CN217440153U - 一种喷射液氨的氢气-液氨双燃料发动机 - Google Patents

一种喷射液氨的氢气-液氨双燃料发动机 Download PDF

Info

Publication number
CN217440153U
CN217440153U CN202221760134.XU CN202221760134U CN217440153U CN 217440153 U CN217440153 U CN 217440153U CN 202221760134 U CN202221760134 U CN 202221760134U CN 217440153 U CN217440153 U CN 217440153U
Authority
CN
China
Prior art keywords
liquid ammonia
hydrogen
ammonia
engine
dual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202221760134.XU
Other languages
English (en)
Inventor
王国华
晏游
戴俊楠
崔波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Kairui Power Technology Co ltd
China Automotive Engineering Research Institute Co Ltd
Original Assignee
Chongqing Kairui Power Technology Co ltd
China Automotive Engineering Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Kairui Power Technology Co ltd, China Automotive Engineering Research Institute Co Ltd filed Critical Chongqing Kairui Power Technology Co ltd
Application granted granted Critical
Publication of CN217440153U publication Critical patent/CN217440153U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

本实用新型公开了一种喷射液氨的氢气‑液氨双燃料发动机,包括氢气供给与喷射装置、液氨供给与喷射装置和气态氨利用装置,所述氢气供给与喷射装置用于向发动机气缸内喷射氢气,从而实现缸内直喷,所述液氨供给与喷射装置用于向发动机进气支管内喷射液氨,从而实现进气口喷射,当双燃料发动机处于启动、怠速和小负荷工作时,氢气供给与喷射装置工作,发动机以氢气作为燃料,当双燃料发动机处于大负荷工作时,氢气供给与喷射装置和液氨供给与喷射装置同时工作,液氨在进入到气缸的过程中,吸收空气的热量汽化成氨气,再通过氢气燃烧引燃氨气,实现双燃料混合燃烧,提高发动机功率和效率,实现零碳排放。

Description

一种喷射液氨的氢气-液氨双燃料发动机
技术领域
本实用新型属于汽车发动机技术领域,具体涉及一种喷射液氨的氢气-液氨双燃料发动机。
背景技术
二氧化碳排放的增加会造成大气温度升高,对全球的生态环境带来灾难性的后果。因此,未来汽车的发展方向是燃料低碳化,汽车排放低污染化。氢气H2分子结构简单,不含碳元素,可作为发动机的燃料,当发动机用氢气作燃料时,其燃烧速度快,热效率高,燃烧后的产物只有水,不会产生一氧化碳、碳氢化合物、颗粒物等有害物质,也不会产生二氧化碳排放(温室气体)。并且,近年来,用可再生能源(风能、太阳能)发电取得巨大的发展,装机容量不断扩大,为电解水制氢提供了能源基础。电解水生产的氢气可以用作燃料电池的燃料,部分可用在氢气发动机上,从而降低发动机的污染物排放和二氧化碳排放。
氢气的点火能量低,稀薄燃烧能力强,燃烧范围宽,火焰传播速度快,是理想的发动机燃料。氢气燃烧后的产物只有水,但氢气发动机工作时会产生一定量的氮氧化物NOX(主要与过量空气系数相关)。但是氢气的分子小,密度低,易燃、易爆,不便于储存和运输。现在,氢气的存储主要有高压气氢和液氢两种方式,其中高压气氢有35MPa和70MPa两种压力规格,并且以35MPa压力为主。高压气氢的密度较小,存储一定质量的氢气对应的气瓶容积较大,高压气瓶在汽车上安装困难,并且高压气瓶及管路系统容易发生氢气泄漏,产生安全隐患。
氢气发动机有两种供气方式,一种是缸内直喷方式,另一种是缸外进气口喷射方式。缸内直喷方式是将氢气喷嘴直接安装在发动机的气缸盖上,在进气门关闭后将高压氢气直接喷入燃烧室内,喷入的氢气不占据气缸容积,进入气缸的空气量大,氢气发动机的功率大、热效率高。缸外进气口喷射方式,是将氢气喷嘴安装在发动机的进气支管上,氢气发动机在进气时,喷射的氢气与空气一起被吸入气缸,由于氢气的密度很小(约为空气密度的十三分之一),当进入发动机的氢气质量较大时,氢气会占据较大的气缸容积,这就限制了进入发动机的空气量,使发动机的最大输出功率相对较小,热效率较低。同时采用进气口喷射方式,在发动机进气门打开后,气缸内的高温气体回流到进气管,容易引燃氢气发生回火现象。
氨NH3也是(由氢与氮气合成,含氢量为17.6%)是无碳燃料,燃烧后的产物是水和氮气(见化学反应式1),无二氧化碳排放。由于氨的最小点火能量高、火焰传播速度慢等物理性质,氨并不适合单独作为燃料在发动机上应用(需要助燃剂)。目前,使用氨的双燃料发动机主要采用柴油-氨和氢气-氨两种方式,但柴油-氨双燃料发动机会产生二氧化碳排放,还有一氧化碳、碳氢化合物及颗粒物,同时其后处理系统构成复杂。而氢气-氨双燃料发动机无二氧化碳排放,也无一氧化碳、碳氢化合物排放,其排气中的污染物主要为氨和氮氧化物,并且该污染物可由SCR催化器和氨逃逸催化器ASC高效转换。
4NH3+3O2→2N2+6H2O (1)
常温常压下氨为气态,密度为0.7016kg/m3。在常温(例如25℃)和1MPa的压力下,氨气会变成液氨(密度约603kg/m3)。在常压下将氨气降温到-33℃,也可以变成液氨(密度约680kg/m3)。液氨的体积能量密度大,不容易发生爆炸,便于储存和运输。这就会出现一种情况,在氢能丰富的甲地(如采用风能、太阳能发电,电解水制氢),用氢气来生产氨NH3,再将氨NH3运输(或者通过管道)到相距较远的乙地,这样就实现了将“氢能”从甲地运到乙地。在整车上,液态氨的存储都较为方便(体积能量密度大),并且安全性较好。
从表1可知,液氨的能量密度大约是35MPa氢气的4倍。储存相同的能量,液氨瓶的容积只有35MPa氢气的1/4。
表1不同燃料的能量密度
Figure BDA0003737091940000031
实用新型内容
本实用新型拟提供一种喷射液氨的氢气-液氨双燃料发动机,以氢气和液氨为发动机燃料,氢气采用缸内直喷,液氨采用进气口喷射,能有效提高发动机功率和效率,同时实现零碳排放。
为此,本实用新型所采用的技术方案为:一种喷射液氨的氢气-液氨双燃料发动机,包括氢气供给与喷射装置、液氨供给与喷射装置和气态氨利用装置,所述氢气供给与喷射装置用于向发动机气缸内喷射氢气,从而实现缸内直喷,所述液氨供给与喷射装置用于向发动机进气支管内喷射液氨,从而实现进气口喷射,所述气态氨利用装置用于将液氨供给与喷射装置内的气态氨气提供给发动机的SCR催化器;
当双燃料发动机处于启动、怠速和小负荷工作时,氢气供给与喷射装置工作,发动机以氢气作为燃料,当双燃料发动机处于大负荷工作时,氢气供给与喷射装置和液氨供给与喷射装置同时工作,液氨在进入到气缸的过程中,吸收空气热量汽化成氨气,再通过氢气燃烧引燃氨气,实现双燃料混合燃烧。
作为上述方案中的优选,所述氢气供给与喷射装置包括通过管路依次连接的高压氢气瓶、第一手动阀、第一电磁阀、第一压力调节器和氢气轨喷嘴体,所述氢气轨喷嘴体包括氢气轨和在氢气轨上并排设置的氢气喷嘴,每个氢气喷嘴的另一端分别对应伸入到发动机的每个气缸盖内。
进一步优选,所述液氨供给与喷射装置包括通过管路依次连接的液氨瓶、第二手动阀、第二电磁阀、液氨泵和液氨轨喷嘴体,所述液氨轨喷嘴体包括液氨轨和在液氨轨上并排设置的液氨喷嘴,每个液氨喷嘴的另一端分别对应伸入到发动机的每个进气支管内,所述液氨轨上还设置有与液氨瓶直接连通的液氨回流管路。
进一步优选,所述气态氨利用装置包括通过管路依次连接的第三电磁阀、第二压力调节和SCR喷嘴,所述第三电磁阀通过管路设置在液氨瓶的上端,所述SCR喷嘴用于向发动机的SCR催化器提供氨气。
进一步优选,所述包括增压器,所述增压器的出气口与发动机进气支管的进气口之间设置有中冷器。
本实用新型的有益效果:
1)使用氢和氨两种无碳燃料,二氧化碳排放为零,并且无一氧化碳和碳氢化合物排放;
2)在起动、怠速和小负荷工况,发动机采用缸内直喷氢气,低温起动性好,排气中的污染物少(例如氮氧化物NOX小于10ppm,采用稀薄燃烧);
3)在大负荷工况,发动机采用缸内直喷氢气和进气口喷射液氨,用氢气引燃氨气,氨气燃烧充分,发动机具有较好的动力性、经济性并且不易发生回火和爆震;
4)在发动机进气口喷射液氨,液氨汽化吸热,可使空气温度显著下降(例如氨与氢气的质量比为0.5:0.5时,空气温度大约下降20℃),从而增加进入发动机的空气量,增加发动机的功率,防止发生爆震;
5)由于在液氨供给与喷射装置内存在气态氨,通过气态氨利用装置将液氨供给与喷射装置内的气态氨气作为SCR催化器中氮氧化物的还原剂,对氮氧化物NOX的转换效率高(最高可达95%~98%),并且不需要尿素罐(柴油机SCR系统)。排气中的气态氨NH3和氮氧化物NOX经SCR催化器和氨逃逸催化器ASC转换后可实现近零排放。
附图说明
图1为本实用新型的示意图(图中箭头指示方向为气体的流向)。
图2为本实用新型中氢气轨喷嘴体(左)和液氨轨喷嘴体(右)的示意图。
图3为本实用新型中液氨瓶的示意图。
具体实施方式
下面通过实施例并结合附图,对本实用新型作进一步说明:
如图1-图3所示,一种喷射液氨的氢气-液氨双燃料发动机,主要由氢气供给与喷射装置、液氨供给与喷射装置和气态氨利用装置组成,其中氢气供给与喷射装置用于向发动机气缸内喷射氢气,从而实现缸内直喷,液氨供给与喷射装置用于向发动机进气支管内喷射液氨,从而实现进气口喷射,气态氨利用装置用于将液氨供给与喷射装置内的气态氨气提供给发动机的排气催化装置。
当双燃料发动机处于启动、怠速和小负荷工作时,氢气供给与喷射装置工作,发动机以氢气作为燃料。当双燃料发动机处于大负荷工作时,氢气供给与喷射装置和液氨供给与喷射装置同时工作,液氨在进入到气缸的过程中,吸收空气的热量汽化成氨气,再通过氢气燃烧引燃氨气,实现双燃料混合燃烧。
氢气供给与喷射装置的具体结构包括通过管路依次连接的高压氢气瓶1、第一手动阀2、第一电磁阀3、第一压力调节器4和氢气轨喷嘴体5,并且氢气轨喷嘴体5包括氢气轨5a和在氢气轨5a上并排设置的氢气喷嘴5b,每个氢气喷嘴5b的另一端分别对应伸入到发动机的每个气缸盖内。高压氢气瓶1用于存储高压的氢气,第一手动阀2、第一电磁阀3用于控制氢气管路的通、断,第一压力调节器4用于将高压的氢气调节到发动机需要的压力,氢气轨喷嘴体5用于控制氢气的喷射流量。从高压氢气瓶1流出的高压氢气经第一手动阀2、第一电磁阀3后进入第一减压调节器4。第一减压调节器4将高压氢气例如35MPa变成所需要的低压氢气,如将35MPa高压氢气变成5MPa的低压氢气,进入氢气轨喷嘴体5。
液氨供给与喷射装置的具体结构包括通过管路依次连接的液氨瓶6、第二手动阀7、第二电磁阀8、液氨泵9和液氨轨喷嘴体10,其中液氨轨喷嘴体10包括液氨轨10a和在液氨轨10a上并排设置的液氨喷嘴10b,每个液氨喷嘴10b的另一端分别对应伸入到发动机的每个进气支管内,在液氨轨10a上还设置有与液氨瓶6直接连通的液氨回流管路11。液氨瓶6用于液氨的存储,第二手动阀7、第二电磁阀8用于控制管路的通、断,液氨泵9用于泵送液氨和增压,液氨轨喷嘴体10用于控制液氨的喷射流量和调节压力,在液氨轨喷嘴体10上安装有压力调节阀,多余的液氨,即发动机未使用完的液氨,通过压力调节阀和液氨回流管路11回流到液氨瓶内。
常温常压下氨为气态,密度为0.7016kg/m3。在常温(例如25℃)和0.8MPa的压力下,氨气会变成液氨(密度约603kg/m3)。液氨瓶6存储的就是这种常温液氨,其充装率最高为90%。因此,液氨瓶6内的氨有两种状态,下部为液氨,上部为气态氨,第二电磁阀8通过管路连接在液氨瓶6中部靠下的位置处。将第二手动阀7和第二电磁阀8打开,然后液氨泵9运转,将液氨从液氨瓶6泵出,经过第二手动阀7和第二电磁阀8,流入到液氨轨喷嘴体10,在压力调节器的作用将液氨轨喷嘴体10内的液氨调节到所需的压力(例如1.3MPa),一部分液氨供发动机使用,多余的液氨通过液氨回流管路11回流到液氨瓶6。
气态氨利用装置具体结构包括通过管路依次连接的第三电磁阀12、第二压力调节13和SCR喷嘴14,且第三电磁阀12与第二电磁阀8一起并联设置在液氨瓶6上。第三电磁阀12用于控制管路的通、断,第二压力调节13用于调节氨气的压力,SCR喷嘴14用于向发动机的SCR催化器提供氨气作为氮氧化物的还原剂。在液氨瓶6上与带第三电磁阀12的管路一起还并联有带泄压阀15的管路,泄压阀15用于当液氨瓶6内氨气压力较高时,泄放部分氨气,降低液氨瓶6的压力,从而保证液氨瓶6的安全。
包括增压器16,其压缩比大于13,在增压器16的出气口与发动机进气支管的进气口之间设置有中冷器17,中冷器17用于对增压后的高温空气进行冷却,使空气温度下降,增加进入发动机的空气量。
在起动、怠速和小负荷工况,发动机只使用氢气为燃料,氢气轨喷嘴体6的喷嘴按顺序喷射氢气。因为只使用氢气为燃料,发动机排气中无二氧化碳、一氧化碳和碳氢化合物。如果发动机采用稀薄燃烧方式(如过量空气系数大于2.5),排气中只有微量的氮氧化物(小于10ppm)。氢气的点火能量低,稀薄燃烧能力强,燃烧范围宽,火焰传播速度快,因此发动机容易在低温(-30℃~-20℃)环境下起动。
在大负荷工况(例如排气温度高于350℃、中冷器17后的空气温度较高),发动机使用氢气和液氨两种燃料,在进气门打开前,液氨轨喷嘴体10的喷嘴喷射液氨(例如1.3MPa)(多余的液氨回流到液氨瓶6),液氨受热汽化变成气态氨(部分),同时使空气温度下降,空气下降温度可通过以下公式进行计算:
Figure BDA0003737091940000081
其中氨的汽化潜热为常量,通过查表能得到液氨的汽化潜热为1370kJ/kg。空气的比热容也为常量,通过查表能得到空气的比热容为1.005kJ/(kg·℃)。氨的消耗量可通过以下公式计算:
氨的消耗量=混合燃料消耗量×氨的质量分数。
其中氨的质量分数为常量,且氨的质量分数与氢的质量分数和为1,在本实施例中,氨的质量分数与氢的质量分数均选择为0.5。混合燃料消耗量可通过以下公式计算:
Figure BDA0003737091940000091
其中发动机功率和发动机的热效率均为常量,在本实施例中,取发动机功率为100kW,发动机的热效率为0.4。混合燃料低热值可通过以下公式进行计算:
混合燃料低热值=氨的质量分数×氨的低热值+氢的质量分数×氢的低热值
其中氨的低热值和氢的低热值均为常量,具体地,氨的低热值为18.6MJ/kg,氢的低热值为120MJ/kg。
空气的消耗量可通过以下公式进行计算:
空气消耗量=混合燃料消耗量×混合燃料空燃比×过量空气系数
其中过量空气系数为常量,具体选择为1.5,混合燃料空燃比可通过以下公式计算可得:
混合燃料空燃比=氨的质量分数×氨的理论空燃比+氢的质量分数×氢的理论空燃比
其中氨的理论空燃比和氢的理论空燃比均为常量,具体地,氨的理论空燃比为6.05,氢的理论空燃比为34.4。
通过上述公式,可计算出,当发动机功率为100kW,过量空气系数为1.5,氨的质量分数与氢的质量分数均为0.5时,空气下降的温度为22.47℃。
氨(液态及气态)与空气进行混合,进气门打开后,空气与氨(液态及气态)一同被吸进气缸。在气缸中,液氨进一步汽化并与空气充分混合。在进气门关闭后(压缩行程),氢气轨喷嘴体5的喷嘴开始喷射氢气。活塞上行,促进空气、氨气和氢气的混合。当活塞运动到接近压缩上止点时,火花塞跳火,氢气首先燃烧,释放大量的热量引燃氨气(不易燃烧),使氨气充分燃烧,发动机输出功率。因为氢气是在进气门关闭后喷入气缸的,进入气缸的空气量就很多,发动机的功率就会较大,热效率较高(与压缩比高相关),并且不会发生爆震、回火等不正常燃烧现象。使用液氨的比例越大,对空气的降温效果越好。例如当氨与氢气的质量比为0.7:0.3时,可使空气温度下降约40℃,空气量增加约14%。
当发动机使用氢气和氨两种燃料时,排气中就会有较多的氮氧化物和氨。因此发动机的排气上设置有SCR催化器和氨逃逸催化器ASC,发动机排气中的氮氧化物和氨就会在SCR催化器中发生化学反应,生成氮气和水(见化学反应式2)。如果排气中氮氧化物的浓度高于氨的浓度,就会有部分的氮氧化物不能被转换,因此需要在排气中喷射氨气。用气态氨来转换氮氧化物,转换效率高,并且不需要柴油机SCR催化器使用的尿素箱。由于使用氢气和液氨两种燃料时,发动机的排气温度已经很高(如高于350℃),SCR催化器有很高的转换效率(例如最高为95%~98%),将氮氧化物NOX排放降低到接近于零,同时也降低氨的排放。排气中剩余的氨气可通过氨逃逸催化器ASC转换到接近于零。
4NH3+4NO+O2→4N2+6H2O (2)
当发动机在停机期间(指较长时间不使用),如果液氨瓶6内的氨气压力超过设定值(例如1.5MPa),泄压阀15打开,将部分氨气泄放,使液氨瓶压力下降,从而保证液氨瓶6的安全。

Claims (6)

1.一种喷射液氨的氢气-液氨双燃料发动机,其特征在于:包括氢气供给与喷射装置、液氨供给与喷射装置和气态氨利用装置,所述氢气供给与喷射装置用于向发动机气缸内喷射氢气,从而实现缸内直喷,所述液氨供给与喷射装置用于向发动机进气支管内喷射液氨,从而实现进气口喷射,所述气态氨利用装置用于将液氨供给与喷射装置内的气态氨气提供给发动机的SCR催化器。
2.根据权利要求1中所述的喷射液氨的氢气-液氨双燃料发动机,其特征在于:所述氢气供给与喷射装置包括通过管路连接的高压氢气瓶(1)、第一手动阀(2)、第一电磁阀(3)、第一压力调节器(4)和氢气轨喷嘴体(5),所述氢气轨喷嘴体(5)包括氢气轨(5a)和在氢气轨(5a)上并排设置的氢气喷嘴(5b),每个氢气喷嘴(5b)的另一端分别对应伸入到发动机的每个气缸盖内。
3.根据权利要求1中所述的喷射液氨的氢气-液氨双燃料发动机,其特征在于:所述液氨供给与喷射装置包括通过管路连接的液氨瓶(6)、第二手动阀(7)、第二电磁阀(8)、液氨泵(9)和液氨轨喷嘴体(10),所述液氨轨喷嘴体(10)包括液氨轨(10a)和在液氨轨(10a)上并排设置的液氨喷嘴(10b),每个液氨喷嘴(10b)的另一端分别对应伸入到发动机的每个进气支管内,所述液氨轨(10a)上还设置有与液氨瓶(6)直接连通的液氨回流管路(11)。
4.根据权利要求3中所述的喷射液氨的氢气-液氨双燃料发动机,其特征在于:所述气态氨利用装置包括通过管路连接的第三电磁阀(12)、第二压力调节(13)和SCR喷嘴(14),所述第三电磁阀(12)通过管路设置在液氨瓶(6)的上端,所述SCR喷嘴(14)用于向发动机的SCR催化器提供氨气。
5.根据权利要求1中所述的喷射液氨的氢气-液氨双燃料发动机,其特征在于:包括增压器(16),所述增压器(16)的出气口与发动机进气支管的进气口之间设置有中冷器(17)。
6.根据权利要求1-5中任一所述的喷射液氨的氢气-液氨双燃料发动机,其特征在于:当双燃料发动机处于启动、怠速和小负荷工作时,氢气供给与喷射装置工作,发动机以氢气作为燃料,当双燃料发动机处于大负荷工作时,氢气供给与喷射装置和液氨供给与喷射装置同时工作,液氨在进入到气缸的过程中,吸收空气的热量汽化成氨气,再通过氢气燃烧引燃氨气,实现双燃料混合燃烧。
CN202221760134.XU 2022-06-23 2022-07-08 一种喷射液氨的氢气-液氨双燃料发动机 Active CN217440153U (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2022107174634 2022-06-23
CN202210717463 2022-06-23

Publications (1)

Publication Number Publication Date
CN217440153U true CN217440153U (zh) 2022-09-16

Family

ID=83225146

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202221760134.XU Active CN217440153U (zh) 2022-06-23 2022-07-08 一种喷射液氨的氢气-液氨双燃料发动机

Country Status (1)

Country Link
CN (1) CN217440153U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115370468A (zh) * 2022-06-23 2022-11-22 重庆凯瑞动力科技有限公司 喷射液氨的氢气-液氨双燃料发动机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115370468A (zh) * 2022-06-23 2022-11-22 重庆凯瑞动力科技有限公司 喷射液氨的氢气-液氨双燃料发动机

Similar Documents

Publication Publication Date Title
CN114183275B (zh) 基于氢气起燃的氨氢混合气动力系统及运行控制方法
CN101571069B (zh) 内燃机双燃料燃烧系统
CN109113880B (zh) 一种甲醇/醇氢燃料内燃机的燃烧组织方法及其应用
CN110816800B (zh) 柴燃联合动力装置和氢燃料电池混合动力系统及其燃料供给方法
CN115234368B (zh) 一体化制氢式射流点火装置及氨燃料发动机控制系统
CN111197532A (zh) 一种氢气/甲醇复合燃料发动机
CN217440153U (zh) 一种喷射液氨的氢气-液氨双燃料发动机
CN112983655A (zh) 天然气氢气双喷射装置及其控制方法
CN114934839A (zh) 一种氢气射流点火氨内燃机及控制方法
CN117514534A (zh) 一种进气道多点液氨喷射的氨柴发动机及后处理供氨系统
Reiter et al. Diesel engine operation using ammonia as a carbon-free fuel
CN114427494A (zh) 一种双燃料发动机系统及点火方法
CN115030813B (zh) 氨氢融合燃料零碳高效发动机及燃烧组织方法
CN217538873U (zh) 液氢发动机使用的低温氢气喷射结构
CN214997916U (zh) 一种氢气汽油两用燃料发动机
CN217206623U (zh) 一种用于氢-氨燃料发动机排气的后处理装置
US11608799B2 (en) Wet biofuel compression ignition
CN115306596A (zh) 氢氨融合发动机及其燃烧控制方法
CN115653748A (zh) 一种甲醇、天然气双燃料发动机及控制方法
CN115217621A (zh) 内燃机、内燃机控制方法
CN107701299A (zh) 一种驱动车辆发动机启动或/和运行的方法及发动机
CN115370468A (zh) 喷射液氨的氢气-液氨双燃料发动机
CN112709633A (zh) 氢气与甲醇混合燃烧的动力系统及燃烧方法
CN218934562U (zh) 一种氨汽融合型混合动力系统
CN114991945B (zh) 一种基于内燃兰金循环的氨气燃料发动机系统及其应用

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant