标识信息和第三参考信号的扰码标识信息相同,使得第一终端设备确定第二参考信号的初始化序列与第三参考信号的初始化序列相同,从而确定第二参考信号与第三参考信号相同,终端设备可以认为第一资源上承载的是同一参考信号(即第四参考信号),进行联合接收以及信道状态信息测量。
结合第三方面,在第三方面的某些实施方式中,该方法还包括:网络设备接收来自该第一终端设备的信道状态信息,该信道状态信息为该第二参考信号和该第三参考信号对应的信道状态信息。
根据上述方案,第一终端设备针对第一资源上承载的参考信号仅反馈一次信道状态信息,不需要向第一小区和第二小区分别反馈该信道状态信息。能够避免第一终端设备多次上报相同的信道状态信息造成的资源浪费,提高了资源利用率。
结合第三方面,在第三方面的某些实施方式中,该方法还包括:网络设备接收来自该第一终端设备的第九信息,该第九信息用于指示该第一终端设备的能力,该第九信息包括以下一种或多种指示信息:
第五指示信息,用于指示该第一终端设备支持或不支持小区的载波频带重叠的载波聚合方式;
第六指示信息,用于指示该第一终端设备支持或不支持同一频段内的载波频带重叠的载波聚合方式;
第七指示信息,用于指示该第一终端设备支持或不支持不同频段间的载波频带重叠的载波聚合方式;
第八指示信息,用于指示该第一终端设备支持或不支持载波频带重叠的载波聚合方式的频域位置。
根据上述方案,终端设备可以向网络设备上报是否支持载波频带重叠的载波聚合方式的相关能力信息,以便网络设备可以根据第一终端设备的能力,确定是否采用小区载波频带重叠的载波聚合方式与第一终端设备通信,以提高资源利用率。
结合第三方面,在第三方面的某些实施方式中,该第一小区的载波中心频点与该第二小区的载波中心频点之间的频域间隔为信道栅格的单位间隔与第一子载波间隔的公倍数,该信道栅格为载波中心频点的候选集合,该信道栅格中属于同一频段的两个载波中心频点之间的间隔为该单位间隔的整数倍,该第一小区与该第二小区的子载波间隔均为该第一子载波间隔。
根据上述方案,由于本申请提出了多个小区的载波频带可以重叠的通信机制,因此定义了第一小区的载波中心频点与第二小区的载波中心频点之间的频域间隔为信道栅格的单位间隔与第一子载波间隔的公倍数。使得终端设备能够在小区搜索时搜索到第一小区和第二小区。
结合第三方面,在第三方面的某些实施方式中,该方法还包括:网络设备根据该第二载波频带的带宽、该第三载波频带的带宽和第一参数,确定该第一终端设备的最大传输速率,其中,该第一参数用于表征该第二载波频带与该第三载波频带的重叠频带对该最大传输速率的影响。
根据上述方案,由于本申请提出了多个小区的载波频带可以重叠的通信机制,因此计算终端设备的最大传输速率是需要考虑重叠频带对最大传输速率的影响,以较准确地确定终端设备的数据传输速率。
第四方面,提供了一种资源分配方法,该方法可以由终端设备或配置于(或用于)终端设备的模块(如芯片)执行,下面以第一终端设备执行该方法为例进行说明。该第四方面提供的该资源分配方法的有益效果可以参考第三方面的描述,此处不再赘述。
第一终端设备接收来自该网络设备的第四信息,该第四信息用于指示该网络设备通过该第一小区与第二小区载波聚合的方式与该第一终端设备通信,该第一小区的第二载波频带与该第二小区的第三载波频带部分重叠。第一终端设备在该第二载波频带和/或第三载波频带上与该网络设备通信。
结合第四方面,在第四方面的某些实施方式中,该方法还包括:第一终端设备接收来自该网络设备的第四指示信息,该第四指示信息用于指示该第一小区的该第二载波频带与该第二小区的该第三载波频带部分重叠。
结合第四方面,在第四方面的某些实施方式中,该第二载波频带与该第三载波频带的重叠频带内该第一小区的一个资源块的频域资源与该第二小区的一个资源块的频域资源相同。
结合第四方面,在第四方面的某些实施方式中,该第二载波频带的起始频点与该第三载波频带的起始频点之间的频域偏移量为资源块组RBG的整数倍,该RBG为频域资源分配单位,该RBG包括至少一个资源块。
结合第四方面,在第四方面的某些实施方式中,该方法还包括:该第一小区对应的小区参考频点与该第二小区对应的小区参考频点相同。该第一小区对应的小区参考频点用于确定该第一小区的资源块的位置,该第二小区对应的小区参考频点用于确定该第二小区的资源块的位置。
结合第四方面,在第四方面的某些实施方式中,所述第二载波频带与所述小区参考频点之间的频域偏移量为第三频域偏移量,所述第三载波频带与所述小区参考频点之间的频域偏移量为第四频域偏移量,所述第三频域偏移量与所述第四频域偏移量之间的差值为资源块组RBG的整数倍,所述RBG为频域资源分配单位,所述RBG包括至少一个资源块。
结合第四方面,在第四方面的某些实施方式中,该方法还包括:第一终端设备接收第一参考信号,该第一参考信号包括多个符号。其中,该第一参考信号中承载在该第二载波频带与该第三载波频带的重叠频带内的符号是由该第一小区或该第二小区发送的。该第一参考信号中承载在该第二载波频带中除该重叠频带以外的频带内的符号是由该第一小区发送的。该第一参考信号中承载在该第三载波频带中除该重叠频带以外的频带内的符号是由该第二小区发送的。
结合第四方面,在第四方面的某些实施方式中,该方法还包括:第一终端设备在第一资源上接收第四参考信号,该第四参考信号包括来自第一小区的第二参考信号和第二小区的第三参考信号。其中,该第一资源为该第二载波频带与该第三载波频带的重叠频带内的 资源,该第二参考信号与该第三参考信号的初始化序列相同。
结合第四方面,在第四方面的某些实施方式中,该方法还包括:第一终端设备接收来自该网络设备的第七信息,该第七信息用于指示该第二参考信号的扰码标识信息,该第二参考信号的扰码标识信息用于生成该第二参考信号的初始化序列。以及,第一终端设备接收来自该网络设备的第八信息,该第八信息用于指示该第三参考信号的扰码标识信息,该第三参考信号的扰码标识信息用于生成该第三参考信号的初始化序列。其中,该第二参考信号的扰码标识信息与该第三参考信号的扰码标识信息相同。
结合第四方面,在第四方面的某些实施方式中,该方法还包括:第一终端设备根据该第四参考信号,得到信道状态信息,该信道状态信息为该第二参考信号和该第三参考信号对应的信道状态信息。以及,第一终端设备向该网络设备发送该信道状态信息。
结合第四方面,在第四方面的某些实施方式中,该方法还包括:第一终端设备接收来自该第一终端设备的第九信息,该第九信息用于指示该第一终端设备的能力,该第九信息包括以下一种或多种指示信息:
第五指示信息,用于指示该第一终端设备支持或不支持小区的载波频带重叠的载波聚合方式;
第六指示信息,用于指示该第一终端设备支持或不支持同一频段内的载波频带重叠的载波聚合方式;
第七指示信息,用于指示该第一终端设备支持或不支持不同频段间的载波频带重叠的载波聚合方式;
第八指示信息,用于指示该第一终端设备支持或不支持载波频带重叠的载波聚合方式的频域位置。
结合第四方面,在第四方面的某些实施方式中,该第一小区的载波中心频点与该第二小区的载波中心频点之间的频域间隔为信道栅格的单位间隔与第一子载波间隔的公倍数,该信道栅格为载波中心频点的候选集合,该信道栅格中两个载波中心频点之间的间隔为该单位间隔的整数倍,该第一小区与该第二小区的子载波间隔均为该第一子载波间隔。
结合第四方面,在第四方面的某些实施方式中,该方法还包括:第一终端设备根据该第二载波频带的带宽、该第三载波频带的带宽和第一参数,确定最大传输速率。其中,该第一参数用于表征该第二载波频带与该第三载波频带的重叠频带对该最大传输速率的影响。
第五方面,提供了一种资源分配方法,该方法可以由网络设备或配置于(或用于)网络设备的模块(如芯片)执行,下面以网络设备执行该方法为例进行说明。
该方法包括:网络设备发送第十信息,该第十信息用于第一终端设备与第一小区建立通信连接,该第十信息用于指示第一小区的第一载波频带和第二载波频带。网络设备接收来自第一终端设备的第十一信息,该第十一信息用于指示该第一终端设备请求与该第一小区建立通信连接,该第十一信息包括第九指示信息,该第九指示信息用指示该第一终端设备支持在该第一载波频带和/或该第二载波频带上与该第一小区通信。
根据上述方案,第一小区可以包含多个载波频带,可以实现多个标准带宽的频带组成第一小区的非标准带宽的频带,从而提高资源的利用率。网络设备通过第十信息通知终端设备第一小区包含多个载波频带,终端设备可以通过多个载波频带与第一小区通信,能够提高资源的利用率,提高通信的传输速率。不支持通过多个载波频带与第一小区通信的终 端设备或者终端设备根据通信需求也可以选择通过一个载波频带与第一小区通信,使得终端设备可以按需接入网络,提高了系统灵活性。
第六方面,提供了一种资源分配方法,该方法可以由终端设备或配置于(或用于)终端设备的模块(如芯片)执行,下面以第一终端设备执行该方法为例进行说明。
该方法包括:第一终端设备接收来自网络设备的第十信息,该第十信息用于终端设备与第一小区建立通信连接,该第十信息用于指示第一小区的第一载波频带和第二载波频带。第一终端设备向该网络设备发送第十一信息,该第十一信息用于指示第一终端设备请求与该第一小区建立通信连接,该第十一信息包括第九指示信息,该第九指示信息用于指示该第一终端设备支持在该第一载波频带和/或该第二载波频带上与该第一小区通信。
第七方面,提供了一种通信装置,一种设计中,该装置可以包括执行第一方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置包括:处理单元,用于确定第一信息,该第一信息用于指示将第一小区的载波频带由第一载波频带更新为第二载波频带,该第一小区为该第一终端设备的服务小区,该第二载波频带包括该第一载波频带以外的频域资源。收发单元,用于向第一终端设备发送该第一信息。该收发单元还用于在该第二载波频带上与该第一终端设备通信。
结合第七方面,在第七方面的某些实施方式中,该收发单元还用于向该第一终端设备发送第二信息,该第二信息用于配置该第二载波频带中的带宽部分BWP。其中,该第二信息包括第一指示信息,该第一指示信息用于指示该带宽部分BWP的起始频点相对于BWP参考频点之间的偏移量,该BWP参考频点为该第一载波频带的起始频点或该第二载波频带的起始频点。
结合第七方面,在第七方面的某些实施方式中,该第一BWP与该第一载波频带中的第二BWP包括重叠的频域资源,该第一BWP的起始频点与该第二BWP的起始频点之间的频域偏移量为资源块组RBG的整数倍,该RBG为频域资源分配单位,该RBG包括至少一个资源块,该第二BWP是为第二终端设备配置的BWP。
结合第七方面,在第七方面的某些实施方式中,该BWP参考频点为该第一载波频带的起始频点,该第二信息还包括第二指示信息,该第二指示信息用于指示该带宽部分BWP的起始频点大于、小于或等于该第一载波频带的起始频点。
结合第七方面,在第七方面的某些实施方式中,该第一BWP与该第一小区的小区参考频点之间的频域偏移量为第一频域偏移量,该第二BWP与该小区参考频点之间的频域偏移量为第二频域偏移量,该第一频域偏移量与该第二频域偏移量之间的差值为资源块组RBG的整数倍,该RBG为频域资源分配单位,该RBG包括至少一个资源块。
结合第七方面,在第七方面的某些实施方式中,该收发单元还用于发送第三信息,该第三信息用于终端设备与该第一小区建立通信连接,该第三信息包括第三指示信息,该第三指示信息用于指示该第一小区的载波频带为该第一载波频带。
结合第七方面,在第七方面的某些实施方式中,该收发单元还用于在该第一载波频带上与第二终端设备通信。其中,该第二终端设备的服务小区为该第一小区,该第一小区与该第二终端设备通信的载波频带为该第一载波频带。
第八方面,提供了一种通信装置,一种设计中,该装置可以包括执行第二方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可 以是硬件电路结合软件实现。一种设计中,该装置包括:收发单元接收来自网络设备的第一信息,该第一信息用于指示将第一小区的载波频带由第一载波频带更新为第二载波频带,该第一小区为第一终端设备的服务小区,该第二载波频带包括该第一载波频带以外的频域资源。处理单元,用于根据该第一信息,确定将第一小区的载波频带由第一载波频带更新为第二载波频带。该收发单元还用于在该第二载波频带与该第一小区通信。
结合第八方面,在第八方面的某些实施方式中,该收发单元还用于接收来自该网络设备的第二信息,该第二信息用于配置该第二载波频带中的带宽部分BWP。其中,该第二信息包括第一指示信息,该第一指示信息用于指示该带宽部分BWP的起始频点相对于BWP的参考频点之间的偏移量,该BWP参考频点为该第一载波频带的起始频点或该第二载波频带的起始频点。
结合第八方面,在第八方面的某些实施方式中,该BWP参考频点为该第一载波频带的起始频点,该第二信息包括第二指示信息,该第二指示信息用于指示该带宽部分BWP的起始频点大于、小于或等于该第一载波频带的起始频点。
结合第八方面,在第八方面的某些实施方式中,该收发单元还用于发送第三信息,该第三信息用于终端设备与该第一小区建立通信连接,该第三信息包括第三指示信息,该第三指示信息用于指示该第一小区的载波频带为该第一载波频带。
第九方面,提供了一种通信装置,一种设计中,该装置可以包括执行第三方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置包括:处理单元,用于确定第四信息,该第四信息用于指示通过该第一小区与第二小区载波聚合的方式与该第一终端设备通信,该第二小区的载波频带为第三载波频带,该第二载波频带与该第三载波频带部分重叠。收发单元,用于向该第一终端设备发送该第四信息。该收发单元还用于在该第二载波频带和/或第三载波频带上与该第一终端设备通信。
结合第九方面,在第九方面的某些实施方式中,该收发单元还用于向该第一终端设备发送第四指示信息,该第四指示信息用于指示该第一小区的该第二载波频带与该第二小区的该第三载波频带部分重叠。
结合第九方面,在第九方面的某些实施方式中,该第二载波频带与该第三载波频带的重叠频带内该第一小区的一个资源块的频域资源与该第二小区的一个资源块的频域资源相同。
结合第九方面,在第九方面的某些实施方式中,该第二载波频带的起始频点与该第三载波频带的起始频点之间的频域偏移量为资源块组RBG的整数倍,该RBG为频域资源分配单位,该RBG包括至少一个资源块。
结合第九方面,在第九方面的某些实施方式中,该第一小区对应的小区参考频点与该第二小区对应的小区参考频点相同,该第一小区对应的小区参考频点用于确定该第一小区的资源块的位置。该第二小区对应的小区参考频点用于确定该第二小区的资源块的位置。
结合第九方面,在第九方面的某些实施方式中,该第二载波频带与该小区参考频点之间的频域偏移量为第三频域偏移量,该第三载波频带与该小区参考频点之间的频域偏移量为第四频域偏移量,该第三频域偏移量与该第四频域偏移量之间的差值为资源块组RBG的整数倍,该RBG为频域资源分配单位,该RBG包括至少一个资源块。
结合第九方面,在第九方面的某些实施方式中,该收发单元还用于通过该第一小区和 该第二小区发送第一参考信号,该第一参考信号包括多个符号。其中,该第一参考信号中承载在该第二载波频带与该第三载波频带的重叠频带内的符号是由该第一小区或该第二小区发送的。该第一参考信号中承载在该第二载波频带中除该重叠频带以外的频带内的符号是由该第一小区发送的。该第一参考信号中承载在该第三载波频带中除该重叠频带以外的频带内的符号是由该第二小区发送的。
结合第九方面,在第九方面的某些实施方式中,该收发单元还用于通过该第一小区在第一资源上发送第二参考信号。以及,该收发单元还用于通过该第二小区在该第一资源上发送第三参考信号。其中,该第一资源为该第二载波频带与该第三载波频带的重叠频带内的资源,该第二参考信号与该第三参考信号的初始化序列相同。
结合第九方面,在第九方面的某些实施方式中,该收发单元还用于向该第一终端设备发送第七信息,该第七信息用于指示该第二参考信号的扰码标识信息,该第二参考信号的扰码标识信息用于生成该第二参考信号的初始化序列。以及该收发单元还用于向该第一终端设备发送第八信息,该第八信息用于指示该第三参考信号的扰码标识信息,该第三参考信号的扰码标识信息用于生成该第三参考信号的初始化序列。其中,该第二参考信号的扰码标识信息与该第三参考信号的扰码标识信息相同。
结合第九方面,在第九方面的某些实施方式中,该收发单元还用于接收来自该第一终端设备的信道状态信息,该信道状态信息为该第二参考信号和该第三参考信号对应的信道状态信息。
结合第九方面,在第九方面的某些实施方式中,该收发单元还用于接收来自该第一终端设备的第九信息,该第九信息用于指示该第一终端设备的能力,该第九信息包括以下一种或多种指示信息:
第五指示信息,用于指示该第一终端设备支持或不支持小区的载波频带重叠的载波聚合方式;
第六指示信息,用于指示该第一终端设备支持或不支持同一频段内的载波频带重叠的载波聚合方式;
第七指示信息,用于指示该第一终端设备支持或不支持不同频段间的载波频带重叠的载波聚合方式;
第八指示信息,用于指示该第一终端设备支持或不支持载波频带重叠的载波聚合方式的频域位置。
结合第九方面,在第九方面的某些实施方式中,该第一小区的载波中心频点与该第二小区的载波中心频点之间的频域间隔为信道栅格的单位间隔与第一子载波间隔的公倍数,该信道栅格为载波中心频点的候选集合,该信道栅格中属于同一频段的两个载波中心频点之间的间隔为该单位间隔的整数倍,该第一小区与该第二小区的子载波间隔均为该第一子载波间隔。
结合第九方面,在第九方面的某些实施方式中,该处理单元还用于根据该第二载波频带的带宽、该第三载波频带的带宽和第一参数,确定该第一终端设备的最大传输速率,其中,该第一参数用于表征该第二载波频带与该第三载波频带的重叠频带对该最大传输速率的影响。
第十方面,提供了一种通信装置,一种设计中,该装置可以包括执行第四方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可 以是硬件电路结合软件实现。一种设计中,该装置包括:收发单元,用于接收来自该网络设备的第四信息,该第四信息用于指示该网络设备通过该第一小区与第二小区载波聚合的方式与该第一终端设备通信,该第一小区的第二载波频带与该第二小区的第三载波频带部分重叠。处理单元,用于根据该第四信息,确定该网络设备通过该第一小区与第二小区载波聚合的方式与该第一终端设备通信。该收发单元还用于在该第二载波频带和/或第三载波频带上与该网络设备通信。
结合第十方面,在第十方面的某些实施方式中,该收发单元还用于接收来自该网络设备的第四指示信息,该第四指示信息用于指示该第一小区的该第二载波频带与该第二小区的该第三载波频带部分重叠。
结合第十方面,在第十方面的某些实施方式中,该第二载波频带与该第三载波频带的重叠频带内该第一小区的一个资源块的频域资源与该第二小区的一个资源块的频域资源相同。
结合第十方面,在第十方面的某些实施方式中,该第二载波频带的起始频点与该第三载波频带的起始频点之间的频域偏移量为资源块组RBG的整数倍,该RBG为频域资源分配单位,该RBG包括至少一个资源块。结合第十方面,在第十方面的某些实施方式中,该第一小区对应的参考频点与该第二小区对应的参考频点相同,该第一小区对应的参考频点用于确定该第一小区的资源块的位置。该第二小区对应的参考频点用于确定该第二小区的资源块的位置。
结合第十方面,在第十方面的某些实施方式中,该第二载波频带与该小区参考频点之间的频域偏移量为第三频域偏移量,该第三载波频带与该小区参考频点之间的频域偏移量为第四频域偏移量,该第三频域偏移量与该第四频域偏移量之间的差值为资源块组RBG的整数倍,该RBG为频域资源分配单位,该RBG包括至少一个资源块。
结合第十方面,在第十方面的某些实施方式中,该收发单元还用于接收第一参考信号,该第一参考信号包括多个符号。其中,该第一参考信号中承载在该第二载波频带与该第三载波频带的重叠频带内的符号是由该第一小区或该第二小区发送的。该第一参考信号中承载在该第二载波频带中除该重叠频带以外的频带内的符号是由该第一小区发送的。该第一参考信号中承载在该第三载波频带中除该重叠频带以外的频带内的符号是由该第二小区发送的。
结合第十方面,在第十方面的某些实施方式中,该收发单元还用于在第一资源上接收第四参考信号,该第四参考信号包括来自第一小区的第二参考信号和第二小区的第三参考信号。其中,该第一资源为该第二载波频带与该第三载波频带的重叠频带内的资源,该第二参考信号与该第三参考信号的初始化序列相同。
结合第十方面,在第十方面的某些实施方式中,该收发单元还用于接收来自该网络设备的第七信息,该第七信息用于指示该第二参考信号的扰码标识信息,该第二参考信号的扰码标识信息用于生成该第二参考信号的初始化序列。以及该收发单元还用于接收来自该网络设备的第八信息,该第八信息用于指示该第三参考信号的扰码标识信息,该第三参考信号的扰码标识信息用于生成该第三参考信号的初始化序列。其中,该第二参考信号的扰码标识信息与该第三参考信号的扰码标识信息相同。
结合第十方面,在第十方面的某些实施方式中,该处理单元还用于根据该第四参考信号,得到信道状态信息,该信道状态信息为该第二参考信号和该第三参考信号对应的信道 状态信息。该收发单元还用于向该网络设备发送该信道状态信息。
结合第十方面,在第十方面的某些实施方式中,该收发单元还用于接收来自该第一终端设备的第九信息,该第九信息用于指示该第一终端设备的能力,该第九信息包括以下一种或多种指示信息:
第五指示信息,用于指示该第一终端设备支持或不支持小区的载波频带重叠的载波聚合方式;
第六指示信息,用于指示该第一终端设备支持或不支持同一频段内的载波频带重叠的载波聚合方式;
第七指示信息,用于指示该第一终端设备支持或不支持不同频段间的载波频带重叠的载波聚合方式;
第八指示信息,用于指示该第一终端设备支持或不支持载波频带重叠的载波聚合方式的频域位置。
结合第十方面,在第十方面的某些实施方式中,该第一小区的载波中心频点与该第二小区的载波中心频点之间的频域间隔为信道栅格的单位间隔与第一子载波间隔的公倍数,该信道栅格为载波中心频点的候选集合,该信道栅格中属于同一频段的两个载波中心频点之间的间隔为该单位间隔的整数倍,该第一小区与该第二小区的子载波间隔均为该第一子载波间隔。
结合第十方面,在第十方面的某些实施方式中,该处理单元还用于根据该第二载波频带的带宽、该第三载波频带的带宽和第一参数,确定最大传输速率,其中,该第一参数用于表征该第二载波频带与该第三载波频带的重叠频带对该最大传输速率的影响。
第十一方面,提供了一种通信装置,一种设计中,该装置可以包括执行第五方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置包括:收发单元,用于发送第十信息,该第十信息用于第一终端设备与第一小区建立通信连接,该第十信息用于指示第一小区的第一载波频带和第二载波频带。该收发单元还用于接收来自第一终端设备的第十一信息,该第十一信息用于指示该第一终端设备请求与该第一小区建立通信连接,该第十一信息包括第九指示信息,该第九指示信息用指示该第一终端设备支持在该第一载波频带和/或该第二载波频带上与该第一小区通信。处理单元,用于根据第十一信息确定该第一终端设备请求与该第一小区建立通信连接,以及确定该第一终端设备支持的与该第一小区通信的载波频带。
第十二方面,提供了一种通信装置,一种设计中,该装置可以包括执行第六方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置包括:收发单元,用于接收来自网络设备的第十信息,该第十信息用于终端设备与第一小区建立通信连接,该第十信息用于指示第一小区的第一载波频带和第二载波频带。处理单元,用于确定与第一小区建立通信连接,以及确定支持的与该第一小区通信的载波频带。该收发单元向该网络设备发送第十一信息,该第十一信息用于指示第一终端设备请求与该第一小区建立通信连接,该第十一信息包括第九指示信息,该第九指示信息用于指示该第一终端设备支持在该第一载波频带和/或该第二载波频带上与该第一小区通信。
第十三方面,提供了一种通信装置,包括处理器。该处理器可以实现上述第一方面、 第三方面或第五方面以及第一方面、第三方面或第五方面中任一种可能实现方式中的方法。可选地,该通信装置还包括存储器,该处理器与该存储器耦合,可用于执行存储器中的指令,以实现上述第一方面、第三方面或第五方面以及第一方面、第三方面或第五方面中任一种可能实现方式中的方法。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。本公开中,通信接口可以是收发器、管脚、电路、总线、模块或其它类型的通信接口,但本申请不限于此。
根据第十三方面提供的通信装置,在一种实现方式中,当通信装置为网络设备时,该通信接口可以是收发器。可选地,该收发器可以为收发电路。在另一种实现方式中,当通信装置为配置于网络设备的芯片时,该通信接口可以是输入/输出接口。
第十四方面,提供了一种通信装置,包括处理器。该处理器可以实现上述第二方面、第四方面或第六方面以及第二方面、第四方面或第六方面中任一种可能实现方式中的方法。可选地,该通信装置还包括存储器,该处理器与该存储器耦合,可用于执行存储器中的指令,以实现上述第二方面、第四方面或第六方面以及第二方面、第四方面或第六方面中任一种可能实现方式中的方法。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
根据第十四方面提供的通信装置,在一种实现方式中,当通信装置为终端设备时,该通信接口可以是收发器。可选地,该收发器可以为收发电路。在另一种实现方式中,当通信装置为配置于终端设备的芯片时,该通信接口可以是输入/输出接口。
可选地,上述输入/输出接口可以包括输入电路和输出电路。在具体实现过程中,输入电路可以为输入管脚,输出电路可以为输出管脚,处理器可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本公开对处理器及各种电路的具体实现方式不做限定。
第十五方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序(也可以称为代码,或指令),当该计算机程序被运行时,使得计算机执行上述第一方面至第六方面以及第一方面至第六方面中任一种可能实现方式中的方法。
第十六方面,提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面至第六方面以及第一方面至第六方面中任一种可能实现方式中的方法。
第十七方面,提供了一种通信系统,包括前述的至少一个用于实现终端设备的方法的装置和至少一个用于实现网络设备的方法的装置。
附图说明
图1是适用于本申请实施例的通信系统的一个示意图;
图2是本申请提供的终端设备接入网络的一个示意性流程图;
图3是本申请提供的资源分配方法的一个示意性流程图;
图4至图6是本申请提供的第一小区的频域资源的示意图;
图7是本申请提供的第二载波频带中BWP的配置方式的一个示意图;
图8是本申请提供的第二载波频带中BWP的配置方式的另一示意图;
图8A是本申请提供的BWP中的RBG的示意图;
图8B是本申请提供的第一BWP与第二BWP中RBG对齐的示意图;
图8C是本申请提供的载波频带、BWP与参考点A的位置关系示意图;
图8D是本申请提供的载波频点间RBG不对齐的示意图;
图8E是本申请提供的载波聚合频带内BWP的示意图;
图8F是本申请提供的两个载波频带与同一参考频点的位置关系示意图;
图9是本申请提供的第二载波频带中BWP的配置方式的示意图;
图10是本申请提供的资源配置方法的另一个示意性流程图;
图11是本申请提供的载波聚合频带的一个示意图;
图12至图14是本申请提供的资源分配方法的其他示意性流程图;
图15是本申请实施例提供的通信装置的一例的示意性框图;
图16是本申请实施例提供的终端设备的一例的示意性结构图;
图17是本申请实施例提供的网络设备的一例的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、第五代(5th generation,5G)通信系统,如5G新无线(new radio,NR)系统等以及未来的通信系统(如第六代(6th generation,6G)通信系统)、或者多种通信系统融合的系统等,本申请实施例不做限定。
图1是适用于本申请实施例的通信系统100的一个示意图。该通信系统100可以包括至少一个网络设备,如图1所示的网络设备101。该通信系统100还可以包括至少一个终端设备,如图1所示的终端设备102、终端设备103、终端设备104。网络设备101可以利用无线资源分别与终端设备102、终端设备103、终端设备104通信,为终端设备提供网络服务。网络设备101可以管理一个或多个小区,如图1所示的小区105、小区106,不同小区的覆盖范围和/或频域资源(如载波或载波频带)不同。网络设备101可以利用小区105的无线传输资源与终端设备102通信,利用小区106的传输资源与处于小区106的终端设备103通信。以及网络设备还可以采用载波聚合的方式与终端设备通信,例如,终端设备104处于小区105与小区106的覆盖范围内,网络设备101可以通过小区105与小区106载波聚合(carrier aggregation,CA)的方式与终端设备104通信。需要说明的是,图1仅为适用本申请实施例的通信系统的一个示例,本申请并不限于此。如图1所示的两个小区的覆盖范围部分重叠,两个小区的覆盖范围还可以是一个小区的覆盖范围可以包含另一个的覆盖范围。
本申请实施例涉及到的终端设备还可以称为终端。终端可以是一种具有无线收发功能的设备。终端可以被部署在陆地上,包括室内、室外、手持、和/或车载;也可以被部署在水面上(如轮船等);还可以被部署在空中(例如飞机、气球和卫星上等)。终端设备可以是用户设备(user equipment,UE)。UE包括具有无线通信功能的手持式设备、车载设备、可穿戴设备或计算设备。示例性地,UE可以是手机(mobile phone)、平板电脑或带无线收发功能的电脑。终端设备还可以是虚拟现实(virtual reality,VR)终端设备、增 强现实(augmented reality,AR)终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、智慧城市(smart city)中的无线终端、和/或智慧家庭(smart home)中的无线终端等等。
本申请实施例涉及到的网络设备包括基站(base station,BS),可以是一种部署在无线接入网中能够和终端设备进行无线通信的设备。基站可能有多种形式,比如宏基站、微基站、中继站或接入点等。本申请实施例涉及到的基站可以是5G系统中的基站、LTE系统中的基站或其它系统中的基站,不做限制。其中,5G系统中的基站还可以称为发送接收点(transmission reception point,TRP)或下一代节点B(generation Node B,gNB或gNodeB)。其中,基站可以是一体化的基站,也可以是分离成多个网元的基站,不予限制。例如,基站是集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)分离的基站,即基站包括CU和DU。
在本申请实施例中,“/”可以表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;“和/或”可以用于描述关联对象存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。为了便于描述本申请实施例的技术方案,在本申请实施例中,可以采用“第一”、“第二”等字样对功能相同或相似的技术特征进行区分。该“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。在本申请实施例中,“示例性的”或者“例如”等词用于表示例子、例证或说明,被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
在本申请实施例中,至少一个(种)还可以描述为一个(种)或多个(种),多个(种)可以是两个(种)、三个(种)、四个(种)或者更多个(种),本申请不做限制。
为了更好地理解本申请实施例,下面对本文中涉及到的技术及术语做简单说明。
一、小区和载波
小区可以理解为通过网络设备识别码或全球小区识别码进行标识的无线信号的覆盖区域。小区是从资源管理角度来看对无线通信资源进行管理的单元,小区的物理层资源包括至少一个载波,载波是从物理层角度来说用来承载无线信号的载体,无线信号可以包括控制信息、业务数据和参考信号中的一种或多种信号。载波占用一定的频域资源,以载波频点和载波频带的带宽来表征。一个小区的至少一个载波中至少包括一个下行载波,下行载波用于承载网络向终端发送的无线信号。一个小区的至少一个载波中还可以包括一个或多个上行载波,上行载波用于承载终端向网络发送的无线信号。根据不同的双工方式,例如,小区采用频分双工(frequency division duplex,FDD)方式时,一个小区的下行载波和上行载波可以不同。小区采用时分双工(time division duplex,TDD)方式是,一个小区的下行载波和上行载波可以相同。
二、载波聚合
在非载波聚合场景中,终端设备可以与一个小区建立通信连接,由该小区为该终端设备提供网络服务,该小区可以称为该终端设备的的服务小区(serving cell)。
在载波聚合(CA)场景中,终端设备可以与多个小区建立通信连接。其中,终端设备初始接入的小区称为主小区(primary cell,PCell),用于终端设备与网络建立无线资源 控制(radio resource control,RRC)连接。网络可以根据终端设备的传输需求,为终端设备配置辅小区(secondary cell,SCell),以为终端设备提供更多的上行传输资源和/或下行传输资源。辅小区可以通过主小区的RRC信令进行配置,并且可以通过媒体接入控制(media access control,MAC)控制元素(control element,CE)或下行控制信(downlink control information,DCI)实现辅小区的激活或去激活。
三、初始接入
图2为本申请提供的终端设备接入网络的一个示意性流程图。
1.终端设备扫频获取同步信号和物理广播信道(physical broadcast channel,PBCH)块(synchronization signal and PBCH block,SSB)。
SSB中包括同步信号和PBCH,PBCH中承载了主信息块(master information block,MIB)。
2.终端设备从MIB中读取控制资源集合配置信息和子载波偏移量配置信息。
控制资源集合配置信息可以记作pdcch-Config SIB1-controlResourceSetZero,用于配置控制资源集合(control resource set,CORESET)0的资源位置。该子载波偏移量配置信息可以记作ssb-SubcarrierOffset,用于配置子载波偏移量,该子载波偏移量为SSB的最低子载波到参考位置(Reference Location)的频域偏移量。
终端设备根据子载波偏移量可以确定参考位置。该CORESET 0用于承载下行控制信息(downlink control information,DCI),该DCI用于指示承载系统消息块(system information block,SIB)1的频域资源,终端设备可以在该频域资源上接收到SIB1。
3.终端设备接收SIB 1,SIB1中包括参考点偏移量信息、载波偏移量信息和载波频带带宽信息和初始带宽部分(bandwidth part,BWP)配置信息。
该参考点偏移量信息用于配置参考点偏移量,该参考点偏移量为参考点A(Point A)与参考位置之间的频域偏移量,其中,Point A为一个物理频点,是网络为终端设备提供的用于确定小区的下行载波频带的起始频点的参考点。终端设备可以在如下步骤4中根据该参考频点偏移量和参考位置确定Point A。载波偏移量信息可以记作offsetToCarrier,用于配置载波偏移量,该载波偏移量为载波频带的起始频点与Point A之间的频域偏移量。载波频带带宽信息可以记作carrierBandwidth,用于配置载波频带的带宽。初始BWP配置信息可以记作locationAndBandwidth,用于指示初始BWP在载波频带中的频域位置。
4.终端设备根据参考点偏移量和参考位置确定Point A的频域位置。
终端设备确定Point A后,可以确定该Point A为公共资源块(common resource block,CRB)的起始频点,即编号为0的CRB(记作CRB0)的起始频点。
5.终端设备根据Point A和载波偏移量确定载波频带的起始频点,以及基于载波频带的起始频点和载波频带的带宽确定载波频带的位置。
该载波偏移量的单位可以是CRB,载波偏移量信息可以指示载波频带的起始频点相较于Point A偏移的CRB的个数。终端设备可以具体根据Point A以及载波偏移量信息指示的CRB的个数,确定载波频带的起始频点。
6.终端设备根据初始BWP配置信息确定该载波中初始BWP的频域位置。
至此,终端设备获取到了小区的载波频带的频域位置以及初始BWP的频域位置。
7.终端设备可以通过使用初始BWP的资源与网络建立通信连接。
终端设备通过使用初始BWP的资源向网络设备发送随机接入信息,从而接入网络与 网络建立通信连接。
四、频率范围(frequency range,FR)和频段
在目前移动通信系统中定义了FR1和FR2两个频谱,FR1为450MHz-6000MHz,通常被称为sub 6GHz频谱,FR2为24250MHz-52600MHz,称为毫米波频谱。FR1频谱和FR2频谱被分别划分为多个频段并进行了编号。例如,FR1频谱中编号为n1的上行频段包括1920MHz-1980MHz的频域资源,编号为n1的下行频段包括2110MHz–2170MHz的频域资源。编号为n78的上行频段和下行频段均包括3300MHz–3800MHz的频域资源。再例如,FR2频谱中编号为n257的上行频段和下行频段均包括26500MHz–29500MHz的频域资源。但本申请不限于此。
五、载波带宽
网络设备可以在系统定义的频段中选择部分频带作为网络设备管理的小区的载波频带。对于不同的频率范围,通信设备可选择的载波频带的带宽(称为载波带宽)不同。表1为FR1中不同子载波间隔(sub-carrier spacing,SCS)对应的可选择的载波带宽,其中,载波带宽通过资源块(resource block,RB)个数表示。如表1所示,在FR1中,当SCS为15kHz时,通信设备可以使用的最大载波带宽为50MHz,当SCS为30kHz或60kHz时,可以使用的最大载波带宽为100MHz。
表1
表2为FR2中不同SCS对应的可选择的载波带宽。如表2所示,在FR2中,当SCS为60kHz时,通信设备可以使用的最大载波带宽为200MHz,当SCS为120kHz时,通信设备可以使用的最大载波带宽为400MHz。
表2
图3是本申请实施例提供的资源分配方法300的一个示意性流程图。如图3所示的资源分配方法300中,网络设备为第一小区分配的频域资源的带宽为非标准带宽,即第一小区的频域资源的带宽不属于如表1或表2所示的系统可选载波带宽。网络设备可以为与第一小区建立通信连接的终端设备配置不同标准载波频带,不同载波频带的带宽为如表1或表2所示的带宽,第一小区与终端设备可以在不同载波频带上通信,使得第一小区的频域资源可以得到充分的利用,能够提高资源利用率,该方法包括但不限于以下步骤:
S301,网络设备向第一终端设备发送第一信息,该第一信息用于指示将第一小区的载波频带由第一载波频带更新为第二载波频带,该第一小区为第一终端设备的服务小区,第二载波频带包括所述第一载波频带以外的频域资源。
相应地,第一终端设备接收来自网络设备的该第一信息,并根据该第一信息确定第一 小区的载波频带由第一载波频带更新为第二载波频带。该第一信息可以承载在RRC消息中,但本申请不限于此。
例如,第一小区的频域资源可以如图4所示,如第一小区的频域资源带宽是110MHz的非标准带宽,网络设备可以在第一小区的频域资源内划分属于标准带宽的两个频域带宽,如两个频域带宽均为100MHz,其中第一载波频带可以是第一小区的频域资源的起始频率开始的100MHz频带,第二载波频带可以是第一小区的频域资源的结束频率之前的100MHz频带。其中,第一载波频带与第二载波频带部分重叠,包含90MHz重叠资源,第一载波频带包括第二载波频带以外的10MHz频域资源,第二载波频带包括第一载波频带以外的10MHz频域资源。第一小区可以与部分终端设备在第一载波频带通信,以及与部分终端设备在第二载波频带通信,使得在第一载波频带与第一小区通信的终端设备和在第二载波频带与第一小区通信的终端设备均可以使用100MHz带宽的频域资源,实现为终端设备提供充分的频域资源的同时,使得第一小区的频域资源得到充分利用。网络设备可以根据载波频带内的负载情况,将终端设备与第一小区通信的载波频带由一个载波频带更新为另一个载波频带,例如,终端设备1与第一小区通信的载波频带为第一载波频带,网络设备可以向终端设备1发送第一信息,指示将第一小区的载波频带由第一载波频带(即第一载波频带的一个示例)更新为第二载波频带(即第二载波频带的一个示例)。
需要说明的是,第二载波频带包括所述第一载波频带以外的频域资源,图4仅为第一载波频带与第二载波频带的一个示例,在图4中,第一载波频带与第二载波频带重叠,但本申请不限于此,第一载波频带与第二载波频带也可以不重叠。例如图5所示,第一小区的频域资源中第一载波频带与第二载波频带为连续两个,分别包含第一小区不同的频域资源。再例如图6所示,第一小区的频域资源可以包括载波频带1、载波频带2和载波频带3,第一载波频带和第二载波频带可以是该3个载波频带中的2个载波频带。如第一载波频带可以是载波频带1,第二载波频带可以是载波频带2,也就是说,第一载波频带可以与第二载波频带既不重叠也不连续。
可选地,网络设备发送第三信息,该第三信息用于终端设备与第一小区建立通信连接,第三信息包括第三指示信息,该第三指示信息用于指示第一小区的载波频带为第一载波频带。
第三信息为广播信息,例如,该第三信息为SIB1。第一载波频带可以称为第一小区的广播载波频带。而第二载波频带可以是由网络设备发送给终端设备的终端专有(UE-Specific)RRC消息配置的,因此,第二载波频带可以称为第一终端设备的专有载波频带,但本申请不限于此。
应理解,网络设备可以在第一终端设备接入第一小区后通过第一信息将第一小区的广播载波频带更新为专有载波频带,但本申请不限于此,网络设备也可以通知第一终端设备将第一小区的载波频带由专有载波频带更新为广播载波频带,或者由一个专有载波频带更新为另一个专有载波频带。
网络设备可以通过第三指示信息指示第一小区的载波频带为第一载波频带,在第一终端设备接入第一小区后,网络设备可以根据需求,在第一小区的第一载波频带与终端设备通信,或者,通过第一信息通知该终端设备将第一小区的载波频带更新为第二载波频带。如第一终端设备与第二终端设备的服务小区均为第一小区,第一终端设备接收到第一信息后与第一小区在第二载波频带的频域资源上通信,而第二终端设备接入第一小区后若未接 收到第一信息,第一小区在第一载波频带上与第二终端设备通信,即第一小区与第二终端设备通信的载波频带为第一载波频带。也就是说,第一小区在第一载波频带为第二终端设备提供通信服务,第一小区在第二载波频带为第一终端设备提供通信服务,第一小区还可以与其他终端设备在第一载波频带、或第二载波频带、或其他载波频带通信,在使用系统定义的载波带宽与终端设备通信的情况下,使得第一小区的频域资源可以得到充分利用,提高了资源利用率。
S302,网络设备通过第一小区在第二载波频带上与第一终端设备通信。
第一终端设备接收到第一信息后,第一终端设备与第一小区在第二载波频带上通信。需要说明的是,在本申请实施例中描述的小区(如第一小区或第二小区)与终端设备通信,可以理解为网络设备通过该小区与终端设备通信,即网络设备利用该小区的资源(如频域资源、小区标识信息等)与终端设备通信。
可选地,网络设备可以为第一终端设备配置第二载波频带内的一个或多个BWP,并具体在激活的BWP上通过第一小区与第一终端设备通信。
网络设备可以向第一终端设备发送第二信息,该第二信息用于配置第二载波频带中的BWP,其中,第二信息包括第一指示信息,该第一指示信息用于指示BWP的起始频点相对于BWP参考频点之间的偏移量。
实施方式一中,该BWP参考频点为第一载波频带的起始频点。
也就是说,网络设备可以将广播载波频带(第一载波频带)的起始频点作为BWP参考频点为第一小区服务的终端设备配置与第一小区通信的BWP。使得无论不同终端设备与第一小区的通信的载波频带是否相同,网络设备为终端设备配置BWP的参考频点均为终端设备接入后使用的广播载波频带,减小了实现复杂度。
一个示例中,第一载波频带、第二载波频带以及网络设备为第一终端设备配置的BWP如图7所示。网络设备向第一终端设备发送第二信息,通过该第二信息为第一终端设备配置第二载波频带中的BWP。该第二信息中的第一指示信息指示该BWP的起始频点fbwp与第一载波频带的起始频点f1之间的偏移量1,第一终端设备接收到该第二信息后,根据该第一指示信息指示的偏移量1和第一载波频带的起始频点f1确定BWP的起始频点。该第二信息还可以包括用于指示BWP的频域持续长度的指示信息,使得第一终端设备根据BWP的起始频点以及频域持续长度,确定该BWP在第二载波频带中的位置。
在该示例中,系统可以规定广播载波频带(即第一载波频带)的起始频点为第一小区的频域资源的起始频点,专有载波频带的起始频点大于或等于广播载波频带的起始频点,则网络设备和终端设备可以默认BWP的起始频点fbwp大于或等于第一载波频带的起始频点f1。第一终端设备接收到第二信息后叠加第一载波频带的起始频点f1与偏移量1得到BWP的起始频点fbwp。第一终端设备再根据BWP的频域持续长度,确定该BWP的频域位置。
另一个示例中,该第二信息还包括第二指示信息,该第二指示信息用于指示BWP的起始频点大于、小于或等于第一载波频带的起始频点。
如图8所示,第一小区的广播载波频带(即第一载波频带)的起始频点可以不是第一小区的频域资源的起始频点。网络设备通过第二信息中的第一指示信息指示第一载波频带的起始频点f1与BWP的起始频点fbwp之间的偏移量2,以及通过第二信息中的第二指示信息指示fbwp小于f1,第一终端设备接收到第二信息后,根据第一指示信息确定偏移量2, 根据第二指示信息确定fbwp小于f1,则第一终端设备可以确定BWP的起始频点fbwp为f1减去偏移量2。第一终端设备再根据BWP的频域持续长度,确定该BWP的频域位置。
例如,第二指示信息可以包括1比特,该1比特指示“0”时表示fbwp小于f1;该1比特指示“1”时表示fbwp大于f1。或者,第二指示信息可以包括1比特,该1比特指示“1”时表示fbwp小于f1;该1比特指示“0”时表示fbwp大于f1。当第一指示信息指示的偏移量为0时,第二指示信息指示“0”或“1”中的任一值,均可以表示fbwp等于f1
再例如,第二指示信息可以包括2比特,该2比特指示“00”时表示fbwp等于f1;该2比特指示“01”时表示fbwp小于f1;该2比特指示“10”时表示fbwp大于f1。但本申请不限于此,该2个比特指示的状态值“00”、“01”、“10”、“11”与fbwp和f1的大小之间的对应关系可以根据具体实施确定。
可选地,第一载波频带的RB与第二载波频带的资源块RB对齐,第一载波频带的一个RB与第二载波频带的一个RB的频域资源相同。RB为小区的频域资源调度单位,网络设备可以调度一个或多个RB用于承载第一终端设备的数据。
第一载波频带的一个RB的起始位置为第二载波频带的一个RB的起始位置,且第一载波频带的RB的频域持续长度与第二载波频带的频域持续长度相同,使得第一载波频带的RB与第二载波频带的RB对齐。
上述实施方式中,第一指示信息可以通过指示RB个数指示fbwp与f1之间的偏移量,使得第一终端设备可以根据RB个数以及每个RB的频域持续长度确定fbwp与f1之间的偏移量。例如,第一指示信息指示的RB个数为50,第一终端设备接收到该第一指示信息后,可以确定fbwp相对于与f1偏移50个RB,第一终端设备可以根据子载波间隔△fscs以及每个RB包含的子载波数Nscs/RB以及RB个数NRB,确定fbwp与f1之间的偏移量△fbwp
△fbwp=△fscs×Nscs/RB×NRB
则第一终端设备可以确定fbwp,若fbwp大于f1,则fbwp=f1+△fbwp;若fbwp大于f1,则fbwp=f1-△fbwp
第二信息中用于指示BWP的频域持续长度的指示信息,可以指示BWP的持续RB的个数。当前系统中BWP可配置的持续RB的最大个数为275。由于第二载波频带包括第一载波频带以外的资源,可以将BWP可配置的持续RB的最大个数增加至550(即275×2)个RB,使得网络设备可以指示到第二载波频带内的任意RB,提高资源利用率。但本申请不限于此,BWP可配置的持续RB的最大个数也可以是其他值。
网络设备通过第二信息为第一终端设备配置第二载波频带中用于第一终端设备通信的BWP后,网络设备在每次调度中以RB组(RB group,RBG)为单位为第一终端设备分配该BWP中的共享信道(如物理下行共享信道(physical downlink shared channel,PDSCH)和/或物理上行共享信道(physical uplink shared channel,PUSCH))资源,在一个BWP中,除第一个RB组和/或最后一个RB组包括的RB个数小于或等于P个RB以外,其他RB组包括P个RB,P的取值可以是2、4、8或16。
如该BWP的起始频点相对于第一小区的参考频点(如参考点A(Point A))之间的偏移量为个RB,且该BWP包括个连续的RB,第一终端设备可以根据下式确定该BWP中包含的RBG的个数NRBG:
其中,该BWP中的第一个RBG,即RBG0包含的RB个数为:
时,最后一个RBG包含的RB个数为:
也就是说,可以假设从参考频点开始以每P个RB为一组将频域资源划分为连续的多个RBG,终端设备根据第一指示信息指示的确定BWP的第一个RB,该RB所在的RBG中属于该BWP的RB为该BWP的RBG0,在RBG0之后的每连续P个RBG为该BWP中的一个RBG,而若该BWP最后一个RB所在RBG中的部分RB属于该BWP,部分RB不属于该BWP,则该RBG中属于该BWP的RB作为该BWP的最后一个RB组。
例如,图8A所示,网络设备通过第二信息指示的该BWP相较于参考点A偏移的CRB的个数即该BWP包含的第一个RB为CRBn+1,且第二信息还指示该BWP包含的CRB的个数则终端设备可以确定该BWP包括从CRB n+1至CRB n+41共连续的41个CRB。示例性地,P=4,从参考点A开始每4个CRB为一组将频域资源划分为连续的多个RBG,终端设备可以确定该BWP的第一个RB,即CRB n+1所在的RBG中的三个CRB属于该BWP,则该三个CRB(即CRB n+1至CRB n+3)为该BWP中的第一个RBG,即RBG0。以及,该RBG0之后的9个RBG依次为该BWP中的RBG1至RBG9。而该BWP的最后一个RB所在的RBG中的前两个RB,即RBGn+40和RBGn+41属于该BWP,即
则RBGn+40、RBGn+41组成该BWP的后一个RBG,即RBG10
网络设备通过第二信息为第一终端设备配置的该第二载波频段内的该BWP为第一BWP。第一网络设备可以采用相同的方式为在第一载波频带上通信的第二终端设备配置第二BWP,该第二BWP与第一BWP包括重叠的频域资源,即该第二BWP与第一BWP包括相同的至少一个RBG,且该至少一个RBG为第一载波频带与第二载波频带的重叠频带内的RBG。
可选地,该第一BWP的起始频点与该第二BWP的起始频点之间的偏移量为RBG的整数倍。
如前文所示,BWP是以RB为单位配置的,而网络设备为终端设备分配PDSCH和/或PUSCH是以RBG为单位进行分配的,因此可能出现第一BWP与第二BWP中的RBG不对齐的情况,使得网络设备因RBG不对齐而无法调度第一BWP和第二BWP重叠资源内同一资源实现包括第一终端设备和第二终端设备的多个终端设备与网络设备的多用户(muti-user,MU)通信。因此,本申请提出网络设备可以通过为第一终端设备配置的第一BWP的起始频点与为第二终端设备配置的第二BWP的起始频点之间的偏移量为RBG的整数倍,实现第一BWP中的RBG与第二BWP中的RBG对齐,从而网络设备可以调度重叠RBG实现多个终端设备与网络设备的MU通信。
例如,网络设备为第一终端设备配置的第一BWP以及为第二终端设备配置的第二 BWP可以如图8B所示,该第一BWP的起始频点与该第二BWP的起始频点之间间隔14个RBG,即整数个RBG,能够使得第一BWP与第二BWP中的RBG对齐,如图8B所示的第一BWP中的RBG0至RBG3与第二BWP中的RBG15至RBG18依次对齐。网络设备可以为第一终端设备调度第一BWP中的RBG0至RBG3,以及为第二终端设备调度第二BWP中的RBG15至RBG18,使得第一终端设备和第二终端设备可以同时在重叠的4个RBG上进行数据传输(如同时接收数据或同时发送数据)。提高了资源利用率。需要说明的是,该示例中以第一BWP的RBG0包含P个RB为例进行说明,第一BWP的RBG0与第二BWP的RBG15的频域边界对齐。应理解,本申请并不限于此,基于前文对图8A中的描述,BWP的第一个RBG和最后一个RBG包含的RB个数可能小于P,若BWP的第一个RBG或最后一个RBG包含的RB个数小于P时,则本申请中两个BWP的RBG对齐是指包含P个RB的RBG的频域边界对齐。网络设备可以为不同终端设备分配频域边界对齐的RBG实现多个终端设备与网络设备之间的MU通信。
实施方式二,该BWP参考频点为第二载波频带的起始频点。
网络设备以第一终端设备的专有载波频带(即第二载波频带)的起始频点作为BWP参考频点为第一终端设备配置第二载波频带内的BWP。
例如,BWP在第二载波频带段内的资源位置如图9所示,网络设备通过第二信息为第一终端设备配置该BWP,该第二信息中的第一指示信息用于指示该BWP的起始频点fbwp与第二载波频带的起始频点f2之间的偏移量3,第一终端设备根据该偏移量3和f2可以确定BWP的频域位置。由于BWP在第二载波频带内,则BWP的起始频点fbwp大于第二载波频带的起始频点f2,第一终端设备叠加f2与偏移量3可以得到fbwp。因此,该实施方式中第二信息中无需指示fbwp与f2的大小关系,且第二载波频带的带宽为系统定义的标准带宽,该实施方式可以沿用当前系统中BWP可配置的持续RB的最大个数275,无需对当前系统可配置的最大RB个数进行修改,使得在尽可能减少对现有系统进行修改的情况下,实现提高资源利用率。
示例性地,网络设备以第二载波频带的起始频点作为BWP参考频点为第一终端设备配置的第二载波频带内的BWP为第一BWP。网络设备还可以以第一载波频带的起始频点为BWP的参考频点为第二终端设备配置第一载波频带内的第二BWP,该第二BWP与第一BWP包括重叠的频域资源。
可选地,该第一BWP的起始频点与该第二BWP的起始频点之间的偏移量为RBG的整数倍。
例如图8C所示,网络设备通过指示第二载波频带与第一小区的参考频点(如第一小区的Point A)之间的偏移量为OB,使得第一终端设备可以根据第一小区的参考频点和偏移量OB,确定第二载波频带的位置。网络设备通过指示第一BWP与第二载波频带的起始频点之间的偏移量OD,使得第一终端设备可以确定第一BWP的起始频点。类似地,网络设备可以指示第一载波频带与第一小区的参考频点之间的偏移量为OA,和第二BWP与第一载波频带的起始频点之间的偏移量OC,使得第二终端设备确定第二BWP的起始频点。网络设备可以通过配置的OA、OB、OC和OD满足OA+OC–(OB+OD)=N1×P,实现第一BWP的起始频点与第二BWP的起始频点之间的偏移量为RBG的整数倍,即N1个RBG,其中,P为RBG包含的RB的个数。从而使得网络设备可以调度重叠频带内的RBG,实现第一终端设备和第二终端设备可以同时被调度的RBG上与网络设备的MU通信。提高了资源 利用率。
根据本申请实施例的上述方案,在使用系统定义的载波带宽与终端设备通信的情况下,使得第一小区的频域资源可以得到充分利用,提高了资源的利用率。
前文中介绍了网络设备可以通过通知终端设备更新服务小区的载波频带的方式,使得网络设备可以将同一小区服务的终端设备配置在不同的载波频带资源通信,能够实现小区的频域资源得到充分的利用,提高资源利用率。本申请实施例还提供的一种资源配置方法,网络设备可以通过载波带宽为标准带宽且载波频带部分重叠的两个小区采用载波聚合的方式,实现对网络设备的非标准带宽的频域资源的充分利用。下面结合图10对本申请实施例提供的资源配置方法1000进行说明。应理解,在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突的情况下,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以通过相互引用、结合的方式形成新的实施例。
该资源配置方法1000包括但不限于以下步骤:
S1001,网络设备向第一终端设备发送第四信息,该第四信息用于指示通过第一小区与第二小区载波聚合的方式与第一终端设备通信,第一小区的载波频带为第一载波频带,第二小区的载波频带为第三载波频带,第二载波频带与第三载波频带部分重叠。
相应地,第一终端设备接收来自网络设备的该第四信息,根据第四信息确定网络设备采用第一小区与第二小区载波聚合的方式与第一终端设备通信。
第一终端设备可以通过第一小区与网络建立通信连接,第一小区为第一终端设备的服务小区。第一终端设备与第一小区通信的载波带宽为第二载波带宽,第二载波带宽为通信系统定义的标准带宽。网络设备可以通过第四信息指示第一小区与第二小区载波聚合的方式与第一终端设备,第二小区的载波带宽(即第三载波频带的带宽)为标准带宽,使得网路设备通过标准载波带宽的第一小区和第二小区载波聚合的方式,实现聚合后的载波频带为网络设备的非标准带宽的频域资源,实现网络设备与终端设备可以在非标准带宽资源上通信,能够提高资源利用率。
例如图11所示,网络设备的频域资源带宽为110MHz,第一终端设备通过第一小区接入网络后,与第一小区通信的第二载波频带的带宽为100MHz,如网络设备的频域资源的起始频点为fs,第二载波频带为起始频点为fs+10MHz,结束频点为fs+110MHz的100MHz频带。网络设备可以通过第四信息通知第一终端设备第一小区与载波带宽为90MHz的第二小区采用载波聚合的方式与第一终端设备通信。如第三载波频带为起始频点为fs,结束频点为fs+90MHz的90MHz频带,第一小区的载波频带与第二小区的载波频带中包含fs+10MHz至fs+90MHz的80MHz的重叠频带,聚合后的载波聚合频带为110MHz。实现了网络设备与终端设备可以通过110MHz中的聚合载波频带进行通信。
可选地,网络设备向第一终端设备发送第四指示信息,该第四指示信息用于指示该第一小区的第二载波频带与第二小区的第三载波频带部分重叠。
例如,该第四指示信息可以承载在网络设备向终端设备发送的RRC消息中,网络设备可以通过该RRC消息为第一终端设备配置载波聚合的候选小区,该候选小区包括该第二小区,其中,第四指示信息指示第二小区载波频带(即第三载波频带)的频域资源位置,该第四指示信息指示的第三载波频带的频域资源位置与第二载波频带的频域资源位置重叠。第一终端设备接收到该RRC消息后,根据第一指示信息确定第三载波频带的频域资 源位置,且确定第二小区的载波频带(即第三载波频带)与第一小区的载波频带(即第二载波频带)部分重叠。
再例如,该第四指示信息可以承载在第四信息中,该第四信息具体指示第一小区与第二小区载波聚合的方式与第一终端设备通信,且第一小区的载波频带与第二小区的载波频带部分重叠。
网络设备可以接收来自该第一终端设备的第九信息,该第九信息用于指示该第一终端设备的能力。网络设备可以根据第一终端设备的能力,确定是否采用小区载波频带重叠的载波聚合方式与第一终端设备通信。
可选地,该第九信息可以包括以下一种或多种指示信息:
第五指示信息,用于指示第一终端设备支持或不支持小区的载波频带重叠的载波聚合方式。
第六指示信息,用于指示第一终端设备支持或不支持同一频段内的载波频带重叠的载波聚合方式;
第七指示信息,用于指示第一终端设备支持或不支持不同频段间的载波频带重叠的载波聚合方式;
第八指示信息,用于指示第一终端设备支持或不支持载波频带重叠的载波聚合方式的频域位置。
例如,第九信息包括第五指示信息,网络设备接收到来自该第一终端设备的该第五指示信息后确定第一终端设备支持小区的载波频带重叠的载波聚合方式,从而通过第四信息通知第一终端设备通过第一小区与第二小区载波聚合的方式与第一终端设备通信。若第一终端设备不支持小区载波频带重叠的载波聚合方式,网络设备与终端设备可以通过第一小区进行通信,或者网络设备可以采用频带资源不重叠的多个小区载波聚合的方式与第一终端设备通信。
再例如,第九信息可以包括第六指示信息,网络设备接收到该第六指示信息后可以确定第一终端设备是否支持同一频段内的载波频带重叠的载波聚合方式。若第一终端设备支持同一频段内的载波频带重叠的载波聚合方式,网络设备可以通过载波频带重叠且属于同一频段的多个小区载波聚合的方式与第一终端设备通信,以提高网络设备的资源利用率。若第一终端设备不支持同一频段内的载波频带重叠的载波聚合方式,则网络设备不采用载波频带重叠且属于同一频段的多个小区载波聚合的方式与第一终端设备通信。
再例如,下行频段n77为3300MHz-4200Mhz,下行频段n78为3300MHz-3800Mhz,下行频段n77与下行频段n78部分重叠,但本申请不限于此。第九信息可以包括第七指示信息,第一终端设备可以通过第七指示信息指示第一终端设备是否支持不同频段间的载波频带重叠的载波聚合方式。若第一终端设备支持不同频段内的载波频带重叠的载波聚合方式,网络设备可以通过载波频带重叠且属于不同频段的多个小区载波聚合的方式与第一终端设备通信,以提高网络设备的资源利用率。若第一终端设备不支持同一频段内的载波频带重叠的载波聚合方式,则网络设备不采用载波频带重叠属于不同频段的多个小区载波聚合的方式与第一终端设备通信。
第九信息可以包括第六指示信息和第七指示信息,或者第九信息可以包括第五指示信息,当第五指示信息指示第一终端设备支持小区的载波频带重叠的载波聚合方式时,第九信息可以包括第六指示信息和/或第七指示信息。但本申请不限于此。
可选地,第九信息还可以包括第八指示信息,该第八指示信息可以指示第一终端设备支持小区的载波频带重叠的载波聚合方式的频域资源,例如,第八指示信息可以指示频段的标识信息,或者第八指示信息可以指示第一终端设备不支持小区的载波频段重叠的载波聚合方式的频域资源。网络设备可以根据第八指示信息,在第一终端设备支持的频域资源上通过载波频带重叠的多个小区与第一终端设备通信,以提高资源利用率。
可选地,该第一小区的载波中心频点与该第二小区的载波中心频点之间的频域间隔为信道栅格的单位间隔与第一子载波间隔的公倍数,该信道栅格为载波中心频点的候选集合,该信道栅格中属于同一频段的两个载波中心频点之间的间隔为该单位间隔的整数倍,该第一小区与该第二小区的子载波间隔均为该第一子载波间隔。
在前文对载波带宽的介绍中提到网络设备可以在系统定义的频段中选择部分频带作为网络设备管理的小区的载波频带。而对于终端设备来说,在初始接入阶段需要在FR1和/或FR2频率范围内进行小区搜索,然而由前文可知FR1为450MHz-6000MHz,FR2为24250MHz-52600MHz,终端设备若每个频率进行小区搜索功耗开销非常大,因此定义了信道栅格,信道栅格为载波中心频点的候选集合,通信系统中载波中心频点均属于该集合。具体地,规定了信道栅格的单位间隔,或者可以称为信道栅格的步长(step size)。相邻两个载波中心频点之间的间隔为该单位间隔,属于同一频段的两个载波中心频点之间的间隔为该单位间隔的整数倍。终端设备可以基于该信道栅格进行小区搜索,以减小终端设备初始接入的功率消耗。由于本申请提出了多个小区的载波频带可以重叠的通信机制,因此定义了第一小区的载波中心频点与第二小区的载波中心频点之间的频域间隔为信道栅格的单位间隔与第一子载波间隔的公倍数。使得终端设备能够在小区搜索是所搜到第一小区和第二小区。
S1002,网络设备在第二载波频带和第三载波频带与第一终端设备通信。
网络设备可以调度第二载波频带和第三载波频带内的频域资源与第一终端设备通信,如网络设备可以在一次调度中调度第二载波频带和第三载波频带聚合后的带宽的频域资源(即载波聚合带宽的全带宽频域资源)与第一终端设备通信。或者,网络设备可以在一次调度中调度第二载波频带或者第三载波频带内的频域资源与终端设备通信。
该第二载波频带与该第三载波频带的重叠频带内该第一小区的一个RB的频域资源与该第二小区的一个RB的频域资源相同。使得网络设备可以采用相同的调度单位在聚合后的聚合频带内调度部分或全部频带资源与第一终端设备通信。一种实施方式中,第一小区的参考频点与第二小区的参考频点相同,第一小区对应的参考频点用于确定第一小区的资源块的位置,第二小区对应的参考频点用于确定第二小区的资源块的位置。
一个示例中,网络设备发送第五信息和第六信息,第五信息用于指示第一小区对应的参考频点,第六信息用于指示第二小区对应的参考频点。该第五信息指示的第一小区的参考频点与该第六信息指示的第二小区的参考频点相同
例如,该第五信息承载在第一小区的SIB1中,第六信息承载在第二小区的SIB1中。小区对应的参考频点为Point A,第一小区对应的Point A与第二小区对应的Point A相同,使得第一终端设备根据Point A确定的CRB0的起始频点相同,第一小区的子载波间隔与第二小区的子载波间隔相同且第一小区的RB与第二小区的RB包含的子载波个数相同,则实现了第一小区的RB与第二小区的RB对齐。
另一个示例中,网络设备可以发送指示信息,该指示信息用于指示第一小区对应的参 考频点与第二小区对应的参考频点相同。终端设备可以根据该指示信息确定第一小区对应的参考频点和第二小区的参考频点相同。从而使得终端设备基于第一小区对应的参考频点确定的第一小区的RB与基于第二小区对应的参考频点确定的第二小区的RB对齐。
可选地,第二载波频带的起始频点与第三载波频带的起始频点之间的偏移量为RBG的整数倍。
网络设备可以在第二载波频带与第三载波频带的载波聚合频带内为第一终端设备配置用于通信的BWP。如网络设备可以以RB为单位为第一终端设备配置BWP,而网络设备在每次调度中以RBG为单位为第一终端设备分配PDSCH资源和/或PUSCH资源,若第二载波频带与第三载波频带的RBG不对齐,网络设备和终端设备将无法确定BWP内的RBG位置。例如图8D所示,网络设备在载波聚合频带内为第一终端设备配置的BWP包括第二载波频带与第三载波频带的重叠资源,以及还包括聚合频带内仅属于第二载波频带的频域资源和仅属于第三载波频带的频域资源,网络设备和终端设备将无法确定BWP内的RBG位置,网络设备也无法准确指示BWP内被调度的RBG。因此,本申请提出可以通过网络设备配置为第一终端设备的第二载波频带的起始频点与第三载波频带的起始频点之间的偏移量为RBG的整数倍,实现第二载波频带与第三载波频带的RBG对齐,从而实现以RBG为单位在BWP内为第一终端设备分配PDSCH资源和/或PUSCH资源。
例如,图8E所示,第二载波频带的起始频点与第三载波频带的起始频点之间的偏移量为整数倍的RBG,即N2个RBG,使得第二载波频带与第三载波频带的RBG对齐。网络设备可以为第一终端设备配置如图8E所示的BWP,网络设备可以在一次调度中在该BWP内以RBG为单位为第一终端设备分配RBG资源,如网络设备可以分配该BWP内属于第二载波频带的RBG1、属于第二载波频带与第三载波重叠频带内的RBG2、RBG3以及属于第三载波频带的RBG N。但本申请对此不作限定。
可选地,第一小区的小区参考频点与第二小区的小区参考频点相同,第二载波频带的起始频点与该小区参考频点之间的偏移量为OB,第三载波频带的起始频点与该小区参考频点之间的偏移量为OE,偏移量OB与偏移量OE之间的差值为RBG的整数倍。
若如前文描述,例如图8A所示示例,BWP中的RBG位置是基于小区的参考频点(如参考点A)和RBG中包含的RB个数P确定的。网络设备以RB为单位指示第二载波频带与第一小区的参考频点之间的偏移量为OB,使得第一终端设备可以确定第二载波频带的起始频点,以及第一终端设备可以通过网络设备以RB为单位指示的第三载波频点与第二小区的参考频点之间的偏移量OE,确定第三载波频带的起始频点。第一小区的小区参考频点与第二小区的小区参考频点相同,偏移量OB与偏移量OE之间的差值为RBG的整数倍,则该第二载波频带的起始频点与第三载波频带的起始频点之间的偏移量为整数倍个RBG。例如图8F所示,网络设备配置的偏移量OB与偏移量OE之间的差值为3个RBG,使得第二载波频带与第三载波频点的RBG对齐。需要说明的是,图8F所示示例中以载波频带的起始频点在一个RBG的起始频点为例进行了说明,应理解本申请并不限于此,两个载波频带的起始频点可以不是一个RBG的起始频点,起始频点间的差值为RBG的整数倍,即可实现两个载波频点的RBG对齐
第一小区的参考频点与第二小区的参考频点也可以不相同,可以由网络设备通过配置载波频点与相应的小区的参考频点之间的偏移量,实现两个载波频带的起始频点间的差值为RBG的整数。
可选地,网络设备可以通过该第一小区和该第二小区发送第一参考信号。该第一参考信号可以是用于解调数据信道(如物理下行共享信道(physical downlink shared channel,PDSCH))的解调参考信号(demodulation reference signal,DMRS)或者该第一参考信号可以是用于终端设备进行信道测量的信道状态信息参考信号(channel state information-reference signal,CSI-RS)。但本申请不限于此,该第一参考信号还可以是其他参考信号。
该第一参考信号包括多个符号,其中,该第一参考信号中承载在该第二载波频带与该第三载波频带的重叠频带内的符号是由该第一小区或该第二小区发送的。该第一参考信号中承载在该第二载波频带中除该重叠频带以外的频带内的符号是由该第一小区发送的。该第一参考信号中承载在该第三载波频带中除该重叠频带以外的频带内的符号是由该第二小区发送的。
例如,第一参考信号的带宽与载波聚合后的频带带宽相等,网络设备可以生成与载波聚合带宽相等带宽的第一参考信号,由第一小区和第二小区分别发送带宽部分内的第一参考信号。如第一小区发送第二载波频带内的第一参考信号的符号,第二小区发送第一小区发送的符号以外的第一参考信号的符号。或者反之,由第二小区发送第三载波频带内的第一参考信号的符号,第一小区发送第二小区发送的符号以外的第一参考信号的符号。
第一终端设备接收该第一参考信号,例如,该第一参考信号为DMRS,则第一终端设备接收到该DMRS后根据该DMRS解调数据信道。再例如,该第一参考信号为CSI-RS,第一终端设备接收到该CSI-RS后,根据该CSI-RS获取信道状态信息(channel state information,CSI)。
第一终端设备基于来自第一小区和第二小区的第一参考信号,获取到信道状态信息后,第一终端设备向网络设备发送该信道状态信息。第一终端设备针对第一参考信号可以仅向第一小区或第二小区反馈一次信道状态信息,不需要向第一小区和第二小区分别反馈该信道状态信息。
例如,网络设备为第一终端设备配置第一参考信号时,与该第一参考信号关联的上报配置中仅配置一个用于承载信道状态信息的上行资源。使得第一终端设备可以确定在该上行资源上上报一次基于第一参考信号得到的信道状态信息。但本申请不限于此。该实施方式能够避免第一终端设备多次上报相同的信道状态信息造成的资源浪费。
可选地,网络设备可以通过第一小区在第一资源上发送第二参考信号,通过第二小区在该第一资源上发送第三参考信号,其中,该第一资源为该第二载波频带与该第三载波频带的重叠频带内的资源,该第二参考信号与该第三参考信号的初始化序列相同。
第二参考信号与第三参考信号的初始化序列相同,则第一资源上承载的第二参考信号与第三参考信号相同。在网络设备可以通过第一小区和第二小区发送在重叠频带内发送相同序列的参考信号。
若网络设备需要向第一终端设备发送带宽为载波聚合频带的带宽的参考信号1,网络设备可以通过第一小区发送该参考信号1在第二载波频带内的符号,通过第二小区发送该参考信号1在第三载波频带内的符号。其中,第一小区在重叠频带内发送的参考信号1的符号序列(即第二参考信号的一个示例)与第二小区在重叠频带内发送的参考信号1的符号序列(即第三参考信号的一个示例)相同。
可选地,网络设备向该第一终端设备发送第七信息,该第七信息用于指示该第二参考 信号的扰码标识信息,该第二参考信号的扰码标识信息用于生成该第二参考信号的初始化序列。以及,网络设备向该第一终端设备发送第八信息,该第八信息用于指示第三参考信号的扰码标识信息,第三参考信号的扰码标识信息用于生成该第三参考信号的初始化序列。其中,该第二参考信号的扰码标识信息与该第三参考信号的扰码标识信息相同。
例如,参考信号的序列生成公式如下:
其中,c(x)为Gold序列,c(x)的初始化序列cinit为:
其中,为时域一个无线帧包含的时隙个数,为一个时隙中包含的正交频分多址(orthogonal frequency division multiplexing,OFDM)符号,l为承载第一参考信号的OFDM符号在时隙内的编号,nID为加扰标识信息。
由于第二参考信号与第三参考信号均承载在第一资源上,第二参考信号与第三参考信号时域参数、频域参数均相同,因此基于上述生成公式若加扰标识信息nID相同,则第二参考信号与第三参考信号相同。
网络设备可以基于相同的加扰标识信息生成第二参考信号和第三参考信号,并通知第一终端设备该加扰标识信息,使得第一终端设备基于该加扰标识信息生成第二参考信号和第三参考信号的序列。
第一终端设备在第一资源上接收第四参考信号,该第四参考信号包括第三参考信号和第二参考信号。由于第二参考信号与第三参考信号相同,第一小区在第一资源上发送的第二参考信号与第二小区在第一资源上发送的第三参考信号在信道中叠加为第四参考信号。第一终端设备根据接收到的第四参考信号得到信道状态信息,并发送给网络设备。
第一终端设备针对第四参考信号仅反馈一次信道状态信息,不需要向第一小区和第二小区分别反馈该信道状态信息。例如,第一终端设备根据来自网络设备的参考信号配置信息,确定网络设备配置的第二参考信号和第三参考信号的时域资源相同,则第一终端设备可以确定基于相同时域资源的参考信号得到的信道状态信息,第一终端设备仅向网络设备上报一次信道状态信息。或者,网络设备可以通过该参考信号配置信息指示第一终端设备仅上报一次信道状态信息。但本申请不限于此。该实施方式能够避免第一终端设备多次上报相同的信道状态信息造成的资源浪费。
可选地,网络设备和第一终端设备可以根据该第二载波频带的带宽、该第三载波频带的带宽和第一参数,确定该第一终端设备的最大传输速率,其中,该第一参数用于表征第二载波频带与第三载波频带的重叠频带对该最大传输速率的影响。
本申请实施例提出通过引入第一参数确定该第一终端设备的最大传输速率,能够准确地计算小区频带重叠的载波聚合通信方式中终端设备的最大传输速率。
一个示例中,该第一参数为重叠带宽调节系数αscale,网络设备、第一终端设备可以根据下式计算得到第一终端设备的最大传输速率Rdata,下式计算得到的最大传输速率的单位为兆比特每秒(megabits per second,Mbps)。
其中,J为载波聚合方式中的小区(载波)个数,j指的是第j个载波,是第j 个载波支持的最大数据传输层数,是第j个载波支持的最大调制阶数,f(j)是第j个载波的缩放因子,Rmax是最大码率,为子载波间隔对应的子帧中OFDM符号的平均时长,是相应子载波间隔的载波频带中的最大RB个数,OHj是链路的开销。
另一个示例中,第一参数为重叠频带包含的RB个数网络设备、第一终端设备可以根据下式计算得到第一终端设备的最大传输速率Rdata
其中,k为J个载波中频带重叠的载波的个数。
前文中介绍了网络设备可以通过通知终端设备更新服务小区的载波频带的方式,以及网络设备可以通过载波带宽为标准带宽且载波频带部分重叠的两个小区采用载波聚合的方式,实现对网络设备的非标准带宽的频域资源的充分利用。本申请实施例还提供的一种资源配置方法,一个小区可以包括多个载波频带,网络设备可以广播一个小区的多个载波频带,使得具有相应能力或需求的终端设备能够通过多个载波频带与该小区通信,能够实现对网络设备的非标准带宽的频域资源的充分利用,提高资源利用率。下面结合图12对本申请实施例提供的资源分配方法1200进行说明。
S1201,网络设备发送第十信息,第十信息用于终端设备与第一小区建立通信连接,第十信息用于指示第一小区的第一载波频带和第二载波频带。
第一终端设备接收该第十信息,根据第十信息确定第一小区的第一载波频带和第二载波频带。
第一载波频带的带宽和第二载波频带的带宽均为系统定义的标准带宽。第一载波频带与第二载波频带组成第一小区的非标准带宽的载波频带。
作为示例非限定,该第十信息为SIB 1。网络设备可以通过第十信息广播第一小区的多个载波频带。终端设备接收到该第十信息后可以根据终端设备能力选择通过第一小区的一个或多个载波频带与第一小区通信。
S1202,第一终端设备向网络设备发送第十一信息,第十一信息用于指示第一终端设备请求与第一小区建立通信连接,第十一信息包括第九指示信息,第九指示信息用指示第一终端设备支持在第一载波频带和/或第二载波频带上与第一小区通信。
第一终端设备在S1201中接收到第十信息后,确定通过第一小区接入网络,向网络设备发送第十一信息,用于请求与第一小区建立通信连接。第一终端设备可以根据第十信息确定与第一小区建立通信连接后通信的载波频带,第一终端设备可以根据自身能力和/或通信需求,确定在一个或多个载波频带上与第一小区通信,并通过第十一信息中的第九指示信息通知网络设备。
例如,该第十一信息可以是随机接入信息,该第九指示信息可以是随机接入前导码序列。比如,第一前导序列用于指示在第一载波频带与第一小区通信,第二前导码序列用于指示在第二载波频带与第一小区通信,第三前导码序列用于指示在第一载波频带和第二载波频带与第一小区通信。第一终端设备可以通过向网络设备发送的前导码序列通知网络设备支持的与第一小区通信的载波频带。网络设备接收来自第一终端设备的第十一信息,若该第十一信息包含第一前导码序列,则网络设备可以确定第一终端设备支持在第一载波频带与第一小区通信,网络设备可以与第一终端设备建立通信连接后,在第一小区的第一载波频带与第一终端设备通信;若该第十一信息包含第二前导码序列,则网络设备可以确定 第一终端设备支持在第二载波频带与第一小区通信,网络设备可以与第一终端设备建立通信连接后,在第一小区的第二载波频带与第一终端设备通信;若该第十一信息包含第三前导码序列,则网络设备可以确定第一终端设备支持在第一载波频带和第二载波频带与第一小区通信,网络设备可以与第一终端设备建立通信连接后,在第一小区的第一载波频带和第二载波频带与第一终端设备通信。
可选地,网络设备通过第一小区与第一终端设备建立通信连接后,若网络设备与第一终端设备在第一载波频带和第二载波频带通信,网络设备可以分别激活第一载波频带和第二载波频带中的一个BWP,在第一载波频带与第二载波频带中激活的BWP上与第一终端设备通信。
根据上述方案,第一小区可以包含多个载波频带,可以实现多个标准带宽的频带组成第一小区的非标准带宽的频带,从而提高资源的利用率。网络设备通过第十信息通知终端设备第一小区包含多个载波频带,终端设备可以通过多个载波频带与第一小区通信,能够提高资源的利用率,提高通信的传输速率。不支持通过多个载波频带与第一小区通信的终端设备或者终端设备根据通信需求也可以选择通过一个载波频带与第一小区通信,使得终端设备可以按需接入网络,提高了系统灵活性。
前文图12实施例中一个小区可以包括多个载波频带,网络设备可以广播一个小区的多个载波频带,由终端设备通知网络设备接入小区后可以在一个或多个载波频带上与小区通信。本申请实施例还提供的一种资源配置方法,一个小区可以包括多个载波频带,而网络仅广播该小区的一个载波频带,当终端设备接入该小区后由网络设备为终端设备配置该小区的其他载波频带,使得终端设备与该小区可以在多个载波频带上通信。以实现对网络设备的非标准带宽的频域资源的充分利用,提高资源利用率。下面结合图13对本申请实施例提供的资源分配方法1300进行说明。
S1301,网络设备发送第十二信息,该第十二信息用于终端设备与第一小区建立通信连接,该第十二信息中包括第十指示信息,该第十指示信息用于指示该第一小区的载波频带为第一载波频带。
第一终端设备接收来自网络设备的该第十二信息,根据该第十二信息中的第十指示信息确定第一小区的载波频带为第一载波频带。作为示例非限定,该第十二信息为SIB1。
S1302,第一终端设备向网络设备发送第十三信息,该第十三信息用于请求与第一小区建立通信连接。
相应地,网络设备接收来自第一终端设备的该第十三信息,确定终端设备请求与第一小区建立通信连接。网络设备可以通过第一小区与第一终端设备建立通信连接。
S1303,网络设备向第一终端设备发送第十四信息,该第十四信息用于指示在第一小区的载波频带中增加第二载波频带。
相应地,第一终端设备接收来自网络设备的该第十四信息,确定第一小区的载波频带中增加了第二载波频带。第一终端设备接收到该第十四信息后,网络设备可以在第一小区的第一载波频带和第二载波频带与第一终端设备通信。第一载波频带和第二载波频带组成频带的带宽可以是第一小区的非标准带宽。可以提高第一小区的资源的利用率。
第一载波频带可以称为广播载波频带,第二载波频带可以称为专有载波频带。第一载波频带的带宽和第二载波频带的带宽可以是系统定义的标准带宽。
根据上述方案,网络设备可以在终端设备接入网络后,再为终端设备配置服务小区的 另一个载波频带,使得网络设备可以通过第一小区的多个载波频带与终端设备通信,能够提高第一小区的资源的利用率,提高数据速率。
本申请实施例还提供了一种资源分配方法,在该资源分配方法中,网络设备可以发送广播信息指示第一小区的载波频带的带宽为第一带宽,该第一带宽为非标准带宽。终端设备接入第一小区后,网络设备为该终端设备配置的BWP的带宽需要满足预设条件,该预设条为BWP带宽小于或等于该第二带宽,该第二带宽为小于第一带宽的标准带宽中的最大带宽。
例如,网络设备可以发送广播信息指示第一小区的载波频带的带宽为110MHz,100MHz为小于110MHz的标准带宽中的最大带宽,因此,终端设备接入第一小区后,网络设备为终端设备配置的BWP的带宽小于或等于100MHz,即小于或等于275个RB。而网络设备为与第一小区建立通信连接的多个终端设备配置的BWP可以分别占用第一小区的110MHz频带的频域资源。比如,网络设备可以为一个终端设备配置一个BWP占用该110MHz频带的低频带60MHz,为其他一个或多个终端设备配置的BWP包含该110MHz频带除该60MHz以外的频域资源。但本申请不限于此。该方案能够使的网络设备利用第一小区的非标准带宽的频域资源进行通信,提高了资源的利用率。
可选地,网络设备为终端设备配置至少两个BWP,网络设备可以激活该至少两个BWP中的多个BWP,激活的多个BWP组成的频域资源为小区的非标准频带的频域资源。网络设备与终端设备在该激活的多个BWP上通信。使得网络设备与终端设备可以利用第一小区的非标准带宽的频带资源进行通信。提高了终端设备的数据速率以及提高了资源利用率。
本申请实施例还提供了一种资源分配方法,网络设备可以发送广播信息指示第一小区的载波频带为第一载波频带,该第一载波频带的带宽为第三带宽,该第三带宽为标准带宽。终端设备通过第一小区接入网络后,网络设备通知终端设备第一小区的载波带宽由第一载波带宽更新为第二载波频带,该第二载波频带的带宽为第四带宽,该第四带宽为非标准带宽。网络设备与终端设备在该第二载波带宽上通信。
例如,第一小区的频域资源的带宽为13MHz的非标准带宽,网络设备通过广播信息指示第一小区的第一载波频带的带宽为15MHz,终端设备通过第一小区接入网络后,网络设备通知终端设备第一小区的载波带宽由第一载波频带更新为第二载波频带,第二载波频带的带宽为13MHz。网络设备与终端设备在该第二载波频带上通信。或者,网络设备广播信息指示第一小区的第一载波频带的带宽为10MHz,终端设备通过第一小区接入网络后,网络设备通知终端设备第一小区的载波带宽由第一载波频带更新为13MHz带宽的第二载波频带,网络设备与终端设备在该第二载波频带上通信。使得网络设备与终端设备可以利用第一小区的非标准带宽的频带资源进行通信。提高了终端设备的数据速率以及提高了资源利用率。
可选地,终端设备可以通过多个射频(radio frequency,RF)链路接收来自网络设备的下行信号,该多个RF链路中的至少两个RF链路接收到的下行信号对应的频域资源部分重叠后不重叠。
例如,终端设备的服务小区的载波频带的带宽为13MHz,如图14所示,终端设备可以通过2个RF链路接收来自网络设备的下行信号,其中RF链路1接收承载在该13MHz频带的起始频点开始的10MHz频域资源上的下行信号,RF链路2接收承载在该13MHz频带的结束频点之前的10MHz频域资源上的下行信号。终端设备对于RF链路1和RF链 路2上接收到的重叠的7MHz频域资源上的下行信号可以合并进行数据处理,能够提高数据处理可靠性。但本申请不限于此,如RF链路1和RF链路2接收下行信号的频域资源可以分别为10MHz和3MHz,或者分别为5MHz和10MHz等。该方案通信设备可以通过组合多个RF链路接收不同频域资源上的下行信号,实现通信设备接收非标准带宽的频域资源上的信号。
以上,结合图3至图14详细说明了本申请提供的方法。以下附图说明本申请提供的通信装置和通信设备。为了实现上述本申请提供的方法中的各功能,各网元可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
图15是本申请提供的通信装置的示意性框图。如图15所示,该通信装置1500可以包括收发单元1520。
在一种可能的设计中,该通信装置1500可对应于上文方法中的终端设备(如第一终端设备和/或第二终端设备),或者配置于(或用于)终端设备中的芯片,或者其他能够实现终端设备的方法的装置、模块、电路或单元等。
应理解,该通信装置1500可以包括用于执行图3、图10、图12和图13所示的方法中终端设备执行的方法的单元。并且,该通信装置1500中的各单元和上述其他操作和/或功能分别为了实现图3、图10、图12和图13所示的方法的相应流程。
可选地,通信装置1500还可以包括处理单元1510,该处理单元1510可以用于处理指令或者数据,以实现相应的操作。
还应理解,该通信装置1500为配置于(或用于)终端设备中的芯片时,该通信装置1500中的收发单元1520可以为芯片的输入/输出接口或电路,该通信装置1500中的处理单元1510可以为芯片中的处理器。
可选地,通信装置1500还可以包括存储单元1530,该存储单元1530可以用于存储指令或者数据,处理单元1510可以执行该存储单元中存储的指令或者数据,以使该通信装置实现相应的操作。
应理解,该通信装置1500中的收发单元1520为可通过通信接口(如收发器或输入/输出接口)实现,例如可对应于图16中示出的终端设备1600中的收发器1610。该通信装置1500中的处理单元1510可通过至少一个处理器实现,例如可对应于图16中示出的终端设备1600中的处理器1620。该通信装置1500中的处理单元1510还可以通过至少一个逻辑电路实现。该通信装置1500中的存储单元1530可对应于图16中示出的终端设备1600中的存储器。
还应理解,各单元执行上述相应步骤的具体过程在上述方法中已经详细说明,为了简洁,在此不再赘述。
在另一种可能的设计中,该通信装置1500可对应于上文方法中的网络设备,例如,或者配置于(或用于)网络设备中的芯片,或者其他能够实现网络设备的方法的装置、模块、电路或单元等。
应理解,该通信装置1500可以包括用于执行图3、图10、图12和图13所示的方法中网络设备执行的方法的单元。并且,该通信装置1500中的各单元和上述其他操作和/或功能分别为了实现图3、图10、图12和图13所示的方法的相应流程。
可选地,通信装置1500还可以包括处理单元1510,该处理单元1510可以用于处理指令或者数据,以实现相应的操作。
还应理解,该通信装置1500为配置于(或用于)网络设备中的芯片时,该通信装置1500中的收发单元1520可以为芯片的输入/输出接口或电路,该通信装置1500中的处理单元1510可以为芯片中的处理器。
可选地,通信装置1500还可以包括存储单元1530,该存储单元1530可以用于存储指令或者数据,处理单元1510可以执行该存储单元中存储的指令或者数据,以使该通信装置实现相应的操作。
应理解,该通信装置1500为网络设备时,该通信装置1500中的收发单元1520为可通过通信接口(如收发器或输入/输出接口)实现,例如可对应于图17中示出的网络设备1700中的收发器1710。该通信装置1700中的处理单元1510可通过至少一个处理器实现,例如可对应于图17中示出的网络设备1700中的处理器1720,该通信装置1500中的处理单元1510可通过至少一个逻辑电路实现。该通信装置1500中的存储单元1530可对应于图17中示出的网络设备1700中的存储器。
还应理解,各单元执行上述相应步骤的具体过程在上述方法中已经详细说明,为了简洁,在此不再赘述。
图16是本申请提供的终端设备1600的结构示意图。该终端设备1600可应用于如图1所示的系统中,执行上述方法中终端设备的功能。如图所示,该终端设备1600包括处理器1620和收发器1610。可选地,该终端设备1600还包括存储器。其中,处理器1620、收发器1610和存储器之间可以通过内部连接通路互相通信,传递控制信号和/或数据信号。该存储器用于存储计算机程序,该处理器1620用于执行该存储器中的该计算机程序,以控制该收发器1610收发信号。
上述处理器1620可以用于执行前面方法中描述的由终端设备内部实现的动作,而收发器1610可以用于执行前面方法中描述的终端设备向网络设备发送或从网络设备接收的动作。具体请见前面方法中的描述,此处不再赘述。
可选地,上述终端设备1600还可以包括电源,用于给终端设备中的各种器件或电路提供电源。
图17是本申请提供的网络设备1700的结构示意图。该网络设备1700可应用于如图1所示的系统中,执行上述方法中第二节点的功能。如图所示,该网络设备1700包括处理器1720和收发器1710。可选地,该网络设备1700还包括存储器。其中,处理器1720、收发器1710和存储器之间可以通过内部连接通路互相通信,传递控制和/或数据信号。该存储器用于存储计算机程序,该处理器1720用于执行该存储器中的该计算机程序,以控制该收发器1710收发信号。
上述处理器1720可以用于执行前面方法中描述的由网络设备内部实现的动作,而收发器1710可以用于执行前面方法中描述的网络设备向网络设备发送或从网络设备接收的动作。具体请见前面方法中的描述,此处不再赘述。
可选地,上述网络设备1700还可以包括电源,用于给网络设备中的各种器件或电路提供电源。
图16所示的终端设备和图17所示的网络设备中,处理器可以和存储器可以合成一个处理装置,处理器用于执行存储器中存储的程序代码来实现上述功能。具体实现时,该存 储器也可以集成在处理器中,或者独立于处理器。该处理器可以与图15中的处理单元对应。收发器可以与图15中的收发单元对应。收发器1610可以包括接收器(或称接收机、接收电路)和发射器(或称发射机、发射电路)。其中,接收器用于接收信号,发射器用于发射信号。
本申请中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
本申请中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
本申请还提供了一种处理装置,包括处理器和(通信)接口;所述处理器用于执行上述任一方法中的方法。
应理解,上述处理装置可以是一个或多个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
根据本申请提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码由一个或多个处理器执行时,使得包括该处理器的装置执行图3、图10、图12和图13所示的方法。
本申请提供的技术方案可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请所述的流程或功能。上述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,该计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))、或者半导体介质等。
根据本申请提供的方法,本申请还提供一种计算机可读存储介质,该计算机可读存储介质存储有程序代码,当该程序代码由一个或多个处理器运行时,使得包括该处理器的装置执行图3、图10、图12和图13所示的方法。
根据本申请提供的方法,本申请还提供一种系统,其包括前述的用于实现终端设备的方法的装置和前述的至少一个用于实现网络设备的方法的装置。
在本申请所提供的几个中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本方案的目的。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (42)

  1. 一种资源配置方法,其特征在于,包括:
    向第一终端设备发送第一信息,所述第一信息用于指示将第一小区的载波频带由第一载波频带更新为第二载波频带,所述第一小区为所述第一终端设备的服务小区,所述第二载波频带包括所述第一载波频带以外的频域资源;
    在所述第二载波频带上与所述第一终端设备通信。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    向所述第一终端设备发送第二信息,所述第二信息用于配置所述第二载波频带中的第一带宽部分BWP,
    其中,所述第二信息包括第一指示信息,所述第一指示信息用于指示所述第一BWP的起始频点相对于BWP参考频点之间的偏移量,所述BWP参考频点为所述第一载波频带的起始频点或所述第二载波频带的起始频点。
  3. 根据权利要求2所述的方法,其特征在于,所述第一BWP与所述第一载波频带中的第二BWP包括重叠的频域资源,所述第一BWP的起始频点与所述第二BWP的起始频点之间的频域偏移量为资源块组RBG的整数倍,所述RBG为频域资源分配单位,所述RBG包括至少一个资源块,所述第二BWP是为第二终端设备配置的BWP。
  4. 根据权利要求2或3所述的方法,其特征在于,所述BWP参考频点为所述第一载波频带的起始频点,所述第二信息还包括第二指示信息,所述第二指示信息用于指示所述第一BWP的起始频点大于、小于或等于所述第一载波频带的起始频点。
  5. 根据权利要求3所述的方法,其特征在于,所述第一BWP与所述第一小区的小区参考频点之间的频域偏移量为第一频域偏移量,所述第二BWP与所述小区参考频点之间的频域偏移量为第二频域偏移量,所述第一频域偏移量与所述第二频域偏移量之间的差值为RBG的整数倍,所述RBG为频域资源分配单位,所述RBG包括至少一个资源块。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:
    发送第三信息,所述第三信息用于所述第一终端设备与所述第一小区建立通信连接,所述第三信息包括第三指示信息,所述第三指示信息用于指示所述第一小区的载波频带为所述第一载波频带。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述方法还包括:
    在所述第一载波频带上与第二终端设备通信,
    其中,所述第二终端设备的服务小区为所述第一小区,所述第一小区与所述第二终端设备通信的载波频带为所述第一载波频带。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述方法还包括:
    向所述第一终端设备发送第四信息,所述第四信息用于指示通过所述第一小区与第二小区载波聚合的方式与所述第一终端设备通信,所述第二小区的载波频带为第三载波频带,所述第二载波频带与所述第三载波频带部分重叠;
    在所述第二载波频带和第三载波频带上与所述第一终端设备通信。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    向所述第一终端设备发送第四指示信息,所述第四指示信息用于指示所述第一小区的所述第二载波频带与所述第二小区的所述第三载波频带部分重叠。
  10. 根据权利要求8或9所述的方法,其特征在于,所述第二载波频带与所述第三载波频带的重叠频带内所述第一小区的一个资源块的频域资源与所述第二小区的一个资源块的频域资源相同。
  11. 根据权利要求8至10中任一项所述的方法,其特征在于,所述第二载波频带的起始频点与所述第三载波频带的起始频点之间的频域偏移量为RBG的整数倍,所述RBG为频域资源分配单位,所述RBG包括至少一个资源块。
  12. 根据权利要求8至11中任一项所述的方法,其特征在于,所述第一小区对应的小区参考频点与所述第二小区对应的小区参考频点相同,所述第一小区对应的小区参考频点用于确定所述第一小区的资源块的位置,所述第二小区对应的小区参考频点用于确定所述第二小区的资源块的位置。
  13. 根据权利要求12所述的方法,其特征在于,所述第二载波频带与所述小区参考频点之间的频域偏移量为第三频域偏移量,所述第三载波频带与所述小区参考频点之间的频域偏移量为第四频域偏移量,所述第三频域偏移量与所述第四频域偏移量之间的差值为RBG的整数倍,所述RBG为频域资源分配单位,所述RBG包括至少一个资源块。
  14. 根据权利要求8至13中任一项所述的方法,其特征在于,所述方法还包括:
    通过所述第一小区和所述第二小区发送第一参考信号,所述第一参考信号包括多个符号,
    其中,所述第一参考信号中承载在所述第二载波频带与所述第三载波频带的重叠频带内的符号是由所述第一小区或所述第二小区发送的,所述第一参考信号中承载在所述第二载波频带中除所述重叠频带以外的频带内的符号是由所述第一小区发送的,所述第一参考信号中承载在所述第三载波频带中除所述重叠频带以外的频带内的符号是由所述第二小区发送的。
  15. 根据权利要求8至13中任一项所述的方法,其特征在于,所述方法还包括:
    通过所述第一小区在第一资源上发送第二参考信号;以及,
    通过所述第二小区在所述第一资源上发送第三参考信号,
    其中,所述第一资源为所述第二载波频带与所述第三载波频带的重叠频带内的资源,所述第二参考信号与所述第三参考信号的初始化序列相同。
  16. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    向所述第一终端设备发送第七信息,所述第七信息用于指示所述第二参考信号的扰码标识信息,所述第二参考信号的扰码标识信息用于生成所述第二参考信号的初始化序列;
    向所述第一终端设备发送第八信息,所述第八信息用于指示所述第三参考信号的扰码标识信息,所述第三参考信号的扰码标识信息用于生成所述第三参考信号的初始化序列;
    其中,所述第二参考信号的扰码标识信息与所述第三参考信号的扰码标识信息相同。
  17. 根据权利要求15或16所述的方法,其特征在于,所述方法还包括:
    接收来自所述第一终端设备的信道状态信息,所述信道状态信息为所述第二参考信号和所述第三参考信号对应的信道状态信息。
  18. 根据权利要求8至17中任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述第一终端设备的第九信息,所述第九信息用于指示所述第一终端设备的能力,所述第九信息包括以下一种或多种指示信息:
    第五指示信息,用于指示所述第一终端设备支持或不支持小区的载波频带重叠的载波 聚合方式;
    第六指示信息,用于指示所述第一终端设备支持或不支持同一频段内的载波频带重叠的载波聚合方式;
    第七指示信息,用于指示所述第一终端设备支持或不支持不同频段间的载波频带重叠的载波聚合方式;
    第八指示信息,用于指示所述第一终端设备支持或不支持载波频带重叠的载波聚合方式的频域位置。
  19. 根据权利要求8至18中任一项所述的方法,其特征在于,所述第一小区的载波中心频点与所述第二小区的载波中心频点之间的频域间隔为信道栅格的单位间隔与第一子载波间隔的公倍数,所述信道栅格为载波中心频点的候选集合,所述信道栅格中属于同一频段的两个载波中心频点之间的间隔为所述单位间隔的整数倍,所述第一小区与所述第二小区的子载波间隔均为所述第一子载波间隔。
  20. 根据权利要求8至19中任一项所述的方法,其特征在于,所述方法还包括:
    根据所述第二载波频带的带宽、所述第三载波频带的带宽和第一参数,确定所述第一终端设备的最大传输速率,其中,所述第一参数用于表征所述第二载波频带与所述第三载波频带的重叠频带对所述最大传输速率的影响。
  21. 一种资源配置方法,其特征在于,包括:
    接收来自网络设备的第一信息,所述第一信息用于指示将第一小区的载波频带由第一载波频带更新为第二载波频带,所述第一小区为第一终端设备的服务小区,所述第二载波频带包括所述第一载波频带以外的频域资源;
    在所述第二载波频带与所述第一小区通信。
  22. 根据权利要求21所述的方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的第二信息,所述第二信息用于配置所述第二载波频带中的带宽部分BWP,
    其中,所述第二信息包括第一指示信息,所述第一指示信息用于指示所述带宽部分BWP的起始频点相对于BWP参考频点之间的偏移量,所述BWP参考频点为所述第一载波频带的起始频点或所述第二载波频带的起始频点。
  23. 根据权利要求22所述的方法,其特征在于,所述BWP参考频点为所述第一载波频带的起始频点,所述第二信息还包括第二指示信息,所述第二指示信息用于指示所述带宽部分BWP的起始频点大于、小于或等于所述第一载波频带的起始频点。
  24. 根据权利要求21至23中任一项所述的方法,其特征在于,所述方法还包括:
    发送第三信息,所述第三信息用于所述第一终端设备与所述第一小区建立通信连接,所述第三信息包括第三指示信息,所述第三指示信息用于指示所述第一小区的载波频带为所述第一载波频带。
  25. 根据权利要求21至24任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的第四信息,所述第四信息用于指示所述网络设备通过所述第一小区与第二小区载波聚合的方式与所述第一终端设备通信,所述第一小区的第二载波频带与所述第二小区的第三载波频带部分重叠;
    在所述第二载波频带和第三载波频带上与所述网络设备通信。
  26. 根据权利要求25所述的方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的第四指示信息,所述第四指示信息用于指示所述第一小区的所述第二载波频带与所述第二小区的所述第三载波频带部分重叠。
  27. 根据权利要求25或26所述的方法,其特征在于,所述第二载波频带与所述第三载波频带的重叠频带内所述第一小区的一个资源块的频域资源与所述第二小区的一个资源块的频域资源相同。
  28. 根据权利要求25至27中任一项所述的方法,其特征在于,所述第二载波频带的起始频点与所述第三载波频带的起始频点之间的频域偏移量为资源块组RBG的整数倍,所述RBG为频域资源分配单位,所述RBG包括至少一个资源块。
  29. 根据权利要求25至28中任一项所述的方法,其特征在于,所述第一小区对应的小区参考频点与所述第二小区对应的小区参考频点相同,所述第一小区对应的小区参考频点用于确定所述第一小区的资源块的位置,所述第二小区对应的小区参考频点用于确定所述第二小区的资源块的位置。
  30. 根据权利要求29所述的方法,其特征在于,所述第二载波频带与所述小区参考频点之间的频域偏移量为第三频域偏移量,所述第三载波频带与所述小区参考频点之间的频域偏移量为第四频域偏移量,所述第三频域偏移量与所述第四频域偏移量之间的差值为RBG的整数倍,所述RBG为频域资源分配单位,所述RBG包括至少一个资源块。
  31. 根据权利要求25至29中任一项所述的方法,其特征在于,所述方法还包括:
    接收第一参考信号,所述第一参考信号包括多个符号,
    其中,所述第一参考信号中承载在所述第二载波频带与所述第三载波频带的重叠频带内的符号是由所述第一小区或所述第二小区发送的,所述第一参考信号中承载在所述第二载波频带中除所述重叠频带以外的频带内的符号是由所述第一小区发送的,所述第一参考信号中承载在所述第三载波频带中除所述重叠频带以外的频带内的符号是由所述第二小区发送的。
  32. 根据权利要求25至29中任一项所述的方法,其特征在于,所述方法还包括:
    在第一资源上接收第四参考信号,所述第四参考信号包括来自第一小区的第二参考信号和第二小区的第三参考信号,
    其中,所述第一资源为所述第二载波频带与所述第三载波频带的重叠频带内的资源,所述第二参考信号与所述第三参考信号的初始化序列相同。
  33. 根据权利要求32所述的方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的第七信息,所述第七信息用于指示所述第二参考信号的扰码标识信息,所述第二参考信号的扰码标识信息用于生成所述第二参考信号的初始化序列;
    接收来自所述网络设备的第八信息,所述第八信息用于指示所述第三参考信号的扰码标识信息,所述第三参考信号的扰码标识信息用于生成所述第三参考信号的初始化序列;
    其中,所述第二参考信号的扰码标识信息与所述第三参考信号的扰码标识信息相同。
  34. 根据权利要求32或33所述的方法,其特征在于,所述方法还包括:
    根据所述第四参考信号,得到信道状态信息,所述信道状态信息为所述第二参考信号和所述第三参考信号对应的信道状态信息;
    向所述网络设备发送所述信道状态信息。
  35. 根据权利要求25至34中任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述第一终端设备的第九信息,所述第九信息用于指示所述第一终端设备的 能力,所述第九信息包括以下一种或多种指示信息:
    第五指示信息,用于指示所述第一终端设备支持或不支持小区的载波频带重叠的载波聚合方式;
    第六指示信息,用于指示所述第一终端设备支持或不支持同一频段内的载波频带重叠的载波聚合方式;
    第七指示信息,用于指示所述第一终端设备支持或不支持不同频段间的载波频带重叠的载波聚合方式;
    第八指示信息,用于指示所述第一终端设备支持或不支持载波频带重叠的载波聚合方式的频域位置。
  36. 根据权利要求25至35中任一项所述的方法,其特征在于,所述第一小区的载波中心频点与所述第二小区的载波中心频点之间的频域间隔为信道栅格的单位间隔与第一子载波间隔的公倍数,所述信道栅格为载波中心频点的候选集合,所述信道栅格中属于同一频段的两个载波中心频点之间的间隔为所述单位间隔的整数倍,所述第一小区与所述第二小区的子载波间隔均为所述第一子载波间隔。
  37. 根据权利要求25至36中任一项所述的方法,其特征在于,所述方法还包括:
    根据所述第二载波频带的带宽、所述第三载波频带的带宽和第一参数,确定最大传输速率,其中,所述第一参数用于表征所述第二载波频带与所述第三载波频带的重叠频带对所述最大传输速率的影响。
  38. 一种通信装置,其特征在于,包括:
    处理单元,用于确定第一信息,所述第一信息用于向第一终端设备指示将第一小区的载波频带由第一载波频带更新为第二载波频带,所述第一小区为所述第一终端设备的服务小区,所述第二载波频带包括所述第一载波频带以外的频域资源;
    收发单元,用于向所述第一终端设备发送所述第一信息;
    所述收发单元,还用于在所述第二载波频带上与所述第一终端设备通信。
  39. 一种通信装置,其特征在于,包括:
    收发单元,用于接收来自网络设备的第一信息,所述第一信息用于指示将第一小区的载波频带由第一载波频带更新为第二载波频带,所述第一小区为第一终端设备的服务小区,所述第二载波频带包括所述第一载波频带以外的频域资源;
    处理单元,用于根据所述第一信息,确定第一小区的载波频带由第一载波频带更新为第二载波频带;
    所述收发单元,还用于在所述第二载波频带与所述第一小区通信。
  40. 一种通信装置,其特征在于,包括处理器和存储器,所述存储器和所述处理器耦合,所述处理器用于执行如权利要求1至20中任一项所述的方法,或者,用于执行如权利要求21至37中任一项所述的方法。
  41. 一种计算机可读存储介质,其特征在于,存储有指令,当所述指令在计算机上运行时,使得所述计算机执行如权利要求1至20中任一项所述的方法,或者,执行如权利要求21至37中任一项所述的方法。
  42. 一种计算机程序产品,其特征在于,包括指令,当所述指令在计算机上运行时,使得计算机执行如权利要求1至20中任一项所述的方法,或者,用于执行如权利要求21至37中任一项所述的方法。
PCT/CN2023/073916 2022-02-11 2023-01-31 资源配置方法、通信装置及通信设备 WO2023151477A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210127591.3 2022-02-11
CN202210127591.3A CN114666902A (zh) 2022-02-11 2022-02-11 资源配置方法、通信装置及通信设备
CN202210820291.3 2022-07-13
CN202210820291.3A CN115190632A (zh) 2022-02-11 2022-07-13 资源配置方法、通信装置及通信设备

Publications (1)

Publication Number Publication Date
WO2023151477A1 true WO2023151477A1 (zh) 2023-08-17

Family

ID=82027369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/073916 WO2023151477A1 (zh) 2022-02-11 2023-01-31 资源配置方法、通信装置及通信设备

Country Status (2)

Country Link
CN (2) CN114666902A (zh)
WO (1) WO2023151477A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115884389A (zh) * 2021-08-06 2023-03-31 华为技术有限公司 载波配置方法及通信装置
CN114666902A (zh) * 2022-02-11 2022-06-24 华为技术有限公司 资源配置方法、通信装置及通信设备
CN117395798A (zh) * 2022-06-29 2024-01-12 华为技术有限公司 通信方法和通信装置
CN115915429A (zh) * 2022-09-08 2023-04-04 中兴通讯股份有限公司 一种资源块集合的确定方法、通信节点及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016131326A1 (zh) * 2015-07-17 2016-08-25 中兴通讯股份有限公司 一种正交频分复用系统频谱资源的使用方法及相应的基站
CN109152023A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 资源分配的方法、网络设备和终端设备
CN109756935A (zh) * 2017-11-03 2019-05-14 华为技术有限公司 一种调整工作带宽的方法和装置
CN110536421A (zh) * 2018-05-25 2019-12-03 华为技术有限公司 通信方法和装置
CN111385901A (zh) * 2018-12-29 2020-07-07 华为技术有限公司 用于确定控制资源集合的频域位置的方法及相关设备
CN111654868A (zh) * 2015-01-27 2020-09-11 华为技术有限公司 一种公共信息的传输方法及装置
CN114666902A (zh) * 2022-02-11 2022-06-24 华为技术有限公司 资源配置方法、通信装置及通信设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111654868A (zh) * 2015-01-27 2020-09-11 华为技术有限公司 一种公共信息的传输方法及装置
WO2016131326A1 (zh) * 2015-07-17 2016-08-25 中兴通讯股份有限公司 一种正交频分复用系统频谱资源的使用方法及相应的基站
CN109152023A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 资源分配的方法、网络设备和终端设备
CN109756935A (zh) * 2017-11-03 2019-05-14 华为技术有限公司 一种调整工作带宽的方法和装置
CN110536421A (zh) * 2018-05-25 2019-12-03 华为技术有限公司 通信方法和装置
CN111385901A (zh) * 2018-12-29 2020-07-07 华为技术有限公司 用于确定控制资源集合的频域位置的方法及相关设备
CN114666902A (zh) * 2022-02-11 2022-06-24 华为技术有限公司 资源配置方法、通信装置及通信设备
CN115190632A (zh) * 2022-02-11 2022-10-14 华为技术有限公司 资源配置方法、通信装置及通信设备

Also Published As

Publication number Publication date
CN115190632A (zh) 2022-10-14
CN114666902A (zh) 2022-06-24

Similar Documents

Publication Publication Date Title
WO2023151477A1 (zh) 资源配置方法、通信装置及通信设备
US20230337117A1 (en) Communication system for communicating minimum system information
TWI756609B (zh) 帶內非連續頻譜的有效寬頻操作方法及使用者設備
RU2556883C2 (ru) Способ и устройство для реконфигурирования отображения поля указателя несущей на компонентную несущую
WO2022022688A1 (zh) 一种同步信号块的传输方法和通信装置
WO2021146998A1 (zh) 一种确定初始带宽部分bwp的方法、装置及存储介质
TWI640215B (zh) 經由錨定載波的小區存取方法和裝置
US9161340B2 (en) Method and apparatus for transmitting and receiving extension information of component carrier in wireless communication system
CN111756508B (zh) 一种通信方法及装置
EP4096318A1 (en) Resource configuration method and network device
WO2023030514A1 (zh) 无线通信方法和通信装置
CN110312261B (zh) 使用无线资源的控制方法、装置、网元及终端
WO2022206346A1 (zh) 一种随机接入方法及装置
CN117460007A (zh) 一种小区状态切换方法及装置
WO2023109879A1 (zh) 射频链路切换方法和通信装置
CN111756497B (zh) 通信方法及装置
WO2019157903A1 (zh) 一种资源配置方法及装置
CN117040707A (zh) 一种通信方法及装置
CN114938544A (zh) 资源调度方法和通信装置以及通信设备
WO2023207837A1 (zh) 一种通信方法及装置
WO2023165612A1 (zh) 物理下行控制信道监听方法与装置、终端设备和网络设备
WO2024001796A1 (zh) 通信方法和通信装置
WO2023143007A1 (zh) 信息传输方法和装置
WO2023093827A1 (zh) 一种通信方法及装置
KR20180136757A (ko) 무선 통신 시스템에서 초기 접속을 위한 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23752257

Country of ref document: EP

Kind code of ref document: A1