WO2023149253A1 - Method for producing composite polarizing plate - Google Patents

Method for producing composite polarizing plate Download PDF

Info

Publication number
WO2023149253A1
WO2023149253A1 PCT/JP2023/001860 JP2023001860W WO2023149253A1 WO 2023149253 A1 WO2023149253 A1 WO 2023149253A1 JP 2023001860 W JP2023001860 W JP 2023001860W WO 2023149253 A1 WO2023149253 A1 WO 2023149253A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizing plate
film
layer
adhesive layer
sensitive adhesive
Prior art date
Application number
PCT/JP2023/001860
Other languages
French (fr)
Japanese (ja)
Inventor
範充 江端
慎也 萩原
裕史 太田
成志 中里
辰徳 荒木
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2023149253A1 publication Critical patent/WO2023149253A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays

Definitions

  • the present invention relates to a method for manufacturing a composite polarizing plate.
  • Liquid crystal display devices are widely used not only for liquid crystal televisions, but also for mobile terminals such as personal computers and mobile phones, and in-vehicle applications such as car navigation systems.
  • a liquid crystal display device has a liquid crystal panel in which a linear polarizing plate including a polarizing element is attached to both sides of a liquid crystal cell, and displays an image or the like by controlling light from a backlight with the liquid crystal panel.
  • organic EL display devices have also been widely used for mobile terminals such as televisions and mobile phones, and in-vehicle applications such as car navigation systems.
  • a circular polarizing plate (a polarizing element and a ⁇ /4 plate) is provided on the viewing side surface of the image display element in order to prevent external light from being reflected by the metal electrode (cathode) and viewed as a mirror surface. ) may be placed.
  • Display devices such as liquid crystal display devices and organic EL display devices, surface treatment films are sometimes used in order to improve visibility and suppress scratches.
  • Display devices using a laminate in which an antiglare hard-coated film is bonded to a polarizing element in order to suppress deterioration in visibility due to reflection of external light and improve visibility are known (for example, , Patent Document 1, etc.).
  • a hard (hardly plastically deformable) adhesive layer may be used as the adhesive layer. It has been found that when a polarizing plate and a surface treatment film are laminated using a hard adhesive layer, air bubbles are mixed between the polarizing plate and/or the surface treatment film and the adhesive layer.
  • An object of the present invention is to provide a method for producing a composite polarizing plate that can suppress air bubbles from entering between the polarizing plate and/or surface treatment film and the pressure-sensitive adhesive layer.
  • the present invention provides the following method for manufacturing a composite polarizing plate.
  • the manufacturing method is Step (a) of obtaining a laminate by bonding the surface-treated film and the polarizing plate via an adhesive layer having a stress of 0.8 N/mm 2 or less at 800% elongation;
  • a method for producing a composite polarizing plate, comprising the step (b) of adjusting the stress of the adhesive layer at 800% elongation at a temperature of 23° C.
  • the step (a) is A step (a1) of forming the pressure-sensitive adhesive layer on the surface-treated film;
  • the surface-treated film has the surface-treated layer on one side of the base film, and the laminate has the pressure-sensitive adhesive layer on the base film side of the surface-treated film, [1] A method for producing a composite polarizing plate according to any one of [4].
  • the pressure-sensitive adhesive layer is formed using a pressure-sensitive adhesive composition containing a (meth)acrylic resin,
  • a method for manufacturing a composite polarizing plate is one or more selected from the group consisting of an antireflection layer, an antiglare layer, a hard coat layer, and an antifouling layer.
  • the manufacturing method of the composite polarizing plate of the present invention it is possible to suppress air bubbles from entering between the polarizing plate and/or the surface treatment film and the pressure-sensitive adhesive layer.
  • FIG. 1 is a cross-sectional view schematically showing a composite polarizing plate according to one embodiment of the invention.
  • the composite polarizing plate 1 is formed by laminating a surface treatment film 20 and a polarizing plate 10 .
  • Composite polarizing plate 1 has adhesive layer 31 between surface-treated film 20 and polarizing plate 10 .
  • the adhesive layer 31 in the composite polarizing plate 1 has a stress of 800% elongation at a temperature of 23° C. (hereinafter sometimes referred to as “elongation stress (23° C.)”) of 0.9 N/mm 2 or more.
  • the surface-treated film 20 has a base film 21 and a surface-treated layer 22 formed on the surface of the base film 21 .
  • the surface treatment layer 22 is provided on one side of the base film 21 of the surface treatment film 20 and that the base film 21 side of the surface treatment film 20 faces the adhesive layer 31 .
  • the surface treatment layer 22 can be one or more selected from the group consisting of an antireflection layer, an antiglare layer, a hard coat layer, and an antifouling layer.
  • the polarizing plate 10 includes at least a polarizing element 11 .
  • the polarizing plate 10 preferably has a protective film 13 on one side or both sides of the polarizing element 11 .
  • the polarizing element 11 and the protective film 13 may be laminated via a bonding layer 12 (adhesive layer or adhesive layer), and the bonding layer 12 is in direct contact with the polarizing element 11 and the protective film 13. is preferred.
  • the adhesive layer 31 is in direct contact with the surface treatment film 20 and the polarizing plate 10 .
  • the elongation stress (23° C.) of the pressure-sensitive adhesive layer 31 in the composite polarizing plate 1 is 0.9 N/mm 2 or more, may be 1.0 N/mm 2 or more, or is 1.2 N/mm 2 or more. may be 1.3 N/mm 2 or more.
  • the elongation stress (23° C.) of the adhesive layer 31 is within the above range, the surface hardness of the surface of the composite polarizing plate 1 on the surface treatment film 20 side can be improved. It can prevent injuries.
  • the elongation stress (23° C.) of the adhesive layer 31 can be determined by the method described in Examples below.
  • the composite polarizing plate 1 may further have another adhesive layer on the polarizing plate 10 side, and on the side opposite to the other polarizing plate 10, a peeling adhesive layer for covering and protecting the other adhesive layer It may have a film.
  • Another pressure-sensitive adhesive layer is, for example, a bonding layer for bonding to an image display element of a display device.
  • the other pressure-sensitive adhesive layer may be provided in direct contact with the polarizing plate 10, or may be provided via another layer arranged on the opposite side of the polarizing plate 10 to the surface treatment film 20 side. .
  • the composite polarizing plate 1 may further have a peelable protective film laminated on the surface treatment film 20 on the opposite side of the surface treatment film 20 from the polarizing plate 10 side.
  • the protection film is for protecting the surface of the surface treatment film 20 .
  • the pencil hardness of the surface of the composite polarizing plate 1 on the surface treatment film 20 side is preferably HB or higher, more preferably F or higher, even more preferably H or higher, and particularly preferably 2H or higher.
  • the pencil hardness can be measured according to JIS K 5600-5-4:1999, as described in Examples below.
  • the composite polarizing plate 1 can be used by being laminated on an image display element of a display device such as a liquid crystal display device or an organic EL display device.
  • the method for manufacturing the composite polarizing plate 1 is a method for manufacturing the composite polarizing plate 1 having the structure described above, The surface treatment film 20 and the polarizing plate 10 are bonded via an adhesive layer having a stress at elongation of 800% (hereinafter sometimes referred to as “elongation stress”) of 0.8 N/mm 2 or less.
  • elongation stress a stress at elongation of 800%
  • elongation stress 23° C.
  • the elongation stress of the adhesive layer 31 in step (a) may be 0.8 N/mm 2 or less, may be less than 0.8 N/mm 2 , or may be 0.75 N/mm 2 or less. may be 0.7 N/mm 2 or less.
  • the elongation stress in step (a) is usually 0.2 N/mm 2 or more, may be 0.3 N/mm 2 or more, or may be 0.4 N/mm 2 or more.
  • the elongation stress can be measured by the method described in Examples below.
  • the elongation stress (23° C.) of the adhesive layer 31 in step (b) may be 1.0 N/mm 2 or more, 1.1 N/mm 2 or more, or 1.2 N/mm 2 or more, or 1.3 N/mm 2 or more, and usually 2.0 N/mm 2 or less.
  • the elongation stress (23° C.) can be measured by the method described in Examples below.
  • the adhesive layer 31 is formed.
  • Methods for adjusting the components in the pressure-sensitive adhesive composition include adjusting the type and/or molecular weight of the base polymer contained in the pressure-sensitive adhesive composition; adjusting the amount; adjusting the type and/or amount of the cross-linking agent contained in the pressure-sensitive adhesive composition; using a base polymer having a reactive group and a polymerization initiator as components in the pressure-sensitive adhesive composition.
  • Examples of the method for adjusting the environmental conditions for performing step (a) include a method for adjusting the temperature for performing step (a).
  • the adhesive composition used to form the adhesive layer 31 preferably contains a base polymer and a cross-linking agent.
  • the pressure-sensitive adhesive layer 31 used for lamination in step (a) is preferably in a state in which the reaction between the base polymer and the cross-linking agent has not sufficiently progressed
  • the pressure-sensitive adhesive layer that has undergone step (b) 31 is preferably in a state in which the reaction between the base polymer and the cross-linking agent has sufficiently progressed.
  • the bonding of the surface-treated film 20 and the polarizing plate 10 performed in step (a) as described above is performed using the pressure-sensitive adhesive layer 31 having an elongation stress of 0.8 N/mm 2 or less.
  • the pressure-sensitive adhesive layer 31 having an elongation stress in this range is in a soft state, so that the pressure-sensitive adhesive layer 31 can be easily adhered to the surface treatment film 20 and/or the polarizing plate 10 .
  • the laminate obtained in step (a) it is possible to suppress the inclusion of air bubbles between the surface-treated film 20 and/or the polarizing plate 10 and the pressure-sensitive adhesive layer 31 .
  • the elongation stress (23° C.) of the adhesive layer 31 is adjusted to fall within the above range, so that the hardness of the adhesive layer 31 is improved. can be done. This makes it possible to obtain the composite polarizing plate 1 having high surface hardness and in which air bubbles are suppressed.
  • the elongation stress described above is an index of the plastic deformation region of the adhesive layer 31, and is a value that changes with the elapsed time from the formation of the adhesive layer 31.
  • the Young's modulus which is an index of the elastic deformation region of the pressure-sensitive adhesive layer 31
  • the Young's modulus which is an index of the elastic deformation region of the pressure-sensitive adhesive layer 31
  • the plastically deformed region of the pressure-sensitive adhesive layer 31 is suppressed in order to suppress air bubbles from entering between the pressure-sensitive adhesive layer and the polarizing plate and/or surface treatment film.
  • the composite polarizing plate 1 is manufactured based on the elongation stress, which is an index of .
  • the manufacturing method of the composite polarizing plate 1 may be carried out using a sheet body or a long body. From the viewpoint of continuous production of the composite polarizing plate 1, it is preferable to use a long body. In this case, the layer or film obtained in each process or during the process may be wound into a roll to form a roll, and the layer or film may be unwound from the roll for the next step.
  • a long body refers to a layer or film having a length of, for example, 30 to 10,000 m.
  • Step (a) is a step of obtaining a laminate by bonding the surface-treated film 20 and the polarizing plate 10 together using an adhesive layer having an elongation stress of 0.8 N/mm 2 or less.
  • the environmental conditions for the step (a) are not particularly limited as long as the elongation stress of the pressure-sensitive adhesive layer 31 can be 0.8 N/mm 2 or less.
  • a preferable temperature for performing the step (a) is, for example, 10° C. or higher, may be 15° C. or higher, or may be 20° C. or higher, and is, for example, 35° C. or lower, and may be 30° C. or lower. There may be.
  • a preferable relative humidity for performing the step (a) is usually 30% RH or more, 40% RH or 45% RH, and usually 70% RH or less. It may be 65% RH or 60% RH.
  • the step (a) includes, for example, a step (a1′) of forming an adhesive layer 31 on one of the surface-treated film 20 and the polarizing plate 10, and on the adhesive layer 31 formed in the step (a1′), and a step (a2') of laminating the other of the surface treatment film 20 and the polarizing plate 10.
  • step (a) includes step (a1′) and step (a2′)
  • the elongation stress of the adhesive layer 31 in step (a1′) and step (a2′) are both explained in step (a) above. It is a range (0.8 N/mm 2 or less).
  • the step (a1') may be performed by a step of peeling off the release film after bonding the pressure-sensitive adhesive layer 31 formed on the release film and the surface treatment film 20 or the polarizing plate 10 together.
  • the elongation stress of the adhesive layer 31 in step (a1′) is the same as the elongation stress of the adhesive layer 31 in step (a2′), or the elongation stress of the adhesive layer 31 in step (a2′) It is preferably smaller than the elongation stress.
  • the elongation stress of the pressure-sensitive adhesive layer 31 in step (a2') is preferably within the range described above as the elongation stress in step (a).
  • step (a2′) the period until step (a2′) is performed may be within 6 days, may be within 5 days, may be within 4 days, or may be within 3 days. It may be within 2 days, or within 1 day.
  • step (a2′) can be easily performed in a state where the elongation stress of the adhesive layer 31 is 0.8 N/mm 2 or less.
  • the step (a1′) when using the adhesive layer 31 formed on the release film, immediately after forming the adhesive layer 31 on the release film, the adhesive layer 31 and the surface treatment film 20 or It is preferable to bond the polarizing plate 10 together.
  • the period from the formation of the adhesive layer 31 on the release film to the step (a2′) is substantially the same as the period from the step (a1′) to the step (a2′). can be
  • the step (a1′) is performed using the adhesive layer 31 formed on the release film
  • the step (a2′) is performed after the step (a1′) is performed after the adhesive layer 31 is formed on the release film.
  • the period to may be within 6 days, may be within 5 days, may be within 4 days, may be within 3 days, may be within 2 days, It may be within one day.
  • step (a2′) can be easily performed in a state where the elongation stress of the adhesive layer 31 is 0.8 N/mm 2 or less.
  • the step (a1′) is the step (a1) of forming the adhesive layer 31 on the surface-treated film 20, and the step (a2′) is the step of forming the polarizing plate 10 on the adhesive layer 31 formed on the surface-treated film 20.
  • the step (a2) of laminating is preferred.
  • the polarizing plate 10 used in step (a) may be laminated with the above-described other pressure-sensitive adhesive layer (bonding layer for bonding to the image display element) and a release film.
  • a protective film may be laminated on the surface-treated film 20 used in step (a).
  • Surface activation treatment such as corona treatment, plasma treatment, and Itro treatment may be performed on the bonding surfaces of the surface-treated film 20 and the polarizing plate 10 and the pressure-sensitive adhesive layer 31 in order to improve their adhesion. .
  • the step (b) is a step of adjusting the elongation stress (23° C.) of the pressure-sensitive adhesive layer 31 in the laminate obtained in the step (a) so as to be 0.9 N/mm 2 or more.
  • the pressure-sensitive adhesive layer 31, which is soft in the laminate obtained in the step (a) is hardened, and the surface hardness of the composite polarizing plate 1 can be improved.
  • the step (b) may be performed with the laminated body in the form of a sheet, or with the laminated body wound into a roll.
  • Step (b) is not particularly limited as long as the elongation stress (23° C.) of the adhesive layer 31 can be within the above range.
  • the step (b) can be performed according to the components contained in the adhesive layer 31, for example, it may be a step of storing the laminate obtained in the step (a), and the adhesive layer 31 is polymerized. When an initiator is included, the step of heating or irradiating with active energy rays may be used.
  • the step (b) is preferably a step of storing the laminate.
  • the step of storing the laminate is, for example, a step of curing the laminate obtained in step (a) to advance the reaction of the reactive components (for example, the base polymer and the cross-linking agent) contained in the adhesive layer 31. may be
  • the environmental conditions for storage are not particularly limited as long as the elongation stress (23° C.) of the adhesive layer 31 can be 0.9 N/mm 2 or more.
  • the preferred temperature for step (b) is usually 10° C. or higher, may be 15° C. or higher, or may be 20° C. or higher, and is usually 35° C. or lower, and may be 30° C. or lower. There may be.
  • a preferable relative humidity for performing the step (b) is usually 30% RH or higher, 40% RH or higher, 45% RH or higher, and usually 70% RH. RH or less, 65% RH or less, or 60% RH or less.
  • the storage period may be selected according to the type of the adhesive composition used to form the adhesive layer 31, the environmental conditions described above, and the like. However, for example, it may be 6 days or more, 7 days or more, 8 days or more, 9 days or more, or 10 days or more. By being within the above period, it is easy to adjust the elongation stress (23° C.) of the adhesive layer 31 to 0.9 N/mm 2 or more by the step (b).
  • the adhesive layer is a layer formed using an adhesive composition.
  • a pressure-sensitive adhesive composition exhibits adhesiveness when it is attached to an adherend, and is called a pressure-sensitive adhesive.
  • the thickness of the pressure-sensitive adhesive layer is not particularly limited, but is preferably 10 ⁇ m or less, may be 8 ⁇ m or less, may be 7 ⁇ m or less, or may be 6 ⁇ m or less, and is usually 1 ⁇ m or more. Yes, and may be 3 ⁇ m or more.
  • the adhesive composition for forming the adhesive layer contains (meth)acrylic resin, rubber resin, urethane resin, ester resin, silicone resin, polyvinyl ether resin as a main component (base polymer). be able to.
  • a main component means a component containing 50% by weight or more of the total solid content of the pressure-sensitive adhesive composition.
  • a pressure-sensitive adhesive composition using a (meth)acrylic resin as a base polymer, which is excellent in transparency, weather resistance, heat resistance, etc. is suitable.
  • the adhesive composition may be active energy ray-curable or heat-curable.
  • (Meth)acrylic refers to at least one of acrylic and methacrylic.
  • Examples of the (meth)acrylic resin as the base polymer used in the pressure-sensitive adhesive composition include butyl (meth)acrylate, methyl (meth)acrylate, ethyl (meth)acrylate, isooctyl (meth)acrylate, Polymers or copolymers containing one or more of (meth)acrylic acid esters such as 2-ethylhexyl (meth)acrylate as monomers are preferably used.
  • a monomer having a reactive functional group with the base polymer.
  • monomers having a reactive functional group include (meth)acrylic acid, 2-hydroxypropyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, (meth)acrylamide, N,N-dimethylaminoethyl Monomers having a carboxyl group, a hydroxyl group, an amide group, an amino group, an epoxy group, etc., such as (meth)acrylate and glycidyl (meth)acrylate, can be mentioned.
  • the glass transition temperature of the (meth)acrylic resin contained in the pressure-sensitive adhesive composition is preferably ⁇ 30° C. or lower, more preferably ⁇ 35° C. or lower, and is usually ⁇ 50° C. or higher, It may be -45°C or higher.
  • the glass transition temperature can be measured by the method described in Examples below.
  • the adhesive composition may contain only the above base polymer, but usually further contains a cross-linking agent.
  • cross-linking agents include those that are divalent or higher metal ions that form carboxylic acid metal salts and the like with carboxyl groups; polyamine compounds that form amide bonds and the like with carboxyl groups. polyepoxy compounds and polyols that form an ester bond or the like with a carboxyl group; and isocyanate compounds that form an amide bond or the like with a carboxyl group. Among them, isocyanate compounds are preferred.
  • An isocyanate compound is a compound having at least two isocyanato groups (--NCO) in the molecule.
  • isocyanate compounds include hexamethylene diisocyanate, isophorone diisocyanate, tolylene diisocyanate, chlorophenylene diisocyanate, diphenylmethane diisocyanate, hydrogenated diphenylmethane diisocyanate, xylylene diisocyanate, hydrogenated xylylene diisocyanate, polymethylene polyphenyl isocyanate, naphthalene diisocyanate, tri phenylmethane triisocyanate and the like.
  • Isocyanate compounds include polyhydric alcohol compound adducts (adducts) of the above-described compounds (e.g., adducts with glycerol, trimethylolpropane, etc.), isocyanurates, burette-type compounds, polyether polyols, polyester polyols, and acrylic polyols. , polybutadiene polyol, polyisoprene polyol, etc., a urethane prepolymer type isocyanate compound, and a blocked isocyanate compound obtained by blocking the isocyanato group of an organic polyvalent isocyanate compound.
  • the content of the isocyanate compound is 0.1 parts by mass or more, may be 1 part by mass or more, or may be 3 parts by mass or more with respect to 100 parts by mass of the base polymer (especially (meth)acrylic resin). Also, it may be 10 parts by mass or less, may be 8 parts by mass or less, or may be 6 parts by mass or less.
  • the surface-treated film has a substrate film and a surface-treated layer formed on the surface of the substrate film.
  • the surface treatment layer 22 may be a part of the base film 21 and may be a surface layer portion of the base film 21, or may be a layer separate from the base film 21 laminated on the base film 21. good.
  • the surface treatment layer 22 is a layer separate from the base film 21, it is preferable that the base film 21 and the surface treatment layer 22 are in direct contact with each other.
  • the resin film described as the material used for the protective film described later can be used.
  • the surface treatment layer can be one or more selected from the group consisting of an antireflection layer, an antiglare layer, a hard coat layer, and an antifouling layer.
  • the surface treatment layer may be a laminate of an antiglare hard coat layer, an antireflection layer and an antifouling layer.
  • the surface treatment layer may be a coating layer formed by applying a coating liquid to the surface of the substrate film, or may be a film layer formed by chemical vapor deposition or physical vapor deposition.
  • the antireflection layer has the function of suppressing the reflection of external light.
  • the surface-treated film of the composite polarizing plate has an antireflection layer, it is possible to suppress a decrease in contrast due to reflection of external light.
  • the antireflection layer is, for example, one in which the surface treatment layer is an uneven pattern structure portion on the surface of the base film, and the period of the unevenness is controlled to the wavelength of visible light or less (base film having a moth-eye structure on the surface);
  • Examples include those in which the surface-treated layer is a fine concavo-convex pattern formed on the surface of the substrate film by applying a composition or the like; and those in which the surface-treated layer has a single layer or multiple layers with an adjusted refractive index.
  • the antireflection layer is preferably a thin film whose thickness and refractive index are strictly controlled, or a laminate of two or more thin films.
  • a thin film refers to a film having a thickness of 1 ⁇ m or less.
  • the antireflection layer can be configured to exhibit an antireflection function by canceling out the reversed phases of the incident light and the reflected light using the interference effect of light.
  • the wavelength region of visible light that exhibits the antireflection function is, for example, 380 to 780 nm, and the wavelength region with particularly high luminosity is in the range of 450 to 650 nm. It is preferable to design the antireflection layer so that The thickness of the antireflection layer is preferably 100 nm to 350 nm, more preferably 150 nm to 300 nm.
  • an antireflection layer based on the interference effect of light as a means for improving the interference effect, for example, there is a method of increasing the refractive index difference between the antireflection layer and the antiglare layer described later.
  • a multilayer antireflection layer having a structure in which 2 to 15 thin films (thin films whose thickness and refractive index are strictly controlled) are laminated by forming multiple layers of components with different refractive indices with a predetermined thickness, , the degree of freedom in the optical design of the antireflection layer increases, the antireflection effect can be further improved, and the spectral reflection characteristics can be made uniform (flat) in the visible light region.
  • each layer is generally formed by dry methods such as vacuum deposition, sputtering, and CVD (chemical vapor deposition).
  • CVD chemical vapor deposition
  • the antireflection layer one in which a low refractive index layer and a high refractive index layer are alternately laminated is preferably used.
  • the high refractive index layers or the low refractive index layers may not have the same refractive index, but if they are made of the same material and have the same refractive index, the material cost and film formation cost can be suppressed. preferred from
  • Materials constituting the low refractive index layer include silicon dioxide (SiO 2 ), silicon oxynitride (SiON), gallium oxide (Ga 2 O 3 ), aluminum oxide (Al 2 O 3 ), lanthanum oxide (La 2 O 3 ), lanthanum fluoride (LaF 3 ), magnesium fluoride (MgF 2 ), sodium aluminum fluoride (Na 3 AlF 6 ), and the like.
  • silicon dioxide (SiO 2 ) is most preferable from the viewpoints of low refractive index, no absorption in the visible light region, high film strength, and the like.
  • Materials constituting the high refractive index layer include niobium pentoxide (Nb 2 O 5 ), titanium dioxide (TiO 2 ), zirconium dioxide (ZrO 2 ), tantalum pentoxide (Ta 2 O 5 ), silicon oxynitride (SiON ), silicon nitride (Si 3 N 4 ) and silicon niobium oxide (SiNbO).
  • niobium pentoxide (Nb 2 O 5 ) or titanium dioxide (TiO 2 ) is more preferable from the viewpoint of high refractive index and high film strength.
  • Niobium (Nb 2 O 5 ) is most preferred.
  • the refractive index can be changed to some extent by controlling the composition ratio of the constituent elements to deviate from the stoichiometric composition ratio, or by controlling the film density and forming the film.
  • Materials constituting the low-reflectance layer and the high-reflectance layer are not limited to the above compounds as long as they satisfy the above-described refractive index conditions. Moreover, unavoidable impurities may be contained.
  • the arithmetic mean roughness Ra of the surface of the base film on the side where the antireflection layer is formed is 1.5 nm or less. It is preferably 1.0 nm or less, and more preferably 1.0 nm or less.
  • the arithmetic mean roughness Ra may be 0.00 nm or more, and may be 0.05 nm or more.
  • the arithmetic mean roughness Ra is obtained from an observation image of 1 ⁇ m square using an atomic force microscope (AFM).
  • the antiglare layer can have functions such as improving visibility, suppressing reflection of external light, and reducing moire (interference fringes).
  • the antiglare layer can have a fine uneven shape on the surface.
  • the fine irregularities can be formed by adding a filler or by finely embossing the surface.
  • the antiglare layer may be, for example, an antiglare hard coat layer formed by dispersing fine particles in a coating liquid containing a curable resin for forming a hard coat layer, which will be described later.
  • Fine particles dispersed in the coating liquid include various metal oxide fine particles such as silica, alumina, titania, zirconia, calcium oxide, tin oxide, indium oxide, cadmium oxide, and antimony oxide; glass fine particles; polymethyl methacrylate, polystyrene, polyurethane, Crosslinked or uncrosslinked organic fine particles made of various transparent polymers such as acryl-styrene copolymers, benzoguanamine, melamine, and polycarbonate; and transparent particles such as silicone fine particles can be used without particular limitation.
  • fine-particles can be used by selecting suitably 1 type(s) or 2 or more types.
  • fine particles having a refractive index higher than that of the curable resin contained in the coating liquid are preferable, and organic fine particles having a refractive index of 1.5 or more such as styrene beads (refractive index 1.59) are preferable.
  • the fine particles preferably have an average particle size of 1 to 10 ⁇ m, more preferably 2 to 5 ⁇ m.
  • the proportion of the fine particles is not particularly limited, it is preferably 6 to 20 parts by weight with respect to 100 parts by weight of the matrix resin.
  • the coating liquid for forming the antiglare layer may contain a thixotropic agent (silica, mica, etc. having a particle size of 0.1 ⁇ m or less). This makes it possible to easily form a fine concave-convex structure with protruding particles.
  • a thixotropic agent sica, mica, etc. having a particle size of 0.1 ⁇ m or less. This makes it possible to easily form a fine concave-convex structure with protruding particles.
  • the hard coat layer has the function of improving the surface hardness of the base film and can improve the scratch resistance of the surface.
  • the surface hardness of the surface treatment layer side of the surface treatment film is, for example, HB or more, may be F or more, may be H or more, or may be 2H or more. may be 3H or more.
  • the pencil hardness can be measured according to JIS K 5600-5-4:1999, as described in Examples below.
  • the hard coat layer can be formed, for example, by applying a coating liquid of a composition containing a curable resin onto the base film.
  • the coating liquid may contain additives such as a leveling agent, a thixotropic agent, and an antistatic agent in addition to the curable resin.
  • curable resins include thermosetting resins, ultraviolet curable resins, and electron beam curable resins.
  • curable resins include polyester resins, acrylic resins, urethane resins, acrylic urethane resins, amide resins, silicone resins, silicate resins, epoxy resins, melamine resins, oxetane resins, and acrylic urethane.
  • Various resins, such as system resin, are mentioned. One or more of these curable resins can be appropriately selected and used.
  • the curable resins are (meth)acrylic resins, (meth)acrylic urethane resins, and epoxy resins because they have high hardness, can be cured by ultraviolet irradiation, and are excellent in productivity.
  • (meth)acrylic urethane resins are preferred.
  • UV-curable resins include UV-curable monomers, oligomers, polymers, and the like.
  • UV-curable resins preferably used include, for example, those having UV-polymerizable functional groups, among which those containing (meth)acrylic monomers or oligomers having two or more, particularly 3 to 6, functional groups as components. mentioned.
  • the thickness of the hard coat layer is not particularly limited, it is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, in order to achieve high hardness. Considering ease of formation by coating, the thickness of the hard coat layer is preferably 15 ⁇ m or less, more preferably 12 ⁇ m or less, and even more preferably 10 ⁇ m or less.
  • the arithmetic mean roughness of the hard coat layer is the arithmetic mean roughness of the surface of the base film on which the hard coat layer is formed.
  • the arithmetic mean roughness Ra is obtained from an observation image of 1 ⁇ m square using an atomic force microscope (AFM).
  • the antifouling layer can impart functions such as water repellency, oil repellency, sweat resistance, and antifouling properties to the surface-treated film.
  • the antifouling layer can contain antifouling agents such as fluorine-containing organic compounds such as fluorocarbons, perfluorosilanes, and polymeric compounds thereof.
  • the polarizing element is an absorbing polarizing film that has the property of absorbing linearly polarized light with a plane of vibration parallel to its absorption axis and transmitting linearly polarized light with a plane of vibration perpendicular to the absorption axis (parallel to the transmission axis).
  • the polarizing element has a polyvinyl alcohol-based resin layer (hereinafter sometimes referred to as a "PVA-based resin layer”) with a dichroic dye adsorbed and oriented.
  • a known polarizing element can be used.
  • a polarizing element a stretched film obtained by dyeing a polyvinyl alcohol-based resin film (hereinafter sometimes referred to as a "PVA-based resin film”) with a dichroic dye and uniaxially stretching the film;
  • a laminate film having a coating layer formed by applying a coating liquid containing a polyvinyl alcohol resin (hereinafter sometimes referred to as "PVA resin”) is used, and the coating layer is dyed with a dichroic dye to obtain a laminate film.
  • PVA-based resin is obtained by saponifying polyvinyl acetate-based resin.
  • Polyvinyl acetate-based resins include polyvinyl acetate, which is a homopolymer of vinyl acetate, and copolymers of vinyl acetate with other monomers copolymerizable therewith.
  • Other copolymerizable monomers include, for example, unsaturated carboxylic acids, olefins such as ethylene, vinyl ethers, unsaturated sulfonic acids and the like.
  • the degree of saponification of the PVA-based resin is preferably 85 mol% or more, more preferably 90 mol% or more, and still more preferably 99 mol% or more and 100 mol% or less.
  • the degree of polymerization of the PVA-based resin is, for example, 1000 or more and 10000 or less, preferably 1500 or more and 5000 or less.
  • the PVA-based resin may be modified, for example, aldehyde-modified polyvinyl formal, polyvinyl acetal, polyvinyl butyral, or the like.
  • Iodine or dichroic dyes are examples of dichroic dyes that are adsorbed and oriented on the PVA-based resin layer.
  • the dichroic dye is iodine.
  • Dichroic dyes include Red BR, Red LR, Red R, Pink LB, Rubin BL, Bordeaux GS, Sky Blue LG, Lemon Yellow, Blue BR, Blue 2R, Navy RY, Green LG, Violet LB, Violet B, Black H, Black B, Black GSP, Yellow 3G, Yellow R, Orange LR, Orange 3R, Scarlet GL, Scarlet KGL, Congo Red, Brilliant Violet BK, Supra Blue G, Supra Blue GL, Supra Orange GL, Direct Sky Blue, Direct Fast Orange S, Fast Black, and the like.
  • the thickness of the polarizing element is preferably 3 ⁇ m or more and 35 ⁇ m or less, more preferably 4 ⁇ m or more and 30 ⁇ m or less, and still more preferably 5 ⁇ m or more and 25 ⁇ m or less.
  • the thickness of the polarizing element is 35 ⁇ m or less, for example, it is possible to suppress the influence of the polyene conversion of the PVA-based resin on the deterioration of the optical properties in a high-temperature environment.
  • the thickness of the polarizing element is 3 ⁇ m or more, it becomes easy to achieve the desired optical characteristics.
  • the manufacturing method of the polarizing element is not particularly limited, but a method in which a pre-rolled PVA-based resin film is sent out and subjected to stretching, dyeing, cross-linking, etc. (hereinafter referred to as "manufacturing method 1"); A method comprising a step of applying a coating liquid containing a PVA-based resin onto a substrate film to form a PVA-based resin layer as a coating layer, and stretching the obtained laminate (hereinafter referred to as "manufacturing method 2" ) are typical.
  • Production method 1 includes a step of uniaxially stretching a PVA-based resin film, a step of dyeing the PVA-based resin film with a dichroic dye such as iodine to adsorb the dichroic dye, and a PVA system to which the dichroic dye is adsorbed. It can be produced through a step of treating the resin film with an aqueous boric acid solution and a step of washing with water after the treatment with the aqueous boric acid solution.
  • a dichroic dye such as iodine to adsorb the dichroic dye
  • the swelling process is a treatment process in which the PVA-based resin film is immersed in a swelling bath.
  • the swelling step can remove stains, blocking agents, and the like on the surface of the PVA-based resin film, and swelling the PVA-based resin film can suppress uneven dyeing.
  • a medium containing water as a main component such as water, distilled water, or pure water, is usually used for the swelling bath.
  • Surfactants, alcohols and the like may be appropriately added to the swelling bath according to conventional methods.
  • Potassium iodide may be used in the swelling bath from the viewpoint of controlling the potassium content of the polarizing element. In this case, the concentration of potassium iodide in the swelling bath should be 1.5% by mass or less. It is preferably 1.0% by mass or less, more preferably 0.5% by mass or less.
  • the temperature of the swelling bath is preferably 10°C or higher and 60°C or lower, more preferably 15°C or higher and 45°C or lower, and even more preferably 18°C or higher and 30°C or lower.
  • the immersion time in the swelling bath cannot be unconditionally determined because the degree of swelling of the PVA-based resin film is affected by the temperature of the swelling bath, but it is preferably 5 seconds or more and 300 seconds or less, and 10 seconds or more and 200 seconds or less. and more preferably 20 seconds or more and 100 seconds or less.
  • the swelling step may be performed only once, or may be performed multiple times as necessary.
  • the dyeing process is a treatment process in which the PVA-based resin film is immersed in a treatment bath (dyeing bath) containing a dichroic dye, and the dichroic dye such as iodine can be adsorbed and oriented on the PVA-based resin film.
  • the dyeing bath is a dyeing solution containing a dichroic dye, preferably an iodine solution.
  • the iodine solution is preferably an aqueous iodine solution, and preferably contains iodine and iodide as a dissolution aid.
  • iodides examples include potassium iodide, lithium iodide, sodium iodide, zinc iodide, aluminum iodide, lead iodide, copper iodide, barium iodide, calcium iodide, tin iodide, and titanium iodide. mentioned. Among these, potassium iodide is preferable from the viewpoint of controlling the content of potassium in the polarizing element.
  • the concentration of iodine in the iodine solution is preferably 0.01% by mass or more and 1% by mass or less, more preferably 0.02% by mass or more and 0.5% by mass or less.
  • the concentration of iodide in the iodine solution is preferably 0.01% by mass or more and 10% by mass or less, more preferably 0.05% by mass or more and 5% by mass or less, and 0.1% by mass or more and 3 % by mass or less is more preferable.
  • the temperature of the dyeing bath is preferably 10°C or higher and 50°C or lower, more preferably 15°C or higher and 45°C or lower, and even more preferably 18°C or higher and 30°C or lower.
  • the immersion time in the dyeing bath cannot be unconditionally determined because the degree of dyeing of the PVA-based resin film is affected by the temperature of the dyeing bath, but it is preferably 10 seconds or more and 300 seconds or less, and 20 seconds or more and 240 seconds or less. is more preferable.
  • the dyeing step may be performed only once, or may be performed multiple times as necessary.
  • the cross-linking step is a treatment step in which the PVA-based resin film dyed in the dyeing step is immersed in a treatment bath (cross-linking bath) containing a boron compound.
  • a treatment bath containing a boron compound.
  • dye molecules can be adsorbed on the crosslinked structure.
  • Boron compounds include, for example, boric acid, borates, and borax.
  • the cross-linking bath is generally an aqueous solution, but may be a mixed solution of an organic solvent miscible with water and water.
  • the cross-linking bath preferably contains potassium iodide from the viewpoint of controlling the potassium content in the polarizing element.
  • the concentration of the boron compound in the cross-linking bath is preferably 1% by mass or more and 15% by mass or less, more preferably 1.5% by mass or more and 10% by mass or less, and 2% by mass or more and 5% by mass or less. It is more preferable to have When potassium iodide is used in the cross-linking bath, the concentration of potassium iodide in the cross-linking bath is preferably 1% by mass or more and 15% by mass or less, and is preferably 1.5% by mass or more and 10% by mass or less. More preferably, it is 2% by mass or more and 5% by mass or less.
  • the temperature of the cross-linking bath is preferably 20°C or higher and 70°C or lower, more preferably 30°C or higher and 60°C or lower.
  • the immersion time in the cross-linking bath cannot be unconditionally determined because the degree of cross-linking of the PVA-based resin film is affected by the temperature of the cross-linking bath, but it is preferably 5 seconds or more and 300 seconds or less, and 10 seconds or more and 200 seconds or less. is more preferable.
  • the cross-linking step may be performed only once, or may be performed multiple times as necessary.
  • the stretching step is a processing step of stretching the PVA-based resin film in at least one direction to a predetermined magnification.
  • a PVA-based resin film is uniaxially stretched in the transport direction (longitudinal direction).
  • the stretching method is not particularly limited, and both wet stretching and dry stretching can be employed.
  • the stretching step may be performed only once, or may be performed multiple times as necessary.
  • the stretching step may be performed at any stage in the production of the polarizing element.
  • the stretching bath preferably contains potassium iodide from the viewpoint of controlling the potassium content in the polarizing element.
  • concentration of potassium iodide in the drawing bath is preferably 1% by mass or more and 15% by mass or less, more preferably 2% by mass or more and 10% by mass or less. , 3% by mass or more and 6% by mass or less.
  • the treatment bath (stretching bath) can contain a boron compound from the viewpoint of suppressing film breakage during stretching.
  • the concentration of the boron compound in the drawing bath is preferably 1% by mass or more and 15% by mass or less, more preferably 1.5% by mass or more and 10% by mass or less, and 2% by mass. It is more preferable to be 5% by mass or less.
  • the temperature of the drawing bath is preferably 25° C. or higher and 80° C. or lower, more preferably 40° C. or higher and 80° C. or lower, further preferably 50° C. or higher and 75° C. or lower, and 65° C. or higher and 75° C. or lower. is particularly preferred.
  • the immersion time in the stretching bath cannot be unconditionally determined because the degree of stretching of the PVA-based resin film is affected by the temperature of the stretching bath. is more preferable.
  • the stretching treatment in the wet stretching method may be performed together with one or more of the swelling process, dyeing process, cross-linking process and washing process.
  • Examples of the dry drawing method include a roll-to-roll drawing method, a heating roll drawing method, a compression drawing method, and the like.
  • the dry stretching method may be applied together with the drying process.
  • the total draw ratio (cumulative draw ratio) applied to the PVA-based resin film can be appropriately set according to the purpose, but it is preferably 2 to 7 times, and 3 to 6.8 times. is more preferable, and more preferably 3.5 times or more and 6.5 times or less.
  • the washing process is a treatment process in which the PVA-based resin film is immersed in a washing bath, and foreign matter remaining on the surface of the PVA-based resin film can be removed.
  • a medium containing water as a main component such as water, distilled water, or pure water, is usually used.
  • potassium iodide in the cleaning bath.
  • the concentration of potassium iodide in the cleaning bath is 1% by mass or more and 10% by mass. is preferably 1.5% by mass or more and 4% by mass or less, more preferably 1.8% by mass or more and 3.8% by mass or less.
  • the temperature of the washing bath is preferably 5°C or higher and 50°C or lower, more preferably 10°C or higher and 40°C or lower, and even more preferably 15°C or higher and 30°C or lower.
  • the immersion time in the cleaning bath cannot be unconditionally determined because the degree of cleaning of the PVA-based resin film is affected by the temperature of the cleaning bath. and more preferably 3 seconds or more and 20 seconds or less.
  • the washing step may be performed only once, or may be performed multiple times as necessary.
  • the drying process is a process of drying the PVA-based resin film washed in the washing process to obtain a polarizing element. Drying is performed by any appropriate method, such as natural drying, air drying, and heat drying.
  • Production method 2 includes a step of applying a coating liquid containing a PVA-based resin onto a base film, a step of uniaxially stretching the obtained laminated film, and a PVA-based resin layer of the uniaxially stretched laminated film with a dichroic dye. It can be produced through a step of dyeing to adsorb a polarizing element, a step of treating a film on which a dichroic dye is adsorbed with an aqueous boric acid solution, and a step of washing with water after treatment with an aqueous boric acid solution.
  • the base film used to form the polarizing element may be used as a protective film for the polarizing element. If necessary, the base film may be peeled off from the polarizing element.
  • a polarizing plate includes at least a polarizing element.
  • the polarizing plate may have a protective film on one side or both sides of the polarizing element.
  • the types and/or thicknesses of the protective films may be the same or different.
  • the polarizing element and the protective film are preferably laminated via a bonding layer (adhesive layer or adhesive layer).
  • the lamination layer for laminating the polarizing element and the protective film is preferably an adhesive layer, and is preferably a cured layer of a water-based adhesive or an active energy ray adhesive, which will be described later.
  • the polarizing plate may be either a linear polarizing plate or a circular polarizing plate. If the polarizer is a circular polarizer, the polarizer has a ⁇ /4 waveplate or the like.
  • One or two or more retardation layers may be included in the polarizing plate, and the retardation layers can be laminated via bonding layers.
  • the protective film is preferably excellent in transparency, mechanical strength, thermal stability, moisture shielding property, stability of retardation value, and the like.
  • a resin film is preferably used as the protective film.
  • resin materials constituting the protective film include methyl (meth)acrylate resins, polyolefin resins, cyclic olefin resins, polyvinyl chloride resins, cellulose resins, styrene resins, acrylonitrile-butadiene-styrene resins.
  • Resins acrylonitrile/styrene resins, polyvinyl acetate resins, polyvinylidene chloride resins, polyamide resins, polyacetal resins, polycarbonate resins, modified polyphenylene ether resins, polybutylene terephthalate resins, polyethylene terephthalate resins , polysulfone-based resins, polyethersulfone-based resins, polyarylate-based resins, polyamideimide-based resins, polyimide-based resins, and combinations of two or more of these.
  • polystyrene resins can be used after being subjected to any appropriate polymer modification, and the polymer modification includes, for example, copolymerization, cross-linking, molecular terminal modification, stereoregularity control, and reaction between different polymers. Modifications, such as mixing, including cases.
  • the cellulosic resin can be an organic acid ester or mixed organic acid ester of cellulose in which some or all of the hydrogen atoms in the hydroxyl groups of cellulose are substituted with acetyl groups, propionyl groups and/or butyryl groups.
  • examples thereof include cellulose acetate, propionate, butyrate, and mixed esters thereof.
  • triacetyl cellulose, diacetyl cellulose, cellulose acylate, cellulose acetate propionate, cellulose acetate butyrate and the like are preferable.
  • Cyclic olefin-based resin is a general term for resins polymerized with cyclic olefins as polymerization units, and is described, for example, in JP-A-1-240517, JP-A-3-14882, and JP-A-3-122137. resins.
  • the cyclic olefin-based resin is preferably a norbornene-based resin.
  • ring-opening (co)polymers of cyclic olefins include ring-opening (co)polymers of cyclic olefins, addition polymers of cyclic olefins, cyclic olefins and ⁇ -olefins such as ethylene and propylene, and their copolymers (typically random copolymers), and graft polymers obtained by modifying these with unsaturated carboxylic acids or derivatives thereof, and hydrides thereof.
  • cyclic olefins include norbornene-based monomers.
  • additives may be added to the resin material that constitutes the protective film as long as the transparency is not impaired.
  • Additives such as antioxidants, ultraviolet absorbers, antistatic agents, lubricants, nucleating agents, antifogging agents, antiblocking agents, retardation reducing agents, stabilizers, processing aids, plasticizers, impact resistance aids , matting agents, antibacterial agents, antifungal agents, and the like.
  • a plurality of types of these additives may be used in combination.
  • the thickness of the protective film is usually 1 ⁇ m or more and 100 ⁇ m or less, but from the viewpoint of strength, handleability, etc., it is preferably 5 ⁇ m or more and 60 ⁇ m or less, more preferably 10 ⁇ m or more and 55 ⁇ m or less, and 15 ⁇ m or more and 50 ⁇ m or less. is more preferred.
  • the protective film may have other optical functions at the same time, and may be formed into a laminated structure in which multiple layers are laminated.
  • the film thickness of the protective film is preferably thin from the viewpoint of optical properties, but if it is too thin, the strength will decrease and the processability will be poor.
  • a suitable film thickness is 5 to 100 ⁇ m, preferably 10 to 80 ⁇ m, more preferably 15 to 70 ⁇ m.
  • the protective film may have a single layer structure or a multilayer structure.
  • the protective film may have an antistatic layer on one side or both sides.
  • the protective film may have a retardation function for the purpose of viewing angle compensation, etc.
  • the film itself may have a retardation function, or may have a separate retardation layer, It may be a combination of both.
  • the protective film having a retardation function may be laminated via a lamination layer (adhesive layer or adhesive layer) via another protective film laminated to the polarizing element.
  • the bonding layer is an adhesive layer (hereinafter referred to as "adhesive layer [bonding layer]”) or an adhesive layer.
  • the bonding layer in the case of the adhesive layer [bonding layer] and the other adhesive layer for bonding the composite polarizing plate to the image display element are obtained by bonding the surface-treated film and the polarizing plate described above.
  • the one described in the pressure-sensitive adhesive layer for bonding can be mentioned.
  • the thickness of the pressure-sensitive adhesive layer [bonding layer] and the other pressure-sensitive adhesive layer are each independently preferably 1 ⁇ m or more and 200 ⁇ m or less, more preferably 2 ⁇ m or more and 100 ⁇ m or less, and 2 ⁇ m or more and 80 ⁇ m or less. is more preferable, and it is particularly preferable to be 3 ⁇ m or more and 50 ⁇ m or less.
  • any appropriate adhesive can be used as the adhesive that constitutes the adhesive layer.
  • a water-based adhesive, a solvent-based adhesive, an active energy ray-curable adhesive, or the like can be used, but a water-based adhesive is preferable.
  • the thickness of the adhesive when applied can be set to any appropriate value. For example, it is set so that an adhesive layer having a desired thickness is obtained after curing or after heating (drying).
  • the thickness of the adhesive layer is preferably 0.01 ⁇ m or more and 7 ⁇ m or less, more preferably 0.01 ⁇ m or more and 5 ⁇ m or less, still more preferably 0.01 ⁇ m or more and 2 ⁇ m or less, and most preferably 0.01 ⁇ m or more and 1 ⁇ m. It is below.
  • a known water-based adhesive can be used as the water-based adhesive.
  • a water-based adhesive containing a PVA-based resin (hereinafter sometimes referred to as "PVA-based adhesive") is preferably used.
  • the average degree of polymerization of the PVA-based resin contained in the water-based adhesive is preferably 100-5500, more preferably 1000-4500, from the viewpoint of adhesiveness.
  • the average saponification degree of the PVA-based resin is preferably 85 mol % to 100 mol %, more preferably 90 mol % to 100 mol %, from the viewpoint of adhesiveness.
  • the PVA-based resin contained in the PVA-based adhesive used when bonding the polarizing element and the protective film preferably contains an acetoacetyl group. This is because the adhesiveness between the protective film and the PVA-based resin layer constituting the polarizing element is excellent, and the durability is excellent.
  • a PVA-based resin containing an acetoacetyl group can be obtained, for example, by reacting a PVA-based resin with diketene by any method.
  • the degree of modification of the acetoacetyl group of the PVA-based resin containing the acetoacetyl group is typically 0.1 mol % or more, preferably 0.1 mol % to 20 mol %.
  • the concentration of the PVA-based resin in the PVA-based adhesive is preferably 0.1 wt% to 15 wt%, more preferably 0.5 wt% to 10 wt%.
  • the PVA-based adhesive preferably contains one or more of glyoxal, glyoxylate, and methylolmelamine as a cross-linking agent. It is preferable to contain at least one, and it is particularly preferable to contain glyoxal.
  • the PVA-based adhesive may contain an organic solvent.
  • the organic solvent is preferably an alcohol, and among the alcohols, methanol or ethanol is preferable.
  • the PVA-based adhesive further contains urea compounds such as urea, urea derivatives, thiourea, and thiourea derivatives; reducing agents such as ascorbic acid, erythorbic acid, thiosulfuric acid, and sulfurous acid; and dicarboxylic acids such as phthalic acid; ammonium compounds such as ammonium sulfate, ammonium chloride, ammonium carbonate, and ammonium fluoride; dextrins such as ⁇ -cyclodextrin, ⁇ -cyclodextrin, and ⁇ -cyclodextrin; A blocked isocyanate compound; a nitroxy radical such as an N-oxyl compound; a compound having a nitroxide group;
  • Active energy ray-curable adhesives are adhesives that are cured by irradiation with active energy rays such as ultraviolet rays.
  • adhesives containing a polymerizable compound and a photopolymerization initiator adhesives containing a photoreactive resin , an adhesive containing a binder resin and a photoreactive cross-linking agent, and the like.
  • the polymerizable compound include photopolymerizable monomers such as photocurable epoxy-based monomers, photocurable (meth)acrylic monomers, and photocurable urethane-based monomers, and oligomers derived from these monomers.
  • the photopolymerization initiator include compounds containing substances that generate active species such as neutral radicals, anion radicals, and cation radicals upon irradiation with active energy rays such as ultraviolet rays.
  • the release film is provided so as to be peelable from another pressure-sensitive adhesive layer for bonding the composite polarizing plate to the image display element, and covers and protects the surface of the other pressure-sensitive adhesive layer.
  • the release film has a substrate layer and a release treatment layer.
  • the base layer may be a resin film.
  • the resin film can be formed, for example, from the resin material used for forming the protective film described above.
  • the release treatment layer may be any known release treatment layer, and examples thereof include a layer formed by coating a base material layer with a release agent such as a fluorine compound or a silicone compound.
  • the protective film may contain a substrate layer and an adhesive layer, and may be a self-adhesive film.
  • the base layer may be a resin film, and the base layer can be formed from, for example, the resin material used to form the protective film described above.
  • the pressure-sensitive adhesive layer include those described in the above-described pressure-sensitive adhesive layer [bonding layer].
  • the thermoplastic resin that constitutes the self-adhesive film include polypropylene-based resins and polyethylene-based resins.
  • the glass transition temperature (Tg) of the (meth)acrylic resin is measured using a differential scanning calorimeter (DSC) "EXSTAR DSC6000” manufactured by SII Nanotechnology Co., Ltd. under a nitrogen atmosphere, with a temperature range of -80 to 50. °C and a heating rate of 10°C/min.
  • DSC differential scanning calorimeter
  • a release film (polyethylene terephthalate film having a thickness of 38 ⁇ m with a release treatment layer) is attached to the surface of the adhesive layer (Y) side of the adhesive sheet (Y) formed using the adhesive composition described later.
  • a pressure-sensitive adhesive sheet with a double-sided release film having a pressure-sensitive adhesive layer (Y) with a thickness of 5 ⁇ m was heated at a temperature of 23° C. and a relative humidity of 50% RH. for 2 days, 3 days, 8 days, and 10 days.
  • JIS K 6854-2 1999 "Adhesive-Peeling adhesive strength test method-Part 2: 180 degree peel”
  • a peel test was performed at a grip movement speed of 300 mm / min, and the average peel force (unit: N / 25 mm) over a length of 60 mm excluding 30 mm of the grip part was obtained. and the adhesive strength of the pressure-sensitive adhesive layer (Y) between. Table 1 shows the results.
  • a polyvinyl alcohol-based resin film having a thickness of 75 ⁇ m made of polyvinyl alcohol having an average degree of polymerization of about 2,400 and a degree of saponification of 99.9 mol % or more is uniaxially stretched by a dry method to about 5 times, and further while maintaining a tensioned state. , immersed in pure water at a temperature of 60°C for 1 minute, and then immersed in an aqueous solution of iodine/potassium iodide/water at a weight ratio of 0.05/5/100 at a temperature of 28°C for 60 seconds.
  • ⁇ Preparation of water-based adhesive 50 g of a modified polyvinyl alcohol resin containing an acetoacetyl group (manufactured by Mitsubishi Chemical Corporation: Gohsenex Z-410) is dissolved in 950 g of pure water, heated at a temperature of 90° C. for 2 hours, cooled to room temperature, and a PVA solution is obtained. got This PVA solution, pure water, maleic acid, and glyoxal were mixed with a polyvinyl alcohol resin concentration of 3.0% by weight, a maleic acid concentration of 0.01% by weight, and a glyoxal concentration of 0.15% by weight. to obtain a water-based adhesive.
  • ⁇ Preparation of polarizing plate and polarizing plate with adhesive layer (X)> (Preparation of polarizing plate)
  • a cellulose acylate film “TD40” (manufactured by Fuji Film Co., Ltd.: thickness 40 ⁇ m) as a protective film was immersed in a 1.5 mol/L NaOH aqueous solution (saponification solution) kept at a temperature of 55° C. for 2 minutes. was washed with water. Thereafter, the film was immersed in a 0.05 mol/L sulfuric acid aqueous solution at a temperature of 25° C. for 30 seconds and then passed through a washing bath under running water for 30 seconds to neutralize the film. After that, draining with an air knife was repeated three times. After draining, the film was held in a drying zone at a temperature of 70° C. for 15 seconds and dried to prepare a saponified protective film.
  • the saponified protective film is laminated on both sides of the polarizing element prepared above via the water-based adhesive prepared above using a roll laminator, and dried at a temperature of 80 ° C. for 5 minutes to form a polarizing plate. got The water-based adhesive interposed between the polarizing element and the protective film was adjusted so that the thickness of the adhesive layer after drying was 100 nm on both sides.
  • a pressure-sensitive adhesive sheet (X) was prepared by forming a pressure-sensitive adhesive layer (X) having a thickness of 25 ⁇ m on a release film (polyethylene terephthalate film having a thickness of 38 ⁇ m with a release treatment layer).
  • the pressure-sensitive adhesive layer (X) side of the pressure-sensitive adhesive sheet (X) was laminated on one side of the polarizing plate obtained above to obtain a polarizing plate with the pressure-sensitive adhesive layer (X).
  • the bonding surface between the pressure-sensitive adhesive layer (X) and the polarizing plate was subjected to corona treatment.
  • the obtained polarizing plate with adhesive layer (X) had a layer structure of protective film/adhesive layer/polarizing element/adhesive layer/protective film/adhesive layer (X)/release film.
  • UV-curable urethane (meth)acrylate monomer (refractive index 1.51) 50 parts by weight, UV-curable (meth)acrylate monomer (refractive index 1.51) 50 parts by weight, average particle size 3.5 ⁇ m 14 parts by weight of methyl methacrylate-styrene copolymer beads (refractive index 1.55), 5 parts by weight of benzophenone-based photopolymerization initiator, and toluene were mixed with a solution having a solid content of 40% by weight. (refractive index: 1.49)) and dried at 120°C for 5 minutes.
  • curing treatment was performed by irradiating ultraviolet rays to prepare an antiglare hard-coated film in which an antiglare hard-coated layer having a concave-convex structure and a thickness of about 4 ⁇ m was formed on the base film.
  • the antiglare hard-coated film obtained above is introduced into a roll-to-roll type sputtering deposition apparatus, and the antiglare hard coat is applied while the film is running. After bombarding the layer formation surface (plasma treatment with Ar gas), a 5 nm SiOx layer (x ⁇ 2) is formed as an adhesion improving layer, and a 20 nm Nb 2 O 5 layer and a 35 nm layer are formed thereon.
  • a SiO 2 layer of 35 nm, a Nb 2 O 5 layer of 35 nm and a SiO 2 layer of 100 nm were sequentially deposited to form an antireflection layer having a four-layer structure and a thickness of 190 nm.
  • a fluorine-based resin was formed as an antifouling layer on the antireflection layer so as to have a thickness of 5 nm, thereby producing a surface-treated film.
  • the surface treatment layer of the surface treatment film had a laminated structure of an antiglare hard coat layer, an antireflection layer, and an antifouling layer.
  • the pressure-sensitive adhesive composition prepared above was applied to a release film (polyethylene terephthalate film having a thickness of 38 ⁇ m with a release treatment layer) to form a pressure-sensitive adhesive layer (Y) having a thickness of 5 ⁇ m to prepare a pressure-sensitive adhesive sheet (Y). bottom.
  • Example 1 Immediately after the adhesive sheet (Y) was prepared, the adhesive layer (Y) side of the adhesive sheet (Y) was laminated to the substrate film side surface of the surface treatment film prepared above. Two days after the preparation of the pressure-sensitive adhesive sheet (Y) (substantially after lamination of the pressure-sensitive adhesive sheet (Y) on the surface-treated film), the release film on the pressure-sensitive adhesive layer (Y) is peeled off, The polarizing plate side of the polarizing plate with the pressure-sensitive adhesive layer (X) was laminated on the exposed pressure-sensitive adhesive layer (Y) to obtain a laminate. The bonding surfaces of the surface-treated film, the pressure-sensitive adhesive layer (Y), and the polarizing plate with the pressure-sensitive adhesive layer (X) were subjected to corona treatment.
  • the steps of preparing the pressure-sensitive adhesive sheet (Y), laminating the pressure-sensitive adhesive sheet (Y), and obtaining the laminate were all performed under an environment of a temperature of 23° C. and a relative humidity of 50% RH.
  • the resulting laminate was stored for 6 days under an environment of 23° C. temperature and 50% RH relative humidity to obtain Composite Polarizing Plate (1).
  • Preparation of the pressure-sensitive adhesive sheet (Y) and lamination of the pressure-sensitive adhesive sheet (Y) were performed in a state where the stress at 800% elongation of the pressure-sensitive adhesive layer (Y) was 0.6 N/mm 2 or less based on the graph shown in FIG.
  • the step of obtaining a laminate was carried out in a state where the pressure-sensitive adhesive layer (Y) had a stress of 0.6 N/mm 2 at an elongation of 800%. Moreover, the stress at elongation of 800% at a temperature of 23° C. of the adhesive layer (Y) of the composite polarizing plate (1) was 1.1 N/mm 2 .
  • the layer structure of the composite polarizing plate (1) is: surface treatment film (surface treatment layer/base film)/adhesive layer (Y)/polarizing plate (protective film/adhesive layer/polarizing element/adhesive layer/protective film )/adhesive layer (X)/release film.
  • the composite polarizing plate (1) is observed using a microscope (VHX-5000, manufactured by Keyence Corporation), between the surface treatment film and the adhesive layer (Y), and between the adhesive layer (Y) and the polarizing plate. The number of air bubbles (the number per 1 m 2 of the composite polarizer) was counted. Further, the surface hardness and adhesive strength of the composite polarizing plate (1) were measured by the methods described above. Table 1 shows the results.
  • the step of obtaining the laminate was carried out in a state where the stress at 800% elongation of the pressure-sensitive adhesive layer (Y) was 1.1 N/mm 2 . Also, from the graph shown in FIG. 2, the stress at 800% elongation at a temperature of 23° C. of the adhesive layer (Y) of the composite polarizing plate (2) was 1.1 N/mm 2 . In the same procedure as in Example 1, the number of air bubbles (composite The number per 1 m 2 of the polarizing plate) was counted, and the surface hardness and adhesive strength were measured. Table 1 shows the results.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Organic Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Polarising Elements (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)

Abstract

Provided is a method for producing a composite polarizing plate capable of suppressing air bubbles from becoming entrapped between a polarizing plate and/or a surface-treated film and an adhesive layer. In the composite polarizing plate, the surface-treated film and the polarizing plate are laminated. The surface-treated film has a substrate film and a surface-treated layer formed on the surface of the substrate film. The polarizing plate includes at least a polarizing element. The method for producing a composite polarizing plate includes: step (a) for obtaining a laminate by bonding a surface-treated film and a polarizing plate through an adhesive layer having a stress of at most 0.8 N/mm2 at 800% elongation and step (b) for performing adjustment such that in the laminate, the stress of the adhesive layer at 800% elongation at a temperature of 23 °C becomes at least 0.9 N/mm2.

Description

複合偏光板の製造方法Manufacturing method of composite polarizing plate
 本発明は、複合偏光板の製造方法に関する。 The present invention relates to a method for manufacturing a composite polarizing plate.
 液晶表示装置(LCD)は、液晶テレビだけでなく、パソコン、携帯電話等のモバイル端末、及びカーナビ等の車載用途にも広く用いられている。通常、液晶表示装置は、偏光素子を含む直線偏光板を液晶セルの両側に貼合した液晶パネルを有し、バックライトからの光を液晶パネルで制御することにより画像等の表示を行っている。近年では、有機EL表示装置も液晶表示装置と同様に、テレビ、携帯電話等のモバイル端末、カーナビ等の車載用途に広く用いられている。有機EL表示装置では、外光が金属電極(陰極)で反射され鏡面のように視認されることを抑止するために、画像表示素子の視認側表面に円偏光板(偏光素子とλ/4板とを含む)が配置されることがある。 Liquid crystal display devices (LCDs) are widely used not only for liquid crystal televisions, but also for mobile terminals such as personal computers and mobile phones, and in-vehicle applications such as car navigation systems. Generally, a liquid crystal display device has a liquid crystal panel in which a linear polarizing plate including a polarizing element is attached to both sides of a liquid crystal cell, and displays an image or the like by controlling light from a backlight with the liquid crystal panel. . In recent years, like liquid crystal display devices, organic EL display devices have also been widely used for mobile terminals such as televisions and mobile phones, and in-vehicle applications such as car navigation systems. In an organic EL display device, a circular polarizing plate (a polarizing element and a λ/4 plate) is provided on the viewing side surface of the image display element in order to prevent external light from being reflected by the metal electrode (cathode) and viewed as a mirror surface. ) may be placed.
 液晶表示装置や有機EL表示装置等の表示装置では、視認性を向上させたり、傷つきを抑制したりするために、表面処理フィルムを用いることがある。外光の映り込みによる視認性の低下を抑制して視認性を向上するために、防眩性のハードコートフィルムを偏光素子に貼合した積層体を用いた表示装置が知られている(例えば、特許文献1等)。  In display devices such as liquid crystal display devices and organic EL display devices, surface treatment films are sometimes used in order to improve visibility and suppress scratches. Display devices using a laminate in which an antiglare hard-coated film is bonded to a polarizing element in order to suppress deterioration in visibility due to reflection of external light and improve visibility are known (for example, , Patent Document 1, etc.).
特開2011-81219号公報JP 2011-81219 A
 偏光素子を含む偏光板と表面処理フィルムとを積層した複合偏光板を製造する際に、粘着剤層を用いて偏光板と表面処理フィルムとを貼合することがある。複合偏光板の表面硬度を確保するために、上記粘着剤層として硬い(塑性変形しにくい)粘着剤層を用いることがある。硬い粘着剤層を用いて偏光板と表面処理フィルムとを貼合すると、偏光板及び/又は表面処理フィルムと粘着剤層との間に、気泡が混入することが見出された。 When manufacturing a composite polarizing plate in which a polarizing plate including a polarizing element and a surface-treated film are laminated, the polarizing plate and the surface-treated film are sometimes bonded together using an adhesive layer. In order to secure the surface hardness of the composite polarizing plate, a hard (hardly plastically deformable) adhesive layer may be used as the adhesive layer. It has been found that when a polarizing plate and a surface treatment film are laminated using a hard adhesive layer, air bubbles are mixed between the polarizing plate and/or the surface treatment film and the adhesive layer.
 本発明は、偏光板及び/又は表面処理フィルムと粘着剤層との間に混入する気泡を抑制することができる複合偏光板の製造方法の提供を目的とする。 An object of the present invention is to provide a method for producing a composite polarizing plate that can suppress air bubbles from entering between the polarizing plate and/or surface treatment film and the pressure-sensitive adhesive layer.
 本発明は、以下の複合偏光板の製造方法を提供する。
 〔1〕 表面処理フィルムと偏光板とが積層された複合偏光板の製造方法であって、
 前記表面処理フィルムは、基材フィルムと、前記基材フィルムの表面に形成された表面処理層とを有し、
 前記偏光板は、少なくとも偏光素子を含み、
 前記製造方法は、
  伸び800%での応力が0.8N/mm以下である状態の粘着剤層を介して、前記表面処理フィルムと前記偏光板とを貼合して積層体を得る工程(a)と、
  前記積層体において、前記粘着剤層の温度23℃における伸び800%での応力を0.9N/mm以上となるように調整する工程(b)と、を含む、複合偏光板の製造方法。
 〔2〕 前記工程(a)は、
  前記表面処理フィルムに前記粘着剤層を形成する工程(a1)と、
  前記表面処理フィルムに形成した前記粘着剤層上に前記偏光板を積層する工程(a2)と、を含む、〔1〕に記載の複合偏光板の製造方法。
 〔3〕 前記工程(a1)後6日以内に、前記工程(a2)を行う、〔2〕に記載の複合偏光板の製造方法。
 〔4〕 前記工程(b)は、前記積層体を保管する工程である、〔1〕~〔3〕のいずれかに記載の複合偏光板の製造方法。
 〔5〕 前記表面処理フィルムは、前記基材フィルムの片面に前記表面処理層を有し、 前記積層体は、前記表面処理フィルムの前記基材フィルム側に前記粘着剤層を有する、〔1〕~〔4〕のいずれかに記載の複合偏光板の製造方法。
 〔6〕 前記偏光板は、前記偏光素子の片面又は両面に保護フィルムを有する、〔1〕~〔5〕のいずれかに記載の複合偏光板の製造方法。
 〔7〕 前記粘着剤層の厚みは、10μm以下である、〔1〕~〔6〕のいずれかに記載の複合偏光板の製造方法。
 〔8〕 前記粘着剤層は、(メタ)アクリル系樹脂を含む粘着剤組成物を用いて形成され、
 前記(メタ)アクリル系樹脂のガラス転移温度は、-30℃以下である、〔1〕~〔7〕のいずれかに記載の複合偏光板の製造方法。
 〔9〕 前記表面処理層は、反射防止層、防眩層、ハードコート層、及び防汚層からなる群より選ばれる1種以上である、〔1〕~〔8〕のいずれかに記載の複合偏光板の製造方法。
The present invention provides the following method for manufacturing a composite polarizing plate.
[1] A method for manufacturing a composite polarizing plate in which a surface-treated film and a polarizing plate are laminated,
The surface-treated film has a base film and a surface-treated layer formed on the surface of the base film,
The polarizing plate includes at least a polarizing element,
The manufacturing method is
Step (a) of obtaining a laminate by bonding the surface-treated film and the polarizing plate via an adhesive layer having a stress of 0.8 N/mm 2 or less at 800% elongation;
A method for producing a composite polarizing plate, comprising the step (b) of adjusting the stress of the adhesive layer at 800% elongation at a temperature of 23° C. to 0.9 N/mm 2 or more in the laminate.
[2] The step (a) is
A step (a1) of forming the pressure-sensitive adhesive layer on the surface-treated film;
The method for producing a composite polarizing plate according to [1], comprising the step (a2) of laminating the polarizing plate on the pressure-sensitive adhesive layer formed on the surface-treated film.
[3] The method for producing a composite polarizing plate according to [2], wherein the step (a2) is performed within 6 days after the step (a1).
[4] The method for producing a composite polarizing plate according to any one of [1] to [3], wherein the step (b) is a step of storing the laminate.
[5] The surface-treated film has the surface-treated layer on one side of the base film, and the laminate has the pressure-sensitive adhesive layer on the base film side of the surface-treated film, [1] A method for producing a composite polarizing plate according to any one of [4].
[6] The method for producing a composite polarizing plate according to any one of [1] to [5], wherein the polarizing plate has a protective film on one or both sides of the polarizing element.
[7] The method for producing a composite polarizing plate according to any one of [1] to [6], wherein the pressure-sensitive adhesive layer has a thickness of 10 μm or less.
[8] The pressure-sensitive adhesive layer is formed using a pressure-sensitive adhesive composition containing a (meth)acrylic resin,
The method for producing a composite polarizing plate according to any one of [1] to [7], wherein the (meth)acrylic resin has a glass transition temperature of −30° C. or lower.
[9] The surface treatment layer according to any one of [1] to [8], wherein the surface treatment layer is one or more selected from the group consisting of an antireflection layer, an antiglare layer, a hard coat layer, and an antifouling layer. A method for manufacturing a composite polarizing plate.
 本発明の複合偏光板の製造方法によれば、偏光板及び/又は表面処理フィルムと粘着剤層との間に混入する気泡を抑制することができる。 According to the manufacturing method of the composite polarizing plate of the present invention, it is possible to suppress air bubbles from entering between the polarizing plate and/or the surface treatment film and the pressure-sensitive adhesive layer.
本発明の一実施形態に係る複合偏光板を模式的に示す断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is sectional drawing which shows typically the composite polarizing plate which concerns on one Embodiment of this invention. 実施例で作製した粘着剤層の伸びに対する応力を測定した結果を示すグラフである。4 is a graph showing the results of measurement of stress with respect to elongation of pressure-sensitive adhesive layers produced in Examples.
 以下、図面を参照しつつ本発明の実施形態を説明するが、本発明は以下の実施形態に限定されるものではない。 Embodiments of the present invention will be described below with reference to the drawings, but the present invention is not limited to the following embodiments.
 (複合偏光板)
 図1は、本発明の一実施形態に係る複合偏光板を模式的に示す断面図である。複合偏光板1は、表面処理フィルム20と偏光板10とが積層されている。複合偏光板1は、表面処理フィルム20と偏光板10との間に粘着剤層31を有する。複合偏光板1における粘着剤層31は、温度23℃における伸び800%での応力(以下、「伸び応力(23℃)」ということがある。)が0.9N/mm以上である。
(composite polarizing plate)
FIG. 1 is a cross-sectional view schematically showing a composite polarizing plate according to one embodiment of the invention. The composite polarizing plate 1 is formed by laminating a surface treatment film 20 and a polarizing plate 10 . Composite polarizing plate 1 has adhesive layer 31 between surface-treated film 20 and polarizing plate 10 . The adhesive layer 31 in the composite polarizing plate 1 has a stress of 800% elongation at a temperature of 23° C. (hereinafter sometimes referred to as “elongation stress (23° C.)”) of 0.9 N/mm 2 or more.
 表面処理フィルム20は、基材フィルム21と、基材フィルム21の表面に形成された表面処理層22を有する。複合偏光板1では、表面処理フィルム20の基材フィルム21の片面に表面処理層22を有し、表面処理フィルム20の基材フィルム21側が粘着剤層31に対向することが好ましい。表面処理層22は、反射防止層、防眩層、ハードコート層、及び防汚層からなる群より選ばれる1種以上であることができる。 The surface-treated film 20 has a base film 21 and a surface-treated layer 22 formed on the surface of the base film 21 . In the composite polarizing plate 1 , it is preferable that the surface treatment layer 22 is provided on one side of the base film 21 of the surface treatment film 20 and that the base film 21 side of the surface treatment film 20 faces the adhesive layer 31 . The surface treatment layer 22 can be one or more selected from the group consisting of an antireflection layer, an antiglare layer, a hard coat layer, and an antifouling layer.
 偏光板10は、少なくとも偏光素子11を含む。偏光板10は、偏光素子11の片面又は両面に保護フィルム13を有することが好ましい。偏光素子11と保護フィルム13とは、貼合層12(接着剤層又は粘着剤層)を介して積層されていてもよく、貼合層12は偏光素子11及び保護フィルム13に直接接していることが好ましい。 The polarizing plate 10 includes at least a polarizing element 11 . The polarizing plate 10 preferably has a protective film 13 on one side or both sides of the polarizing element 11 . The polarizing element 11 and the protective film 13 may be laminated via a bonding layer 12 (adhesive layer or adhesive layer), and the bonding layer 12 is in direct contact with the polarizing element 11 and the protective film 13. is preferred.
 複合偏光板1において、粘着剤層31は、表面処理フィルム20及び偏光板10に直接接している。複合偏光板1における粘着剤層31の伸び応力(23℃)は、0.9N/mm以上であり、1.0N/mm以上であってもよく、1.2N/mm以上であってもよく、1.3N/mm以上であってもよい。粘着剤層31の伸び応力(23℃)が上記の範囲であることにより、複合偏光板1の表面処理フィルム20側の表面の表面硬度を向上することができるため、複合偏光板1の表面の傷つきを抑制することができる。粘着剤層31の伸び応力(23℃)は、後述する実施例に記載の方法によって決定することができる。 In the composite polarizing plate 1 , the adhesive layer 31 is in direct contact with the surface treatment film 20 and the polarizing plate 10 . The elongation stress (23° C.) of the pressure-sensitive adhesive layer 31 in the composite polarizing plate 1 is 0.9 N/mm 2 or more, may be 1.0 N/mm 2 or more, or is 1.2 N/mm 2 or more. may be 1.3 N/mm 2 or more. When the elongation stress (23° C.) of the adhesive layer 31 is within the above range, the surface hardness of the surface of the composite polarizing plate 1 on the surface treatment film 20 side can be improved. It can prevent injuries. The elongation stress (23° C.) of the adhesive layer 31 can be determined by the method described in Examples below.
 複合偏光板1は、さらに、偏光板10側に、他の粘着剤層を有していてもよく、他の偏光板10とは反対側に、他の粘着剤層を被覆保護するための剥離フィルムを有していてもよい。他の粘着剤層は、例えば表示装置の画像表示素子に貼合するための貼合層である。
他の粘着剤層は、偏光板10に直接接して設けられていてもよく、偏光板10の表面処理フィルム20側とは反対側に配置された他の層を介して設けられていてもよい。
The composite polarizing plate 1 may further have another adhesive layer on the polarizing plate 10 side, and on the side opposite to the other polarizing plate 10, a peeling adhesive layer for covering and protecting the other adhesive layer It may have a film. Another pressure-sensitive adhesive layer is, for example, a bonding layer for bonding to an image display element of a display device.
The other pressure-sensitive adhesive layer may be provided in direct contact with the polarizing plate 10, or may be provided via another layer arranged on the opposite side of the polarizing plate 10 to the surface treatment film 20 side. .
 複合偏光板1は、さらに、表面処理フィルム20の偏光板10側とは反対側に、表面処理フィルム20に対して剥離可能なプロテクトフィルムが積層されていてもよい。プロテクトフィルムは、表面処理フィルム20の表面を保護するためのものである。 The composite polarizing plate 1 may further have a peelable protective film laminated on the surface treatment film 20 on the opposite side of the surface treatment film 20 from the polarizing plate 10 side. The protection film is for protecting the surface of the surface treatment film 20 .
 複合偏光板1の表面処理フィルム20側の表面の鉛筆硬度は、好ましくはHB以上であり、より好ましくはF以上であり、さらに好ましくはH以上であり、とりわけ好ましくは2H以上である。鉛筆硬度が上記の硬度以上である場合、複合偏光板1の表面処理フィルム20側の表面における傷等の発生を抑制しやすい。鉛筆硬度は、後述する実施例に記載のように、JIS K 5600-5-4:1999に準拠して測定することができる。 The pencil hardness of the surface of the composite polarizing plate 1 on the surface treatment film 20 side is preferably HB or higher, more preferably F or higher, even more preferably H or higher, and particularly preferably 2H or higher. When the pencil hardness is equal to or higher than the hardness described above, it is easy to suppress the occurrence of scratches or the like on the surface of the composite polarizing plate 1 on the surface treatment film 20 side. The pencil hardness can be measured according to JIS K 5600-5-4:1999, as described in Examples below.
 複合偏光板1は、液晶表示装置、有機EL表示装置等の表示装置の画像表示素子に積層して用いることができる。 The composite polarizing plate 1 can be used by being laminated on an image display element of a display device such as a liquid crystal display device or an organic EL display device.
 (複合偏光板の製造方法)
 複合偏光板1の製造方法は、上記した構造の複合偏光板1の製造方法であって、
 伸び800%での応力(以下、「伸び応力」ということがある。)が0.8N/mm以下である状態の粘着剤層を介して、表面処理フィルム20と偏光板10とを貼合して積層体を得る工程(a)と、
 工程(a)で得た積層体において、粘着剤層31の温度23℃における伸び800%での応力(伸び応力(23℃))が0.9N/mm以上となるように調整する工程(b)と、を含む。
(Manufacturing method of composite polarizing plate)
The method for manufacturing the composite polarizing plate 1 is a method for manufacturing the composite polarizing plate 1 having the structure described above,
The surface treatment film 20 and the polarizing plate 10 are bonded via an adhesive layer having a stress at elongation of 800% (hereinafter sometimes referred to as “elongation stress”) of 0.8 N/mm 2 or less. a step (a) of obtaining a laminate by
A step of adjusting the laminate obtained in the step (a) so that the stress of the pressure-sensitive adhesive layer 31 at 800% elongation at a temperature of 23° C. (elongation stress (23° C.)) is 0.9 N/mm 2 or more ( b) and
 工程(a)における粘着剤層31の伸び応力は、0.8N/mm以下であってもよく、0.8N/mm未満であってもよく、0.75N/mm以下であってもよく、0.7N/mm以下であってもよい。工程(a)における伸び応力は、通常0.2N/mm以上であり、0.3N/mm以上であってもよく、0.4N/mm以上であってもよい。伸び応力は、後述する実施例に記載の方法によって測定することができる。 The elongation stress of the adhesive layer 31 in step (a) may be 0.8 N/mm 2 or less, may be less than 0.8 N/mm 2 , or may be 0.75 N/mm 2 or less. may be 0.7 N/mm 2 or less. The elongation stress in step (a) is usually 0.2 N/mm 2 or more, may be 0.3 N/mm 2 or more, or may be 0.4 N/mm 2 or more. The elongation stress can be measured by the method described in Examples below.
 工程(b)における粘着剤層31の伸び応力(23℃)は、1.0N/mm以上であってもよく、1.1N/mm以上であってもよく、1.2N/mm以上であってもよく、1.3N/mm以上であってもよく、通常2.0N/mm以下である。伸び応力(23℃)は、後述する実施例に記載の方法によって測定することができる。 The elongation stress (23° C.) of the adhesive layer 31 in step (b) may be 1.0 N/mm 2 or more, 1.1 N/mm 2 or more, or 1.2 N/mm 2 or more, or 1.3 N/mm 2 or more, and usually 2.0 N/mm 2 or less. The elongation stress (23° C.) can be measured by the method described in Examples below.
 工程(a)において粘着剤層31の伸び応力を上記した範囲とし、工程(b)において粘着剤層31の伸び応力(23℃)を上記した範囲とする方法としては、粘着剤層31を形成するために用いる粘着剤組成物中の成分を調整する方法、工程(a)を行う環境条件を調整する方法等が挙げられる。粘着剤組成物中の成分を調整する方法としては、粘着剤組成物に含まれるベースポリマーの種類及び/又は分子量を調整する;ベースポリマーを構成する反応性官能基を有するモノマーの種類及び/又は量を調整する;粘着剤組成物に含まれる架橋剤の種類及び/又は量を調整する;粘着剤組成物中の成分として反応性基を有するベースポリマー及び重合開始剤を用いる等が挙げられる。工程(a)を行う環境条件を調整する方法としては、工程(a)を行う温度を調整する方法等が挙げられる。 As a method of setting the elongation stress of the adhesive layer 31 in the above range in the step (a) and setting the elongation stress (23° C.) of the adhesive layer 31 in the above range in the step (b), the adhesive layer 31 is formed. A method of adjusting the components in the pressure-sensitive adhesive composition used to perform the step (a), a method of adjusting the environmental conditions for performing the step (a), and the like. Methods for adjusting the components in the pressure-sensitive adhesive composition include adjusting the type and/or molecular weight of the base polymer contained in the pressure-sensitive adhesive composition; adjusting the amount; adjusting the type and/or amount of the cross-linking agent contained in the pressure-sensitive adhesive composition; using a base polymer having a reactive group and a polymerization initiator as components in the pressure-sensitive adhesive composition. Examples of the method for adjusting the environmental conditions for performing step (a) include a method for adjusting the temperature for performing step (a).
 工程(b)が後述する積層体を保管する工程である場合、粘着剤層31を形成するために用いる粘着剤組成物は、ベースポリマーと架橋剤とを含むことが好ましい。この場合、工程(a)での貼合に用いる粘着剤層31は、ベースポリマーと架橋剤との反応が十分に進行していない状態にあることが好ましく、工程(b)を経た粘着剤層31は、ベースポリマーと架橋剤との反応が十分に進行した状態にあることが好ましい。 When the step (b) is a step of storing a laminate, which will be described later, the adhesive composition used to form the adhesive layer 31 preferably contains a base polymer and a cross-linking agent. In this case, the pressure-sensitive adhesive layer 31 used for lamination in step (a) is preferably in a state in which the reaction between the base polymer and the cross-linking agent has not sufficiently progressed, and the pressure-sensitive adhesive layer that has undergone step (b) 31 is preferably in a state in which the reaction between the base polymer and the cross-linking agent has sufficiently progressed.
 上記のように工程(a)で行う表面処理フィルム20と偏光板10との貼合は、伸び応力が0.8N/mm以下の状態にある粘着剤層31を用いて行う。伸び応力がこの範囲にある粘着剤層31は、柔らかい状態にあるため、表面処理フィルム20及び/又は偏光板10に粘着剤層31を密着させやすくなる。これにより、工程(a)で得られる積層体において、表面処理フィルム20及び/又は偏光板10と粘着剤層31との間に気泡が混入することを抑制することができる。工程(b)では、気泡の混入が抑制された積層体において、粘着剤層31の伸び応力(23℃)が上記の範囲となるように調整するため、粘着剤層31の硬度を向上することができる。これにより、表面硬度が大きく、かつ、気泡の混入が抑制された複合偏光板1を得ることができる。 The bonding of the surface-treated film 20 and the polarizing plate 10 performed in step (a) as described above is performed using the pressure-sensitive adhesive layer 31 having an elongation stress of 0.8 N/mm 2 or less. The pressure-sensitive adhesive layer 31 having an elongation stress in this range is in a soft state, so that the pressure-sensitive adhesive layer 31 can be easily adhered to the surface treatment film 20 and/or the polarizing plate 10 . As a result, in the laminate obtained in step (a), it is possible to suppress the inclusion of air bubbles between the surface-treated film 20 and/or the polarizing plate 10 and the pressure-sensitive adhesive layer 31 . In the step (b), in the laminate in which inclusion of air bubbles is suppressed, the elongation stress (23° C.) of the adhesive layer 31 is adjusted to fall within the above range, so that the hardness of the adhesive layer 31 is improved. can be done. This makes it possible to obtain the composite polarizing plate 1 having high surface hardness and in which air bubbles are suppressed.
 上記の伸び応力は粘着剤層31の塑性変形領域の指標であり、粘着剤層31の形成からの経過時間に伴って変化する値である。一方、粘着剤層31の弾性変形領域の指標であるヤング率は、粘着剤層31の形成からの経過時間に伴って大きく異ならず、経過時間に関係なく同程度の値となることが確認された。このことから、本実施形態の複合偏光板1の製造方法では、偏光板及び/又は表面処理フィルムと粘着剤層との間に混入する気泡を抑制するために、粘着剤層31の塑性変形領域の指標である上記伸び応力に基づいて複合偏光板1を製造している。 The elongation stress described above is an index of the plastic deformation region of the adhesive layer 31, and is a value that changes with the elapsed time from the formation of the adhesive layer 31. On the other hand, it was confirmed that the Young's modulus, which is an index of the elastic deformation region of the pressure-sensitive adhesive layer 31, does not greatly differ with the elapsed time from the formation of the pressure-sensitive adhesive layer 31, and is approximately the same regardless of the elapsed time. rice field. Therefore, in the method for manufacturing the composite polarizing plate 1 of the present embodiment, the plastically deformed region of the pressure-sensitive adhesive layer 31 is suppressed in order to suppress air bubbles from entering between the pressure-sensitive adhesive layer and the polarizing plate and/or surface treatment film. The composite polarizing plate 1 is manufactured based on the elongation stress, which is an index of .
 複合偏光板1の製造方法は、枚葉体を用いて行ってもよく、長尺体を用いて行ってもよい。複合偏光板1を連続的に生産する観点からは、長尺体を用いて行うことが好ましい。
この場合、各工程で又は工程の中で得られた層又はフィルムを、ロール状に巻き取って巻回体とし、この巻回体から層又はフィルムを繰り出して次の工程を行うこともできる。本明細書において、長尺体とは、例えば30~10000mの長さを有する層又はフィルムをいう。
The manufacturing method of the composite polarizing plate 1 may be carried out using a sheet body or a long body. From the viewpoint of continuous production of the composite polarizing plate 1, it is preferable to use a long body.
In this case, the layer or film obtained in each process or during the process may be wound into a roll to form a roll, and the layer or film may be unwound from the roll for the next step. As used herein, a long body refers to a layer or film having a length of, for example, 30 to 10,000 m.
 以下、複合偏光板1の製造方法の各工程について具体的に説明する。
 (工程(a))
 工程(a)は、伸び応力が0.8N/mm以下である状態の粘着剤層を用いて、表面処理フィルム20と偏光板10とを貼合して積層体を得る工程である。工程(a)を行う環境条件は、粘着剤層31の伸び応力を0.8N/mm以下の状態とすることができれば特に限定されない。工程(a)を行う際の好ましい温度は、例えば10℃以上であり、15℃以上であってもよく、20℃以上であってもよく、また、例えば35℃以下であり、30℃以下であってもよい。工程(a)を行う際の好ましい相対湿度は、通常30%RH以上であってもよく、40%RHであってもよく、45%RHであってもよく、また、通常70%RH以下であってもよく、65%RHであってもよく、60%RHであってもよい。
Each step of the method for manufacturing the composite polarizing plate 1 will be specifically described below.
(Step (a))
Step (a) is a step of obtaining a laminate by bonding the surface-treated film 20 and the polarizing plate 10 together using an adhesive layer having an elongation stress of 0.8 N/mm 2 or less. The environmental conditions for the step (a) are not particularly limited as long as the elongation stress of the pressure-sensitive adhesive layer 31 can be 0.8 N/mm 2 or less. A preferable temperature for performing the step (a) is, for example, 10° C. or higher, may be 15° C. or higher, or may be 20° C. or higher, and is, for example, 35° C. or lower, and may be 30° C. or lower. There may be. A preferable relative humidity for performing the step (a) is usually 30% RH or more, 40% RH or 45% RH, and usually 70% RH or less. It may be 65% RH or 60% RH.
 工程(a)は、例えば、表面処理フィルム20及び偏光板10のうちの一方に粘着剤層31を形成する工程(a1’)と、工程(a1’)で形成した粘着剤層31上に、表面処理フィルム20及び偏光板10のうちの他方を積層する工程(a2’)と、を含むことができる。工程(a)が工程(a1’)及び工程(a2’)を含む場合、工程(a1’)及び工程(a2’)における粘着剤層31の伸び応力はいずれも、上記工程(a)で説明した範囲(0.8N/mm以下)である。 The step (a) includes, for example, a step (a1′) of forming an adhesive layer 31 on one of the surface-treated film 20 and the polarizing plate 10, and on the adhesive layer 31 formed in the step (a1′), and a step (a2') of laminating the other of the surface treatment film 20 and the polarizing plate 10. When step (a) includes step (a1′) and step (a2′), the elongation stress of the adhesive layer 31 in step (a1′) and step (a2′) are both explained in step (a) above. It is a range (0.8 N/mm 2 or less).
 工程(a1’)は、剥離フィルム上に形成された粘着剤層31と、表面処理フィルム20又は偏光板10とを貼合した後、剥離フィルムを剥離する工程によって行ってもよい。
この工程を含む場合、工程(a1’)における粘着剤層31の伸び応力は、工程(a2’)における粘着剤層31の伸び応力と同じ、又は、工程(a2’)における粘着剤層31の伸び応力よりも小さいことが好ましい。工程(a2’)における粘着剤層31の伸び応力は、上記で工程(a)における伸び応力として説明した範囲にあることが好ましい。
The step (a1') may be performed by a step of peeling off the release film after bonding the pressure-sensitive adhesive layer 31 formed on the release film and the surface treatment film 20 or the polarizing plate 10 together.
When this step is included, the elongation stress of the adhesive layer 31 in step (a1′) is the same as the elongation stress of the adhesive layer 31 in step (a2′), or the elongation stress of the adhesive layer 31 in step (a2′) It is preferably smaller than the elongation stress. The elongation stress of the pressure-sensitive adhesive layer 31 in step (a2') is preferably within the range described above as the elongation stress in step (a).
 工程(a1’)後、工程(a2’)を行うまでの期間は、6日以内であってもよく、5日以内であってもよく、4日以内であってもよく、3日以内であってもよく、2日以内であってもよく、1日以内であってもよい。上記の期間内であることにより、粘着剤層31の伸び応力が0.8N/mm以下にある状態で、工程(a2’)を行いやすい。 After step (a1′), the period until step (a2′) is performed may be within 6 days, may be within 5 days, may be within 4 days, or may be within 3 days. It may be within 2 days, or within 1 day. By being within the above period, step (a2′) can be easily performed in a state where the elongation stress of the adhesive layer 31 is 0.8 N/mm 2 or less.
 工程(a1’)を行うにあたり、上記の剥離フィルム上に形成した粘着剤層31を用いる場合、剥離フィルム上に粘着剤層31を形成した直後に、当該粘着剤層31と表面処理フィルム20又は偏光板10とを貼合することが好ましい。これにより、剥離フィルム上に粘着剤層31を形成してから工程(a2’)を行うまでの期間は、工程(a1’)後、工程(a2’)を行うまでの期間と実質的に同じとすることができる。剥離フィルム上に形成した粘着剤層31を用いて工程(a1’)を行う場合、剥離フィルム上に粘着剤層31を形成してから、工程(a1’)を経て工程(a2’)を行うまでの期間は、6日以内であってもよく、5日以内であってもよく、4日以内であってもよく、3日以内であってもよく、2日以内であってもよく、1日以内であってもよい。上記の期間内であることにより、粘着剤層31の伸び応力が0.8N/mm以下にある状態で、工程(a2’)を行いやすい。 When performing the step (a1′), when using the adhesive layer 31 formed on the release film, immediately after forming the adhesive layer 31 on the release film, the adhesive layer 31 and the surface treatment film 20 or It is preferable to bond the polarizing plate 10 together. As a result, the period from the formation of the adhesive layer 31 on the release film to the step (a2′) is substantially the same as the period from the step (a1′) to the step (a2′). can be When the step (a1′) is performed using the adhesive layer 31 formed on the release film, the step (a2′) is performed after the step (a1′) is performed after the adhesive layer 31 is formed on the release film. The period to may be within 6 days, may be within 5 days, may be within 4 days, may be within 3 days, may be within 2 days, It may be within one day. By being within the above period, step (a2′) can be easily performed in a state where the elongation stress of the adhesive layer 31 is 0.8 N/mm 2 or less.
 工程(a1’)は、表面処理フィルム20に粘着剤層31を形成する工程(a1)であり、工程(a2’)は、表面処理フィルム20に形成した粘着剤層31上に偏光板10を積層する工程(a2)であることが好ましい。 The step (a1′) is the step (a1) of forming the adhesive layer 31 on the surface-treated film 20, and the step (a2′) is the step of forming the polarizing plate 10 on the adhesive layer 31 formed on the surface-treated film 20. The step (a2) of laminating is preferred.
 工程(a)で用いる偏光板10には、上記した他の粘着剤層(画像表示素子に貼合するための貼合層)及び剥離フィルムが積層されていてもよい。工程(a)で用いる表面処理フィルム20には、プロテクトフィルムが積層されていてもよい。 The polarizing plate 10 used in step (a) may be laminated with the above-described other pressure-sensitive adhesive layer (bonding layer for bonding to the image display element) and a release film. A protective film may be laminated on the surface-treated film 20 used in step (a).
 表面処理フィルム20及び偏光板10と粘着剤層31との貼合面には、これらの密着性を向上させるために、コロナ処理、プラズマ処理、イトロ処理等の表面活性化処理を行ってもよい。 Surface activation treatment such as corona treatment, plasma treatment, and Itro treatment may be performed on the bonding surfaces of the surface-treated film 20 and the polarizing plate 10 and the pressure-sensitive adhesive layer 31 in order to improve their adhesion. .
 (工程(b))
 工程(b)は、工程(a)で得た積層体において、粘着剤層31の伸び応力(23℃)が0.9N/mm以上となるように調整する工程である。工程(b)を経ることにより、工程(a)で得られた積層体では柔らかい状態にある粘着剤層31を、硬い状態にし、複合偏光板1の表面硬度を向上することができる。工程(b)は、シートの状態の積層体で行ってもよく、積層体をロール状に巻回した巻回体の状態で行ってもよい。
(Step (b))
The step (b) is a step of adjusting the elongation stress (23° C.) of the pressure-sensitive adhesive layer 31 in the laminate obtained in the step (a) so as to be 0.9 N/mm 2 or more. Through the step (b), the pressure-sensitive adhesive layer 31, which is soft in the laminate obtained in the step (a), is hardened, and the surface hardness of the composite polarizing plate 1 can be improved. The step (b) may be performed with the laminated body in the form of a sheet, or with the laminated body wound into a roll.
 工程(b)は、粘着剤層31の伸び応力(23℃)を上記の範囲にすることができれば特に限定されない。工程(b)は、粘着剤層31に含まれる成分等に応じて行うことができ、例えば、工程(a)で得た積層体を保管する工程であってもよく、粘着剤層31に重合開始剤が含まれる場合は加熱又は活性エネルギー線の照射を行う工程であってもよい。
工程(b)は、積層体を保管する工程であることが好ましい。積層体を保管する工程は、例えば、工程(a)で得た積層体を養生することにより、粘着剤層31に含まれる反応性成分(例えば、ベースポリマー及び架橋剤)の反応を進行させる工程であってもよい。
Step (b) is not particularly limited as long as the elongation stress (23° C.) of the adhesive layer 31 can be within the above range. The step (b) can be performed according to the components contained in the adhesive layer 31, for example, it may be a step of storing the laminate obtained in the step (a), and the adhesive layer 31 is polymerized. When an initiator is included, the step of heating or irradiating with active energy rays may be used.
The step (b) is preferably a step of storing the laminate. The step of storing the laminate is, for example, a step of curing the laminate obtained in step (a) to advance the reaction of the reactive components (for example, the base polymer and the cross-linking agent) contained in the adhesive layer 31. may be
 工程(b)が積層体を保管する工程である場合、保管を行う環境条件は、粘着剤層31の伸び応力(23℃)を0.9N/mm以上にすることができれば特に限定されない。
工程(b)を行う際の好ましい温度は、通常10℃以上であり、15℃以上であってもよく、20℃以上であってもよく、また、通常35℃以下であり、30℃以下であってもよい。工程(b)を行う際の好ましい相対湿度は、通常30%RH以上であってもよく、40%RH以上であってもよく、45%RH以上であってもよく、また、通常70%RH以下であってもよく、65%RH以下であってもよく、60%RH以下であってもよい。
When the step (b) is a step of storing the laminate, the environmental conditions for storage are not particularly limited as long as the elongation stress (23° C.) of the adhesive layer 31 can be 0.9 N/mm 2 or more.
The preferred temperature for step (b) is usually 10° C. or higher, may be 15° C. or higher, or may be 20° C. or higher, and is usually 35° C. or lower, and may be 30° C. or lower. There may be. A preferable relative humidity for performing the step (b) is usually 30% RH or higher, 40% RH or higher, 45% RH or higher, and usually 70% RH. RH or less, 65% RH or less, or 60% RH or less.
 工程(b)が積層体を保管する工程である場合、保管を行う期間は、粘着剤層31を形成するために用いた粘着剤組成物の種類、上記した環境条件等に応じて選定すればよいが、例えば、6日以上であってもよく、7日以上であってもよく、8日以上であってもよく、9日以上であってもよく、10日以上であってもよい。上記の期間内であることにより、工程(b)により、粘着剤層31の伸び応力(23℃)を0.9N/mm以上に調整しやすい。 When the step (b) is a step of storing the laminate, the storage period may be selected according to the type of the adhesive composition used to form the adhesive layer 31, the environmental conditions described above, and the like. However, for example, it may be 6 days or more, 7 days or more, 8 days or more, 9 days or more, or 10 days or more. By being within the above period, it is easy to adjust the elongation stress (23° C.) of the adhesive layer 31 to 0.9 N/mm 2 or more by the step (b).
 以下、複合偏光板1を構成する層及びフィルムの詳細について説明する。
 (粘着剤層)
 粘着剤層は、粘着剤組成物を用いて形成された層である。粘着剤組成物は、それ自体を被着体に貼り付けることで接着性を発現するものであり、いわゆる感圧型接着剤と称されるものである。
Details of the layers and films constituting the composite polarizing plate 1 will be described below.
(Adhesive layer)
The adhesive layer is a layer formed using an adhesive composition. A pressure-sensitive adhesive composition exhibits adhesiveness when it is attached to an adherend, and is called a pressure-sensitive adhesive.
 粘着剤層の厚みは、特に限定されないが、10μm以下であることが好ましく、8μm以下であってもよく、7μm以下であってもよく、6μm以下であってもよく、また、通常1μm以上であり、3μm以上であってもよい。粘着剤層の厚みが上記の範囲であることにより、複合偏光板の表面硬度を向上することができる。 The thickness of the pressure-sensitive adhesive layer is not particularly limited, but is preferably 10 μm or less, may be 8 μm or less, may be 7 μm or less, or may be 6 μm or less, and is usually 1 μm or more. Yes, and may be 3 μm or more. By setting the thickness of the pressure-sensitive adhesive layer within the above range, the surface hardness of the composite polarizing plate can be improved.
 粘着剤層を形成するための粘着剤組成物は、(メタ)アクリル系樹脂、ゴム系樹脂、ウレタン系樹脂、エステル系樹脂、シリコーン系樹脂、ポリビニルエーテル系樹脂を主成分(ベースポリマー)とすることができる。主成分とは、粘着剤組成物の全固形分のうち50重量%以上を含む成分をいう。中でも、透明性、耐候性、耐熱性等に優れる(メタ)アクリル系樹脂をベースポリマーとする粘着剤組成物が好適である。粘着剤組成物は、活性エネルギー線硬化型又は熱硬化型であってもよい。(メタ)アクリルとは、アクリル及びメタクリルのうちの少なくとも一方をいう。 The adhesive composition for forming the adhesive layer contains (meth)acrylic resin, rubber resin, urethane resin, ester resin, silicone resin, polyvinyl ether resin as a main component (base polymer). be able to. A main component means a component containing 50% by weight or more of the total solid content of the pressure-sensitive adhesive composition. Among them, a pressure-sensitive adhesive composition using a (meth)acrylic resin as a base polymer, which is excellent in transparency, weather resistance, heat resistance, etc., is suitable. The adhesive composition may be active energy ray-curable or heat-curable. (Meth)acrylic refers to at least one of acrylic and methacrylic.
 粘着剤組成物に用いられるベースポリマーとしての(メタ)アクリル系樹脂としては、例えば、(メタ)アクリル酸ブチル、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸2-エチルヘキシルのような(メタ)アクリル酸エステルの1種又は2種以上をモノマーとする重合体又は共重合体が好適に用いられる。 Examples of the (meth)acrylic resin as the base polymer used in the pressure-sensitive adhesive composition include butyl (meth)acrylate, methyl (meth)acrylate, ethyl (meth)acrylate, isooctyl (meth)acrylate, Polymers or copolymers containing one or more of (meth)acrylic acid esters such as 2-ethylhexyl (meth)acrylate as monomers are preferably used.
 ベースポリマーには、反応性官能基を有するモノマーを共重合させることが好ましい。
反応性官能基を有するモノマーとしては、例えば、(メタ)アクリル酸、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリルアミド、N,N-ジメチルアミノエチル(メタ)アクリレート、グリシジル(メタ)アクリレートのような、カルボキシル基、水酸基、アミド基、アミノ基、エポキシ基等を有するモノマーを挙げることができる。
It is preferable to copolymerize a monomer having a reactive functional group with the base polymer.
Examples of monomers having a reactive functional group include (meth)acrylic acid, 2-hydroxypropyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, (meth)acrylamide, N,N-dimethylaminoethyl Monomers having a carboxyl group, a hydroxyl group, an amide group, an amino group, an epoxy group, etc., such as (meth)acrylate and glycidyl (meth)acrylate, can be mentioned.
 粘着剤組成物に含まれる(メタ)アクリル系樹脂のガラス転移温度は、-30℃以下であることが好ましく、-35℃以下であることがより好ましく、また、通常-50℃以上であり、-45℃以上であってもよい。(メタ)アクリル系樹脂のガラス転移温度が上記の範囲内であることにより、上記した伸び応力及び伸び応力(23℃)が上記した範囲にある粘着剤層が得られやすくなる。ガラス転移温度は、後述する実施例に記載の方法によって測定することができる。 The glass transition temperature of the (meth)acrylic resin contained in the pressure-sensitive adhesive composition is preferably −30° C. or lower, more preferably −35° C. or lower, and is usually −50° C. or higher, It may be -45°C or higher. When the glass transition temperature of the (meth)acrylic resin is within the above range, it becomes easier to obtain a pressure-sensitive adhesive layer having the extension stress and the extension stress (23° C.) within the above ranges. The glass transition temperature can be measured by the method described in Examples below.
 粘着剤組成物は、上記ベースポリマーのみを含むものであってもよいが、通常は架橋剤をさらに含有する。架橋剤としては、2価以上の金属イオンであって、カルボキシル基との間でカルボン酸金属塩等を形成するもの;ポリアミン化合物であって、カルボキシル基との間でアミド結合等を形成するもの;ポリエポキシ化合物やポリオールであって、カルボキシル基との間でエステル結合等を形成するもの;イソシアネート化合物であって、カルボキシル基との間でアミド結合等を形成するものが例示される。中でも、イソシアネート化合物が好ましい。 The adhesive composition may contain only the above base polymer, but usually further contains a cross-linking agent. Examples of cross-linking agents include those that are divalent or higher metal ions that form carboxylic acid metal salts and the like with carboxyl groups; polyamine compounds that form amide bonds and the like with carboxyl groups. polyepoxy compounds and polyols that form an ester bond or the like with a carboxyl group; and isocyanate compounds that form an amide bond or the like with a carboxyl group. Among them, isocyanate compounds are preferred.
 イソシアネート化合物は、分子内に少なくとも2個のイソシアナト基(-NCO)を有する化合物である。イソシアネート化合物としては、例えば、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、トリレンジイソシアネート、クロルフェニレンジイソシアネート、ジフェニルメタンジイソシアネート、水添ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、水添キシリレンジイソシアネート、ポリメチレンポリフェニルイソシアネート、ナフタレンジイソシアネート、トリフェニルメタントリイソシアネート等が挙げられる。イソシアネート化合物は、上記した化合物の多価アルコール化合物アダクト体(付加体)(例えばグリセロール、トリメチロールプロパン等によるアダクト体)、イソシアヌレート化物、ビュレット型化合物、さらにはポリエーテルポリオールやポリエステルポリオール、アクリルポリオール、ポリブタジエンポリオール、ポリイソプレンポリオール等と付加反応させたウレタンプレポリマー型のイソシアネート化合物、有機多価イソシアネート化合物のイソシアナト基をブロック化したブロックイソシアネート化合物等の誘導体であってもよい。 An isocyanate compound is a compound having at least two isocyanato groups (--NCO) in the molecule. Examples of isocyanate compounds include hexamethylene diisocyanate, isophorone diisocyanate, tolylene diisocyanate, chlorophenylene diisocyanate, diphenylmethane diisocyanate, hydrogenated diphenylmethane diisocyanate, xylylene diisocyanate, hydrogenated xylylene diisocyanate, polymethylene polyphenyl isocyanate, naphthalene diisocyanate, tri phenylmethane triisocyanate and the like. Isocyanate compounds include polyhydric alcohol compound adducts (adducts) of the above-described compounds (e.g., adducts with glycerol, trimethylolpropane, etc.), isocyanurates, burette-type compounds, polyether polyols, polyester polyols, and acrylic polyols. , polybutadiene polyol, polyisoprene polyol, etc., a urethane prepolymer type isocyanate compound, and a blocked isocyanate compound obtained by blocking the isocyanato group of an organic polyvalent isocyanate compound.
 イソシアネート化合物の含有量は、ベースポリマー(特に、(メタ)アクリル系樹脂)100質量部に対して、0.1質量部以上であり、1質量部以上であってもよく、3質量部以上であってもよく、また、10質量部以下であり、8質量部以下であってもよく、6質量部以下であってもよい。 The content of the isocyanate compound is 0.1 parts by mass or more, may be 1 part by mass or more, or may be 3 parts by mass or more with respect to 100 parts by mass of the base polymer (especially (meth)acrylic resin). Also, it may be 10 parts by mass or less, may be 8 parts by mass or less, or may be 6 parts by mass or less.
 (表面処理フィルム)
 表面処理フィルムは、基材フィルムと、基材フィルムの表面に形成された表面処理層とを有する。表面処理層22は、基材フィルム21の一部であって基材フィルム21の表層部分であってもよく、基材フィルム21に積層された基材フィルム21とは別の層であってもよい。表面処理層22が基材フィルム21とは別の層である場合、基材フィルム21と表面処理層22とは直接接していることが好ましい。
(Surface treatment film)
The surface-treated film has a substrate film and a surface-treated layer formed on the surface of the substrate film. The surface treatment layer 22 may be a part of the base film 21 and may be a surface layer portion of the base film 21, or may be a layer separate from the base film 21 laminated on the base film 21. good. When the surface treatment layer 22 is a layer separate from the base film 21, it is preferable that the base film 21 and the surface treatment layer 22 are in direct contact with each other.
 基材フィルムは、後述する保護フィルムに用いる材料として説明した樹脂フィルムを用いることができる。 For the base film, the resin film described as the material used for the protective film described later can be used.
 表面処理層は、上記したように、反射防止層、防眩層、ハードコート層、及び防汚層からなる群より選ばれる1種以上であることができる。表面処理層は、防眩性ハードコート層と反射防止層と防汚層との積層体であってもよい。表面処理層は、基材フィルムの表面に塗布液を塗布して形成された塗布層であってもよく、化学蒸着法又は物理蒸着法により形成した成膜層であってもよい。 As described above, the surface treatment layer can be one or more selected from the group consisting of an antireflection layer, an antiglare layer, a hard coat layer, and an antifouling layer. The surface treatment layer may be a laminate of an antiglare hard coat layer, an antireflection layer and an antifouling layer. The surface treatment layer may be a coating layer formed by applying a coating liquid to the surface of the substrate film, or may be a film layer formed by chemical vapor deposition or physical vapor deposition.
 反射防止層は、外光の反射を抑制する機能を有する。複合偏光板が有する表面処理フィルムが反射防止層を有する場合、外光の映り込みによるコントラストの低下を抑制することができる。 The antireflection layer has the function of suppressing the reflection of external light. When the surface-treated film of the composite polarizing plate has an antireflection layer, it is possible to suppress a decrease in contrast due to reflection of external light.
 反射防止層は、例えば、表面処理層が基材フィルム表面の凹凸パターン構造部分であり、凹凸の周期が可視光の波長以下に制御されているもの(表面にモスアイ構造を有する基材フィルム);表面処理層が基材フィルムの表面に組成物の塗布等により形成された微細凹凸パターンであるもの;表面処理層が屈折率を調整した層を単層又は多層で有するもの等が挙げられる。 The antireflection layer is, for example, one in which the surface treatment layer is an uneven pattern structure portion on the surface of the base film, and the period of the unevenness is controlled to the wavelength of visible light or less (base film having a moth-eye structure on the surface); Examples include those in which the surface-treated layer is a fine concavo-convex pattern formed on the surface of the substrate film by applying a composition or the like; and those in which the surface-treated layer has a single layer or multiple layers with an adjusted refractive index.
 反射防止層は、厚み及び屈折率を厳密に制御した薄膜若しくは薄膜を2層以上積層したものであることが好適である。薄膜とは厚みが1μm以下である膜のことをいう。反射防止層は、光の干渉効果を利用して入射光と反射光の逆転した位相を互いに打ち消し合わせることで反射防止機能を発現する構成とすることができる。反射防止機能を発現させる可視光線の波長領域は、例えば、380~780nmであり、特に視感度が高い波長領域は450~650nmの範囲であり、その中心波長である550nmの反射率を最小にするように反射防止層を設計することが好ましい。反射防止層の厚みは、100nm~350nmであることが好ましく、150nm~300nmであることがより好ましい。 The antireflection layer is preferably a thin film whose thickness and refractive index are strictly controlled, or a laminate of two or more thin films. A thin film refers to a film having a thickness of 1 μm or less. The antireflection layer can be configured to exhibit an antireflection function by canceling out the reversed phases of the incident light and the reflected light using the interference effect of light. The wavelength region of visible light that exhibits the antireflection function is, for example, 380 to 780 nm, and the wavelength region with particularly high luminosity is in the range of 450 to 650 nm. It is preferable to design the antireflection layer so that The thickness of the antireflection layer is preferably 100 nm to 350 nm, more preferably 150 nm to 300 nm.
 光の干渉効果に基づく反射防止層の設計において、その干渉効果を向上させる手段としては、例えば、反射防止層と後述する防眩層との屈折率差を大きくする方法がある。一般的に、2~15層の薄膜(厚み及び屈折率を厳密に制御した薄膜)を積層した構造の多層反射防止層では、屈折率の異なる成分を所定の厚さだけ複数層形成することにより、反射防止層の光学設計の自由度が上がり、より反射防止効果を向上させることができ、分光反射特性も可視光領域で均一(フラット)にすることが可能になる。薄膜は高い厚み精度が要求されるため、一般的に、各層の形成は、ドライ方式である真空蒸着、スパッタリング、CVD(化学気相蒸着)等)で実施される。スパッタリングにより各層が形成された反射防止フィルムを用いることにより、耐擦傷性の高い複合偏光板を得ることができる。 In designing an antireflection layer based on the interference effect of light, as a means for improving the interference effect, for example, there is a method of increasing the refractive index difference between the antireflection layer and the antiglare layer described later. In general, in a multilayer antireflection layer having a structure in which 2 to 15 thin films (thin films whose thickness and refractive index are strictly controlled) are laminated, by forming multiple layers of components with different refractive indices with a predetermined thickness, , the degree of freedom in the optical design of the antireflection layer increases, the antireflection effect can be further improved, and the spectral reflection characteristics can be made uniform (flat) in the visible light region. Since thin films require high thickness accuracy, each layer is generally formed by dry methods such as vacuum deposition, sputtering, and CVD (chemical vapor deposition). By using an antireflection film in which each layer is formed by sputtering, a composite polarizing plate with high scratch resistance can be obtained.
 反射防止層としては、低屈折率層と高屈折率層とが交互に積層されてなるものが好ましく用いられる。高屈折率層同士、又は低屈折率層同士は、同一の屈折率を有していなくても構わないが、同一材料で同一屈折率とすれば、材料コスト及び成膜コスト等を抑制する観点から好ましい。 As the antireflection layer, one in which a low refractive index layer and a high refractive index layer are alternately laminated is preferably used. The high refractive index layers or the low refractive index layers may not have the same refractive index, but if they are made of the same material and have the same refractive index, the material cost and film formation cost can be suppressed. preferred from
 低屈折率層を構成する材料としては、二酸化ケイ素(SiO)、酸窒化シリコン(SiON)、酸化ガリウム(Ga)、酸化アルミニウム(Al)、酸化ランタン(La)、フッ化ランタン(LaF)、フッ化マグネシウム(MgF)、フッ化ナトリウムアルミニウム(NaAlF)等が挙げられる。中でも屈折率の低さ、可視光域に吸収を有さないこと、膜強度の高さ等の観点から、二酸化ケイ素(SiO)が最も好ましい。 Materials constituting the low refractive index layer include silicon dioxide (SiO 2 ), silicon oxynitride (SiON), gallium oxide (Ga 2 O 3 ), aluminum oxide (Al 2 O 3 ), lanthanum oxide (La 2 O 3 ), lanthanum fluoride (LaF 3 ), magnesium fluoride (MgF 2 ), sodium aluminum fluoride (Na 3 AlF 6 ), and the like. Among them, silicon dioxide (SiO 2 ) is most preferable from the viewpoints of low refractive index, no absorption in the visible light region, high film strength, and the like.
 高屈折率層を構成する材料としては、五酸化ニオブ(Nb)、二酸化チタン(TiO)、二酸化ジルコニウム(ZrO)、五酸化タンタル(Ta)、酸窒化シリコン(SiON)、窒化シリコン(Si)及び酸化シリコンニオブ(SiNbO)等が挙げられる。中でも屈折率の高さ、膜強度の高さの観点から、五酸化ニオブ(Nb)又は二酸化チタン(TiO)がより好ましく、さらに可視光域に吸収を有さないことから五酸化ニオブ(Nb)が最も好ましい。 Materials constituting the high refractive index layer include niobium pentoxide (Nb 2 O 5 ), titanium dioxide (TiO 2 ), zirconium dioxide (ZrO 2 ), tantalum pentoxide (Ta 2 O 5 ), silicon oxynitride (SiON ), silicon nitride (Si 3 N 4 ) and silicon niobium oxide (SiNbO). Among them, niobium pentoxide (Nb 2 O 5 ) or titanium dioxide (TiO 2 ) is more preferable from the viewpoint of high refractive index and high film strength. Niobium (Nb 2 O 5 ) is most preferred.
 いずれの化合物も化学量論比の組成比からずれた構成元素比となるように制御したり、成膜密度を制御したりして成膜することにより、屈折率をある程度変化させることができる。低反射率層及び高反射率層を構成する材料としては、上述の屈折率の条件を満たすものであれば、上記化合物に限らない。また、不可避不純物が含まれていてもよい。 For any compound, the refractive index can be changed to some extent by controlling the composition ratio of the constituent elements to deviate from the stoichiometric composition ratio, or by controlling the film density and forming the film. Materials constituting the low-reflectance layer and the high-reflectance layer are not limited to the above compounds as long as they satisfy the above-described refractive index conditions. Moreover, unavoidable impurities may be contained.
 表面処理フィルムが、基材フィルムに反射防止層が積層された構造を有する場合、基材フィルムの反射防止層の形成面側の表面の算術平均粗さRaは、1.5nm以下であることが好ましく、1.0nm以下であることがより好ましい。算術平均粗さRaは、0.00nm以上であってよく、0.05nm以上であってよい。算術平均粗さRaは、原子間力顕微鏡(AFM)を用いた1μm四方の観察像から求められる。 When the surface-treated film has a structure in which an antireflection layer is laminated on a base film, the arithmetic mean roughness Ra of the surface of the base film on the side where the antireflection layer is formed is 1.5 nm or less. It is preferably 1.0 nm or less, and more preferably 1.0 nm or less. The arithmetic mean roughness Ra may be 0.00 nm or more, and may be 0.05 nm or more. The arithmetic mean roughness Ra is obtained from an observation image of 1 μm square using an atomic force microscope (AFM).
 防眩層は、視認性の向上、外光の映り込みの抑制、モアレ(干渉縞)の低減等の機能を有することができる。防眩層は、表面に微細な凹凸形状を有することができる。微細な凹凸形状は、フィラーを添加する、表面に微細なエンボスを付与する等によって形成することができる。 The antiglare layer can have functions such as improving visibility, suppressing reflection of external light, and reducing moire (interference fringes). The antiglare layer can have a fine uneven shape on the surface. The fine irregularities can be formed by adding a filler or by finely embossing the surface.
 防眩層は、例えば、後述するハードコート層を形成するための硬化性樹脂を含む塗布液に、微粒子を分散させて形成した防眩性ハードコート層であってもよい。塗布液に分散させる微粒子としては、シリカ、アルミナ、チタニア、ジルコニア、酸化カルシウム、酸化錫、酸化インジウム、酸化カドミウム、酸化アンチモン等の各種金属酸化物微粒子;ガラス微粒子;ポリメチルメタクリレート、ポリスチレン、ポリウレタン、アクリル-スチレン共重合体、ベンゾグアナミン、メラミン、ポリカーボネート等の各種透明ポリマーからなる架橋又は未架橋の有機系微粒子;シリコーン系微粒子等の透明性を有するものを特に制限なく使用できる。これら微粒子は、1種又は2種以上を適宜に選択して用いることができる。中でも、塗布液に含まれる硬化性樹脂よりも屈折率の高い微粒子が好ましく、例えばスチレンビーズ(屈折率1.59)等の屈折率1.5以上の有機系微粒子が好ましい。微粒子の平均粒子径は好ましくは1~10μm、より好ましくは2~5μmである。微粒子の割合は特に制限されないが、マトリックス樹脂100重量部に対して6~20重量部が好ましい。 The antiglare layer may be, for example, an antiglare hard coat layer formed by dispersing fine particles in a coating liquid containing a curable resin for forming a hard coat layer, which will be described later. Fine particles dispersed in the coating liquid include various metal oxide fine particles such as silica, alumina, titania, zirconia, calcium oxide, tin oxide, indium oxide, cadmium oxide, and antimony oxide; glass fine particles; polymethyl methacrylate, polystyrene, polyurethane, Crosslinked or uncrosslinked organic fine particles made of various transparent polymers such as acryl-styrene copolymers, benzoguanamine, melamine, and polycarbonate; and transparent particles such as silicone fine particles can be used without particular limitation. These microparticles|fine-particles can be used by selecting suitably 1 type(s) or 2 or more types. Among them, fine particles having a refractive index higher than that of the curable resin contained in the coating liquid are preferable, and organic fine particles having a refractive index of 1.5 or more such as styrene beads (refractive index 1.59) are preferable. The fine particles preferably have an average particle size of 1 to 10 μm, more preferably 2 to 5 μm. Although the proportion of the fine particles is not particularly limited, it is preferably 6 to 20 parts by weight with respect to 100 parts by weight of the matrix resin.
 防眩層を形成するための塗布液には、チクソトロピー剤(粒子径0.1μm以下のシリカ、マイカ等)を含有させてもよい。これにより、突出粒子による微細凹凸構造を容易に形成することができる。 The coating liquid for forming the antiglare layer may contain a thixotropic agent (silica, mica, etc. having a particle size of 0.1 μm or less). This makes it possible to easily form a fine concave-convex structure with protruding particles.
 ハードコート層は、基材フィルムの表面硬度を向上する機能を有し、表面の耐擦傷性を向上することができる。表面処理フィルムがハードコート層である場合、表面処理フィルムの表面処理層側の表面硬度は、例えばHB以上であり、F以上であってもよく、H以上であってもよく、2H以上であってもよく、3H以上であってもよい。鉛筆硬度は、後述する実施例に記載のように、JIS K 5600-5-4:1999に準拠して測定することができる。 The hard coat layer has the function of improving the surface hardness of the base film and can improve the scratch resistance of the surface. When the surface treatment film is a hard coat layer, the surface hardness of the surface treatment layer side of the surface treatment film is, for example, HB or more, may be F or more, may be H or more, or may be 2H or more. may be 3H or more. The pencil hardness can be measured according to JIS K 5600-5-4:1999, as described in Examples below.
 ハードコート層は、例えば基材フィルム上に、硬化性樹脂を含有する組成物の塗布液を塗布することにより形成することができる。塗布液には、硬化性樹脂の他に、レベリング剤、チクソトロピー剤、帯電防止剤等の添加剤を含有させてもよい。 The hard coat layer can be formed, for example, by applying a coating liquid of a composition containing a curable resin onto the base film. The coating liquid may contain additives such as a leveling agent, a thixotropic agent, and an antistatic agent in addition to the curable resin.
 硬化性樹脂としては、熱硬化型樹脂、紫外線硬化型樹脂、電子線硬化型樹脂等が挙げられる。硬化性樹脂の種類としてはポリエステル系樹脂、アクリル系樹脂、ウレタン系樹脂、アクリルウレタン系樹脂、アミド系樹脂、シリコーン系樹脂、シリケート系樹脂、エポキシ系樹脂、メラミン系樹脂、オキセタン系樹脂、アクリルウレタン系樹脂等の各種の樹脂が挙げられる。これらの硬化性樹脂は、1種又は2種以上を、適宜に選択して使用できる。 Examples of curable resins include thermosetting resins, ultraviolet curable resins, and electron beam curable resins. Types of curable resins include polyester resins, acrylic resins, urethane resins, acrylic urethane resins, amide resins, silicone resins, silicate resins, epoxy resins, melamine resins, oxetane resins, and acrylic urethane. Various resins, such as system resin, are mentioned. One or more of these curable resins can be appropriately selected and used.
 これらの中でも、硬度が高く、紫外線照射による硬化が可能で生産性に優れることから、硬化性樹脂は、(メタ)アクリル系樹脂、(メタ)アクリルウレタン系樹脂、及びエポキシ系樹脂であることが好ましく、中でも(メタ)アクリルウレタン系樹脂であることが好ましい。紫外線硬化型樹脂には、紫外線硬化型のモノマー、オリゴマー、ポリマー等が含まれる。好ましく用いられる紫外線硬化型樹脂は、例えば紫外線重合性の官能基を有するもの、中でも当該官能基を2個以上、特に3~6個有する(メタ)アクリル系のモノマーやオリゴマーを成分として含むものが挙げられる。 Among these, the curable resins are (meth)acrylic resins, (meth)acrylic urethane resins, and epoxy resins because they have high hardness, can be cured by ultraviolet irradiation, and are excellent in productivity. Among them, (meth)acrylic urethane resins are preferred. UV-curable resins include UV-curable monomers, oligomers, polymers, and the like. UV-curable resins preferably used include, for example, those having UV-polymerizable functional groups, among which those containing (meth)acrylic monomers or oligomers having two or more, particularly 3 to 6, functional groups as components. mentioned.
 ハードコート層の厚みは特に限定されないが、高い硬度を実現するためには、0.5μm以上が好ましく、1μm以上がより好ましい。塗布による形成の容易性を考慮すると、ハードコート層の厚みは15μm以下が好ましく、12μm以下がより好ましく、10μm以下がさらに好ましい。 Although the thickness of the hard coat layer is not particularly limited, it is preferably 0.5 μm or more, more preferably 1 μm or more, in order to achieve high hardness. Considering ease of formation by coating, the thickness of the hard coat layer is preferably 15 μm or less, more preferably 12 μm or less, and even more preferably 10 μm or less.
 表面処理フィルムが基材フィルムにハードコート層を積層した構造を有する場合、ハードコート層の算術平均粗さは、基材フィルムのハードコート層が形成された側の表面の算術平均粗さとなる。算術平均粗さRaは、原子間力顕微鏡(AFM)を用いた1μm四方の観察像から求められる。上記のように、塗布によりハードコート層を形成すれば、基材フィルムの表面の算術平均粗さを小さくすることができる。 When the surface-treated film has a structure in which a hard coat layer is laminated on a base film, the arithmetic mean roughness of the hard coat layer is the arithmetic mean roughness of the surface of the base film on which the hard coat layer is formed. The arithmetic mean roughness Ra is obtained from an observation image of 1 μm square using an atomic force microscope (AFM). By forming the hard coat layer by coating as described above, the arithmetic mean roughness of the surface of the substrate film can be reduced.
 防汚層は、表面処理フィルムに撥水性、撥油性、耐汗性、防汚性等の機能を付与することができる。防汚層は、フルオロカーボン、パーフルオロシラン、これらの高分子化合物等のフッ素含有有機化合物等の防汚剤を含むことができる。 The antifouling layer can impart functions such as water repellency, oil repellency, sweat resistance, and antifouling properties to the surface-treated film. The antifouling layer can contain antifouling agents such as fluorine-containing organic compounds such as fluorocarbons, perfluorosilanes, and polymeric compounds thereof.
 (偏光素子)
 偏光素子は、その吸収軸に平行な振動面をもつ直線偏光を吸収し、吸収軸に直交する(透過軸と平行な)振動面をもつ直線偏光を透過する性質を有する吸収型の偏光フィルムである。
(Polarizing element)
The polarizing element is an absorbing polarizing film that has the property of absorbing linearly polarized light with a plane of vibration parallel to its absorption axis and transmitting linearly polarized light with a plane of vibration perpendicular to the absorption axis (parallel to the transmission axis). be.
 偏光素子は、ポリビニルアルコール系樹脂層(以下、「PVA系樹脂層」ということがある。)に二色性色素が吸着配向されているものである。偏光素子は、公知のものを用いることができる。偏光素子としては、ポリビニルアルコール系樹脂フィルム(以下、「PVA系樹脂フィルム」ということがある。)を二色性色素で染色し、一軸延伸することによって得られる延伸フィルムや、基材フィルム上にポリビニルアルコール系樹脂(以下、「PVA系樹脂」ということがある。)を含む塗布液を塗布して形成した塗布層を有する積層フィルムを用い、塗布層を二色性色素で染色して積層フィルムを一軸延伸することによって得られる延伸層が挙げられる。延伸は二色性色素で染色した後に行ってもよいし、染色しながら延伸してもよいし、延伸してから染色してもよい。 The polarizing element has a polyvinyl alcohol-based resin layer (hereinafter sometimes referred to as a "PVA-based resin layer") with a dichroic dye adsorbed and oriented. A known polarizing element can be used. As a polarizing element, a stretched film obtained by dyeing a polyvinyl alcohol-based resin film (hereinafter sometimes referred to as a "PVA-based resin film") with a dichroic dye and uniaxially stretching the film; A laminate film having a coating layer formed by applying a coating liquid containing a polyvinyl alcohol resin (hereinafter sometimes referred to as "PVA resin") is used, and the coating layer is dyed with a dichroic dye to obtain a laminate film. A stretched layer obtained by uniaxially stretching the. Stretching may be performed after dyeing with a dichroic dye, stretching may be performed while dyeing, or dyeing may be performed after stretching.
 PVA系樹脂は、ポリ酢酸ビニル系樹脂を鹸化することによって得られる。ポリ酢酸ビニル系樹脂としては、酢酸ビニルの単独重合体であるポリ酢酸ビニルのほか、酢酸ビニルとこれに共重合可能な他の単量体との共重合体が挙げられる。共重合可能な他の単量体としては、例えば不飽和カルボン酸類、エチレン等のオレフィン類、ビニルエーテル類、不飽和スルホン酸類等が挙げられる。 PVA-based resin is obtained by saponifying polyvinyl acetate-based resin. Polyvinyl acetate-based resins include polyvinyl acetate, which is a homopolymer of vinyl acetate, and copolymers of vinyl acetate with other monomers copolymerizable therewith. Other copolymerizable monomers include, for example, unsaturated carboxylic acids, olefins such as ethylene, vinyl ethers, unsaturated sulfonic acids and the like.
 PVA系樹脂の鹸化度は、好ましくは85モル%以上、より好ましくは90モル%以上、さらに好ましくは99モル%以上100モル%以下である。PVA系樹脂の重合度としては、例えば1000以上10000以下であり、好ましくは1500以上5000以下である。PVA系樹脂は変性されていてもよく、例えばアルデヒド類で変性されたポリビニルホルマール、ポリビニルアセタール、ポリビニルブチラール等でもよい。 The degree of saponification of the PVA-based resin is preferably 85 mol% or more, more preferably 90 mol% or more, and still more preferably 99 mol% or more and 100 mol% or less. The degree of polymerization of the PVA-based resin is, for example, 1000 or more and 10000 or less, preferably 1500 or more and 5000 or less. The PVA-based resin may be modified, for example, aldehyde-modified polyvinyl formal, polyvinyl acetal, polyvinyl butyral, or the like.
 PVA系樹脂層に吸着配向している二色性色素としては、ヨウ素又は二色性染料が挙げられる。二色性色素はヨウ素であることが好ましい。二色性染料としては、レッドBR、レッドLR、レッドR、ピンクLB、ルビンBL、ボルドーGS、スカイブルーLG、レモンイエロー、ブルーBR、ブルー2R、ネイビーRY、グリーンLG、バイオレットLB、バイオレットB、ブラックH、ブラックB、ブラックGSP、イエロー3G、イエローR、オレンジLR、オレンジ3R、スカーレットGL、スカーレットKGL、コンゴーレッド、ブリリアントバイオレットBK、スプラブルーG、スプラブルーGL、スプラオレンジGL、ダイレクトスカイブルー、ダイレクトファーストオレンジS、ファーストブラック等が挙げられる。 Iodine or dichroic dyes are examples of dichroic dyes that are adsorbed and oriented on the PVA-based resin layer. Preferably, the dichroic dye is iodine. Dichroic dyes include Red BR, Red LR, Red R, Pink LB, Rubin BL, Bordeaux GS, Sky Blue LG, Lemon Yellow, Blue BR, Blue 2R, Navy RY, Green LG, Violet LB, Violet B, Black H, Black B, Black GSP, Yellow 3G, Yellow R, Orange LR, Orange 3R, Scarlet GL, Scarlet KGL, Congo Red, Brilliant Violet BK, Supra Blue G, Supra Blue GL, Supra Orange GL, Direct Sky Blue, Direct Fast Orange S, Fast Black, and the like.
 偏光素子の厚みは、好ましくは3μm以上35μm以下、より好ましくは4μm以上30μm以下、さらに好ましくは5μm以上25μm以下である。偏光素子の厚みが35μm以下であることにより、例えば、高温環境下でPVA系樹脂のポリエン化が光学特性の低下に与える影響を抑制することができる。偏光素子の厚みが3μm以上であることにより所望の光学特性を達成する構成とすることが容易となる。 The thickness of the polarizing element is preferably 3 μm or more and 35 μm or less, more preferably 4 μm or more and 30 μm or less, and still more preferably 5 μm or more and 25 μm or less. When the thickness of the polarizing element is 35 μm or less, for example, it is possible to suppress the influence of the polyene conversion of the PVA-based resin on the deterioration of the optical properties in a high-temperature environment. When the thickness of the polarizing element is 3 μm or more, it becomes easy to achieve the desired optical characteristics.
 (偏光素子の製造方法)
 偏光素子の製造方法は特に限定されないが、予めロール状に巻かれたPVA系樹脂フィルムを送り出して延伸、染色、架橋等を行って作製する方法(以下、「製造方法1」とする。);PVA系樹脂を含む塗布液を基材フィルム上に塗布して塗布層であるPVA系樹脂層を形成し、得られた積層体を延伸する工程を含む方法(以下、「製造方法2」とする。)が典型的である。
(Manufacturing method of polarizing element)
The manufacturing method of the polarizing element is not particularly limited, but a method in which a pre-rolled PVA-based resin film is sent out and subjected to stretching, dyeing, cross-linking, etc. (hereinafter referred to as "manufacturing method 1"); A method comprising a step of applying a coating liquid containing a PVA-based resin onto a substrate film to form a PVA-based resin layer as a coating layer, and stretching the obtained laminate (hereinafter referred to as "manufacturing method 2" ) are typical.
 製造方法1は、PVA系樹脂フィルムを一軸延伸する工程、PVA系樹脂フィルムをヨウ素等の二色性色素で染色して二色性色素を吸着させる工程、二色性色素が吸着されたPVA系樹脂フィルムをホウ酸水溶液で処理する工程、及びホウ酸水溶液による処理後に水洗する工程を経て製造することができる。 Production method 1 includes a step of uniaxially stretching a PVA-based resin film, a step of dyeing the PVA-based resin film with a dichroic dye such as iodine to adsorb the dichroic dye, and a PVA system to which the dichroic dye is adsorbed. It can be produced through a step of treating the resin film with an aqueous boric acid solution and a step of washing with water after the treatment with the aqueous boric acid solution.
 膨潤工程は、PVA系樹脂フィルムを膨潤浴中に浸漬する処理工程である。膨潤工程により、PVA系樹脂フィルムの表面の汚れやブロッキング剤等を除去できるほか、PVA系樹脂フィルムを膨潤させることで染色ムラを抑制できる。膨潤浴には、通常、水、蒸留水、純水等の水を主成分とする媒体が用いられる。膨潤浴は、常法に従って界面活性剤、アルコール等が適宜に添加されていてもよい。偏光素子のカリウムの含有率を制御する観点から、膨潤浴にヨウ化カリウムを使用してもよく、この場合、膨潤浴中のヨウ化カリウムの濃度は、1.5質量%以下であることが好ましく、1.0質量%以下であることがより好ましく、0.5質量%以下であることがさらに好ましい。 The swelling process is a treatment process in which the PVA-based resin film is immersed in a swelling bath. The swelling step can remove stains, blocking agents, and the like on the surface of the PVA-based resin film, and swelling the PVA-based resin film can suppress uneven dyeing. A medium containing water as a main component, such as water, distilled water, or pure water, is usually used for the swelling bath. Surfactants, alcohols and the like may be appropriately added to the swelling bath according to conventional methods. Potassium iodide may be used in the swelling bath from the viewpoint of controlling the potassium content of the polarizing element. In this case, the concentration of potassium iodide in the swelling bath should be 1.5% by mass or less. It is preferably 1.0% by mass or less, more preferably 0.5% by mass or less.
 膨潤浴の温度は、10℃以上60℃以下であることが好ましく、15℃以上45℃以下であることがより好ましく、18℃以上30℃以下であることがさらに好ましい。膨潤浴への浸漬時間は、PVA系樹脂フィルムの膨潤の程度が膨潤浴の温度の影響を受けるため一概に決定できないが、5秒以上300秒以下であることが好ましく、10秒以上200秒以下であることがより好ましく、20秒以上100秒以下であることがさらに好ましい。膨潤工程は1回だけ実施されてもよく、必要に応じて複数回実施されてもよい。 The temperature of the swelling bath is preferably 10°C or higher and 60°C or lower, more preferably 15°C or higher and 45°C or lower, and even more preferably 18°C or higher and 30°C or lower. The immersion time in the swelling bath cannot be unconditionally determined because the degree of swelling of the PVA-based resin film is affected by the temperature of the swelling bath, but it is preferably 5 seconds or more and 300 seconds or less, and 10 seconds or more and 200 seconds or less. and more preferably 20 seconds or more and 100 seconds or less. The swelling step may be performed only once, or may be performed multiple times as necessary.
 染色工程は、PVA系樹脂フィルムを二色性色素を含む処理浴(染色浴)に浸漬する処理工程であり、PVA系樹脂フィルムにヨウ素等の二色性色素を吸着及び配向させることができる。染色浴は、二色性色素を含む染色液であり、ヨウ素溶液であることが好ましい。ヨウ素溶液は、ヨウ素水溶液であることが好ましく、ヨウ素及び溶解助剤としてヨウ化物を含有することが好ましい。ヨウ化物としては、ヨウ化カリウム、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化亜鉛、ヨウ化アルミニウム、ヨウ化鉛、ヨウ化銅、ヨウ化バリウム、ヨウ化カルシウム、ヨウ化錫、ヨウ化チタン等が挙げられる。これらの中でも、偏光素子中のカリウムの含有率を制御する観点から、ヨウ化カリウムが好適である。 The dyeing process is a treatment process in which the PVA-based resin film is immersed in a treatment bath (dyeing bath) containing a dichroic dye, and the dichroic dye such as iodine can be adsorbed and oriented on the PVA-based resin film. The dyeing bath is a dyeing solution containing a dichroic dye, preferably an iodine solution. The iodine solution is preferably an aqueous iodine solution, and preferably contains iodine and iodide as a dissolution aid. Examples of iodides include potassium iodide, lithium iodide, sodium iodide, zinc iodide, aluminum iodide, lead iodide, copper iodide, barium iodide, calcium iodide, tin iodide, and titanium iodide. mentioned. Among these, potassium iodide is preferable from the viewpoint of controlling the content of potassium in the polarizing element.
 ヨウ素溶液中のヨウ素の濃度は、0.01質量%以上1質量%以下であることが好ましく、0.02質量%以上0.5質量%以下であることがより好ましい。ヨウ素溶液中のヨウ化物の濃度は、0.01質量%以上10質量%以下であることが好ましく、0.05質量%以上5質量%以下であることがより好ましく、0.1質量%以上3質量%以下であることがさらに好ましい。 The concentration of iodine in the iodine solution is preferably 0.01% by mass or more and 1% by mass or less, more preferably 0.02% by mass or more and 0.5% by mass or less. The concentration of iodide in the iodine solution is preferably 0.01% by mass or more and 10% by mass or less, more preferably 0.05% by mass or more and 5% by mass or less, and 0.1% by mass or more and 3 % by mass or less is more preferable.
 染色浴の温度は、10℃以上50℃以下であることが好ましく、15℃以上45℃以下であることがより好ましく、18℃以上30℃以下であることがさらに好ましい。染色浴への浸漬時間は、PVA系樹脂フィルムの染色の程度が染色浴の温度の影響を受けるため一概に決定できないが、10秒以上300秒以下であることが好ましく、20秒以上240秒以下であることがより好ましい。染色工程は1回だけ実施されてもよく、必要に応じて複数回実施されてもよい。 The temperature of the dyeing bath is preferably 10°C or higher and 50°C or lower, more preferably 15°C or higher and 45°C or lower, and even more preferably 18°C or higher and 30°C or lower. The immersion time in the dyeing bath cannot be unconditionally determined because the degree of dyeing of the PVA-based resin film is affected by the temperature of the dyeing bath, but it is preferably 10 seconds or more and 300 seconds or less, and 20 seconds or more and 240 seconds or less. is more preferable. The dyeing step may be performed only once, or may be performed multiple times as necessary.
 架橋工程は、染色工程にて染色されたPVA系樹脂フィルムを、ホウ素化合物を含む処理浴(架橋浴)中に浸漬する処理工程であり、ホウ素化合物によりPVA系樹脂フィルムが架橋して、ヨウ素分子又は染料分子が当該架橋構造に吸着できる。ホウ素化合物としては、例えばホウ酸、ホウ酸塩、ホウ砂等が挙げられる。架橋浴は、水溶液が一般的であるが、水との混和性のある有機溶媒及び水の混合溶液であってもよい。架橋浴は、偏光素子中のカリウムの含有率を制御する観点から、ヨウ化カリウムを含むことが好ましい。 The cross-linking step is a treatment step in which the PVA-based resin film dyed in the dyeing step is immersed in a treatment bath (cross-linking bath) containing a boron compound. Alternatively, dye molecules can be adsorbed on the crosslinked structure. Boron compounds include, for example, boric acid, borates, and borax. The cross-linking bath is generally an aqueous solution, but may be a mixed solution of an organic solvent miscible with water and water. The cross-linking bath preferably contains potassium iodide from the viewpoint of controlling the potassium content in the polarizing element.
 架橋浴中、ホウ素化合物の濃度は、1質量%以上15質量%以下であることが好ましく、1.5質量%以上10質量%以下であることがより好ましく、2質量%以上5質量%以下であることがより好ましい。架橋浴にヨウ化カリウムを使用する場合、架橋浴中のヨウ化カリウムの濃度は、1質量%以上15質量%以下であることが好ましく、1.5質量%以上10質量%以下であることがより好ましく、2質量%以上5質量%以下であることがより好ましい。 The concentration of the boron compound in the cross-linking bath is preferably 1% by mass or more and 15% by mass or less, more preferably 1.5% by mass or more and 10% by mass or less, and 2% by mass or more and 5% by mass or less. It is more preferable to have When potassium iodide is used in the cross-linking bath, the concentration of potassium iodide in the cross-linking bath is preferably 1% by mass or more and 15% by mass or less, and is preferably 1.5% by mass or more and 10% by mass or less. More preferably, it is 2% by mass or more and 5% by mass or less.
 架橋浴の温度は、20℃以上70℃以下であることが好ましく、30℃以上60℃以下であることがより好ましい。架橋浴への浸漬時間は、PVA系樹脂フィルムの架橋の程度が架橋浴の温度の影響を受けるため一概に決定できないが、5秒以上300秒以下であることが好ましく、10秒以上200秒以下であることがより好ましい。架橋工程は1回だけ実施されてもよく、必要に応じて複数回実施されてもよい。 The temperature of the cross-linking bath is preferably 20°C or higher and 70°C or lower, more preferably 30°C or higher and 60°C or lower. The immersion time in the cross-linking bath cannot be unconditionally determined because the degree of cross-linking of the PVA-based resin film is affected by the temperature of the cross-linking bath, but it is preferably 5 seconds or more and 300 seconds or less, and 10 seconds or more and 200 seconds or less. is more preferable. The cross-linking step may be performed only once, or may be performed multiple times as necessary.
 延伸工程は、PVA系樹脂フィルムを、少なくとも一方向に所定の倍率に延伸する処理工程である。一般には、PVA系樹脂フィルムを、搬送方向(長手方向)に1軸延伸する。延伸の方法は特に制限されず、湿潤延伸法と乾式延伸法のいずれも採用できる。延伸工程は1回だけ実施されてもよく、必要に応じて複数回実施されてもよい。延伸工程は、偏光素子の製造において、いずれの段階で行われてもよい。 The stretching step is a processing step of stretching the PVA-based resin film in at least one direction to a predetermined magnification. In general, a PVA-based resin film is uniaxially stretched in the transport direction (longitudinal direction). The stretching method is not particularly limited, and both wet stretching and dry stretching can be employed. The stretching step may be performed only once, or may be performed multiple times as necessary. The stretching step may be performed at any stage in the production of the polarizing element.
 湿潤延伸法における処理浴(延伸浴)は、通常、水又は水との混和性のある有機溶媒及び水の混合溶液等の溶媒を用いることができる。延伸浴は、偏光素子中のカリウムの含有率を制御する観点から、ヨウ化カリウムを含むことが好ましい。延伸浴にヨウ化カリウムを使用する場合、延伸浴中のヨウ化カリウムの濃度は、1質量%以上15質量%以下であることが好ましく、2質量%以上10質量%以下であることがより好ましく、3質量%以上6質量%以下であることがより好ましい。処理浴(延伸浴)は、延伸中のフィルム破断を抑制する観点から、ホウ素化合物を含むことができる。ホウ素化合物を含む場合、延伸浴中のホウ素化合物の濃度は、1質量%以上15質量%以下であることが好ましく、1.5質量%以上10質量%以下であることがより好ましく、2質量%以上5質量%以下であることがより好ましい。 For the treatment bath (stretching bath) in the wet stretching method, a solvent such as water or a mixed solution of an organic solvent miscible with water and water can usually be used. The stretching bath preferably contains potassium iodide from the viewpoint of controlling the potassium content in the polarizing element. When potassium iodide is used in the drawing bath, the concentration of potassium iodide in the drawing bath is preferably 1% by mass or more and 15% by mass or less, more preferably 2% by mass or more and 10% by mass or less. , 3% by mass or more and 6% by mass or less. The treatment bath (stretching bath) can contain a boron compound from the viewpoint of suppressing film breakage during stretching. When a boron compound is included, the concentration of the boron compound in the drawing bath is preferably 1% by mass or more and 15% by mass or less, more preferably 1.5% by mass or more and 10% by mass or less, and 2% by mass. It is more preferable to be 5% by mass or less.
 延伸浴の温度は、25℃以上80℃以下であることが好ましく、40℃以上80℃以下であることがより好ましく、50℃以上75℃以下であることがさらに好ましく、65℃以上75℃以下であることが特に好ましい。延伸浴への浸漬時間は、PVA系樹脂フィルムの延伸の程度が延伸浴の温度の影響を受けるため一概に決定できないが、10秒以上800秒以下であることが好ましく、30秒以上500秒以下であることがより好ましい。
湿潤延伸法における延伸処理は、膨潤工程、染色工程、架橋工程及び洗浄工程のいずれか1つ以上の処理工程とともに施してもよい。
The temperature of the drawing bath is preferably 25° C. or higher and 80° C. or lower, more preferably 40° C. or higher and 80° C. or lower, further preferably 50° C. or higher and 75° C. or lower, and 65° C. or higher and 75° C. or lower. is particularly preferred. The immersion time in the stretching bath cannot be unconditionally determined because the degree of stretching of the PVA-based resin film is affected by the temperature of the stretching bath. is more preferable.
The stretching treatment in the wet stretching method may be performed together with one or more of the swelling process, dyeing process, cross-linking process and washing process.
 乾式延伸法としては、例えば、ロール間延伸方法、加熱ロール延伸方法、圧縮延伸方法等が挙げられる。なお、乾式延伸法は、乾燥工程とともに施してもよい。 Examples of the dry drawing method include a roll-to-roll drawing method, a heating roll drawing method, a compression drawing method, and the like. The dry stretching method may be applied together with the drying process.
 PVA系樹脂フィルムに施される総延伸倍率(累積の延伸倍率)は、目的に応じ適宜設定できるが、2倍以上7倍以下であることが好ましく、3倍以上6.8倍以下であることがより好ましく、3.5倍以上6.5倍以下であることがさらに好ましい。 The total draw ratio (cumulative draw ratio) applied to the PVA-based resin film can be appropriately set according to the purpose, but it is preferably 2 to 7 times, and 3 to 6.8 times. is more preferable, and more preferably 3.5 times or more and 6.5 times or less.
 洗浄工程は、PVA系樹脂フィルムを、洗浄浴中に浸漬する処理工程であり、PVA系樹脂フィルムの表面等に残存する異物を除去できる。洗浄浴は、通常、水、蒸留水、純水等の水を主成分とする媒体が用いられる。また、偏光素子中のカリウムの含有率を制御する観点から、洗浄浴にヨウ化カリウムを使用することが好ましく、この場合、洗浄浴中、ヨウ化カリウムの濃度は、1質量%以上10質量%以下であることが好ましく、1.5質量%以上4質量%以下であることがより好ましく、1.8質量%以上3.8質量%以下であることがさらに好ましい。 The washing process is a treatment process in which the PVA-based resin film is immersed in a washing bath, and foreign matter remaining on the surface of the PVA-based resin film can be removed. As the cleaning bath, a medium containing water as a main component, such as water, distilled water, or pure water, is usually used. Also, from the viewpoint of controlling the potassium content in the polarizing element, it is preferable to use potassium iodide in the cleaning bath. In this case, the concentration of potassium iodide in the cleaning bath is 1% by mass or more and 10% by mass. is preferably 1.5% by mass or more and 4% by mass or less, more preferably 1.8% by mass or more and 3.8% by mass or less.
 洗浄浴の温度は、5℃以上50℃以下であることが好ましく、10℃以上40℃以下であることがより好ましく、15℃以上30℃以下であることがさらに好ましい。洗浄浴への浸漬時間は、PVA系樹脂フィルムの洗浄の程度が洗浄浴の温度の影響を受けるため一概に決定できないが、1秒以上100秒以下であることが好ましく、2秒以上50秒以下であることがより好ましく、3秒以上20秒以下であることがさらに好ましい。洗浄工程は1回だけ実施されてもよく、必要に応じて複数回実施されてもよい。 The temperature of the washing bath is preferably 5°C or higher and 50°C or lower, more preferably 10°C or higher and 40°C or lower, and even more preferably 15°C or higher and 30°C or lower. The immersion time in the cleaning bath cannot be unconditionally determined because the degree of cleaning of the PVA-based resin film is affected by the temperature of the cleaning bath. and more preferably 3 seconds or more and 20 seconds or less. The washing step may be performed only once, or may be performed multiple times as necessary.
 乾燥工程は、洗浄工程にて洗浄されたPVA系樹脂フィルムを、乾燥して偏光素子を得る工程である。乾燥は任意の適切な方法で行われ、例えば自然乾燥、送風乾燥、加熱乾燥が挙げられる。 The drying process is a process of drying the PVA-based resin film washed in the washing process to obtain a polarizing element. Drying is performed by any appropriate method, such as natural drying, air drying, and heat drying.
 製造方法2は、PVA系樹脂を含む塗布液を基材フィルム上に塗布する工程、得られた積層フィルムを一軸延伸する工程、一軸延伸された積層フィルムのPVA系樹脂層を二色性色素で染色することにより吸着させて偏光素子とする工程、二色性色素が吸着されたフィルムをホウ酸水溶液で処理する工程、及びホウ酸水溶液による処理後に水洗する工程を経て製造することができる。偏光素子を形成するために用いる基材フィルムは、偏光素子の保護フィルムとして用いてもよい。必要に応じて、基材フィルムを偏光素子から剥離除去してもよい。 Production method 2 includes a step of applying a coating liquid containing a PVA-based resin onto a base film, a step of uniaxially stretching the obtained laminated film, and a PVA-based resin layer of the uniaxially stretched laminated film with a dichroic dye. It can be produced through a step of dyeing to adsorb a polarizing element, a step of treating a film on which a dichroic dye is adsorbed with an aqueous boric acid solution, and a step of washing with water after treatment with an aqueous boric acid solution. The base film used to form the polarizing element may be used as a protective film for the polarizing element. If necessary, the base film may be peeled off from the polarizing element.
 (偏光板)
 偏光板は、少なくとも偏光素子を含む。偏光板は、偏光素子の片面又は両面に保護フィルムを有するものであってもよい。偏光板が両面に保護フィルムを有する場合、保護フィルムは、その種類及び/又は厚みは、互いに同じであってもよく、互いに異なっていてもよい。
(Polarizer)
A polarizing plate includes at least a polarizing element. The polarizing plate may have a protective film on one side or both sides of the polarizing element. When the polarizing plate has protective films on both sides, the types and/or thicknesses of the protective films may be the same or different.
 偏光素子と保護フィルムとは、貼合層(粘着剤層又は接着剤層)を介して積層されていることが好ましい。偏光素子と保護フィルムとを貼合する貼合層は、接着剤層であることが好ましく、後述する水系接着剤又は活性エネルギー線接着剤の硬化物層であることが好ましい。 The polarizing element and the protective film are preferably laminated via a bonding layer (adhesive layer or adhesive layer). The lamination layer for laminating the polarizing element and the protective film is preferably an adhesive layer, and is preferably a cured layer of a water-based adhesive or an active energy ray adhesive, which will be described later.
 偏光板は、直線偏光板であってもよく、円偏光板であってもよい。偏光板が円偏光板である場合、偏光板はλ/4波長板等を有する。偏光板に含まれる位相差層は、1又は2以上であってもよく、位相差層は貼合層を介して積層することができる。 The polarizing plate may be either a linear polarizing plate or a circular polarizing plate. If the polarizer is a circular polarizer, the polarizer has a λ/4 waveplate or the like. One or two or more retardation layers may be included in the polarizing plate, and the retardation layers can be laminated via bonding layers.
 (保護フィルム)
 保護フィルムは、透明性、機械的強度、熱安定性、水分遮蔽性、位相差値の安定性等に優れるものであることが好ましい。保護フィルムとしては、樹脂フィルムが好ましく用いられる。
(Protective film)
The protective film is preferably excellent in transparency, mechanical strength, thermal stability, moisture shielding property, stability of retardation value, and the like. A resin film is preferably used as the protective film.
 保護フィルムを構成する樹脂材料としては、例えば、(メタ)アクリル酸メチル系樹脂、ポリオレフィン系樹脂、環状オレフィン系樹脂、ポリ塩化ビニル系樹脂、セルロース系樹脂、スチレン系樹脂、アクリロニトリル・ブタジエン・スチレン系樹脂、アクリロニトリル・スチレン系樹脂、ポリ酢酸ビニル系樹脂、ポリ塩化ビニリデン系樹脂、ポリアミド系樹脂、ポリアセタール系樹脂、ポリカーボネート系樹脂、変性ポリフェニレンエーテル系樹脂、ポリブチレンテフタレート系樹脂、ポリエチレンテフタレート系樹脂、ポリスルホン系樹脂、ポリエーテルスルホン系樹脂、ポリアリレート系樹脂、ポリアミドイミド系樹脂、ポリイミド系樹脂、及びこれらのうちの2種以上の組み合わせ等が挙げられる。これらの樹脂は、任意の適切なポリマー変性を行ってから用いることもでき、このポリマー変性としては、例えば、共重合、架橋、分子末端変性、立体規則性制御、及び異種ポリマー同士の反応を伴う場合を含む混合等の変性が挙げられる。 Examples of resin materials constituting the protective film include methyl (meth)acrylate resins, polyolefin resins, cyclic olefin resins, polyvinyl chloride resins, cellulose resins, styrene resins, acrylonitrile-butadiene-styrene resins. Resins, acrylonitrile/styrene resins, polyvinyl acetate resins, polyvinylidene chloride resins, polyamide resins, polyacetal resins, polycarbonate resins, modified polyphenylene ether resins, polybutylene terephthalate resins, polyethylene terephthalate resins , polysulfone-based resins, polyethersulfone-based resins, polyarylate-based resins, polyamideimide-based resins, polyimide-based resins, and combinations of two or more of these. These resins can be used after being subjected to any appropriate polymer modification, and the polymer modification includes, for example, copolymerization, cross-linking, molecular terminal modification, stereoregularity control, and reaction between different polymers. Modifications, such as mixing, including cases.
 セルロース系樹脂は、セルロースの水酸基における水素原子の一部又は全部が、アセチル基、プロピオニル基及び/又はブチリル基で置換された、セルロースの有機酸エステル又は混合有機酸エステルであり得る。例えば、セルロースの酢酸エステル、プロピオン酸エステル、酪酸エステル、それらの混合エステル等からなるものが挙げられる。なかでも、トリアセチルセルロース、ジアセチルセルロース、セルロースアシレート、セルロースアセテートプロピオネート、セルロースアセテートブチレート等が好ましい。 The cellulosic resin can be an organic acid ester or mixed organic acid ester of cellulose in which some or all of the hydrogen atoms in the hydroxyl groups of cellulose are substituted with acetyl groups, propionyl groups and/or butyryl groups. Examples thereof include cellulose acetate, propionate, butyrate, and mixed esters thereof. Among them, triacetyl cellulose, diacetyl cellulose, cellulose acylate, cellulose acetate propionate, cellulose acetate butyrate and the like are preferable.
 環状オレフィン系樹脂は、環状オレフィンを重合単位として重合される樹脂の総称であり、例えば、特開平1-240517号公報、特開平3-14882号公報、特開平3-122137号公報等に記載されている樹脂が挙げられる。環状オレフィン系樹脂は、ノルボルネン系樹脂であることが好ましい。具体例としては、環状オレフィンの開環(共)重合体、環状オレフィンの付加重合体、環状オレフィンとエチレン、プロピレン等のα-オレフィンとその共重合体(代表的にはランダム共重合体)、及び、これらを不飽和カルボン酸やその誘導体で変性したグラフト重合体、並びに、それらの水素化物等が挙げられる。環状オレフィンの具体例としては、ノルボルネン系モノマーが挙げられる。 Cyclic olefin-based resin is a general term for resins polymerized with cyclic olefins as polymerization units, and is described, for example, in JP-A-1-240517, JP-A-3-14882, and JP-A-3-122137. resins. The cyclic olefin-based resin is preferably a norbornene-based resin. Specific examples include ring-opening (co)polymers of cyclic olefins, addition polymers of cyclic olefins, cyclic olefins and α-olefins such as ethylene and propylene, and their copolymers (typically random copolymers), and graft polymers obtained by modifying these with unsaturated carboxylic acids or derivatives thereof, and hydrides thereof. Specific examples of cyclic olefins include norbornene-based monomers.
 保護フィルムを構成する樹脂材料には、透明性を損なわない範囲で、上記した樹脂に加えて、適宜の添加物が配合されていてもよい。添加物として例えば、酸化防止剤、紫外線吸収剤、帯電防止剤、滑剤、造核剤、防曇剤、アンチブロッキング剤、位相差低減剤、安定剤、加工助剤、可塑剤、耐衝撃助剤、艶消し剤、抗菌剤、防かび剤等を挙げることができる。これらの添加物は、複数種が併用されてもよい。 In addition to the resins described above, appropriate additives may be added to the resin material that constitutes the protective film as long as the transparency is not impaired. Additives such as antioxidants, ultraviolet absorbers, antistatic agents, lubricants, nucleating agents, antifogging agents, antiblocking agents, retardation reducing agents, stabilizers, processing aids, plasticizers, impact resistance aids , matting agents, antibacterial agents, antifungal agents, and the like. A plurality of types of these additives may be used in combination.
 保護フィルムの厚みは、通常1μm以上100μm以下であるが、強度や取扱性等の観点から5μm以上60μm以下であることが好ましく、10μm以上55μm以下であることがより好ましく、15μm以上50μm以下であることがさらに好ましい。 The thickness of the protective film is usually 1 μm or more and 100 μm or less, but from the viewpoint of strength, handleability, etc., it is preferably 5 μm or more and 60 μm or less, more preferably 10 μm or more and 55 μm or less, and 15 μm or more and 50 μm or less. is more preferred.
 保護フィルムは、同時に他の光学的機能を有していてもよく、複数の層が積層された積層構造に形成されていてもよい。保護フィルムの膜厚は光学特性の観点から薄いものが好ましいが、薄すぎると強度が低下し加工性に劣るものとなる。適切な膜厚としては、5~100μmであり、好ましくは10~80μm、より好ましくは15~70μmである。 The protective film may have other optical functions at the same time, and may be formed into a laminated structure in which multiple layers are laminated. The film thickness of the protective film is preferably thin from the viewpoint of optical properties, but if it is too thin, the strength will decrease and the processability will be poor. A suitable film thickness is 5 to 100 μm, preferably 10 to 80 μm, more preferably 15 to 70 μm.
 保護フィルムは、単層構造であってもよく、多層構造を有していてもよい。保護フィルムは、その片面又は両面に、帯電防止層を備えていてもよい。 The protective film may have a single layer structure or a multilayer structure. The protective film may have an antistatic layer on one side or both sides.
 保護フィルムは、視野角補償等の目的で位相差機能を備えていてもよく、その場合、フィルム自身が位相差機能を有していてもよく、位相差層を別に有していてもよく、両者の組み合わせであってもよい。位相差機能を備える保護フィルムは、偏光素子に貼合された別の保護フィルムを介して貼合層(粘着剤層又は接着剤層)を介して貼合された構成であってもよい。 The protective film may have a retardation function for the purpose of viewing angle compensation, etc. In that case, the film itself may have a retardation function, or may have a separate retardation layer, It may be a combination of both. The protective film having a retardation function may be laminated via a lamination layer (adhesive layer or adhesive layer) via another protective film laminated to the polarizing element.
 (貼合層、他の粘着剤層)
 貼合層は、粘着剤層(以下、「粘着剤層〔貼合層〕」という。)又は接着剤層である。
粘着剤層〔貼合層〕である場合の貼合層、及び、複合偏光板を画像表示素子に貼合するための他の粘着剤層は、上記した表面処理フィルムと偏光板とを貼合するための粘着剤層で説明したものが挙げられる。
(Lamination layer, other adhesive layer)
The bonding layer is an adhesive layer (hereinafter referred to as "adhesive layer [bonding layer]") or an adhesive layer.
The bonding layer in the case of the adhesive layer [bonding layer] and the other adhesive layer for bonding the composite polarizing plate to the image display element are obtained by bonding the surface-treated film and the polarizing plate described above. The one described in the pressure-sensitive adhesive layer for bonding can be mentioned.
 粘着剤層〔貼合層〕及び他の粘着剤層の厚みは、それぞれ独立して、1μm以上200μm以下であることが好ましく、2μm以上100μm以下であることがより好ましく、2μm以上80μm以下であることがさらに好ましく、3μm以上50μm以下であることが特に好ましい。 The thickness of the pressure-sensitive adhesive layer [bonding layer] and the other pressure-sensitive adhesive layer are each independently preferably 1 μm or more and 200 μm or less, more preferably 2 μm or more and 100 μm or less, and 2 μm or more and 80 μm or less. is more preferable, and it is particularly preferable to be 3 μm or more and 50 μm or less.
 接着剤層を構成する接着剤は、任意の適切な接着剤を用いることができる。接着剤は、水系接着剤、溶剤系接着剤、活性エネルギー線硬化型接着剤などを用いることができるが、水系接着剤であることが好ましい。 Any appropriate adhesive can be used as the adhesive that constitutes the adhesive layer. As the adhesive, a water-based adhesive, a solvent-based adhesive, an active energy ray-curable adhesive, or the like can be used, but a water-based adhesive is preferable.
 接着剤の塗布時の厚みは、任意の適切な値に設定され得る。例えば、硬化後又は加熱(乾燥)後に、所望の厚みを有する接着剤層が得られるように設定する。接着剤層の厚みは、好ましくは0.01μm以上7μm以下であり、より好ましくは0.01μm以上5μm以下であり、さらに好ましくは0.01μm以上2μm以下であり、最も好ましくは0.01μm以上1μm以下である。 The thickness of the adhesive when applied can be set to any appropriate value. For example, it is set so that an adhesive layer having a desired thickness is obtained after curing or after heating (drying). The thickness of the adhesive layer is preferably 0.01 μm or more and 7 μm or less, more preferably 0.01 μm or more and 5 μm or less, still more preferably 0.01 μm or more and 2 μm or less, and most preferably 0.01 μm or more and 1 μm. It is below.
 水系接着剤としては、公知の水系接着剤を用いることができる。水系接着剤としては、PVA系樹脂を含む水系接着剤(以下、「PVA系接着剤」ということがある。)が好ましく用いられる。水系接着剤に含まれるPVA系樹脂の平均重合度は、接着性の点から、好ましくは100~5500であり、さらに好ましくは1000~4500である。PVA系樹脂の平均鹸化度は、接着性の点から、好ましくは85モル%~100モル%であり、さらに好ましくは90モル%~100モル%である。 A known water-based adhesive can be used as the water-based adhesive. As the water-based adhesive, a water-based adhesive containing a PVA-based resin (hereinafter sometimes referred to as "PVA-based adhesive") is preferably used. The average degree of polymerization of the PVA-based resin contained in the water-based adhesive is preferably 100-5500, more preferably 1000-4500, from the viewpoint of adhesiveness. The average saponification degree of the PVA-based resin is preferably 85 mol % to 100 mol %, more preferably 90 mol % to 100 mol %, from the viewpoint of adhesiveness.
 偏光素子と保護フィルムとを貼合する際に用いるPVA系接着剤に含まれるPVA系樹脂は、アセトアセチル基を含有するものが好ましい。偏光素子を構成するPVA系樹脂層と保護フィルムとの密着性に優れ、耐久性に優れているからである。アセトアセチル基を含有するPVA系樹脂は、例えば、PVA系樹脂とジケテンとを任意の方法で反応させることにより得ることができる。アセトアセチル基を含有するPVA系樹脂のアセトアセチル基の変性度は、代表的には0.1モル%以上であり、好ましくは0.1モル%~20モル%である。 The PVA-based resin contained in the PVA-based adhesive used when bonding the polarizing element and the protective film preferably contains an acetoacetyl group. This is because the adhesiveness between the protective film and the PVA-based resin layer constituting the polarizing element is excellent, and the durability is excellent. A PVA-based resin containing an acetoacetyl group can be obtained, for example, by reacting a PVA-based resin with diketene by any method. The degree of modification of the acetoacetyl group of the PVA-based resin containing the acetoacetyl group is typically 0.1 mol % or more, preferably 0.1 mol % to 20 mol %.
 PVA系接着剤におけるPVA系樹脂の濃度は、好ましくは0.1重量%~15重量%であり、さらに好ましくは0.5重量%~10重量%である。 The concentration of the PVA-based resin in the PVA-based adhesive is preferably 0.1 wt% to 15 wt%, more preferably 0.5 wt% to 10 wt%.
 PVA系樹脂がアセトアセチル基を含有する場合、PVA系接着剤は、架橋剤としてグリオキサール、グリオキシル酸塩、及びメチロールメラミンのうちの1種以上を含むことが好ましく、グリオキサール及びグリオキシル酸塩のうちの少なくとも一方を含むことが好ましく、グリオキサールを含むことが特に好ましい。 When the PVA-based resin contains an acetoacetyl group, the PVA-based adhesive preferably contains one or more of glyoxal, glyoxylate, and methylolmelamine as a cross-linking agent. It is preferable to contain at least one, and it is particularly preferable to contain glyoxal.
 PVA系接着剤は有機溶剤を含有していてもよい。この場合、水と混和性を有することから、有機溶剤はアルコール類が好ましく、アルコール類の中でもメタノール又はエタノールであることが好ましい。 The PVA-based adhesive may contain an organic solvent. In this case, since it is miscible with water, the organic solvent is preferably an alcohol, and among the alcohols, methanol or ethanol is preferable.
 耐熱性を向上する観点から、PVA系接着剤は、さらに尿素、尿素誘導体、チオ尿素、及びチオ尿素誘導体等の尿素化合物;アスコルビン酸、エリソルビン酸、チオ硫酸、及び亜硫酸等の還元剤;マレイン酸及びフタル酸等のジカルボン酸;硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウム、及び弗化アンモニウム等のアンモニウム化合物;α-シクロデキストリン、β-シクロデキストリン、γ-シクロデキストリン等のデキストリン類;イソシアネート化合物がブロック剤によりブロックされているブロックイソシアネート化合物;N-オキシル化合物等のニトロキシラジカル;ニトロキシド基を有する化合物等を含有していてもよい。 From the viewpoint of improving heat resistance, the PVA-based adhesive further contains urea compounds such as urea, urea derivatives, thiourea, and thiourea derivatives; reducing agents such as ascorbic acid, erythorbic acid, thiosulfuric acid, and sulfurous acid; and dicarboxylic acids such as phthalic acid; ammonium compounds such as ammonium sulfate, ammonium chloride, ammonium carbonate, and ammonium fluoride; dextrins such as α-cyclodextrin, β-cyclodextrin, and γ-cyclodextrin; A blocked isocyanate compound; a nitroxy radical such as an N-oxyl compound; a compound having a nitroxide group;
 活性エネルギー線硬化型接着剤は、紫外線等の活性エネルギー線を照射することによって硬化する接着剤であり、例えば重合性化合物及び光重合性開始剤を含む接着剤、光反応性樹脂を含む接着剤、バインダー樹脂及び光反応性架橋剤を含む接着剤等を挙げることができる。上記重合性化合物としては、光硬化性エポキシ系モノマー、光硬化性(メタ)アクリル系モノマー、光硬化性ウレタン系モノマー等の光重合性モノマー、及びこれらモノマーに由来するオリゴマー等を挙げることができる。上記光重合開始剤としては、紫外線等の活性エネルギー線を照射して中性ラジカル、アニオンラジカル、カチオンラジカルといった活性種を発生する物質を含む化合物を挙げることができる。 Active energy ray-curable adhesives are adhesives that are cured by irradiation with active energy rays such as ultraviolet rays. For example, adhesives containing a polymerizable compound and a photopolymerization initiator, adhesives containing a photoreactive resin , an adhesive containing a binder resin and a photoreactive cross-linking agent, and the like. Examples of the polymerizable compound include photopolymerizable monomers such as photocurable epoxy-based monomers, photocurable (meth)acrylic monomers, and photocurable urethane-based monomers, and oligomers derived from these monomers. . Examples of the photopolymerization initiator include compounds containing substances that generate active species such as neutral radicals, anion radicals, and cation radicals upon irradiation with active energy rays such as ultraviolet rays.
 (剥離フィルム)
 剥離フィルムは、複合偏光板を画像表示素子に貼合するための他の粘着剤層に対して剥離可能に設けられ、他の粘着剤層の表面を被覆保護する。剥離フィルムとしては、基材層及び離型処理層を有する。基材層は樹脂フィルムであってもよい。樹脂フィルムは、例えば、上記した保護フィルムを形成するために用いる樹脂材料から形成することができる。
離型処理層は、公知の離型処理層であればよく、例えばフッ素化合物やシリコーン化合物等の離型剤を基材層にコーティングして形成された層が挙げられる。
(Release film)
The release film is provided so as to be peelable from another pressure-sensitive adhesive layer for bonding the composite polarizing plate to the image display element, and covers and protects the surface of the other pressure-sensitive adhesive layer. The release film has a substrate layer and a release treatment layer. The base layer may be a resin film. The resin film can be formed, for example, from the resin material used for forming the protective film described above.
The release treatment layer may be any known release treatment layer, and examples thereof include a layer formed by coating a base material layer with a release agent such as a fluorine compound or a silicone compound.
 (プロテクトフィルム)
 プロテクトフィルムは、表面処理フィルムに対して剥離可能に設けられる。プロテクトフィルムは、基材層と粘着剤層とを含んでいてもよく、自己粘着性フィルムであってもよい。基材層は、樹脂フィルムであってもよく、基材層は、例えば上記した保護フィルムを形成するために用いる樹脂材料から形成することができる。粘着剤層としては、上記の粘着剤層〔貼合層〕で説明したものが挙げられる。自己粘着性フィルムを構成する熱可塑性樹脂としては、例えばポリプロピレン系樹脂及びポリエチレン系樹脂等が挙げられる。
(protection film)
A protection film is provided so that peeling is possible with respect to a surface treatment film. The protective film may contain a substrate layer and an adhesive layer, and may be a self-adhesive film. The base layer may be a resin film, and the base layer can be formed from, for example, the resin material used to form the protective film described above. Examples of the pressure-sensitive adhesive layer include those described in the above-described pressure-sensitive adhesive layer [bonding layer]. Examples of the thermoplastic resin that constitutes the self-adhesive film include polypropylene-based resins and polyethylene-based resins.
 以下、実施例及び比較例を示して本発明をさらに具体的に説明するが、本発明はこれらの例によって限定されるものではない。 The present invention will be described in more detail below with reference to examples and comparative examples, but the present invention is not limited to these examples.
 [ガラス転移温度の測定]
 (メタ)アクリル系樹脂のガラス転移温度(Tg)は、エスアイアイ・ナノテクノロジー(株)製の示差走査熱量計(DSC)「EXSTAR DSC6000」を用い、窒素雰囲気下、測定温度範囲-80~50℃、昇温速度10℃/分の条件で測定した。
[Measurement of glass transition temperature]
The glass transition temperature (Tg) of the (meth)acrylic resin is measured using a differential scanning calorimeter (DSC) "EXSTAR DSC6000" manufactured by SII Nanotechnology Co., Ltd. under a nitrogen atmosphere, with a temperature range of -80 to 50. °C and a heating rate of 10°C/min.
 [粘着剤層(Y)の応力の測定]
 後述する粘着剤組成物を用いて形成した粘着シート(Y)の粘着剤層(Y)側の表面に、剥離フィルム(離型処理層付きの厚み38μmのポリエチレンテレフタレートフィルム)を貼合して得た、厚み5μmの粘着剤層(Y)を有する両面剥離フィルム付き粘着シート(層構造:剥離フィルム/粘着剤層(Y)/剥離フィルム)を、温度23℃、相対湿度50%RHの条件下で、2日間、3日間、8日間、及び10日間保管した。保管後の各両面剥離フィルム付き粘着シートから一方の剥離フィルムを剥離し、長さ150mm×幅30mmの粘着剤層(Y)を取り出し、当該粘着剤層(Y)を長さ方向(150mmの方向)にロール状に巻回して、直径約1mm、高さ(幅)30mmの円柱状の試料を作製した。作製した各試料について、温度23℃、相対湿度50%RHの条件下で、材料試験機(STA-1225S、株式会社オリエンテック社製)を用い、チャック間距離10mm、引張速度300mm/minの条件で、伸び0%~1600%の範囲の応力を測定した。
測定結果を図2に示す。図2に示すように、保管日数が短い(2日間、3日間)試料に比較すると、保管日数が長い(8日間、10日間)試料の方が、伸び800%における応力が大きくなった。
[Measurement of stress of adhesive layer (Y)]
A release film (polyethylene terephthalate film having a thickness of 38 μm with a release treatment layer) is attached to the surface of the adhesive layer (Y) side of the adhesive sheet (Y) formed using the adhesive composition described later. In addition, a pressure-sensitive adhesive sheet with a double-sided release film having a pressure-sensitive adhesive layer (Y) with a thickness of 5 μm (layer structure: release film/adhesive layer (Y)/release film) was heated at a temperature of 23° C. and a relative humidity of 50% RH. for 2 days, 3 days, 8 days, and 10 days. Peel off one release film from each adhesive sheet with a double-sided release film after storage, remove the adhesive layer (Y) of length 150 mm × width 30 mm, and remove the adhesive layer (Y) in the length direction (direction of 150 mm ) to prepare a cylindrical sample with a diameter of about 1 mm and a height (width) of 30 mm. For each sample prepared, under the conditions of a temperature of 23 ° C. and a relative humidity of 50% RH, a material testing machine (STA-1225S, manufactured by Orientec Co., Ltd.) was used, a distance between chucks of 10 mm, and a tensile speed of 300 mm / min. measured the stress in the range of 0% to 1600% elongation.
The measurement results are shown in FIG. As shown in FIG. 2, compared to the samples stored for a short period of time (2 days, 3 days), the samples stored for a long time (8 days, 10 days) had a larger stress at 800% elongation.
 [表面硬度の測定]
 実施例及び比較例で得た複合偏光板から剥離フィルムを剥離し、露出した粘着剤層(X)をガラス板上に貼合した。この状態で、複合偏光板の表面処理フィルム側から、JIS K 5600-5-4:1999「塗料一般試験方法-第5部:塗膜の機械的性質-第4節:引っかき硬度(鉛筆法)」に規定される鉛筆硬度試験を行った。
[Measurement of surface hardness]
The release film was peeled off from the composite polarizing plates obtained in Examples and Comparative Examples, and the exposed pressure-sensitive adhesive layer (X) was laminated on a glass plate. In this state, from the surface treatment film side of the composite polarizing plate, JIS K 5600-5-4: 1999 "Paint general test method-Part 5: Mechanical properties of coating film-Section 4: Scratch hardness (pencil method) A pencil hardness test specified in ” was performed.
 [接着力の測定]
 実施例及び比較例で得た複合偏光板を長さ(偏光素子の吸収軸方向と平行な方向の長さ)200mm×幅25mmの大きさに裁断し、剥離フィルムを剥離して粘着剤層(X)をガラス板に貼合して試験片を得た。この試験片を温度23℃、相対湿度50%RHの環境下に24時間置いた。その後、試験片の偏光板と表面処理フィルムとの間にカッターの刃を入れ、長さ方向に端から30mm剥がして、その剥がした部分を試験機のつかみ上部でつかみ、つかみ下部はガラス板をつかんだ。この状態の試験片について、温度23℃及び相対湿度55%の雰囲気中にて、JIS K 6854-2:1999「接着剤-はく離接着強さ試験方法-第2部:180度はく離」に準じて、つかみ移動速度300mm/分で剥離試験を行い、つかみ部の30mmを除く60mmの長さにわたる平均剥離力(単位:N/25mm)を求め、これを、複合偏光板における表面処理フィルムと偏光板との間の粘着剤層(Y)の接着力とした。結果を表1に示す。
[Measurement of adhesive strength]
The composite polarizing plates obtained in Examples and Comparative Examples were cut into a size of 200 mm in length (length in the direction parallel to the absorption axis direction of the polarizing element) x 25 mm in width, and the release film was peeled off to form an adhesive layer ( X) was attached to a glass plate to obtain a test piece. This test piece was placed in an environment with a temperature of 23° C. and a relative humidity of 50% RH for 24 hours. After that, put a cutter blade between the polarizing plate and the surface treatment film of the test piece, peel off 30 mm from the end in the length direction, grasp the peeled part with the upper grip of the tester, and the lower grip with the glass plate. Grabbed. For the test piece in this state, in an atmosphere at a temperature of 23 ° C. and a relative humidity of 55%, JIS K 6854-2: 1999 "Adhesive-Peeling adhesive strength test method-Part 2: 180 degree peel" , A peel test was performed at a grip movement speed of 300 mm / min, and the average peel force (unit: N / 25 mm) over a length of 60 mm excluding 30 mm of the grip part was obtained. and the adhesive strength of the pressure-sensitive adhesive layer (Y) between. Table 1 shows the results.
 <偏光素子の作製>
 平均重合度約2,400、ケン化度99.9モル%以上であるポリビニルアルコールからなる厚み75μmのポリビニルアルコール系樹脂フィルムを、乾式で約5倍に一軸延伸し、さらに緊張状態を保ったまま、温度60℃の純水に1分間浸漬した後、ヨウ素/ヨウ化カリウム/水の重量比が0.05/5/100の温度28℃の水溶液に60秒間浸漬した。その後、ヨウ化カリウム/ホウ酸/水の重量比が8.5/8.5/100の温度72℃の水溶液に300秒間浸漬した。引き続き、温度26℃の純水で20秒間洗浄した後、温度65℃で乾燥して、ポリビニルアルコール系樹脂フィルムにヨウ素が吸着配向された厚み28μmの偏光素子を得た。
<Fabrication of polarizing element>
A polyvinyl alcohol-based resin film having a thickness of 75 μm made of polyvinyl alcohol having an average degree of polymerization of about 2,400 and a degree of saponification of 99.9 mol % or more is uniaxially stretched by a dry method to about 5 times, and further while maintaining a tensioned state. , immersed in pure water at a temperature of 60°C for 1 minute, and then immersed in an aqueous solution of iodine/potassium iodide/water at a weight ratio of 0.05/5/100 at a temperature of 28°C for 60 seconds. After that, it was immersed in an aqueous solution of potassium iodide/boric acid/water at a weight ratio of 8.5/8.5/100 at a temperature of 72° C. for 300 seconds. Subsequently, after washing with pure water at a temperature of 26° C. for 20 seconds, the film was dried at a temperature of 65° C. to obtain a 28 μm thick polarizing element in which iodine was adsorbed and oriented on the polyvinyl alcohol resin film.
 <水系接着剤の調製>
 アセトアセチル基を含有する変性ポリビニルアルコール系樹脂(三菱ケミカル(株)製:ゴーセネックスZ-410)50gを950gの純水に溶解し、温度90℃で2時間加熱後、常温に冷却し、PVA溶液を得た。このPVA溶液、純水、マレイン酸、及びグリオキサールを、ポリビニルアルコール系樹脂の濃度が3.0重量%となり、マレイン酸の濃度が0.01重量%となり、グリオキサールの濃度が0.15重量%となるように配合して、水系接着剤を得た。
<Preparation of water-based adhesive>
50 g of a modified polyvinyl alcohol resin containing an acetoacetyl group (manufactured by Mitsubishi Chemical Corporation: Gohsenex Z-410) is dissolved in 950 g of pure water, heated at a temperature of 90° C. for 2 hours, cooled to room temperature, and a PVA solution is obtained. got This PVA solution, pure water, maleic acid, and glyoxal were mixed with a polyvinyl alcohol resin concentration of 3.0% by weight, a maleic acid concentration of 0.01% by weight, and a glyoxal concentration of 0.15% by weight. to obtain a water-based adhesive.
 <偏光板及び粘着剤層(X)付き偏光板の作製>
 (偏光板の作製)
 保護フィルムとしてのセルロースアシレートフィルム「TD40」(富士フイルム(株)製:厚み40μm)を、温度55℃に保った1.5mol/LのNaOH水溶液(鹸化液)に2分間浸漬した後、フィルムを水洗した。その後、温度25℃の0.05mol/Lの硫酸水溶液に30秒間浸漬した後、さらに水洗浴に30秒間流水下に通して、フィルムを中性の状態にした。その後、エアナイフによる水切りを3回繰り返した。水切り後に、フィルムを温度70℃の乾燥ゾーンに15秒間滞留させて乾燥し、鹸化処理した保護フィルムを作製した。
<Preparation of polarizing plate and polarizing plate with adhesive layer (X)>
(Preparation of polarizing plate)
A cellulose acylate film “TD40” (manufactured by Fuji Film Co., Ltd.: thickness 40 μm) as a protective film was immersed in a 1.5 mol/L NaOH aqueous solution (saponification solution) kept at a temperature of 55° C. for 2 minutes. was washed with water. Thereafter, the film was immersed in a 0.05 mol/L sulfuric acid aqueous solution at a temperature of 25° C. for 30 seconds and then passed through a washing bath under running water for 30 seconds to neutralize the film. After that, draining with an air knife was repeated three times. After draining, the film was held in a drying zone at a temperature of 70° C. for 15 seconds and dried to prepare a saponified protective film.
 鹸化処理した保護フィルムを、上記で作製した偏光素子の両面に、上記で調製した水系接着剤を介して、ロール貼合機を用いて貼合し、温度80℃で5分間乾燥して偏光板を得た。偏光素子と保護フィルムとの間に介在する水系接着剤は、乾燥後の接着剤層の厚みが両面ともに100nmとなるように調整した。 The saponified protective film is laminated on both sides of the polarizing element prepared above via the water-based adhesive prepared above using a roll laminator, and dried at a temperature of 80 ° C. for 5 minutes to form a polarizing plate. got The water-based adhesive interposed between the polarizing element and the protective film was adjusted so that the thickness of the adhesive layer after drying was 100 nm on both sides.
 (粘着剤層(X)付き偏光板の作製)
 剥離フィルム(離型処理層付きの厚み38μmのポリエチレンテレフタレートフィルム)に、厚み25μmの粘着剤層(X)が形成された粘着シート(X)を用意した。上記で得た偏光板の一方の面側に、粘着シート(X)の粘着剤層(X)側を偏光板に積層し、粘着剤層(X)付き偏光板を得た。粘着剤層(X)と偏光板との貼合面には、コロナ処理を行った。得られた粘着剤層(X)付き偏光板の層構造は、保護フィルム/接着剤層/偏光素子/接着剤層/保護フィルム/粘着剤層(X)/剥離フィルムであった。
(Preparation of polarizing plate with adhesive layer (X))
A pressure-sensitive adhesive sheet (X) was prepared by forming a pressure-sensitive adhesive layer (X) having a thickness of 25 μm on a release film (polyethylene terephthalate film having a thickness of 38 μm with a release treatment layer). The pressure-sensitive adhesive layer (X) side of the pressure-sensitive adhesive sheet (X) was laminated on one side of the polarizing plate obtained above to obtain a polarizing plate with the pressure-sensitive adhesive layer (X). The bonding surface between the pressure-sensitive adhesive layer (X) and the polarizing plate was subjected to corona treatment. The obtained polarizing plate with adhesive layer (X) had a layer structure of protective film/adhesive layer/polarizing element/adhesive layer/protective film/adhesive layer (X)/release film.
 <表面処理フィルムの作製>
 (防眩性ハードコート層の形成)
 紫外線硬化型のウレタン(メタ)アクリレート系モノマー(屈折率1.51)50重量部、紫外線硬化型の(メタ)アクリレート系モノマー(屈折率1.51)50重量部、平均粒子径3.5μmのメチルメタクリレート-スチレン共重合体ビーズ(屈折率1.55)14重量部、ベンゾフェノン系光重合開始剤5重量部、及びトルエンを混合した固形分濃度40重量%の溶液を、基材フィルム(厚み40μmのトリアセチルセルロースフィルム(屈折率1.49))上に塗布し、温度120℃で5分間乾燥した。その後、紫外線照射により硬化処理を行い、基材フィルム上に凹凸構造を有する厚み約4μmの防眩性ハードコート層が形成された防眩性ハードコートフィルムを作製した。
<Preparation of surface treatment film>
(Formation of antiglare hard coat layer)
UV-curable urethane (meth)acrylate monomer (refractive index 1.51) 50 parts by weight, UV-curable (meth)acrylate monomer (refractive index 1.51) 50 parts by weight, average particle size 3.5 μm 14 parts by weight of methyl methacrylate-styrene copolymer beads (refractive index 1.55), 5 parts by weight of benzophenone-based photopolymerization initiator, and toluene were mixed with a solution having a solid content of 40% by weight. (refractive index: 1.49)) and dried at 120°C for 5 minutes. After that, curing treatment was performed by irradiating ultraviolet rays to prepare an antiglare hard-coated film in which an antiglare hard-coated layer having a concave-convex structure and a thickness of about 4 μm was formed on the base film.
 (反射防止層の形成)
 特開2019-035969号公報の実施例に準じて、上記で得た防眩性ハードコートフィルムを、ロールトゥロール方式のスパッタ成膜装置に導入し、フィルムを走行させながら、防眩性ハードコート層形成面にボンバード処理(Arガスによるプラズマ処理)を行った後、密着性向上層として5nmのSiOx層(x<2)を成膜し、その上に、20nmのNb層、35nmのSiO層、35nmのNb層及び100nmのSiO層を順に成膜し、4層構成の厚み190nmの反射防止層を形成した。反射防止層上に、防汚層としてフッ素系の樹脂を厚み5nmとなるように形成して、表面処理フィルムを作製した。表面処理フィルムの表面処理層は、防眩性ハードコート層、反射防止層、及び防汚層の積層構造を有するものであった。
(Formation of antireflection layer)
According to the examples of JP-A-2019-035969, the antiglare hard-coated film obtained above is introduced into a roll-to-roll type sputtering deposition apparatus, and the antiglare hard coat is applied while the film is running. After bombarding the layer formation surface (plasma treatment with Ar gas), a 5 nm SiOx layer (x<2) is formed as an adhesion improving layer, and a 20 nm Nb 2 O 5 layer and a 35 nm layer are formed thereon. A SiO 2 layer of 35 nm, a Nb 2 O 5 layer of 35 nm and a SiO 2 layer of 100 nm were sequentially deposited to form an antireflection layer having a four-layer structure and a thickness of 190 nm. A fluorine-based resin was formed as an antifouling layer on the antireflection layer so as to have a thickness of 5 nm, thereby producing a surface-treated film. The surface treatment layer of the surface treatment film had a laminated structure of an antiglare hard coat layer, an antireflection layer, and an antifouling layer.
 <粘着シート(Y)の作製>
 ((メタ)アクリル系樹脂の製造)
 撹拌羽根、温度計、窒素ガス導入管、及び冷却器を備えた4つ口フラスコに、アクリル酸ブチルを74.5質量部、アクリル酸メチルを20質量部、アクリル酸2-ヒドロキシエチルを5質量部、アクリル酸を0.5質量部、アゾビスイソブチロニトリル0.2質量部を、酢酸エチル120質量部とともに仕込み、緩やかに撹拌しながら窒素ガスを導入して窒素置換した後、フラスコ内の液温を温度60℃付近に保って8時間重合反応を行って、(メタ)アクリル系樹脂の溶液を得た。上記した方法で(メタ)アクリル系樹脂のガラス転移温度Tgを測定したところ、-40℃であった。
<Preparation of adhesive sheet (Y)>
(Manufacturing of (meth)acrylic resin)
74.5 parts by mass of butyl acrylate, 20 parts by mass of methyl acrylate, and 5 parts by mass of 2-hydroxyethyl acrylate were placed in a four-necked flask equipped with a stirring blade, a thermometer, a nitrogen gas inlet tube, and a condenser. 0.5 parts by mass of acrylic acid, 0.2 parts by mass of azobisisobutyronitrile, and 120 parts by mass of ethyl acetate were charged together with 120 parts by mass of ethyl acetate. A polymerization reaction was carried out for 8 hours while keeping the liquid temperature around 60° C. to obtain a solution of a (meth)acrylic resin. When the glass transition temperature Tg of the (meth)acrylic resin was measured by the method described above, it was -40°C.
 (粘着剤組成物の調製)
 上記で得た(メタ)アクリル系樹脂の溶液に、(メタ)アクリル系樹脂100質量部に対して、コロネートL(トリレンジイソシアネートのトリメチロールプロパンアダクト体の酢酸エチル溶液:固形分濃度75質量%、東ソー(株)製)4質量部(固形分)を混合して粘着剤組成物を得た。
(Preparation of adhesive composition)
To the solution of the (meth)acrylic resin obtained above, to 100 parts by mass of the (meth)acrylic resin, Coronate L (trimethylolpropane adduct of tolylene diisocyanate) Ethyl acetate solution: Solid content concentration 75% by mass , Tosoh Corporation) 4 parts by mass (solid content) were mixed to obtain an adhesive composition.
 (粘着剤層(Y)の形成)
 剥離フィルム(離型処理層付きの厚み38μmのポリエチレンテレフタレートフィルム)に、上記で調製した粘着剤組成物を塗布し、厚み5μmの粘着剤層(Y)を形成し、粘着シート(Y)を作製した。
(Formation of adhesive layer (Y))
The pressure-sensitive adhesive composition prepared above was applied to a release film (polyethylene terephthalate film having a thickness of 38 µm with a release treatment layer) to form a pressure-sensitive adhesive layer (Y) having a thickness of 5 µm to prepare a pressure-sensitive adhesive sheet (Y). bottom.
 〔実施例1〕
 上記の粘着シート(Y)を作成した後、直ちに粘着シート(Y)の粘着剤層(Y)側を、上記で作製した表面処理フィルムの基材フィルム側の面に貼合した。粘着シート(Y)を作製してから(実質的に、表面処理フィルム上に粘着シート(Y)を貼合してから)2日後に、粘着剤層(Y)上の剥離フィルムを剥離し、露出した粘着剤層(Y)上に、粘着剤層(X)付き偏光板の偏光板側を積層して積層体を得た。表面処理フィルム、粘着剤層(Y)、及び粘着剤層(X)付き偏光板の貼合面には、コロナ処理を行った。
[Example 1]
Immediately after the adhesive sheet (Y) was prepared, the adhesive layer (Y) side of the adhesive sheet (Y) was laminated to the substrate film side surface of the surface treatment film prepared above. Two days after the preparation of the pressure-sensitive adhesive sheet (Y) (substantially after lamination of the pressure-sensitive adhesive sheet (Y) on the surface-treated film), the release film on the pressure-sensitive adhesive layer (Y) is peeled off, The polarizing plate side of the polarizing plate with the pressure-sensitive adhesive layer (X) was laminated on the exposed pressure-sensitive adhesive layer (Y) to obtain a laminate. The bonding surfaces of the surface-treated film, the pressure-sensitive adhesive layer (Y), and the polarizing plate with the pressure-sensitive adhesive layer (X) were subjected to corona treatment.
 粘着シート(Y)の作製、粘着シート(Y)の貼合、及び、積層体を得る工程は、いずれも温度23℃、相対湿度50%RHの環境下で行った。得られた積層体を、温度23℃、相対湿度50%RHの環境下で6日間保管して、複合偏光板(1)を得た。粘着シート(Y)の作製及び粘着シート(Y)の貼合は、図2に示すグラフに基づいて、粘着剤層(Y)の伸び800%における応力が0.6N/mm以下の状態で行い、積層体を得る工程は、粘着剤層(Y)の伸び800%における応力が0.6N/mmの状態で行った。
また、複合偏光板(1)の粘着剤層(Y)の温度23℃における伸び800%における応力は、1.1N/mmであった。
The steps of preparing the pressure-sensitive adhesive sheet (Y), laminating the pressure-sensitive adhesive sheet (Y), and obtaining the laminate were all performed under an environment of a temperature of 23° C. and a relative humidity of 50% RH. The resulting laminate was stored for 6 days under an environment of 23° C. temperature and 50% RH relative humidity to obtain Composite Polarizing Plate (1). Preparation of the pressure-sensitive adhesive sheet (Y) and lamination of the pressure-sensitive adhesive sheet (Y) were performed in a state where the stress at 800% elongation of the pressure-sensitive adhesive layer (Y) was 0.6 N/mm 2 or less based on the graph shown in FIG. The step of obtaining a laminate was carried out in a state where the pressure-sensitive adhesive layer (Y) had a stress of 0.6 N/mm 2 at an elongation of 800%.
Moreover, the stress at elongation of 800% at a temperature of 23° C. of the adhesive layer (Y) of the composite polarizing plate (1) was 1.1 N/mm 2 .
 複合偏光板(1)の層構造は、表面処理フィルム(表面処理層/基材フィルム)/粘着剤層(Y)/偏光板(保護フィルム/接着剤層/偏光素子/接着剤層/保護フィルム)/粘着剤層(X)/剥離フィルムであった。複合偏光板(1)をマイクロスコープ(VHX-5000、キーエンス社製)を用いて観察し、表面処理フィルムと粘着剤層(Y)との間、及び、粘着剤層(Y)と偏光板との間の気泡の数(複合偏光板1mあたりの数)を数えた。また、複合偏光板(1)について、上記した方法で表面硬度及び接着力を測定した。結果を表1に示す。 The layer structure of the composite polarizing plate (1) is: surface treatment film (surface treatment layer/base film)/adhesive layer (Y)/polarizing plate (protective film/adhesive layer/polarizing element/adhesive layer/protective film )/adhesive layer (X)/release film. The composite polarizing plate (1) is observed using a microscope (VHX-5000, manufactured by Keyence Corporation), between the surface treatment film and the adhesive layer (Y), and between the adhesive layer (Y) and the polarizing plate. The number of air bubbles (the number per 1 m 2 of the composite polarizer) was counted. Further, the surface hardness and adhesive strength of the composite polarizing plate (1) were measured by the methods described above. Table 1 shows the results.
 〔比較例1〕
 表面処理フィルム上に粘着シート(Y)を貼合してから8日後に、表面処理フィルムの粘着剤層(Y)上に、粘着剤層(X)付き偏光板の偏光板側を積層して積層体を得たこと以外は、実施例1と同様の手順で複合偏光板(2)を得た。粘着シート(Y)の作製及び粘着シート(Y)の貼合は、図2に示すグラフに基づいて、粘着剤層(Y)の伸び800%における応力が0.6N/mm以下の状態で行ったが、積層体を得る工程は、粘着剤層(Y)の伸び800%における応力が1.1N/mmの状態で行った。また、図2に示すグラフからみて、複合偏光板(2)の粘着剤層(Y)の温度23℃における伸び800%における応力は、1.1N/mmであった。実施例1と同様の手順で、複合偏光板(2)の表面処理フィルムと粘着剤層(Y)との間、及び、粘着剤層(Y)と偏光板との間の気泡の数(複合偏光板1mあたりの数)を数え、表面硬度及び接着力を測定した。
結果を表1に示す。
[Comparative Example 1]
8 days after laminating the adhesive sheet (Y) on the surface-treated film, the polarizing plate side of the polarizing plate with the adhesive layer (X) was laminated on the adhesive layer (Y) of the surface-treated film. A composite polarizing plate (2) was obtained in the same manner as in Example 1, except that a laminate was obtained. Preparation of the pressure-sensitive adhesive sheet (Y) and lamination of the pressure-sensitive adhesive sheet (Y) were performed in a state where the stress at 800% elongation of the pressure-sensitive adhesive layer (Y) was 0.6 N/mm 2 or less based on the graph shown in FIG. However, the step of obtaining the laminate was carried out in a state where the stress at 800% elongation of the pressure-sensitive adhesive layer (Y) was 1.1 N/mm 2 . Also, from the graph shown in FIG. 2, the stress at 800% elongation at a temperature of 23° C. of the adhesive layer (Y) of the composite polarizing plate (2) was 1.1 N/mm 2 . In the same procedure as in Example 1, the number of air bubbles (composite The number per 1 m 2 of the polarizing plate) was counted, and the surface hardness and adhesive strength were measured.
Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 1 複合偏光板、10 偏光板、11 偏光素子、12 貼合層、13 保護フィルム、20 表面処理フィルム、21 基材フィルム、22 表面処理層、31 粘着剤層。 1 Composite polarizing plate, 10 Polarizing plate, 11 Polarizing element, 12 Bonding layer, 13 Protective film, 20 Surface treatment film, 21 Base film, 22 Surface treatment layer, 31 Adhesive layer.

Claims (9)

  1.  表面処理フィルムと偏光板とが積層された複合偏光板の製造方法であって、
     前記表面処理フィルムは、基材フィルムと、前記基材フィルムの表面に形成された表面処理層とを有し、
     前記偏光板は、少なくとも偏光素子を含み、
     前記製造方法は、
      伸び800%での応力が0.8N/mm以下である状態の粘着剤層を介して、前記表面処理フィルムと前記偏光板とを貼合して積層体を得る工程(a)と、
      前記積層体において、前記粘着剤層の温度23℃における伸び800%での応力を0.9N/mm以上となるように調整する工程(b)と、を含む、複合偏光板の製造方法。
    A method for manufacturing a composite polarizing plate in which a surface-treated film and a polarizing plate are laminated,
    The surface-treated film has a base film and a surface-treated layer formed on the surface of the base film,
    The polarizing plate includes at least a polarizing element,
    The manufacturing method is
    Step (a) of obtaining a laminate by bonding the surface-treated film and the polarizing plate via an adhesive layer having a stress of 0.8 N/mm 2 or less at 800% elongation;
    A method for producing a composite polarizing plate, comprising the step (b) of adjusting the stress of the adhesive layer at 800% elongation at a temperature of 23° C. to 0.9 N/mm 2 or more in the laminate.
  2.  前記工程(a)は、
      前記表面処理フィルムに前記粘着剤層を形成する工程(a1)と、
      前記表面処理フィルムに形成した前記粘着剤層上に前記偏光板を積層する工程(a2)と、を含む、請求項1に記載の複合偏光板の製造方法。
    The step (a) is
    A step (a1) of forming the pressure-sensitive adhesive layer on the surface-treated film;
    2. The method for producing a composite polarizing plate according to claim 1, comprising a step (a2) of laminating the polarizing plate on the adhesive layer formed on the surface-treated film.
  3.  前記工程(a1)後6日以内に、前記工程(a2)を行う、請求項2に記載の複合偏光板の製造方法。 The method for producing a composite polarizing plate according to claim 2, wherein the step (a2) is performed within 6 days after the step (a1).
  4.  前記工程(b)は、前記積層体を保管する工程である、請求項1~3のいずれか1項に記載の複合偏光板の製造方法。 The method for manufacturing the composite polarizing plate according to any one of claims 1 to 3, wherein the step (b) is a step of storing the laminate.
  5.  前記表面処理フィルムは、前記基材フィルムの片面に前記表面処理層を有し、
     前記積層体は、前記表面処理フィルムの前記基材フィルム側に前記粘着剤層を有する、請求項1~4のいずれか1項に記載の複合偏光板の製造方法。
    The surface-treated film has the surface-treated layer on one side of the base film,
    5. The method for producing a composite polarizing plate according to claim 1, wherein the laminate has the pressure-sensitive adhesive layer on the base film side of the surface treatment film.
  6.  前記偏光板は、前記偏光素子の片面又は両面に保護フィルムを有する、請求項1~5のいずれか1項に記載の複合偏光板の製造方法。 The method for producing a composite polarizing plate according to any one of claims 1 to 5, wherein the polarizing plate has a protective film on one side or both sides of the polarizing element.
  7.  前記粘着剤層の厚みは、10μm以下である、請求項1~6のいずれか1項に記載の複合偏光板の製造方法。 The method for producing a composite polarizing plate according to any one of claims 1 to 6, wherein the adhesive layer has a thickness of 10 µm or less.
  8.  前記粘着剤層は、(メタ)アクリル系樹脂を含む粘着剤組成物を用いて形成され、
     前記(メタ)アクリル系樹脂のガラス転移温度は、-30℃以下である、請求項1~7のいずれか1項に記載の複合偏光板の製造方法。
    The pressure-sensitive adhesive layer is formed using a pressure-sensitive adhesive composition containing a (meth)acrylic resin,
    The method for producing a composite polarizing plate according to any one of claims 1 to 7, wherein the (meth)acrylic resin has a glass transition temperature of -30°C or lower.
  9.  前記表面処理層は、反射防止層、防眩層、ハードコート層、及び防汚層からなる群より選ばれる1種以上である、請求項1~8のいずれか1項に記載の複合偏光板の製造方法。 The composite polarizing plate according to any one of claims 1 to 8, wherein the surface treatment layer is one or more selected from the group consisting of an antireflection layer, an antiglare layer, a hard coat layer, and an antifouling layer. manufacturing method.
PCT/JP2023/001860 2022-02-04 2023-01-23 Method for producing composite polarizing plate WO2023149253A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-016187 2022-02-04
JP2022016187A JP2023114075A (en) 2022-02-04 2022-02-04 Method for manufacturing composite polarizing plate

Publications (1)

Publication Number Publication Date
WO2023149253A1 true WO2023149253A1 (en) 2023-08-10

Family

ID=87552120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001860 WO2023149253A1 (en) 2022-02-04 2023-01-23 Method for producing composite polarizing plate

Country Status (3)

Country Link
JP (1) JP2023114075A (en)
TW (1) TW202346984A (en)
WO (1) WO2023149253A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010024103A1 (en) * 2008-09-01 2010-03-04 日本カーバイド工業株式会社 Pressure-sensitive adhesive composition, pressure-sensitive adhesive and optical film
JP2014164052A (en) * 2013-02-22 2014-09-08 Dainippon Printing Co Ltd Retardation film with adhesive layer and optical member using the film
US20210271011A1 (en) * 2020-02-29 2021-09-02 Gary Sharp Innovations, Llc Preserving In-Plane Function of Polarization Laminates in a Forming Process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010024103A1 (en) * 2008-09-01 2010-03-04 日本カーバイド工業株式会社 Pressure-sensitive adhesive composition, pressure-sensitive adhesive and optical film
JP2014164052A (en) * 2013-02-22 2014-09-08 Dainippon Printing Co Ltd Retardation film with adhesive layer and optical member using the film
US20210271011A1 (en) * 2020-02-29 2021-09-02 Gary Sharp Innovations, Llc Preserving In-Plane Function of Polarization Laminates in a Forming Process

Also Published As

Publication number Publication date
JP2023114075A (en) 2023-08-17
TW202346984A (en) 2023-12-01

Similar Documents

Publication Publication Date Title
JP5429777B2 (en) Polarizer
JP5382843B2 (en) Manufacturing method of polarizing plate
KR101668159B1 (en) (meth)acrylic resin composition and (meth)acrylic resin film using the same
WO2013047884A1 (en) Polarizing plate and method for manufacturing same
WO2017204161A1 (en) Multilayer film and image display device
KR101855959B1 (en) Polarizing film, adhesive-layer-equipped polarizing film, and image display device
JP6043315B2 (en) Polarizer protective film, production method thereof, polarizing plate, optical film, and image display device
TW201640160A (en) Adhesive layer-attached polarizing film set, liquid crystal panel and liquid crystal display device
JP6420274B2 (en) Curable adhesive composition and polarizing plate using the same
JP6343057B1 (en) Polarizing plate with protective film and optical laminate
KR102593816B1 (en) Optical laminate and image display device using the optical laminate
WO2023149253A1 (en) Method for producing composite polarizing plate
WO2020213494A1 (en) Optical laminate, and image display device
JP7420700B2 (en) Optical laminates and display devices
JP2017090894A (en) Polarizing plate and liquid crystal display device
WO2023238668A1 (en) Composite polarizing plate manufacturing method and composite polarizing plate
JP2001188103A (en) Antireflection film
JP2022179511A (en) Optical laminate and display
KR20190010446A (en) Optical sheet
WO2023013275A1 (en) Retardation layer-equipped polarizing plate and image display device using same
CN112654685B (en) Radical adhesive composition, adhesive layer, polarizing plate and image display device
JP2022146427A (en) Optical laminate and display device
WO2022191033A1 (en) Polarizing plate
CN115989434A (en) Image display panel
JP2022077996A (en) Polarizing plate and image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23749569

Country of ref document: EP

Kind code of ref document: A1