WO2023151137A1 - Oled显示面板及显示装置 - Google Patents

Oled显示面板及显示装置 Download PDF

Info

Publication number
WO2023151137A1
WO2023151137A1 PCT/CN2022/078004 CN2022078004W WO2023151137A1 WO 2023151137 A1 WO2023151137 A1 WO 2023151137A1 CN 2022078004 W CN2022078004 W CN 2022078004W WO 2023151137 A1 WO2023151137 A1 WO 2023151137A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
self
healing
conductive body
display panel
Prior art date
Application number
PCT/CN2022/078004
Other languages
English (en)
French (fr)
Inventor
杜玲玉
李金川
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US17/760,848 priority Critical patent/US20240206222A1/en
Publication of WO2023151137A1 publication Critical patent/WO2023151137A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/816Multilayers, e.g. transparent multilayers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/26Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen nitrogen-containing groups
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/818Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/80Siloxanes having aromatic substituents, e.g. phenyl side groups
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present application relates to the field of display technology, in particular to an OLED display panel and a display device.
  • OLED display panels have become a research hotspot of display screens of different sizes in recent years because of their advantages such as self-illumination, low power consumption, bendability, small size, portability, and changeable shapes. Compared with traditional displays based on glass substrates, OLED displays can be bent multiple times, and OLED displays have a longer service life and lower production costs, making wearable devices possible.
  • the anode In the current OLED display, the anode is relatively brittle. Therefore, when the OLED display is bent or folded many times, the anode is prone to cracking or even breaking, thereby reducing the service life of the OLED display.
  • Embodiments of the present application provide an OLED display panel and a display device to prolong the service life of the OLED display.
  • the present application provides an OLED display panel, and the OLED display panel includes:
  • An anode the anode includes a first conductive body layer and a self-healing layer, and the self-healing layer is located on a side of the first conductive body layer close to the substrate.
  • the self-healing layer includes a self-healing material
  • the self-healing material includes polydimethylsiloxane-4,4'-methyleneisocyanate phenyl , Dimethicone-4,4′-4,4′-hexamethylenebisurea and Dimethicone-4,4′-methyleneisocyanate-4, One or more of 4'-hexamethylenebisurea.
  • the thickness of the self-healing layer is 80nm-150nm.
  • the self-healing layer further includes a reflective material, and the reflective material includes at least one of silver, palladium, copper, aluminum, nickel, and lanthanum; and/or
  • the reflective material includes an alloy composed of at least two of silver, palladium, copper, aluminum, nickel and lanthanum.
  • the anode further includes a second conductive body layer, the second conductive body layer is located on the side of the self-healing layer close to the substrate, and the second conductive body layer is The material of the body layer is the same as that of the first conductive body layer.
  • the material of the first conductive body layer and the material of the second conductive body layer are both indium tin oxide, and the material of the self-healing layer includes polydimethyl Siloxane-4,4′-methyleneisocyanatephenyl-4,4′-hexamethylenebisurea and silver nanowires;
  • the thickness of the first conductive main layer and the thickness of the second conductive main layer are both 5nm-12nm, and the thickness of the self-healing layer is 80nm-150nm.
  • the anode further includes a reflective layer, and the reflective layer is located on a side of the self-healing layer away from the first conductive body layer.
  • the anode further includes a reflective layer, and the reflective layer is located on a side of the self-healing layer close to the first conductive body layer.
  • the self-healing layer is made by a coating process or an evaporation process.
  • the present application provides an OLED display panel, and the OLED display panel includes:
  • anode the anode includes a first conductive body layer and a self-healing layer, the self-healing layer is located on a side of the first conductive body layer close to the substrate, the self-healing layer includes a self-healing material, and the self-healing layer Restorative materials include dimethicone-4,4′-methylene phenylisocyanate, dimethicone-4,4′-4,4′-hexamethylenebisurea, and One or more of polydimethylsiloxane-4,4'-methylene isocyanate phenyl-4,4'-hexamethylenebisurea, the thickness of the self-healing layer is 80nm -150nm.
  • the embodiment of the present application also provides a display device, the display device includes an OLED display panel, and the OLED display panel includes:
  • An anode the anode includes a first conductive body layer and a self-healing layer, and the self-healing layer is located on a side of the first conductive body layer close to the substrate.
  • the self-healing layer includes a self-healing material
  • the self-healing material includes polydimethylsiloxane-4,4'-methyleneisocyanate phenyl , Dimethicone-4,4′-4,4′-hexamethylenebisurea and Dimethicone-4,4′-methyleneisocyanate-4, One or more of 4'-hexamethylenebisurea.
  • the thickness of the self-healing layer is 80nm-150nm.
  • the self-healing layer further includes a reflective material, and the reflective material includes at least one of silver, palladium, copper, aluminum, nickel, and lanthanum; and/or
  • the reflective material includes an alloy composed of at least two of silver, palladium, copper, aluminum, nickel and lanthanum.
  • the anode further includes a second conductive body layer, the second conductive body layer is located on the side of the self-healing layer close to the substrate, and the second conductive body layer is The material of the body layer is the same as that of the first conductive body layer.
  • the material of the first conductive body layer and the material of the second conductive body layer are both indium tin oxide
  • the material of the self-healing layer includes polydimethyl Siloxane-4,4′-methyleneisocyanatephenyl-4,4′-hexamethylenebisurea and silver nanowires.
  • the thickness of the first conductive main body layer and the thickness of the second conductive main body layer are both 5 nm to 12 nm, and the thickness of the self-healing layer is 80 nm to 150 nm.
  • the anode further includes a reflective layer, and the reflective layer is located on a side of the self-healing layer away from the first conductive body layer.
  • the anode further includes a reflective layer, and the reflective layer is located on a side of the self-healing layer close to the first conductive body layer.
  • the self-healing layer is made by a coating process or an evaporation process.
  • the OLED display panel provided by the present application sets a self-healing layer in the anode, and the self-healing layer is located on the side of the first conductive main body layer close to the substrate, and utilizes the self-healing layer Repair performance, which can repair the mechanical damage of the anode, and then reduce the probability of anode cracking when the OLED display panel is bent or folded multiple times, thereby improving the reliability of the light-emitting device and prolonging the life of the OLED display panel. service life.
  • FIG. 1 is a schematic structural diagram of an OLED display panel provided by a first embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of an OLED display panel provided by a second embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of an OLED display panel provided by a third embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of an OLED display panel provided by a fourth embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an OLED display panel provided by a fifth embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of an OLED display panel provided by a sixth embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an OLED display panel provided by a seventh embodiment of the present application.
  • the present application provides an OLED display panel and a display device. Each will be described in detail below.
  • the present application provides an OLED display panel, and the OLED display panel includes a substrate and an anode disposed on the substrate.
  • the anode includes a first conductive host layer and a self-healing layer.
  • the self-healing layer is located on a side of the first conductive body layer close to the substrate.
  • a self-healing layer is provided in the anode, and the self-healing layer is located on the side of the first conductive main body layer close to the substrate, and the self-healing performance of the self-healing layer can be used to improve the mechanical properties of the anode.
  • the damage is repaired, and then in the case of multiple bending or folding of the OLED display panel, the probability of anode cracking can be reduced, thereby improving the reliability of the light-emitting device and prolonging the service life of the OLED display panel.
  • the first embodiment of the present application provides an OLED display panel 100 .
  • the OLED display panel 100 includes a substrate 10 and an anode 20 disposed on the substrate 10 .
  • the anode 20 includes a first conductive body layer 21 and a self-healing layer 22 .
  • the self-healing layer 22 is located on a side of the first conductive body layer 21 close to the substrate 10 .
  • the substrate 10 includes a flexible substrate and an array layer (not shown in the figure) disposed on the flexible substrate.
  • the flexible substrate may include flexible substrates such as polyimide, polyethylene terephthalate, acrylic resin or epoxy resin.
  • the array layer may include structures such as thin film transistors (not shown in the figure), and the relevant technologies are all prior art, and will not be repeated here.
  • the material of the first conductive body layer 21 may be indium tin oxide or indium zinc oxide. Because indium tin oxide has a relatively high work function, its work function can reach 4.5eV-4.8eV, and indium tin oxide has good electrical conductivity, its chemical properties are stable, and its transparency is high. Therefore, in this embodiment, the material of the first conductive body layer 21 is indium tin oxide.
  • the first conductive body layer 21 is manufactured by a physical vapor deposition process.
  • the thickness of the first conductive body layer 21 is 5nm-12nm.
  • the thickness of the first conductive body layer 21 may be 5 nm, 6 nm, 7 nm, 8 nm, 9 nm, 10 nm, 11 nm or 12 nm.
  • the self-healing layer 22 includes a self-healing material.
  • the self-healing material includes polydimethylsiloxane-4,4'-methylene isocyanate, polydimethylsiloxane-4,4'-4,4'-hexa One or more of methylenebisurea and polydimethylsiloxane-4,4'-methyleneisocyanate-4,4'-hexamethylenebisurea.
  • the above-mentioned self-healing material has self-healing performance at room temperature, so it can play a good role in repairing the mechanical properties of the self-healing layer 22 itself, which is beneficial to improving the bending performance of the anode 20 .
  • the self-healing material is polydimethylsiloxane-4,4'-methyleneisocyanate-4,4'-hexamethylenebisurea. Since the hydrogen bonds inside polydimethylsiloxane-4,4′-methyleneisocyanate-4,4′-hexamethylenebisurea have rapid dissociation and reconstruction capabilities, and the self-healing material The molecular chains in the material have the ability to move quickly, so that the self-healing material has an extremely fast self-healing rate and high self-healing efficiency, and can be completely restored to the original mechanical properties of the self-healing layer 22 at room temperature.
  • the self-repairing layer 22 when the OLED display panel 100 in this embodiment is bent or folded multiple times, even if the self-repairing layer 22 cracks or even breaks, the self-repairing layer 22 itself can repair the cracked or fragmented position to improve The bending performance of the self-healing layer 22 can further improve the overall bending performance of the anode 20 to prolong the service life of the OLED display panel 100 .
  • this embodiment can also improve the transparency, tear resistance and conductivity of the anode 20, thereby improving the light output brightness of the OLED display panel 100 , mechanical properties and stability.
  • the self-healing layer 22 is made by coating process or vapor deposition process.
  • the coating process may be slit coating, spin coating, doctor blade coating or spray coating and the like.
  • the self-healing layer 22 is made by evaporation process.
  • the thickness of the self-healing layer 22 is 80nm-150nm.
  • the self-healing layer 22 may have a thickness of 80 nm, 90 nm, 100 nm, 110 nm, 120 nm, 130 nm, 140 nm or 150 nm.
  • the self-healing material can also be polydimethylsiloxane-4,4'-hexamethylenebisurea, which will not be described in detail here.
  • the OLED display panel 100 in this embodiment also includes a light-emitting layer, a cathode, and an encapsulation layer (not shown in the figure) sequentially arranged on the anode 20.
  • the related technologies are all prior art, and will not be repeated here. repeat.
  • the second embodiment of the present application provides an OLED display panel 200 .
  • the OLED display panel 200 provided in the second embodiment of the present application is different from the first embodiment in that: the self-healing layer 22 also includes a reflective material, and the reflective material includes silver, palladium, copper, aluminum, nickel and lanthanum at least one of the
  • the reflection performance of the self-healing layer 22 can be improved, and then the reflection performance of the anode 20 can be improved, so as to improve the light extraction efficiency and light output uniformity of the OLED display panel 200 .
  • the reflective material also has good electrical conductivity, the electrical conductivity of the self-healing layer 22 can be improved to improve the electrical conductivity of the anode 20 , thereby improving the luminous performance of the OLED display panel 200 .
  • the reflective material is silver, specifically, the reflective material may be silver nanowires. Due to the high transparency and good electrical conductivity of silver nanowires, the polydimethylsiloxane-4,4'-methylene isocyanate phenyl The biurea doped with nano-silver wires can improve the transparency and conductivity of the anode 20 on the premise of improving the bending performance of the anode 20 , thereby improving the light-emitting effect and luminous performance of the OLED display panel 200 .
  • the reflective material includes an alloy composed of at least two of silver, palladium, copper, aluminum, nickel and lanthanum; or, the reflective material may simultaneously include silver, palladium, copper, aluminum, nickel and at least one of lanthanum, and an alloy composed of at least two of silver, palladium, copper, aluminum, nickel and lanthanum, which will not be repeated here.
  • the third embodiment of the present application provides an OLED display panel 300 .
  • the OLED display panel 300 provided by the third embodiment of the present application is different from the second embodiment in that: the anode 20 further includes a second conductive body layer 23, and the second conductive body layer 23 is located on the self-healing layer. 22 close to the side of the substrate 10 .
  • the material of the second conductive body layer 23 is the same as that of the first conductive body layer 21 , both being indium tin oxide.
  • the second conductive body layer 23 is manufactured by a physical vapor deposition process.
  • the thickness of the second conductive body layer 23 is 5nm-12nm.
  • the thickness of the second conductive body layer 23 may be 5 nm, 6 nm, 7 nm, 8 nm, 9 nm, 10 nm, 11 nm or 12 nm.
  • the fourth embodiment of the present application provides an OLED display panel 400 .
  • the OLED display panel 400 provided by the fourth embodiment of the present application is different from the first embodiment in that: the anode 20 further includes a reflective layer 24, and the reflective layer 24 is located on the self-healing layer 22 away from the first One side of the conductive body layer 21 .
  • the reflective layer 24 by disposing the reflective layer 24 on the side of the self-healing layer 22 away from the first conductive body layer 21 , the reflective performance of the anode 20 can be improved, thereby improving the light output efficiency and light output uniformity of the OLED display panel 400 .
  • the material of the reflective layer 24 can be a metal, such as can include at least one of silver, palladium, copper, aluminum, nickel and lanthanum; or, the material of the reflective layer 24 can also be an alloy, such as can include An alloy composed of at least two of silver, palladium, copper, aluminum, nickel, and lanthanum.
  • the material of the reflective layer 24 may be an alloy composed of silver, palladium and copper or an alloy composed of aluminum, nickel, copper and lanthanum, and the material of the reflective layer 24 is not specifically limited in this embodiment.
  • the fifth embodiment of the present application provides an OLED display panel 500 .
  • the OLED display panel 500 provided by the fifth embodiment of the present application is different from the fourth embodiment in that: the anode 20 further includes a second conductive body layer 23 , and the second conductive body layer 23 is located on the reflective layer 24 The side away from the self-healing layer 22 .
  • the material of the second conductive body layer 23 is the same as that of the first conductive body layer 21 , both being indium tin oxide.
  • the second conductive body layer 23 is manufactured by a physical vapor deposition process.
  • the thickness of the second conductive body layer 23 is 5nm-12nm.
  • the thickness of the second conductive body layer 23 may be 5 nm, 6 nm, 7 nm, 8 nm, 9 nm, 10 nm, 11 nm or 12 nm.
  • the sixth embodiment of the present application provides an OLED display panel 600 .
  • the OLED display panel 600 provided by the sixth embodiment of the present application is different from the first embodiment in that: the anode 20 further includes a reflective layer 24, and the reflective layer 24 is located on the self-healing layer 22 close to the first One side of the conductive body layer 21 .
  • the reflective layer 24 by disposing the reflective layer 24 on the side of the self-healing layer 22 close to the first conductive body layer 21 , the reflective performance of the anode 20 can be improved, which is beneficial to improve the light output efficiency and light output uniformity of the OLED display panel 600 .
  • the material of the reflective layer 24 can be a metal, such as can include at least one of silver, palladium, copper, aluminum, nickel and lanthanum; or, the material of the reflective layer 24 can also be an alloy, such as can include An alloy composed of at least two of silver, palladium, copper, aluminum, nickel, and lanthanum.
  • the material of the reflective layer 24 may be an alloy composed of silver, palladium and copper or an alloy composed of aluminum, nickel, copper and lanthanum, and the material of the reflective layer 24 is not specifically limited in this embodiment.
  • the seventh embodiment of the present application provides an OLED display panel 700 .
  • the OLED display panel 700 provided by the seventh embodiment of the present application is different from the sixth embodiment in that: the anode 20 further includes a second conductive body layer 23, and the second conductive body layer 23 is located on the self-healing layer. 22 away from the side of the reflective layer 24 .
  • the material of the second conductive body layer 23 is the same as that of the first conductive body layer 21 , both being indium tin oxide.
  • the second conductive body layer 23 is manufactured by a physical vapor deposition process.
  • the thickness of the second conductive body layer 23 is 5nm-12nm.
  • the thickness of the second conductive body layer 23 may be 5 nm, 6 nm, 7 nm, 8 nm, 9 nm, 10 nm, 11 nm or 12 nm.
  • the present application also provides a display device, and the display device may be a display product such as a mobile phone, a tablet, a notebook computer, and a television.
  • the display device includes a casing and an OLED display panel disposed in the casing, the OLED display panel can be the OLED display panel described in any of the foregoing embodiments, and the specific structure of the OLED display panel can refer to the aforementioned The description of the embodiment will not be repeated here.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种OLED显示面板(100)及显示装置。OLED显示面板(100)包括基板(10)和设置在基板(10)上的阳极(20),阳极(20)包括第一导电主体层(21)和自修复层(22),自修复层(22)位于第一导电主体层(21)靠近基板(10)的一侧。

Description

OLED显示面板及显示装置 技术领域
本申请涉及显示技术领域,具体涉及一种OLED显示面板及显示装置。
背景技术
有机发光二极管(Organic Light-Emitting Diode, OLED)显示面板因其具有自发光、功耗低、可弯曲、体积小、方便携带以及外形多变等优点,成为近年来不同尺寸显示屏幕的研究热点。相较于传统以玻璃基板为衬底的显示器,OLED显示器可以实现多次弯折,且OLED显示器的使用寿命更长,生产成本更低,使可穿戴设备成为可能。
技术问题
在目前的OLED显示器中,阳极具有较大的脆性,因此,在OLED显示器经过多次弯曲或折叠时,阳极容易发生开裂甚至断裂,从而会降低OLED显示器的使用寿命。
技术解决方案
本申请实施例提供一种OLED显示面板及显示装置,以延长OLED显示器的使用寿命。
本申请提供一种OLED显示面板,所述OLED显示面板包括:
基板;和
阳极,所述阳极包括第一导电主体层和自修复层,所述自修复层位于所述第一导电主体层靠近所述基板的一侧。
可选的,在本申请的一些实施例中,所述自修复层包括自修复材料,所述自修复材料包括聚二甲基硅氧烷-4,4′-亚甲基异氰酸苯酯、聚二甲基硅氧烷-4,4′-4,4′-六亚甲基双脲和聚二甲基硅氧烷-4,4′-亚甲基异氰酸苯酯-4,4′-六亚甲基双脲中的一种或多种。
可选的,在本申请的一些实施例中,所述自修复层的厚度为80nm-150nm。
可选的,在本申请的一些实施例中,所述自修复层还包括反射材料,所述反射材料包括银、钯、铜、铝、镍和镧中的至少一种;和/或
所述反射材料包括由银、钯、铜、铝、镍和镧中的至少两者组成的合金。
可选的,在本申请的一些实施例中,所述阳极还包括第二导电主体层,所述第二导电主体层位于所述自修复层靠近所述基板的一侧,所述第二导电主体层的材料与所述第一导电主体层的材料相同。
可选的,在本申请的一些实施例中,所述第一导电主体层的材料和所述第二导电主体层的材料均为氧化铟锡,所述自修复层的材料包括聚二甲基硅氧烷-4,4′-亚甲基异氰酸苯酯-4,4′-六亚甲基双脲和纳米银线;
所述第一导电主体层的厚度和所述第二导电主体层的厚度均为5nm~12nm,所述自修复层的厚度为80nm-150nm。
可选的,在本申请的一些实施例中,所述阳极还包括反射层,所述反射层位于所述自修复层远离所述第一导电主体层的一侧。
可选的,在本申请的一些实施例中,所述阳极还包括反射层,所述反射层位于所述自修复层靠近所述第一导电主体层的一侧。
可选的,在本申请的一些实施例中,所述自修复层采用涂布工艺或蒸镀工艺制得。
本申请提供一种OLED显示面板,所述OLED显示面板包括:
基板;和
阳极,所述阳极包括第一导电主体层和自修复层,所述自修复层位于所述第一导电主体层靠近所述基板的一侧,所述自修复层包括自修复材料,所述自修复材料包括聚二甲基硅氧烷-4,4′-亚甲基异氰酸苯酯、聚二甲基硅氧烷-4,4′-4,4′-六亚甲基双脲和聚二甲基硅氧烷-4,4′-亚甲基异氰酸苯酯-4,4′-六亚甲基双脲中的一种或多种,所述自修复层的厚度为80nm-150nm。
本申请实施例还提供一种显示装置,所述显示装置包括OLED显示面板,所述OLED显示面板包括:
基板;和
阳极,所述阳极包括第一导电主体层和自修复层,所述自修复层位于所述第一导电主体层靠近所述基板的一侧。
可选的,在本申请的一些实施例中,所述自修复层包括自修复材料,所述自修复材料包括聚二甲基硅氧烷-4,4′-亚甲基异氰酸苯酯、聚二甲基硅氧烷-4,4′-4,4′-六亚甲基双脲和聚二甲基硅氧烷-4,4′-亚甲基异氰酸苯酯-4,4′-六亚甲基双脲中的一种或多种。
可选的,在本申请的一些实施例中,所述自修复层的厚度为80nm-150nm。
可选的,在本申请的一些实施例中,所述自修复层还包括反射材料,所述反射材料包括银、钯、铜、铝、镍和镧中的至少一种;和/或
所述反射材料包括由银、钯、铜、铝、镍和镧中的至少两者组成的合金。
可选的,在本申请的一些实施例中,所述阳极还包括第二导电主体层,所述第二导电主体层位于所述自修复层靠近所述基板的一侧,所述第二导电主体层的材料与所述第一导电主体层的材料相同。
可选的,在本申请的一些实施例中,所述第一导电主体层的材料和所述第二导电主体层的材料均为氧化铟锡,所述自修复层的材料包括聚二甲基硅氧烷-4,4′-亚甲基异氰酸苯酯-4,4′-六亚甲基双脲和纳米银线。
可选的,在本申请的一些实施例中,所述第一导电主体层的厚度和所述第二导电主体层的厚度均为5nm~12nm,所述自修复层的厚度为80nm-150nm。
可选的,在本申请的一些实施例中,所述阳极还包括反射层,所述反射层位于所述自修复层远离所述第一导电主体层的一侧。
可选的,在本申请的一些实施例中,所述阳极还包括反射层,所述反射层位于所述自修复层靠近所述第一导电主体层的一侧。
可选的,在本申请的一些实施例中,所述自修复层采用涂布工艺或蒸镀工艺制得。
有益效果
相较于现有技术中的OLED显示面板,本申请提供的OLED显示面板通过在阳极中设置自修复层,且自修复层位于第一导电主体层靠近基板的一侧,利用自修复层的自修复性能,能够对阳极的机械性能损伤进行修复,进而在OLED显示面板进行多次弯曲或折叠的情况下,可以降低阳极开裂的几率,从而能够提高发光器件的可靠性,以延长OLED显示面板的使用寿命。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请第一实施例提供的OLED显示面板的结构示意图。
图2是本申请第二实施例提供的OLED显示面板的结构示意图。
图3是本申请第三实施例提供的OLED显示面板的结构示意图。
图4是本申请第四实施例提供的OLED显示面板的结构示意图。
图5是本申请第五实施例提供的OLED显示面板的结构示意图。
图6是本申请第六实施例提供的OLED显示面板的结构示意图。
图7是本申请第七实施例提供的OLED显示面板的结构示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。此外,应当理解的是,此处所描述的具体实施方式仅用于说明和解释本申请,并不用于限制本申请。在本申请中,在未作相反说明的情况下,使用的方位词如“上”和“下”通常是指装置实际使用或工作状态下的上和下,具体为附图中的图面方向;而“内”和“外”则是针对装置的轮廓而言的。
本申请提供一种OLED显示面板及显示装置。以下分别进行详细说明。
本申请提供一种OLED显示面板,所述OLED显示面板包括基板和设置在所述基板上的阳极。所述阳极包括第一导电主体层和自修复层。所述自修复层位于所述第一导电主体层靠近所述基板的一侧。
由此,本申请提供的OLED显示面板通过在阳极中设置自修复层,且自修复层位于第一导电主体层靠近基板的一侧,利用自修复层的自修复性能,能够对阳极的机械性能损伤进行修复,进而在OLED显示面板进行多次弯曲或折叠的情况下,可以降低阳极开裂的几率,从而能够提高发光器件的可靠性,以延长OLED显示面板的使用寿命。
下面通过具体实施例对本申请提供的OLED显示面板进行详细的阐述。需说明的是,以下实施例的描述顺序不作为对实施例优选顺序的限定。
请参照图1,本申请第一实施例提供一种OLED显示面板100。所述OLED显示面板100包括基板10和设置在所述基板10上的阳极20。所述阳极20包括第一导电主体层21和自修复层22。所述自修复层22位于所述第一导电主体层21靠近所述基板10的一侧。
在本实施例中,所述基板10包括柔性衬底和设置在所述柔性衬底上的阵列层(图中未示出)。其中,所述柔性衬底可以包括聚酰亚胺、聚对苯二甲酸乙二醇酯、丙烯酸树脂或环氧树脂等柔性基材。所述阵列层可以包括薄膜晶体管等结构(图中未示出),相关技术均为现有技术,在此不再赘述。
具体的,所述第一导电主体层21的材料可以为氧化铟锡或氧化铟锌。由于氧化铟锡具有较高的功函数,其功函数可达4.5eV-4.8eV,且氧化铟锡具有良好的导电性,其化学性质稳定、透明度较高。因此,在本实施例中,所述第一导电主体层21的材料为氧化铟锡。
在本实施例中,所述第一导电主体层21采用物理气相沉积工艺制得。其中,所述第一导电主体层21的厚度为5nm-12nm。在一些具体实施方式中,所述第一导电主体层21的厚度可以为5nm、6nm、7nm、8nm、9nm、10nm、11nm或12nm。
所述自修复层22包括自修复材料。具体的,所述自修复材料包括聚二甲基硅氧烷-4,4′-亚甲基异氰酸苯酯、聚二甲基硅氧烷-4,4′-4,4′-六亚甲基双脲和聚二甲基硅氧烷-4,4′-亚甲基异氰酸苯酯-4,4′-六亚甲基双脲中的一种或多种。上述自修复材料在室温下即具有自修复性能,因而能够对自修复层22本身的机械性能起到良好的修复作用,有利于提高阳极20的弯折性能。
在本实施例中,所述自修复材料为聚二甲基硅氧烷-4,4′-亚甲基异氰酸苯酯-4,4′-六亚甲基双脲。由于聚二甲基硅氧烷-4,4′-亚甲基异氰酸苯酯-4,4′-六亚甲基双脲内部的氢键具有快速解离重建能力,且该自修复材料中的分子链具有快速运动能力,因而使得该自修复材料具有极快的自修复速率和极高的自修复效率,在室温下即可完全修复至自修复层22的原始机械性能。具体来说,在本实施例中的OLED显示面板100发生多次弯曲或折叠下,自修复层22即使发生开裂甚至断裂,自修复层22本身能够对开裂或段裂的位置进行修复,以提高自修复层22的弯折性能,进而能够提高阳极20整体的弯折性能,以延长OLED显示面板100的使用寿命。
另外,由于上述聚二甲基硅氧烷-4,4′-亚甲基异氰酸苯酯-4,4′-六亚甲基双脲具有较高的透明度(透明度可达94%以上)、优异的抗撕裂性能(拉伸强度大于800%)以及良好的导电性能,本实施例还能够提高阳极20的透明度、抗撕裂性能以及导电性能,从而能够提高OLED显示面板100的出光亮度、机械性能以及稳定性。
进一步的,所述自修复层22采用涂布工艺或蒸镀工艺制得。其中,所述涂布工艺可以为狭缝涂布、旋涂、刮涂或者喷涂等。在本实施例中,所述自修复层22采用蒸镀工艺制得。其中,所述自修复层22的厚度为80nm-150nm。在一些具体实施方式中,所述自修复层22的厚度可以为80nm、90nm、100nm、110nm、120nm、130nm、140nm或150nm。
较佳地,在一些实施例中,所述自修复材料也可以为聚二甲基硅氧烷-4,4′-六亚甲基双脲,在此不再赘述。
需要说明的是,本实施例中的OLED显示面板100还包括依次设置在阳极20上的发光层、阴极以及封装层(图中未示出),相关技术均为现有技术,在此不再赘述。
请参照图2,本申请第二实施例提供一种OLED显示面板200。本申请第二实施例提供的OLED显示面板200与第一实施例的不同之处在于:所述自修复层22还包括反射材料,所述反射材料包括银、钯、铜、铝、镍和镧中的至少一种。
本实施例通过在自修复层22中添加反射材料,能够提高自修复层22的反射性能,进而能够提高阳极20的反射性能,以提高OLED显示面板200的出光效率和出光均一性。另外,由于上述反射材料还具有良好的导电性能,因此可以提高自修复层22的导电性能,以提高阳极20的导电性能,从而能够提高OLED显示面板200的发光性能。
在本实施例中,所述反射材料为银,具体来说,所述反射材料可以为纳米银线。由于纳米银线具有较高的透明度以及良好的导电性能,因此,通过在聚二甲基硅氧烷-4,4′-亚甲基异氰酸苯酯-4,4′-六亚甲基双脲中掺杂纳米银线,在提高阳极20弯折性能的前提下,还能够提高阳极20的透明度及导电性能,从而可以提高OLED显示面板200的出光效果以及发光性能。
在一些实施例中,所述反射材料包括由银、钯、铜、铝、镍和镧中的至少两者组成的合金;或者,所述反射材料可以同时包括银、钯、铜、铝、镍和镧中的至少一种,以及由银、钯、铜、铝、镍和镧中的至少两者组成的合金,在此不再赘述。
请参照图3,本申请第三实施例提供一种OLED显示面板300。本申请第三实施例提供的OLED显示面板300与第二实施例的不同之处在于:所述阳极20还包括第二导电主体层23,所述第二导电主体层23位于所述自修复层22靠近所述基板10的一侧。
在本实施例中,所述第二导电主体层23的材料与所述第一导电主体层21的材料相同,均为氧化铟锡。
具体的,所述第二导电主体层23采用物理气相沉积工艺制得。其中,所述第二导电主体层23的厚度为5nm-12nm。在一些具体实施方式中,所述第二导电主体层23的厚度可以为5nm、6nm、7nm、8nm、9nm、10nm、11nm或12nm。
请参照图4,本申请第四实施例提供一种OLED显示面板400。本申请第四实施例提供的OLED显示面板400与第一实施例的不同之处在于:所述阳极20还包括反射层24,所述反射层24位于所述自修复层22远离所述第一导电主体层21的一侧。
本实施例通过在自修复层22远离第一导电主体层21的一侧设置反射层24,能够提高阳极20的反射性能,从而可以提高OLED显示面板400的出光效率和出光均一性。
其中,所述反射层24的材料可以为金属,如可以包括银、钯、铜、铝、镍和镧中的至少一种;或者,所述反射层24的材料也可以为合金,如可以包括由银、钯、铜、铝、镍和镧中的至少两者组成的合金。示例性地,所述反射层24的材料可以为由银、钯以及铜组成的合金或者由铝、镍、铜以及镧组成的合金,本实施例对所述反射层24的材料不作具体限定。
请参照图5,本申请第五实施例提供一种OLED显示面板500。本申请第五实施例提供的OLED显示面板500与第四实施例的不同之处在于:所述阳极20还包括第二导电主体层23,所述第二导电主体层23位于所述反射层24远离所述自修复层22的一侧。
在本实施例中,所述第二导电主体层23的材料与所述第一导电主体层21的材料相同,均为氧化铟锡。
具体的,所述第二导电主体层23采用物理气相沉积工艺制得。其中,所述第二导电主体层23的厚度为5nm-12nm。在一些具体实施方式中,所述第二导电主体层23的厚度可以为5nm、6nm、7nm、8nm、9nm、10nm、11nm或12nm。
请参照图6,本申请第六实施例提供一种OLED显示面板600。本申请第六实施例提供的OLED显示面板600与第一实施例的不同之处在于:所述阳极20还包括反射层24,所述反射层24位于所述自修复层22靠近所述第一导电主体层21的一侧。
本实施例通过在自修复层22靠近第一导电主体层21的一侧设置反射层24,能够提高阳极20的反射性能,进而有利于提高OLED显示面板600的出光效率和出光均一性。
其中,所述反射层24的材料可以为金属,如可以包括银、钯、铜、铝、镍和镧中的至少一种;或者,所述反射层24的材料也可以为合金,如可以包括由银、钯、铜、铝、镍和镧中的至少两者组成的合金。示例性地,所述反射层24的材料可以为由银、钯以及铜组成的合金或者由铝、镍、铜以及镧组成的合金,本实施例对所述反射层24的材料不作具体限定。
请参照图7,本申请第七实施例提供一种OLED显示面板700。本申请第七实施例提供的OLED显示面板700与第六实施例的不同之处在于:所述阳极20还包括第二导电主体层23,所述第二导电主体层23位于所述自修复层22远离所述反射层24的一侧。
在本实施例中,所述第二导电主体层23的材料与所述第一导电主体层21的材料相同,均为氧化铟锡。
具体的,所述第二导电主体层23采用物理气相沉积工艺制得。其中,所述第二导电主体层23的厚度为5nm-12nm。在一些具体实施方式中,所述第二导电主体层23的厚度可以为5nm、6nm、7nm、8nm、9nm、10nm、11nm或12nm。
本申请还提供一种显示装置,所述显示装置可以为手机、平板、笔记本电脑、电视等显示产品。其中,所述显示装置包括壳体和设置在所述壳体中的OLED显示面板,所述OLED显示面板可以为前述任一实施例所述的OLED显示面板,OLED显示面板的具体结构可以参照前述实施例的描述,在此不再赘述。
以上对本申请实施例所提供的一种OLED显示面板及显示装置进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种OLED显示面板,其中,所述OLED显示面板包括:
    基板;和
    阳极,所述阳极包括第一导电主体层和自修复层,所述自修复层位于所述第一导电主体层靠近所述基板的一侧。
  2. 根据权利要求1所述的OLED显示面板,其中,所述自修复层包括自修复材料,所述自修复材料包括聚二甲基硅氧烷-4,4′-亚甲基异氰酸苯酯、聚二甲基硅氧烷-4,4′-4,4′-六亚甲基双脲和聚二甲基硅氧烷-4,4′-亚甲基异氰酸苯酯-4,4′-六亚甲基双脲中的一种或多种。
  3. 根据权利要求1所述的OLED显示面板,其中,所述自修复层的厚度为80nm-150nm。
  4. 根据权利要求2所述的OLED显示面板,其中,所述自修复层还包括反射材料,所述反射材料包括银、钯、铜、铝、镍和镧中的至少一种;和/或
    所述反射材料包括由银、钯、铜、铝、镍和镧中的至少两者组成的合金。
  5. 根据权利要求4所述的OLED显示面板,其中,所述阳极还包括第二导电主体层,所述第二导电主体层位于所述自修复层靠近所述基板的一侧,所述第二导电主体层的材料与所述第一导电主体层的材料相同。
  6. 根据权利要求5所述的OLED显示面板,其中,所述第一导电主体层的材料和所述第二导电主体层的材料均为氧化铟锡,所述自修复层的材料包括聚二甲基硅氧烷-4,4′-亚甲基异氰酸苯酯-4,4′-六亚甲基双脲和纳米银线;
    所述第一导电主体层的厚度和所述第二导电主体层的厚度均为5nm~12nm,所述自修复层的厚度为80nm-150nm。
  7. 根据权利要求1所述的OLED显示面板,其中,所述阳极还包括反射层,所述反射层位于所述自修复层远离所述第一导电主体层的一侧。
  8. 根据权利要求1所述的OLED显示面板,其中,所述阳极还包括反射层,所述反射层位于所述自修复层靠近所述第一导电主体层的一侧。
  9. 根据权利要求1所述的OLED显示面板,其中,所述自修复层采用涂布工艺或蒸镀工艺制得。
  10. 一种OLED显示面板,其中,所述OLED显示面板包括:
    基板;和
    阳极,所述阳极包括第一导电主体层和自修复层,所述自修复层位于所述第一导电主体层靠近所述基板的一侧,所述自修复层包括自修复材料,所述自修复材料包括聚二甲基硅氧烷-4,4′-亚甲基异氰酸苯酯、聚二甲基硅氧烷-4,4′-4,4′-六亚甲基双脲和聚二甲基硅氧烷-4,4′-亚甲基异氰酸苯酯-4,4′-六亚甲基双脲中的一种或多种,所述自修复层的厚度为80nm-150nm。
  11. 一种显示装置,其包括OLED显示面板,所述OLED显示面板包括:
    基板;和
    阳极,所述阳极包括第一导电主体层和自修复层,所述自修复层位于所述第一导电主体层靠近所述基板的一侧。
  12. 根据权利要求11所述的显示装置,其中,所述自修复层包括自修复材料,所述自修复材料包括聚二甲基硅氧烷-4,4′-亚甲基异氰酸苯酯、聚二甲基硅氧烷-4,4′-4,4′-六亚甲基双脲和聚二甲基硅氧烷-4,4′-亚甲基异氰酸苯酯-4,4′-六亚甲基双脲中的一种或多种。
  13. 根据权利要求11所述的显示装置,其中,所述自修复层的厚度为80nm-150nm。
  14. 根据权利要求12所述的显示装置,其中,所述自修复层还包括反射材料,所述反射材料包括银、钯、铜、铝、镍和镧中的至少一种;和/或
    所述反射材料包括由银、钯、铜、铝、镍和镧中的至少两者组成的合金。
  15. 根据权利要求14所述的显示装置,其中,所述阳极还包括第二导电主体层,所述第二导电主体层位于所述自修复层靠近所述基板的一侧,所述第二导电主体层的材料与所述第一导电主体层的材料相同。
  16. 根据权利要求15所述的显示装置,其中,所述第一导电主体层的材料和所述第二导电主体层的材料均为氧化铟锡,所述自修复层的材料包括聚二甲基硅氧烷-4,4′-亚甲基异氰酸苯酯-4,4′-六亚甲基双脲和纳米银线。
  17. 根据权利要求15所述的显示装置,其中,所述第一导电主体层的厚度和所述第二导电主体层的厚度均为5nm~12nm,所述自修复层的厚度为80nm-150nm。
  18. 根据权利要求11所述的显示装置,其中,所述阳极还包括反射层,所述反射层位于所述自修复层远离所述第一导电主体层的一侧。
  19. 根据权利要求11所述的显示装置,其中,所述阳极还包括反射层,所述反射层位于所述自修复层靠近所述第一导电主体层的一侧。
  20. 根据权利要求11所述的显示装置,其中,所述自修复层采用涂布工艺或蒸镀工艺制得。
PCT/CN2022/078004 2022-02-14 2022-02-25 Oled显示面板及显示装置 WO2023151137A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/760,848 US20240206222A1 (en) 2022-02-14 2022-02-25 Oled display panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210134518.9 2022-02-14
CN202210134518.9A CN114551758A (zh) 2022-02-14 2022-02-14 Oled显示面板及显示装置

Publications (1)

Publication Number Publication Date
WO2023151137A1 true WO2023151137A1 (zh) 2023-08-17

Family

ID=81675201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/078004 WO2023151137A1 (zh) 2022-02-14 2022-02-25 Oled显示面板及显示装置

Country Status (3)

Country Link
US (1) US20240206222A1 (zh)
CN (1) CN114551758A (zh)
WO (1) WO2023151137A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102097438A (zh) * 2009-12-10 2011-06-15 三星移动显示器株式会社 平板显示装置及其制造方法
CN106531768A (zh) * 2016-12-07 2017-03-22 厦门天马微电子有限公司 一种有机电致发光显示面板及其制备方法
US20170278873A1 (en) * 2016-03-24 2017-09-28 Samsung Display Co., Ltd. Thin film transistor, thin film transistor panel, and method for manufacturing the same
CN109994643A (zh) * 2018-01-02 2019-07-09 京东方科技集团股份有限公司 有机发光二极管器件及其制造方法、显示基板、显示装置
CN111048619A (zh) * 2019-10-25 2020-04-21 深圳大学 基于黑磷/石墨烯/二硫化钼异质结的光电探测器及其制备方法
CN113124745A (zh) * 2021-04-14 2021-07-16 大连理工大学 一种基于电纺纤维的自修复柔性应变传感器及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102578705B1 (ko) * 2018-11-19 2023-09-15 엘지디스플레이 주식회사 유기발광 표시장치 및 유기발광 표시장치의 리페어 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102097438A (zh) * 2009-12-10 2011-06-15 三星移动显示器株式会社 平板显示装置及其制造方法
US20170278873A1 (en) * 2016-03-24 2017-09-28 Samsung Display Co., Ltd. Thin film transistor, thin film transistor panel, and method for manufacturing the same
CN106531768A (zh) * 2016-12-07 2017-03-22 厦门天马微电子有限公司 一种有机电致发光显示面板及其制备方法
CN109994643A (zh) * 2018-01-02 2019-07-09 京东方科技集团股份有限公司 有机发光二极管器件及其制造方法、显示基板、显示装置
CN111048619A (zh) * 2019-10-25 2020-04-21 深圳大学 基于黑磷/石墨烯/二硫化钼异质结的光电探测器及其制备方法
CN113124745A (zh) * 2021-04-14 2021-07-16 大连理工大学 一种基于电纺纤维的自修复柔性应变传感器及其制备方法

Also Published As

Publication number Publication date
US20240206222A1 (en) 2024-06-20
CN114551758A (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
CN107424519B (zh) 柔性显示面板及柔性显示装置
Liang et al. Highly flexible and bright electroluminescent devices based on ag nanowire electrodes and top‐emission structure
JP5573158B2 (ja) フレキシブル透明導電フィルム及びこれを用いたフレキシブル機能性素子
US7772762B2 (en) White light organic electroluminescent element
CN101226993B (zh) 透明电极及包含此透明电极的有机电致发光元件
US20220016874A1 (en) Flexible conductive film, producing method thereof, and display panel
CN204028877U (zh) 一种基于纳米银线的双层电容式触摸屏用透明导电薄膜组
WO2018152895A1 (zh) 发光二极管显示器及其制作方法
KR20120028506A (ko) 플렉시블 다층 투명 전극의 제조 방법
CN104701460B (zh) 一种反射电极及其制备方法和应用
US20170149015A1 (en) Manufacturing Method of Anode of Flexible OLED Display Panel and Manufacturing Method of Display Panel
CN101114702B (zh) 图像显示系统
WO2023151137A1 (zh) Oled显示面板及显示装置
CN109461835A (zh) 柔性显示面板及其制作方法、显示装置
CN208819915U (zh) 柔性显示面板及装置
Huh et al. Characteristics of organic light-emitting diodes with conducting polymer anodes on plastic substrates
CN103035666A (zh) 一种大尺寸柔性平板显示器的面板及其制备方法
Wang et al. Improving the bending resistance of double-layer printed flexible OLEDs with PEDOT: PSS-PEO composite HIL films
US11374190B2 (en) Light-emitting device having surface-treated hole transport layer and manufacturing method thereof
D’Andrade et al. Flexible organic electronic devices on metal foil substrates for lighting, photovoltaic, and other applications
WO2021217799A1 (zh) Oled 显示面板及制备方法与显示设备
CN114551476A (zh) 显示面板及其制作方法、移动终端
CN109148708A (zh) 一种显示面板及显示装置
CN114242912B (zh) 发光器件及显示面板
CN100495763C (zh) 黑电极结构有机电致发光显示器及其制作方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17760848

Country of ref document: US