WO2023149399A1 - ファインバブル生成器 - Google Patents

ファインバブル生成器 Download PDF

Info

Publication number
WO2023149399A1
WO2023149399A1 PCT/JP2023/002869 JP2023002869W WO2023149399A1 WO 2023149399 A1 WO2023149399 A1 WO 2023149399A1 JP 2023002869 W JP2023002869 W JP 2023002869W WO 2023149399 A1 WO2023149399 A1 WO 2023149399A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
bubble generator
sub
chamber
air
Prior art date
Application number
PCT/JP2023/002869
Other languages
English (en)
French (fr)
Inventor
茂樹 毛利
雅紀 湊本
一樹 牛島
亮 高田
康次郎 小柳
剛 渡辺
Original Assignee
日本タングステン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本タングステン株式会社 filed Critical 日本タングステン株式会社
Publication of WO2023149399A1 publication Critical patent/WO2023149399A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • B01F23/2326Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles adding the flowing main component by suction means, e.g. using an ejector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/10Mixing by creating a vortex flow, e.g. by tangential introduction of flow components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • B01F25/25Mixing by jets impinging against collision plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/432Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction with means for dividing the material flow into separate sub-flows and for repositioning and recombining these sub-flows; Cross-mixing, e.g. conducting the outer layer of the material nearer to the axis of the tube or vice-versa
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/02Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to fine bubble generators.
  • Bubbles have various names depending on their size, but in the present specification, all bubbles with a diameter of 100 micrometers or less are included as “fine bubbles”, and “fine bubbles” with a diameter of 1 micrometer or more (1 to 100 micrometers) are referred to as “microbubbles”, those less than 1 micrometer from the observable lower limit are referred to as “ultra-fine bubbles”, and bubbles or bubbles when there is no need to distinguish between them.
  • the method of generating bubbles in a liquid is broadly divided into those that do not involve liquid flow and those that involve liquid flow.
  • a micropore method is known
  • a cavitation method is known.
  • Patent Document 1 describes a microporous bubble generator.
  • a fine bubble generator having a cylindrical main body, a channel through which a liquid to be provided with bubbles passes, an air receiving portion for receiving compressed gas, and a porous body separating the channel and the air receiving portion is disclosed.
  • This fine bubble generator generates a large number of fine bubbles by supplying a compressed gas to the porous body and releasing the compressed gas from the surface of the porous body into the liquid.
  • Patent Document 2 describes a cavitation-type bubble generator.
  • This bubble generator includes a gas-liquid loop flow stirring and mixing chamber for stirring and mixing liquid and air by a loop-shaped flow, a liquid supply hole, a jet hole, one or more air inlet holes into which air flows, It consists of an air supply chamber.
  • the bubble generator can naturally suck air from the outside (hereinafter referred to as self-suction) to generate microbubbles.
  • Patent Document 1 The microporous method of Patent Document 1 is used with compressed air. Therefore, it is necessary to provide a compressed air generator (compressor, etc.) or a pressure vessel (cylinder, etc.). In addition, the porous body used in Patent Document 1 also has a problem that fine bubble generation efficiency decreases due to clogging due to repeated use.
  • Fig. 1 shows a schematic diagram of the bubble generator described in Patent Document 2.
  • piping resistance and pressure loss are less likely to occur inside the gas-liquid loop flow stirring and mixing chamber.
  • the outlet of the bubble generator may be valved off and the valve may be opened after priming is completed.
  • the inside of the gas-liquid mixing chamber is filled with water, and air pockets are eliminated.
  • the problem to be solved by the present invention is to provide a cavitation-type bubble generator disclosed in Patent Document 2 with a mechanism that automatically eliminates the air pool that occurs at the time of start-up, and at the time of start-up and re-supply of liquid without increasing the number of parts. It is to simplify the work.
  • the present invention has the following configurations. at least one inlet into which liquid flows; an outlet for discharging liquid; A confluence chamber is provided between the inlet and the outlet, a main flow path that is linearly connected from the inlet to the outlet via the confluence chamber; at least one or more sub-channels branched directly from the inlet or from between the inlet of the main channel and the merging chamber and connected to the outer peripheral portion of the merging chamber; At least one or more suction units are provided at positions where the secondary flow paths join the merging chamber, and suck gas from the outside.
  • a fine bubble generator that creates fine bubbles in the liquid that passes through it.
  • the liquid is supplied only through the main flow path, so the liquid cannot be sufficiently filled up to the outer periphery of the confluence chamber as shown in FIG. 1d).
  • the inventors considered arranging a sub-channel separate from the main channel as a mechanism to eliminate this air pool on the side. This air pool can be eliminated by causing the liquid to flow toward the outer peripheral portion of the merging chamber from the sub-channel.
  • the fine bubble generator of the present invention solves the above-mentioned problems by having a configuration in which the liquids flowing from the sub-channel and the main channel merge in the confluence chamber and fill the inside of the fine-bubble generator.
  • the fine bubble generator of the present invention uses not only the main flow path but also the sub flow path, so that the outer peripheral portion of the confluence chamber communicating with the outside can be filled with water, which increases the number of parts and simplifies complicated operations. It became possible to self-suck air from the outside without doing it.
  • the present invention has the following configurations. at least one inlet into which liquid flows; an outlet for discharging liquid; A confluence chamber is provided between the inlet and the outlet, a main flow path that is linearly connected from the inlet to the outlet via the confluence chamber; at least one or more sub-channels branched directly from the inlet or from between the inlet of the main channel and the merging chamber and connected to the outer peripheral portion of the merging chamber; At least one or more suction units are provided at positions where the secondary flow paths join the merging chamber, and suck gas from the outside.
  • a fine bubble generator that creates fine bubbles in the liquid that passes through it. Details of the components are shown below.
  • the liquid L enters from the inlet 11 (on the right side in both FIGS. 2 to 6) and is discharged from the outlet 12 (on the left side) in a state in which fine bubbles are generated.
  • Either or one of the inlet 11 and the outlet 12 may be provided with a threaded portion 25 for a hose for supplying the liquid L.
  • the fine bubble generator of the present invention has a main channel 16 and a secondary channel 17.
  • the main flow path 16 is a flow path through which the liquid that has flowed in from the inlet 11 is linearly supplied to the confluence chamber 14 .
  • the main flow path 16 can take the flow path that is generally the shortest path inside the generator from the inlet 11 to the outlet.
  • the secondary channel 17 is a channel that supplies liquid to the outer periphery of the confluence chamber 14 . If the liquid is supplied only from the main flow path, an air pool is generated in the outer periphery of the merging chamber as shown in Fig. 1d), and the air cannot be sucked by itself.
  • the secondary flow path 17 can supply the liquid to the portion where the air pool is generated, eliminate the air pool, and fill the inside of the fine bubble generator with the liquid without performing any special work.
  • the sub-channel 17 is arranged inside the fine bubble generator around the main channel 16 and on the outer periphery of the confluence chamber.
  • the sub-channel 17 may be formed by branching into the main channel and the sub-channel at the tip of the inlet 11 (FIGS. 2 to 4). It may be formed in the part (Fig. 5). Alternatively, it may be formed by branching from between the inlet of the main flow path and the merging chamber 14 (FIG. 6).
  • the sub-channel 17 does not have to be the shortest route from the inlet 11 to the outlet 12.
  • the angle may be parallel to the main channel 16 or at another angle. If they are not parallel, when viewed from the inlet, the sub-channel 17 may be a channel in which a plurality of straight lines spread radially toward the downstream side, or may be a channel in which a plurality of straight lines spread concentrically.
  • the cross-sectional areas of the main channel and the sub-channel may be different or the same.
  • the cross-sections of the shape of the main channel 16 and the sub-channel 17 may be, for example, circular, rectangular, or other shapes.
  • the width of the intake part 15 is appropriately selected according to the flow rate and flow velocity. If the width of the intake section is wider than the desired range, the liquid that has passed through the secondary flow path 17 will leak from the inside of the intake section to the outside.
  • the air intake portion 15 has a slit shape, particularly when the width of the air intake portion is more than 0 to 0.3 mm, microbubbles are generated efficiently, which is preferable.
  • the air intake portion 15 is adjusted by a washer as a typical adjustment method, but other methods may be used. As an example, a method may be used in which four equally spaced holes are provided in the downstream end surface of the sub-flow path so that an intake portion can be obtained without a washer.
  • the position of the intake portion 15 may be the outer peripheral portion of the merging chamber where the secondary flow path flows into the merging chamber.
  • the liquid ejected from the sub-flow path to the outer peripheral portion of the merging chamber forms a vortex T, and the negative pressure generated by the vortex flow allows air to be self-sucked from the intake portion.
  • It may be the boundary between the sub-channel 17 and the merging chamber 14, or it may be on the merging chamber side.
  • the intake part 15 may be configured to be exposed to the outside of the fine bubble generator and directly contact the surrounding space, or may be surrounded by a case and provided with an air chamber 20 for containing an arbitrary gas. good.
  • the confluence chamber 14 is a confluence portion of the liquid sent from the main channel 16 and the sub-channel 17 . Moreover, it may be a portion that supplies a gas. Since it is necessary to generate a vortex T inside to self-suck the gas, it is preferable that the section has the widest cross-sectional area in the fine bubble generator.
  • the shape of the interior of the confluence chamber 14 is preferably such that the pressure loss decreases toward the discharge port. Further, if the liquid has a shape that easily causes a vortex, the self-suction of the air is promoted, which is preferable. For example, as shown in FIGS. 2 to 6, the walls may be tapered toward the outlet.
  • a concave portion 27 can be formed in the wall surface of the confluence chamber on the extension line of the sub-flow passage 17 . Due to this concave portion 27, the liquid that joins from the sub-channel flows into the outer peripheral portion of the joining chamber and forms a vortex T, which makes it easier to eliminate air pockets.
  • the gas introduced from the intake section 15 is typically air. Other gases, such as nitrogen, oxygen, carbon dioxide, argon, etc., may also be used.
  • the liquid L may be fresh water, distilled water, pure water, or sea water. It may be an acidic or alkaline solution, or a processing coolant (emulsion type, chemical type, chemical solution type, solution type, soluble type, etc.).
  • the material of the fine bubble generator is not particularly limited. Select from materials including steel, aluminum, wood and plastic. Any material can be used as long as it does not corrode with liquid, does not deteriorate in function due to dimensional change due to swelling, and exhibits and maintains the performance of forming a flow path.
  • the main body forming the inlet 11, the main flow path 16, and the sub-flow path 17 (hereinafter referred to as the main body) and the confluence chamber 14 may be fastened using bolts or by welding.
  • the portion where the main body and the merging chamber are in contact may be formed into a thin lip shape and press-fitted, or may be fastened with a retaining ring.
  • Example 1 As shown in FIG. 2, the fine bubble generator in Example 1 consists of two parts: a main body having an inlet 11 and a main channel 16 and a secondary channel 17; The two parts were joined by a weld 21 .
  • the intake part 15 was provided at the boundary between the main body having the inlet, the main flow path and the sub flow path, and the confluence chamber.
  • a slit serving as the air intake portion 15 was provided between the main body and the merging chamber 14, and the width was set to 0.05 mm.
  • An air chamber 20 is provided outside the intake portion 15 .
  • the main flow path 16 and the sub-flow path 17 are formed as paths that go straight from the inlet 11 toward the confluence chamber 14 .
  • Four sub-channels 17 were provided at intervals of 90 degrees. The cross-sections of the shape of the main channel 16 and the sub-channel 17 are circular.
  • the main body was made of SUS304, and screwed portions 25 by tapered pipe screws were provided on the inlet side and the outlet side of the main body, respectively, and connected to a flexible hose (not shown).
  • the liquid supplied from the flexible hose reached the inflow port 11 and branched into the main channel 16 and the sub-channel 17 .
  • the liquid L branched to the sub-flow path generated a vortex T on the outer periphery of the merging chamber when it entered the merging chamber, automatically sucked air from the intake part 15, and was able to be used as it was.
  • the wall surface of the confluence chamber 14 is inclined at 15 degrees on one side so as to taper from the intake side toward the discharge port 12 .
  • the liquid coming out of the confluence chamber 14 contained fine bubbles B and was supplied to the workpiece through the discharge port 12 .
  • the coolant used was a JIS A class 3 water-soluble cutting fluid diluted 20 times with tap water.
  • the total volume of coolant generating microbubbles was 100 liters.
  • a centrifugal pump was used as a pump for sending coolant to the fine bubble generator.
  • Microbubbles were measured with Particle Insight (manufactured by Shimadzu Corporation). During that time, the fine bubble generator was left running. The number density of microbubbles was 224,000 per milliliter. Ultra fine bubbles were not measured.
  • FIG. 3 shows a fine bubble generator in Example 2.
  • it is composed of two parts, the main body side and the confluence chamber 14 side. formed to be The cross-sections of the shape of the main channel 16 and the sub-channel 17 are circular.
  • the intake part 15 was provided on the inner wall surface of the outer peripheral part on the side of the confluence chamber 14 where one sub flow path 17 merges.
  • An air chamber 20 was provided outside the intake portion 15, and an air tube with a diameter of 6 mm was connected with a joint 26.
  • a recess 27 was provided in the wall on the extension line of the sub-channel.
  • a snap ring 23 was used to secure the main body and the confluence chamber 14 to a fixed position during assembly.
  • An O-ring 22 was provided between the main body and the confluence chamber 14 to prevent liquid leakage.
  • a counterbored hole with a depth of 0.05 mm provided on the surface where the merging chamber 14 comes into contact with the main body and has a smaller inner diameter than the O-ring 22 is provided in the intake section 15. and
  • the liquid L branched to the sub-channel 17 hits the concave portion provided on the wall surface of the merging chamber 14, changes the flow, and efficiently eliminates the air pool on the outer periphery of the merging chamber. It was confirmed that the liquid discharged from the discharge port 12 contained microbubbles and was cloudy, and the air was automatically sucked from the suction unit 15 . Other conditions for generating and measuring microbubbles were the same as in Example 1. At this time, the number density of microbubbles was 300,000 per milliliter.
  • FIG. 4 shows a fine bubble generator in Example 3.
  • the main flow passage 16 and the sub flow passage 17 were provided at four locations at intervals of 90 degrees.
  • the angle formed by the sub-channel 16 and the central axis of the main channel 17 was set to 22.5 degrees.
  • the cross-sections of the shape of the main channel 16 and the sub-channel 17 are circular.
  • the secondary flow path joins the main flow path at the outer peripheral portion having the largest cross-sectional area of the confluence chamber.
  • a snap ring 23 was used to secure the main body and the confluence chamber 14 to a fixed position during assembly.
  • An O-ring 22 was provided between the main body and the confluence chamber 14 to prevent liquid leakage.
  • a counterbored hole with a depth of 0.05 mm provided in a portion of the surface where the merging chamber 14 contacts the main body and has a smaller inner diameter than the O-ring 22 is used as the intake part. bottom.
  • the suction part 15 was provided at a position where the liquid was ejected from the secondary flow path 17 .
  • An air chamber 20 was provided outside the intake portion 15, and an air tube with a diameter of 6 mm was connected with a joint 26.
  • the liquid L branched to the sub-flow path 17 generated a vortex T on the outer periphery of the merging chamber when it entered the merging chamber 14 , and automatically sucked air from the intake section 15 .
  • Example 2 the conditions for generating and measuring microbubbles were the same as in Example 1. At this time, the number density of microbubbles was 332,000 per milliliter.
  • FIG. 5 shows a schematic diagram of a fine bubble generator in Example 4.
  • a hole serving as the main flow path 16 and four holes serving as the sub-flow path 17 were provided at intervals of 90 degrees.
  • the cross-sections of the shape of the main channel 16 and the sub-channel 17 are rectangular.
  • the sub-flow path 17 is formed radially widening toward the intake portion 15 .
  • the inlets 11 of the main channel 16 and the sub-channels 17 are separated from each other.
  • the liquid L branched to the secondary flow path 17 generates a vortex T on the outer periphery of the merging chamber when it enters the merging chamber 14 , and automatically sucks the air G from the intake portion 15 .
  • Example 2 Other conditions for generating and measuring microbubbles were the same as in Example 1. The number density of microbubbles was 711,000 per milliliter. Ultra fine bubbles were not measured.
  • FIG. 6 shows a schematic diagram of a fine bubble generator in Example 5.
  • the fine bubble generator has a shape in which the sub-channel 17 branches from the main channel 16 .
  • the secondary flow path 17 is provided by a gap between the main body and a middle piece 19 fixed by a jig (not shown), and is a flow path extending concentrically from the main flow path 16 .
  • a slit serving as an intake portion 15 was provided between the main body and the merging chamber 14, the width of the intake portion 15 was set to 0.05 mm, and the main body and the merging chamber 14 were fastened with bolts.
  • a threaded portion 25 (not shown) is provided in the main flow path 16 for supplying the liquid L to the main body and in the liquid discharge port 12 provided at the other end.
  • the diameter of the main channel 16 was 2 millimeters.
  • the liquid branched to the secondary flow path 17 generated a vortex T on the outer periphery of the merging chamber when it entered the merging chamber 14 , and automatically sucked the air G from the intake portion 15 .
  • Example 1 the conditions for generating and measuring microbubbles were the same as in Example 1.
  • the number density of microbubbles was 690,000 per milliliter.
  • FIG. 7 shows the measurement results of microbubbles in Example 5. As shown in FIG.
  • Example 5 ultra-fine bubbles were measured using tap water. The results are shown in FIGS. 8 and 9.
  • FIG. Tap water was circulated through a fine bubble generator for 6 hours. Zeta View (manufactured by Microtrack Bell) was used for the measurement. The bubble number density measurement range is greater than the lower limit of detection and less than 1 micrometer.
  • the volume of tap water for generating ultra-fine bubbles was 100 liters, and the temperature was 24 degrees.
  • a centrifugal pump was used as a pump for sending tap water to the fine bubble generator. Its flow rate was 8 liters per minute. An interval of 24 hours or more was provided from the sampling of tap water to the measurement.
  • the bubble number density was about 20 million per milliliter. Since ultra-fine bubbles should not have been generated yet, it was presumed that this was the result of detection of foreign matter originally contained in the tap water. After that, the number density of ultra-fine bubbles increased with the lapse of operation time, and increased to 150 million bubbles per milliliter after 6 hours.
  • the bubble diameter distribution of ultra-fine bubbles after 6 hours was as shown in FIG. A sharp peak appears in the vicinity of 100 nm, indicating that fine bubbles are obtained.
  • the fine bubble generator of the present invention was able to generate both microbubbles and ultrafine bubbles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)

Abstract

本発明は、空気を自吸する従来のバブル生成器の始動時に生じる空気だまりを自動で解消する機構を設け、部品を増やすことなく、始動時や液体の再供給時の作業を簡便にする。本発明のファインバブル生成器は、ファインバブル生成器内部に液体を満たす主流路とは別に、主流路の周囲に副流路を設け、前記副流路から吸気部に向かって液体が流れることで、空気だまりを解消する。さらに、主流路・副流路から噴出する液体が合流室で合流し、前記合流室内で渦を形成することで、空気を自給することができる。

Description

ファインバブル生成器
 本発明は、ファインバブル生成器に関するものである。
 バブルはサイズによって様々な呼称があるが、本明細書内では、直径が100マイクロメートル以下のバブルを全て包含して「ファインバブル」、「ファインバブル」のうち直径が1マイクロメートル以上(1~100マイクロメートル)のものを「マイクロバブル」、観察できる下限値から1マイクロメートル未満のものを「ウルトラファインバブル」、区別する必要のないときはバブルまたは気泡と呼称する。
 工作機械の分野では、加工に用いる液体(クーラント)の中にバブルを生成することで、工具(ドリルや砥石など)の寿命を延ばすことや、工作物のソリを低減することなど、生産性の向上に寄与することが知られている。
 液体中へのバブル生成方法は、液体の流動を伴わないもの、液体の流動を伴うものに大別される。前者の例として微細孔方式が、後者の例としてキャビテーション方式が知られている。
 特許文献1は微細孔方式のバブル生成器が記載されている。この文献では、筒状の本体と、バブル付与対象の液体が通過する流路と、圧縮気体を受入れる空気受入部と、前記流路と空気受入部とを隔てる多孔体を有する、ファインバブル生成器が開示されている。このファインバブル生成器は、多孔体が圧縮気体の供給を受けて、その多孔体の表面から圧縮気体が液体へ放出されることにより、多数のファインバブルを生成する。
 特許文献2にはキャビテーション方式のバブル生成器が記載されている。このバブル生成器は、液体及び空気をループ状の流れによって撹拌混合する気液ループ流式撹拌混合室と、液体供給孔と、噴出孔と、空気が流入する1つ以上の空気流入孔と、空気供給室からなる。気液ループ流式撹拌混合室内が負圧になると、バブル生成器は外部から空気を自然吸気(以下、自吸)し、マイクロバブルを生成させることができる。
特開2021-118994号公報 特開2009-189984号公報
 特許文献1の微細孔方式は圧縮空気とともに使用される。したがって圧縮空気発生装置(コンプレッサー等)あるいは圧力容器(ボンベ等)を配備する必要がある。また、特許文献1に使用される多孔質体は複数回の使用による目詰まりによってファインバブルの生成効率が下がるなどの問題もあった。
 特許文献2に記載されたキャビテーション方式のバブル生成器では、圧縮空気を用いずに、液体の渦の形成により空気を自吸することが可能である。そして、気液混合室によって、吸気された空気をせん断・かく拌することで微細な気泡を得ることができる。しかし、工作機械で使用する際の、作業者の使用上の手間に関する認識がない。
 図1に特許文献2に記載のバブル生成器の模式図を示す。特許文献2に開示されたバブル生成器において、気液ループ流式撹拌混合室の内部は配管抵抗や圧力損失を生じにくい。
 そのため、図1a)のように内部がすでに満水で、初期状態から空気だまりが存在しない場合は、図1b)に示すように液体を供給するとバブルを自吸することができるが、図1c)のように内部が空の初期状態では、液体供給孔から液体を供給しても、図1d)のように空気流入孔の周辺に空気だまりが発生し、バブルを生成できない。
 このように、気液ループ流式撹拌混合室の内部が一度空になった状態では、吸気部である空気流入孔周辺には空気だまりができてしまい、再度液体を供給しても空気を自吸できない。
 ここで、発明者らは特許文献2のバブル生成器と同様に主流路のみで実験したところ、供給した液体中にバブルは生じなかった。空気だまりが大きすぎるために、バブル生成器内部で液体の渦を生成できずに、バブルを発生できなかったと考えた。
 空気だまりを解消する手段として、気液混合室の内部に呼水を行う方法がある。例えば、バブル生成器の出口をバルブで締めきり、呼水が完了した後で、バルブを開放する方法である。そうすれば、気液混合室の内部が満水になり、空気だまりが解消される。
 しかし、バブル生成器の出口をバルブで開閉する方法では、作業者の使用上、手間がかかる。さらに、弁の設置にスペースも要する。砥石や研削点の近くはスペースに余裕が無い場合が多いことから、バブル生成器を設置できない場合がありうる。弁を設置したとしても、出口を塞いでいる間は、水圧がかかった状態でバブル生成器の内部が満水になるため、それが空気供給部から逆流して外部に漏れてしまうという不具合が生じうる。
 本発明で解決する課題は、特許文献2に開示されたキャビテーション式のバブル生成器に始動時に生じる空気だまりを自動で解消する機構を設け、部品を増やすことなく始動時や液体の再供給時の作業を簡便にすることである。
 本発明は下記の構成を有する。
 少なくとも一つ以上の液体が流入する流入口と、
 液体を排出する排出口と、
 前記流入口と前記排出口の間に合流室を設け、
 前記流入口から前記合流室を経由して前記排出口に直線的に繋がる主流路と、
 前記流入口から直接、または、前記主流路の流入口と合流室の間から分岐し、前記合流室の外周部に繋がる少なくとも一つ以上の副流路と、
 前記副流路が前記合流室へ合流する位置に、少なくとも一つ以上設けられ、外部から気体を吸気する吸気部と、を有する、
 内部を通過する液体中にファインバブルを生成する、ファインバブル生成器。
 先に述べたように特許文献2に開示されている発明は、液体が主流路のみによって供給されるため、図1d)に示すように合流室の外周部まで、十分に液体を満たしえない。
 発明者らはこの側部の空気だまりをなくすための機構として、主流路とは別に副流路を配置することを検討した。この副流路から、合流室の外周部に向かって液体が流れることで、この空気だまりを解消することができる。
 本発明のファインバブル生成器は、副流路と主流路から流れ込んだ液体が、合流室で合流し、ファインバブル生成器内部を満たす構成にすることにより、前記課題を解決した。
 本発明のファインバブル生成器は、主流路のみでなく、副流路を用いることで、外部と連通した合流室の外周部を水で満たすことができ、部品点数を増やしたり、煩雑な操作を行わなくても外部から空気を自吸することが可能となった。
先行技術におけるバブル生成器での空気だまりの発生模式図 実施例1におけるファインバブル生成器の模式図 実施例2におけるファインバブル生成器の模式図 実施例3におけるファインバブル生成器の模式図 実施例4におけるファインバブル生成器の模式図 実施例5におけるファインバブル生成器の模式図 実施例5におけるクーラント中の気泡密度と気泡径分布 実施例5におけるファインバブル生成器の運転時間と気泡密度の変化 実施例5における水道水中のウルトラファインバブル気泡密度と気泡径分布
 本発明は下記の構成を有する。
 少なくとも一つ以上の液体が流入する流入口と、
 液体を排出する排出口と、
 前記流入口と前記排出口の間に合流室を設け、
 前記流入口から前記合流室を経由して前記排出口に直線的に繋がる主流路と、
 前記流入口から直接、または、前記主流路の流入口と合流室の間から分岐し、前記合流室の外周部に繋がる少なくとも一つ以上の副流路と、
 前記副流路が前記合流室へ合流する位置に、少なくとも一つ以上設けられ、外部から気体を吸気する吸気部と、を有する、
 内部を通過する液体中にファインバブルを生成する、ファインバブル生成器。
 以下に構成部の詳細を示す。
 液体Lは、流入口11(図2~図6ともに右側)から入り、ファインバブルが生成された状態で排出口12(同左側)から排出される。流入口11と排出口12は、そのいずれかまたは片方に液体Lを供給するためのホースとの螺合部25を設けてもよい。
 本発明のファインバブル生成器は、主流路16と副流路17を有する。
 主流路16は、前記流入口11より流入した液体が直線的に合流室14へ供給される流路である。主流路16は流入口11から排出口に向かって生成器の内部で概ね最短経路となる流路を取り得る。
 副流路17は、合流室14の外周部へ液体を供給する流路である。主流路からのみの液体の供給では、図1d)に示すように合流室の外周部に空気だまりが生じ、空気を自吸することができない。副流路17は、前記空気だまりが生じる部分に液体を供給し、空気だまりを解消し、特段作業を行うことなくファインバブル生成器内を液体で充填することができる。
 副流路17はファインバブル生成器の内部で主流路16の周囲かつ合流室の外周部に配置される。副流路17は、流入口11の先で主流路と副流路に分岐して形成されてもよく、(図2~図4)主流路16とは別の流入口から直接合流室の外周部に形成されていてもよい(図5)。また、主流路の流入口と合流室14の間から分岐して形成されてもよい(図6)。
 副流路17は、流入口11から排出口12に向かって最短経路ではなくてもよく、例としてその角度は主流路16と平行であったり、それ以外の角度であったりする。平行でない場合は、副流路17を流入口から見た時に、下流側に向かって複数の直線が放射線状に広がる流路であってもよく、同心円状に広がる流路であってもよい。
 主流路と副流路の断面積は、異なっていてもよいし、同じであってもよい。副流路の断面積を主流路の断面積の合計より小さくすることで、副流路を液体が通過する際に、それ以外の部分と比較して、液体の流速が速くなるため、ベルヌーイの定理にしたがい、より空気を自吸しやすくなる。
 主流路16ならびに副流路17の形状の断面は、例えば円形であってもよいし、矩形でもよいし、他の形状であってもよい。
 吸気部15の幅は、流量や流速に合わせて適宜選択する。吸気部の幅が所望の範囲よりも広い場合は、副流路17を通過した液体は吸気部の内部から外部へ漏れてしまうため、バブルを自吸できる広さに設定すればよい。吸気部15をスリット形状にした場合、特に吸気部の幅が0超~0.3ミリメートルであるとき、マイクロバブルが効率よく生成されるため好ましい。吸気部15は、典型的な調整方法としてはワッシャーで間隔を調整するが、それ以外の方法でもよい。例として、副流路の下流側端面に4等配の穴を設けて、ワッシャーがなくとも吸気部が得られる方法でもよい。
 吸気部15の位置は、副流路が合流室に流入する箇所の合流室の外周部であればよい。合流室14の外周部であれば、副流路から合流室の外周部に噴き出した液体が渦Tを形成し、渦状の流れで生じる負圧により、吸気部から空気を自吸することができる。副流路17と合流室14の境界部でもよいし、合流室側であってもよい。
 吸気部15は、ファインバブル生成器の外部に露出して周囲の空間に直接触れる構成としてもよいし、吸気部15の周りをケースで囲って、任意のガスを入れる空気室20を設けてもよい。
 合流室14は主流路16と副流路17から送られる液体の合流部分である。また、気体を供給する部分であってもよい。気体を自吸するために内部に渦Tを生じさせる必要があるため、ファインバブル生成器内で一番断面積が広い部分であるとよい。合流室14の内部の形状については、排出口に向かって、圧力損失が小さくなるような形状であると好ましい。さらに、液体が渦を起こしやすい形状であると、空気の自吸が促進されるためよい。たとえば、図2から図6で示す通り排出口に向かって細くなるテーパを有する壁面であってもよい。
 さらに、図3に示すように、前記副流路17の延長線上の前記合流室の壁面に凹部27を形成することもできる。この凹部27により、副流路から合流した液体が合流室の外周部に流れ込み、渦Tを形成することで空気だまりを解消しやすくなる。
  吸気部15から導入する気体は空気が代表的である。窒素、酸素、二酸化炭素、アルゴンなど、別の気体であっても構わない。同様に、液体Lは淡水であってもよいし、蒸留水や純水でもよいし海水でもよい。酸性やアルカリ性の溶液、加工用クーラント(エマルジョンタイプ、ケミカルタイプ、ケミカルソリューションタイプ、ソリューションタイプ、ソリュブルタイプ等)であってもよい。
 ファインバブル生成器の材質は特に限定しない。鉄やアルミ、木材やプラスチックを含む材種から任意に選択する。液体により腐食せず、膨潤による寸法変化による機能の低下がなく、流路を形成する性能を発揮し維持するなら、その材質は問わない。
 流入口11および主流路16、副流路17を形成する本体(以下、本体)と合流室14の締結は、ボルトを用いてもよいし、溶接してもよい。本体と合流室が接する部分を、薄いリップ形状にして圧入する方法でも良いし、止め輪で締結してもよい。
(実施例1)
 図2に示すように、実施例1におけるファインバブル生成器は、流入口11および主流路16・副流路17を備える本体と、合流室14および排出口12からなる部品の2部品からなる。前記2部品は、溶接21によって接合した。吸気部15は流入口および主流路・副流路を備える本体と合流室の境界部に設けた。吸気部15として本体と合流室14の間に吸気部15となるスリットを設け、幅は0.05ミリメートルとした。吸気部15の外部には空気室20を設けた。主流路16・副流路17は流入口11から合流室14に向かって直進する経路とした。副流路17は90度おきに4箇所設けた。主流路16ならびに副流路17の形状の断面は、円形とした。
 本体はSUS304で製作し、本体の流入口側、排出口側それぞれに管用テーパネジによる螺合部25を設け、図示しないフレキシブルホースと接続した。フレキシブルホースから供給された液体は流入口11へ至り、主流路16と副流路17に分岐した。副流路に分岐した液体Lは、合流室に入った段階で合流室の外周部に渦Tを生じ、自動的に吸気部15から空気を吸引し、そのまま使用状態とすることができた。
 合流室14の壁面には、吸気部側から排出口12に向かって細くなるように片側15度の傾斜をつけた。合流室14から出た液体はファインバブルBを含み、排出口12を通って工作物へ供給された。
 クーラントはJIS A3種の水溶性切削油剤を水道水で20倍に希釈したものを用いた。マイクロバブルを生成するクーラントの体積は総量100リットルであった。ファインバブル生成器へクーラントを送るポンプは渦巻きポンプを用いた。
 マイクロバブルの計測はParticle Insight(島津製作所製)で行った。その間はファインバブル生成器を運転したままとした。マイクロバブルの数密度は22万4千個毎ミリリットルであった。ウルトラファインバブルは計測しなかった。
(実施例2)
 図3に実施例2におけるファインバブル生成器を示す。実施例1と同様に本体側と合流室14側の2部品により構成し、流入口11と同軸上の主流路16と、副流路17は90度おきに4箇所設け、主流路16と平行になるよう形成した。主流路16ならびに副流路17の形状の断面は、円形とした。吸気部15は1つの副流路17が合流する合流室14側の外周部の内壁面に設けた。吸気部15の外部に空気室20を設け、継手26で直径6ミリメートルのエアチューブを接続した。合流室には、副流路の延長線上の壁に凹部27を設けた。
 組み立て時には本体と合流室14が定位置に定まるように止め輪23を用いて締結した。本体と合流室14の間にはOリング22を設けて、液体の漏れを防いだ。合流室14の外周に1箇所あけた穴と、合流室14が本体と接触する面であってOリング22よりも内径が小さな部分に設けた深さ0.05ミリメートルのザグリ穴を吸気部15とした。
 副流路17に分岐した液体Lは、合流室14の壁面に設けた凹部に当たり、流れを変えて合流室の外周部の空気だまりを効率よく解消した。排出口12から排出された液体はマイクロバブルを含み白濁しており、自動的に吸気部15から空気を吸引していることが確認できた。その他、マイクロバブルを生成・計測する条件は実施例1と同様とした。このとき、マイクロバブルの数密度は30万個毎ミリリットルであった。
(実施例3)
 図4に実施例3におけるファインバブル生成器を示す。実施例1と同様に本体側と合流室14側の2部品により構成し、流入口11と同軸上の主流路16と、副流路17は90度おきに4箇所設けた。副流路16と主流路17の中心軸とがなす角度を22.5度とした。主流路16ならびに副流路17の形状の断面は、円形とした。副流路は、合流室の断面積の最も大きな外周部で主流路と合流する。
 組み立て時には本体と合流室14が定位置に定まるように止め輪23を用いて締結した。本体と合流室14の間にはOリング22を設けて、液体の漏れを防いだ。合流室14の外周に1箇所あけた穴と、合流室14が本体と接触する面であってOリング22よりも内径が小さな部分に設けた深さ0.05ミリメートルのザグリ穴を吸気部とした。吸気部15は副流路17から液体が噴き出す位置に設けた。吸気部15の外部に空気室20を設け、継手26で直径6ミリメートルのエアチューブを接続した。実施例1と同様に、副流路17に分岐した液体Lは、合流室14に入った段階で合流室の外周部に渦Tを生じ、自動的に吸気部15から空気を吸引した。
 その他、マイクロバブルを生成・計測する条件は実施例1と同様とした。このとき、マイクロバブルの数密度は33万2千個毎ミリリットルであった。
(実施例4)
 図5に実施例4におけるファインバブル生成器の模式図を示す。主流路16となる穴と、副流路17となる穴を90度おきに4箇所設けた。主流路16ならびに副流路17の形状の断面は、矩形とした。副流路17は吸気部15に向かって広がる放射状に形成した。実施例4では主流路16と各副流路17の流入口11はそれぞれ分かれた形態とした。この形態においても、副流路17に分岐した液体Lは、合流室14に入った段階で合流室の外周部に渦Tを生じ、自動的に吸気部15から空気Gを吸引した。
 その他、マイクロバブルを生成・計測する条件は実施例1と同様とした。
マイクロバブルの数密度は71万1千個毎ミリリットルであった。ウルトラファインバブルは計測しなかった。
(実施例5)
 図6に実施例5におけるファインバブル生成器の模式図を示す。主流路16から副流路17が分岐する形状のファインバブル生成器とした。また、副流路17は、図示しない治具で固定した中駒19と、本体とのすき間により設け、主流路16から同心円状に伸びる流路とした。本体と合流室14の間に吸気部15となるスリットを設け、吸気部15の幅は0.05ミリメートルとし、本体と合流室14をボルトで締結した。本体へ液体Lを供給する主流路16と、その他端に設けた液体の排出口12には、図示しない螺合部25を設けた。主流路16の直径は2ミリメートルであった。他の実施例同様、副流路17に分岐した液体は、合流室14に入った段階で合流室の外周部に渦Tを生じ、自動的に吸気部15から空気Gを吸引した。
 その他、マイクロバブルを生成・計測する条件は実施例1と同様とした。マイクロバブルの数密度は69万個毎ミリリットルであった。図7に実施例5におけるマイクロバブルの測定結果を示す。
 実施例5の形態を用いて、さらに水道水を用いてウルトラファインバブルを計測した。その結果を図8および図9に示す。水道水を6時間ファインバブル生成器で循環させた。計測にはZeta View(マイクロトラック・ベル製)を用いた。気泡数密度の計測レンジは検出下限より大かつ1マイクロメートル未満である。ウルトラファインバブルを生成する水道水の体積は100リットル、温度は24度とした。ファインバブル生成器へ水道水を送るポンプは渦巻きポンプを用いた。その流量は8リットル毎分であった。サンプルの水道水を採取してから計測するまで24時間以上の間隔を空けた。
 ファインバブル生成器の運転時間が0分のとき、気泡数密度は約2千万個毎ミリリットルであった。ウルトラファインバブルはまだ生成されていないはずであるから、これは水道水中にもともと含まれる異物を検知した結果であると推定された。その後、運転時間の経過とともにウルトラファインバブルの数密度は高まり、6時間後には1億5千万個毎ミリリットルまで増加した。
 6時間後のウルトラファインバブルの気泡径分布は図9の通りであった。ピークは100ナノメートル付近に鋭く表れており、微細な気泡が得られていることがわかる。
本発明のファインバブル生成器により、マイクロバブルおよびウルトラファインバブルの両方を生成することができた。
 いずれの実施例においても、ファインバブル生成器の内部が空の状態から運転した場合でも、十分な量のマイクロバブルを生成させることができた。
 11 流入口
 12 排出口
 13 分岐部
 14 合流室
 15 吸気部
 16 主流路
 17 副流路
 18 本体
 19 中駒
 20 空気室(または吸気部)
 21 溶接部
 22 Oリング
 23 止め輪
 24 テーパ
 25 螺合部
 26 継手位置(または吸気部)
 27 凹部
 G 空気
 L 液体
 B バブル
 T 渦

Claims (4)

  1.  少なくとも一つ以上の液体が流入する流入口と、
     液体を排出する排出口と、
     前記流入口と前記排出口の間に合流室を設け、
     前記流入口から前記合流室を経由して前記排出口に直線的に繋がる主流路と、
     前記流入口から直接、または、前記主流路の流入口と合流室の間から分岐し、前記合流室の外周部に繋がる少なくとも一つ以上の副流路と、
     前記副流路が前記合流室へ合流する位置に、少なくとも一つ以上設けられ、外部から気体を吸気する吸気部と、を有する、
     内部を通過する液体中にファインバブルを生成する、ファインバブル生成器。
  2.  前記合流室が前記排出口に向かってテーパ形状である、請求項1に記載のファインバブル生成器。
  3.  前記副流路の延長線上の前記合流室の壁面に凹部を有する、請求項1から請求項2のいずれか1項に記載のファインバブル生成器。
  4.  前記副流路の断面積の合計が、前記主流路の断面積よりも小さい、請求項1から請求項3のいずれか1項に記載のファインバブル生成器。
PCT/JP2023/002869 2022-02-03 2023-01-30 ファインバブル生成器 WO2023149399A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-015512 2022-02-03
JP2022015512A JP7143540B1 (ja) 2022-02-03 2022-02-03 ファインバブル生成器

Publications (1)

Publication Number Publication Date
WO2023149399A1 true WO2023149399A1 (ja) 2023-08-10

Family

ID=83444682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002869 WO2023149399A1 (ja) 2022-02-03 2023-01-30 ファインバブル生成器

Country Status (2)

Country Link
JP (1) JP7143540B1 (ja)
WO (1) WO2023149399A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6129737U (ja) * 1984-07-25 1986-02-22 株式会社ノーリツ 泡風呂における泡発生器
JP2009189984A (ja) * 2008-02-15 2009-08-27 Ok Engineering:Kk ループ流式バブル発生ノズル
US8297540B1 (en) * 2011-05-31 2012-10-30 Vln Advanced Technologies Inc. Reverse-flow nozzle for generating cavitating or pulsed jets
WO2015156015A1 (ja) * 2014-04-11 2015-10-15 有限会社オーケー・エンジニアリング ループ流式バブル発生ノズル
JP2015181976A (ja) * 2014-03-20 2015-10-22 Idec株式会社 ファインバブル液生成装置
US20190283213A1 (en) * 2018-03-13 2019-09-19 PTV, spol. s.r.o. Multi-jet abrasive head
US20200038884A1 (en) * 2016-10-06 2020-02-06 Fdx Fluid Dynamix Gmbh Fluidic Component
JP3226479U (ja) * 2020-03-09 2020-07-02 日本タングステン株式会社 マイクロバブル生成器、および、簡易着脱式クーラントホース
JP2021058861A (ja) * 2019-10-09 2021-04-15 株式会社サイエンス バブル発生装置
JP2022007829A (ja) * 2020-06-26 2022-01-13 株式会社インパクト ファインバブル製造方法、ファインバブル製造器及びファインバブル製造装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6447430A (en) * 1987-08-18 1989-02-21 Hideteru Sawa Injection device of substance
CN111115861B (zh) 2020-02-03 2022-11-22 郑文聪 曝气装置
JP7042540B1 (ja) 2021-11-16 2022-03-28 株式会社アプライド・エナジー・ラボラトリー 燃焼効率改善装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6129737U (ja) * 1984-07-25 1986-02-22 株式会社ノーリツ 泡風呂における泡発生器
JP2009189984A (ja) * 2008-02-15 2009-08-27 Ok Engineering:Kk ループ流式バブル発生ノズル
US8297540B1 (en) * 2011-05-31 2012-10-30 Vln Advanced Technologies Inc. Reverse-flow nozzle for generating cavitating or pulsed jets
JP2015181976A (ja) * 2014-03-20 2015-10-22 Idec株式会社 ファインバブル液生成装置
WO2015156015A1 (ja) * 2014-04-11 2015-10-15 有限会社オーケー・エンジニアリング ループ流式バブル発生ノズル
US20200038884A1 (en) * 2016-10-06 2020-02-06 Fdx Fluid Dynamix Gmbh Fluidic Component
US20190283213A1 (en) * 2018-03-13 2019-09-19 PTV, spol. s.r.o. Multi-jet abrasive head
JP2021058861A (ja) * 2019-10-09 2021-04-15 株式会社サイエンス バブル発生装置
JP3226479U (ja) * 2020-03-09 2020-07-02 日本タングステン株式会社 マイクロバブル生成器、および、簡易着脱式クーラントホース
JP2022007829A (ja) * 2020-06-26 2022-01-13 株式会社インパクト ファインバブル製造方法、ファインバブル製造器及びファインバブル製造装置

Also Published As

Publication number Publication date
JP7143540B1 (ja) 2022-09-28
JP2023113278A (ja) 2023-08-16

Similar Documents

Publication Publication Date Title
US5951921A (en) Apparatus for producing ozone water
JP2019018345A (ja) 内部構造体
JP2018015715A (ja) ナノバブル生成ノズル及びナノバブル生成装置
JP5692259B2 (ja) 気液混合装置および風呂給湯装置
US9759217B2 (en) Self-priming centrifugal pump
WO2006019107A1 (ja) 液体中に極小気泡を生成する方法及び気泡生成装置
KR20150003473U (ko) 기체를 액체에 용해시키는 생성 장치 및 유체 노즐
JP4426612B2 (ja) 微細気泡発生ノズル
CN110891674A (zh) 微气泡产生设备和微气泡产生方法,以及具有该微气泡产生设备的淋浴装置和油水分离装置
JPS588288B2 (ja) エゼクタ組立体
JP5692258B2 (ja) 微細気泡発生装置および風呂給湯装置
WO2023149399A1 (ja) ファインバブル生成器
FI79270B (fi) Anordning foer reducering av ett fartygs roerelsemotstaond vid dess gaong genom isfyllda farvatten.
KR101566495B1 (ko) 워터젯 커팅장치
CA2718243A1 (en) Device and method for deburring and/or cleaning a workpiece dipped in a fluid medium
JP3343371B2 (ja) キヤビテーシヨン噴射装置
JP6511009B2 (ja) ノズル装置
KR20170096674A (ko) 미세기포 발생장치
JP6075674B1 (ja) 流体混合装置
JP6151555B2 (ja) 流体吸引混合装置
KR100854687B1 (ko) 미세 기포 발생 장치
JP5737363B2 (ja) 気液混合装置および風呂給湯装置
JP6156128B2 (ja) 気液混合装置および風呂給湯装置
KR101024323B1 (ko) 가스 용해반응장치
EP0383556B1 (en) Cutting method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23749715

Country of ref document: EP

Kind code of ref document: A1