WO2023151122A1 - 一种热分解低压混合型氨燃料发动机 - Google Patents

一种热分解低压混合型氨燃料发动机 Download PDF

Info

Publication number
WO2023151122A1
WO2023151122A1 PCT/CN2022/077269 CN2022077269W WO2023151122A1 WO 2023151122 A1 WO2023151122 A1 WO 2023151122A1 CN 2022077269 W CN2022077269 W CN 2022077269W WO 2023151122 A1 WO2023151122 A1 WO 2023151122A1
Authority
WO
WIPO (PCT)
Prior art keywords
ammonia
engine
mixed
mixed fuel
pipeline
Prior art date
Application number
PCT/CN2022/077269
Other languages
English (en)
French (fr)
Inventor
彭力上
Original Assignee
彭力上
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 彭力上 filed Critical 彭力上
Publication of WO2023151122A1 publication Critical patent/WO2023151122A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • F02B43/10Engines or plants characterised by use of other specific gases, e.g. acetylene, oxyhydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0203Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels characterised by the type of gaseous fuel
    • F02M21/0206Non-hydrocarbon fuels, e.g. hydrogen, ammonia or carbon monoxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the invention relates to the field of engines, in particular to a thermal decomposition low-pressure mixed ammonia fuel engine.
  • the fossil fuels used by existing engines are all carbon-containing, and will generate carbon dioxide emissions during operation.
  • the emissions vary depending on the fuel.
  • Technically feasible alternatives are: 1. All-electric replacement, that is, the internal combustion engine is replaced by an electric motor. Electricity comes from power batteries, but the alternative method of electricity has low energy density and slow charging speed, so it is not suitable for heavy-duty vehicles, ships, aviation and other transportation; 2. Hydrogen energy replacement, hydrogen is used as a clean fuel, and the only emission is water, but the density of hydrogen Small size, low liquefaction temperature, difficult storage and transportation, and difficult to apply in heavy-duty vehicles, ships, aviation and other fields; 3.
  • Synthetic fuels that is, using clean electricity such as photovoltaics and wind power to produce hydrogen, artificially synthesizing fuels (hydrogen and its compounds ), wherein ammonia, as a hydrogen nitrogen compound, has a good application prospect because it does not contain carbon, is easy to prepare, and is easy to transport.
  • Ammonia has been invented as a chemical fertilizer for more than 100 years, and its production technology is relatively mature. The annual production and transportation of ammonia worldwide exceeds 200 million tons.
  • the existing ammonia production method uses carbon-containing raw materials such as coal and natural gas to be produced, which can be easily replaced by electrolysis of water to produce hydrogen to synthesize ammonia, so as to achieve no carbon emissions in the whole process.
  • As a fuel ammonia has a lower calorific value, but it is more convenient to store and transport than hydrogen. It is one of the compounds with the highest hydrogen content at present, but ammonia is still rare as a fuel.
  • the main reason is the hydrogen-nitrogen-hydrogen cycle efficiency Low fuel calorific value, difficult hydrogen separation, difficult combustion, low overall energy efficiency when used in fuel cells, slow combustion and difficult ignition when used in internal combustion engines, and the need to add combustion-supporting fuels, etc. All of these have affected ammonia as a carbon-free fuel. Promotion and application of fuel.
  • Ammonia is used in internal combustion engines and has a high compression ratio, making it easier to increase engine efficiency. Although the calorific value of ammonia is low, it is superior to the direct hydrogen storage system in terms of the effective energy carried by the system; the exhaust temperature of the internal combustion engine is relatively high, which is close to the decomposition temperature of ammonia, and ammonia can be pyrolyzed into a mixture of hydrogen and nitrogen. It needs to absorb a certain amount of energy, and the internal energy of the mixed gas after all pyrolysis is more than that of ammonia (about 16% energy can be increased), so that part of the exhaust energy can be recovered, and the engine efficiency is improved.
  • the hydrogen in the mixed gas is used as a combustion-supporting fuel Solve the problem of difficult ignition of pure ammonia fuel.
  • Ammonia fuel engine emissions do not contain carbon dioxide.
  • the nitrogen oxide content is high.
  • Catalytic decomposition can be used, or ammonia or mixed gas can be injected into the exhaust pipe to catalytically decompose exhaust nitrogen oxides.
  • the technical solution provided by the present invention is: a thermal decomposition low-pressure hybrid ammonia fuel engine, including an ammonia tank, a pressure regulator, an ammonia preheating and decomposition device, a mixed fuel cooling device, a mixed fuel injection device, Engine, exhaust gas treatment device;
  • the ammonia tank outputs ammonia to the pressure regulator through the pipeline; the pressure regulator outputs ammonia to the ammonia preheating and decomposition device through the pipeline; the ammonia preheating and decomposition device outputs ammonia to the mixed fuel cooling device through the pipeline
  • the mixed fuel cooling device outputs the mixed fuel to the mixed fuel injection device through a pipeline; the mixed fuel injection device is connected to the engine injection port through a pipeline, and at the same time, the mixed fuel injection device is also provided with an intake pipe to allow air to enter
  • the mixed fuel injection device is mixed with the mixed fuel in it; the engine is provided with a heating channel, and the heating channel is connected with the ammonia preheating and decomposition device through a pipeline, so that the hot gas from the engine enters the ammonia preheating and decomposition device; the ammonia preheating and decomposition device
  • the heat and decomposition device outputs gas to the tail gas treatment device through the pipeline; the tail gas treatment device is provided with a gas discharge pipe.
  • an auxiliary starting device is also included, and the auxiliary starting device is one or a combination of a gas storage device and a post-combustion device.
  • the gas storage device is arranged between the mixed fuel cooling device and the mixed fuel injection device, and the mixed fuel cooling device is connected to the inlet of the gas storage device through a gas booster valve and the excess mixed fuel gas output is input into the gas storage device ;
  • the outlet of the gas storage device is connected with the mixed fuel injection device through a gas pressure reducing valve.
  • the supplementary combustion device is arranged between the engine heating passage, the ammonia preheating and decomposition device, and the pressure regulator, the pressure regulator outputs ammonia to the supplementary combustion device through a pipeline, and the engine intake pipe passes through the pipeline
  • the air is output to the afterburning device, and the engine heating channel discharges gas to the afterburning device through the pipeline, and the afterburning device discharges the gas to the ammonia preheating and decomposition device through the pipeline.
  • the tail gas treatment device is an NSC tail gas treatment device or an SCR tail gas treatment device.
  • the present invention has the following advantages: the present invention adopts the method of recovering exhaust waste heat and pyrolyzing ammonia fuel, which improves energy utilization efficiency. After the low-temperature and high-pressure ammonia is adjusted, it enters the ammonia decomposition device heated by the exhaust gas, and decomposes to produce ammonia-hydrogen-nitrogen mixed fuel. After being cooled by the cooling device, the air-fuel mixture is injected into the engine to burn and do work. The exhaust gas of the engine passes through the ammonia decomposition device to recover part of the heat energy and then discharge it to reduce and eliminate the content of nitrogen oxides in the exhaust gas and achieve emission standards.
  • Fig. 1 is a structural schematic diagram of Embodiment 1 of a thermal decomposition low-pressure mixed ammonia fuel engine of the present invention.
  • Fig. 2 is a structural schematic diagram of Embodiment 2 of a thermal decomposition low-pressure mixed ammonia fuel engine of the present invention.
  • the terms "setting”, “installation”, “connection” and “connection” should be interpreted in a broad sense, for example, It can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be the internal communication of two components.
  • the terms “setting”, “installation”, “connection” and “connection” should be interpreted in a broad sense, for example, It can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be the internal communication of two components.
  • this embodiment discloses a thermal decomposition low-pressure hybrid ammonia fuel engine, including an ammonia tank 1, a pressure regulator 2, an ammonia preheating and decomposition device 3, a mixed fuel cooling device 4, a mixed fuel injection device 5, Engine 6, exhaust gas treatment device 7;
  • the ammonia tank 1 outputs ammonia to the pressure regulator 2 through the pipeline to adjust the ammonia fuel pressure to the required pressure; the pressure regulator 2 outputs the ammonia to the ammonia preheating and decomposition device 3 through the pipeline; the ammonia preheating and decomposition device 3 passes The pipeline outputs ammonia to the mixed fuel cooling device 4; the mixed fuel cooling device 4 outputs the mixed fuel to the mixed fuel injection device 5 through the pipeline; the mixed fuel injection device 5 is connected to the engine injection port 8 through the pipeline, and at the same time, the mixed fuel injection device 5 is also provided with an intake pipe 9, so that the air enters the mixed fuel injection device 5 and mixes it with the mixed fuel and then injects it into the engine; the engine 6 is provided with a heating channel 10, and the heating channel 10 is connected with the ammonia preheating and decomposition device 3 through a pipeline, so that the engine The hot gas from 6 enters the ammonia preheating and decomposition device 3; the ammonia preheating and decomposition device 3 outputs
  • the ammonia fuel preheating and decomposing device utilizes engine exhaust to heat the fuel channel.
  • a catalyst which can be platinum, ruthenium, iron, nickel, etc., or other materials
  • the ammonia is decomposed into hydrogen by contacting the catalyst. Nitrogen mixed gas;
  • the mixed fuel cooling device uses the air or the engine cooling system to cool the ammonia-hydrogen-nitrogen mixed fuel gas.
  • the decomposed ammonia-hydrogen-nitrogen mixed fuel needs to be cooled before it can be mixed with air or combustion-supporting gas to avoid deflagration and explosion accidents caused by thermal mixing;
  • the mixed fuel needs to be mixed with air in proportion, and then injected into the engine for combustion.
  • the mixed fuel injection device is equipped with a wire mesh anti-backfire device to prevent the flame from backflowing and igniting the air-fuel mixture that has not entered the engine when the valve is not closed tightly. gas;
  • the exhaust gas treatment device can use nitrogen oxide storage catalytic reduction technology NSC.
  • the engine exhaust is rich in nitrogen oxides, which need to be treated before being discharged into the atmosphere.
  • NSC technology is used for exhaust gas treatment to decompose and reduce nitrogen oxides into nitrogen and oxygen.
  • the afterburner can be used to adjust the temperature of the exhaust gas entering the NSC to ensure the reduction efficiency.
  • the tail gas treatment device can also use the selective reduction catalytic SCR technology, add a small amount of ammonia to the engine exhaust, and catalytically reduce NOx to nitrogen, oxygen and water after contacting with titanium dioxide.
  • the afterburner can be used to adjust the ammonia, hydrogen and nitrogen entering the SCR The amount of mixed gas ensures the reduction efficiency.
  • this embodiment also includes an auxiliary starting device, which is one or a combination of the gas storage device 11 and the afterburning device 12 .
  • the gas storage device 11 is arranged between the mixed fuel cooling device 4 and the mixed fuel injection device 5, the mixed fuel cooling device 4 is connected to the inlet of the gas storage device 11 through the gas booster valve 12 and the surplus mixed fuel gas outputted is input into the gas storage device 11 ;
  • the outlet of the gas storage device 11 is connected with the mixed fuel injection device 5 through the gas decompression valve 13 .
  • the afterburning device 14 is arranged between the engine heating channel 10, the ammonia preheating and decomposition device 3, and the pressure regulator 2.
  • the pressure regulator 2 outputs ammonia to the afterburning device 14 through the pipeline, and the engine intake pipe outputs through the pipeline.
  • the air goes to the afterburning device 14 , the engine heating channel 10 discharges the gas to the afterburning device 14 through the pipeline, and the afterburning device 14 discharges the gas to the ammonia preheating and decomposition device 3 through the pipeline.
  • an auxiliary starting device needs to be installed to provide fuel;
  • the auxiliary starting device consists of two parts, one is the mixed gas storage tank When the engine is running, part of the mixed gas is compressed and injected into the storage tank. When the engine is started, the mixed gas in the storage tank is released, and the mixed ammonia is supplied to the engine for combustion. If the fuel does not decompose or the hydrogen content of the mixture produced by the decomposition is insufficient, the supplementary combustion device provides additional heat to the ammonia preheating and decomposition device.
  • ammonia fuel is preheated by the engine cooling water, and the low-temperature ammonia from the fuel tank is heated to obtain gaseous ammonia;
  • the preheated gaseous ammonia enters the ammonia pyrolysis device, and the ammonia fuel is partially or completely pyrolyzed through engine exhaust heating and catalysts (iron, platinum, ruthenium, rhodium, nickel, etc.) to form hydrogen, nitrogen, Mixed gas fuel composed of ammonia (hereinafter referred to as mixed gas);
  • the temperature drops to about 200 degrees.
  • a part of the mixed gas is properly injected, and under the action of the exhaust catalyst, it is selected with nitrogen oxides. Catalyze to reduce and eliminate the content of nitrogen oxides in the exhaust gas and achieve emission standards.

Abstract

本发明公开了一种热分解低压混合型氨燃料发动机,包括氨罐、调压器、氨预热及分解装置、混合燃料冷却装置、混合燃料注入装置、发动机、尾气处理装置;本发明采用了排气余热回收热解氨燃料方法,提高了能量利用效率。低温高压的氨经过调压后,进入由排气加热的氨分解装置,分解产生氨氢氮混合燃料,经过冷却装置冷却,由空气燃料混合注入装置,进入发动机燃烧做功。发动机排气经过氨分解装置,回收部分热能,再行排出,降低、消除排气中的氮氧化物含量,实现达标排放。

Description

一种热分解低压混合型氨燃料发动机 技术领域
本发明涉及发动机领域,具体涉及一种热分解低压混合型氨燃料发动机。
背景技术
随着环保理念的深入人心,对能源动力装置排放要求日趋严格,低碳无碳已经是大势所趋。
现有发动机使用的化石燃料都是含碳的,运行时会产生二氧化碳排放,随燃料不同排放量有所高低,技术上可行的替代方式有:1、全电替代,即由电动机替代内燃机,其电力来自动力电池,但是电力替代方式能量密度低、充电速度慢,不适用于重载车辆、船舶、航空等运输;2、氢能替代,氢作为清洁燃料,排放物仅有水,但氢密度小、液化温度低,储运困难,也难以在重载车辆、船舶、航空等领域应用;3、合成燃料,即采用光伏、风电等清洁电力制取氢,人工方式合成燃料(氢及其化合物),其中氨作为氢氮化合物,因为不含碳、易于制取、易于运输,具有较好的应用前景。
氨作为化肥已经被发明100余年,生产技术较为成熟,全球每年生产运输2亿吨以上。现有氨生产方式采用煤、天然气等含碳原料制取,可以方便的替换为电解水制氢合成氨,实现全过程无碳排放。氨作为燃料,热值虽然较低,但储运都较氢为便利,是目前含氢量最高的化合物之一,但氨作为燃料还较少见,主要原因有,氢-氮-氢循环效率较低、燃料热值低、氢分离困难、燃烧困难,用于燃料电池总能效较低,用于内燃机存在燃烧慢、点火困难等问题,需要加入助燃燃料等,这些都影响了氨作为无碳燃料的推广和应用。
氨用于内燃机,具有压缩比高,更容易提高发动机效率。氨热值虽然低,从系统有效携带能量比例看,优于直接储氢系统;内燃机排气温度较高,与氨分解温度接近,可以通过热解氨为氢气和氮气混合气,氨热解时需要吸收一定能量,全部热解后的混合气体内能多于氨(大约可以增加16%的能量),这样就可以回收部分排气能量,提高了发动机效率,同时混合气中的氢作为助燃燃料解决单纯氨燃料点火困难的问题。氨燃料发动机排放中不含二氧化碳,氨没有全部热解时氮氧化物含量较高,可以采用催化分解,或使用氨或混合气注入排气管中催化分解排气氮氧化物。
发明内容
为解决上述技术问题,本发明提供的技术方案为:一种热分解低压混合型氨燃料发动机,包括氨罐、调压器、氨预热及分解装置、混合燃料冷却装置、混合燃料注入装置、发动机、尾气处理装置;
所述氨罐通过管路输出氨至调压器;所述调压器通过管路输出氨至氨预热及分解装置;所述氨预热及分解装置通过管路输出氨至混合燃料冷却装置;所述混合燃料冷却装置通过管路输出混合燃料至混合燃料注入装置;所述混合燃料注入装置通过管路与发动机注入端连接,同时,所述混合燃料注入装置还设置进 气管,使空气进入混合燃料注入装置与其内混合燃料混合;所述发动机设置加热通道,所述加热通道通过管路与氨预热及分解装置连接,使发动机发出的热气进入氨预热及分解装置;所述氨预热及分解装置通过管路输出气体至尾气处理装置;所述尾气处理装置设置气体排出管。
优选地,还包括辅助启动装置,所述辅助启动装置为储气装置和补燃装置中的一种或两种组合。
优选地,所述储气装置设置于混合燃料冷却装置与混合燃料注入装置之间,所述混合燃料冷却装置通过气体增压阀与储气装置入口连接并输出的富余混合燃料气体输入储气装置;所述储气装置出口通过气体减压阀与混合燃料注入装置连接。
优选地,所述补燃装置设置于发动机加热通道与氨预热及分解装置、调压器之间,所述调压器通过管路输出氨至补燃装置,所述发动机进气管通过管路输出空气至补燃装置,所述发动机加热通道通过管路排出气体至补燃装置,所述补燃装置通过管路排出气体至氨预热及分解装置。
优选地,所述尾气处理装置为NSC尾气处理装置或SCR尾气处理装置。
采用以上方案后,本发明具有如下优点:本发明采用了排气余热回收热解氨燃料方法,提高了能量利用效率。低温高压的氨经过调压后,进入由排气加热的氨分解装置,分解产生氨氢氮混合燃料,经过冷却装置冷却,由空气燃料混合注入装置,进入发动机燃烧做功。发动机排气经过氨分解装置,回收部分热能,再行排出,降低、消除排气中的氮氧化物含量,实现达标排放。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解的是,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1是本发明一种热分解低压混合型氨燃料发动机实施例一的结构示意图。
图2是本发明一种热分解低压混合型氨燃料发动机实施例二的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本发明实施例的描述中,需要说明的是,若出现术语“中心”、“上”、“下”、“左”、“右”、 “竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
此外,若出现术语“水平”、“竖直”、“悬垂”等术语并不表示要求部件绝对水平或悬垂,而是可以稍微倾斜。如“水平”仅仅是指其方向相对“竖直”而言更加水平,并不是表示该结构一定要完全水平,而是可以稍微倾斜。
在本发明实施例的描述中,“多个”代表至少2个。
在本发明实施例的描述中,还需要说明的是,除非另有明确的规定和限定,若出现术语“设置”、“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
实施例一
结合附图1,本实施例公开一种热分解低压混合型氨燃料发动机,包括氨罐1、调压器2、氨预热及分解装置3、混合燃料冷却装置4、混合燃料注入装置5、发动机6、尾气处理装置7;
氨罐1通过管路输出氨至调压器2,将氨燃料压力调整至所需压力;调压器2通过管路输出氨至氨预热及分解装置3;氨预热及分解装置3通过管路输出氨至混合燃料冷却装置4;混合燃料冷却装置4通过管路输出混合燃料至混合燃料注入装置5;混合燃料注入装置5通过管路与发动机注入端8连接,同时,混合燃料注入装置5还设置进气管9,使空气进入混合燃料注入装置5与其内混合燃料混合后再注入发动机;发动机6设置加热通道10,加热通道10通过管路与氨预热及分解装置3连接,使发动机6发出的热气进入氨预热及分解装置3;氨预热及分解装置3通过管路输出气体至尾气处理装置7;尾气处理装置7设置气体排出管。
本实施例中氨燃料预热和分解装置利用发动机排气加热燃料通道,燃料通道中有催化剂(可以是铂、钌、铁、镍等,或其他材料),氨受热后与催化剂接触分解为氢氮混合气体;
混合燃料冷却装置利用空气或发动机冷却系统冷却氨氢氮混合燃料气体,分解后的氨氢氮混合燃料,需要进行冷却,才能与空气或助燃气体混合,避免热混合发生爆燃爆炸事故;
混合燃料需要按比例与空气混合后,再注入发动机燃烧做功,混合燃料注入装置内设置有金属丝网制成防回火装置,防止气门关闭不严时,火焰倒流点燃未进入发动机的空气燃料混合气体;
尾气处理装置可以使用氮氧化物存储催化还原技术NSC,发动机排气富含氮氧化物,需要经过处理后,才能排入大气,采用NSC技术进行尾气处理,将氮氧化物分解还原为氮气和氧气,另外可以使用补燃器调节进入NSC的尾气温度,确保还原效率。
尾气处理装置还可以使用选择性还原催化SCR技术,在发动机排气中,加入少量氨,与二氧化钛接触后催化还原NOx为氮、氧和水,另外可以使用补燃器调节进入SCR的氨氢氮混合气体量,确保还原效率。
实施例二
结合附图2,本实施例与实施例一的区别在于,本实施例还包括辅助启动装置,辅助启动装置为储气装置11和补燃装置12中的一种或两种组合。
储气装置11设置于混合燃料冷却装置4与混合燃料注入装置5之间,混合燃料冷却装置4通过气体增压阀12与储气装置11入口连接并输出的富余混合燃料气体输入储气装置11;储气装置11出口通过气体减压阀13与混合燃料注入装置5连接。
补燃装置14设置于发动机加热通道10与氨预热及分解装置3、调压器2之间,调压器2通过管路输出氨至补燃装置14,发动机进气管通9过管路输出空气至补燃装置14,发动机加热通道10通过管路排出气体至补燃装置14,补燃装置14通过管路排出气体至氨预热及分解装置3。
辅助起动装置,发动机起动前和起动初期,没有高温排气或排气温度较低,不足以分解氨燃料,需要设置辅助起动装置提供燃料;辅助起动装置有两部分组成,一是混合气存储罐,发动机运行时,将部分混合气压缩后注入储罐,发动机起动时,将储罐内的混合气释放出来,混合氨供给发动机燃烧;二是氨预热和分解装置供热不足时,导致氨燃料不分解或分解产生的混合气含氢量不足,由补燃装置给氨预热和分解装置提供额外的热量。
本发明在应用时:(1)通过发动机冷却水对氨燃料进行预加热,将燃料箱出来的低温氨进行加温,得到气态氨;
(2)经过预热的气态氨,进入氨热解装置,通过发动机排气加热和催化剂(铁、铂、钌、铑、镍等)将氨燃料进行部分或全部热解,形成氢、氮、氨组成的混合气体燃料(以下简称混合气);
(3)高温混合气进入发动机前,在中冷器内进行冷却;
(4)经过冷却的混合气体经过混合阀注入发动机进气管,与空气混合后进入发动机;
(5)经过发动机燃烧排出的高温尾气进入氨热解装置,加热分解氨燃料;
(6)发动机排气通过氨热解器排后,温度降低至200度左右,通过检测排气管内氮氧化物含量,适当注入部分混合气,在排气催化剂作用下,与氮氧化物进行选择性催化,降低、消除排气中的氮氧化物含量,实现达标排放。
以上对本发明及其实施方式进行了描述,这种描述没有限制性,附图中所示的也只是本发明的实施方式之一,实际的结构并不局限于此。总而言之如果本领域的普通技术人员受其启示,在不脱离本发明创造宗旨的情况下,不经创造性的设计出与该技术方案相似的结构方式及实施例,均应属于本发明的保护范围。

Claims (5)

  1. 一种热分解低压混合型氨燃料发动机,其特征在于,包括氨罐、调压器、氨预热及分解装置、混合燃料冷却装置、混合燃料注入装置、发动机、尾气处理装置;
    所述氨罐通过管路输出氨至调压器;所述调压器通过管路输出氨至氨预热及分解装置;所述氨预热及分解装置通过管路输出氨至混合燃料冷却装置;所述混合燃料冷却装置通过管路输出混合燃料至混合燃料注入装置;所述混合燃料注入装置通过管路与发动机注入端连接,同时,所述混合燃料注入装置还设置进气管,使空气进入混合燃料注入装置与其内混合燃料混合;所述发动机设置加热通道,所述加热通道通过管路与氨预热及分解装置连接,使发动机发出的热气进入氨预热及分解装置;所述氨预热及分解装置通过管路输出气体至尾气处理装置;所述尾气处理装置设置气体排出管。
  2. 根据权利要求1所述的一种热分解低压混合型氨燃料发动机,其特征在于,还包括辅助启动装置,所述辅助启动装置为储气装置和补燃装置中的一种或两种组合。
  3. 根据权利要求2所述的一种热分解低压混合型氨燃料发动机,其特征在于,所述储气装置设置于混合燃料冷却装置与混合燃料注入装置之间,所述混合燃料冷却装置通过气体增压阀与储气装置入口连接并输出的富余混合燃料气体输入储气装置;所述储气装置出口通过气体减压阀与混合燃料注入装置连接。
  4. 根据权利要求2所述的一种热分解低压混合型氨燃料发动机,其特征在于,所述补燃装置设置于发动机加热通道与氨预热及分解装置、调压器之间,所述调压器通过管路输出氨至补燃装置,所述发动机进气管通过管路输出空气至补燃装置,所述发动机加热通道通过管路排出气体至补燃装置,所述补燃装置通过管路排出气体至氨预热及分解装置。
  5. 根据权利要求1所述的一种热分解低压混合型氨燃料发动机,其特征在于,所述尾气处理装置为NSC尾气处理装置或SCR尾气处理装置。
PCT/CN2022/077269 2022-02-14 2022-02-22 一种热分解低压混合型氨燃料发动机 WO2023151122A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210132401.7A CN114635787A (zh) 2022-02-14 2022-02-14 一种热分解低压混合型氨燃料发动机
CN202210132401.7 2022-02-14

Publications (1)

Publication Number Publication Date
WO2023151122A1 true WO2023151122A1 (zh) 2023-08-17

Family

ID=81945898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/077269 WO2023151122A1 (zh) 2022-02-14 2022-02-22 一种热分解低压混合型氨燃料发动机

Country Status (2)

Country Link
CN (1) CN114635787A (zh)
WO (1) WO2023151122A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117780504A (zh) * 2024-02-26 2024-03-29 上海浦帮机电制造有限公司 一种辅助发动机

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102900572A (zh) * 2011-07-27 2013-01-30 株式会社电装 燃料供给系统
CN104675580A (zh) * 2015-02-13 2015-06-03 王海斌 一种新型汽车发动机氢氨混合燃料供应装置
CN111392019A (zh) * 2020-03-27 2020-07-10 大连船舶重工集团有限公司 一种清洁排放的船舶动力系统
CN112483243A (zh) * 2020-11-24 2021-03-12 合肥综合性国家科学中心能源研究院(安徽省能源实验室) 一种基于等离子体在线裂解、点火与助燃的氨发动机
CN112761826A (zh) * 2020-12-31 2021-05-07 福州大学化肥催化剂国家工程研究中心 一种增压发动机及氨燃料混合动力发电系统
CN112901339A (zh) * 2021-01-15 2021-06-04 河北工业大学 基于氨热解装置的直喷天然气发动机系统及其控制方法
JP2021161921A (ja) * 2020-03-31 2021-10-11 国立研究開発法人 海上・港湾・航空技術研究所 アンモニア燃焼方法、アンモニア燃焼エンジン及びそれを搭載した船舶
CN113661317A (zh) * 2019-04-26 2021-11-16 国立大学法人东海国立大学机构 燃料重整装置和燃料重整方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102900572A (zh) * 2011-07-27 2013-01-30 株式会社电装 燃料供给系统
CN104675580A (zh) * 2015-02-13 2015-06-03 王海斌 一种新型汽车发动机氢氨混合燃料供应装置
CN113661317A (zh) * 2019-04-26 2021-11-16 国立大学法人东海国立大学机构 燃料重整装置和燃料重整方法
CN111392019A (zh) * 2020-03-27 2020-07-10 大连船舶重工集团有限公司 一种清洁排放的船舶动力系统
JP2021161921A (ja) * 2020-03-31 2021-10-11 国立研究開発法人 海上・港湾・航空技術研究所 アンモニア燃焼方法、アンモニア燃焼エンジン及びそれを搭載した船舶
CN112483243A (zh) * 2020-11-24 2021-03-12 合肥综合性国家科学中心能源研究院(安徽省能源实验室) 一种基于等离子体在线裂解、点火与助燃的氨发动机
CN112761826A (zh) * 2020-12-31 2021-05-07 福州大学化肥催化剂国家工程研究中心 一种增压发动机及氨燃料混合动力发电系统
CN112901339A (zh) * 2021-01-15 2021-06-04 河北工业大学 基于氨热解装置的直喷天然气发动机系统及其控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117780504A (zh) * 2024-02-26 2024-03-29 上海浦帮机电制造有限公司 一种辅助发动机
CN117780504B (zh) * 2024-02-26 2024-04-26 上海浦帮机电制造有限公司 一种辅助发动机

Also Published As

Publication number Publication date
CN114635787A (zh) 2022-06-17

Similar Documents

Publication Publication Date Title
CN109098892B (zh) 一种基于替代燃料的发动机混合动力系统
CN204476606U (zh) 一种新型汽车发动机氢氨混合燃料供应装置
US9297530B2 (en) Oxygenated fuel
US20170122195A1 (en) Engine group comprising a mixed fuel engine, and fuel supplying method therof
CN204476558U (zh) 一种汽车发动机的汽油与氨双燃料供应装置
US8784095B2 (en) Oxygenated fuel
CN112648113A (zh) 一种绿色高效的氨燃料燃烧系统与方法
WO2008106722A1 (en) Power generation
Morsy Modeling study on the production of hydrogen/syngas via partial oxidation using a homogeneous charge compression ignition engine fueled with natural gas
Qi et al. A review on ammonia-hydrogen fueled internal combustion engines
WO2023151122A1 (zh) 一种热分解低压混合型氨燃料发动机
KR101440191B1 (ko) 고효율 연료전지 하이브리드 시스템
WO2014111138A1 (en) Hydrogen flushed combustion chamber
CN108590842B (zh) 一种乙醇在线重整辅助燃烧的天然气发动机
CN109630245B (zh) 一种轻烃/柴油燃料重整系统及重整方法
CN217440153U (zh) 一种喷射液氨的氢气-液氨双燃料发动机
CN208294639U (zh) 一种乙醇在线重整辅助燃烧的天然气发动机
CN114718771B (zh) 氨燃料混合动力发动机的余热处理系统及船舶
US11608799B2 (en) Wet biofuel compression ignition
WO2023151121A1 (zh) 一种热分解高压直喷型氨燃料的发动机
CN115217621A (zh) 内燃机、内燃机控制方法
CN108547696B (zh) 一种燃氢二冲程发动机及其动力系统
CN219327580U (zh) 一种内燃机节能减排装置
CN116357445B (zh) 一种氨内燃机
US20220127994A1 (en) Exhaust gas electrochemical energy recovery system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22925484

Country of ref document: EP

Kind code of ref document: A1