WO2023151366A1 - 一种功率确定方法及设备 - Google Patents

一种功率确定方法及设备 Download PDF

Info

Publication number
WO2023151366A1
WO2023151366A1 PCT/CN2022/137962 CN2022137962W WO2023151366A1 WO 2023151366 A1 WO2023151366 A1 WO 2023151366A1 CN 2022137962 W CN2022137962 W CN 2022137962W WO 2023151366 A1 WO2023151366 A1 WO 2023151366A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
terminal device
interference
power
subband
Prior art date
Application number
PCT/CN2022/137962
Other languages
English (en)
French (fr)
Inventor
吴越
李雪茹
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210268005.7A external-priority patent/CN116614795A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023151366A1 publication Critical patent/WO2023151366A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]

Definitions

  • the present application relates to the technical field of communications, and in particular to a method and device for determining power.
  • Sidelink is different from uplink (uplink, UL) and downlink (downlink, DL). It is a new link technology introduced to support direct communication between devices. It is introduced in the device-to-device (D2D) application scenario.
  • D2D device-to-device
  • a user equipment user equipment, UE
  • UE user equipment
  • the currently calculated transmit power of the UE may not be able to guarantee data transmission quality.
  • Embodiments of the present application provide a method and device for determining power, which are used to improve the accuracy of calculated transmit power of a UE.
  • a power determination method is provided, which can be executed by the first terminal device, or by other devices including the first terminal device, or by a chip system or other functional modules, and the chip system or functional modules can realize As a function of the first terminal device, the system-on-a-chip or the functional module is, for example, set in the first terminal device.
  • the first terminal device is, for example, a terminal device.
  • the method includes: receiving first report information from a second terminal device through a sidelink, where the first report information includes first interference information, and the first interference information is used to indicate that the third terminal device and/or the fourth When the terminal device sends the first sidelink information, the adjacent channel interference generated by the information received by the second terminal device; and determining the transmission power of the third terminal device according to the first reported information.
  • the second terminal device may send the first report information to the first terminal device, and the first interference information included in the first report information indicates the adjacent frequency interference suffered by the second terminal device, so that the first The terminal device may take the first interference information as a consideration factor when determining the transmit power of the third terminal device.
  • the adjacent channel interference received by the receiving device can be taken into consideration, so as to minimize the adjacent channel interference generated by the transmitting device to other receiving devices when sending information. This makes the determined transmission power more accurate and more in line with the current actual situation, which helps to improve the quality of data transmission and the success rate of reception.
  • the method further includes: determining the transmission power of the fourth terminal device according to the first reported information.
  • the central device may determine the transmit power for multiple transmitting devices without determining the transmit power for each transmitting device, and the first terminal device is the central device. Then the first terminal device can determine the transmission power of the fourth terminal device in addition to the transmission power of the third terminal device. If there are more transmission devices, the first terminal device can also determine the transmission power for them respectively. . If the sending device determines the sending power by itself, when a sending device determines the sending power of the sending device, it will actually determine the sending power of other sending devices, which is a redundant process for the sending device. However, if the first terminal device determines the transmit power for each transmitting device, the first terminal device can determine the transmit power of multiple transmitting devices together, reducing redundant processes and helping to save power consumption of each device.
  • the first interference information includes information received by the second terminal device when the third terminal device and/or the fourth terminal device sends the first sidelink information.
  • the second terminal device may use the information of the adjacent-channel interference power as the first interference information. If this method is adopted, the first terminal device may further determine the adjacent-channel interference coefficient according to the information of the adjacent-channel interference power. Alternatively, the second terminal device may also perform corresponding processing on the adjacent-channel interference power to obtain an adjacent-channel interference coefficient, and then use the adjacent-channel interference coefficient as the first interference information, which reduces the number of steps that the first terminal device needs to perform.
  • the adjacent-channel interference coefficient is determined according to the transmission power of the first sidelink information and the adjacent-channel interference power.
  • the adjacent frequency interference coefficient is the difference between the adjacent frequency interference power and the transmission power of the first side information, or the adjacent frequency interference coefficient can also be the difference between the adjacent frequency interference power and the transmission power of the first side information.
  • the product or sum of the difference between the value and a certain constant, etc., the specific calculation method is not limited.
  • the first side link information includes transmission power information of the first side link information.
  • the first side line information may include the transmission power information of the first side line information, and then the device (such as the second terminal device) receiving the first side line information can clarify the transmission power information of the first side line information, so as to determine the frequency interference factor.
  • the method further includes: determining that the third terminal device and the fourth terminal device send information at the same time according to the first resource reservation information, wherein the first resource reservation The information includes resource reservation information of the third terminal device, and resource reservation information of the fourth terminal device.
  • the first terminal device can obtain the resource reservation information of the multiple sending devices.
  • the first terminal device can determine which sending devices will send information at the same time. For sending devices that send information at the same time, the first terminal device may determine the sending power of these sending devices according to the reported information related to these sending devices.
  • the first report information further includes second interference information
  • the second interference information is used to instruct the second terminal device to The self-interference generated by the terminal equipment receiving information. If the second terminal device can also serve as a sending device in addition to being a receiving device, when the second terminal device sends sideline information, it may cause interference to the information received by the second terminal device, which is called self-interference. Then the second terminal device can also determine the second interference information, so that the interference information determined by the second terminal device is more accurate, which helps to make the transmission power determined by the first terminal device more accurate and more in line with the current actual situation , help to improve data transmission quality and reception success rate.
  • the second interference information includes self-interference power or self-interference coefficient generated by the second terminal device when the second terminal device sends the second sidelink information to the information received by the second terminal device .
  • the second terminal device may use the information of the self-interference power as the second interference information. If this method is adopted, the first terminal device may further determine the self-interference coefficient according to the information of the self-interference power. Alternatively, the second terminal device may also perform corresponding processing on the self-interference power to obtain a self-interference coefficient, and then use the self-interference coefficient as the second interference information, which reduces the steps that the first terminal device needs to perform.
  • the self-interference coefficient is determined according to the transmission power and self-interference power of the second sidelink information.
  • the self-interference coefficient is the difference between the self-interference power and the transmission power of the second side information, or the self-interference coefficient can also be the difference between the self-interference power and the transmission power of the second side information and The product or sum of a certain constant, etc., the specific calculation method is not limited.
  • the first report information further includes first path loss information
  • the first path loss information indicates that the third terminal device and/or the fourth terminal device to the A path loss between second terminal devices, wherein the transmit power of the third terminal device is used to send information to the second terminal device.
  • the first terminal device may also use the path loss information when determining the transmit power of the sending device, so the second terminal device may also report the path loss information.
  • the first reported information further includes an SINR threshold of the second terminal device.
  • the SINR threshold of the second terminal device is, for example, the expected SINR of the second terminal device, or the minimum SINR expected by the second terminal device.
  • the receiving device can report the expected SINR, and the first terminal device can adjust the SINR of the receiving device as much as possible by determining the transmission power of the sending device, thereby improving the SINR of the receiving device with poor channel quality as much as possible, or improving the SINR of the receiving device as a whole.
  • the method further includes: sending transmission power information of the third terminal device to the third terminal device. If the first terminal device is the central device, the first terminal device may notify the third terminal device of the transmission power information of the third terminal device. In addition to the third terminal, the first terminal can also communicate the determined further transmit power to the corresponding transmitting device.
  • the first terminal device is the same terminal device as one of the second terminal device, the third terminal device, or the fourth terminal device; Or, the first terminal device is different from the second terminal device, the third terminal device, and the fourth terminal device.
  • the first terminal device may be a sending device that sends side information to other terminal devices, for example, the first terminal device is the same terminal device as the third terminal device or the fourth terminal device, or the first terminal device may also be a terminal device other than the third terminal device other sending devices than the terminal device and the fourth terminal device.
  • the first terminal device may also be a receiving device for receiving side information from other terminal devices, for example, the first terminal device and the second terminal device are the same terminal device, or the first terminal device may also be a terminal device other than the second terminal device Terminal equipment other than terminal equipment.
  • the first terminal device may neither function as a sending device nor as a receiving device, for example, the first terminal device acts as a central device or a control device for managing other terminal devices, then the first terminal device and the terminal device ( For example, the third terminal device and the fourth terminal device) are all different devices from the terminal device (for example, the second terminal device) serving as the receiving device.
  • another power determination method is provided, which can be executed by the second terminal device, or by other devices including the second terminal device, or by a chip system or other functional modules, and the chip system or functional modules can To realize the function of the second terminal device, the chip system or the functional module is set in the second terminal device, for example.
  • the second terminal device is, for example, a terminal device.
  • the method includes: determining first interference information, where the first interference information is used to indicate that the third terminal device and/or the fourth terminal device generate the information received by the second terminal device when the first sidelink information is sent.
  • Adjacent channel interference sending first report information through a sidelink, where the first report information includes the first interference information, and the first report information is used to determine the transmit power of one or more sending devices.
  • the first interference information includes information received by the second terminal device when the third terminal device and/or the fourth terminal device sends the first sidelink information.
  • the resulting adjacent channel interference power or adjacent channel interference coefficient is a first interference information received by the second terminal device when the third terminal device and/or the fourth terminal device sends the first sidelink information.
  • the adjacent-channel interference coefficient is determined according to the transmission power of the first sidelink information and the adjacent-channel interference power.
  • the method further includes: measuring the first sidelink information from the first subband on the first resource to obtain the adjacent channel interference power, and the first The subband is a subband for sending the first sidelink information by the third terminal device and/or the fourth terminal device.
  • the first subband includes a subband adjacent to the working subband of the second terminal device, and/or includes a subband adjacent to the working subband of the second terminal device There is no information transmission between the subbands.
  • the first side link information includes transmission power information of the first side link information.
  • the first report information further includes second interference information, and the second interference information is used to instruct the second terminal device to The self-interference generated by the terminal equipment receiving information.
  • the second interference information includes self-interference power or self-interference coefficient generated by the second terminal device when the second terminal device sends the second sidelink information to the information received by the second terminal device .
  • the self-interference coefficient is determined according to the transmission power and self-interference power of the second sidelink information.
  • the method further includes: measuring the second sidelink information from the second subband on the first resource to obtain the self-interference power, and the second subband The band is a subband for sending the second sidelink information to the second terminal device.
  • the second subband includes a subband adjacent to the working subband of the second terminal device, and/or includes a subband adjacent to the working subband of the second terminal device There is no information transmission between the subbands.
  • the method further includes: receiving configuration information, where the configuration information is used to configure the first resource, and the first resource is used to measure the working frequency of the second terminal device. interference from other subbands.
  • the first report information further includes first path loss information, and the first path loss information indicates that the third terminal device and/or the fourth terminal device to the A path loss between second terminal devices, wherein the transmit power of the third terminal device is used to send information to the second terminal device.
  • the first reported information further includes an SINR threshold of the second terminal device.
  • a communication device is provided.
  • the communication device may be the first terminal device described in the first aspect and/or the second aspect.
  • the communication device has the function of the above-mentioned first terminal device.
  • the communication device is, for example, the first terminal device, or a functional module in the first terminal device, such as a baseband device or a chip system.
  • the communication device includes a baseband device and a radio frequency device.
  • the communication device includes a processing unit (also called a processing module sometimes) and a transceiver unit (also called a transceiver module sometimes).
  • the transceiver unit can realize the sending function and the receiving function.
  • the transceiver unit When the transceiver unit realizes the sending function, it can be called the sending unit (sometimes also called the sending module). When the transceiver unit realizes the receiving function, it can be called the receiving unit (sometimes also called receiving module).
  • the sending unit and the receiving unit can be the same functional module, which is called the transceiver unit, and this functional module can realize the sending function and the receiving function; or, the sending unit and the receiving unit can be different functional modules, and the transceiver unit is for these A general term for functional modules.
  • the transceiving unit (or the receiving unit) is configured to receive first report information from a second terminal device through a sidelink, where the first report information includes first interference information, and the first interference information
  • the information is used to indicate the adjacent channel interference generated by the third terminal device and/or the fourth terminal device when sending the first sidelink information to the second terminal device receiving information;
  • the processing unit is configured to The report information determines the sending power of the third terminal device.
  • the communication device further includes a storage unit (sometimes also referred to as a storage module), and the processing unit is used to be coupled with the storage unit and execute the program or An instruction to enable the communication device to execute the function of the first terminal device described in the first aspect and/or the second aspect.
  • a storage unit sometimes also referred to as a storage module
  • a communication device is provided.
  • the communication device may be the second terminal device described in the first aspect and/or the second aspect.
  • the communication device has the function of the above-mentioned second terminal device.
  • the communication device is, for example, the second terminal device, or a functional module in the second terminal device, such as a baseband device or a chip system.
  • the communication device includes a baseband device and a radio frequency device.
  • the communication device includes a processing unit (also called a processing module sometimes) and a transceiver unit (also called a transceiver module sometimes).
  • a processing unit also called a processing module sometimes
  • a transceiver unit also called a transceiver module sometimes
  • the processing unit is configured to determine first interference information, where the first interference information is used to indicate that the third terminal device and/or the fourth terminal device are harmful to the second terminal device when sending the first sidelink information.
  • Adjacent frequency interference generated by receiving information the transceiver unit (or, the sending unit) is configured to send the first report information through the sidelink, the first report information includes the first interference information, and the The first report information is used to determine the sending power of one or more sending devices.
  • the communication device further includes a storage unit (sometimes also referred to as a storage module), and the processing unit is used to be coupled with the storage unit and execute the program or An instruction to enable the communication device to execute the function of the second terminal device described in the first aspect and/or the second aspect.
  • a storage unit sometimes also referred to as a storage module
  • a communication system including the communication device described in the third aspect and the communication device described in the fourth aspect.
  • a computer-readable storage medium is provided, the computer-readable storage medium is used to store computer programs or instructions, and when executed, the first terminal device or the second terminal device in the above aspects executes the method is implemented.
  • a computer program product containing instructions, which enables the methods described in the above aspects to be implemented when it is run on a computer.
  • a chip system including a processor and an interface, and the processor is configured to call and execute instructions from the interface, so that the chip system implements the methods in the above aspects.
  • Fig. 1 is a schematic diagram of applying sub-band non-overlapping full-duplex technology at the Uu interface
  • FIG. 2A and FIG. 2B are schematic diagrams of two application scenarios of the embodiment of the present application.
  • FIG. 3 is a flow chart of a power determination method provided in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a first resource configured in an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a device provided in an embodiment of the present application.
  • Fig. 6 is a schematic diagram of another device provided by the embodiment of the present application.
  • a terminal device is a device with a wireless transceiver function, which can be a fixed device, a mobile device, a handheld device (such as a mobile phone), a wearable device, a vehicle-mounted device, or a wireless device built into the above-mentioned devices (such as a communication module, a modem, or system-on-a-chip, etc.).
  • the terminal device is used to connect people, things, machines, etc., and can be widely used in various scenarios, including but not limited to the following scenarios: cellular communication, device-to-device communication (device-to-device, D2D), car-to-everything (vehicle to everything, V2X), machine-to-machine/machine-type communications (machine-to-machine/machine-type communications, M2M/MTC), Internet of things (Internet of things, IoT), virtual reality (virtual reality, VR) , augmented reality (augmented reality, AR), industrial control (industrial control), unmanned driving (self driving), telemedicine (remote medical), smart grid (smart grid), smart furniture, smart office, smart wear, smart transportation , Terminal equipment for smart cities, drones, robots and other scenarios.
  • cellular communication device-to-device communication
  • D2D device-to-device, D2D
  • car-to-everything vehicle to everything
  • V2X machine-to-machine/mach
  • the terminal device may sometimes be called a UE, terminal, access station, UE station, remote station, wireless communication device, or user device, among others.
  • the terminal device is taken as an example for description.
  • the first UE mentioned below can be replaced by the first terminal device
  • the second UE mentioned below can be replaced by the second terminal device.
  • the third UE mentioned below may be replaced by a third terminal device
  • the fourth UE mentioned below may be replaced by a fourth terminal device.
  • the network devices in this embodiment of the present application may include, for example, access network devices and/or core network devices.
  • the access network device is a device with a wireless transceiver function, and is used for communicating with the terminal device.
  • the access network equipment includes but is not limited to a base station (base transceiver station (BTS), Node B, eNodeB/eNB, or gNodeB/gNB), a transmission reception point (TRP), a third generation 3rd generation partnership project (3GPP) subsequent evolution base station, wireless fidelity (wireless fidelity, Wi-Fi) system access node, wireless relay node, wireless backhaul node, etc.
  • BTS base transceiver station
  • TRP transmission reception point
  • 3GPP third generation 3rd generation partnership project
  • the base station may be: a macro base station, a micro base station, a pico base station, a small station, a relay station, and the like. Multiple base stations can support networks of the same access technology or networks of different access technologies.
  • a base station may contain one or more co-sited or non-co-sited transmission and reception points.
  • the access network device may also be a wireless controller, a centralized unit (centralized unit, CU), and/or a distributed unit (distributed unit, DU) in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • the access network device may also be a server or the like.
  • a network device in a vehicle to everything (V2X) technology may be a road side unit (RSU).
  • V2X vehicle to everything
  • RSU road side unit
  • the base station can communicate with the terminal equipment, and can also communicate with the terminal equipment through the relay station.
  • a terminal device can communicate with multiple base stations in different access technologies.
  • the core network equipment is used to implement functions such as mobility management, data processing, session management, policy and charging.
  • the names of devices implementing core network functions in systems with different access technologies may be different, which is not limited in this embodiment of the present application.
  • the core network equipment includes: access and mobility management function (access and mobility management function, AMF), session management function (session management function, SMF), policy control function (policy control function, PCF) or User plane function (user plane function, UPF), etc.
  • the communication device for realizing the function of the network device may be a network device, or a device capable of supporting the network device to realize the function, such as a chip system, and the device may be installed in the network device.
  • the technical solution provided by the embodiment of the present application the technical solution provided by the embodiment of the present application is described by taking the network device as an example for realizing the function of the network device.
  • nouns for the number of nouns, unless otherwise specified, it means “singular noun or plural noun", that is, “one or more". “At least one” means one or more, and “plurality” means two or more. "And/or” describes the association relationship of associated objects, indicating that there can be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural. The character “/" generally indicates that the contextual objects are an "or” relationship. For example, A/B means: A or B. “At least one of the following" or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • At least one item (piece) of a, b, or c means: a, b, c, a and b, a and c, b and c, or a and b and c, where a, b, c Can be single or multiple.
  • the ordinal numerals such as “first” and “second” mentioned in this embodiment of the application are used to distinguish multiple objects, and are not used to limit the size, content, order, timing, priority, or importance of multiple objects.
  • the first interference information and the second interference information may be the same interference information or different interference information, and this name does not indicate the content, information volume, or priority of the two interference information. or different levels of importance.
  • the numbering of the steps in the various embodiments introduced in this application is only for distinguishing different steps, and is not used to limit the order of the steps. For example, S301 may occur before S302, or may occur after S302, or may occur simultaneously with S302.
  • the sub-band non-overlapping full-duplex technology is introduced.
  • the communication interface between the UE and the network equipment may be called a Uu interface.
  • sub-band non-overlapping full-duplex technology allows flexible allocation of uplink and downlink time-frequency resources within the communication bandwidth.
  • the network device can configure more uplink transmission time slots, so as to improve the uplink coverage of the network.
  • the base station may configure uplink subbands and downlink subbands to exist simultaneously, thereby reducing a hybrid automatic repeat request (hybrid automatic repeat request, HARQ) feedback delay.
  • FIG. 1 shows a scenario of applying subband non-overlapping full-duplex 100 on a Uu interface.
  • Sub-band non-overlapping full-duplex is more flexible in the allocation of time-frequency resources.
  • there may be two different subbands that do not overlap in the frequency domain for example: 112 represents an uplink time-frequency resource, and 114 represents a downlink time-frequency resource.
  • Subband non-overlapping full-duplex techniques can also be used for communication on the sidelink between two end devices.
  • the uplink and downlink of the sub-band full-duplex technology in the Uu port correspond to the sending link and receiving link of a certain terminal device in the sidelink communication respectively.
  • the terminal equipment applying the sub-band non-overlapping full-duplex technology can flexibly configure the time-frequency resources of the transmission link and the reception link. That is to say, at the same time, there can be two different subbands that do not overlap in the frequency domain, such as the time-frequency resource of the transmit link of a full-duplex device with non-overlapping subbands and the receive chain of a full-duplex device with non-overlapping subbands. Road time-frequency resources.
  • time-frequency resource of the transmission link of the subband non-overlapping full-duplex device there may also be two time periods that do not overlap in the time domain, such as the time-frequency resource of the transmission link of the subband non-overlapping full-duplex device and the time-frequency resource of the receiving link of the sub-band non-overlapping full-duplex device .
  • the transmitting UE transmits the power of the physical sidelink shared channel (PSSCH), which can be calculated as follows:
  • P PSSCH min(P CMAX , P MAX , CBR , P PSSCH , SL )[dBm] (Formula 1)
  • P PSSCH represents the power of the TX UE to send the PSSCH.
  • PCMAX represents the maximum output power of the TX UE.
  • indicates the subcarrier spacing (subcarrier spacing, SCS) configuration
  • P O SL indicates the value of sl-P0-PSSCH-PSCCH, sl-P0-PSSCH -PSCCH is a parameter configured by higher layers
  • PL SL referenceSignalPower-higher layer filter RSRP, where PL SL indicates the path loss between TX UE and RX UE, and referenceSignalPower indicates that TX UE sends PSSCH
  • the second terminal device may send the first report information to the first terminal device, and the first interference information included in the first report information indicates the adjacent frequency interference suffered by the second terminal device, so that the first The terminal device may take the first interference information as a consideration factor when determining the transmit power of the third terminal device.
  • the adjacent channel interference received by the receiving device can be considered as a factor, for example, the transmit power of the transmitting device can be increased accordingly to compensate for the adjacent channel interference of the receiving device This makes the determined transmission power more accurate and more in line with the current actual situation, which helps to improve the quality of data transmission and the success rate of reception.
  • the technical solutions provided in the embodiments of the present application can be applied to D2D scenarios, such as new radio (new radio, NR)-D2D scenarios, etc., or can be applied to vehicle to everything (V2X) scenarios, such as NR-V2X scenarios, etc. .
  • V2X vehicle to everything
  • it can be applied to the Internet of Vehicles, such as V2X, vehicle-to-vehicle (V2V), etc., or can be used in fields such as intelligent driving, assisted driving, or intelligent networked vehicles.
  • Two optional application scenarios of the embodiment of the present application are introduced as follows through FIG. 2A and FIG. 2B .
  • FIG. 2A is a schematic diagram of an application scenario of an embodiment of the present application.
  • Figure 2A includes TX UE 1, TX UE 2, and TX UE 3, and includes RX UE 1, RX UE 2, and RX UE 3.
  • TX UE 1 and RX UE 2 are the same UE, that is, the UE can either send sideline information or receive sideline information. row information.
  • UE may send sidelink information on some subbands, and may receive sidelink information on other subbands at the same time, that is, allowing transceiver links to exist at the same time, which can improve UE performance. data transmission efficiency.
  • TX UE 1 is the sending end of RX UE 1, and TX UE1 sends sideline information to RX UE 1 on subband 1;
  • TX UE 2 is the sending end of RX UE 2, and TX UE 2 is on subband 2 Send sidelink information to RX UE 2;
  • TX UE 3 is the sending end of RX UE 3, and TX UE 3 sends sidelink information to RX UE 3 on subband 3.
  • Figure 2A also draws several dotted lines to indicate adjacent channel interference.
  • TX UE 3 when TX UE 3 sends sidelink information to RX UE 3, it may cause adjacent channel interference to the reception of RX UE 1; When sending sidelink information, it may cause adjacent channel interference to the reception of RX UE 1, and may also cause adjacent channel interference to the reception of RX UE 3; in addition, when TX UE 1 sends sidelink information to RX UE 1, it may also cause It will cause adjacent channel interference to the reception of RX UE 2, because TX UE 1 and RX UE 2 are the same UE, so the adjacent channel interference at this time is also considered as self-interference.
  • the desired link in Figure 2A refers to the link where the TX UE sends information to the RX UE, and the TX UE is the sending end of the RX UE.
  • FIG. 2B is a schematic diagram of another application scenario of the embodiment of the present application.
  • FIG. 2B shows the communication between a general programmable logic controller (programmable logic controller, PLC), a slave PLC, and slave devices of the slave PLC following an industrial automation protocol.
  • PLC programmable logic controller
  • Slave devices from the PLC such as valve islands, sensors, etc.
  • the communication may occur between the master PLC and the slave PLC, and between the slave PLC and its slave devices, and it is generally assumed that there is no communication between slave devices of the slave PLC.
  • the main PLC may need to receive information from a certain slave PLC and send information to other slave PLCs; at the same time, a certain slave PLC may need to receive information from the main PLC and send information to the slave devices of the slave PLC .
  • the communication between the master PLC, slave PLCs, and slave devices is usually dominated by periodic traffic, and also includes non-periodic traffic such as alarms or firmware upgrades.
  • FIG. 2B includes master PLC 200 , slave PLC 201 and slave PLC 202 , slave device 203 of slave PLC 201 , and slave device 204 of slave PLC 202 .
  • the blocks connected with each device in FIG. 2B represent transceivers, that is, for the master PLC, slave PLC, and slave devices, there may be no built-in transceivers, but they may be connected with transceivers. Alternatively, the transceivers may also be arranged inside these devices, which is not specifically limited.
  • the total PLC 200 can act as a TX UE, for example, as TX UE1.
  • the slave PLC can be used as a TX UE (it can send information to the main PLC200, and can also send information to the slave equipment connected to the slave PLC); in addition, the slave PLC can also be used as a RX UE (it can receive information from the main PLC200, and can also send information from the slave device connected to the slave PLC).
  • the slave device connected to the PLC receives information).
  • the slave device can be used as a TX UE and can send information to the slave PLC connected to the slave device; in addition, the slave device can also be used as an RX UE and can receive information from the slave PLC connected to the slave device.
  • the numbering can be based on the TX UE, or the numbering can also be based on the RX UE.
  • the base number based on RX UE Take the base number based on RX UE as an example. For example, there are 3 TX UEs and 2 RX UEs, and 2 TX UEs among the 3 TX UEs are the transmitters of one of the RX UEs, and the TX UE of the other RX UE among the 2 RX UEs is the TX UE of the 3 The remaining one UE among the TX UEs.
  • the two communication links can be numbered as 1 and 2 respectively, and the communication links Link 1 corresponds to a TX UE and the RX UE.
  • the TX UE can be numbered as 1
  • the RX UE can be numbered as 1
  • the communication link 2 corresponds to another TX UE and the RX UE.
  • the The TX UE is numbered 2
  • the RX UE is numbered 2.
  • RX UE corresponding to a sender there is a communication link between the RX UE and the sender, and the communication link can be numbered as 3, then the TX UE number corresponding to the communication link is 3, and the RX UE The UE number is 3. That is to say, after the final numbering, RX UE1 ⁇ RX UE 3 are obtained, but in fact there are only 2 RX UEs, of which RX UE 1 and RX UE 2 are actually the same RX UE, but they correspond to different communication chains Different numbers can be set for the same RX UE.
  • the same TX UE can also have different numbers when corresponding to different communication links.
  • a TX UE may be used as both a TX UE on a communication link and an RX UE on another communication link.
  • the same Time can be used as both TX UE and RX UE. Therefore, in the following, if a UE is described as a TX UE, it may mean that the UE acts as a TX UE on one or some communication links, and the UE may also act as a RX UE on other communication links, or that the UE also May not act as RX UE.
  • a UE may mean that the UE acts as an RX UE on one or some communication links, and the UE may also act as a TX UE on other communication links, or the UE may not As a TX UE.
  • a UE may be both a TX UE and a RX UE, it may be numbered as TX UE i or RX UE j, and i is not equal to j.
  • the receiving end of TX UE i is RX UE i
  • the sending end of RX UE i is TX UE i
  • TX UE i is not the sender of RX UE j.
  • TX UE can be considered to correspond to the direction of information transmission.
  • RX UE can be considered to correspond to the direction of information transmission.
  • TX UE if a UE will send information to other UEs as a transmitter, the UE can be called a "TX UE"; if a UE will receive information from a transmitter as a receiver, the UE can be called a "RX UE”. ".
  • FIG. 3 is a flowchart of the method.
  • the access network device sends configuration information.
  • the second UE receives configuration information.
  • the access network device may configure first resources for interference measurement for one or more UEs, and these UEs may include RX UEs and/or TX UEs.
  • S301 uses an example in which the access network device configures the first resource for the second UE, where the second UE is, for example, an RX UE.
  • the configuration information may be provided by the access network device when configuring the SL resource pool for the UE, for example, the configuration information is included in the message for configuring the SL resource pool for the UE, or the configuration information is related to the The message of the SL resource pool is sent together.
  • the configuration information may also be included in other messages, or in other words, the configuration information may not be provided when configuring the SL resource pool for the UE, but provided in other situations.
  • S301 may also be replaced by: TX UE sends configuration information. That is, the configuration information can also be configured by the TX UE, and the TX UE is the sending end that will send sidelink information to the second UE. Or it can be understood that the embodiment of the present application is to determine the transmission power of the TX UE. If a TX UE is a transmitting end of a RX UE, the transmission power determined for the TX UE is used to send information to the RX UE. For example, the third UE is a TX UE, and the third UE is the transmitting end of the second UE, then the transmission power of the third UE to be finally determined can be used to send information to the second UE.
  • the TX UE is, for example, the sending end, and the sending end is, for example, the third UE; or, if there may be multiple sending ends for the second UE, then The TX UE is, for example, one of multiple sending ends, and the TX UE is, for example, the third UE.
  • the configuration information may be used to configure the first resource, for example, the configuration information includes the position of the time-domain symbol occupied by the first resource in a slot (slot), and/or includes the position of the symbol in the frequency domain occupied by the first resource
  • the first resource is located on the working subband of the second UE, or in other words, the frequency domain resources included in the first resource belong to the working subband of the second UE.
  • the working subband of an RX UE may also be referred to as the expected receiving subband of the RX UE, for example, includes the subband where the transmitting end of the RX UE sends information to the RX UE.
  • the first resource can be used to measure the interference from other subbands suffered by the working subband of the second UE. It can be understood that when the second UE receives sidelink information on the working subband of the second UE, it can pass The first resource measures the sidelink information from other subbands (or in other words, the sidelink information leaked from other subbands to the working subband) to determine the reception of the UE's working subband by the transmission behavior on other subbands Interference caused by behavior.
  • the first resource is a resource for the corresponding RX UE to perform measurement
  • the access network device also configures the first resource for the TX UE
  • the first resource for example, the third UE
  • no information may be sent on the first resource, for example, no information is sent on the PSCCH, PSSCH, and DMRS.
  • the first resource is, for example, a channel state information-interference measurement (channel state information-interference measurement, CSI-IM) resource, or other resources.
  • the second UE measures the adjacent subbands of the working subband of the second UE on the first resource, thereby determining the interference received by the working subband from other subbands.
  • one UE measures one subband, or one UE measures sidelink information from one subband, and the actual measurement object is, for example, received power.
  • the second UE measures the adjacent subbands of the working subband of the second UE on the first resource, or the second UE measures sidelink information from a certain subband on the first resource (the subband is, for example, the second Adjacent subbands of the working subband of the UE), it can be understood that the second UE measures the interference power leaked to the working subband by the signal transmission on the adjacent subband on the first resource.
  • the first resource may be configured for the working subband of the second UE.
  • the second UE may have one or more working subbands, and the first resource may correspond to all or part of the working subbands.
  • a working subband there will be a frequency domain start position and a frequency domain end position, then there may be adjacent subbands for the frequency domain start position, and there may be corresponding subbands for the frequency domain end position Adjacent subbands, it can be considered that one working subband can correspond to two adjacent subbands. Therefore, the first resource configured for one of the working subbands in all or part of the working subbands may include at least one subresource, and at least one subresource may be used to measure adjacent subbands of the working subband.
  • one subresource of the at least one subresource may correspond to a part of adjacent subbands of the working subband, and optionally, the at least one subresource is one subresource or two subresources.
  • two subresources are configured for a certain working subband, where the frequency domain position of subresource 1 is closer to the frequency domain position of the adjacent subband 1 of the working subband, and the frequency domain position of subresource 2 is closer to the frequency domain position of the working subband. If the frequency domain positions of the adjacent subband 2 of the subbands are closer, it is considered that the subresource 1 corresponds to the adjacent subband 1, and the subresource 2 corresponds to the adjacent subband 2.
  • the first resource corresponds to a working subband, which means that the frequency domain position of the first resource is located on the working subband.
  • One subresource corresponds to a part of adjacent subbands, which means that the second UE can measure information on this part of adjacent subbands on the subresource.
  • Adjacent subbands of a working subband refer to subbands adjacent to the working subband in the frequency domain, that is, there are no other subbands between the adjacent subband and the working subband; or, a Adjacent subbands of the working subband may not be adjacent to the working subband in the frequency domain, but if there is no information transmission in all subbands between subband A and the working subband, the subband Band A can also be regarded as an adjacent subband of the working subband. Therefore, at least one subresource is used to measure adjacent subbands of the working subband of the second UE.
  • At least one subresource can be used to measure subbands adjacent to the working subband of the second UE in the frequency domain , and/or, may be used to measure a subband without information transmission in other subbands separated from the working subband of the second UE.
  • Subband 1 in Figure 4 is, for example, a working subband of RX UE 1, and TX UE 1 sends information to RX UE 1 on subband 1;
  • subband 2 is, for example, a working subband of RX UE 2, and TX UE 2 Send information to RX UE 2 on subband 2;
  • subband 3 is, for example, a working subband of RX UE 3, and TX UE 3 sends information to RX UE 3 on subband 3.
  • Figure 4 uses the low-frequency position as the frequency domain start position of the subband.
  • subband 2 is the adjacent subband of the frequency domain start position of subband 1, and the frequency domain end position of subband 1
  • there may also be adjacent subbands which are not shown in Figure 4; for subband 2, subband 1 is the adjacent subband at the end of the frequency domain of subband 2, and subband 3 is the frequency domain of subband 2.
  • the adjacent subbands of the starting position of the domain; for subband 3, subband 2 is the adjacent subband of the end position of the frequency domain of subband 3, and the starting position of the frequency domain of subband 3 may also have the same Adjacent subbands are not shown in Figure 4.
  • the hatched boxes in FIG. 4 indicate the first resource.
  • the first resources configured for the three RX UEs all include two sub-resources, and the two sub-resources correspond to two adjacent sub-bands of the corresponding RX UEs.
  • the two subresources allocated to subband 2 are called CSI-IM resource 1 and CSI-IM resource 2 respectively, where CSI-IM resource 1 is closer to the frequency domain end position of subband 2, CSI-IM resource 1 is closer to the start position of subband 2 in the frequency domain.
  • RX UE 2 can measure the adjacent channel interference power leaked to sub-band 2 when TX UE 1 sends information on sub-band 1 on CSI-IM resource 1, and can also measure TX UE 3 on CSI-IM resource 2 Adjacent channel interference power leaked to subband 2 when sending information on subband 3.
  • some RX UEs may be able to work on multiple subbands, that is, have multiple working subbands. Then, for some or all of the working subbands in the multiple working subbands, the access network device or the corresponding TX UE (for example, the transmitting end of the RX UE) can configure resources for it to measure adjacent subbands, and Figure 4 is only Take one of the working subbands as an example.
  • the time domain positions of the first resources configured in the subband 1 to the subband 3 are the same, and the relative positions in the frequency domain are the same.
  • the first resources configured for different UEs may have the same or different relative positions in the time domain and/or frequency domain;
  • the time domain positions and/or frequency domain relative positions corresponding to the configured first resources may be the same or different.
  • the relative position in the frequency domain of the first resource is, for example, an offset between the first resource and the start position in the frequency domain of the subband and/or the start position in the frequency domain.
  • the first resource is predefined through a protocol, or is preconfigured in the UE, and S301 does not need to be performed. Therefore, S301 is an optional step.
  • the TX UE sends first power information.
  • the second UE receives the first power information from the TX UE.
  • the TX UE will send sidelink information in the time slot (slot) where the first resource is located, and the first power information may indicate that the sidelink information corresponds to the transmit power of the time domain position where the first resource is located.
  • the TX UE will send the sidelink information in the time slot where the first resource is located, and the sidelink information may occupy the entire time slot in the time domain, then the time domain position of the sidelink information includes the first resource location in the time domain.
  • the transmission power of the sidelink information may be the same or may be different.
  • the first power information indicates the sending power of the sidelink information at the time domain position where the first resource is located.
  • the first power information may be included in the sidelink information.
  • the time domain position of the first power information may be located before the time domain position where the first resource is located.
  • the first power information may be included in sidelink control information (sidelink control information, SCI), the SCI can be carried by PSCCH, and the first resource is located on the previous PSSCH of the protection symbol; or, the time domain position of the first power information can be included in the time domain position of the first resource, for example, the first power information is also passed through the first The PSSCH bearer where the resource is located; or, the first resource may also be located in another time domain position in the time slot, and the time domain position of the first power information may also be located after the time domain position where the first resource is located.
  • SCI sidelink control information
  • SCI sidelink control information
  • PSCCH sidelink control information
  • the first resource is located on the previous PSSCH of the protection symbol
  • the time domain position of the first power information can be included in the time domain position of the first resource, for example, the first power information
  • the first power information is sent by, for example, broadcasting. It is possible that multiple UEs can receive the first power information.
  • the second UE receives the first power information as an example.
  • there may be multiple UEs to send sidelink information that is, there may be multiple TX UEs, and all the multiple TX UEs may send corresponding power information.
  • the fourth UE is also a TX UE
  • the third UE and the fourth UE are the senders of the corresponding RX UE, and both TX UEs need to send information to the corresponding RX UE, then the third UE and the fourth UE will both Send power information.
  • the power information sent by a TX UE may indicate the transmission power of the sidelink information sent by the TX UE in the time slot where the first resource is located in the time domain position where the first resource is located, for example, the power information sent by the third UE
  • the power information may indicate the transmission power of the sidelink information sent by the third UE in the time slot where the first resource is located in the time domain position where the first resource is located
  • the power information sent by the fourth UE may indicate the transmission power of the sidelink information sent by the fourth UE in the time slot where the first resource is located.
  • the transmission power of the sidelink information sent in the time slot where a resource is located at the time domain position where the first resource is located.
  • S302 is considered to be performed by the third UE and/or the fourth UE ( Figure 3 takes the execution of the third UE as an example), and the sidelink information sent by the third UE and/or the fourth UE is collectively referred to as the first sidelink information (or understood as, if the third UE will send sideline information, and the fourth UE will not send sideline information, then the first sideline information is the sideline information sent by the third UE in the time slot where the first resource is located ; Or, if the fourth UE will send sideline information, and the third UE will not send sideline information, then the first sideline information is the sideline information sent by the fourth UE in the time slot where the first resource is located; or, If both the third UE and the fourth UE send sideline information, the first sideline information includes sideline information 1 and sideline information 2, and sideline information 1 is sent by the third UE in the time slot where the first resource is located sidelink information, sidelink information 2 is the sidelink information sent by the fourth UE in
  • the first side line information includes side line information 1 and side line information 2
  • the first power information can also be regarded as including power information 1 and power information 2
  • power information 1 is sent by the third UE, indicating side line information
  • the line information 1 corresponds to the transmit power of the time domain position where the first resource is located
  • the power information 2 is sent by the fourth UE, indicating that the side line information 2 corresponds to the transmit power of the time domain position where the first resource is located.
  • the transmit power indicated by the power information may or may not be equal.
  • the receiving end of the first sidelink information may be the second UE, or other RX UEs except the second UE.
  • S302 takes the third UE and/or the fourth UE sending the first power information as an example. It may be clear that, for the second UE, it is possible to receive power information from one or more TX UEs, for example, in addition to the first power information, other power information may also be received.
  • the second UE may also determine the power used by the TX UE to send the sidelink information on the first resource in other ways, and there is no need to perform S302, so S302 is an optional step.
  • the second UE determines first interference information.
  • the first interference information is, for example, adjacent-channel interference information, which may indicate adjacent-channel interference caused by other UEs when sending information to the second UE when receiving information. If the second UE receives information on the working subband, other UEs will send information on the adjacent subband of the working subband, which may cause adjacent frequency interference to the second UE, and the second UE can determine that the adjacent Interference information. In some scenarios, there may be multiple RX UEs, and one or more RX UEs may be subject to adjacent channel interference.
  • TX UE 3 when TX UE 3 sends sidelink information to RX UE 3 on subband 3, it may cause adjacent channel interference to the reception of RX UE 1, and TX UE 2 sends side information to RX UE 2 on subband 2 When transmitting information, it may also cause adjacent channel interference to the reception of RX UE 3.
  • some or all of the RX UEs that will be subject to adjacent channel interference can determine the adjacent channel interference information, because different RX UEs determine the adjacent channel interference information in a similar way, so S303 uses the second UE to determine the adjacent channel interference information. Take frequency interference information as an example.
  • the second UE may obtain the first interference information through measurement on the first resource.
  • SCI may be sent before sending the sidelink information, or according to the previous understanding, the information sent by the UE in a time slot is understood as a sidelink information, then the sidelink information sent by the TX UE It may include SCI, and the SCI is carried by PSCCH, for example.
  • the SCI may include scheduling information of the PSSCH and/or PSCCH in the sidelink information, the scheduling information includes, for example, time/frequency position information of the PSSCH and/or PSCCH, wherein the frequency domain position information of the PSSCH and/or PSCCH may indicate Subbands that carry PSSCH and/or PSCCH.
  • the sidelink information is sent by, for example, broadcasting or multicasting, and multiple RX UEs may receive the sidelink information.
  • Different TX UEs may send sidelink information through broadcast or multicast, so for the second UE, it may receive sidelink information from multiple TX UEs, thereby obtaining SCIs of multiple TX UEs.
  • the second UE can determine the subbands used by each TX UE for sending sidelink information according to the received SCI, if there are subbands adjacent to the working subband of the second UE in the frequency domain in these subbands, the second The UE may measure the neighboring subbands on the first resource. In addition, if subband A exists in these subbands, although there are other subbands between subband A and the working subband of the second UE, but no information is transmitted on the other subbands, the second UE can also Subband A is measured on the first resource.
  • the second UE may also determine that there is no information transmission on the other subband.
  • the second UE may receive the first side information, and obtain the third UE and/or the fourth UE's information from the first side information. SCI. According to the SCI from the third UE, the second UE can determine the subband where the sidelink information 1 sent by the third UE is located, and according to the SCI from the fourth UE, can determine the subband where the sidelink information 2 sent by the fourth UE is located. Subband.
  • the first side line information is located on the first subband (wherein, if the first side line information includes side line information 1 and side line information 2, the first subband is considered to include subband 1 and side line information 1 carrying side line information Subband 2 carrying sideline information 2, subband 1 and subband 2 may be the same subband or different subbands), then the second UE may measure the first subband on the first resource, or That is to say, the second UE can measure the first sidelink information from the first subband on the first resource to obtain the power, which is leaked to the first resource where the sidelink information on the adjacent frequency is sent.
  • the power on the working subband is regarded as the interference to the second UE, so it can be called adjacent frequency interference power.
  • the adjacent channel interference power is represented by, for example, reference signal receiving power (reference signal receiving power, RSRP) or received signal strength indication (received signal strength indication, RSSI), or may also be represented in other forms.
  • the second UE may measure received power in subband 1, where subband 1 is a subband that carries sidelink information 1 from the third UE.
  • the second UE may determine the adjacent channel interference power generated by the transmission of the third UE on the reception of the second UE according to an in-band emission (in-band emission, IBE) template and the received power measured on subband 1.
  • IBE in-band emission
  • the second UE can measure the DMRS from the third UE in subband 1 to obtain the received power, and the second UE can input the received power into the in-band radiation template, so that it can be determined that the transmission of the third UE has an impact on the second UE.
  • the in-band radiation template may describe the ratio of the average output power on PRBs in the transmission bandwidth occupied by the UE to the average output power on PRBs outside the transmission bandwidth.
  • the in-band radiation template can be pre-configured, for example, it is pre-configured in the UE when the UE leaves the factory; or the in-band radiation template can also be configured by the UE itself or by a network device; or the in-band radiation template can also be configured by Protocol predefinition, etc.
  • the second UE After the second UE obtains the adjacent frequency interference power, it can determine the first interference information.
  • the first interference information includes the adjacent-channel interference power, or it can be understood as including information about the adjacent-channel interference power.
  • the first interference information may include an adjacent channel interference coefficient, and the adjacent channel interference coefficient may be determined according to the transmission power of the first side channel information and the adjacent channel interference power.
  • the adjacent channel interference coefficient is considered to include adjacent channel interference coefficient 1 and adjacent channel interference coefficient 2
  • the adjacent channel interference power also includes adjacent channel interference Power 1 and adjacent channel interference power 2.
  • Adjacent channel interference power 1 is obtained by the second UE on the first resource from sidelink information 1 from subband 1.
  • Adjacent channel interference power 2 is obtained by the second UE on the first resource Measured on sideline information 2 from sub-band 2 above. Then, the adjacent channel interference coefficient 1 can be determined according to the transmission power of the side information 1 and the adjacent frequency interference power 1, and the adjacent channel interference coefficient 2 can be determined according to the transmission power of the side information 2 and the adjacent frequency interference power 2.
  • the adjacent channel interference coefficient generated by TX UE i to RX UE i can satisfy the following relationship:
  • g ij represents the adjacent channel interference coefficient generated by TX UE i to X UE j.
  • rxPower j represents the adjacent channel interference power measured by the RX UE j.
  • txPower i indicates the power of the TX UE i for sending sidelink information.
  • dB stands for decibel.
  • g 21 rxPower 1 ⁇ txPower 2 [dB].
  • the adjacent channel interference coefficient can also be determined in other ways, for example, the adjacent channel interference coefficient can also be the difference between the adjacent channel interference power and the transmission power of the side information and a certain constant multiplied and/or added etc., the specific manner is not limited.
  • the first UE may determine the adjacent-channel interference coefficient in a manner similar to that of the second UE (for example, formula 2).
  • the second UE determines that there are other TX UEs sending sidelink information on the adjacent subband of the second UE's working subband, the second UE can also perform measurements on the first resource to obtain the corresponding adjacent channel interference power , the implementation process is similar and will not be repeated here. Then, if the second UE obtains multiple adjacent channel interference powers, the first interference information may include the multiple adjacent channel interference powers, or multiple adjacent channel interference coefficients corresponding to the multiple adjacent channel interference powers.
  • TX UE 1 when TX UE 1 sends sidelink information to RX UE 1, it may cause self-interference to the reception of RX UE 2.
  • the second UE is the RX UE 2 in FIG. 2A, then the second UE can measure and obtain the self-interference power in addition to the adjacent-channel interference power on the first resource. Therefore, if the second UE determines that the subband on which the second UE sends sideline information (for example, called the second subband) and the subband on which the second UE receives information are adjacent subbands (for the concept of adjacent subbands, please refer to the above introduction), then optionally, this embodiment of the present application may further include S304: the second UE determines second interference information.
  • the second interference information may indicate self-interference generated by the second UE on information received by the second UE when sending the sidelink information, for example, the sidelink information sent by the second UE is referred to as second sidelink information.
  • the second UE may obtain the second interference information through measurement on the first resource.
  • the second UE may measure the second subband on the first resource, or in other words, the second UE may measure the second sidelink information from the second subband on the first resource to obtain power, the power Since it comes from the second UE and is regarded as interference to the second UE, it may be called self-interference power.
  • the self-interference power is expressed, for example, by RSRP or RSSI, or can also be expressed by other forms.
  • the second UE After the second UE obtains the self-interference power, it can determine the second interference information.
  • the second interference information includes the self-interference power, or it can be understood as information including the self-interference power.
  • the second interference information may include a self-interference coefficient, and the self-interference coefficient may be determined according to the transmission power of the second sidelink information and the self-interference power.
  • the self-interference coefficient generated by TX UE i to RX UE j can satisfy the following relationship:
  • s ij represents the self-interference coefficient generated by TX UE i to RX UE j.
  • rxPower j represents the self-interference power measured by RX UE j.
  • txPower i indicates the power of the TX UE i for sending sidelink information.
  • TX UE i and RX UE j are the same UE.
  • the self-interference coefficient can also be determined in other ways.
  • the self-interference coefficient can also be the difference between the self-interference power and the transmission power of the sidelink information multiplied and/or added by a certain constant, etc., specifically The method is not limited.
  • the first UE may determine the self-interference coefficient in a manner similar to that of the second UE (for example, formula 3).
  • the second UE may also send sidelink information on adjacent subbands of other working subbands of the second UE, the second UE may also perform measurements on the first resource to obtain the corresponding self-interference power , the implementation process is similar and will not be repeated here. Then, if the second UE obtains multiple self-interference powers, the second interference information may include the multiple self-interference powers, or multiple self-interference coefficients corresponding to the multiple self-interference powers.
  • the second UE sends the first report information through the sidelink.
  • the first report information may be included in the SCI or the PSSCH.
  • the second UE may send the first report information in a broadcast or multicast manner, and there may be multiple UEs that can receive the first report information.
  • the first UE receives the first report information as an example.
  • other RX UEs may also send corresponding reporting information, and the sending method and the content included in the reporting information are similar. Therefore, the first UE may receive multiple reporting information, and this embodiment of the present application uses the first reporting information as an example for introduction.
  • the first UE and the third UE are, for example, the same UE, or may be different UEs, for example, the first UE may be a UE dedicated to determining transmission power for other TX UEs, and may be understood as a central UE. It can be understood that in the embodiment of the present application, each TX UE can determine the transmit power for itself, or the central UE can also determine the transmit power for multiple TX UEs, without the need for each TX UE to determine the transmit power.
  • the central UE it may be a UE with management capabilities in a UE group, or a UE determined through negotiation between multiple TX UEs and/or multiple RX UEs, or a UE determined through other methods.
  • the first UE may be neither a TX UE nor a TX UE, for example, the first UE is a different UE from the second UE, the third UE, and the fourth UE; or, the first UE A UE may also be one of the TX UEs (for example, the first UE and the third UE or the fourth UE are the same UE), and/or, the first UE is one of the RX UEs (for example, the first UE and the fourth UE are the same UE) The second UE is the same UE).
  • the first reported information may be used to determine the transmit power of one or more TX UEs.
  • the first report information may include first interference information.
  • the first report information may further include the second interference information.
  • the first report information may further include first path loss information, and the first path loss information may indicate a path loss between the third UE and/or the fourth UE and the second UE.
  • the first path loss information includes, for example, a path loss coefficient, or includes power information.
  • the power information may indicate the received power measured by the second UE on resources other than the first resource, for example, the power information is referred to as power loss information, and the power loss information is, for example, RSRP or RSSI.
  • the second UE may perform measurement on the second resource, the time domain position of the second resource may be the same as the time domain position of the first resource, but the frequency domain position of the second resource is the same as the frequency domain position of the first resource different.
  • the second UE may measure the received power of the second UE corresponding to the multiple TX UEs on resources other than the first resource. For example, if the third UE and/or the fourth UE is the transmitting end of the second UE, the second UE may measure information from the third UE and/or the fourth UE on the second resource to determine received power.
  • the second UE may use the received power information (that is, loss power information) as the first path loss information, or, the second UE may also determine the path loss coefficient according to the loss power information, and use the path loss coefficient as the first path loss information.
  • Path loss information when the first UE calculates the transmit power of a TX UE, it can refer to the path loss between the TX UE and the receiving end of the TX UE.
  • the third UE is the transmitting end of the second UE, and the first UE is at the When calculating the transmit power of the third UE, a path loss between the third UE and the second UE may be referred to.
  • the second UE may add the obtained first path loss information to the first report information.
  • the first path loss information indicates the path loss between the third UE and the second UE; or, if the fourth UE is the sending end of the second UE, and the third UE is not the sending end of the second UE, the first path loss information indicates the path loss between the fourth UE and the second UE; or, if the third UE and the fourth UE are both sending ends of the second UE, the first path loss information may include path loss information 1 and path loss information 2, the path loss information 1 indicates the path loss information between the third UE and the second UE, and the path loss information 2 Indicates path loss information between the fourth UE and the second UE.
  • the second UE may measure sidelink information from the third UE on the second resource to obtain received power, where the received power includes RSRP or RSSI, for example.
  • the side line information is, for example, side line information 1, or may be different side line information from side line information 1, and this side line information may be referred to as third side line information.
  • the second UE may determine a path loss coefficient according to the received power and the transmission power of the third sideline information, and the path loss coefficient may be used as path loss information 1 .
  • the second UE may determine the sending power of the third sidelink information according to the SCI from the third UE.
  • TX UE i is the sending end of RX UE i
  • the path loss coefficient between TX UE i and RX UE i can satisfy the following relationship:
  • h ii represents the path loss coefficient between TX UE i and RX UE i.
  • rxPower' i represents the received power measured by the RX UE i on the second resource.
  • txPower' i represents the power used by TX UE i for sending sidelink information.
  • the second UE may also determine the path loss coefficient in other ways, for example, the path loss coefficient may also be the difference between the measured received power and the transmitted power of the sidelink information multiplied by a certain constant and/or Addition, etc., the specific way is not limited.
  • the first UE may determine the path loss coefficient in a manner similar to that of the second UE (for example, Formula 4).
  • the first report information may also include a signal to interference plus noise ratio (signal to interference plus noise ratio, SINR) threshold of the second UE, where the SINR threshold is, for example, an expected (expected) SINR of the second UE, or Minimum SINR expected by the second UE.
  • SINR signal to interference plus noise ratio
  • the first reported information may include the following information: identification of interfering TX UE 1, adjacent channel interference information 1, resource reservation information 1; identification of interfering TX UE 2, adjacent channel interference information 2, resource reservation information 2 ; SINR threshold, expected TX UE identification, path loss information, resource reservation information 3; ....
  • the interfering TX UE is not the transmitting end of the second UE, but a UE capable of causing adjacent-channel interference or self-interference to the second UE; the desired TX UE is the transmitting end of the second UE.
  • the first reported information may include adjacent channel interference information and resource reservation information corresponding to the interfering TX UE; for the desired TX UE, the first reported information may include the path corresponding to the desired TX UE Loss information and resource reservation information.
  • the second UE can obtain the identity of the interfering TX UE and the resource reservation information of the interfering TX UE from the SCI from the interfering TX UE; similarly, the second UE can obtain the expected TX UE from the SCI from the desired TX UE.
  • the resource reservation information of a TX UE for example including the time domain resource reservation information of the TX UE, may indicate the resources reserved by the TX UE in one or more periods in the time domain.
  • the first report information may not include the resource reservation information of each TX UE, for example, the first TX UE may determine the resource reservation information of each TX UE through a sensing (sensing) process.
  • the first reported information may include the identity of the desired TX UE and the identity of the interfering TX UE.
  • the second UE may add different indication information for the identity of the desired TX UE and the identity of the interfering TX UE, or add an indication for the identity of the desired TX UE, or add an indication for the identity of the interfering TX UE, to pass Explicitly indicate desired TX UE and interfering TX UE.
  • the desired TX UE and the interfering TX UE may also be indicated implicitly.
  • the protocol pre-defines (or, the first UE pre-specifies) the first field and the second field, the first field is used to carry the identification of the expected TX UE, and the second field is used to carry the identification of the interfering TX UE, then different fields are used It can indicate the desired TX UE and the interfering TX UE.
  • the first UE determines the transmit power of the third UE according to the first reported information.
  • the first UE may determine the third UE's transmit power.
  • the first UE and the third UE are the same UE, the first UE only needs to determine the transmit power of the third UE, and the transmit power of other TX UEs can be determined by other TX UEs themselves, and the determination methods are similar.
  • the first UE is the central UE, the first UE can also determine the transmit power of other TX UEs in addition to determining the transmit power of the third UE, but the determination methods are similar, so the first UE determines the third UE's transmit power.
  • the process of transmitting power of the UE is taken as an example.
  • the first UE may obtain K pieces of resource reservation information from the received reported information, where K is greater than or equal to the amount of reported information. For example, the first UE may obtain the resource reservation information of the third UE and obtain the resource reservation information of the fourth UE from the first reported information. If the first UE is the central UE, the first UE may determine the TX UEs that will simultaneously send information according to the K resource reservation information. The first UE can be determined separately for different time slots. For example, for time slot 1, the first UE can determine the TX UE that will send information in time slot 1 according to the K resource reservation information; for time slot 2, the first UE The TX UE that will send information in the time slot 2 can be determined according to the K resource reservation information.
  • the first UE determines according to the K resource reservation information that no TX UE will send information in the time slot, then for the time slot, the first UE does not need to perform S306. For TX UEs that will send information at the same time, the first UE may determine the transmit power of these TX UEs according to the reported information related to these TX UEs.
  • the third UE may determine a TX UE that will send information simultaneously with the third UE according to the K resource reservation information.
  • the third UE can be determined separately for different time slots, for example, the third UE will send information in time slot 1, then the third UE can determine other TX UEs that will send information in time slot 1 according to the K resource reservation information and if the third UE will not send information in time slot 1, the third UE does not need to determine the transmission power of the third UE in time slot 1, that is, for time slot 1, the third UE may not perform S306.
  • the first UE may determine the transmit power of the third UE according to the reported information related to the third UE and these TX UEs.
  • the reported information related to a TX UE may include the adjacent channel interference information generated by the TX UE to the RX UE.
  • it may also include one or more of the following items: Interference information, the path loss information corresponding to the TX UE, or the SINR threshold of the receiving end of the TX UE.
  • the method for determining the transmit power is introduced below. There may be multiple ways to determine the sending power of the third UE, and several ways are described below with examples.
  • the transmit power of TX UE i can satisfy the following relationship:
  • P i represents the transmit power of TX UE i.
  • P min,i represents the minimum transmit power of TX UE i. If the first UE is a central UE, the first UE may configure P min,i for TX UE i; or, if the first UE is a third UE, TX UE i may configure P min,i for TX UE i , for example The number of the third UE is 1, and the third UE may configure P min1 for the third UE.
  • P cmax represents the maximum output power of TX UE i.
  • A is an N ⁇ N square matrix, and N represents the number of UE pairs between TX UE and RX UE in the same time slot.
  • the first UE determines that in time slot 1, TX UE a, TX UE b, and TX UE c will simultaneously send sidelink information, and RX UE a, RX UE d, and RX UE e will receive sidelink information , where TX UE a, as a non-overlapping sub-band full-duplex UE, will send and receive sidelink information at the same time.
  • the number of communication links (or called sidelink communication links) that may have sidelink information is 3, respectively between TX UE a and RX UE d
  • the communication link between TX UE b and RX UE a, and the communication link between TX UE c and RX UE e, then there can be three corresponding UE pairs, namely: TX UE a-RX UE d, TX UE b-RX UE a, TX UE c-RX UE e. That is, N 3.
  • TX UE and RX UE according to the communication link for example, TX UE a, TX UE b, and TX UE c correspond to TX UE 1, TX UE 2, TX UE 3, RX UE d, RX UE a, and RX UE respectively e correspond to RX UE 1, RX UE 2, and RX UE 3 respectively.
  • b is a vector of N ⁇ 1, the jth element of b in, is the thermal noise power on the working subband of RX UE j.
  • RX UE j can send added to the first reported information, or RX UE j may also use other information to sent to the first UE.
  • the transmit power of TX UE i can satisfy the following relationship:
  • P i represents the transmit power of TX UE i obtained according to Formula 6.
  • P' i represents the transmit power of TX UE i obtained according to Formula 1.
  • A is an N ⁇ N square matrix, and N represents the number of UE pairs between the TX UE and the RX UE in the same time slot.
  • N represents the number of UE pairs between the TX UE and the RX UE in the same time slot.
  • ⁇ j represents the SINR of RX UE j, for example, ⁇ j satisfies:
  • b is an N ⁇ 1 vector, for example, b can be configured by a higher layer.
  • Method 3 The transmit power of TX UE i is determined through an iterative process.
  • the first UE determines a set A and a set B of TX UEs, where the set A is Set B is ⁇ th,i is the SINR threshold reported by RX UE i.
  • the number of UE pairs of TX UEs and RX UEs in the same time slot is N, for which reference may be made to the introduction of method 1.
  • collection CCP contains TX UEs, where the nth TX UE is recorded as TX UE i n among the N TX UEs.
  • the first UE update set The transmit power of TX UE i in And, the first UE updates the set The power of TX UE i n in is According to the updated transmit power of TX UE i
  • the first UE may determine that the SINR of the RX UE i (the receiving end of the TX UE i) is
  • a t is The square matrix, the element [A t ] mn of row m and column n of At t corresponds to TX UE i n and RX UE i m . in, When TX UE i n and RX UE i m are different UEs, otherwise (A t ) m -1 is the mth row of the inverse matrix of A t .
  • the mth element of b t is the thermal noise power on the working subband of RX UE im .
  • RX UE i m can send Added to the reported information, or the RX UE i m can also use other information to sent to the first UE.
  • the inverse matrix of the matrix is used (for example or (A t ) m -1 ), by inverting the matrix and multiplying it with the corresponding b (or b t ), the SINR of the RX UE can be adjusted, thereby improving the SINR of the UE with poor channel quality, or the Overall increase the SINR of RX UE.
  • the first UE may also use other methods to determine the transmit power of the TX UE according to the first reported information.
  • the third UE may use the transmission power to send information.
  • this embodiment of the present application may further include S307: the first UE sends transmission power information, where the transmission power information may indicate the transmission power of the third UE.
  • the transmit power information may be carried by a PSSCH.
  • the first UE can determine the transmit power of multiple TX UEs, and the first UE can send corresponding transmit power information to the multiple TX UEs in unicast mode, one of which sends
  • the power information may indicate the transmit power of the receiving end of the sending power information.
  • the receiving end of the sending power information is the third UE, and the sending power information indicates the sending power of the third UE.
  • the first UE may also send the transmit power information in a broadcast or groupcast manner, and at this time, the transmit power information may indicate the transmit power of multiple TX UEs.
  • the transmission power information may include the following information: the identity of the third UE, resource reserved time slot a1, transmission power a1, resource reserved time slot a2, transmission power a2, ..., resource reserved time slot aE, transmission power aE ;
  • FIG. 3 takes the receiving of the transmission power information by the third UE as an example.
  • the first UE sends the transmission power information in a broadcast or multicast manner
  • multiple UEs may be able to receive the transmission power information.
  • the third UE if information needs to be sent in a certain time slot, the corresponding transmission power of the third UE in the time slot may be determined from the transmission power information.
  • the sending power information is as shown above, if the third UE needs to send information in the resource reserved time slot a1, it may determine that the sending power a1 should be used for sending.
  • the transmission power information received by the third UE may not indicate the transmission power of the third UE, for example, the transmission power information does not include the identity of the third UE, indicating that the transmission power of the third UE is not indicated; or, Although the transmit power information indicates the transmit power of the third UE, it only indicates the transmit power of the third UE in some time slots. For other time slots in which the third UE may send information, the transmit power information does not indicate the corresponding the sending power.
  • the sending power information is as shown above, if the third UE needs to send information in the resource reserved time slot aE1, the sending power information does not indicate the sending power. If it is any one of the above two situations, the third UE may determine the transmit power of the third UE according to a conventional method, for example, the third UE may determine the transmit power according to Formula 1.
  • the adjacent channel interference and/or self-interference suffered by the RX UE can be taken into consideration, so as to minimize the impact on other RX UEs when the TX UE sends information. interference.
  • the transmit power of TX UE can be appropriately reduced, which helps to reduce interference to RX UE, and can also improve SINR for these RX UE.
  • FIG. 5 shows a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication apparatus 500 may be the first terminal device or the circuit system of the first terminal device described in the embodiment shown in FIG. 3 , and is used to implement the method corresponding to the first terminal device in the above method embodiments.
  • the communication apparatus 500 may be the second terminal device or the circuit system of the second terminal device described in the embodiment shown in FIG. 3 , and is used to implement the method corresponding to the second terminal device in the foregoing method embodiments.
  • a circuit system is a chip system.
  • the communication device 500 includes at least one processor 501 .
  • the processor 501 can be used for internal processing of the device to realize certain control processing functions.
  • processor 501 includes instructions.
  • processor 501 may store data.
  • different processors may be separate devices, may be located in different physical locations, and may be located on different integrated circuits.
  • different processors may be integrated within one or more processors, eg, on one or more integrated circuits.
  • the communication device 500 includes one or more memories 503 for storing instructions.
  • data may also be stored in the memory 503 .
  • the processor and memory can be set separately or integrated together.
  • the communication device 500 includes a communication line 502 and at least one communication interface 504 .
  • the memory 503, the communication line 502, and the communication interface 504 are all options, they are all indicated by dotted lines in FIG. 5 .
  • the communication device 500 may further include a transceiver and/or an antenna.
  • a transceiver may be used to send information to or receive information from other devices.
  • the transceiver may be referred to as a transceiver, a transceiver circuit, an input-output interface, etc., and is used to realize the transceiver function of the communication device 500 through an antenna.
  • the transceiver includes a transmitter (transmitter) and a receiver (receiver).
  • the transmitter can be used to generate a radio frequency (radio frequency) signal from a baseband signal
  • the receiver can be used to convert the radio frequency signal into a baseband signal.
  • the processor 501 may include a general-purpose central processing unit (central processing unit, CPU), a microprocessor, a specific application integrated circuit (application specific integrated circuit, ASIC), or one or more integrated circuits for controlling the execution of the program program of this application. circuit.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • Communication line 502 may include a path for passing information between the above-described components.
  • Communication interface 504 using any device such as a transceiver for communicating with other devices or communication networks, such as Ethernet, radio access network (radio access network, RAN), wireless local area networks (wireless local area networks, WLAN), Wired access network, etc.
  • a transceiver for communicating with other devices or communication networks, such as Ethernet, radio access network (radio access network, RAN), wireless local area networks (wireless local area networks, WLAN), Wired access network, etc.
  • the memory 503 may be a read-only memory (read-only memory, ROM) or other types of static storage devices that can store static information and instructions, a random access memory (random access memory, RAM) or other types that can store information and instructions It can also be an electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be programmed by a computer Any other medium accessed, but not limited to.
  • the memory 503 may exist independently, and is connected to the processor 501 through the communication line 502 . Alternatively, the memory 503 may also be integrated with the processor 501 .
  • the memory 503 is used to store computer-executed instructions for implementing the solutions of the present application, and the execution is controlled by the processor 501 .
  • the processor 501 is configured to execute computer-executed instructions stored in the memory 503, so as to implement the power determination method provided in the above-mentioned embodiments of the present application.
  • the computer-executed instructions in the embodiments of the present application may also be referred to as application program codes, which is not specifically limited in the embodiments of the present application.
  • the processor 501 may include one or more CPUs, for example, CPU0 and CPU1 in FIG. 5 .
  • the communication device 500 may include multiple processors, for example, the processor 501 and the processor 508 in FIG. 5 .
  • Each of these processors may be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the chip When the device shown in FIG. 5 is a chip, such as a chip of a first terminal device, or a chip of a second terminal device, the chip includes a processor 501 (may also include a processor 508), a communication line 502, and a memory 503. and communication interface 504 .
  • the communication interface 504 may be an input interface, a pin, or a circuit.
  • the memory 503 may be a register, a cache, and the like.
  • the processor 501 and the processor 508 may be a general-purpose CPU, a microprocessor, an ASIC, or one or more integrated circuits for controlling program execution of the power determination method in any of the above embodiments.
  • the embodiment of the present application may divide the device into functional modules according to the above method example, for example, each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules.
  • FIG. 6 shows a schematic diagram of an apparatus, and the apparatus 600 may be the first terminal device or the second terminal device involved in each method embodiment above, or It is a chip in the first terminal device or a chip in the second terminal device.
  • the apparatus 600 includes a sending unit 601 , a processing unit 602 and a receiving unit 603 .
  • apparatus 600 may be used to implement the steps performed by the first terminal device or the second terminal device in the method of the embodiment of the present application, and related features may refer to the above embodiments, and details are not repeated here.
  • the functions/implementation process of the sending unit 601, the receiving unit 603, and the processing unit 602 in FIG. 6 may be implemented by the processor 501 in FIG. 5 invoking computer-executed instructions stored in the memory 503.
  • the function/implementation process of the processing unit 602 in FIG. 6 can be realized by calling the computer execution instructions stored in the memory 503 by the processor 501 in FIG. The process can be implemented through communication interface 504 in FIG. 5 .
  • the functions/implementation process of the sending unit 601 and the receiving unit 603 may also be implemented through pins or circuits.
  • the present application also provides a computer-readable storage medium, the computer-readable storage medium stores computer programs or instructions, and when the computer programs or instructions are executed, the first terminal device or the second terminal in the foregoing method embodiments can realize the The method implemented by the device.
  • the functions described in the above embodiments can be realized in the form of software function units and sold or used as independent products.
  • the technical solution of the present application can be embodied in the form of a software product in essence or the part that contributes to it or the part of the technical solution.
  • the computer software product is stored in a storage medium, including several instructions for So that a computer device (which may be a personal computer, a server, or a network device, etc.) executes all or part of the steps of the methods described in the various embodiments of the present application.
  • the storage medium includes: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other various media that can store program codes.
  • the present application also provides a computer program product, the computer program product including: computer program code, when the computer program code is run on the computer, the computer is made to execute any one of the aforementioned method embodiments by the first terminal device or the second terminal device. The method performed by the end device.
  • An embodiment of the present application further provides a processing apparatus, including a processor and an interface; the processor is configured to execute the method performed by the first terminal device or the second terminal device involved in any one of the above method embodiments.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server, or data center by wired (eg, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (such as a floppy disk, a hard disk, or a magnetic tape), an optical medium (such as a DVD), or a semiconductor medium (such as a solid state disk (solid state disk, SSD)), etc.
  • the various illustrative logic units and circuits described in the embodiments of the present application can be programmed through general-purpose processors, digital signal processors (digital signal processors, DSPs), application specific integrated circuits (application specific integrated circuits, ASICs), field programmable A field-programmable gate array (FPGA), or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to implement or operate the described functions.
  • the general-purpose processor may be a microprocessor, and optionally, the general-purpose processor may also be any conventional processor, controller, microcontroller or state machine.
  • a processor may also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, multiple microprocessors, one or more microprocessors combined with a digital signal processor core, or any other similar configuration to accomplish.
  • the steps of the method or algorithm described in the embodiments of the present application may be directly embedded in hardware, a software unit executed by a processor, or a combination of both.
  • the software unit may be stored in RAM, flash memory, ROM, erasable programmable read-only memory (EPROM), EEPROM, registers, hard disk, removable disk, CD-ROM or any other form in the art in the storage medium.
  • the storage medium can be connected to the processor, so that the processor can read information from the storage medium, and can write information to the storage medium.
  • the storage medium can also be integrated into the processor.
  • the processor and the storage medium can be set in the ASIC, and the ASIC can be set in the terminal device.
  • the processor and the storage medium may also be disposed in different components in the terminal device.

Abstract

本申请涉及一种功率确定方法及设备。第一终端设备通过侧行链路从第二终端设备接收第一上报信息,第一上报信息包括第一干扰信息,第一干扰信息用于指示第三终端设备和/或第四终端设备在发送第一侧行信息时对所述第二终端设备产生的邻频干扰。第一终端设备根据第一上报信息确定第三终端设备的发送功率。本申请实施例在确定发送设备的发送功率时,可以将接收设备所受到的邻频干扰作为考虑因素,这使得所确定的发送功率更为准确。

Description

一种功率确定方法及设备
相关申请的交叉引用
本申请要求在2022年02月09日提交中国国家知识产权局、申请号为202210122306.9、申请名称为“一种Sidelink功率控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中;本申请要求在2022年03月17日提交中国国家知识产权局、申请号为202210268005.7、申请名称为“一种功率确定方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种功率确定方法及设备。
背景技术
侧行链路(sidelink,SL)不同于上行链路(uplink,UL)和下行链路(downlink,DL),是为了支持设备间的直接通信而引入的新的链路技术,最早是在设备到设备(device-to-device,D2D)应用场景下被引入。通过SL,使得一个用户设备(user equipment,UE)能够在不经过网络转发的情况下,直接与另一个UE通信。然而,目前所计算的UE的发送功率可能无法保证数据传输质量。
发明内容
本申请实施例提供一种功率确定方法及设备,用于提高所计算的UE的发送功率的准确性。
第一方面,提供一种功率确定方法,该方法可由第一终端设备执行,或由包括第一终端设备的其他设备执行,或由芯片系统或其他功能模块执行,该芯片系统或功能模块能够实现第一终端设备的功能,该芯片系统或功能模块例如设置在第一终端设备中。可选的,第一终端设备例如为终端设备。该方法包括:通过侧行链路从第二终端设备接收第一上报信息,所述第一上报信息包括第一干扰信息,所述第一干扰信息用于指示第三终端设备和/或第四终端设备在发送第一侧行信息时对所述第二终端设备接收信息所产生的邻频干扰;根据所述第一上报信息确定所述第三终端设备的发送功率。
本申请实施例中,第二终端设备可以向第一终端设备发送第一上报信息,第一上报信息所包括的第一干扰信息,指示了第二终端设备所受到的邻频干扰,从而第一终端设备在确定第三终端设备的发送功率时可以将第一干扰信息作为考虑因素。可见,本申请实施例在确定发送设备的发送功率时,可以将接收设备所受到的邻频干扰作为考虑因素,以尽量减小发送设备在发送信息时对其他接收设备产生的邻频干扰。这使得所确定的发送功率更为准确,更为符合当前的实际情况,有助于提高数据传输质量以及接收成功率。
在一种可选的实施方式中,所述方法还包括:根据所述第一上报信息确定所述第四终端设备的发送功率。本申请实施例中,可由中心设备为多个发送设备确定发送功率,而无需每个发送设备再确定发送功率,第一终端设备即为中心设备。那么第一终端设备除了可 以确定第三终端设备的发送功率外,还可以确定第四终端设备的发送功率,如果还有更多的发送设备,则第一终端设备也可以分别为其确定发送功率。如果由发送设备自行确定发送功率,那么一个发送设备在确定该发送设备的发送功率时,实际也会确定其他发送设备的发送功率,这对于该发送设备来说是冗余的过程。而如果由第一终端设备为各个发送设备确定发送功率,则第一终端设备可以一并确定多个发送设备的发送功率,减少了冗余过程,有利于节省各个设备的功耗。
在一种可选的实施方式中,所述第一干扰信息包括所述第三终端设备和/或所述第四终端设备在发送所述第一侧行信息时对所述第二终端设备接收信息所产生的邻频干扰功率或邻频干扰系数。第二终端设备可将邻频干扰功率的信息作为第一干扰信息,如果采用这种方式,则第一终端设备可以进一步根据邻频干扰功率的信息确定邻频干扰系数。或者,第二终端设备也可将邻频干扰功率进行相应处理,得到邻频干扰系数,再将邻频干扰系数作为第一干扰信息,减少了第一终端设备需要执行的步骤。
在一种可选的实施方式中,所述邻频干扰系数是根据所述第一侧行信息的发送功率和邻频干扰功率确定的。例如,邻频干扰系数为邻频干扰功率与第一侧行信息的发送功率之间的差值,或者,邻频干扰系数也可以是邻频干扰功率与第一侧行信息的发送功率之间的差值与某个常数的乘积或和值等,具体计算方式不做限制。
在一种可选的实施方式中,所述第一侧行信息包括所述第一侧行信息的发送功率信息。第一侧行信息可包括第一侧行信息的发送功率信息,则接收第一侧行信息的设备(例如第二终端设备)就能够明确第一侧行信息的发送功率信息,从而能够确定邻频干扰系数。
在一种可选的实施方式中,所述方法还包括:根据第一资源预留信息确定所述第三终端设备与所述第四终端设备同时发送信息,其中,所述第一资源预留信息包括所述第三终端设备的资源预留信息,以及包括所述第四终端设备的资源预留信息。例如,多个发送设备可以广播各自的资源预留信息,则第一终端设备能够获得多个发送设备的资源预留信息。第一终端设备根据发送设备的资源预留信息,就能确定哪些发送设备会同时发送信息。对于会同时发送信息的发送设备,第一终端设备可以根据与这些发送设备相关的上报信息,确定这些发送设备的发送功率。
在一种可选的实施方式中,所述第一上报信息还包括第二干扰信息,所述第二干扰信息用于指示所述第二终端设备在发送第二侧行信息时对所述第二终端设备接收信息所产生的自干扰。如果第二终端设备除了能够作为接收设备外,还能作为发送设备,那么第二终端设备在发送侧行信息时,可能会对第二终端设备接收信息造成干扰,这称为自干扰。则第二终端设备还可以确定第二干扰信息,使得第二终端设备确定的干扰信息更为准确,有助于使得第一终端设备所确定的发送功率更为准确,更为符合当前的实际情况,有助于提高数据传输质量以及接收成功率。
在一种可选的实施方式中,所述第二干扰信息包括所述第二终端设备在发送第二侧行信息时对所述第二终端设备接收信息所产生的自干扰功率或自干扰系数。第二终端设备可将自干扰功率的信息作为第二干扰信息,如果采用这种方式,则第一终端设备可以进一步根据自干扰功率的信息确定自干扰系数。或者,第二终端设备也可将自干扰功率进行相应处理,得到自干扰系数,再将自干扰系数作为第二干扰信息,减少了第一终端设备需要执行的步骤。
在一种可选的实施方式中,所述自干扰系数是根据所述第二侧行信息的发送功率和自 干扰功率确定的。例如,自干扰系数为自干扰功率与第二侧行信息的发送功率之间的差值,或者,自干扰系数也可以是自干扰功率与第二侧行信息的发送功率之间的差值与某个常数的乘积或和值等,具体计算方式不做限制。
在一种可选的实施方式中,所述第一上报信息还包括第一路径损耗信息,所述第一路径损耗信息指示所述第三终端设备和/或所述第四终端设备到所述第二终端设备之间的路径损耗,其中,所述第三终端设备的发送功率用于向所述第二终端设备发送信息。第一终端设备在确定发送设备的发送功率时,还可能用到路径损耗信息,因此第二终端设备可一并上报路径损耗信息。
在一种可选的实施方式中,所述第一上报信息还包括所述第二终端设备的SINR阈值。第二终端设备的SINR阈值,例如为第二终端设备所期望的SINR,或者为第二终端设备期望的最小SINR。接收设备可上报期望的SINR,第一终端设备通过确定发送设备的发送功率,可以尽量调整接收设备的SINR,从而尽量提高信道质量较差的接收设备的SINR,或者整体提高接收设备的SINR。
在一种可选的实施方式中,所述方法还包括:向所述第三终端设备发送所述第三终端设备的发送功率信息。如果第一终端设备是中心设备,则第一终端设备可将第三终端设备的发送功率信息告知第三终端设备。除了第三终端设备外,第一终端设备可将所确定的其他的发送功率也告知相应的发送设备。
在一种可选的实施方式中,所述第一终端设备与所述第二终端设备、所述第三终端设备、或所述第四终端设备中的其中一个终端设备为同一个终端设备;或,所述第一终端设备与所述第二终端设备、所述第三终端设备、以及所述第四终端设备均为不同的设备。第一终端设备可以是向其他终端设备发送侧行信息的发送设备,例如第一终端设备与第三终端设备或第四终端设备为同一个终端设备,或者第一终端设备也可能是除了第三终端设备和第四终端设备之外的其他的发送设备。或者,第一终端设备也可以是用于接收来自其他终端设备的侧行信息的接收设备,例如第一终端设备与第二终端设备为同一个终端设备,或者第一终端设备也可能是除了第二终端设备之外的其他的终端设备。或者,第一终端设备可能既不作为发送设备也不作为接收设备,例如第一终端设备作为中心设备或者控制设备,用于管理其他终端设备,那么第一终端设备与作为发送设备的终端设备(例如第三终端设备和第四终端设备)以与作为接收设备的终端设备(例如第二终端设备)均为不同的设备。
第二方面,提供另一种功率确定方法,该方法可由第二终端设备执行,或由包括第二终端设备的其他设备执行,或由芯片系统或其他功能模块执行,该芯片系统或功能模块能够实现第二终端设备的功能,该芯片系统或功能模块例如设置在第二终端设备中。可选的,第二终端设备例如为终端设备。该方法包括:确定第一干扰信息,所述第一干扰信息用于指示第三终端设备和/或第四终端设备在发送第一侧行信息时对所述第二终端设备接收信息所产生的邻频干扰;通过侧行链路发送第一上报信息,所述第一上报信息包括所述第一干扰信息,所述第一上报信息用于确定一个或多个发送设备的发送功率。
在一种可选的实施方式中,所述第一干扰信息包括所述第三终端设备和/或所述第四终端设备在发送第一侧行信息时对所述第二终端设备接收信息所产生的邻频干扰功率或邻频干扰系数。
在一种可选的实施方式中,所述邻频干扰系数是根据所述第一侧行信息的发送功率和 邻频干扰功率确定的。
在一种可选的实施方式中,所述方法还包括:在第一资源上对来自第一子带的所述第一侧行信息进行测量,得到所述邻频干扰功率,所述第一子带为所述第三终端设备和/或所述第四终端设备发送所述第一侧行信息的子带。
在一种可选的实施方式中,所述第一子带包括与所述第二终端设备的工作子带相邻的子带,和/或包括与所述第二终端设备的工作子带之间没有信息传输的子带。
在一种可选的实施方式中,所述第一侧行信息包括所述第一侧行信息的发送功率信息。
在一种可选的实施方式中,所述第一上报信息还包括第二干扰信息,所述第二干扰信息用于指示所述第二终端设备在发送第二侧行信息时对所述第二终端设备接收信息所产生的自干扰。
在一种可选的实施方式中,所述第二干扰信息包括所述第二终端设备在发送第二侧行信息时对所述第二终端设备接收信息所产生的自干扰功率或自干扰系数。
在一种可选的实施方式中,所述自干扰系数是根据所述第二侧行信息的发送功率和自干扰功率确定的。
在一种可选的实施方式中,所述方法还包括:在第一资源上对来自第二子带的所述第二侧行信息进行测量,得到所述自干扰功率,所述第二子带为所述第二终端设备发送所述第二侧行信息的子带。
在一种可选的实施方式中,所述第二子带包括与所述第二终端设备的工作子带相邻的子带,和/或包括与所述第二终端设备的工作子带之间没有信息传输的子带。
在一种可选的实施方式中,所述方法还包括:接收配置信息,所述配置信息用于配置所述第一资源,所述第一资源用于测量所述第二终端设备的工作子带所受到的来自其他子带的干扰。
在一种可选的实施方式中,所述第一上报信息还包括第一路径损耗信息,所述第一路径损耗信息指示所述第三终端设备和/或所述第四终端设备到所述第二终端设备之间的路径损耗,其中,所述第三终端设备的发送功率用于向所述第二终端设备发送信息。
在一种可选的实施方式中,所述第一上报信息还包括所述第二终端设备的SINR阈值。
关于第二方面或各种实施方式的技术效果,可参考对于第一方面或相应的实施方式的技术效果的介绍。
第三方面,提供一种通信装置。所述通信装置可以为上述第一方面和/或第二方面所述的第一终端设备。所述通信装置具备上述第一终端设备的功能。所述通信装置例如为第一终端设备,或为第一终端设备中的功能模块,例如基带装置或芯片系统等。一种可选的实现方式中,所述通信装置包括基带装置和射频装置。另一种可选的实现方式中,所述通信装置包括处理单元(有时也称为处理模块)和收发单元(有时也称为收发模块)。收发单元能够实现发送功能和接收功能,在收发单元实现发送功能时,可称为发送单元(有时也称为发送模块),在收发单元实现接收功能时,可称为接收单元(有时也称为接收模块)。发送单元和接收单元可以是同一个功能模块,该功能模块称为收发单元,该功能模块能实现发送功能和接收功能;或者,发送单元和接收单元可以是不同的功能模块,收发单元是对这些功能模块的统称。
例如,所述收发单元(或,所述接收单元),用于通过侧行链路从第二终端设备接收第一上报信息,所述第一上报信息包括第一干扰信息,所述第一干扰信息用于指示第三终 端设备和/或第四终端设备在发送第一侧行信息时对所述第二终端设备接收信息所产生的邻频干扰;所述处理单元,用于根据所述第一上报信息确定所述第三终端设备的发送功率。
在一种可选的实施方式中,所述通信装置还包括存储单元(有时也称为存储模块),所述处理单元用于与所述存储单元耦合,并执行所述存储单元中的程序或指令,使能所述通信装置执行上述第一方面和/或第二方面所述的第一终端设备的功能。
第四方面,提供一种通信装置。所述通信装置可以为上述第一方面和/或第二方面所述的第二终端设备。所述通信装置具备上述第二终端设备的功能。所述通信装置例如为第二终端设备,或为第二终端设备中的功能模块,例如基带装置或芯片系统等。一种可选的实现方式中,所述通信装置包括基带装置和射频装置。另一种可选的实现方式中,所述通信装置包括处理单元(有时也称为处理模块)和收发单元(有时也称为收发模块)。关于收发单元的实现方式可参考第三方面的介绍。
例如,所述处理单元,用于确定第一干扰信息,所述第一干扰信息用于指示第三终端设备和/或第四终端设备在发送第一侧行信息时对所述第二终端设备接收信息所产生的邻频干扰;所述收发单元(或,所述发送单元),用于通过侧行链路发送第一上报信息,所述第一上报信息包括所述第一干扰信息,所述第一上报信息用于确定一个或多个发送设备的发送功率。
在一种可选的实施方式中,所述通信装置还包括存储单元(有时也称为存储模块),所述处理单元用于与所述存储单元耦合,并执行所述存储单元中的程序或指令,使能所述通信装置执行上述第一方面和/或第二方面所述的第二终端设备的功能。
第五方面,提供一种通信系统,包括第三方面所述的通信装置和第四方面所述的通信装置。
第六方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序或指令,当其被运行时,使得上述各方面中第一终端设备或第二终端设备所执行的方法被实现。
第七方面,提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得上述各方面所述的方法被实现。
第八方面,提供一种芯片系统,包括处理器和接口,所述处理器用于从所述接口调用并运行指令,以使所述芯片系统实现上述各方面的方法。
附图说明
图1为在Uu口应用子带非重叠全双工技术的一种示意图;
图2A和图2B为本申请实施例的两种应用场景示意图;
图3为本申请实施例提供的一种功率确定方法的流程图;
图4为本申请实施例所配置的第一资源的一种示意图;
图5为本申请实施例提供的一种装置的示意图;
图6为本申请实施例提供的又一种装置的示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实 施例作进一步地详细描述。
以下,对本申请实施例中的部分用语或概念进行解释说明,以便于本领域技术人员理解。
本申请实施例涉及发送设备和接收设备,例如,发送设备和接收设备均为终端设备。终端设备是一种具有无线收发功能的设备,可以是固定设备,移动设备、手持设备(例如手机)、穿戴设备、车载设备,或内置于上述设备中的无线装置(例如,通信模块,调制解调器,或芯片系统等)。所述终端设备用于连接人,物,机器等,可广泛用于各种场景,例如包括但不限于以下场景:蜂窝通信、设备到设备通信(device-to-device,D2D)、车到一切(vehicle to everything,V2X)、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)、物联网(internet of things,IoT)、虚拟现实(virtual reality,VR)、增强现实(augmented reality,AR)、工业控制(industrial control)、无人驾驶(self driving)、远程医疗(remote medical)、智能电网(smart grid)、智能家具、智能办公、智能穿戴、智能交通,智慧城市(smart city)、无人机、机器人等场景的终端设备。所述终端设备有时可称为UE、终端、接入站、UE站、远方站、无线通信设备、或用户装置等等。为描述方便,本申请实施例中将终端设备以UE为例进行说明,例如,后文所涉及的第一UE可用第一终端设备替换,后文所涉及的第二UE可用第二终端设备替换,后文所涉及的第三UE可用第三终端设备替换,后文所涉及的第四UE可用第四终端设备替换。
本申请实施例中的网络设备,例如可以包括接入网设备,和/或核心网设备。所述接入网设备为具有无线收发功能的设备,用于与所述终端设备进行通信。所述接入网设备包括但不限于基站(基站收发信站点(base transceiver station,BTS),Node B,eNodeB/eNB,或gNodeB/gNB)、收发点(transmission reception point,TRP),第三代合作伙伴计划(3rd generation partnership project,3GPP)后续演进的基站,无线保真(wireless fidelity,Wi-Fi)系统中的接入节点,无线中继节点,无线回传节点等。所述基站可以是:宏基站,微基站,微微基站,小站,中继站等。多个基站可以支持同一种接入技术的网络,也可以支持不同接入技术的网络。基站可以包含一个或多个共站或非共站的传输接收点。所述接入网设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU),和/或分布单元(distributed unit,DU)。所述接入网设备还可以是服务器等。例如,车到一切(vehicle to everything,V2X)技术中的网络设备可以为路侧单元(road side unit,RSU)。以下以接入网设备为基站为例进行说明。基站可以与终端设备进行通信,也可以通过中继站与终端设备进行通信。终端设备可以与不同接入技术中的多个基站进行通信。所述核心网设备用于实现移动管理,数据处理,会话管理,策略和计费等功能。不同接入技术的系统中实现核心网功能的设备名称可以不同,本申请实施例并不对此进行限定。以5G系统为例,所述核心网设备包括:访问和移动管理功能(access and mobility management function,AMF)、会话管理功能(session management function,SMF)、策略控制功能(policy control function,PCF)或用户面功能(user plane function,UPF)等。
本申请实施例中,用于实现网络设备功能的通信装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备为例,描述本申请实施例提供的技术方案。
本申请实施例中,对于名词的数目,除非特别说明,表示“单数名词或复数名词”,即"一个或多个”。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。例如,A/B,表示:A或B。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),表示:a,b,c,a和b,a和c,b和c,或a和b和c,其中a,b,c可以是单个,也可以是多个。
本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的大小、内容、顺序、时序、优先级或者重要程度等。例如,第一干扰信息和第二干扰信息,可以是同一个干扰信息,也可以是不同的干扰信息,且,这种名称也并不是表示这两个干扰信息的内容、信息量大小、优先级或者重要程度等的不同。另外,本申请所介绍的各个实施例中对于步骤的编号,只是为了区分不同的步骤,并不用于限定步骤之间的先后顺序。例如,S301可以发生在S302之前,或者可能发生在S302之后,或者也可能与S302同时发生。
首先介绍子带非重叠全双工技术。在LTE系统中,UE与网络设备之间的通信接口可以被称为Uu口。在Uu口中,子带非重叠全双工技术允许在通信带宽内对上行链路和下行链路的时频资源进行灵活配置。例如网络设备可以配置更多的上行链路传输时隙,从而能够提高网络的上行覆盖。另外,基站可以配置上行链路子带和下行链路子带同时存在,从而降低混合自动重传请求(hybrid automatic repeat request,HARQ)反馈的时延。图1示出了在Uu口应用子带非重叠全双工100的一种场景。子带非重叠全双工在时频资源的分配上更加灵活。如图1所示,在同一时间,可以存在频域上不重叠的两个不同子带;比如:112表示上行链路时频资源,114表示下行链路时频资源。如图1所示,在同一子带,也可以存在时域上不重叠的两个时段;比如:122表示上行链路时频资源,124表示下行链路时频资源。
子带非重叠全双工技术也可以用于两个终端设备之间的侧行链路上的通信。在此情况下,子带全双工技术在Uu口中的上行链路和下行链路分别对应侧行链路通信中某个终端设备的发送链路和接收链路。应用子带非重叠全双工技术的终端设备可以灵活地配置发送链路和接收链路的时频资源。也就是说,在同一时间,可以存在频域上不重叠的两个不同子带,如子带非重叠全双工设备的发送链路时频资源以及子带非重叠全双工设备的接收链路时频资源。在同一子带,也可以存在时域上不重叠的两个时段,如子带非重叠全双工设备的发送链路时频资源以及子带非重叠全双工设备的接收链路时频资源。
下面介绍目前的UE在SL上发送信息时的功率计算方式。例如在没有网络覆盖且单播的情况下,发送UE(transmitting user equipment,TX UE)发送物理侧行链路共享信道(physical sidelink shared channel,PSSCH)的功率,可通过如下方式计算:
P PSSCH=min(P CMAX,P MAX,CBR,P PSSCH,SL)[dBm]    (公式1)
其中,P PSSCH表示TX UE发送PSSCH的功率。P CMAX表示TX UE的最大输出功率。P MAX,CBR由基于该PSSCH传输的优先级配置的sl-MaxTxPower的值和信道忙比例(channel busy ratio,CBR)确定,其中,当未提供sl-MaxTxPower时,P MAX,CBR=P CMAX,sl-MaxTxPower 表示侧行最大发送功率。
Figure PCTCN2022137962-appb-000001
其中,
Figure PCTCN2022137962-appb-000002
表示PSSCH传输所占用的资源块(resource block,RB)的数量;μ表示子载波间隔(subcarrier spacing,SCS)配置;P O,SL表示sl-P0-PSSCH-PSCCH的值,sl-P0-PSSCH-PSCCH为高层配置的参数;α SL表示sl-Alpha-PSSCH-物理侧行链路控制信道(physical sidelink control channel,PSCCH)的值,当未提供sl-Alpha-PSSCH-PSCCH的值时,则α SL=1,sl-Alpha-PSSCH-PSCCH为高层配置的参数;PL SL=referenceSignalPower-higher layer filter RSRP,其中,PL SL表示TX UE到RX UE之间的路损,referenceSignalPower表示TX UE发送PSSCH解调参考信号(demodulation reference signal,DMRS)的发送功率,higher layer filter RSRP表示由接收UE(receiving user equipment,RX UE)测量TX UE发送PSSCH的DMRS得到的参考信号接收功率(reference signal received power,RSRP),RX UE会将测量得到的RSRP反馈给TX UE。
根据如上介绍可知,目前在计算TX UE发送PSSCH的功率时,只考虑了该TX UE到目标RX UE的路损。但实际上,TX UE的发送过程,或者说RX UE的接收过程,还可能受到更多因素的影响,而目前的计算方式均未考虑。因此,按照目前的计算方式计算TX UE的发送功率,就会导致计算结果不够准确。
鉴于此,提供本申请实施例的技术方案。本申请实施例中,第二终端设备可以向第一终端设备发送第一上报信息,第一上报信息所包括的第一干扰信息,指示了第二终端设备所受到的邻频干扰,从而第一终端设备在确定第三终端设备的发送功率时可以将第一干扰信息作为考虑因素。可见,本申请实施例在确定发送设备的发送功率时,可以将接收设备所受到的邻频干扰作为考虑因素,例如可据此相应增大发送设备的发送功率,以抵偿接收设备的邻频干扰影响,这使得所确定的发送功率更为准确,更为符合当前的实际情况,有助于提高数据传输质量以及接收成功率。
本申请实施例提供的技术方案可以应用于D2D场景,例如新空口(new radio,NR)-D2D场景等,或者可以应用于车到一切(vehicle to everything,V2X)场景,例如NR-V2X场景等。例如可应用于车联网,例如V2X、车与车(vehicle-to-vehicle,V2V)等,或可用于智能驾驶、辅助驾驶、或智能网联车等领域。如下通过图2A和图2B,介绍本申请实施例的两种可选应用场景。
请参考图2A,为本申请实施例的一种应用场景示意图。图2A包括TX UE 1、TX UE 2和TX UE 3,以及包括RX UE 1、RX UE 2以及RX UE 3。其中,考虑到UE也可以应用子带非重叠全双工技术,因此在图2A中,TX UE 1和RX UE 2是同一个UE,即,该UE既可以发送侧行信息,也可以接收侧行信息。在子带非重叠全双工技术下,UE可能在一些子带上发送侧行信息,也可能同时在另一些子带上接收侧行信息,即,允许收发链路同时存在,这样可以提高UE的数据传输效率。
图2A中,例如TX UE 1是RX UE 1的发送端,TX UE1在子带1上向RX UE 1发送侧行信息;TX UE 2是RX UE 2的发送端,TX UE 2在子带2上向RX UE 2发送侧行信息;TX UE 3 是RX UE 3的发送端,TX UE 3在子带3上向RX UE 3发送侧行信息。图2A还画出了几条虚线,表示邻频干扰情况,例如TX UE 3向RX UE 3发送侧行信息时,可能会对RX UE 1的接收造成邻频干扰;TX UE 2向RX UE 2发送侧行信息时,可能会对RX UE 1的接收造成邻频干扰,也可能会对RX UE 3的接收造成邻频干扰;另外,TX UE 1向RX UE 1发送侧行信息时,还可能会对RX UE 2的接收造成邻频干扰,因为TX UE 1和RX UE 2是同一个UE,因此此时的邻频干扰也认为是自干扰。图2A中的期望链路是指TX UE向RX UE发送信息的链路,该TX UE是该RX UE的发送端。
请再参考图2B,为本申请实施例的另一种应用场景示意图。图2B为遵循工业自动化协议的总可编程逻辑控制器(programmable logic controller,PLC)、从PLC、以及从PLC的从属设备之间的通信。从PLC的从属设备,例如阀岛、传感器等。其中,通信可能发生在总PLC与从PLC之间,以及从PLC与其从属设备之间,一般假设从PLC的从属设备之间不存在通信。同一时刻,总PLC可能需要接收来自某个从PLC的信息,并向其他从PLC发送信息;同一时刻,某个从PLC可能需要接收来自总PLC的信息,并向该从PLC的从属设备发送信息。在这种场景中,总PLC、从PLC以及从属设备之间的通信通常以周期流量为主导,此外,也包括如警报或固件升级等非周期流量。
图2B包括总PLC200,从PLC201和从PLC202,从PLC201的从属设备203,从PLC202的从属设备204。其中,图2B中与各个设备连接的方框,表示收发器,即,对于总PLC、从PLC、从属设备来说,可以不内置收发器,而是与收发器连接。或者,收发器也可以设置在这些设备内部,具体不做限制。对于图2B来说,总PLC200可以作为TX UE,例如作为TX UE1。从PLC可以作为TX UE(可以向总PLC200发送信息,也可以向与该从PLC连接的从属设备发送信息);另外,从PLC也可以作为RX UE(可以从总PLC200接收信息,也可以从与该从PLC连接的从属设备接收信息)。从属设备可作为TX UE,可以向与该从属设备连接的从PLC发送信息;另外,从属设备也可以作为RX UE,可以从与该从属设备连接的从PLC接收信息。
为了更好地介绍本申请实施例,下面结合附图介绍本申请实施例所提供的方法。在本申请的各个实施例对应的附图中,凡是可选的步骤均用虚线表示。本申请的各个实施例所提供的方法均可应用于图2A或图2B所示的场景,例如,本申请的各个实施例所涉及的第三UE,可能是图2A或图2B中的任一个可作为TX UE的UE;本申请的各个实施例所涉及的第四UE,可能是图2A或图2B中除了第三UE外的任一个可作为TX UE的UE;本申请的各个实施例所涉及的第二UE,可能是图2A或图2B中的任一个可作为RX UE的UE;本申请的各个实施例所涉及的第一UE,可能是图2A或图2B中的任一个UE,或者也可以是未在图2A或图2B中画出的其他UE。
因为本申请实施例涉及到TX UE和RX UE的编号,因此首先介绍编号原则。
对于同一时间内TX UE和RX UE的编号,可根据TX UE与RX UE之间的通信链路来确定。例如在编号时可以以TX UE为基准来编号,或者也可以以RX UE为基准来编号。以根据RX UE为基准编号为例。例如存在3个TX UE和2个RX UE,这3个TX UE中的2个TX UE都是其中一个RX UE的发送端,这2个RX UE中的另一个RX UE的TX UE是这3个TX UE中剩余的一个UE。那么对于其中对应两个发送端的RX UE来说,该RX UE与这两个发送端之间就存在两条通信链路,则可将这两条通信链路分别编号为1、2,通信链路1对应于一个TX UE和该RX UE,此时可将该TX UE编号为1,将该RX UE编 号为1;通信链路2对应于另一个TX UE和该RX UE,此时可将该TX UE编号为2,将该RX UE编号为2。另外对于对应了一个发送端的RX UE来说,该RX UE与发送端之间存在一条通信链路,可将该通信链路编号为3,则该通信链路对应的TX UE编号为3,RX UE编号为3。也就是说,最终编号之后得到了RX UE1~RX UE 3,但实际上只存在2个RX UE,其中的RX UE 1和RX UE 2实际上是同一个RX UE,只是在对应不同的通信链路时,可为同一个RX UE设置不同的编号。
或者,如果以TX UE为基准来编号,则同一个TX UE在对应不同的通信链路时也可以有不同的编号。
另外,对于有些UE来说,可能既会作为某个通信链路上的TX UE,也会作为另一个通信链路上的RX UE,例如对于支持子带非重叠全双工技术的UE,同一时间就既可能作为TX UE,也可能作为RX UE。因此在后文中,如果描述一个UE是TX UE,可以是指该UE在某个或某些通信链路上作为TX UE,该UE在其他通信链路上还可能作为RX UE,或者该UE也可能不作为RX UE。同理,如果描述一个UE是RX UE,可以是指该UE在某个或某些通信链路上作为RX UE,该UE在其他通信链路上还可能作为TX UE,或者该UE也可能不作为TX UE。对于一个既可能作为TX UE也可能作为RX UE的UE,可能既会被编号为TX UE i,也可能会被编号为RX UE j,i不等于j。
综上认为,在本申请实施例中,TX UE i的接收端就是RX UE i,同理,RX UE i的发送端就是TX UE i。而对于TX UE i和RX UE j,则认为TX UE i不是RX UE j的发送端。
需要注意的是,本申请实施例中的命名,例如“TX UE”、“RX UE”等,可以认为是对应于信息传输方向的。例如,如果一个UE会作为发送端向其他UE发送信息,则该UE可被称为“TX UE”;如果一个UE会作为接收端从发送端接收信息,则该UE可被称为“RX UE”。
本申请实施例提供一种功率确定方法,请参见图3,为该方法的流程图。
S301、接入网设备发送配置信息。相应的,第二UE接收配置信息。
接入网设备可以为一个或多个UE配置用于进行干扰测量的第一资源,这些UE可能包括RX UE和/或TX UE。S301以接入网设备为第二UE配置第一资源为例,第二UE例如为RX UE。可选的,该配置信息可由接入网设备在为UE配置SL资源池时提供,例如该配置信息包括在用于为UE配置SL资源池的消息中,或者该配置信息与用于为UE配置SL资源池的消息一并发送。或者,该配置信息也可以包括在其他消息中,或者说该配置信息也可以不在为UE配置SL资源池时提供,而是在其他情况下提供。
或者,S301也可以替换为:TX UE发送配置信息。即,该配置信息也可以由TX UE来配置,该TX UE是将要给第二UE发送侧行信息的发送端。或者理解为,本申请实施例是要确定TX UE的发送功率,如果一个TX UE是一个RX UE的发送端,则为该TX UE所确定的发送功率就是用于向该RX UE发送信息。例如第三UE是TX UE,且第三UE是第二UE的发送端,则最终要确定的第三UE的发送功率,就可用于向第二UE发送信息。对于第二UE来说,可能只有一个发送端,则该TX UE例如为该发送端,该发送端例如为第三UE;或者,如果对于第二UE来说也可能有多个发送端,则该TX UE例如为多个发送端中的一个,该TX UE例如为第三UE。
该配置信息可用于配置第一资源,例如,该配置信息包括第一资源在一个时隙(slot)内所占用的时域符号的位置,和/或,包括第一资源在频域所占用的资源单元(resource  element,RE)的个数和位置。例如第一资源位于第二UE的工作子带上,或者说,第一资源所包括的频域资源属于第二UE的工作子带。一个RX UE的工作子带,也可以称为该RX UE的期望接收子带,例如包括该RX UE的发送端向该RX UE发送信息的子带。其中,第一资源可用于测量第二UE的工作子带所受到的来自其他子带的干扰,可理解为,当第二UE在第二UE的工作子带上接收侧行信息时,可通过第一资源测量来自其他子带的侧行信息(或者说,其他子带泄露到该工作子带上的侧行信息),以确定其他子带上的发送行为对该UE的工作子带的接收行为所造成的干扰。第一资源由于是用于相应的RX UE进行测量的资源,因此如果接入网设备还为TX UE配置了第一资源,则对于被配置了第一资源的TX UE(例如第三UE)来说,在第一资源上可以不发送信息,例如对于PSCCH、PSSCH以及DMRS等均不发送。可选的,第一资源例如为信道状态信息-干扰测量(channel state information-interference measurement,CSI-IM)资源,或者也可以是其他资源。
例如第二UE在第一资源上测量第二UE的工作子带的相邻子带,由此就能确定该工作子带所受到的来自其他子带的干扰。其中,一个UE测量一个子带,或者一个UE测量来自一个子带的侧行信息,实际测量的对象例如为接收功率。例如第二UE在第一资源上测量第二UE的工作子带的相邻子带,或者,第二UE在第一资源上测量来自某个子带的侧行信息(该子带例如为第二UE的工作子带的相邻子带),均可理解为,第二UE在第一资源上测量该相邻子带上的信号发送所泄露到该工作子带上的干扰功率。
第一资源可以针对第二UE的工作子带配置。例如,第二UE可能有一个或多个工作子带,则第一资源可以对应于其中的全部或部分工作子带。对于一个工作子带来说,会有频域起始位置和频域结束位置,那么对于频域起始位置来说可能会有相邻子带,对于频域结束位置来说也可能会有相邻子带,可以认为,一个工作子带可以对应两部分相邻子带。因此为所述全部或部分工作子带中的一个工作子带所配置的第一资源,可包括至少一个子资源,至少一个子资源可用于测量该工作子带的相邻子带。例如至少一个子资源中的一个子资源可以对应于该工作子带的一部分相邻子带,可选的,至少一个子资源为一个子资源或两个子资源。例如为某个工作子带配置了两个子资源,其中子资源1的频域位置与该工作子带的相邻子带1的频域位置更为接近,子资源2的频域位置与该工作子带的相邻子带2的频域位置更为接近,则认为子资源1对应于相邻子带1,子资源2对应于相邻子带2。本申请实施例中,第一资源对应于一个工作子带,是指第一资源的频域位置位于该工作子带上。一个子资源对应于一部分相邻子带,是指第二UE可以在该子资源上测量这一部分相邻子带上的信息。
一个工作子带的相邻子带,例如是指在频域上与该工作子带相邻的子带,即,相邻子带与该工作子带之间不存在其他子带;或者,一个工作子带的相邻子带,也可以在频域上不与该工作子带相邻,但是如果子带A与该工作子带之间所间隔的所有子带内均没有信息传输,则子带A也可以视为该工作子带的相邻子带。因此,至少一个子资源用于测量第二UE的工作子带的相邻子带,可以理解为,至少一个子资源可用于测量在频域上与第二UE的工作子带相邻的子带,和/或,可用于测量与第二UE的工作子带所间隔的其他子带内没有信息传输的子带。
可参考图4,为第一资源的一种示意图。图4中的子带1例如为RX UE 1的一个工作子带,TX UE 1在子带1上向RX UE 1发送信息;子带2例如为RX UE 2的一个工作子带,TX UE 2在子带2上向RX UE 2发送信息;子带3例如为RX UE 3的一个工作子带,TX UE  3在子带3上向RX UE 3发送信息。图4以低频位置作为子带的频域起始位置,对于子带1来说,子带2是子带1的频域起始位置的相邻子带,另外子带1的频域结束位置可能还会有相邻子带,图4中未画出;对于子带2来说,子带1是子带2的频域结束位置的相邻子带,子带3是子带2的频域起始位置的相邻子带;对于子带3来说,子带2是子带3的频域结束位置的相邻子带,另外子带3的频域起始位置可能还会有相邻子带,图4中未画出。图4中画斜线的方框表示第一资源。可以看到,配置给3个RX UE的第一资源都包括两个子资源,这两个子资源分别对应相应RX UE的两个相邻子带。例如对于子带2来说,将配置给子带2的两个子资源分别称为CSI-IM资源1和CSI-IM资源2,其中CSI-IM资源1更接近子带2的频域结束位置,CSI-IM资源1更接近子带2的频域起始位置。那么,RX UE 2可在CSI-IM资源1上测量TX UE 1在子带1上发送信息时泄露到子带2上的邻频干扰功率,也可在CSI-IM资源2上测量TX UE 3在子带3上发送信息时泄露到子带2上的邻频干扰功率。
图4中,该时隙内可以发送自动增益控制(auto gain control,AGC)、PSCCH、DMRS、PSSCH,以及该时隙内最后的符号还可以作为保护(guard)符号,其中,第一资源通过PSSCH承载,且第一资源在时域上位于非保护符号的最后一个符号上。需要注意的是,图4中第一资源的时频域位置只是一种示例,第一资源还有可能设置在该时隙内的其他位置,例如第一资源也可以通过PSCCH承载等。
对于图4涉及的RX UE 1~RX UE 3来说,可能有些RX UE能够工作在多个子带上,即,具有多个工作子带。则对于多个工作子带中的部分或全部工作子带,接入网设备或相应的TX UE(例如,RX UE的发送端)都可以为其配置资源来测量相邻子带,图4只是以其中一个工作子带为例。
另外需要注意的是,图4以为子带1~子带3所配置的第一资源的时域位置相同、且频域相对位置相同为例。为不同的UE所配置的第一资源,其对应的时域位置和/或频域相对位置可能相同,也可能不同;如果一个UE有多个工作子带,则为该UE的不同的工作子带所配置的第一资源,其对应的时域位置和/或频域相对位置可能相同,也可能不同。其中,第一资源的频域相对位置,例如为第一资源与子带的频域起始位置和/或频域起始位置之间的偏移。
还有可能,第一资源通过协议预定义,或者预配置在UE中,则无需执行S301。因此S301为可选的步骤。
S302、TX UE发送第一功率信息。相应的,第二UE从TX UE接收第一功率信息。例如该TX UE会在第一资源所在的时隙(slot)内发送侧行信息,第一功率信息可指示该侧行信息对应于第一资源所在的时域位置的发送功率。可理解为,TX UE会在第一资源所在的时隙内发送该侧行信息,该侧行信息可能在时域上占满整个时隙,那么该侧行信息的时域位置包括第一资源所在的时域位置。但在该时隙内不同的时域符号中,该侧行信息的发送功率可能相同也可能不同。第一功率信息就指示在第一资源所在的时域位置上,该侧行信息的发送功率。
可选的,第一功率信息可以包括在该侧行信息中。其中,第一功率信息的时域位置可以位于第一资源所在的时域位置之前,例如以图4为例,第一功率信息可包括在侧行控制信息(sidelink control information,SCI)内,该SCI可通PSCCH承载,第一资源位于保护符号的前一个PSSCH上;或者,第一功率信息的时域位置可以包括在第一资源所在的 时域位置内,例如第一功率信息也通过第一资源所在的PSSCH承载;或者,第一资源还可能位于该时隙内的其他时域位置,则第一功率信息的时域位置也可能位于第一资源所在的时域位置之后。
第一功率信息例如通过广播方式发送,可能多个UE都能接收第一功率信息,S302以第二UE接收第一功率信息为例。另外,待发送侧行信息的UE可能有多个,即,TX UE可能有多个,这多个TX UE都可能发送相应的功率信息。假设第四UE也是TX UE,第三UE和第四UE都是相应的RX UE的发送端,这两个TX UE都需要向对应的RX UE发送信息,那么第三UE和第四UE就都会发送功率信息。其中,一个TX UE所发送的功率信息可指示该TX UE在第一资源所在的时隙内发送的侧行信息在第一资源所在的时域位置上的发送功率,例如第三UE所发送的功率信息可指示第三UE在第一资源所在的时隙内发送的侧行信息在第一资源所在的时域位置上的发送功率,第四UE所发送的功率信息可指示第四UE在第一资源所在的时隙内发送的侧行信息在第一资源所在的时域位置上的发送功率。
例如将S302视为由第三UE和/或第四UE执行(图3以第三UE执行为例),将第三UE和/或第四UE所发送的侧行信息统称为第一侧行信息(或者理解为,如果第三UE会发送侧行信息,第四UE不发送侧行信息,则第一侧行信息是第三UE在第一资源所在的时隙内所发送的侧行信息;或者,如果第四UE会发送侧行信息,第三UE不发送侧行信息,则第一侧行信息是第四UE在第一资源所在的时隙内所发送的侧行信息;或者,如果第三UE和第四UE都会发送侧行信息,则第一侧行信息包括侧行信息1和侧行信息2,侧行信息1是第三UE在第一资源所在的时隙内所发送的侧行信息,侧行信息2是第四UE在第一资源所在的时隙内所发送的侧行信息),那么第一功率信息可指示第一侧行信息对应于第一资源所在的时域位置的发送功率。其中,如果第一侧行信息包括侧行信息1和侧行信息2,则第一功率信息也可视为包括功率信息1和功率信息2,功率信息1由第三UE发送,指示的是侧行信息1对应于第一资源所在的时域位置的发送功率,功率信息2由第四UE发送,指示的是侧行信息2对应于第一资源所在的时域位置的发送功率,这两个功率信息指示的发送功率可能相等或不相等。
需要注意的是,第一侧行信息的接收端可能是第二UE,也可能是除了第二UE外的其他RX UE。
不同的TX UE发送功率信息的方式、以及功率信息指示的内容等都是类似的,因此S302以其中的第三UE和/或第四UE发送第一功率信息为例。可以明确的是,对于第二UE来说,可能接收来自一个或多个TX UE的功率信息,例如除了第一功率信息外,还可能接收其他功率信息。
或者,第二UE也可能通过其他方式确定TX UE在第一资源上发送侧行信息所使用的功率,则无需执行S302,因此S302是可选的步骤。
S303、第二UE确定第一干扰信息。
第一干扰信息例如为邻频干扰信息,可指示其他UE在发送信息时对于第二UE接收信息所造成的邻频干扰。如果第二UE在工作子带上接收信息时,有其他UE会在该工作子带的相邻子带上发送信息,则可能会对第二UE造成邻频干扰,第二UE就可以确定邻频干扰信息。在一些场景中,RX UE可能有多个,那么可能有一个或多个RX UE都会受到邻频干扰。例如图2A中,TX UE 3在子带3上向RX UE 3发送侧行信息时,可能会对 RX UE 1的接收造成邻频干扰,TX UE 2在子带2上向RX UE 2发送侧行信息时,也可能会对RX UE 3的接收造成邻频干扰。本申请实施例中,会受到邻频干扰的部分或全部RX UE,都可以确定邻频干扰信息,因为不同的RX UE确定邻频干扰信息的方式是类似的,因此S303以第二UE确定邻频干扰信息为例。
第二UE可以通过在第一资源上的测量获得第一干扰信息。对于一个TX UE来说,在发送侧行信息前可能会发送SCI,或者按照前文的理解,将UE在一个时隙内发送的信息理解为一个侧行信息,则TX UE所发送的侧行信息可能包括SCI,该SCI例如通过PSCCH承载。该SCI可以包括该侧行信息内的PSSCH和/或PSCCH的调度信息,该调度信息例如包括PSSCH和/或PSCCH的时/频位置信息,其中,PSSCH和/或PSCCH的频域位置信息可指示承载PSSCH和/或PSCCH的子带。该侧行信息例如通过广播或组播方式发送,则多个RX UE都可能接收该侧行信息。而不同的TX UE都可能通过广播或组播方式发送侧行信息,因此对于第二UE来说,可能会接收来自多个TX UE的侧行信息,从而获得多个TX UE的SCI。
第二UE根据所接收的SCI可以确定各个TX UE用于发送侧行信息的子带,如果这些子带中有在频域上与第二UE的工作子带相邻的子带,则第二UE可以在第一资源上测量该相邻的子带。另外,如果这些子带中存在子带A,子带A与第二UE的工作子带之间虽然间隔了其他子带,但所述其他子带上没有信息传输,则第二UE也可以在第一资源上测量子带A。其中,如果第二UE所接收的所有的SCI均不包括所述其他子带的信息,就表明这些SCI所调度的PSSCH和/或PSCCH均未在所述其他子带上传输,则第二UE就可以确定所述其他子带上没有信息传输。或者,如果第二UE在所述其他子带上没有成功解码SCI,则第二UE也可以确定所述其他子带上没有信息传输。
例如,第三UE和/或第四UE发送了第一侧行信息,则第二UE可以接收第一侧行信息,并从第一侧行信息中获得第三UE和/或第四UE的SCI。第二UE根据来自第三UE的SCI,可以确定第三UE所发送的侧行信息1所在的子带,根据来自第四UE的SCI,可以确定第四UE所发送的侧行信息2所在的子带。例如第一侧行信息位于第一子带上(其中,如果第一侧行信息包括侧行信息1和侧行信息2,则第一子带视为包括承载侧行信息1的子带1和承载侧行信息2的子带2,子带1和子带2可以是同一个子带,也可以是不同的子带),那么第二UE可以在第一资源上对第一子带进行测量,或者说,第二UE可以在第一资源上对来自第一子带的第一侧行信息进行测量,以得到功率,该功率为邻频上的侧行信息的发送所泄露到第一资源所在的工作子带上的功率,且视为对第二UE的干扰,因此可以称为邻频干扰功率。邻频干扰功率例如通过参考信号接收功率(reference signal receiving power,RSRP)或接收信号强度指示(received signal strength indication,RSSI)表示,或者也可以通过其他形式表示。
作为又一种可能的实现方式,第二UE可以在子带1测量接收功率,子带1为承载来自第三UE的侧行信息1的子带。第二UE可以根据带内辐射(in-band emission,IBE)模板以及在子带1上测量得到的接收功率,确定第三UE的发送对第二UE的接收所产生的邻频干扰功率。示例性的,第二UE可以在子带1测量来自第三UE的DMRS,得到接收功率,第二UE可将该接收功率输入带内辐射模板,由此可以确定第三UE的发送对第二UE的接收所产生的邻频干扰功率。
可选的,带内辐射模板可以描述UE占用的发送带宽中的PRB上的平均输出功率与该 发送带宽外的PRB上的平均输出功率的比值。在一些示例中,带内辐射模板可以是预配置的,例如在UE出厂时预配置在UE中;或者带内辐射模板也可由UE自行配置或由网络设备配置;或者带内辐射模板也可以通过协议预定义等。
第二UE得到该邻频干扰功率后,就可以确定第一干扰信息。例如第一干扰信息包括该邻频干扰功率,或者理解为,包括该邻频干扰功率的信息。或者,第一干扰信息可包括邻频干扰系数,该邻频干扰系数可以根据第一侧行信息的发送功率和该邻频干扰功率确定。其中,如果第一侧行信息包括侧行信息1和侧行信息2,则该邻频干扰系数视为包括邻频干扰系数1和邻频干扰系数2,另外邻频干扰功率也包括邻频干扰功率1和邻频干扰功率2,邻频干扰功率1是第二UE在第一资源上对来自子带1的侧行信息1测量得到的,邻频干扰功率2是第二UE在第一资源上对来自子带2的侧行信息2测量得到的。那么,邻频干扰系数1可根据侧行信息1的发送功率和邻频干扰功率1确定,邻频干扰系数2可根据侧行信息2的发送功率和邻频干扰功率2确定。
例如,TX UE i对RX UE i产生的邻频干扰系数可满足如下关系:
g ij=rxPower j-txPower i[dB]     (公式2)
其中,g ij表示TX UE i对X UE j产生的邻频干扰系数。rxPower j表示该RX UE j测量得到的邻频干扰功率。txPower i表示该TX UE i发送侧行信息的功率。dB表示分贝(decibel)。
例如对于邻频干扰系数1,以第三UE的序号为2、第二UE的序号为1为例,则根据公式2可得到:g 21=rxPower 1-txPower 2[dB]。
除了公式2之外,还可以通过其他方式确定邻频干扰系数,例如邻频干扰系数也可以是邻频干扰功率与侧行信息的发送功率的差值与某个常数相乘和/或相加等,具体方式不做限制。
可选的,如果第一上报信息中的邻频干扰信息为邻频干扰功率的信息,则第一UE可以采用与第二UE类似的方式(例如公式2)确定邻频干扰系数。
如果第二UE确定还有其他TX UE在第二UE的工作子带的相邻子带上发送侧行信息,则第二UE也可以在第一资源上进行测量以得到相应的邻频干扰功率,实现过程都是类似的,不多赘述。那么,如果第二UE得到了多个邻频干扰功率,则第一干扰信息可以包括这多个邻频干扰功率,或者包括这多个邻频干扰功率所对应的多个邻频干扰系数。
以图2A的场景为例,TX UE 1向RX UE 1发送侧行信息时,可能会对RX UE 2的接收造成自干扰。例如第二UE是图2A中的RX UE 2,则第二UE在第一资源上除了可以测量得到邻频干扰功率外,还可以测量得到自干扰功率。因此如果第二UE确定第二UE发送侧行信息的子带(例如称为第二子带)与第二UE接收信息的子带为相邻子带(关于相邻子带的概念可参考前文介绍),则可选的,本申请实施例还可包括S304:第二UE确定第二干扰信息。第二干扰信息可指示第二UE在发送侧行信息时对第二UE接收信息所产生的自干扰,例如将第二UE发送的侧行信息称为第二侧行信息。第二UE可以通过在第一资源上的测量获得第二干扰信息。第二UE可以在第一资源上对第二子带进行测量,或者说,第二UE可以在第一资源上对来自第二子带的第二侧行信息进行测量,以得到功率,该功率由于来自第二UE,且视为对第二UE的干扰,因此可以称为自干扰功率。自干扰功 率例如通过RSRP或RSSI表示,或者也可以通过其他形式表示。
第二UE得到该自干扰功率后,就可以确定第二干扰信息。例如第二干扰信息包括该自干扰功率,或者理解为,包括该自干扰功率的信息。或者,第二干扰信息可包括自干扰系数,该自干扰系数可以根据第二侧行信息的发送功率和该自干扰功率确定。例如,TX UE i对RX UE j产生的自干扰系数可满足如下关系:
s ij=rxPower j-txPower i[dB]     (公式3)
其中,s ij表示TX UE i对RX UE j产生的自干扰系数。rxPower j表示RX UE j测量得到的自干扰功率。txPower i表示该TX UE i发送侧行信息的功率。TX UE i与RX UE j为同一个UE。
除了公式3之外,还可以通过其他方式确定自干扰系数,例如自干扰系数也可以是自干扰功率与侧行信息的发送功率的差值与某个常数相乘和/或相加等,具体方式不做限制。
可选的,如果第一上报信息包括的自干扰信息为自干扰功率的信息,则第一UE可以按照与第二UE类似的方式(例如公式3)确定自干扰系数。
如果第二UE确定第二UE还可能在第二UE的其他工作子带的相邻子带上发送侧行信息,则第二UE也可以在第一资源上进行测量以得到相应的自干扰功率,实现过程都是类似的,不多赘述。那么,如果第二UE得到了多个自干扰功率,则第二干扰信息可以包括这多个自干扰功率,或者包括这多个自干扰功率所对应的多个自干扰系数。
S305、第二UE通过侧行链路发送第一上报信息。可选的,第一上报信息可包括在SCI或PSSCH中。
例如第二UE可通过广播或组播方式发送第一上报信息,则可能有多个UE都能接收第一上报信息,本申请实施例以第一UE接收第一上报信息为例。另外,除了第二UE外,其他的RX UE也可能会发送相应的上报信息,发送方式和上报信息所包括的内容都是类似的。因此对于第一UE来说可能会接收多个上报信息,本申请实施例以第一上报信息为例来介绍。其中,第一UE例如与第三UE是同一个UE,或者也可以是不同的UE,例如第一UE可能是专用于为其他TX UE确定发送功率的UE,可理解为中心UE。可理解为,本申请实施例中,可由每个TX UE为自己确定发送功率,或者,也可由中心UE为多个TX UE确定发送功率,而无需每个TX UE再确定发送功率。关于中心UE,可能是一个UE组内具有管理能力的UE,或者是多个TX UE和/或多个RX UE协商确定的UE,还有可能是通过其他方式所确定的UE。另外,如果第一UE是中心UE,则第一UE可能既不是TX UE也不是TX UE,例如,第一UE与第二UE、第三UE以及第四UE均为不同的UE;或者,第一UE也可能是TX UE中的一个(例如,第一UE与第三UE或第四UE是同一个UE),和/或,第一UE是RX UE中的一个(例如,第一UE与第二UE是同一个UE)。
第一上报信息可用于确定一个或多个TX UE的发送功率。第一上报信息可包括第一干扰信息。可选的,如果第二UE还确定了第二干扰信息,则第一上报信息还可包括第二干扰信息。可选的,第一上报信息还可包括第一路径损耗信息,第一路径损耗信息可指示第三UE和/或第四UE到第二UE之间的路径损耗。第一路径损耗信息例如包括路径损耗系数,或包括功率信息。该功率信息可指示第二UE在除第一资源外的其他资源上测量得到的接收功率,例如将该功率信息称为损耗功率信息,该损耗功率信息例如为RSRP或RSSI等。可选的,第二UE可在第二资源上进行测量,第二资源的时域位置与第一资源的时域 位置可以相同,但第二资源的频域位置与第一资源的频域位置不同。
例如,对于第二UE的发送端来说,在该发送端和第二UE之间存在通信传输路径(或者说,存在通信链路),第二UE可以在第一资源外的其他资源上测量得到接收功率。如果有多个TX UE都是第二UE的发送端,则第二UE可以分别在第一资源外的其他资源上测量得到第二UE对应于这多个TX UE的接收功率。例如,第三UE和/或第四UE是第二UE的发送端,则第二UE可以在第二资源上对来自第三UE和/或第四UE的信息进行测量,以确定接收功率。第二UE可将该接收功率的信息(即,损耗功率信息)作为第一路径损耗信息,或者,第二UE也可以根据该损耗功率信息确定路径损耗系数,并将该路径损耗系数作为第一路径损耗信息。其中,第一UE在计算一个TX UE的发送功率时,可以参考该TX UE到该TX UE的接收端之间的路径损耗,例如第三UE是第二UE的发送端,则第一UE在计算第三UE的发送功率时,可以参考第三UE到第二UE之间的路径损耗。
第二UE可将得到的第一路径损耗信息添加到第一上报信息中。其中,如果第三UE是第二UE的发送端,第四UE不是第二UE的发送端,则第一路径损耗信息指示第三UE到第二UE之间的路径损耗;或者,如果第四UE是第二UE的发送端,第三UE不是第二UE的发送端,则第一路径损耗信息指示第四UE到第二UE之间的路径损耗;或者,如果第三UE和第四UE都是第二UE的发送端,则第一路径损耗信息可包括路径损耗信息1和路径损耗信息2,路径损耗信息1指示第三UE到第二UE之间的路径损耗信息,路径损耗信息2指示第四UE到第二UE之间的路径损耗信息。
以第三UE和第四UE都是第二UE的发送端、第二UE测量得到路径损耗信息1为例。第二UE可以在第二资源上对来自第三UE的侧行信息进行测量,得到接收功率,该接收功率例如包括RSRP或RSSI。其中,该侧行信息例如为侧行信息1,或者也可能与侧行信息1是不同的侧行信息,可将该侧行信息称为第三侧行信息。第二UE根据该接收功率以及第三侧行信息的发送功率,可以确定路径损耗系数,该路径损耗系数就可作为路径损耗信息1。可选的,第二UE可以根据来自第三UE的SCI确定第三侧行信息的发送功率。
例如,TX UE i是RX UE i的发送端,TX UE i到RX UE i之间的路径损耗系数可满足如下关系:
h ii=rxPower′ i-txPower′ i[dB]    (公式4)
其中,h ii表示TX UE i到RX UE i之间的路径损耗系数。rxPower′ i表示RX UE i在第二资源上测量得到的接收功率。txPower′ i表示TX UE i用于发送侧行信息的功率。以第二UE确定与第三UE之间的路径损耗系数为例,例如第二UE和第三UE之间的通信链路的编号为1,对应的第二UE的编号为1以及第三UE的编号为1,则根据公式4可得:h 11=rxPower′ 1-txPower′ 1[dB]。
除了公式4之外,第二UE还可以通过其他方式确定路径损耗系数,例如路径损耗系数也可以是测量得到的接收功率与侧行信息的发送功率的差值与某个常数相乘和/或相加等,具体方式不做限制。
可选的,如果第一上报信息包括的路径损耗信息为损耗功率信息,则第一UE可以按照与第二UE类似的方式(例如公式4)确定路径损耗系数。
可选的,第一上报信息还可包括第二UE的信号与干扰加噪声比(signal to interference plus noise ratio,SINR)阈值,该SINR阈值例如为第二UE的期望(expected)SINR,或者为第二UE期望的最小SINR。
举例来说,第一上报信息可以包括如下信息:干扰TX UE 1的标识,邻频干扰信息1,资源预留信息1;干扰TX UE 2的标识,邻频干扰信息2,资源预留信息2;SINR阈值,期望TX UE的标识,路径损耗信息,资源预留信息3;……。其中,干扰TX UE不是第二UE的发送端,是能够对第二UE产生邻频干扰或自干扰的UE;期望TX UE是第二UE的发送端。对于干扰TX UE来说,第一上报信息可包括该干扰TX UE所对应的邻频干扰信息和资源预留信息;对于期望TX UE来说,第一上报信息可包括该期望TX UE对应的路径损耗信息和资源预留信息。其中,第二UE可从来自干扰TX UE的SCI中获得该干扰TX UE的标识和该干扰TX UE的资源预留信息;同理,第二UE可从来自期望TX UE的SCI中获得该期望TX UE的标识和该期望TX UE的资源预留信息。一个TX UE的资源预留信息,例如包括该TX UE的时域资源预留信息,可指示该TX UE在时域上的一个或多个周期内所预留的资源。
或者,第一上报信息也可以不包括各个TX UE的资源预留信息,例如第一TX UE可通过检测(sensing)过程确定各个TX UE的资源预留信息。
根据前文可知,第一上报信息可能包括期望TX UE的标识,以及包括干扰TX UE的标识。可选的,第二UE可以为期望TX UE的标识和干扰TX UE的标识分别添加不同的指示信息,或者为期望TX UE的标识添加指示,或者为干扰TX UE的标识添加指示等,以通过显式方式指示期望TX UE和干扰TX UE。
或者,也可以通过隐式方式指示期望TX UE和干扰TX UE。例如协议预定义(或者,第一UE预先规定)第一字段和第二字段,第一字段用于承载期望TX UE的标识,第二字段用于承载干扰TX UE的标识,则通过不同的字段就可以指示期望TX UE和干扰TX UE。
S306、第一UE根据第一上报信息确定第三UE的发送功率。
其中,如果第一UE接收了多个上报信息(第一上报信息是多个上报信息中的一个),则第一UE可能根据这多个上报信息中的部分或全部上报信息确定第三UE的发送功率。另外,如果第一UE与第三UE是同一个UE,则第一UE确定第三UE的发送功率即可,其他TX UE的发送功率可由其他TX UE自行确定,确定方式都是类似的。或者,如果第一UE是中心UE,那么第一UE除了确定第三UE的发送功率外,还可以确定其他TX UE的发送功率,只是确定方式都是类似的,因此以第一UE确定第三UE的发送功率的过程为例。
第一UE可以从所接收的上报信息中获得K个资源预留信息,K大于或等于上报信息的数量。例如第一UE从第一上报信息中可以获得第三UE的资源预留信息,以及获得第四UE的资源预留信息。如果第一UE是中心UE,则第一UE可根据K个资源预留信息,确定会同时发送信息的TX UE。第一UE可对于不同的时隙分别确定,例如对于时隙1,第一UE可根据K个资源预留信息确定会在时隙1内发送信息的TX UE;对于时隙2,第一UE可根据K个资源预留信息确定会在时隙2内发送信息的TX UE。如果对于某个时隙,第一UE根据K个资源预留信息确定没有TX UE会在该时隙内发送信息,则对于该时隙,第一UE无需执行S306。对于会同时发送信息的TX UE,第一UE可根据与这些TX UE相关的上报信息,确定这些TX UE的发送功率。
或者,如果第一UE是第三UE,则第三UE可根据K个资源预留信息,确定会与第三UE同时发送信息的TX UE。第三UE可对于不同的时隙分别确定,例如第三UE会在时隙1内发送信息,则第三UE可根据K个资源预留信息确定会在时隙1内发送信息的其他TX  UE;而如果第三UE不会在时隙1内发送信息,则第三UE不必确定第三UE在时隙1内的发送功率,即对于时隙1,第三UE可不执行S306。对于会与第二UE同时发送信息的TX UE,第一UE可根据与第三UE以及这些TX UE相关的上报信息,确定第三UE的发送功率。
其中,与一个TX UE相关的上报信息,可以包括该TX UE对RX UE所产生的邻频干扰信息,可选的,还包括如下一项或多项:该TX UE对RX UE所产生的自干扰信息,该TX UE对应的路径损耗信息,或,该TX UE的接收端的SINR阈值。
下面以第一UE确定第三UE的发送功率为例,介绍发送功率的确定方法。要确定第三UE的发送功率,可能有多种方式,下面举例介绍几种方式。
1、方式1。
TX UE i的发送功率可满足如下关系:
Figure PCTCN2022137962-appb-000003
其中,P i表示TX UE i的发送功率。P min,i表示TX UE i的最小发送功率。如果第一UE是中心UE,则第一UE可以为TX UE i配置P min,i;或者,如果第一UE是第三UE,则TX UE i可以为TX UE i配置P min,i,例如第三UE的编号为1,则第三UE可以为第三UE配置P min1。P cmax表示TX UE i的最大输出功率。
A为N×N的方阵,N表示同一时隙内TX UE与RX UE之间的UE对的数量。例如,第一UE确定在时隙1内,有TX UE a、TX UE b、以及TX UE c会同时发送侧行信息,另外有RX UE a、RX UE d和RX UE e会接收侧行信息,其中TX UE a作为子带非重叠全双工UE,会同时发送和接收侧行信息。例如在这3个TX UE和3个RX UE之间,可能存在侧行信息的通信链路(或者称为侧行通信链路)的数量为3,分别为TX UE a与RX UE d之间的通信链路、TX UE b与RX UE a之间的通信链路、以及TX UE c与RX UE e之间的通信链路,那么对应的就可存在3个UE对,分别为:TX UE a-RX UE d,TX UE b-RX UE a,TX UE c-RX UE e。即,N=3。根据通信链路对TX UE和RX UE进行编号,例如TX UE a、TX UE b、TX UE c分别为对应TX UE 1、TX UE 2、TX UE 3,RX UE d、RX UE a、RX UE e分别对应RX UE 1,RX UE 2,RX UE 3。其中,TX UE i到RX UE i之间存在侧行通信链路。
A的第j行第i列元素[A] ji为:
Figure PCTCN2022137962-appb-000004
其中,当TX UE i和RX UE j为不同UE时,c ij=g ij,否则有c ij=s ij。γ th,j为RX UE j上报的SINR阈值。公式5中的
Figure PCTCN2022137962-appb-000005
表示A的逆矩阵的第i行。例如A的第j行对应RX UE j,A的第i列对应TX UE i。在A中,TX UE i到RX UE i之间存在侧行通信链路。
如果TX UE i不在RX UE j的工作子带的相邻子带发送PSCCH/PSSCH,则RX UE j不会发送上报信息,或者RX UE j所发送的上报信息不包括TX UE i对RX UE j产生的邻 频干扰信息,则g ij=0。
b为N×1的矢量,b的第j个元素
Figure PCTCN2022137962-appb-000006
其中,
Figure PCTCN2022137962-appb-000007
为RX UE j的工作子带上的热噪声功率。
Figure PCTCN2022137962-appb-000008
可由RX UE j发送给第一UE,例如RX UE j可将
Figure PCTCN2022137962-appb-000009
添加到第一上报信息中,或者RX UE j也可通过其他信息将
Figure PCTCN2022137962-appb-000010
发送给第一UE。
2、方式2。
TX UE i的发送功率可满足如下关系:
Figure PCTCN2022137962-appb-000011
其中,P i表示根据公式6所得到的TX UE i的发送功率。P′ i表示根据公式1所得到的TX UE i的发送功率。
A为N×N的方阵,N表示同一时隙内TX UE与RX UE之间的UE对的数量,对此的解释可参考方式1。A的第j行第i列元素[A] ji为:
Figure PCTCN2022137962-appb-000012
当TX UE i和RX UE j为不同UE时,c ij=g ij,否则有c ij=s ij。公式6中
Figure PCTCN2022137962-appb-000013
表示A的逆矩阵的第i行。
γ j表示RX UE j的SINR,例如γ j满足:
Figure PCTCN2022137962-appb-000014
如果TX UE i不在RX UE j的工作子带的相邻子带发送PSCCH/PSSCH,则RX UE j不会发送上报信息,或者RX UE j所发送的上报信息不包括TX UE i对RX UE j产生的邻频干扰信息,则g ij=0。关于
Figure PCTCN2022137962-appb-000015
的介绍可参考方式1。
b为N×1的矢量,例如b可通过高层配置。可选的,b的第i个元素[b] i≥0。
通过c max可以保证,对于任意的1≤i≤N,可满足
Figure PCTCN2022137962-appb-000016
中的c最大。
3、方式3。通过迭代过程确定TX UE i的发送功率。
(a)第一UE将TX UE i的发送功率初始化为
Figure PCTCN2022137962-appb-000017
另外,第一UE可以确定RX UE i的SINR为
Figure PCTCN2022137962-appb-000018
当TX UE i和RX UE j为不同UE时,c ij=g ij,否则有c ij=s ij
(b)在第t次迭代中(t=1,2,……),第一UE确定TX UE的集合A和集合B,其中集合A为
Figure PCTCN2022137962-appb-000019
集合B为
Figure PCTCN2022137962-appb-000020
γ th,i为RX UE i上报的SINR阈值。同一时隙内的TX UE和RX UE的UE对的数量为N,对此可参考方式1的介绍。记集合
Figure PCTCN2022137962-appb-000021
中共包含
Figure PCTCN2022137962-appb-000022
个TX UE,其中的第n个TX UE记为N个TX UE中的TX UE i n
(c)第一UE更新集合
Figure PCTCN2022137962-appb-000023
中TX UE i的发送功率
Figure PCTCN2022137962-appb-000024
以及,第一UE更新集合
Figure PCTCN2022137962-appb-000025
中TX UE i n的功率为
Figure PCTCN2022137962-appb-000026
根据更新后TX UE i的发送功 率
Figure PCTCN2022137962-appb-000027
第一UE可以确定该RX UE i(TX UE i的接收端)的SINR为
Figure PCTCN2022137962-appb-000028
A t
Figure PCTCN2022137962-appb-000029
的方阵,A t的第m行第n列元素[A t] mn对应于TX UE i n和RX UE i m。其中,
Figure PCTCN2022137962-appb-000030
当TX UE i n和RX UE i m为不同的UE时,
Figure PCTCN2022137962-appb-000031
否则
Figure PCTCN2022137962-appb-000032
(A t) m -1为A t的逆矩阵的第m行。
b t
Figure PCTCN2022137962-appb-000033
的矢量,b t的第m个元素
Figure PCTCN2022137962-appb-000034
为RX UE i m的工作子带上的热噪声功率。
Figure PCTCN2022137962-appb-000035
可由RX UE i m发送给第一UE,例如RX UE i m可将
Figure PCTCN2022137962-appb-000036
添加到上报信息中,或者RX UE i m也可通过其他信息将
Figure PCTCN2022137962-appb-000037
发送给第一UE。
不断重复如上步骤(b)和步骤(c),直到集合
Figure PCTCN2022137962-appb-000038
为空集,此时t=t max。最终得到TX UE i的发送功率为
Figure PCTCN2022137962-appb-000039
在如上的几种方式中都用到了矩阵的逆矩阵(例如
Figure PCTCN2022137962-appb-000040
或(A t) m -1),通过将矩阵求逆,再与相应的b(或b t)相乘,能够调整RX UE的SINR,从而能够提高信道质量较差的UE的SINR,或者能够整体提高RX UE的SINR。
如上的三种方式,只是一些示例,除了如上方式之外,第一UE还可以通过其他方式来根据第一上报信息确定TX UE的发送功率。
如果第一UE是第三UE,则第三UE在确定第三UE的发送功率后,就可以利用该发送功率发送信息。
如果第一UE是中心UE,那么可选的,本申请实施例还可包括S307:第一UE发送发送功率信息,该发送功率信息可指示第三UE的发送功率。可选的,该发送功率信息可通过PSSCH承载。其中,如果第一UE是中心UE,那么第一UE可以确定多个TX UE的发送功率,第一UE可以采用单播方式分别向这多个TX UE发送相应的发送功率信息,其中的一个发送功率信息可指示该发送功率信息的接收端的发送功率,例如一个发送功率信息的接收端是第三UE,则该发送功率信息就指示第三UE的发送功率。
或者,第一UE也可以采用广播或组播方式发送发送功率信息,此时发送功率信息可指示多个TX UE的发送功率。例如该发送功率信息可包括如下信息:第三UE的标识,资源预留时隙a1,发送功率a1,资源预留时隙a2,发送功率a2,…,资源预留时隙aE,发送功率aE;第四UE的标识,资源预留时隙b1,发送功率b1,资源预留时隙b2,发送功率b2,…,资源预留时隙bF,发送功率bF;……。可理解为,对于第三UE,第一UE为其分别确定了在E个时隙内的发送功率,对于第四UE,第一UE为其分别确定了在F个时隙内的发送功率。
无论第一UE采用何种方式发送该发送功率信息,图3中是以第三UE接收发送功率信息为例。
如果第一UE采用广播或组播方式发送发送功率信息,则可能多个UE都能接收发送功率信息。例如对于第三UE来说,如果需要在某个时隙内发送信息,则可以从发送功率信息中确定第三UE在该时隙所对应的发送功率。例如发送功率信息如上所示,第三UE 如果需要在资源预留时隙a1发送信息,则可以确定应该使用发送功率a1来发送。
需要注意的是,第三UE所接收的发送功率信息也可能没有指示第三UE的发送功率,例如发送功率信息不包括第三UE的标识,表示并未指示第三UE的发送功率;或者,虽然发送功率信息指示了第三UE的发送功率,但只是指示了第三UE在部分时隙内的发功率,对于第三UE还可能发送信息的另一些时隙,发送功率信息并未指示对应的发送功率。例如发送功率信息如上所示,如果第三UE需要在资源预留时隙aE1内发送信息,则发送功率信息并未指示发送功率。如果是如上两种情况中的任一种,则第三UE可以根据传统方式确定第三UE的发送功率,例如第三UE可根据公式1确定发送功率。
本申请实施例中,在确定TX UE的发送功率时,可以将RX UE所受到的邻频干扰和/或自干扰作为考虑因素,以尽量减小TX UE在发送信息时对其他RX UE产生的干扰。这使得所确定的TX UE的发送功率更为准确,更为符合当前的实际情况,有助于提高接收成功率。例如,通过考虑邻频干扰和/或自干扰,可以适当降低TX UE的发送功率,这样有助于减小对于RX UE的干扰,对于这些RX UE来讲也能够提高SINR。
图5给出了本申请实施例提供的一种通信装置的结构示意图。所述通信装置500可以是图3所示的实施例所述的第一终端设备或该第一终端设备的电路系统,用于实现上述方法实施例中对应于第一终端设备的方法。或者,所述通信装置500可以是图3所示的实施例所述的第二终端设备或该第二终端设备的电路系统,用于实现上述方法实施例中对应于第二终端设备的方法。具体的功能可以参见上述方法实施例中的说明。其中,例如一种电路系统为芯片系统。
该通信装置500包括至少一个处理器501。处理器501可以用于装置的内部处理,实现一定的控制处理功能。可选地,处理器501包括指令。可选地,处理器501可以存储数据。可选地,不同的处理器可以是独立的器件,可以位于不同物理位置,可以位于不同的集成电路上。可选地,不同的处理器可以集成在一个或多个处理器中,例如,集成在一个或多个集成电路上。
可选地,通信装置500包括一个或多个存储器503,用以存储指令。可选地,所述存储器503中还可以存储有数据。所述处理器和存储器可以单独设置,也可以集成在一起。
可选地,通信装置500包括通信线路502,以及至少一个通信接口504。其中,因为存储器503、通信线路502以及通信接口504均为可选项,因此在图5中均以虚线表示。
可选地,通信装置500还可以包括收发器和/或天线。其中,收发器可以用于向其他装置发送信息或从其他装置接收信息。所述收发器可以称为收发机、收发电路、输入输出接口等,用于通过天线实现通信装置500的收发功能。可选地,收发器包括发射机(transmitter)和接收机(receiver)。示例性地,发射机可以用于将基带信号生成射频(radio frequency)信号,接收机可以用于将射频信号转换为基带信号。
处理器501可以包括一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路502可包括一通路,在上述组件之间传送信息。
通信接口504,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN),有线接入网等。
存储器503可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器503可以是独立存在,通过通信线路502与处理器501相连接。或者,存储器503也可以和处理器501集成在一起。
其中,存储器503用于存储执行本申请方案的计算机执行指令,并由处理器501来控制执行。处理器501用于执行存储器503中存储的计算机执行指令,从而实现本申请上述实施例提供的功率确定方法。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器501可以包括一个或多个CPU,例如图5中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置500可以包括多个处理器,例如图5中的处理器501和处理器508。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
当图5所示的装置为芯片时,例如是第一终端设备的芯片,或第二终端设备的芯片,则该芯片包括处理器501(还可以包括处理器508)、通信线路502、存储器503和通信接口504。具体地,通信接口504可以是输入接口、管脚或电路等。存储器503可以是寄存器、缓存等。处理器501和处理器508可以是一个通用的CPU,微处理器,ASIC,或一个或多个用于控制上述任一实施例的功率确定方法的程序执行的集成电路。
本申请实施例可以根据上述方法示例对装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。比如,在采用对应各个功能划分各个功能模块的情况下,图6示出了一种装置示意图,该装置600可以是上述各个方法实施例中所涉及的第一终端设备或第二终端设备,或者为第一终端设备中的芯片或第二终端设备中的芯片。该装置600包括发送单元601、处理单元602和接收单元603。
应理解,该装置600可以用于实现本申请实施例的方法中由第一终端设备或第二终端设备执行的步骤,相关特征可以参照上文的各个实施例,此处不再赘述。
可选的,图6中的发送单元601、接收单元603以及处理单元602的功能/实现过程可以通过图5中的处理器501调用存储器503中存储的计算机执行指令来实现。或者,图6中的处理单元602的功能/实现过程可以通过图5中的处理器501调用存储器503中存储的计算机执行指令来实现,图6中的发送单元601和接收单元603的功能/实现过程可以通过图5中的通信接口504来实现。
可选的,当该装置600是芯片或电路时,则发送单元601和接收单元603的功能/实现过程还可以通过管脚或电路等来实现。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序或指令,当该计算机程序或指令被运行时,实现前述方法实施例中由第一终端设备或第二终端设备所执行的方法。这样,上述实施例中所述功能可以软件功能单元的形式实现并作为独立的产品销售或使用。基于这样的理解,本申请的技术方案本质上或者说对做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行前述任一方法实施例中由第一终端设备或第二终端设备所执行的方法。
本申请实施例还提供了一种处理装置,包括处理器和接口;所述处理器用于执行上述任一方法实施例所涉及的第一终端设备或第二终端设备所执行的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本申请实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信号处理器(digital signal processor,DSP),专用集成电路(application specific integrated circuit,ASIC),现场可编程门阵列(field-programmable gate array,FPGA),或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的软件单元、或者这两者的结合。软件单元可以存储于RAM、闪存、ROM、可擦除可编程只读存储器(erasable programmable read-only memory,EPROM)、EEPROM、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理器连接,以使得处理器可以从存储媒介中读取信息,并可以向存储媒介存写信息。可 选地,存储媒介还可以集成到处理器中。处理器和存储媒介可以设置于ASIC中,ASIC可以设置于终端设备中。可选地,处理器和存储媒介也可以设置于终端设备中的不同的部件中。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管结合具体特征及其实施例对本申请实施例进行了描述,显而易见的,在不脱离本申请实施例的范围的情况下,可对其进行各种修改和组合。相应地,本申请实施例和附图仅仅是所附权利要求所界定的本申请实施例的示例性说明,且视为已覆盖本申请实施例范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的范围。这样,倘若本申请实施例的这些修改和变型属于本申请实施例权利要求及其等同技术的范围之内,则本申请实施例也意图包含这些改动和变型在内。

Claims (27)

  1. 一种功率确定方法,其特征在于,应用于第一终端设备,所述方法包括:
    通过侧行链路从第二终端设备接收第一上报信息,所述第一上报信息包括第一干扰信息,所述第一干扰信息用于指示第三终端设备和/或第四终端设备在发送第一侧行信息时对所述第二终端设备接收信息所产生的邻频干扰;
    根据所述第一上报信息确定所述第三终端设备的发送功率。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    根据所述第一上报信息确定所述第四终端设备的发送功率。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一干扰信息包括所述第三终端设备和/或所述第四终端设备在发送所述第一侧行信息时对所述第二终端设备接收信息所产生的邻频干扰功率或邻频干扰系数,其中,所述邻频干扰系数是根据所述第一侧行信息的发送功率和邻频干扰功率确定的。
  4. 根据权利要求1~3任一项所述的方法,其特征在于,所述第一侧行信息包括所述第一侧行信息的发送功率信息。
  5. 根据权利要求1~4任一项所述的方法,其特征在于,所述方法还包括:
    根据第一资源预留信息确定所述第三终端设备与所述第四终端设备同时发送信息,其中,所述第一资源预留信息包括所述第三终端设备的资源预留信息,以及包括所述第四终端设备的资源预留信息。
  6. 根据权利要求1~5任一项所述的方法,其特征在于,所述第一上报信息还包括第二干扰信息,所述第二干扰信息用于指示所述第二终端设备在发送第二侧行信息时对所述第二终端设备产生的自干扰。
  7. 根据权利要求6所述的方法,其特征在于,所述第二干扰信息包括所述第二终端设备在发送第二侧行信息时对所述第二终端设备接收信息所产生的自干扰功率或自干扰系数,其中,所述自干扰系数是根据所述第二侧行信息的发送功率和自干扰功率确定的。
  8. 根据权利要求1~7任一项所述的方法,其特征在于,所述第一上报信息还包括第一路径损耗信息,所述第一路径损耗信息指示所述第三终端设备到所述第二终端设备之间的路径损耗,其中,所述第三终端设备的发送功率用于向所述第二终端设备发送信息。
  9. 根据权利要求1~8任一项所述的方法,其特征在于,所述第一上报信息还包括所述第二终端设备的信号与干扰加噪声比SINR阈值。
  10. 根据权利要求1~9任一项所述的方法,其特征在于,所述方法还包括:向所述第三终端设备发送所述第三终端设备的发送功率信息。
  11. 根据权利要求1~10任一项所述的方法,其特征在于,
    所述第一终端设备与所述第二终端设备、所述第三终端设备、或所述第四终端设备中的其中一个终端设备为同一个终端设备;或,
    所述第一终端设备与所述第二终端设备、所述第三终端设备、以及所述第四终端设备均为不同的设备。
  12. 一种功率确定方法,其特征在于,应用于第二终端设备,所述方法包括:
    确定第一干扰信息,所述第一干扰信息用于指示第三终端设备和/或第四终端设备在发送第一侧行信息时对所述第二终端设备接收信息所产生的邻频干扰;
    通过侧行链路发送第一上报信息,所述第一上报信息包括所述第一干扰信息,所述第一上报信息用于确定一个或多个发送设备的发送功率。
  13. 根据权利要求12所述的方法,其特征在于,所述第一干扰信息包括所述第三终端设备和/或所述第四终端设备在发送第一侧行信息时对所述第二终端设备接收信息所产生的邻频干扰功率或邻频干扰系数,其中,所述邻频干扰系数是根据所述第一侧行信息的发送功率和邻频干扰功率确定的。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    在第一资源上对来自第一子带的所述第一侧行信息进行测量,得到所述邻频干扰功率,所述第一子带为所述第三终端设备和/或所述第四终端设备发送所述第一侧行信息的子带。
  15. 根据权利要求14所述的方法,其特征在于,所述第一子带包括与所述第二终端设备的工作子带相邻的子带,和/或包括与所述第二终端设备的工作子带之间没有信息传输的子带。
  16. 根据权利要求13~15任一项所述的方法,其特征在于,所述第一侧行信息包括所述第一侧行信息的发送功率信息。
  17. 根据权利要求12~16任一项所述的方法,其特征在于,所述第一上报信息还包括第二干扰信息,所述第二干扰信息用于指示所述第二终端设备在发送第二侧行信息时对所述第二终端设备接收信息所产生的自干扰。
  18. 根据权利要求17所述的方法,其特征在于,所述第二干扰信息包括所述第二终端设备在发送第二侧行信息时对所述第二终端设备接收信息所产生的自干扰功率或自干扰系数,其中,所述自干扰系数是根据所述第二侧行信息的发送功率和自干扰功率确定的。
  19. 根据权利要求18所述的方法,其特征在于,所述方法还包括:
    在第一资源上对来自第二子带的所述第二侧行信息进行测量,得到所述自干扰功率,所述第二子带为所述第二终端设备发送所述第二侧行信息的子带。
  20. 根据权利要求19所述的方法,其特征在于,所述第二子带包括与所述第二终端设备的工作子带相邻的子带,和/或包括与所述第二终端设备的工作子带之间没有信息传输的子带。
  21. 根据权利要求14或19所述的方法,其特征在于,所述方法还包括:
    接收配置信息,所述配置信息用于配置所述第一资源,所述第一资源用于测量所述第二终端设备的工作子带所受到的来自其他子带的干扰。
  22. 根据权利要求12~21任一项所述的方法,其特征在于,所述第一上报信息还包括第一路径损耗信息,所述第一路径损耗信息指示所述第三终端设备到所述第二终端设备之间的路径损耗,其中,所述第三终端设备的发送功率用于向所述第二终端设备发送信息。
  23. 根据权利要求12~22任一项所述的方法,其特征在于,所述第一上报信息还包括所述第二终端设备的信号与干扰加噪声比SINR阈值。
  24. 一种通信设备,其特征在于,包括:
    一个或多个处理器;
    一个或多个存储器;
    以及一个或多个计算机程序,其中所述一个或多个计算机程序被存储在所述一个或多个存储器中,所述一个或多个计算机程序包括指令,当所述指令被所述通信设备的一个或多个处理器执行时,使得所述通信设备执行如权利要求1~11中任一项所述的方法。
  25. 一种通信设备,其特征在于,包括:
    一个或多个处理器;
    一个或多个存储器;
    以及一个或多个计算机程序,其中所述一个或多个计算机程序被存储在所述一个或多个存储器中,所述一个或多个计算机程序包括指令,当所述指令被所述通信设备的一个或多个处理器执行时,使得所述通信设备执行如权利要求12~23中任一项所述的方法。
  26. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1~11中任一项所述的方法,或使得所述计算机执行如权利要求12~23中任一项所述的方法。
  27. 一种芯片,其特征在于,包括一个或多个处理器和通信接口,所述一个或多个处理器用于读取指令,以执行如权利要求1~11中任一项所述的方法,或执行如权利要求12~23中任一项所述的方法。
PCT/CN2022/137962 2022-02-09 2022-12-09 一种功率确定方法及设备 WO2023151366A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210122306 2022-02-09
CN202210122306.9 2022-02-09
CN202210268005.7A CN116614795A (zh) 2022-02-09 2022-03-17 一种功率确定方法及设备
CN202210268005.7 2022-03-17

Publications (1)

Publication Number Publication Date
WO2023151366A1 true WO2023151366A1 (zh) 2023-08-17

Family

ID=87563590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/137962 WO2023151366A1 (zh) 2022-02-09 2022-12-09 一种功率确定方法及设备

Country Status (1)

Country Link
WO (1) WO2023151366A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111148205A (zh) * 2018-11-02 2020-05-12 华为技术有限公司 发送功率的确定方法和装置
WO2021026715A1 (zh) * 2019-08-12 2021-02-18 Oppo广东移动通信有限公司 用于传输侧行数据的方法、终端设备和网络设备
US20210167916A1 (en) * 2018-09-29 2021-06-03 Shanghai Langbo Communication Technology Company Limited Method and device used for node in wireless communication
CN113875270A (zh) * 2019-05-31 2021-12-31 高通股份有限公司 侧行链路控制信道连续参数估计

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210167916A1 (en) * 2018-09-29 2021-06-03 Shanghai Langbo Communication Technology Company Limited Method and device used for node in wireless communication
CN111148205A (zh) * 2018-11-02 2020-05-12 华为技术有限公司 发送功率的确定方法和装置
CN113875270A (zh) * 2019-05-31 2021-12-31 高通股份有限公司 侧行链路控制信道连续参数估计
WO2021026715A1 (zh) * 2019-08-12 2021-02-18 Oppo广东移动通信有限公司 用于传输侧行数据的方法、终端设备和网络设备

Similar Documents

Publication Publication Date Title
US10292182B2 (en) Listen before talk channel access procedure for uplink LAA
US10165046B2 (en) Method and system for transmitting data among peer stations in a decentralized manner with high channel efficiency
JP2022552296A (ja) 複数のpdsch送信機会における開始シンボルをシグナリングするためのシステム及び方法
JP7259066B2 (ja) 電力制御方法および電力制御装置
US10880906B2 (en) Apparatuses, methods and computer programs for implementing fairness and complexity-constrained a non-orthogonal multiple access (NOMA) scheme
US9948541B2 (en) Full duplex services using RTS/CTS
WO2020135273A1 (zh) 一种功率控制方法及装置
WO2019193560A1 (en) Airborne status dependent uplink power control related task(s) for aerial ues
US20180184450A1 (en) System and methods to configure contention-based access periods transmission rules to enable time sensitive applications in an ieee 802.11 wlan
US20190253845A1 (en) Apparatuses, methods and computer programs for grouping users in a non-orthogonal multiple access (noma) network
WO2021003614A1 (zh) 信息传输方法、装置及存储介质
US20220417951A1 (en) Semi-persistent scheduling for multiple services
US10051566B2 (en) System and method for data communication in a decentralized and power efficient manner
KR102535608B1 (ko) 전력 제어 방법 및 장치
WO2021133512A1 (en) Power management priority handling in integrated access and backhaul
WO2021026916A1 (zh) 通信方法、装置及设备
WO2021003626A1 (zh) 直连通信的发送功率控制方法、装置、设备及存储介质
WO2023151366A1 (zh) 一种功率确定方法及设备
WO2020087977A1 (zh) 数据传输方法和设备
CN116783858A (zh) 控制上行链路中的短控制信令(scs)
WO2020192360A1 (zh) 通信方法及装置
CN116614795A (zh) 一种功率确定方法及设备
JP2023541109A (ja) 通信方法及び装置、及び、読み取り可能な記憶媒体
WO2023077279A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023051755A1 (zh) 一种资源配置方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22925717

Country of ref document: EP

Kind code of ref document: A1