WO2023149181A1 - Polyester film production method, polyester film, dry film resist, and release film - Google Patents

Polyester film production method, polyester film, dry film resist, and release film Download PDF

Info

Publication number
WO2023149181A1
WO2023149181A1 PCT/JP2023/001071 JP2023001071W WO2023149181A1 WO 2023149181 A1 WO2023149181 A1 WO 2023149181A1 JP 2023001071 W JP2023001071 W JP 2023001071W WO 2023149181 A1 WO2023149181 A1 WO 2023149181A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester
polyester film
film
less
layer
Prior art date
Application number
PCT/JP2023/001071
Other languages
French (fr)
Japanese (ja)
Inventor
佑記 福岡
年弘 尾田
厳弘 森
怜 宮坂
一仁 宮宅
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2023149181A1 publication Critical patent/WO2023149181A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/69Filters or screens for the moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets

Definitions

  • the present invention relates to a method for producing a polyester film, a polyester film, a dry film resist, and a release film.
  • a polyester film is produced by melt-extrusion of a polyester resin to form a film, followed by processes such as stretching and heat treatment such as thermal relaxation.
  • a polyester film has been widely used as a functional film by applying or attaching a functional material onto the film to impart various functions.
  • a photosensitive composition as a functional material onto a polyester film
  • it may be used as a dry film resist.
  • dry film resists used for forming circuit wiring are required to have higher resolution.
  • the polyester film is also used to produce ceramic green sheets used in the production of laminated ceramic capacitors.
  • Patent Document 1 discloses a support film containing a resin layer containing fine particles formed on one surface of a biaxially stretched polyester film, and a surface on which a resin layer containing fine particles of the support film is formed. A technique of laminating a photosensitive resin layer on the opposite side is disclosed.
  • Patent Document 1 discloses a photosensitive element comprising a support film and a photosensitive layer disposed on the support film, wherein the photosensitive layer comprises a binder polymer and a photopolymerizable compound having an ethylenically unsaturated bond. , a photopolymerization initiator, and the number of defects having a diameter of 2 ⁇ m or more on the photosensitive layer side surface of the support film is 30 or less per 2 mm 2 .
  • Step 1 of obtaining a polyester resin after it has decreased to 1.0 mass ppm or less with respect to the product, and the melt of the polyester resin obtained in the above step 1 is filtered with a filter medium containing a powdery sintered body, and filtered
  • a method for producing a polyester film comprising step 2 of filtering with a filter medium containing a fibrous sintered body with an accuracy of 3 ⁇ m or less, and step 3 of producing a polyester film using the melt filtered in step 2.
  • a dry film resist comprising the polyester film of any one of [6] to [17] and a photosensitive resin layer.
  • a release film comprising the polyester film of any one of [6] to [17] and a release layer.
  • the present invention it is possible to provide a method for producing a polyester film and a polyester film that can suppress optical failures when used as a dry film resist in combination with a photosensitive resin layer or the like. Moreover, according to the present invention, it is possible to provide a method for producing a polyester film and a polyester film that can suppress local concave defects when used for producing a ceramic green sheet. Moreover, according to the present invention, a dry film resist and a release film can be provided.
  • FIG. 2 is a schematic cross-sectional view showing an example of the configuration of a filtering device used for filtering melted polyester resin. It is a schematic diagram showing an example of the composition of the filter which a filtering device has.
  • a numerical range indicated using “to” indicates a range including the numerical values before and after “to” as the minimum and maximum values, respectively.
  • the upper limit or lower limit described in a certain numerical range may be replaced with the upper limit or lower limit of another numerical range described stepwise.
  • the upper limit or lower limit described in a certain numerical range may be replaced with the values shown in the examples.
  • a combination of two or more preferred aspects is a more preferred aspect.
  • the amount of each component in the composition or layer refers to the above-mentioned plurality of substances present in the composition or layer. It means the total amount of substance.
  • the term “step” includes not only independent steps, but also steps in which the intended purpose of the step is achieved even if it cannot be clearly distinguished from other steps.
  • the term “longitudinal direction” means the longitudinal direction of the film during production, and is synonymous with the “conveyance direction” and “machine direction”.
  • width direction means a direction perpendicular to the longitudinal direction.
  • orthogonal is not limited to strictly orthogonal, but includes substantially orthogonal.
  • substantially orthogonal means intersecting at 90° ⁇ 5°, preferably intersecting at 90° ⁇ 3°, more preferably intersecting at 90° ⁇ 1°.
  • film width means the distance between both ends of the film in the width direction.
  • (meth)acrylic is a generic term for acrylic and methacrylic, and means “one or more of acrylic and methacrylic".
  • (meth)acrylate means “one or more of acrylate and methacrylate”
  • (meth)acrylic acid means “one or more of acrylic acid and methacrylic acid”.
  • the term “exposure” includes not only exposure using light but also drawing using particle beams such as electron beams and ion beams, unless otherwise specified.
  • the light used for exposure include the emission line spectrum of a mercury lamp, far ultraviolet rays represented by excimer lasers, extreme ultraviolet rays (EUV light), X-rays, and active rays (active energy rays) such as electron beams.
  • the refractive index means the refractive index for light with a wavelength of 550 nm measured using an Abbe refractometer (“NAR-2T” manufactured by Atago Co., Ltd.).
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) are TSKgel GMHxL, TSKgel G4000HxL, TSKgel G2000HxL and/or TSKgel Super HZM-N (all manufactured by Tosoh Corporation). (trade name) column) using a gel permeation chromatography (GPC: Gel Permeation Chromatography) analyzer, using THF (tetrahydrofuran) as a solvent, detected by a differential refractometer, molecular weight converted using polystyrene as a standard substance is.
  • GPC Gel Permeation Chromatography
  • a method for producing a polyester film which is the first embodiment of the present invention (hereinafter also referred to as "this production method"), is produced by continuously polymerizing a polyester resin precursor in the presence of a titanium compound.
  • the present production method has the effect of suppressing optical failure when used as a dry film resist in combination with a photosensitive resin layer or the like (hereinafter also referred to as "optical failure suppression effect".
  • optical failure suppression effect Although the details of the reason why a polyester film exhibiting ) can be produced are not clear, the present inventors generally presume as follows. If there is either a foreign matter or a void in the polyester film used for the dry film resist, it is considered that optical failure occurs because only that portion cannot be exposed. For example, when the photosensitive composition contained in the photosensitive resin layer or the like in the dry film resist is a negative photosensitive composition, when the photosensitive resin layer or the like is exposed through the polyester film, foreign substances and voids of the polyester film are formed.
  • the photocuring reaction does not progress at the location of the photosensitive resin layer or the like corresponding to the location where either is present, and the photosensitive composition contained in the exposed area is removed in the subsequent development process, resulting in an optical failure. is formed. Therefore, the present inventors confirmed the details of the foreign matter and voids present in such a polyester film. It was also found that voids greatly contribute to the occurrence of optical failures when a photosensitive resin layer or the like is exposed to ultraviolet light. When the present inventors further analyzed each foreign matter, they found that the colored foreign matter contained a component derived from antimony, and the transparent foreign matter was a gel generated during the polymerization process of the polyester resin, or a reaction between magnesium and phosphorus.
  • the present production method includes the above steps 1 to 3, when a ceramic green sheet is produced using the produced polyester film, the effect of suppressing local concave defects in the produced ceramic green sheet ( Hereinafter, the details of the reason for achieving the effect of suppressing the concave defect) are not clear, but the present inventors generally presume as follows.
  • a polyester resin having a sufficiently reduced antimony content is supplied, and the melt of the supplied polyester resin is filtered using a specific combination of filter media. It is presumed that the foreign matter and voids contained in the polyester resin, which is the raw material of the polyester film, could be suppressed.
  • the effect of the present invention means at least one of the optical failure suppressing effect and the concave defect suppressing effect exhibited by each embodiment of the present invention.
  • FIG. 1 is a schematic diagram showing an example of the configuration of a polyester film manufacturing apparatus used in the present manufacturing method.
  • a film manufacturing apparatus 10 shown in FIG. 1 includes a reaction tank 12 , a film forming process section 14 , a longitudinal stretching process section 16 , a lateral stretching process section 18 for lateral stretching, and a winding section 20 .
  • the reactor 12 polymerizes a polyester resin precursor to produce a polyester resin.
  • the film forming process unit 14 includes an extruder 24, a pipe 34, a filtering device 36, a pipe 38, a die 26, and a cast drum 28, and heats and melts the polyester resin produced in the reaction tank 12, The resulting melt is filtered, and polyester film F is produced using the filtered melt.
  • the longitudinal stretching process section 16 includes a pair of low-speed rollers 30 and a pair of high-speed rollers 32, and stretches the polyester film F produced in the film forming process section 14 in the longitudinal direction.
  • the transverse stretching process section 18 stretches the longitudinally stretched polyester film F in the transverse direction.
  • the winding unit 20 winds up the polyester film F stretched in the lateral direction.
  • Step 1 In the reaction tank 12, a step 1 is performed in which a polyester resin precursor is continuously polymerized in the presence of a titanium compound to produce a polyester resin having a predetermined antimony content or less.
  • reaction vessel used in step 1 a known reaction vessel used for synthesis of polyester resin can be used, and is appropriately selected according to the type and amount of the polyester resin and its precursor.
  • step 1 it is preferable to use a reaction vessel that has been washed in advance, since the effect of the present invention is more excellent.
  • the method for cleaning the reaction vessel is not particularly limited, and for example, the liquid-contacting part of the reaction vessel (the part where the polyester resin precursor and the polyester resin can contact) is cleaned with a cleaning liquid, and buffing agent and dry ice are used. Polishing treatment using blasting or the like can be mentioned.
  • the cleaning liquid examples include organic solvents such as ethylene glycol and triethylene glycol, water or aqueous solutions, acids or alkalis, and combinations thereof, and are appropriately selected according to the polyester resin and its precursor.
  • organic solvents such as ethylene glycol and triethylene glycol
  • water or aqueous solutions such as ethylene glycol and triethylene glycol
  • acids or alkalis and combinations thereof
  • the cleaning process of the reaction tank since the effect of the present invention is more excellent, it is heated and washed using an organic solvent such as ethylene glycol and triethylene glycol, and then the wetted part of the reaction tank is subjected to buffing or the like. It is preferable to perform a step of physically removing deposits by performing a polishing treatment.
  • the buffing method is not particularly limited, and any known method can be used.
  • the step of washing the reactor is always carried out before carrying out the step 1 of continuously polymerizing the polyester resin.
  • the timing of performing the washing step is not particularly limited, but for example, depending on the composition of the
  • a polyester resin is produced by continuously polymerizing a polyester resin precursor in the presence of a titanium compound in the washed reaction vessel.
  • the polyester resin produced after the content of antimony contained in the product containing the polyester resin produced by the continuous polymerization has fallen below a predetermined value is supplied to step 2 described later.
  • “continuously polymerizing the polyester resin precursor” means that the polyester resin precursor is continuously or intermittently supplied into the reaction vessel, and the reactant is polymerized (polymerized) while being transported within the reaction vessel. condensation reaction) and continuously or intermittently discharging the resulting polymer from the reactor.
  • the content of antimony contained in the above product is measured by inductively coupled plasma mass spectrometry (ICP-MS).
  • the produced polyester resin is sent to step 2. supply.
  • the condition of the antimony content of the polyester resin to be supplied to step 2 is preferably 0.8 mass ppm or less, more preferably 0.7 mass ppm or less, with respect to the above product, from the viewpoint that the effect of the present invention is more excellent. 0.6 mass ppm or less is more preferable.
  • the lower limit is not particularly limited, and may be 0 mass ppm.
  • the titanium compound used in step 1 is a compound containing titanium, and examples thereof include known titanium compounds that can be used as catalysts for polymerization of polyester resin precursors.
  • an organic titanium compound is preferred, and an organic chelate titanium complex is more preferred.
  • An organic chelate titanium complex is a titanium compound having an organic acid or its salt as a ligand.
  • Organic acids include, for example, citric acid, lactic acid, trimellitic acid and malic acid. Among them, an organic chelate titanium complex having citric acid or a citrate as a ligand is more preferable.
  • titanium compounds described in paragraphs 0049 to 0053 of Japanese Patent No. 5575671 can also be used, the contents of which are incorporated herein.
  • the addition amount of the titanium compound used in step 1 is preferably an amount of 1 to 500 mass ppm in terms of the titanium element conversion value with respect to the total mass of the polyester resin precursor, and an amount of 1 to 100 mass ppm. More preferably, the amount of 1 to 30 ppm by mass is more preferable, the amount of 3 to 20 ppm by mass is particularly preferable, and the amount of 5 to 15 ppm by mass is most preferable.
  • a compound other than the titanium compound may be present together with the titanium compound.
  • the other compounds include alkali metal compounds (e.g., potassium compounds, sodium compounds), alkaline earth metal compounds (e.g., calcium compounds, magnesium compounds), zinc compounds, lead compounds, manganese compounds, cobalt compounds, and aluminum. compounds, antimony compounds, germanium compounds and phosphorus compounds.
  • the other compound is preferably at least one compound selected from the group consisting of magnesium compounds and phosphorus compounds, more preferably both magnesium compounds and phosphorus compounds.
  • Magnesium compounds include, for example, magnesium oxide, magnesium hydroxide, and magnesium salts such as magnesium alkoxide, magnesium acetate and magnesium carbonate. Among them, magnesium acetate is preferable from the viewpoint of solubility in ethylene glycol.
  • Phosphorus compounds include, for example, phosphate esters, and pentavalent phosphate esters having no aromatic ring as a substituent are preferred. Examples of the phosphate ester include trimethyl phosphate, triethyl phosphate, tri-n-butyl phosphate, trioctyl phosphate, tris (triethylene glycol) phosphate, methyl acid phosphate, ethyl acid phosphate, and phosphoric acid.
  • Isopropyl acid, butyl acid phosphate, monobutyl phosphate, dibutyl phosphate, dioctyl phosphate and triethylene glycol acid phosphate can be mentioned, with trimethyl phosphate or triethyl phosphate being preferred.
  • the amount of the other compound added is preferably an amount of 3 to 500 ppm by mass in terms of the metal element or phosphorus element, and an amount of 5 to 100 ppm by mass with respect to the total mass of the polyester resin precursor. more preferred.
  • the amount of the magnesium compound added is 50 ppm by mass or more with respect to the total mass of the polyester resin precursor in terms of the magnesium element conversion value in that it can impart high static electricity to the polyester film.
  • the amount is preferably 50 to 100 mass ppm, more preferably 60 to 90 mass ppm, and particularly preferably 70 to 80 mass ppm.
  • the amount of the phosphorus compound added is preferably an amount that is 50 to 90 mass ppm with respect to the total mass of the polyester resin precursor, in terms of the phosphorus element, and 60 to 80 mass ppm. is more preferable, and an amount of 65 to 75 ppm by mass is even more preferable.
  • the content of titanium contained in the polyester resin precursor and the content of elements other than titanium such as magnesium and phosphorus are measured according to the method for measuring the content of antimony contained in the product by the ICP-MS method. Or obtained by measuring the product.
  • polyester resin precursor used in step 1 and the polyester resin produced in step 1 will be described in detail in the polyester film according to the second embodiment.
  • the reaction conditions for producing the polyester resin by polymerizing the polyester resin precursor in step 1 are not particularly limited, and may be appropriately set according to the type of the polyester resin precursor.
  • the reaction temperature in step 1 is preferably 260 to 300°C, more preferably 275 to 285°C.
  • the pressure in the reaction vessel in step 1 is preferably 1.33 ⁇ 10 ⁇ 3 to 1.33 ⁇ 10 ⁇ 5 MPa, more preferably 6.67 ⁇ 10 ⁇ 4 to 6.67 ⁇ 10 ⁇ 5 MPa.
  • step 2 the polyester resin melt obtained in step 1 is mixed with a filter medium containing a powdery sintered body and a fibrous sintered body with a filtration accuracy of 3 ⁇ m or less (hereinafter also referred to as “specific fibrous sintered body” ) through a filter medium containing
  • step 2 is performed by the extruder 24 and the filtering device 36 of the film forming process section 14 .
  • the polyester resin obtained in step 2 may be dried by heating before being heated and melted by the extruder 24.
  • the polyester resin produced is dried by heating. After that, it is preferable to heat and melt.
  • the heating temperature for the heat drying is often 80 to 180° C. for 12 to 36 hours. In particular, when the heating temperature is lower than the glass transition temperature of the polyester resin, it is preferable to dry in a reduced pressure atmosphere.
  • the polyester resin is melt mixed in the extruder.
  • the conditions for melt-mixing using an extruder are not particularly limited as long as a melt of the polyester resin can be produced.
  • the inside of the extruder is preferably preheated to a temperature of [Tm+10° C.] to [Tm+70° C.] (preferably [Tm+20° C.] to [Tm+50° C.]) before feeding the polyester resin.
  • Tm means the melting point of the polyester resin.
  • the melt-mixing time of the polyester resin is often 3 minutes or longer, preferably 3 to 20 minutes.
  • the polyester resin melt obtained in this manner is supplied to a filtering device 36 through a pipe 34 .
  • the melt melted by the extruder 24 is filtered by a filtering device 36 having a filter medium containing a powdery sintered body and a filter medium containing a specific fibrous sintered body.
  • a filtering device 36 having a filter medium containing a powdery sintered body and a filter medium containing a specific fibrous sintered body.
  • the filter device 36 is a fibrous sintered body using sintered fibers, and includes a filter medium containing a specific fibrous sintered body with a filtration accuracy of 3 ⁇ m or less, and a powdery sintered body using sintered powder. and a filter medium.
  • a filter medium By filtering using both the filter medium containing the specific fibrous sintered body and the filter medium containing the powdery sintered body, it is possible to remove the gel contained in the polyester resin, which is one of the causes of optical failure. Therefore, it is presumed that when used as a dry film resist in combination with a photosensitive resin layer or the like, a polyester film in which optical failures are further suppressed can be produced.
  • the filtering device used in step 2 has a filter medium containing a specific fibrous sintered body and a filter medium containing a powdery sintered body, and has a structure in which the molten polyester resin contacts both of these filter media.
  • its specific configuration is not particularly limited.
  • a filtering device including at least one filter in which a specific fibrous sintered body and a powdery sintered body are integrated as a filter medium, and at least a filtering device including a specific fibrous sintered body A filtering device that uses one filter and at least one filter containing a powdery sintered body in combination is mentioned.
  • a filter containing a specific fibrous sintered body and a filter containing a powdery sintered body are used together, the arrangement of both is not particularly limited as long as the melt contacts both.
  • a filtering device having at least one filter in which a specific fibrous sintered body and a powdery sintered body are integrated is preferable.
  • a leaf disk type filter is preferable as the filter containing the filter medium.
  • the number and size of the filters including the above-described filter media are appropriately selected according to the type of polyester resin, characteristics such as viscosity, and conditions such as flow rate.
  • the filtration accuracy of the filter medium containing the specific fibrous sintered body is preferably 2 ⁇ m or less in terms of removing foreign matter with a diameter of 9 to 20 ⁇ m and obtaining a superior polyester film due to the effects of the present invention.
  • the lower limit is not particularly limited, it is, for example, 1 ⁇ m.
  • the filtration accuracy is defined as "the minimum diameter of glass beads that can capture 95% or more by the filter medium". The lower the numerical value of filtration accuracy, the higher the accuracy of the filter medium.
  • FIG. 2 is a schematic cross-sectional view showing an example of the configuration of a filtering device used for filtering the melted polyester resin in step 2.
  • the filtering device 36 shown in FIG. 2 is composed of a cylindrical housing 44 and a plurality of disk-shaped filters 46 provided inside the housing 44 .
  • the housing 44 also has a supply port 40 that communicates with the pipe 34 to supply the polyester resin melt, and a discharge port 42 that communicates with the pipe 38 and from which the filtered melt is discharged.
  • a plurality of filters 46 are arranged side by side in the axial direction of the flow path 48 with a predetermined interval by spacers 54 .
  • FIG. 3 is a schematic diagram showing an example of the configuration of a filter included in the filtering device.
  • the disk-shaped filter 46 shown in FIG. 3 has a substantially disk-shaped sintered body 52 having a through hole in the center and is sandwiched between substantially disk-shaped perforated plates 53 having a through hole in the center. It has a configuration in which an annular ring member 50 is attached to the through hole of the.
  • the sintered body 52 has a specific fibrous sintered body and a powdery sintered body.
  • a side wall of the ring member 50 is provided with a large number of through holes 51 arranged in a circumferential direction, which serve as flow paths for the melt filtered by the sintered body 52 .
  • the hole diameter of the through holes 51 is, for example, 1 to 3 ⁇ m or less.
  • the through hole 51 communicates with a channel 48 that is closed at one end and communicates with the discharge port 42 at the other end.
  • the diameter D of the filter 46 is appropriately set according to the amount of melt supplied from the extruder 24 and the residence time.
  • the melted polyester resin heated and melted in the extruder 24 is supplied from the pipe 34 through the supply port 40 into the housing 44 of the filtering device 36 .
  • the molten material supplied into the housing 44 is flowed radially outward of the filter by the member 56, flows into the disk-shaped filter 46, is filtered by the sintered body 52, and foreign matters are removed. be done.
  • the melt that has passed through the sintered body 52 passes through the through hole 51 of the ring member 50 to reach the inside of the channel 48, flows from the open end of the channel 48 through the outlet 42, flows into the pipe 38, and exits from the pipe 38.
  • a die 26 is provided.
  • Filtration conditions for filtering the melt by the filtration device are not particularly limited, but in order to effectively remove foreign matter, etc., the filtration pressure may be set in the range of 10 to 200 kg/cm 2 for filtration. preferable. Moreover, it is preferable that the residence time of the melt staying in the filtering device 36 is 1 minute or more and 30 minutes or less. Furthermore, it is preferable to change the melting temperature and discharge amount of the polyester resin so that the apparent viscosity of the melt at the inlet of the filtering device 36 is 10 to 2000 Pa ⁇ s.
  • the filtering device used for filtering the melted polyester resin in step 2 is not limited to the filtering device described above.
  • step 3 the polyester resin melt filtered in step 2 is used to produce a polyester film.
  • step 3 is performed by the die 26 and cast drum 28 of the film forming process section 14 , the longitudinal stretching process section 16 and the transverse stretching process section 18 .
  • the polyester resin melt filtered in step 2 is extruded into a film by a die 26, and an unstretched polyester film made of a film-shaped melt (hereinafter, polyester film is simply referred to as " Also referred to as "film F") is formed.
  • the melt supplied to the die 26 is heated to, for example, [Tm+10° C.] to [Tm+70° C.], cooled and solidified at 30 to 110° C. on the cast drum 28 to form an unstretched film F (amorphous sheet).
  • the melt may be extruded in a single layer or in multiple layers.
  • a well-known extruder can be used as an extruder for extruding the melt.
  • the unstretched film F is stretched (longitudinal stretching) in the longitudinal direction (longitudinal direction) by a pair of low-speed rollers 30 and a pair of high-speed rollers 32 provided in the longitudinal stretching section 16 .
  • the film F is preferably heated to a temperature of [Tg+5° C.] to [Tg+60° C.] (Tg: glass transition temperature of the polyester resin).
  • Tg glass transition temperature of the polyester resin.
  • the draw ratio in the longitudinal direction (longitudinal direction) by longitudinal drawing is, for example, 2 to 7 times, preferably 2 to 5 times.
  • the longitudinally stretched film F is stretched (horizontally stretched) in the transverse direction (film width direction) by the transverse stretching unit 18 to produce a biaxially stretched film (biaxially oriented film).
  • the heating temperature of the film F during lateral stretching is, for example, [Tg+5° C.] to [Tg+60° C.], preferably [Tg+20° C.] to [Tg+50° C.].
  • the draw ratio in the transverse direction (longitudinal direction) is, for example, 2 to 7 times, preferably 2 to 5 times.
  • the film F thus biaxially stretched is finally cooled and then wound up by the winding unit 20 .
  • the temperature of the stretching step is preferably 120 to 150°C when the polyester resin is polyethylene terephthalate (PET), and preferably 140 to 180°C when the polyester resin is polyethylene-2,6-naphthalate (PEN).
  • PET polyethylene terephthalate
  • PEN polyethylene-2,6-naphthalate
  • a uniaxially stretched film stretched only in the longitudinal direction can be manufactured by winding the longitudinally stretched film F in the winding section 20 without going through the transverse stretching process section 18 .
  • Step 3 the descriptions of [0113] to [0169] of International Publication No. 2020/241692 can be referred to, and the contents thereof are incorporated herein.
  • the polyester film produced by this production method may have a single-layer structure consisting only of a polyester base material formed using the melt of the polyester resin filtered in step 2, and the polyester film filtered in step 2
  • a multilayer structure having a polyester base material formed using a resin melt and a particle-containing layer containing particles may also be used.
  • the polyester base material of the polyester film preferably contains substantially no inorganic particles, more preferably substantially no particles.
  • substantially free of the particles means that the content of the particles in the thermoplastic substrate is determined by quantitative analysis of the elements derived from the particles by X-ray fluorescence spectroscopy. is defined as being 50 mass ppm or less with respect to the total mass of
  • the content of the particles contained in the thermoplastic substrate is more preferably 10 mass ppm or less with respect to the total mass of the thermoplastic substrate, and particularly preferably the detection limit or less. Even if the particles are not positively added to the polyester base material, contaminant components, raw material resins, or stains adhered to the lines or equipment in the above manufacturing process may peel off and be mixed into the polyester base material. be.
  • the filtration in step 2 above preferably removes unintentionally contaminating particles.
  • a polyester film having a polyester substrate and a particle-containing layer can be produced by carrying out a particle-containing layer forming step (step 4) for forming a particle-containing layer at any stage of the present production method.
  • a composition for forming a particle-containing layer containing particles and a resin (hereinafter also referred to as "composition A”) is used to form a coating film of composition A by in-line coating, and if necessary and drying accordingly to form a particle-containing layer.
  • the polyester substrate to which the composition A is applied in step 4 includes, for example, an unstretched polyester substrate and a uniaxially stretched polyester substrate, preferably a uniaxially stretched polyester substrate.
  • step 4 it is preferable to perform the step 4 between the longitudinal stretching and the transverse stretching in the above step 3. This is because the adhesion between the polyester substrate and the particle-containing layer can be improved by laterally stretching the uniaxially stretched polyester substrate and the particle-containing layer at the same time.
  • Composition A can be prepared by mixing particles contained in the particle-containing layer, resin, additives added as necessary, and solvent.
  • solvents include water, ethanol, toluene, ethylene glycol monoethyl ether, ethylene glycol dimethyl ether, propylene glycol monomethyl ether and propylene glycol monoethyl ether. Among them, water is preferable from the viewpoint of environment, safety and economy.
  • Composition A may contain a single solvent, or may contain two or more solvents.
  • the content of the solvent is preferably 80 to 99 mass % with respect to the total mass of composition A. That is, the total content of components (solid content) other than the solvent is preferably 0.5 to 20% by mass with respect to the total mass of composition A.
  • composition A including their preferred embodiments, are the same as those described later in the section on the particle-containing layer of the polyester film according to the second embodiment.
  • the step 4 of forming a particle-containing layer is not limited to the step of forming by applying the above composition A to a polyester substrate, for example, the melt filtered in step 2 and the By co-extrusion of the melt containing the particles and the resin, to form a laminate in which the polyester base material and the particle-containing layer are laminated, and then biaxially stretching the laminate to produce a polyester film.
  • a polyester substrate for example, the melt filtered in step 2 and the By co-extrusion of the melt containing the particles and the resin, to form a laminate in which the polyester base material and the particle-containing layer are laminated, and then biaxially stretching the laminate to produce a polyester film.
  • the polyester film produced by the present production method described above exhibits an effect of suppressing optical defects when used as a dry film resist in combination with a photosensitive resin layer or the like.
  • Preferred aspects and uses of the polyester film produced by this production method are the same as those of the polyester films according to the second and third embodiments described below.
  • polyester film (1) The polyester film, which is the second embodiment of the present invention, has a haze of 0.6% or less, an antimony content of 1 mass ppm or less as measured by the ICP-MS method, and a transmission polarizing microscope. The number of foreign particles and voids with a diameter of 9 to 20 ⁇ m observed is less than 10/500 mm 2 .
  • the present inventors generally presume as follows. As described above, the present inventors investigated foreign matter and voids present in the polyester film, which are thought to be the cause of optical failures in dry film resists, and found that antimony-derived components among the foreign matter and voids were investigated. It was found that the colored foreign matter contained in the film, and the transparent foreign matter and voids having a diameter of 9 to 20 ⁇ m greatly contribute to the occurrence of optical failures when a photosensitive resin layer or the like is exposed to ultraviolet light.
  • the polyester film of the present embodiment by setting the content of antimony to a predetermined value or less, the generation of the colored foreign matter is suppressed, and the content of the foreign matter with a diameter of 9 to 20 ⁇ m and the void content is reduced to a predetermined value or less. It is inferred that the optical failure of the dry film resist could be suppressed because of this.
  • the content of antimony (Sb) contained in the polyester film of the present embodiment is 1 mass ppm or less with respect to the total mass of the polyester film. From the viewpoint that the effect of the present invention is more excellent, the antimony content is preferably 0.7 mass ppm or less, more preferably 0.6 mass ppm or less, and 0.5 mass ppm or less with respect to the total mass of the polyester film. is more preferred.
  • the lower limit is not particularly limited, and may be 0 mass ppm.
  • the content of antimony contained in the polyester film can be measured by ICP-MS. Details of the measurement method will be described in Examples described later.
  • the total number of foreign matter and voids with a diameter of 9 to 20 ⁇ m observed with a polarizing microscope is 10/500 mm 2 or less.
  • the unit of "pieces/500 mm 2" means the number of foreign particles or voids per 500 mm 2 observation area of the polyester film observed using a polarizing microscope.
  • the total number of foreign particles and voids with a diameter of 9 to 20 ⁇ m contained in the polyester film and the total number of foreign particles and voids with a diameter of 3 ⁇ m or more and less than 9 ⁇ m are measured using a transmission polarizing microscope.
  • the total number of foreign particles and voids with a diameter of 9 to 20 ⁇ m observed using a polarizing microscope is preferably as small as possible, preferably 7/500 mm 2 or less, from the viewpoint of better optical failure suppression effect.
  • the lower limit of the total number of foreign matter and voids having a diameter of less than 9 to 20 ⁇ m is not particularly limited, and may be 0/500 mm 2 .
  • Foreign matter with a diameter of 9 to 20 ⁇ m contained in the polyester film includes, for example, transparent foreign matter composed of a gel produced in the process of polymerizing a polyester resin, heat-degraded polyester produced by polymerization, antimony compounds, magnesium compounds, Contaminants originating from either a phosphorus compound or a titanium compound (for example, a phosphate produced by a reaction between a magnesium compound and a phosphorus compound as additives) can be mentioned.
  • voids having a diameter of 9 to 20 ⁇ m contained in the polyester film include voids generated around the above-mentioned foreign matters.
  • SEM-EDX Sccanning Electron Microscope-Energy dispersive X-ray spectrometry
  • the total number of foreign matter and voids with a diameter of 3 ⁇ m or more and less than 9 ⁇ m observed using a polarizing microscope on the polyester film of the present embodiment is preferably 200 / 500 mm 2 or less, and 150 It is more preferably 100 pieces/500 mm 2 or less, even more preferably 100 pieces/500 mm 2 or less, and particularly preferably 70 pieces/500 mm 2 or less.
  • the lower limit of the total number of foreign matter and voids with a diameter of 3 ⁇ m or more and less than 9 ⁇ m is not particularly limited, and may be 0/500 mm 2 .
  • Foreign matter and voids with a diameter of 3 ⁇ m or more and less than 9 ⁇ m contained in the polyester film include, for example, transparent foreign matter made of gel formed in the process of polymerizing the polyester resin, colored foreign matter containing Sb-derived components, and a magnesium compound as an additive. voids generated around foreign substances such as phosphates produced by the reaction of phosphorus compounds and colored foreign substances and transparent foreign substances.
  • the total number of foreign matter and voids with a diameter of more than 20 ⁇ m observed using a polarizing microscope on the polyester film of the present embodiment is preferably less than 1/500 mm 2 , and 0/500 mm 2 (i.e., not observed) is more preferable.
  • the haze of the polyester film of this embodiment is 0.6% or less.
  • the haze of the polyester film is preferably 0.5% or less, more preferably 0.4% or less, and still more preferably less than 0.3%, from the viewpoint of superior transparency and optical failure suppression performance.
  • the lower limit is not particularly limited, 0% or more is preferable.
  • the haze of the polyester film can be measured according to JIS K 7105 using a known haze meter (eg, "NDH-2000" manufactured by Nippon Denshoku Industries Co., Ltd.).
  • the polyester film of the present embodiment may have a single-layer structure consisting only of a polyester base material formed using a melt of a polyester resin, and a polyester base material formed using a melt of a polyester resin, It may be a multilayer structure having a particle-containing layer containing particles.
  • the polyester film of the present embodiment has a particle-containing layer, one particle-containing layer may be arranged on one side of the polyester substrate, or two particle-containing layers may be arranged on both sides of the polyester substrate. good. Among them, it is preferable that one particle-containing layer is arranged on one side of the polyester base material.
  • the polyester film of the present embodiment may have layers other than the polyester substrate and the particle-containing layer.
  • Such other layers include adhesion layers, release layers, antistatic layers and oligomer precipitation prevention layers.
  • an intermediate layer such as a primer layer may be provided between the polyester base material and the particle-containing layer.
  • the thickness of these other layers is preferably 1 nm to 1 ⁇ m, more preferably 30 to 500 nm.
  • a polyester substrate is a film-like object containing a polyester resin as a main component.
  • the “main component” means the component with the largest content (mass) among all the components contained in a certain object.
  • the polyester base material may contain a single polyester resin, or may contain two or more polyester resins.
  • the polyester base material of the polyester film of the present embodiment preferably does not substantially contain inorganic particles. That is, the content of the inorganic particles is 50 ppm by mass or less with respect to the total mass of the polyester base material when quantitative analysis of the elements derived from the inorganic particles is performed on the polyester base material by fluorescent X-ray analysis. is preferred.
  • examples of the inorganic particles include inorganic particles contained in the particle-containing layer described later.
  • the content of the particles contained in the polyester base material is more preferably 10 mass ppm or less with respect to the total mass of the polyester base material, and further preferably below the detection limit.
  • polyester resin an aromatic polyester resin is preferable because it is excellent in dimensional stability, mechanical strength and transparency.
  • aromatic polyester resins include polyethylene terephthalate and polyethylene-2,6-naphthalate.
  • aromatic polyesters include polyesters whose main monomer units are ethylene terephthalate or ethylene-2,6-naphthalate (that is, polyethylene terephthalate (PET) or polyethylene-2,6-naphthalate (PEN)), and Included are polyesters (copolymers) containing monomer units of both ethylene terephthalate and ethylene-2,6-naphthalate.
  • the aromatic polyester is preferably an aromatic polyester having repeating units composed of 0 to 40 mol % of ethylene terephthalate units and 60 to 100 mol % of ethylene-2,6-naphthalate units.
  • the intrinsic viscosity of the aromatic polyester is preferably in the range of 0.50 to 0.80.
  • the film is less likely to break even if the draw ratio is increased, and whitening is less likely to occur even if the film is strongly drawn.
  • the intrinsic viscosity is 0.80 or less, there is no need to greatly improve the molecular weight, so the load in the melt polymerization and solid phase polymerization steps is small, which is preferable from the viewpoint of productivity.
  • the method for producing the polyester resin is not particularly limited, and known methods can be used.
  • a method of producing a polyester resin by subjecting a polyester resin precursor containing at least one dicarboxylic acid compound and at least one diol compound to polycondensation in the presence of a known compound such as a titanium compound. be done.
  • a known compound such as a titanium compound.
  • a dicarboxylic acid compound is a compound selected from the group consisting of dicarboxylic acids and dicarboxylic acid ester compounds.
  • dicarboxylic acid compounds include dicarboxylic acids such as aliphatic dicarboxylic acid compounds, alicyclic dicarboxylic acid compounds, and aromatic dicarboxylic acid compounds, and dicarboxylic acids such as methyl ester compounds and ethyl ester compounds of these dicarboxylic acids. esters. Among them, aromatic dicarboxylic acid or methyl aromatic dicarboxylate is preferable.
  • aliphatic dicarboxylic acid compounds include malonic acid, succinic acid, glutaric acid, adipic acid, suberic acid, sebacic acid, dodecanedioic acid, dimer acid, eicosandioic acid, pimelic acid, azelaic acid, methylmalonic acid, and ethylmalonic acid.
  • Alicyclic dicarboxylic acid compounds include, for example, adamantanedicarboxylic acid, norbornenedicarboxylic acid, cyclohexanedicarboxylic acid, and decalinedicarboxylic acid.
  • aromatic dicarboxylic acid compounds include terephthalic acid, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and 1,8-naphthalenedicarboxylic acid.
  • terephthalic acid or 2,6-naphthalenedicarboxylic acid is preferable, and terephthalic acid is more preferable.
  • dicarboxylic acid compound Only one type of dicarboxylic acid compound may be used, or two or more types may be used in combination.
  • terephthalic acid When terephthalic acid is used as the dicarboxylic acid compound, terephthalic acid may be used alone, or may be copolymerized with another aromatic dicarboxylic acid such as isophthalic acid, or an aliphatic dicarboxylic acid.
  • diol compound examples include aliphatic diol compounds, alicyclic diol compounds, and aromatic diol compounds, with aliphatic diol compounds being preferred.
  • aliphatic diol compounds examples include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,2-butanediol, 1,3-butanediol, and neo Pentyl glycol may be mentioned, with ethylene glycol being preferred.
  • Alicyclic diol compounds include, for example, cyclohexanedimethanol, spiroglycol, and isosorbide.
  • aromatic diol compounds include bisphenol A, 1,3-benzenedimethanol, 1,4-benzenedimethanol, and 9,9′-bis(4-hydroxyphenyl)fluorene. Only one kind of diol compound may be used, or two or more kinds thereof may be used in combination.
  • Compounds used for producing polyester resins are not particularly limited, and known compounds that can be used for synthesis of polyester resins can be used.
  • Compounds include, for example, alkali metal compounds (e.g., potassium compounds, sodium compounds), alkaline earth metal compounds (e.g., calcium compounds, magnesium compounds), zinc compounds, lead compounds, manganese compounds, cobalt compounds, aluminum compounds, antimony compounds, titanium compounds, germanium compounds, and phosphorus compounds.
  • alkali metal compounds e.g., potassium compounds, sodium compounds
  • alkaline earth metal compounds e.g., calcium compounds, magnesium compounds
  • zinc compounds e.g., lead compounds, manganese compounds, cobalt compounds, aluminum compounds, antimony compounds, titanium compounds, germanium compounds, and phosphorus compounds.
  • titanium compounds are preferable from the viewpoint of catalytic activity and cost.
  • One of the above compounds may be used alone, or two or more thereof may be used in combination.
  • the amount of each compound added is generally 1 to 500 ppm by mass with respect to the total mass of the polyester resin in terms of the metal element or phosphorus element, and 1 to 100 An amount that gives ppm by mass is preferred.
  • the titanium compound may be the same as the titanium compound used in step 1 of the first embodiment.
  • the magnesium compound and the phosphorus compound may be the same as the magnesium compound and the phosphorus compound, respectively, which are listed as the compounds that may be used in step 1 of the first embodiment.
  • Terminal blocking agent In the production of the polyester resin, if necessary, a terminal blocker may be used. By using the terminal blocking agent, a structure derived from the terminal blocking agent is introduced to the terminal of the polyester resin.
  • the terminal blocking agent is not limited, and known terminal blocking agents can be used. Examples of terminal blocking agents include oxazoline-based compounds, carbodiimide-based compounds, and epoxy-based compounds.
  • the end blocking agent the content described in [0055] to [0064] of JP-A-2014-189002 can also be referred to, and the content of the above publication is incorporated herein.
  • the polyester resin may contain other metal compounds, nitrogen-containing basic compounds, antioxidants, antistatic agents, ultraviolet absorbers, fluorescent whitening agents, dyes, and the like depending on the purpose.
  • the method for producing the polyester resin is not particularly limited, and includes known production methods such as batch, semi-batch and continuous methods.
  • Examples of the method for producing the polyester resin include a transesterification method and a direct esterification method.
  • the method described as the step 1 of the first embodiment is particularly preferable.
  • a solid phase polymerization reaction may be performed.
  • the content of the polyester resin in the polyester base is preferably 85% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more, and 98% by mass with respect to the total mass of the resin in the polyester base.
  • the above are particularly preferred.
  • the upper limit of the content of the polyester resin is not particularly limited, and can be appropriately set, for example, within a range of 100% by mass or less with respect to the total mass of the resin in the polyester base material.
  • the polyester base material may contain components other than the polyester resin (for example, the compounds described above, unreacted raw material components, particles, water, and the like). It is preferable that the polyester base material does not substantially contain inorganic particles, in order to obtain a more excellent effect of the present invention.
  • the inorganic particles contained in the polyester base material include, for example, inorganic particles contained in the particle-containing layer described later, and furthermore, the metal compound and the phosphorus compound used in the step of polymerizing the polyester resin react to Inorganic particles (so-called internal particles) that precipitate as metal phosphates can be mentioned. Moreover, it is preferable that the polyester base material does not substantially contain organic particles from the viewpoint that the effects of the present invention are more excellent.
  • Organic particles contained in the polyester base material include, for example, organic particles contained in the particle-containing layer described later.
  • the polyester film of the present embodiment preferably has a particle-containing layer on at least one side of the polyester substrate in that the transportability can be improved by imparting slipperiness. Specifically, the winding quality can be improved (blocking can be suppressed), the occurrence of scratches and defects during transportation can be suppressed, and wrinkles during high-speed transportation can be reduced.
  • the particle-containing layer may be provided directly on the surface of the polyester base material or may be provided via an intermediate layer, but it is preferable to provide it directly on the surface of the polyester base material in terms of better productivity.
  • the particle-containing layer preferably contains a binder together with the particles.
  • the particle-containing layer may contain additives in addition to the particles and binder.
  • Particles include inorganic particles and organic particles.
  • inorganic particles include silica particles (silicon dioxide particles, colloidal silica), titania particles (titanium oxide particles), calcium carbonate, barium sulfate, and alumina particles (aluminum oxide particles).
  • organic particles include resin particles.
  • resins constituting resin particles include acrylic resins such as polymethyl methacrylate resin (PMMA), polyester resins, silicone resins, styrene resins, urethane resins, and styrene-acrylic resins.
  • the resin particles may or may not have a crosslinked structure.
  • Specific examples include non-crosslinked acrylic resin particles, non-crosslinked styrene resin particles, crosslinked acrylic resin particles, crosslinked urethane resin particles, and divinylbenzene crosslinked particles.
  • an acrylic resin means a resin containing structural units derived from acrylate or methacrylate.
  • the content of particles in the particle-containing layer is preferably 0.1 to 30% by mass, more preferably 1 to 25% by mass, based on the total mass of the particle-containing layer. Also, the content of the particles is preferably 0.0001 to 0.01% by mass, more preferably 0.0005 to 0.005% by mass, relative to the total mass of the polyester base material.
  • the particle-containing layer preferably contains a binder.
  • a resin binder is preferred.
  • the resin binder non-polyester resins are preferable, and examples thereof include acrylic resins, urethane resins, polyester resins, and olefin resins, and acrylic resins, urethane resins, and olefin resins are preferable.
  • a known resin can be used as the binder.
  • the resin binder may be an acid-modified resin.
  • the binder contained in the particle-containing layer may have a crosslinked structure. That is, the particle-containing layer may be a crosslinked film.
  • the particle-containing layer may contain a single binder, or may contain two or more binders.
  • the binder content is preferably 30 to 99.8% by mass, more preferably 50 to 99.5% by mass, based on the total mass of the particle-containing layer.
  • Additives contained in the particle-containing layer include, for example, surfactants, waxes, antioxidants, ultraviolet absorbers, colorants, reinforcing agents, plasticizers, antistatic agents, flame retardants, rust inhibitors, and anti-rust agents. Examples include fungicides.
  • the particle-containing layer preferably contains a surfactant from the viewpoint of improving the smoothness of the surface.
  • the surfactant is not particularly limited, and includes silicone surfactants, fluorine surfactants, and hydrocarbon surfactants.
  • a fluorine-based surfactant having a fluoroalkyl group) or a hydrocarbon-based surfactant is preferable.
  • One type of surfactant may be used, or two or more types may be used in combination.
  • the content of the surfactant is preferably from 0.1 to 10% by mass, more preferably from 0.1 to 5% by mass, based on the total mass of the particle-containing layer, from the viewpoint of better surface smoothness.
  • the thickness of the particle-containing layer is preferably 1 nm to 1 ⁇ m, more preferably 1 to 500 nm, even more preferably 1 to 200 nm, from the viewpoint of low haze.
  • the thickness of the particle-containing layer is the arithmetic mean of the thicknesses of five locations on the section, which is measured using a scanning electron microscope (SEM) by preparing a section having a section perpendicular to the main surface of the polyester film. value.
  • the polyester film of the present embodiment may contain titanium, and preferably contains titanium. Moreover, the polyester film of the present embodiment may contain an element derived from the compound added to the polyester resin. Among them, the polyester film preferably contains at least one element selected from the group consisting of magnesium and phosphorus, and more preferably contains magnesium and phosphorus. Moreover, the polyester film of the present embodiment preferably contains at least one element selected from the group consisting of titanium, magnesium and phosphorus, and more preferably contains titanium, magnesium and phosphorus.
  • the content of each of the above elements is preferably 1 to 500 mass ppm, more preferably 1 to 100 mass ppm, relative to the total mass of the polyester film.
  • the contents of the metal element and phosphorus element contained in the polyester film can be measured by ICP-MS according to the method for measuring the content of antimony.
  • the content of the titanium element is preferably 1 to 30 mass ppm, more preferably 3 to 20 mass ppm, and even more preferably 5 to 15 mass ppm.
  • the content of the magnesium element is preferably 50 mass ppm or more with respect to the total mass of the polyester film in that it can impart high static electricity properties, and 50 to 100 mass. ppm is more preferred, 60 to 90 ppm by mass is more preferred, and 70 to 80 ppm by mass is particularly preferred.
  • the content of the phosphorus element is preferably 50 to 90 mass ppm, more preferably 60 to 80 mass ppm, and 65 to 75 mass ppm, relative to the total mass of the polyester film. is more preferred.
  • the thickness of the polyester film of the present embodiment is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, and even more preferably 35 ⁇ m or less, from the viewpoint of superior optical failure suppression performance.
  • the lower limit of the thickness is not particularly limited, it is preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more, and even more preferably 10 ⁇ m or more in terms of improving strength and workability.
  • the thickness of the polyester film should be measured using a continuous stylus film thickness gauge. Specifically, the thickness of the polyester film is measured over 10 m along the longitudinal direction with a continuous stylus film thickness gauge. This measurement is performed at five different positions in the width direction. Let the arithmetic mean value of the obtained measured value be thickness.
  • the thickness is measured with a stylus type film thickness meter at five different locations arbitrarily selected from the polyester film, and the arithmetic average value of the obtained measured values is taken as the thickness. do.
  • the method for producing the polyester film of the present embodiment is not particularly limited as long as the polyester film having the above configuration can be produced.
  • a method for producing a polyester film having a polyester substrate and a particle-containing layer for example, a polyester resin is melt-extruded to prepare a polyester substrate, and then a particle-containing layer-forming composition containing particles on one side of the polyester substrate. and then stretching, and a method of co-extrusion of a particle-containing layer-forming composition containing a polyester resin melt, particles and a binder and then stretching.
  • a substantially particle-free polyester substrate is prepared by melt extrusion molding, and then a composition containing particles is applied to one side of the polyester substrate. and then stretching to produce a polyester film.
  • the particles contained in the polyester film can be reduced as much as possible while maintaining the slipperiness, so that the haze of the polyester film can be further reduced and a film with excellent optical failure suppression performance can be produced.
  • the method described as the method for producing the polyester film according to the above-described first embodiment, including its preferred mode can be mentioned.
  • polyester film of the present embodiment is excellent in the effect of suppressing optical failures, it is suitably used as a film for producing a dry film resist. Moreover, since the polyester film of the present embodiment is excellent in transparency, it can be used as an optical film other than for dry film resist production.
  • polyester films can be used for protective films for various applications, support films for various applications such as decorative sheets and decorative sheets, molding films such as decorative layers and resin sheets, films for optical displays, and conductive films. can be done.
  • the polyester film of the present embodiment is also excellent in smoothness, it can be used as a release film for various applications such as ceramic green sheet production, a film for semiconductor production process, a film for polarizing plate production process, a film for magnetic tape, and for labels, It can also be used as a separator for adhesive films for medical and office supplies.
  • the dry film resist (DFR) of the present invention has a polyester film and a photosensitive resin layer. DFRs are often used as photosensitive transfer members.
  • the DFR may have an intermediate layer between the polyester film and the photosensitive resin layer.
  • the intermediate layer means all layers between the polyester film and the photosensitive resin layer.
  • the DFR of the present invention has a polyester film.
  • a polyester film is used as the support, it is preferably a peelable support.
  • the polyester film has already been described as the polyester film of the second embodiment.
  • the photosensitive resin layer is preferably formed on the surface of the polyester film opposite to the particle-containing layer.
  • a known photosensitive resin layer can be used as the photosensitive resin layer.
  • a negative photosensitive resin layer is preferable because it has excellent lamination properties at high speed.
  • a binder polymer preferably a polymer having an acid group
  • a polymerizable compound having an ethylenically unsaturated bond and a photosensitive resin layer having a photopolymerization initiator are preferred.
  • the photosensitive resin layer for example, the photosensitive resin layer described in JP-A-2016-224162 may be used.
  • a photosensitive resin layer containing a binder polymer, a polymerizable compound having an ethylenically unsaturated bond, and a photopolymerization initiator described in International Publication No. 2018/105313 is also preferred.
  • a more preferable form is a photosensitive resin layer containing an alkali-soluble acrylic resin having a cyclic structure, a polyfunctional acrylate monomer, and an oxime-based photopolymerization initiator or a bisimidazole-based photopolymerization initiator.
  • the DFR preferably has a protective film on the surface of the photosensitive resin layer opposite to the support side.
  • An embodiment using a polyester film as the protective film is also preferred.
  • a method for producing DFR is not particularly limited, and DFR can be produced by a known production method.
  • a method for producing a DFR for example, a step of mixing the constituent components of each layer and a solvent described above to prepare a composition for forming each layer such as a polyester resin composition, and a step of applying the above composition on the surface of the polyester film After applying a substance to form a coating layer, the step of drying the coating layer to form each layer is performed in order according to the desired layer structure, thereby forming a polyester film and an intermediate layer provided as necessary. , and a photosensitive resin layer in this order.
  • the DFR of the present invention has the excellent effect of being able to form resist patterns with few optical defects even when used to form high-definition resist patterns. Therefore, the DFR of the present invention is preferably used for manufacturing resist patterns and circuit wiring.
  • the polyester film of the third embodiment of the present invention is characterized in that the total number of foreign matter and voids with a diameter of 9 to 20 ⁇ m observed with a transmission polarizing microscope is 1.7/mm 3 or less.
  • polyester film of the present embodiment Since the polyester film of the present embodiment has the above structure, the effect of suppressing local concave defects in the ceramic green sheet produced using the polyester film of the present embodiment (hereinafter, also referred to as "defect suppression effect" Although the details of the reason for achieving the above are not clear, polyester films having a density of foreign matter and voids with a diameter of 9 to 20 ⁇ m below a predetermined value have few protrusions on the surface. It is presumed that the occurrence of localized concave defects in the ceramic green sheet was further suppressed, and the smoothness was further improved.
  • the total number of foreign matter and voids with a diameter of 9 to 20 ⁇ m observed with a polarizing microscope is 1.7/mm 3 or less.
  • the unit of "not more than 3 pieces/mm 3" means the total number of foreign matter or voids per volume of the polyester film observed using a polarizing microscope.
  • Foreign matter and voids with a diameter of 9 to 20 ⁇ m and foreign matter and voids with a diameter of 3 ⁇ m or more and less than 9 ⁇ m contained in the polyester film are as described in the second embodiment.
  • the total number of foreign substances or voids with a diameter of 9 to 20 ⁇ m per volume of the polyester film is measured by the method described in the second embodiment. After dividing by the "thickness of the polyester film", the obtained value can be obtained by converting the obtained value into a numerical value per 1 mm 3 of the volume of the polyester film. The total number of foreign matter and voids having a diameter of 3 ⁇ m or more and less than 9 ⁇ m per volume of the polyester film can also be obtained by the same method.
  • the total number of foreign particles and voids with a diameter of 9 to 20 ⁇ m observed using a polarizing microscope is preferably 1.5/mm 3 or less in terms of the effect of suppressing concave defects.
  • the lower limit of the total number of foreign matter and voids having a diameter of less than 9 to 20 ⁇ m is not particularly limited, and may be 0/mm 3 .
  • Means for adjusting the total number of foreign matter and voids with a diameter of 9 to 20 ⁇ m within the above range include a method of reducing the content of antimony contained in the polyester film to 1 ppm by mass or less, which will be described later, and when producing the polyester film, the raw material and a method of introducing a step of filtering the melt of the polyester resin used as a by a method according to the step 2 of the first embodiment.
  • the total number of foreign substances and voids with a diameter of 3 ⁇ m or more and less than 9 ⁇ m observed with a polarizing microscope on the polyester film is preferably 27.0/mm 3 or less, and 26.0 Pieces/mm 3 or less is more preferable.
  • the lower limit of the total number of foreign matter and voids with a diameter of 3 ⁇ m or more and less than 9 ⁇ m is not particularly limited, and may be 0/mm 3 .
  • the total number of foreign matter and voids with a diameter of more than 20 ⁇ m observed on the polyester film using a polarizing microscope is preferably less than 1/500 mm 2 , and 0/mm 3 (that is, not observed). is more preferred.
  • the content of antimony (Sb) contained in the polyester film is preferably 1 mass ppm or less, more preferably 0.7 mass ppm or less, still more preferably 0.6 mass ppm or less, with respect to the total mass of the polyester film. 0.5 mass ppm or less is particularly preferred.
  • the lower limit of the antimony content is not particularly limited, and may be 0 mass ppm based on the total mass of the polyester film.
  • the method for measuring the content of antimony contained in the polyester film is as described in the second embodiment.
  • the haze of the polyester film of the present embodiment is preferably 5% or less, more preferably 2.0% or less, even more preferably 1.5% or less. Although the lower limit is not particularly limited, 0% or more is preferable.
  • the method for measuring the haze of the polyester film is as described in the second embodiment.
  • the polyester film of the present embodiment may have a single-layer structure consisting only of a polyester base material formed using a melt of a polyester resin, and a polyester base material formed using a melt of a polyester resin, It may be a multilayer structure having a particle-containing layer containing particles.
  • one particle-containing layer may be disposed on one side of the polyester substrate, or two particle-containing layers may be disposed on both sides of the polyester substrate. Among them, it is preferable that one particle-containing layer is arranged on one side of the polyester base material.
  • the polyester film may have layers other than the polyester substrate and the particle-containing layer. Such other layers include adhesion layers, release layers, antistatic layers and oligomer precipitation prevention layers. Further, an intermediate layer such as a primer layer may be provided between the polyester base material and the particle-containing layer. The thickness of these other layers is preferably 1 nm to 1 ⁇ m, more preferably 30 to 500 nm.
  • polyester base material and particle-containing layer that the polyester film of this embodiment may have, and the physical properties of the polyester film are as described in the second embodiment, except for the following items.
  • the thickness of the polyester film of the present embodiment is preferably 75 ⁇ m or less, more preferably 50 ⁇ m or less, and even more preferably 35 ⁇ m or less, in terms of reducing production costs.
  • the lower limit of the thickness is not particularly limited, it is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, still more preferably 18 ⁇ m or more, and particularly preferably 25 ⁇ m or more in terms of improving strength and workability.
  • the method for measuring the thickness of the polyester film is as described in the second embodiment.
  • the method for producing the polyester film of the present embodiment is not particularly limited as long as the polyester film having the above structure can be produced.
  • a method for producing a polyester film having a polyester substrate and a particle-containing layer for example, a polyester resin is melt-extruded to prepare a polyester substrate, and then a particle-containing layer-forming composition containing particles on one side of the polyester substrate. and then stretching, and a method of co-extrusion of a particle-containing layer-forming composition containing a polyester resin melt, particles and a binder and then stretching.
  • a substantially particle-free polyester substrate is prepared by melt extrusion molding, and then a composition containing particles is applied to one side of the polyester substrate. and then stretching to produce a polyester film.
  • the particles contained in the polyester film can be reduced as much as possible while maintaining the slipperiness, and a ceramic green sheet can be produced in which local concave defects are further suppressed.
  • the method described as the method for producing the polyester film according to the above-described first embodiment, including its preferred mode can be mentioned.
  • the polyester film of the present embodiment is excellent in the effect of suppressing concave defects, it is suitably used as a film for producing ceramic green sheets.
  • the polyester film of the present embodiment has excellent smoothness, it is used as a film for semiconductor manufacturing processes, a film for polarizing plate manufacturing processes, a film for magnetic tapes, and an adhesive film for labels, medical and office supplies. It can also be used as a separator.
  • the polyester film of the present embodiment is excellent in transparency and an effect of suppressing optical failure, it can also be used as an optical film.
  • films for producing dry film resists, protective films for various applications, decorative sheets and support films for various applications such as decorative sheets, molding films such as decorative layers and resin sheets, films for optical displays, and conductive films
  • a polyester film can be used.
  • a method for producing a ceramic green sheet using the polyester film of the present embodiment is not particularly limited, and a known method can be used.
  • a method for producing a ceramic green sheet for example, the prepared ceramic slurry is applied to one main surface of the release film having the polyester film of the present embodiment, and the solvent contained in the ceramic slurry is removed by drying.
  • a method of forming a green sheet is included.
  • the configuration of the release film has the polyester film of the present embodiment, and as long as the formed ceramic green sheet can be released from the main surface (hereinafter also referred to as "release surface") to which the ceramic slurry is applied, There are no particular restrictions.
  • the release film may be a laminated film having the polyester film of the present embodiment and a release layer. Further, when the ceramic green sheet to be formed can be peeled off (for example, when the ceramic green sheet has peeling performance), the release film having the polyester film of the present embodiment may have no release layer. , the polyester film of the present embodiment may be used alone as a release film.
  • the release film a laminate film having the polyester film of the present embodiment and a release layer is preferable.
  • the release layer is arranged as the outermost layer, and one main surface of the release layer serves as the release surface on which the ceramic green sheet is formed.
  • the release layer is preferably formed on the surface of the polyester film opposite to the particle-containing layer.
  • the laminate film may have an intermediate layer between the polyester film and the release layer.
  • the intermediate layer means all layers between the polyester film and the release layer. Examples of the intermediate layer include a non-polyester resin layer that suppresses precipitation of oligomers from the polyester base material, an antistatic layer, and the like.
  • the release film can be produced, for example, by providing a release layer on one main surface of the polyester film.
  • the release layer may be provided directly on the surface of the polyester base material, or may be provided on the polyester base material via another layer.
  • the release layer is preferably provided directly on the surface of the polyester base material in terms of better smoothness. Also, if necessary, a release layer may be laminated on the polyester film via the intermediate layer.
  • the composition of the release layer is not particularly limited as long as the ceramic green sheet can be manufactured in a separable manner, but the release layer preferably contains a resin as a release agent.
  • the resin contained in the release layer is not particularly limited, and examples thereof include silicone resins, fluororesins, alkyd resins, acrylic resins, various waxes, and aliphatic olefins. Silicone resins are preferred in terms of superior release properties of the ceramic green sheet. preferable.
  • the release layer is also preferably a cured layer obtained by curing components contained in the release layer.
  • the release layer may contain other components such as a resin other than the release agent and additives, in addition to the resin used as the release agent. Additives include light and heavy release additives to adjust release force, adhesion improvers, and antistatic agents.
  • a silicone resin means a resin having a silicone structure in its molecule.
  • silicone resins include curable silicone resins, silicone graft resins, and modified silicone resins such as alkyl-modified silicone resins, and reactive curable silicone resins are preferred.
  • reactive curable silicone resins include addition reaction silicone resins, condensation reaction silicone resins, and ultraviolet or electron beam curable silicone resins.
  • the thickness of the release layer is preferably from 10 to 1000 nm, more preferably from 30 to 700 nm, in terms of excellent balance between release performance and smoothness of the release layer surface.
  • the thickness of the release layer is measured using a scanning electron microscope (SEM) or a transmission electron microscope (TEM) by preparing a section having a cross section perpendicular to the main surface of the release film. Arithmetic mean value of the thickness at each point.
  • a release layer forming composition is applied to the surface of the polyester film, the coating film is dried to remove the solvent, and if necessary, heating or irradiation with light is performed. method.
  • a known release layer-forming composition can be used as the release layer-forming composition.
  • the release layer-forming composition can be prepared, for example, by mixing a release agent, a solvent, and other components added as necessary. Examples of solvents include water, alcohol solvents, ether solvents, ketone solvents, and aromatic hydrocarbon solvents.
  • the release layer-forming composition may contain a single solvent, or may contain two or more solvents.
  • the content of the solvent is preferably 80 to 99.5% by mass with respect to the total mass of the release layer-forming composition.
  • the total content of components (solid content) other than the solvent in the release layer-forming composition is preferably 0.5 to 20% by mass with respect to the total mass of the release layer-forming composition.
  • the method for applying the release layer-forming composition and the method for drying the coating film are not particularly limited, and known methods can be used.
  • Specific examples of the coating method include the in-line coating method mentioned in step 4 in the method for producing a polyester film, and the offline coating method in which a separate coater is used after the polyester film is produced.
  • Examples of the coating method include gravure coating, bar coating, spray coating, spin coating, knife coating, roll coating, and die coating.
  • pretreatment such as anchor coating, corona treatment and plasma treatment before providing the release layer.
  • the method of applying the ceramic slurry to the release surface of the release film is not particularly limited.
  • a method of applying a ceramic slurry obtained by dispersing ceramic powder and a binder agent in a solvent and removing the solvent by heating and drying. can be applied.
  • Binder agents include, for example, polyvinyl butyral.
  • solvents include ethanol and toluene.
  • the produced ceramic green sheets are used to manufacture ceramic capacitors.
  • a known method can be applied as a method of manufacturing a ceramic capacitor using a ceramic green sheet, and examples thereof include the following method.
  • internal electrodes are provided on the laminate of the release film and the ceramic green sheets produced by the above method by applying or printing a conductive paste.
  • the release film is removed from the laminate of ceramic green sheets, the ceramic green sheets with internal electrodes are successively laminated, and the resulting laminate is pressed to produce an intermediate laminate. After cutting the intermediate laminate into a desired shape, the cut intermediate laminate is fired to obtain a ceramic body.
  • a ceramic capacitor is obtained by forming external electrodes electrically connected to the internal electrodes on the two end surfaces of the fired intermediate laminate using a conductive paste such as silver.
  • the release film having the polyester film of the present embodiment includes a protective film for dry film resist, a film for sheet molding such as a decorative layer and a resin sheet, a release film for process manufacturing such as a semiconductor manufacturing process, and a polarizing plate manufacturing process. It can also be used as a release film, and as a separator for adhesive films for labels, medical and office supplies.
  • film includes both aspects of a polyester base material only and aspects of a polyester film having a polyester base material and a particle-containing layer. Moreover, the notation of "film” shall include all unstretched films, uniaxially stretched films, and biaxially stretched films.
  • Example 1 [Production of polyester pellets before washing] Using terephthalic acid and ethylene glycol as raw materials, an antimony compound was used to conduct an esterification reaction and a polycondensation reaction in a continuous polymerization apparatus to produce polyester pellets.
  • the continuous polymerization apparatus has a mixing tank, a first esterification reaction tank, a second esterification reaction tank, a first polycondensation reaction tank, a second polycondensation reaction tank and a third polycondensation reaction tank in this order.
  • the first esterification reaction tank, the second esterification reaction tank, the first polycondensation reaction tank, the second polycondensation reaction tank, and the third polycondensation reaction tank are also collectively referred to as "reaction tanks”.
  • the production of polyester pellets was carried out according to the method described in (1) and (2) of [Production of polyester film] described later, except that an antimony compound was added in place of the titanium compound. After the continuous production of polyester pellets was completed, the reactor provided in the continuous polymerization apparatus was washed as described below.
  • the wetted part of the reaction tank was cleaned by buffing with no solvent until the dirt in the reaction tank was removed and the wetted part of the reaction tank regained its metallic luster. After that, the inside of the reaction tank was completely cleaned by high-pressure water washing. All tanks and pipes used for the polymerization of polyethylene terephthalate were washed in the same manner as the above-described method for washing the reaction tank.
  • a polyester film was continuously produced by the following procedures (1) to (3) using a continuous polymerization apparatus equipped with a washed reaction vessel.
  • the citric acid chelate titanium complex was continuously added so that the added amount of Ti in terms of element was 7 ppm with respect to the total amount of the polyester resin precursor.
  • the obtained oligomer had an acid value of 500 eq/ton.
  • the reactant obtained in the first esterification reaction tank was transferred to the second esterification reaction tank and reacted under stirring at an internal tank temperature of 250° C. for 1.2 hours with an average residence time of 190 eq/ton. was obtained.
  • the inside of the second esterification reactor is partitioned into three zones consisting of a first zone, a second zone and a third zone in the order in which the oligomers are supplied. Continuously supplied so that the amount added was 75 ppm with respect to the total amount of the oligomer in terms of elements, and then from the third zone, an ethylene glycol solution of trimethyl phosphate was added. It was continuously supplied so as to be 65 ppm with respect to the total amount.
  • the intermediate polymer obtained in the second polycondensation reaction tank was further transferred to the third polycondensation reaction tank, and the temperature in the tank was 278 ° C. and the pressure in the tank was 1.0 torr (1.33 ⁇ 10 -4 MPa).
  • the reaction was carried out under the conditions of a residence time of 1.5 hours, and polyethylene terephthalate (PET) was discharged from the third polycondensation reactor as a product.
  • PET polyethylene terephthalate
  • the resulting product was analyzed for Sb content using an ICP-MS analyzer (manufactured by Agilent Technologies, "Agilent 7800 ICP-MS"). It was 0.9 ppm.
  • the obtained product was extruded into cold water in the form of a strand and immediately cut to prepare polyester resin pellets ⁇ cross section: about 4 mm long axis, about 2 mm short axis, length: about 3 mm>.
  • the steps from charging the polyester resin precursor, discharging the product from the third polycondensation reactor, and producing pellets were continuously carried out. That is, after starting to produce pellets of the product obtained by polymerization of the polyester resin precursor when charging was started, pellets were continuously produced.
  • Example 1 the time for continuous polymerization from the start of charging of the polyester resin precursor to the preparation of polyester pellets by the methods described in (1) and (2) above (hereinafter simply " An unstretched polyester film was produced using the pellets produced after 72 hours had elapsed.
  • the filtering device A is a filtering device having the same configuration as the filtering device 36 shown in FIG. 145 laminated filters are provided in which the porosity and layer thickness of the sintered body are adjusted so that the filtration accuracy of the fibrous metal sintered body is 3 ⁇ m. It was a filtering device with
  • the obtained unstretched polyester film is longitudinally stretched and the particle-containing layer-forming composition is applied to the surface of the film to obtain.
  • the resulting particle-containing layer-attached film was stretched to prepare a biaxially stretched polyester film, which was wound up every 7000 m.
  • the thickness of the produced biaxially stretched polyester film was 16 ⁇ m (including a particle-containing layer with a thickness of 40 nm).
  • the obtained polyester film was analyzed using an ICP-MS analyzer in the same manner as described above, and the content of each element contained in the film was measured. As a result, the Sb content was 0.8 ppm, the Ti content was 7 ppm, the Mg content was 75 ppm, and the P content was 65 ppm with respect to the total mass of the polyester film.
  • Example 2 to 5 The use of the filter B in which the filtration accuracy of the fibrous metal sintered body in the filter A was changed to 2 ⁇ m, and the fact that the filter was discharged from the third condensation reaction tank after the elapsed time shown in Table 1 has passed.
  • Biaxially stretched polyester films of Examples 2 to 5 were produced in the same manner as in Example 1, except that polyester pellets produced using the product obtained from the above were used.
  • Examples 6-7 In the film manufacturing process, the same as in Example 5, except that the amount of melted polyester pellets extruded from the die to the cast drum was changed so that the thickness of the biaxially stretched polyester film was the thickness shown in Table 1. to produce biaxially stretched films of Examples 6 and 7, respectively.
  • Examples 8-9 In the production of polyester pellets before washing, the titanium compound described in (1) of [Production of polyester film] in Example 1 was used instead of the antimony compound, and the elapsed time described in Table 1 passed.
  • the biaxially stretched polyester films of Examples 8 and 9 were prepared in the same manner as in Example 2, except that the polyester pellets made using the product discharged from the third condensation reaction tank were used. manufactured.
  • Example 2 A biaxially stretched polyester film was produced in the same manner as in Example 5, except that in the production of the polyester film, the melted polyester pellets were passed through a filtration device C described later.
  • the filter device C is provided with 145 filters "NF2M-4C" (manufactured by Nippon Seisen Co., Ltd.) having a fibrous metal sintered body and a filter medium with a filtration accuracy of 4 ⁇ m attached. It is a device with
  • Comparative Example 3 A biaxially stretched polyester film of Comparative Example 3 was produced in the same manner as in Example 5, except that the reaction tank was not washed before producing the polyester film.
  • a transmission polarizing microscope with a polarizing lens is used to observe the change in color density (refractive index change) of the resin around the foreign matter or voids, thereby identifying foreign matter and voids present inside the film. counted. Further, application software (manufactured by OLYMPUS, "XD 2D Measurement”) was used to enlarge the field of view on the monitor for observation, thereby measuring minute foreign matters and voids. For each film, perform the above observation in 20 arbitrarily selected fields of view, and measure the foreign matter and voids, calculate the total number of measured foreign substances and voids, The total number of foreign matter and voids was taken as the total number.
  • ⁇ Haze measurement> The haze of the film produced or prepared in each example was measured by a method according to JIS K 7105 using a haze meter (NDH-2000, manufactured by Nippon Denshoku Industries Co., Ltd.). Table 1 shows the measurement results.
  • thermoplastic resin layer-forming coating liquid having the following formulation F is applied to the surface of the obtained film opposite to the particle-containing layer, and the obtained coating film is dried at 80° C. to form a thermoplastic resin layer. formed.
  • a coating liquid for forming a water-soluble resin layer having the following formulation G was applied onto the thermoplastic resin layer, and the resulting coating film was dried at 80° C. to form a water-soluble resin layer.
  • a coating solution for forming a photosensitive resin layer having the following formulation H was applied onto the water-soluble resin layer, and the resulting coating film was dried at 80° C.
  • thermoplastic resin layer was 2 ⁇ m
  • the thickness of the water-soluble resin layer was 1 ⁇ m
  • the thickness of the photosensitive resin layer was 2 ⁇ m.
  • a thermoplastic resin layer, a water-soluble resin layer, a photosensitive resin layer and a protective film were laminated on the smoother surface by the method described above.
  • Prescription F Coating liquid for forming thermoplastic resin layer
  • 22.7 parts 6-Bis (diphenylamino) fluorane: 0.12 parts
  • Oxime sulfonate-type photoacid generator (synthesized according to paragraph 0227 of JP-A-2013-047765): 0.2 parts
  • Tricyclodecanedimethanol di Acrylate 3.32 parts ⁇ UV curable urethane acrylate oligomer (Taisei Fine Chemical Co., Ltd.
  • a PET substrate with a copper layer was produced by forming a copper layer with a thickness of 200 nm on a polyethylene terephthalate (PET) film with a thickness of 100 ⁇ m by a sputtering method.
  • the roll-shaped photosensitive transfer member prepared above was unwound, and the protective film was peeled off from the photosensitive transfer member.
  • the photosensitive transfer member and the PET substrate with the copper layer were laminated together so that the photosensitive resin layer exposed by peeling off the protective film and the copper layer were in contact with each other to obtain a laminate.
  • This bonding step was performed under conditions of a roll temperature of 100° C., a linear pressure of 1.0 MPa, and a linear velocity of 4.0 m/min.
  • the support of the obtained laminate (the film produced or prepared in each example, not the PET substrate of the copper layer-attached PET substrate) is irradiated with an ultra-high pressure mercury lamp (main exposure wavelength: 365 nm) to make it photosensitive.
  • the entire surface of the resin layer was exposed with an exposure amount of 180 mJ/cm 2 .
  • 1.0% at a liquid temperature of 25° C. is applied to the surface of the laminate on which the thermoplastic resin layer, water-soluble resin layer and photosensitive resin layer are laminated.
  • shower development was performed for 30 seconds using an aqueous sodium carbonate solution. After performing shower development, the entire surface of the exposed photosensitive resin layer was observed to confirm the presence or absence of pinholes.
  • Pinholes in the photosensitive resin layer after exposure are caused by foreign substances or voids contained in the support that cause unexposed areas in the photosensitive resin layer. It is thought that this is caused by removing the water-soluble resin layer and the thermoplastic resin layer laminated on the part.
  • the pinhole diameter was measured. As a result of observation of the laminate, if no pinholes were confirmed in the photosensitive resin layer, or if pinholes were confirmed in the photosensitive resin layer but the pinhole diameter was 3 ⁇ m or less, the allowable range shall be included in
  • Table 1 below shows the production process of the film, the Sb content of the pellets used in the production of the film, the composition and physical properties of the produced film, and the above evaluation results for each example.
  • the "metal compound” column represents the metal compound used in (1) the esterification reaction in polyester film production
  • the notation "Ti” indicates that a titanium compound was used
  • the notation “Yes” in the “Reaction vessel cleaning” column indicates that polyester pellets were produced using the cleaned reaction vessel
  • the notation “No” indicates the reaction vessel that was not cleaned. It shows that polyester pellets were produced using.
  • the column "manufactured product type before washing” represents the metal compound used during the esterification reaction in the production of polyester pellets before washing the reaction tank, and the notation “Ti” indicates that a titanium compound was used.
  • the notation “Sb” indicates that an antimony compound was used.
  • the "elapsed time” column indicates how much time has elapsed since the start of charging of the polyester resin precursor, among the polyester pellets used in the production of the film, among the polyester pellets that were continuously produced using the reaction tank. Indicates whether the polyester pellet was manufactured at the time point.
  • the “Sb [ppm]” column of “Pellets” indicates the Sb content (unit: mass ppm) relative to the total mass of polyester pellets analyzed using an ICP-MS analyzer.
  • the “melt filter” column shows the filtration accuracy (unit: ⁇ m) of the fibrous metal sintered body contained in the filter medium.
  • the "3 to 9 ⁇ m foreign matter and voids" column in “Film” indicates the total number of foreign matter and voids with a diameter of 3 ⁇ m or more and less than 9 ⁇ m per 500 mm 2 of the film measured by the above method. indicates the total number of foreign particles and voids with a diameter of 9 to 20 ⁇ m per 500 mm 2 of film measured by the method described above.
  • the numerical values of foreign matter and voids in Reference Examples 1 and 2 are reference values. In Reference Example 2, the total number of foreign matter and voids with a diameter of 5 ⁇ m or more per 500 mm 2 of film measured according to the above method is shown.
  • polyester films of Examples 1 to 9 according to the present invention are more effective in suppressing the occurrence of optical defects appearing as pinholes than Comparative Examples 1 to 3 and Reference Examples 1 and 2. was done.
  • Example 11 In the method described in "(3) Film formation" of Example 1, the following composition A as a composition for forming a particle-containing layer was applied to the surface of a longitudinally stretched polyester film to obtain a film with a particle-containing layer.
  • a biaxially stretched polyester film having a thickness of 31 ⁇ m was obtained in the same manner as in Example 1, except that the film was stretched and wound without knurling.
  • the thickness of the particle-containing layer was 60 nm.
  • composition A Composition A was prepared by mixing each component shown below. The prepared composition A was subjected to filtration treatment using a filter with a pore size of 6 ⁇ m (F20, manufactured by Mahle Filter Systems Co., Ltd.), and membrane degassing (2x6 radial flow superphobic, manufactured by Polypore Co., Ltd.). carried out.
  • Acid-modified polyolefin (Zaixen (registered trademark) NC, manufactured by Sumitomo Seika Co., Ltd., aqueous dispersion prepared by adding water to 25% by mass of solid content): 157 parts ⁇ Anionic hydrocarbon surfactant (Rapisol (registered Trademark) A-90, di-2-ethylhexyl sodium sulfosuccinate, manufactured by NOF Corporation, solid content 1% by mass diluted with water): 56 parts Particles (Snowtex (registered trademark) ZL, manufactured by Nissan Chemical Co., Ltd., Colloidal silica, solid content 40% by mass aqueous dispersion): 11 parts Water: 776 parts
  • Example 12 to 17, Comparative Example 4 The above composition A was applied as a composition for forming a particle-containing layer on the surface of a longitudinally stretched polyester film, and the obtained film with a particle-containing layer was stretched and wound without knurling.
  • a biaxially stretched polyester film having a thickness of 31 ⁇ m was obtained in the same manner as in Example 1.
  • the thickness of the particle-containing layer was 60 nm.
  • Example 18 A biaxially stretched polyester film was produced in the same manner as in Example 15, except that the thickness of the biaxially stretched polyester film was 25 ⁇ m.
  • Example 19 in the same manner as in Example 11 except that polyester pellets made using the product discharged from the third condensation reactor after the elapsed time shown in Table 1 was used. ⁇ 20 biaxially oriented polyester films were produced respectively.
  • Table 2 below shows the film manufacturing process, the Sb content of the pellets used in the film manufacturing, and the above measurement results for Examples 11 to 20 and Comparative Example 4. Each notation in the table is as described above.
  • the film roll of the wound biaxially stretched polyester film is peeled by forming a release layer (thickness 1 ⁇ m) on the surface of the biaxially stretched polyester film on the polyester substrate side (that is, the surface where the particle-containing layer does not exist). got the film.
  • the release layer was produced according to the method of forming a release agent layer using the release layer-forming material described in Example 1 of JP-A-2015-195291.
  • the above ceramic slurry is applied to the surface of the release layer of the release film over a width of 250 mm and a length of 10 m so that the film thickness after drying is 1 ⁇ m with a die coater, and then dried at 80 ° C. dried for a minute.
  • the laminated film of the ceramic green sheet and the release film was illuminated with fluorescent light from the release film side, and the light transmitted through the laminated film from the ceramic green sheet side was visually inspected over all surfaces of the molded ceramic green sheet. .
  • the ceramic green sheet is peeled off from the defective portion where the color is different from that of the surrounding area such as a pinhole, and the peeled film at the defective portion is observed with a transmission polarizing microscope. The number of defect locations (concave defects) in which foreign matter was present inside the release film at the defect locations was counted.
  • the number of concave defects was zero.
  • the film made in Example 20 two concave defects were present.
  • the film made in Comparative Example 4 there were 5 concave defects. From the above, it was confirmed that the polyester films of Examples 11 to 20 according to the present invention have fewer local concave defects occurring in the ceramic green sheet than Comparative Example 4, and have a more excellent concave defect suppressing effect.

Abstract

The present invention addresses the problem of providing a polyester film production method and a polyester film capable of suppressing optical defects when combined with a photosensitive resin layer or the like and used as a dry film resist. The present invention also addresses the problem of providing a dry film resist and a release film. A polyester film production method according to the present invention comprises: a step 1 in which a polyester resin precursor is continuously polymerized in the presence of a titanium compound, and after the antimony content determined by using inductively coupled plasma mass spectrometry to measure a product containing the produced polyester resin has dropped to 1.0 ppm by mass or less with respect to the product, a polyester resin is obtained; a step 2 in which a melt of the polyester resin is filtered by using a filter medium containing a powdery sintered body and a filter medium containing a fibrous sintered body having a filtration accuracy of 3 μm or less; and a step 3 in which a polyester film is produced using the filtered melt.

Description

ポリエステルフィルムの製造方法、ポリエステルフィルム、ドライフィルムレジスト、及び、剥離フィルムMethod for producing polyester film, polyester film, dry film resist, and release film
 本発明は、ポリエステルフィルムの製造方法、ポリエステルフィルム、ドライフィルムレジスト、及び、剥離フィルムに関する。 The present invention relates to a method for producing a polyester film, a polyester film, a dry film resist, and a release film.
 ポリエステルフィルムは、ポリエステル樹脂を溶融押出して製膜した後、延伸、熱緩和等の熱処理などの工程を経て製造される。近年では、ポリエステルフィルムは、そのフィルムの上に機能性材料を塗布又は貼付することにより、種々の機能が付与され、機能性フィルムとして利用することが広く行われている。例えば、機能性材料として、感光性組成物をポリエステルフィルムの上に塗布することにより、ドライフィルムレジストとして用いられることがある。
 一方、近年、回路配線の高密度化に伴い、回路配線の形成に用いられるドライフィルムレジストは高解像化が求められている。
 また、ポリエステルフィルムは、積層セラミックコンデンサの製造に用いられるセラミックグリーンシートの作製にも用いられる。
A polyester film is produced by melt-extrusion of a polyester resin to form a film, followed by processes such as stretching and heat treatment such as thermal relaxation. In recent years, a polyester film has been widely used as a functional film by applying or attaching a functional material onto the film to impart various functions. For example, by applying a photosensitive composition as a functional material onto a polyester film, it may be used as a dry film resist.
On the other hand, in recent years, with the increasing density of circuit wiring, dry film resists used for forming circuit wiring are required to have higher resolution.
Moreover, the polyester film is also used to produce ceramic green sheets used in the production of laminated ceramic capacitors.
 解像度を向上する試みとして、特許文献1には、2軸延伸ポリエステルフィルムの一方の面に形成した微粒子を含有する樹脂層を含む支持フィルム、及び支持フィルムの微粒子を含有する樹脂層を形成した面とは反対の面に、感光性樹脂層を積層する技術が開示されている。 As an attempt to improve resolution, Patent Document 1 discloses a support film containing a resin layer containing fine particles formed on one surface of a biaxially stretched polyester film, and a surface on which a resin layer containing fine particles of the support film is formed. A technique of laminating a photosensitive resin layer on the opposite side is disclosed.
 特許文献1には、支持フィルムと、支持フィルム上に配置された感光層と、を備える感光性エレメントであって、感光層が、バインダーポリマーと、エチレン性不飽和結合を有する光重合性化合物と、光重合開始剤と、を含有し、支持フィルムの感光層側の表面における直径2μm以上の欠陥の数が2mm当たり30個以下である、感光性エレメントが開示されている。 Patent Document 1 discloses a photosensitive element comprising a support film and a photosensitive layer disposed on the support film, wherein the photosensitive layer comprises a binder polymer and a photopolymerizable compound having an ethylenically unsaturated bond. , a photopolymerization initiator, and the number of defects having a diameter of 2 μm or more on the photosensitive layer side surface of the support film is 30 or less per 2 mm 2 .
国際公開第2018/100730号WO2018/100730
 近年のレジストパターンの高解像度化(精細化)に伴い、ドライフィルムレジストを構成する支持フィルムに対しては、支持フィルムを介して感光性樹脂層をパターン形成することが多いため、光散乱による故障や性能低下を抑制するため、透明性に関して従来以上の高い性能が要求されている。
 本発明者らは、特許文献1に記載された技術を参考にして、ポリエステルフィルムの上に感光性組成物を有するドライフィルムレジストを用いて、パターン幅がより狭い精細なレジストパターン(特に7μm以下のラインアンドスペース(L/S)パターン)を形成したところ、ポリエステルフィルムの特性によっては、ピンホール欠陥などの光学故障が発生することを知見した。光学故障が発生するドライフィルムレジストを用いて、L/S配線パターンを形成すると、配線が断線する断線故障が発生することがわかっており、改善が求められていた。
 一方、近年のセラミックコンデンサーの大容量化及び小型化に伴い、セラミックグリーンシートに対しては、より一層の薄膜化が求められている。本発明者らは、セラミックグリーンシートについて検討したところ、セラミックグリーンシートの製造に用いるポリエステルフィルムの性状によってセラミックグリーンシートの性能に影響を及ぼす可能性があることを知見した。
With the recent increase in resolution (fineness) of resist patterns, it is often the case that the photosensitive resin layer is patterned through the support film that constitutes the dry film resist. In order to suppress deterioration in performance and transparency, higher performance than ever before is required.
With reference to the technology described in Patent Document 1, the present inventors used a dry film resist having a photosensitive composition on a polyester film to obtain a fine resist pattern with a narrower pattern width (especially 7 μm or less line-and-space (L/S) pattern), it was found that depending on the properties of the polyester film, optical failures such as pinhole defects may occur. It has been known that when an L/S wiring pattern is formed using a dry film resist that causes optical failures, disconnection failure occurs in which the wiring is disconnected, and improvements have been desired.
On the other hand, with the recent increase in capacity and miniaturization of ceramic capacitors, ceramic green sheets are required to be thinner. The present inventors have studied ceramic green sheets, and have found that the properties of the polyester film used to manufacture the ceramic green sheets may affect the performance of the ceramic green sheets.
 本発明は、上記実情に鑑みて、感光性樹脂層等と組み合わせてドライフィルムレジストとして用いた際に、光学故障を抑制できるポリエステルフィルムの製造方法及びポリエステルフィルムを提供することを課題とする。
 また、本発明は、セラミックグリーンシートの製造に用いた際に、局所的な凹状欠陥を抑制できるポリエステルフィルムの製造方法及びポリエステルフィルムを提供することを課題とする。
 また、本発明は、ドライフィルムレジスト及び剥離フィルムを提供することを課題とする。
In view of the above circumstances, an object of the present invention is to provide a method for producing a polyester film and a polyester film that can suppress optical failure when used as a dry film resist in combination with a photosensitive resin layer or the like.
Another object of the present invention is to provide a method for producing a polyester film and a polyester film that can suppress local concave defects when used to produce a ceramic green sheet.
Another object of the present invention is to provide a dry film resist and a release film.
 本発明者らは、上記課題について鋭意検討した結果、以下の構成により上記課題を解決できることを見出した。 As a result of earnestly examining the above problem, the inventors found that the above problem can be solved by the following configuration.
〔1〕 チタン化合物の存在下、ポリエステル樹脂前駆体の重合を連続的に行って、製造されるポリエステル樹脂を含む生成物を誘導結合プラズマ質量分析法で測定して得られるアンチモンの含有量が上記生成物に対して1.0質量ppm以下に低下した後にポリエステル樹脂を得る工程1と、上記工程1で得られた上記ポリエステル樹脂の溶融物を、粉末状焼結体を含むろ材、及び、ろ過精度が3μm以下の繊維状焼結体を含むろ材でろ過する工程2と、上記工程2でろ過された上記溶融物を用いてポリエステルフィルムを製造する工程3とを有する、ポリエステルフィルムの製造方法。
〔2〕 上記ポリエステル樹脂前駆体を連続的に重合する前に、重合に用いる反応槽内を洗浄する、〔1〕に記載のポリエステルフィルムの製造方法。
〔3〕 上記ポリエステルフィルムが、無機粒子を実質的に含まないポリエステル基材を有する、〔1〕又は〔2〕に記載のポリエステルフィルムの製造方法。
〔4〕 上記ポリエステル樹脂前駆体が、ジオール化合物と、ジカルボン酸及びジカルボン酸エステル化合物からなる群より選択されるジカルボン酸化合物とを含む、〔1〕~〔3〕のいずれかに記載のポリエステルフィルムの製造方法。
〔5〕 上記ポリエステルフィルムが、マグネシウム及びリンからなる群から選択される少なくとも1つの元素を含む、〔1〕~〔4〕のいずれかに記載のポリエステルフィルムの製造方法。
〔6〕 ヘイズが0.6%以下であり、誘導結合プラズマ質量分析法で測定して得られるアンチモンの含有量が1質量ppm以下であり、透過型偏光顕微鏡で観測される直径9~20μmの異物及び空隙の総数が10個/500mm以下である、ポリエステルフィルム。
〔7〕 ドライフィルムレジスト製造用である、〔6〕に記載のポリエステルフィルム。
〔8〕 透過型偏光顕微鏡で観測される直径3μm以上9μm未満の異物及び空隙の総数が200個/500mm以下である、〔6〕又は〔7〕に記載のポリエステルフィルム。
〔9〕 透過型偏光顕微鏡で観測される直径9~20μmの異物及び空隙の総数が1.7個/mm以下である、ポリエステルフィルム。
〔10〕 セラミックグリーンシート製造用である、〔9〕に記載のポリエステルフィルム。
〔11〕 誘導結合プラズマ質量分析法で測定して得られるアンチモンの含有量が1質量ppm以下である、〔9〕又は〔10〕に記載のポリエステルフィルム。
〔12〕 透過型偏光顕微鏡で観測される直径3μm以上9μm未満の異物及び空隙の総数が1.7個/mm以下である、〔9〕~〔11〕のいずれかに記載のポリエステルフィルム。
〔13〕 チタン、マグネシウム及びリンを含み、誘導結合プラズマ質量分析法で測定して得られるチタンの含有量、マグネシウムの含有量、及び、リンの含有量のそれぞれが、上記ポリエステルフィルムの全質量に対して1~100質量ppmである、〔6〕~〔12〕のいずれかに記載のポリエステルフィルム。
〔14〕 無機粒子を実質的に含まないポリエステル基材を有する、〔6〕~〔13〕のいずれかに記載のポリエステルフィルム。
〔15〕 ポリエステル基材と、粒子含有層とを有する、〔6〕~〔14〕のいずれかに記載のポリエステルフィルム。
〔16〕 上記ポリエステルフィルムの厚みが1~35μmである、〔6〕~〔15〕のいずれかに記載のポリエステルフィルム。
〔17〕 ヘイズが2.0%以下であり、厚みが1~35μmである、〔9〕~〔16〕のいずれかに記載のポリエステルフィルム。
〔18〕 〔6〕~〔17〕のいずれかに記載のポリエステルフィルムと、感光性樹脂層とを有する、ドライフィルムレジスト。
〔19〕 上記感光性樹脂層が、バインダーポリマーと、エチレン性不飽和結合を有する重合性化合物と、光重合開始剤とを含む、〔18〕に記載のドライフィルムレジスト。
〔20〕 〔6〕~〔17〕のいずれかに記載のポリエステルフィルムと、剥離層とを有する、剥離フィルム。
[1] The content of antimony obtained by continuously polymerizing a polyester resin precursor in the presence of a titanium compound and measuring the product containing the polyester resin produced by inductively coupled plasma mass spectrometry is as described above. Step 1 of obtaining a polyester resin after it has decreased to 1.0 mass ppm or less with respect to the product, and the melt of the polyester resin obtained in the above step 1 is filtered with a filter medium containing a powdery sintered body, and filtered A method for producing a polyester film, comprising step 2 of filtering with a filter medium containing a fibrous sintered body with an accuracy of 3 μm or less, and step 3 of producing a polyester film using the melt filtered in step 2.
[2] The method for producing a polyester film according to [1], wherein the inside of the reaction vessel used for polymerization is washed before continuously polymerizing the polyester resin precursor.
[3] The method for producing a polyester film according to [1] or [2], wherein the polyester film has a polyester base material substantially free of inorganic particles.
[4] The polyester film according to any one of [1] to [3], wherein the polyester resin precursor contains a diol compound and a dicarboxylic acid compound selected from the group consisting of dicarboxylic acids and dicarboxylic acid ester compounds. manufacturing method.
[5] The method for producing a polyester film according to any one of [1] to [4], wherein the polyester film contains at least one element selected from the group consisting of magnesium and phosphorus.
[6] It has a haze of 0.6% or less, an antimony content of 1 mass ppm or less as measured by inductively coupled plasma mass spectrometry, and a diameter of 9 to 20 μm observed with a transmission polarizing microscope. A polyester film having a total number of foreign matter and voids of 10/500 mm 2 or less.
[7] The polyester film of [6], which is used for producing a dry film resist.
[8] The polyester film of [6] or [7], wherein the total number of foreign matter and voids having a diameter of 3 μm or more and less than 9 μm observed with a transmission polarizing microscope is 200/500 mm 2 or less.
[9] A polyester film in which the total number of foreign matter and voids with a diameter of 9 to 20 μm observed with a transmission polarizing microscope is 1.7/mm 3 or less.
[10] The polyester film of [9], which is for producing a ceramic green sheet.
[11] The polyester film of [9] or [10], which has an antimony content of 1 mass ppm or less as measured by inductively coupled plasma mass spectrometry.
[12] The polyester film according to any one of [9] to [11], wherein the total number of foreign matter and voids having a diameter of 3 μm or more and less than 9 μm observed with a transmission polarizing microscope is 1.7/mm 3 or less.
[13] Contains titanium, magnesium, and phosphorus, and the content of titanium, the content of magnesium, and the content of phosphorus obtained by measurement by inductively coupled plasma mass spectrometry are each included in the total mass of the polyester film. The polyester film according to any one of [6] to [12], which is 1 to 100 ppm by mass.
[14] The polyester film according to any one of [6] to [13], which has a polyester base material substantially free of inorganic particles.
[15] The polyester film according to any one of [6] to [14], which has a polyester base material and a particle-containing layer.
[16] The polyester film according to any one of [6] to [15], wherein the polyester film has a thickness of 1 to 35 μm.
[17] The polyester film according to any one of [9] to [16], which has a haze of 2.0% or less and a thickness of 1 to 35 μm.
[18] A dry film resist comprising the polyester film of any one of [6] to [17] and a photosensitive resin layer.
[19] The dry film resist of [18], wherein the photosensitive resin layer contains a binder polymer, a polymerizable compound having an ethylenically unsaturated bond, and a photopolymerization initiator.
[20] A release film comprising the polyester film of any one of [6] to [17] and a release layer.
 本発明によれば、感光性樹脂層等と組み合わせてドライフィルムレジストとして用いた際に、光学故障を抑制できるポリエステルフィルムの製造方法及びポリエステルフィルムを提供できる。また、本発明によれば、セラミックグリーンシートの製造に用いた際に、局所的な凹状欠陥を抑制できるポリエステルフィルムの製造方法及びポリエステルフィルムを提供できる。また、本発明によれば、ドライフィルムレジスト及び剥離フィルムを提供できる。 According to the present invention, it is possible to provide a method for producing a polyester film and a polyester film that can suppress optical failures when used as a dry film resist in combination with a photosensitive resin layer or the like. Moreover, according to the present invention, it is possible to provide a method for producing a polyester film and a polyester film that can suppress local concave defects when used for producing a ceramic green sheet. Moreover, according to the present invention, a dry film resist and a release film can be provided.
ポリエステルフィルムの製造装置の構成の一例を示す概略図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic which shows an example of a structure of the manufacturing apparatus of a polyester film. ポリエステル樹脂の溶融物のろ過に使用するろ過装置の構成の一例を示す概略断面図である。FIG. 2 is a schematic cross-sectional view showing an example of the configuration of a filtering device used for filtering melted polyester resin. ろ過装置が有するフィルタの構成の一例を示す概略図である。It is a schematic diagram showing an example of the composition of the filter which a filtering device has.
 以下、本発明の実施形態について、詳細に説明する。なお、本発明は、以下の実施形態に何ら制限されず、本発明の目的の範囲内において、適宜変更を加えて実施できる。 Hereinafter, embodiments of the present invention will be described in detail. It should be noted that the present invention is not limited to the following embodiments, and can be implemented with appropriate modifications within the scope of the purpose of the present invention.
 本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
 本明細書に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
In this specification, a numerical range indicated using "to" indicates a range including the numerical values before and after "to" as the minimum and maximum values, respectively.
In the numerical ranges described stepwise in this specification, the upper limit or lower limit described in a certain numerical range may be replaced with the upper limit or lower limit of another numerical range described stepwise. Moreover, in the numerical ranges described in this specification, the upper limit or lower limit described in a certain numerical range may be replaced with the values shown in the examples.
 本明細書において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
 本明細書において、組成物又は層に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物又は層中の各成分の量は、組成物又は層中に存在する上記複数の物質の合計量を意味する。
 本明細書において、「工程」との用語には、独立した工程だけでなく、他の工程と明確に区別できない場合であっても工程の所期の目的が達成される工程も含まれる。
 本明細書において、「長手方向」とは、製造時におけるフィルムの長尺方向を意味し、「搬送方向」及び「機械方向」と同義である。
 本明細書において、「幅方向」とは、長手方向に直交する方向を意味する。本開示において、「直交」は、厳密な直交に限られず、略直交を含む。「略直交」とは、90°±5°で交わることを意味し、90°±3°で交わることが好ましく、90°±1°で交わることがより好ましい。また、「フィルム幅」とは、フィルムの幅方向の両端間の距離を意味する。
In the present specification, a combination of two or more preferred aspects is a more preferred aspect.
In this specification, when a composition or layer contains a plurality of substances corresponding to each component, unless otherwise specified, the amount of each component in the composition or layer refers to the above-mentioned plurality of substances present in the composition or layer. It means the total amount of substance.
As used herein, the term "step" includes not only independent steps, but also steps in which the intended purpose of the step is achieved even if it cannot be clearly distinguished from other steps.
As used herein, the term “longitudinal direction” means the longitudinal direction of the film during production, and is synonymous with the “conveyance direction” and “machine direction”.
As used herein, "width direction" means a direction perpendicular to the longitudinal direction. In the present disclosure, "orthogonal" is not limited to strictly orthogonal, but includes substantially orthogonal. “Substantially orthogonal” means intersecting at 90°±5°, preferably intersecting at 90°±3°, more preferably intersecting at 90°±1°. The "film width" means the distance between both ends of the film in the width direction.
 本明細書において、「(メタ)アクリル」とは、アクリル及びメタクリルの総称であり、「アクリル及びメタクリルの1種以上」を意味する。同様に「(メタ)アクリレート」とは、「アクリレート及びメタクリレートの1種以上」を意味し、「(メタ)アクリル酸」とは、「アクリル酸及びメタクリル酸の1種以上」を意味する。 As used herein, "(meth)acrylic" is a generic term for acrylic and methacrylic, and means "one or more of acrylic and methacrylic". Similarly, "(meth)acrylate" means "one or more of acrylate and methacrylate", and "(meth)acrylic acid" means "one or more of acrylic acid and methacrylic acid".
 本明細書において、「露光」とは、特に断らない限り、光を用いた露光のみならず、電子線、イオンビーム等の粒子線を用いた描画も含む。露光に用いられる光としては、例えば、水銀灯の輝線スペクトル、エキシマレーザに代表される遠紫外線、極紫外線(EUV光)、X線、及び、電子線等の活性光線(活性エネルギー線)が挙げられる。
 本明細書において、屈折率は、特に断らない限り、アッベ屈折計(株式会社アタゴ製「NAR-2T」)を用いて測定される、波長550nmの光に対する屈折率を意味する。
In this specification, the term “exposure” includes not only exposure using light but also drawing using particle beams such as electron beams and ion beams, unless otherwise specified. Examples of the light used for exposure include the emission line spectrum of a mercury lamp, far ultraviolet rays represented by excimer lasers, extreme ultraviolet rays (EUV light), X-rays, and active rays (active energy rays) such as electron beams. .
As used herein, unless otherwise specified, the refractive index means the refractive index for light with a wavelength of 550 nm measured using an Abbe refractometer (“NAR-2T” manufactured by Atago Co., Ltd.).
 本明細書において、重量平均分子量(Mw)及び数平均分子量(Mn)は、特に断りのない限り、TSKgel GMHxL、TSKgel G4000HxL、TSKgel G2000HxL及び/又はTSKgel Super HZM-N(いずれも東ソー(株)製の商品名)のカラムを使用したゲルパーミエーションクロマトグラフィ(GPC:Gel Permeation Chromatography)分析装置により、溶媒としてTHF(テトラヒドロフラン)を用い、示差屈折計により検出し、標準物質としてポリスチレンを用いて換算した分子量である。 In this specification, unless otherwise specified, the weight average molecular weight (Mw) and number average molecular weight (Mn) are TSKgel GMHxL, TSKgel G4000HxL, TSKgel G2000HxL and/or TSKgel Super HZM-N (all manufactured by Tosoh Corporation). (trade name) column) using a gel permeation chromatography (GPC: Gel Permeation Chromatography) analyzer, using THF (tetrahydrofuran) as a solvent, detected by a differential refractometer, molecular weight converted using polystyrene as a standard substance is.
[第1実施形態:ポリエステルフィルムの製造方法]
 本発明の第1実施形態であるポリエステルフィルムの製造方法(以下、「本製造方法」とも記載する。)は、チタン化合物の存在下、ポリエステル樹脂前駆体の重合を連続的に行って、製造されるポリエステル樹脂を含む生成物を誘導結合プラズマ質量分析法で測定して得られるアンチモンの含有量が生成物に対して1.0質量ppm以下に低下した後にポリエステル樹脂を得る工程1と、工程1で得られたポリエステル樹脂の溶融物を、粉末状焼結体を含むろ材、及び、ろ過精度が3μm以下の繊維状焼結体を含むろ材でろ過する工程2と、工程2でろ過された溶融物を用いてポリエステルフィルムを製造する工程3とを有することを特徴とする。
[First embodiment: method for producing a polyester film]
A method for producing a polyester film, which is the first embodiment of the present invention (hereinafter also referred to as "this production method"), is produced by continuously polymerizing a polyester resin precursor in the presence of a titanium compound. Step 1 to obtain a polyester resin after the antimony content obtained by measuring the product containing the polyester resin by inductively coupled plasma mass spectrometry has decreased to 1.0 mass ppm or less with respect to the product; Step 2 of filtering the melt of the polyester resin obtained in Step 2 with a filter medium containing a powdery sintered body and a filter medium containing a fibrous sintered body with a filtration accuracy of 3 μm or less, and the melt filtered in step 2 It is characterized by having a step 3 of manufacturing a polyester film using a material.
 本製造方法が上記工程1~3を有することにより、感光性樹脂層等と組み合わせてドライフィルムレジストとして用いた際に、光学故障を抑制する効果(以下、「光学故障抑制効果」とも記載する。)を奏するポリエステルフィルムを製造できる理由の詳細は明らかではないが、本発明者らは概ね以下のように推定している。
 ドライフィルムレジストに使用されるポリエステルフィルムに異物及び空隙のいずれかが存在すると、その箇所のみ露光ができないため、光学故障が発生すると考えられる。例えば、ドライフィルムレジストにおける感光性樹脂層等に含まれる感光性組成物がネガ型感光性組成物である場合、ポリエステルフィルムを介して感光性樹脂層等を露光すると、ポリエステルフィルムの異物及び空隙のいずれかが存在する箇所に対応する感光性樹脂層等の箇所において、光硬化反応が進行しなくなり、続く現像工程において露光領域に含まれる感光性組成物が除去されて、光学故障となるピンホールが形成されてしまう。
 そこで、本発明者らは、このようなポリエステルフィルムに存在する異物及び空隙の詳細を確認したところ、ポリエステルフィルム内に存在する異物及び空隙のうち、着色異物、並びに、直径9~20μmの透明異物及び空隙が、紫外光を用いて感光性樹脂層等を露光した場合の光学故障の発生への寄与が大きいことを突き止めた。本発明者らが、さらに、各々の異物について分析したところ、着色異物はアンチモンに由来する成分を含むこと、透明異物はポリエステル樹脂を重合する過程で生成するゲル、或いは、マグネシウムとリンとの反応による生成物であることがわかった。また、上記の空隙が、上記の着色異物及び透明異物等の異物の周辺に生じていることがわかった。
 本実施形態に係るポリエステルフィルムの製造方法においては、アンチモンの含有量が十分に低減されたポリエステル樹脂を供給するとともに、供給されたポリエステル樹脂の溶融物を特定のろ材の組み合わせを用いてろ過することにより、ポリエステルフィルムの原料となるポリエステル樹脂に含まれる上記異物及び空隙を抑制できたために、ドライフィルムレジストの光学故障を抑制できたものと推察している。
By including the above steps 1 to 3, the present production method has the effect of suppressing optical failure when used as a dry film resist in combination with a photosensitive resin layer or the like (hereinafter also referred to as "optical failure suppression effect". Although the details of the reason why a polyester film exhibiting ) can be produced are not clear, the present inventors generally presume as follows.
If there is either a foreign matter or a void in the polyester film used for the dry film resist, it is considered that optical failure occurs because only that portion cannot be exposed. For example, when the photosensitive composition contained in the photosensitive resin layer or the like in the dry film resist is a negative photosensitive composition, when the photosensitive resin layer or the like is exposed through the polyester film, foreign substances and voids of the polyester film are formed. The photocuring reaction does not progress at the location of the photosensitive resin layer or the like corresponding to the location where either is present, and the photosensitive composition contained in the exposed area is removed in the subsequent development process, resulting in an optical failure. is formed.
Therefore, the present inventors confirmed the details of the foreign matter and voids present in such a polyester film. It was also found that voids greatly contribute to the occurrence of optical failures when a photosensitive resin layer or the like is exposed to ultraviolet light. When the present inventors further analyzed each foreign matter, they found that the colored foreign matter contained a component derived from antimony, and the transparent foreign matter was a gel generated during the polymerization process of the polyester resin, or a reaction between magnesium and phosphorus. It was found to be a product of In addition, it was found that the above-mentioned voids were generated around the foreign matter such as the above-mentioned colored foreign matter and transparent foreign matter.
In the method for producing a polyester film according to the present embodiment, a polyester resin having a sufficiently reduced antimony content is supplied, and the melt of the supplied polyester resin is filtered using a specific combination of filter media. It is speculated that the above-mentioned foreign matters and voids contained in the polyester resin, which is the raw material of the polyester film, were suppressed by the above-mentioned method, and thus the optical failure of the dry film resist was suppressed.
 また、本製造方法が上記工程1~3を有することにより、製造されるポリエステルフィルムを用いてセラミックグリーンシートを作製した際に、作製されたセラミックグリーンシートにおいて局所的な凹状欠陥を抑制できる効果(以下、「凹状欠陥抑制効果」とも記載する。)を奏する理由の詳細は明らかではないが、本発明者らは概ね以下のように推定している。
 本実施形態に係るポリエステルフィルムの製造方法においては、アンチモンの含有量が十分に低減されたポリエステル樹脂を供給するとともに、供給されたポリエステル樹脂の溶融物を特定のろ材の組み合わせを用いてろ過することにより、ポリエステルフィルムの原料となるポリエステル樹脂に含まれる上記異物及び空隙を抑制できたものと推察される。その結果、表面に凸部が少ないポリエステルフィルムを製造でき、そのようなポリエステルフィルムを用いて製造されるセラミックグリーンシートについて局所的な凹状欠陥の発生をより一層抑制できたものと推察している。
 以下、「本発明の効果」とは、本発明の各実施形態により奏される光学故障抑制効果及び凹状欠陥抑制効果の少なくとも一方を意味する。
In addition, when the present production method includes the above steps 1 to 3, when a ceramic green sheet is produced using the produced polyester film, the effect of suppressing local concave defects in the produced ceramic green sheet ( Hereinafter, the details of the reason for achieving the effect of suppressing the concave defect) are not clear, but the present inventors generally presume as follows.
In the method for producing a polyester film according to the present embodiment, a polyester resin having a sufficiently reduced antimony content is supplied, and the melt of the supplied polyester resin is filtered using a specific combination of filter media. It is presumed that the foreign matter and voids contained in the polyester resin, which is the raw material of the polyester film, could be suppressed. As a result, it is speculated that a polyester film having few protrusions on the surface could be produced, and the occurrence of local recessed defects in ceramic green sheets produced using such a polyester film could be further suppressed.
Hereinafter, "the effect of the present invention" means at least one of the optical failure suppressing effect and the concave defect suppressing effect exhibited by each embodiment of the present invention.
 以下、ポリエステルフィルムの製造装置の一例を示す図面を参照しながら、本製造方法の各工程について説明する。
 図1は、本製造方法に用いられるポリエステルフィルムの製造装置の構成の一例を示す概略図である。図1に示すフィルム製造装置10は、反応槽12と、製膜工程部14と、縦延伸工程部16と、横延伸する横延伸工程部18と、巻取部20とを備える。
Hereinafter, each step of the present production method will be described with reference to a drawing showing an example of a polyester film production apparatus.
FIG. 1 is a schematic diagram showing an example of the configuration of a polyester film manufacturing apparatus used in the present manufacturing method. A film manufacturing apparatus 10 shown in FIG. 1 includes a reaction tank 12 , a film forming process section 14 , a longitudinal stretching process section 16 , a lateral stretching process section 18 for lateral stretching, and a winding section 20 .
 反応槽12は、ポリエステル樹脂前駆体を重合してポリエステル樹脂を製造する。
 製膜工程部14は、押出機24と、配管34と、ろ過装置36と、配管38と、ダイ26と、キャストドラム28とを備え、反応槽12で製造されたポリエステル樹脂を加熱溶融し、得られた溶融物をろ過し、ろ過された溶融物を用いてポリエステルフィルムFを製造する。
 縦延伸工程部16は、一対の低速ローラ30と一対の高速ローラ32とを備え、製膜工程部14で製造されたポリエステルフィルムFを縦方向に延伸する。
 横延伸工程部18は、縦方向に延伸されたポリエステルフィルムFを横方向に延伸する。
 巻取部20は、横方向に延伸されたポリエステルフィルムFを巻き取る。
The reactor 12 polymerizes a polyester resin precursor to produce a polyester resin.
The film forming process unit 14 includes an extruder 24, a pipe 34, a filtering device 36, a pipe 38, a die 26, and a cast drum 28, and heats and melts the polyester resin produced in the reaction tank 12, The resulting melt is filtered, and polyester film F is produced using the filtered melt.
The longitudinal stretching process section 16 includes a pair of low-speed rollers 30 and a pair of high-speed rollers 32, and stretches the polyester film F produced in the film forming process section 14 in the longitudinal direction.
The transverse stretching process section 18 stretches the longitudinally stretched polyester film F in the transverse direction.
The winding unit 20 winds up the polyester film F stretched in the lateral direction.
〔工程1〕
 反応槽12では、チタン化合物の存在下、ポリエステル樹脂前駆体の重合を連続的に行い、アンチモンの含有量が所定値以下であるポリエステル樹脂を製造する工程1が行われる。
[Step 1]
In the reaction tank 12, a step 1 is performed in which a polyester resin precursor is continuously polymerized in the presence of a titanium compound to produce a polyester resin having a predetermined antimony content or less.
 工程1において使用する反応槽としては、ポリエステル樹脂の合成に用いられる公知の反応容器が使用でき、ポリエステル樹脂及びその前駆体の種類及び量に応じて適宜選択される。
 工程1では、本発明の効果がより優れる点で、事前に洗浄した反応槽を使用することが好ましい。反応槽の洗浄方法は、特に制限されず、例えば、反応槽の接液部(ポリエステル樹脂前駆体及びポリエステル樹脂が接し得る部位)に対しての、洗浄液による洗浄、並びに、バフ研磨剤及びドライアイスブラスト等を用いた研磨処理が挙げられる。上記洗浄液としては、例えば、エチレングリコール及びトリエチレングリコール等の有機溶剤、水又は水性溶液、酸又はアルカリ、並びに、これらの組み合わせが挙げられ、ポリエステル樹脂及びその前駆体に応じて適宜選択される。
 中でも、反応槽の洗浄工程としては、本発明の効果がより優れる点で、エチレングリコール及びトリエチレングリコール等の有機溶剤を用いて加熱洗浄し、その後、反応槽の接液部にバフ研磨等の研磨処理を行うことにより、堆積物を物理的に除去する工程を行うことが好ましい。バフ研磨の方法は特に制限されず、公知の方法で行うことができる。
 反応槽の洗浄工程は、ポリエステル樹脂を連続して重合する工程1を実施する前に必ず実施される。洗浄工程を実施する時期は特に制限されないが、例えば、工程1で製造されるポリエステル樹脂の組成(より具体的には後述するアンチモン含有量等)に応じて、適宜、工程1を中断して反応槽の洗浄を行うことができる。
As the reaction vessel used in step 1, a known reaction vessel used for synthesis of polyester resin can be used, and is appropriately selected according to the type and amount of the polyester resin and its precursor.
In step 1, it is preferable to use a reaction vessel that has been washed in advance, since the effect of the present invention is more excellent. The method for cleaning the reaction vessel is not particularly limited, and for example, the liquid-contacting part of the reaction vessel (the part where the polyester resin precursor and the polyester resin can contact) is cleaned with a cleaning liquid, and buffing agent and dry ice are used. Polishing treatment using blasting or the like can be mentioned. Examples of the cleaning liquid include organic solvents such as ethylene glycol and triethylene glycol, water or aqueous solutions, acids or alkalis, and combinations thereof, and are appropriately selected according to the polyester resin and its precursor.
Among them, as the cleaning process of the reaction tank, since the effect of the present invention is more excellent, it is heated and washed using an organic solvent such as ethylene glycol and triethylene glycol, and then the wetted part of the reaction tank is subjected to buffing or the like. It is preferable to perform a step of physically removing deposits by performing a polishing treatment. The buffing method is not particularly limited, and any known method can be used.
The step of washing the reactor is always carried out before carrying out the step 1 of continuously polymerizing the polyester resin. The timing of performing the washing step is not particularly limited, but for example, depending on the composition of the polyester resin produced in step 1 (more specifically, the antimony content, etc., described later), step 1 is appropriately interrupted to allow the reaction to proceed. Cleaning of the tank can be performed.
 工程1では、上記の洗浄した反応槽内で、チタン化合物の存在下、ポリエステル樹脂前駆体を重合を連続的に行い、ポリエステル樹脂を製造する。ただし、上記の連続的重合により製造されるポリエステル樹脂を含む生成物に含まれるアンチモンの含有量が所定値以下に低下した後に製造されたポリエステル樹脂のみが、後述する工程2に供給される。
 ここで、「ポリエステル樹脂前駆体の重合を連続的に行う」とは、反応槽内にポリエステル樹脂前駆体を連続的又は断続的に供給し、反応槽内で移送しながら反応物を重合(重縮合反応)させ、得られた重合物を反応槽内から連続的又は断続的に排出させる一連の工程を行うことを意味する。
 上記生成物に含まれるアンチモンの含有量は、誘導結合プラズマ質量分析法(ICP-MS:Inductively Coupled Plasma Mass Spectrometry)により測定される。より具体的な測定方法は、後述する実施例に記載する。
 本製造方法では、ICP-MS法により測定されるアンチモンの含有量が、上記生成物に対して1.0質量ppm以下であるとの条件を満たす場合に、製造されたポリエステル樹脂を工程2に供給する。工程2に供給するポリエステル樹脂のアンチモン含有量の条件は、本発明の効果がより優れる点で、上記生成物に対して0.8質量ppm以下が好ましく、0.7質量ppm以下がより好ましく、0.6質量ppm以下が更に好ましい。下限値は特に制限されず、0質量ppmであってもよい。
In step 1, a polyester resin is produced by continuously polymerizing a polyester resin precursor in the presence of a titanium compound in the washed reaction vessel. However, only the polyester resin produced after the content of antimony contained in the product containing the polyester resin produced by the continuous polymerization has fallen below a predetermined value is supplied to step 2 described later.
Here, "continuously polymerizing the polyester resin precursor" means that the polyester resin precursor is continuously or intermittently supplied into the reaction vessel, and the reactant is polymerized (polymerized) while being transported within the reaction vessel. condensation reaction) and continuously or intermittently discharging the resulting polymer from the reactor.
The content of antimony contained in the above product is measured by inductively coupled plasma mass spectrometry (ICP-MS). A more specific measuring method will be described in Examples described later.
In this production method, when the content of antimony measured by the ICP-MS method satisfies the condition that the content of antimony is 1.0 ppm by mass or less with respect to the above product, the produced polyester resin is sent to step 2. supply. The condition of the antimony content of the polyester resin to be supplied to step 2 is preferably 0.8 mass ppm or less, more preferably 0.7 mass ppm or less, with respect to the above product, from the viewpoint that the effect of the present invention is more excellent. 0.6 mass ppm or less is more preferable. The lower limit is not particularly limited, and may be 0 mass ppm.
 工程1で使用するチタン化合物は、チタンを含有する化合物であり、例えば、ポリエステル樹脂前駆体の重合に触媒として使用可能な公知のチタン化合物が挙げられる。
 チタン化合物としては、有機チタン化合物が好ましく、有機キレートチタン錯体がより好ましい。有機キレートチタン錯体は、配位子として有機酸又はその塩を有するチタン化合物である。有機酸としては、例えば、クエン酸、乳酸、トリメリット酸及びリンゴ酸が挙げられる。中でも、クエン酸又はクエン酸塩を配位子として有する有機キレートチタン錯体が更に好ましい。
 チタン化合物としては、特許第5575671号公報の段落0049~0053に記載されたチタン化合物も利用でき、この記載内容は本明細書に組み込まれる。
The titanium compound used in step 1 is a compound containing titanium, and examples thereof include known titanium compounds that can be used as catalysts for polymerization of polyester resin precursors.
As the titanium compound, an organic titanium compound is preferred, and an organic chelate titanium complex is more preferred. An organic chelate titanium complex is a titanium compound having an organic acid or its salt as a ligand. Organic acids include, for example, citric acid, lactic acid, trimellitic acid and malic acid. Among them, an organic chelate titanium complex having citric acid or a citrate as a ligand is more preferable.
As the titanium compound, titanium compounds described in paragraphs 0049 to 0053 of Japanese Patent No. 5575671 can also be used, the contents of which are incorporated herein.
 工程1において使用するチタン化合物の添加量は、チタン元素への換算値で、ポリエステル樹脂前駆体の全質量に対して1~500質量ppmとなる量が好ましく、1~100質量ppmとなる量がより好ましく、1~30質量ppmとなる量が更に好ましく、3~20質量ppmとなる量が特に好ましく、5~15質量ppmとなる量が最も好ましい。 The addition amount of the titanium compound used in step 1 is preferably an amount of 1 to 500 mass ppm in terms of the titanium element conversion value with respect to the total mass of the polyester resin precursor, and an amount of 1 to 100 mass ppm. More preferably, the amount of 1 to 30 ppm by mass is more preferable, the amount of 3 to 20 ppm by mass is particularly preferable, and the amount of 5 to 15 ppm by mass is most preferable.
 工程1のポリエステル樹脂前駆体の重合においては、上記チタン化合物とともに、チタン化合物以外の他の化合物を存在させてもよい。
 上記他の化合物としては、例えば、アルカリ金属化合物(例えば、カリウム化合物、ナトリウム化合物)、アルカリ土類金属化合物(例えば、カルシウム化合物、マグネシウム化合物)、亜鉛化合物、鉛化合物、マンガン化合物、コバルト化合物、アルミニウム化合物、アンチモン化合物、ゲルマニウム化合物及びリン化合物が挙げられる。
 上記他の化合物としては、マグネシウム化合物及びリン化合物からなる群より選択される少なくとも1つの化合物が好ましく、マグネシウム化合物及びリン化合物の両者を用いることがより好ましい。
In the polymerization of the polyester resin precursor in step 1, a compound other than the titanium compound may be present together with the titanium compound.
Examples of the other compounds include alkali metal compounds (e.g., potassium compounds, sodium compounds), alkaline earth metal compounds (e.g., calcium compounds, magnesium compounds), zinc compounds, lead compounds, manganese compounds, cobalt compounds, and aluminum. compounds, antimony compounds, germanium compounds and phosphorus compounds.
The other compound is preferably at least one compound selected from the group consisting of magnesium compounds and phosphorus compounds, more preferably both magnesium compounds and phosphorus compounds.
 マグネシウム化合物としては、例えば、酸化マグネシウム、水酸化マグネシウム、並びに、マグネシウムアルコキシド、酢酸マグネシウム及び炭酸マグネシウム等のマグネシウム塩が挙げられる。中でも、エチレングリコールへの溶解性の観点から、酢酸マグネシウムが好ましい。
 リン化合物としては、例えば、リン酸エステルが挙げられ、置換基として芳香環を有しない5価のリン酸エステルが好ましい。上記リン酸エステルとしては、例えば、リン酸トリメチル、リン酸トリエチル、リン酸トリ-n-ブチル、リン酸トリオクチル、リン酸トリス(トリエチレングリコール)、リン酸メチルアシッド、リン酸エチルアシッド、リン酸イソプロピルアシッド、リン酸ブチルアシッド、リン酸モノブチル、リン酸ジブチル、リン酸ジオクチル及びリン酸トリエチレングリコールアシッドが挙げられ、リン酸トリメチル又はリン酸トリエチルが好ましい。
Magnesium compounds include, for example, magnesium oxide, magnesium hydroxide, and magnesium salts such as magnesium alkoxide, magnesium acetate and magnesium carbonate. Among them, magnesium acetate is preferable from the viewpoint of solubility in ethylene glycol.
Phosphorus compounds include, for example, phosphate esters, and pentavalent phosphate esters having no aromatic ring as a substituent are preferred. Examples of the phosphate ester include trimethyl phosphate, triethyl phosphate, tri-n-butyl phosphate, trioctyl phosphate, tris (triethylene glycol) phosphate, methyl acid phosphate, ethyl acid phosphate, and phosphoric acid. Isopropyl acid, butyl acid phosphate, monobutyl phosphate, dibutyl phosphate, dioctyl phosphate and triethylene glycol acid phosphate can be mentioned, with trimethyl phosphate or triethyl phosphate being preferred.
 上記他の化合物の添加量は、金属元素又はリン元素への換算値で、ポリエステル樹脂前駆体の全質量に対して3~500質量ppmとなる量が好ましく、5~100質量ppmとなる量がより好ましい。
 マグネシウム化合物を使用する場合、マグネシウム化合物の添加量は、ポリエステルフィルムに高い静電印加性を付与できる点で、マグネシウム元素への換算値で、ポリエステル樹脂前駆体の全質量に対して50質量ppm以上となる量が好ましく、50~100質量ppmとなる量がより好ましく、60~90質量ppmとなる量が更に好ましく、70~80質量ppmとなる量が特に好ましい。
 また、リン化合物を使用する場合、リン化合物の添加量は、リン元素への換算値で、ポリエステル樹脂前駆体の全質量に対して50~90質量ppmとなる量が好ましく、60~80質量ppmとなる量がより好ましく、65~75質量ppmとなる量が更に好ましい。
The amount of the other compound added is preferably an amount of 3 to 500 ppm by mass in terms of the metal element or phosphorus element, and an amount of 5 to 100 ppm by mass with respect to the total mass of the polyester resin precursor. more preferred.
When a magnesium compound is used, the amount of the magnesium compound added is 50 ppm by mass or more with respect to the total mass of the polyester resin precursor in terms of the magnesium element conversion value in that it can impart high static electricity to the polyester film. The amount is preferably 50 to 100 mass ppm, more preferably 60 to 90 mass ppm, and particularly preferably 70 to 80 mass ppm.
Further, when a phosphorus compound is used, the amount of the phosphorus compound added is preferably an amount that is 50 to 90 mass ppm with respect to the total mass of the polyester resin precursor, in terms of the phosphorus element, and 60 to 80 mass ppm. is more preferable, and an amount of 65 to 75 ppm by mass is even more preferable.
 ポリエステル樹脂前駆体に含まれるチタン、並びに、マグネシウム及びリン等のチタン以外の元素の含有量は、ICP-MS法による生成物に含まれるアンチモンの含有量の測定方法に準じて、ポリエステル樹脂前駆体又は生成物を測定することにより得られる。 The content of titanium contained in the polyester resin precursor and the content of elements other than titanium such as magnesium and phosphorus are measured according to the method for measuring the content of antimony contained in the product by the ICP-MS method. Or obtained by measuring the product.
 工程1で用いられるポリエステル樹脂前駆体、及び、工程1で製造されるポリエステル樹脂については、第2実施形態に係るポリエステルフィルムにおいて詳細に説明する。 The polyester resin precursor used in step 1 and the polyester resin produced in step 1 will be described in detail in the polyester film according to the second embodiment.
 工程1によりポリエステル樹脂前駆体を重合してポリエステル樹脂を製造する際の反応条件は特に制限されず、ポリエステル樹脂前駆体の種類に応じて適宜設定すればよい。
 工程1における反応温度は、260~300℃が好ましく、275~285℃がより好ましい。
 工程1における反応槽内の圧力は、1.33×10-3~1.33×10-5MPaが好ましく、6.67×10-4~6.67×10-5MPaがより好ましい。
The reaction conditions for producing the polyester resin by polymerizing the polyester resin precursor in step 1 are not particularly limited, and may be appropriately set according to the type of the polyester resin precursor.
The reaction temperature in step 1 is preferably 260 to 300°C, more preferably 275 to 285°C.
The pressure in the reaction vessel in step 1 is preferably 1.33×10 −3 to 1.33×10 −5 MPa, more preferably 6.67×10 −4 to 6.67×10 −5 MPa.
 ポリエステル樹脂の合成方法としては、特許第5575671号公報の[0033]~[0070]に記載された方法も利用でき、上記公報の内容は、本明細書に組み込まれる。 As a method for synthesizing the polyester resin, the method described in [0033] to [0070] of Japanese Patent No. 5575671 can also be used, and the contents of the above publication are incorporated herein.
〔工程2〕
 工程2では、工程1で得られたポリエステル樹脂の溶融物を、粉末状焼結体を含むろ材及びろ過精度が3μm以下の繊維状焼結体(以下、「特定繊維状焼結体」ともいう。)を含むろ材でろ過する。図1に示すフィルム製造装置10においては、製膜工程部14の押出機24及びろ過装置36により、工程2が実施される。
[Step 2]
In step 2, the polyester resin melt obtained in step 1 is mixed with a filter medium containing a powdery sintered body and a fibrous sintered body with a filtration accuracy of 3 μm or less (hereinafter also referred to as “specific fibrous sintered body” ) through a filter medium containing In the film manufacturing apparatus 10 shown in FIG. 1, step 2 is performed by the extruder 24 and the filtering device 36 of the film forming process section 14 .
 工程2で得られたポリエステル樹脂は、押出機24により加熱溶融する前に、加熱乾燥させてもよく、特に、ポリエステル樹脂が芳香族系ポリエステル樹脂を含む場合、製造されたポリエステル樹脂を加熱乾燥させた後、加熱溶融することが好ましい。
 上記加熱乾燥の加熱温度としては、80~180℃で、12~36時間行われることが多い。特に、加熱温度がポリエステル樹脂のガラス転移温度以下である場合は、減圧雰囲気下で乾燥を行うことが好ましい。
The polyester resin obtained in step 2 may be dried by heating before being heated and melted by the extruder 24. In particular, when the polyester resin contains an aromatic polyester resin, the polyester resin produced is dried by heating. After that, it is preferable to heat and melt.
The heating temperature for the heat drying is often 80 to 180° C. for 12 to 36 hours. In particular, when the heating temperature is lower than the glass transition temperature of the polyester resin, it is preferable to dry in a reduced pressure atmosphere.
 ポリエステル樹脂は、押出機内で溶融混合される。押出機を用いて行う溶融混合の条件は、ポリエステル樹脂の溶融物が製造されるものであれば特に制限されない。
 押出機内は、ポリエステル樹脂を供給する前に、予め[Tm+10℃]~[Tm+70℃](好ましくは[Tm+20℃]~[Tm+50℃])の温度に加熱することが好ましい。「Tm」は、ポリエステル樹脂の融点を意味する。
 ポリエステル樹脂の溶融混合時間は、3分間以上が多く、3~20分間が好ましい。
 このようにして得られたポリエステル樹脂の溶融物は、配管34を通してろ過装置36に供給される。
The polyester resin is melt mixed in the extruder. The conditions for melt-mixing using an extruder are not particularly limited as long as a melt of the polyester resin can be produced.
The inside of the extruder is preferably preheated to a temperature of [Tm+10° C.] to [Tm+70° C.] (preferably [Tm+20° C.] to [Tm+50° C.]) before feeding the polyester resin. "Tm" means the melting point of the polyester resin.
The melt-mixing time of the polyester resin is often 3 minutes or longer, preferably 3 to 20 minutes.
The polyester resin melt obtained in this manner is supplied to a filtering device 36 through a pipe 34 .
 押出機24で溶融された溶融物は、粉末状焼結体を含むろ材及び特定繊維状焼結体を含むろ材を有するろ過装置36でろ過される。溶融物をろ過装置36を用いてろ過することにより、ポリエステル樹脂の溶融物に含まれていたゴミ、未反応物、ゲル、及び、溶融処理で熱劣化した異物等が除去される。 The melt melted by the extruder 24 is filtered by a filtering device 36 having a filter medium containing a powdery sintered body and a filter medium containing a specific fibrous sintered body. By filtering the melt using the filtering device 36, dust, unreacted substances, gels, and foreign matter thermally deteriorated in the melt treatment are removed from the melt of the polyester resin.
 ろ過装置36は、焼結繊維を使用した繊維状焼結体であって、ろ過精度が3μm以下の特定繊維状焼結体を含むろ材と、焼結粉末を使用した粉末状焼結体を含むろ材とを有する。特定繊維状焼結体を含むろ材と粉末状焼結体を含むろ材の両者を用いてろ過することにより、光学故障の原因の1つとなっていたポリエステル樹脂に含まれるゲルを除去することができるため、感光性樹脂層等と組み合わせてドライフィルムレジストとして用いた際に光学故障がより抑制されたポリエステルフィルムを製造できると推測される。 The filter device 36 is a fibrous sintered body using sintered fibers, and includes a filter medium containing a specific fibrous sintered body with a filtration accuracy of 3 μm or less, and a powdery sintered body using sintered powder. and a filter medium. By filtering using both the filter medium containing the specific fibrous sintered body and the filter medium containing the powdery sintered body, it is possible to remove the gel contained in the polyester resin, which is one of the causes of optical failure. Therefore, it is presumed that when used as a dry film resist in combination with a photosensitive resin layer or the like, a polyester film in which optical failures are further suppressed can be produced.
 工程2において使用するろ過装置は、特定繊維状焼結体を含むろ材と粉末状焼結体を含むろ材とを有し、これらのろ材の両方にポリエステル樹脂の溶融物が接触する構造を有する限り、その具体的な構成は特に制限されない。ろ過装置としては、例えば、ろ材として特定繊維状焼結体と粉末状焼結体とを含み、両者が一体化したフィルタを少なくとも1つ備えるろ過装置、並びに、特定繊維状焼結体を含む少なくとも1つのフィルタと粉末状焼結体を含む少なくとも1つのフィルタとを併用するろ過装置が挙げられる。特定繊維状焼結体を含むフィルタと粉末状焼結体を含むフィルタとを併用する場合、溶融物が両者に接触する構成であれば、両者の配置は特に制限されない。中でも、特定繊維状焼結体と粉末状焼結体が一体化したフィルタを少なくとも1つ備えるろ過装置が好ましい。
 また、上記ろ材を含むフィルタとしては、リーフディスク型のフィルタが好ましい。上記ろ材を含むフィルタの使用枚数及びサイズ等は、ポリエステル樹脂の種類、粘度等の特性、及び、流量等の条件に応じて適宜選択される。
As long as the filtering device used in step 2 has a filter medium containing a specific fibrous sintered body and a filter medium containing a powdery sintered body, and has a structure in which the molten polyester resin contacts both of these filter media. , its specific configuration is not particularly limited. As the filtering device, for example, a filtering device including at least one filter in which a specific fibrous sintered body and a powdery sintered body are integrated as a filter medium, and at least a filtering device including a specific fibrous sintered body A filtering device that uses one filter and at least one filter containing a powdery sintered body in combination is mentioned. When a filter containing a specific fibrous sintered body and a filter containing a powdery sintered body are used together, the arrangement of both is not particularly limited as long as the melt contacts both. Among them, a filtering device having at least one filter in which a specific fibrous sintered body and a powdery sintered body are integrated is preferable.
A leaf disk type filter is preferable as the filter containing the filter medium. The number and size of the filters including the above-described filter media are appropriately selected according to the type of polyester resin, characteristics such as viscosity, and conditions such as flow rate.
 直径が9~20μmの異物等を除去し、本発明の効果により優れるポリエステルフィルムが得られる点で、特定繊維状焼結体を含むろ材のろ過精度は、2μm以下が好ましい。下限は、特に制限されないが、例えば1μmである。ここで、ろ過精度とは「そのろ過材により95%以上が補足可能な最小グラスビーズ径」として定義される。ろ過精度の数値が低い程、そのろ材の精度が高いことを示す。 The filtration accuracy of the filter medium containing the specific fibrous sintered body is preferably 2 μm or less in terms of removing foreign matter with a diameter of 9 to 20 μm and obtaining a superior polyester film due to the effects of the present invention. Although the lower limit is not particularly limited, it is, for example, 1 μm. Here, the filtration accuracy is defined as "the minimum diameter of glass beads that can capture 95% or more by the filter medium". The lower the numerical value of filtration accuracy, the higher the accuracy of the filter medium.
 図2は、工程2において、ポリエステル樹脂の溶融物のろ過に使用するろ過装置の構成の一例を示す概略断面図である。
 図2に示すろ過装置36は、円筒形状のハウジング44と、ハウジング44内に設けられた複数の円盤状のフィルタ46とで構成される。又、ハウジング44は、配管34と連通し、ポリエステル樹脂の溶融物が供給される供給口40と、配管38と連通し、ろ過された溶融物が排出される排出口42とを有する。
 ろ過装置36において、複数のフィルタ46は、スペーサ54によって所定の間隔を空けて、流路48の軸線方向に並んで配置されている。
FIG. 2 is a schematic cross-sectional view showing an example of the configuration of a filtering device used for filtering the melted polyester resin in step 2. As shown in FIG.
The filtering device 36 shown in FIG. 2 is composed of a cylindrical housing 44 and a plurality of disk-shaped filters 46 provided inside the housing 44 . The housing 44 also has a supply port 40 that communicates with the pipe 34 to supply the polyester resin melt, and a discharge port 42 that communicates with the pipe 38 and from which the filtered melt is discharged.
In the filtering device 36 , a plurality of filters 46 are arranged side by side in the axial direction of the flow path 48 with a predetermined interval by spacers 54 .
 図3は、ろ過装置が有するフィルタの構成の一例を示す概略図である。
 図3に示す円盤状のフィルタ46は、中心に貫通孔を有する略円盤状に成形された焼結体52を、同様に中心に貫通孔を有する略円盤状の多孔板53で挟持し、中心の貫通孔に円環状のリング部材50を装着した構成を有する。焼結体52は、特定繊維状焼結体及び粉末状焼結体とを有する。
 リング部材50の側壁には、焼結体52によってろ過された溶融物の流路となる多数の貫通孔51が、円周方向に並ぶように設けられている。貫通孔51の孔径は、例えば1~3μm又はそれ以下である。貫通孔51は、一方の端部が閉塞し他方の端部が排出口42と連通する流路48に連通している。
 フィルタ46の径Dは、押出機24からの溶融の供給量及び滞留時間に応じて適宜設定される。
FIG. 3 is a schematic diagram showing an example of the configuration of a filter included in the filtering device.
The disk-shaped filter 46 shown in FIG. 3 has a substantially disk-shaped sintered body 52 having a through hole in the center and is sandwiched between substantially disk-shaped perforated plates 53 having a through hole in the center. It has a configuration in which an annular ring member 50 is attached to the through hole of the. The sintered body 52 has a specific fibrous sintered body and a powdery sintered body.
A side wall of the ring member 50 is provided with a large number of through holes 51 arranged in a circumferential direction, which serve as flow paths for the melt filtered by the sintered body 52 . The hole diameter of the through holes 51 is, for example, 1 to 3 μm or less. The through hole 51 communicates with a channel 48 that is closed at one end and communicates with the discharge port 42 at the other end.
The diameter D of the filter 46 is appropriately set according to the amount of melt supplied from the extruder 24 and the residence time.
 図2において矢印で示すように、押出機24で加熱溶融されたポリエステル樹脂の溶融物は、配管34から供給口40を通ってろ過装置36のハウジング44内に供給される。
 ハウジング44内に供給された溶融物は、部材56によりフィルタの径方向外側に向かって流された後、円盤状のフィルタ46に流入して、焼結体52でろ過されて、異物等が除去される。
 焼結体52を通過した溶融物は、リング部材50の貫通孔51を通って流路48内に至り、流路48の開放端から排出口42を通って配管38に流入し、配管38からダイ26に供給される。
As indicated by the arrow in FIG. 2, the melted polyester resin heated and melted in the extruder 24 is supplied from the pipe 34 through the supply port 40 into the housing 44 of the filtering device 36 .
The molten material supplied into the housing 44 is flowed radially outward of the filter by the member 56, flows into the disk-shaped filter 46, is filtered by the sintered body 52, and foreign matters are removed. be done.
The melt that has passed through the sintered body 52 passes through the through hole 51 of the ring member 50 to reach the inside of the channel 48, flows from the open end of the channel 48 through the outlet 42, flows into the pipe 38, and exits from the pipe 38. A die 26 is provided.
 ろ過装置により溶融物をろ過する際のろ過条件は特に制限されないが、異物等を効果的に除去するために、ろ過圧力が10~200kg/cmとなる範囲に設定してろ過処理することが好ましい。また、ろ過装置36内に滞留する溶融物の滞留時間は、1分間以上30分間以内とすることが好ましい。更には、ろ過装置36の投入口における溶融物の見掛け粘度が、10~2000Pa・sになるようにポリエステル樹脂の溶融温度及び吐出量などを変更することが好ましい。 Filtration conditions for filtering the melt by the filtration device are not particularly limited, but in order to effectively remove foreign matter, etc., the filtration pressure may be set in the range of 10 to 200 kg/cm 2 for filtration. preferable. Moreover, it is preferable that the residence time of the melt staying in the filtering device 36 is 1 minute or more and 30 minutes or less. Furthermore, it is preferable to change the melting temperature and discharge amount of the polyester resin so that the apparent viscosity of the melt at the inlet of the filtering device 36 is 10 to 2000 Pa·s.
 ろ過装置が有するフィルタは、使用後に洗浄することが好ましい。使用後に洗浄することにより、フィルタを繰り返し使用できる。洗浄方法としては、特開2019-013890号公報及び特開2008-037012号公報に記載の内容が挙げられ、これらの内容は本明細書に組み込まれる。
 なお、工程2でポリエステル樹脂の溶融物のろ過に使用するろ過装置は、上記ろ過装置に制限されない。
It is preferable to wash the filter of the filtering device after use. By washing after use, the filter can be used repeatedly. Examples of the cleaning method include those described in JP-A-2019-013890 and JP-A-2008-037012, the contents of which are incorporated herein.
The filtering device used for filtering the melted polyester resin in step 2 is not limited to the filtering device described above.
〔工程3〕
 工程3では、工程2でろ過されたポリエステル樹脂の溶融物を用いてポリエステルフィルムが製造される。図1に示すフィルム製造装置10においては、製膜工程部14のダイ26及びキャストドラム28、縦延伸工程部16及び横延伸工程部18により、工程3が実施される。
[Step 3]
In step 3, the polyester resin melt filtered in step 2 is used to produce a polyester film. In the film manufacturing apparatus 10 shown in FIG. 1 , step 3 is performed by the die 26 and cast drum 28 of the film forming process section 14 , the longitudinal stretching process section 16 and the transverse stretching process section 18 .
 まず、工程2でろ過されたポリエステル樹脂の溶融物は、ダイ26によりフィルム状に押し出され、キャストドラム28上に、フィルム状の溶融物からなる未延伸のポリエステルフィルム(以下、ポリエステルフィルムを単に「フィルムF」ともいう。)が形成される。
 ダイ26に供給される溶融物の温度は、例えば[Tm+10℃]~[Tm+70℃]に加熱されており、キャストドラム28上において30~110℃で冷却固化され、未延伸のフィルムF(無定型シート)となる。
 溶融物は、単層で押し出されてもよく、多層で押し出されてもよい。
 また、溶融物の押出成形を行う押出機としては、公知の押出機が使用できる。
First, the polyester resin melt filtered in step 2 is extruded into a film by a die 26, and an unstretched polyester film made of a film-shaped melt (hereinafter, polyester film is simply referred to as " Also referred to as "film F") is formed.
The melt supplied to the die 26 is heated to, for example, [Tm+10° C.] to [Tm+70° C.], cooled and solidified at 30 to 110° C. on the cast drum 28 to form an unstretched film F (amorphous sheet).
The melt may be extruded in a single layer or in multiple layers.
Moreover, a well-known extruder can be used as an extruder for extruding the melt.
 次いで、未延伸のフィルムFは、縦延伸工程部16が備える一対の低速ローラ30と一対の高速ローラ32により、縦方向(長尺方向)に延伸(縦延伸)される。
 縦延伸される際、フィルムFは、[Tg+5℃]~[Tg+60℃](Tg:ポリエステル樹脂のガラス転移温度)の温度に加熱されることが好ましい。
 縦延伸による縦方向(長尺方向)の延伸倍率は、例えば2~7倍であり、2~5倍が好ましい。
Next, the unstretched film F is stretched (longitudinal stretching) in the longitudinal direction (longitudinal direction) by a pair of low-speed rollers 30 and a pair of high-speed rollers 32 provided in the longitudinal stretching section 16 .
When longitudinally stretched, the film F is preferably heated to a temperature of [Tg+5° C.] to [Tg+60° C.] (Tg: glass transition temperature of the polyester resin).
The draw ratio in the longitudinal direction (longitudinal direction) by longitudinal drawing is, for example, 2 to 7 times, preferably 2 to 5 times.
 その後、縦延伸されたフィルムFは、横延伸工程部18により横方向(フィルム幅方向)に延伸(横延伸)され、2軸延伸フィルム(2軸配向フィルム)が製造される。横延伸工程部18では、フィルムFに熱風が送られており、フィルムFの幅方向両端部がテンターで保持されながら、加熱される。
 横延伸される際のフィルムFの加熱温度は、例えば[Tg+5℃]~[Tg+60℃]であり、[Tg+20℃]~[Tg+50℃]が好ましい。
 横延伸による横方向(長尺方向)の延伸倍率は、例えば2~7倍であり、2~5倍が好ましい。
Thereafter, the longitudinally stretched film F is stretched (horizontally stretched) in the transverse direction (film width direction) by the transverse stretching unit 18 to produce a biaxially stretched film (biaxially oriented film). In the lateral stretching process section 18, hot air is sent to the film F, and both width direction end portions of the film F are heated while being held by a tenter.
The heating temperature of the film F during lateral stretching is, for example, [Tg+5° C.] to [Tg+60° C.], preferably [Tg+20° C.] to [Tg+50° C.].
The draw ratio in the transverse direction (longitudinal direction) is, for example, 2 to 7 times, preferably 2 to 5 times.
 このように2軸延伸されたフィルムFは、最後に冷却された後、巻取部20で巻き取られる。
 延伸工程の温度は、ポリエステル樹脂がポリエチレンテレフタレート(PET)である場合、120~150℃が好ましく、ポリエチレン-2,6-ナフタレート(PEN)である場合、140~180℃が好ましい。
 なお、縦延伸されたフィルムFを、横延伸工程部18を経ずに、巻取部20で巻き取ることにより、縦方向のみに延伸された1軸延伸フィルムを製造することができる。
 工程3については、国際公開第2020/241692号明細書の[0113]~[0169]の記載内容を参酌でき、この内容は本願明細書に組み込まれる。
The film F thus biaxially stretched is finally cooled and then wound up by the winding unit 20 .
The temperature of the stretching step is preferably 120 to 150°C when the polyester resin is polyethylene terephthalate (PET), and preferably 140 to 180°C when the polyester resin is polyethylene-2,6-naphthalate (PEN).
A uniaxially stretched film stretched only in the longitudinal direction can be manufactured by winding the longitudinally stretched film F in the winding section 20 without going through the transverse stretching process section 18 .
For Step 3, the descriptions of [0113] to [0169] of International Publication No. 2020/241692 can be referred to, and the contents thereof are incorporated herein.
 本製造方法により製造されるポリエステルフィルムは、工程2でろ過されたポリエステル樹脂の溶融物を用いて形成されたポリエステル基材のみからなる単層構造であってもよく、工程2でろ過されたポリエステル樹脂の溶融物を用いて形成されたポリエステル基材と、粒子を含有する粒子含有層とを有する多層構造であってもよい。 The polyester film produced by this production method may have a single-layer structure consisting only of a polyester base material formed using the melt of the polyester resin filtered in step 2, and the polyester film filtered in step 2 A multilayer structure having a polyester base material formed using a resin melt and a particle-containing layer containing particles may also be used.
 ポリエステルフィルムが有するポリエステル基材は、無機粒子を実質的に含まないことが好ましく、粒子を実質的に含まないことがより好ましい。
 なお、上記粒子を「実質的に含まない」とは、熱可塑性基材について、蛍光X線分析法で上記粒子に由来する元素を定量分析した際に、上記粒子の含有量が熱可塑性基材の全質量に対して50質量ppm以下であることで定義される。熱可塑性基材に含まれる上記粒子の含有量は、熱可塑性基材の全質量に対して10質量ppm以下が更に好ましく、検出限界以下が特に好ましい。
 積極的に上記粒子をポリエステル基材中に添加させなくても、コンタミ成分、原料樹脂、又は、上記製造工程におけるライン若しくは装置に付着した汚れが剥離して、ポリエステル基材中に混入する場合がある。例えば上記工程2のろ過によって、意図せずに混入する粒子が除かれることが好ましい。
The polyester base material of the polyester film preferably contains substantially no inorganic particles, more preferably substantially no particles.
The expression “substantially free of the particles” means that the content of the particles in the thermoplastic substrate is determined by quantitative analysis of the elements derived from the particles by X-ray fluorescence spectroscopy. is defined as being 50 mass ppm or less with respect to the total mass of The content of the particles contained in the thermoplastic substrate is more preferably 10 mass ppm or less with respect to the total mass of the thermoplastic substrate, and particularly preferably the detection limit or less.
Even if the particles are not positively added to the polyester base material, contaminant components, raw material resins, or stains adhered to the lines or equipment in the above manufacturing process may peel off and be mixed into the polyester base material. be. For example, the filtration in step 2 above preferably removes unintentionally contaminating particles.
<粒子含有層形成工程(工程4)>
 ポリエステル基材と粒子含有層とを有するポリエステルフィルムは、本製造方法のいずれかの段階で粒子含有層を形成する粒子含有層形成工程(工程4)を行うことにより、製造できる。
 工程4としては、例えば、粒子及び樹脂を含有する粒子含有層形成用組成物(以下、「組成物A」ともいう。)を用いてインラインコーティングにより組成物Aの塗布膜を形成し、必要に応じて乾燥することにより、粒子含有層を形成する工程が挙げられる。
 工程4において組成物Aを塗布するポリエステル基材としては、例えば、未延伸のポリエステル基材及び1軸延伸されたポリエステル基材が挙げられ、1軸延伸されたポリエステル基材であることが好ましい。即ち、上記工程3における縦延伸と横延伸との間に工程4を行うことが好ましい。1軸延伸されたポリエステル基材と粒子含有層とを同時に横延伸することにより、ポリエステル基材及び粒子含有層の密着性を向上できるためである。
<Particle-containing layer forming step (step 4)>
A polyester film having a polyester substrate and a particle-containing layer can be produced by carrying out a particle-containing layer forming step (step 4) for forming a particle-containing layer at any stage of the present production method.
In step 4, for example, a composition for forming a particle-containing layer containing particles and a resin (hereinafter also referred to as "composition A") is used to form a coating film of composition A by in-line coating, and if necessary and drying accordingly to form a particle-containing layer.
The polyester substrate to which the composition A is applied in step 4 includes, for example, an unstretched polyester substrate and a uniaxially stretched polyester substrate, preferably a uniaxially stretched polyester substrate. That is, it is preferable to perform the step 4 between the longitudinal stretching and the transverse stretching in the above step 3. This is because the adhesion between the polyester substrate and the particle-containing layer can be improved by laterally stretching the uniaxially stretched polyester substrate and the particle-containing layer at the same time.
 組成物Aは、粒子含有層に含まれる粒子、樹脂、必要に応じて添加される添加剤、及び、溶剤を混合することにより調製できる。
 溶剤としては、例えば、水、エタノール、トルエン、エチレングリコールモノエチルエーテル、エチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテル及びプロピレングリコールモノエチルエーテルが挙げられる。中でも、環境、安全性及び経済性の観点から、水が好ましい。
 組成物Aは、1種単独の溶剤を含有していてもよく、2種以上の溶剤を含有していてもよい。溶剤の含有量は、組成物Aの全質量に対して、80~99質量%が好ましい。即ち、溶剤以外の成分(固形分)の合計含有量は、組成物Aの全質量に対して、0.5~20質量%が好ましい。
Composition A can be prepared by mixing particles contained in the particle-containing layer, resin, additives added as necessary, and solvent.
Examples of solvents include water, ethanol, toluene, ethylene glycol monoethyl ether, ethylene glycol dimethyl ether, propylene glycol monomethyl ether and propylene glycol monoethyl ether. Among them, water is preferable from the viewpoint of environment, safety and economy.
Composition A may contain a single solvent, or may contain two or more solvents. The content of the solvent is preferably 80 to 99 mass % with respect to the total mass of composition A. That is, the total content of components (solid content) other than the solvent is preferably 0.5 to 20% by mass with respect to the total mass of composition A.
 組成物Aに含有される粒子、樹脂及び添加剤については、それらの好ましい態様も含めて、後述する第2実施形態に係るポリエステルフィルムの粒子含有層の項目において説明する態様と同じである。 The particles, resins, and additives contained in composition A, including their preferred embodiments, are the same as those described later in the section on the particle-containing layer of the polyester film according to the second embodiment.
 粒子含有層を形成する工程4は、上記組成物Aをポリエステル基材に塗布することにより形成する工程に制限されず、例えば、工程2でろ過された溶融物と、粒子含有層を形成するための粒子及び樹脂を含む溶融物とを共押出しすることにより、ポリエステル基材と粒子含有層とが積層された積層体を形成した後、積層体を2軸延伸することにより、ポリエステルフィルムを製造してもよい。 The step 4 of forming a particle-containing layer is not limited to the step of forming by applying the above composition A to a polyester substrate, for example, the melt filtered in step 2 and the By co-extrusion of the melt containing the particles and the resin, to form a laminate in which the polyester base material and the particle-containing layer are laminated, and then biaxially stretching the laminate to produce a polyester film. may
 以上説明した本製造方法により製造されるポリエステルフィルムは、感光性樹脂層等と組み合わせてドライフィルムレジストとして用いた際に、光学故障を抑制する効果を奏する。
 本製造方法により製造されるポリエステルフィルムの好ましい態様及び用途等については、下記の第2実施形態及び第3実施形態に係るポリエステルフィルムの好ましい態様及び用途等と同じである。
The polyester film produced by the present production method described above exhibits an effect of suppressing optical defects when used as a dry film resist in combination with a photosensitive resin layer or the like.
Preferred aspects and uses of the polyester film produced by this production method are the same as those of the polyester films according to the second and third embodiments described below.
[第2実施形態:ポリエステルフィルム(1)]
 本発明の第2実施形態であるポリエステルフィルムは、ヘイズが0.6%以下であり、ICP-MS法で測定して得られるアンチモンの含有量が1質量ppm以下であり、透過型偏光顕微鏡で観測される直径9~20μmの異物及び空隙の個数が10個/500mm未満であることを特徴とする。
[Second embodiment: polyester film (1)]
The polyester film, which is the second embodiment of the present invention, has a haze of 0.6% or less, an antimony content of 1 mass ppm or less as measured by the ICP-MS method, and a transmission polarizing microscope. The number of foreign particles and voids with a diameter of 9 to 20 μm observed is less than 10/500 mm 2 .
 本実施形態のポリエステルフィルムが上記構成を有することにより光学故障抑制効果を奏する理由の詳細は明らかではないが、本発明者らは概ね以下のように推定している。
 上述のとおり、本発明者らは、ドライフィルムレジストにおいて光学故障が発生する原因と考えられるポリエステルフィルム内に存在する異物及び空隙について検討したところ、上記異物及び空隙のうち、アンチモンに由来する成分を含む着色異物、並びに、直径9~20μmの透明異物及び空隙(ボイド)が、紫外光を用いて感光性樹脂層等を露光した場合の光学故障の発生への寄与が大きいことを突き止めた。
 本実施形態のポリエステルフィルムにおいては、アンチモンの含有量を所定値以下とすることにより上記着色異物の発生が抑制され、かつ、直径9~20μmの異物及び空隙の含有量を所定値以下に低減されたことにより、ドライフィルムレジストの光学故障を抑制できたものと推察している。
Although the details of the reason why the polyester film of the present embodiment has the effect of suppressing optical failure due to the above structure are not clear, the present inventors generally presume as follows.
As described above, the present inventors investigated foreign matter and voids present in the polyester film, which are thought to be the cause of optical failures in dry film resists, and found that antimony-derived components among the foreign matter and voids were investigated. It was found that the colored foreign matter contained in the film, and the transparent foreign matter and voids having a diameter of 9 to 20 μm greatly contribute to the occurrence of optical failures when a photosensitive resin layer or the like is exposed to ultraviolet light.
In the polyester film of the present embodiment, by setting the content of antimony to a predetermined value or less, the generation of the colored foreign matter is suppressed, and the content of the foreign matter with a diameter of 9 to 20 μm and the void content is reduced to a predetermined value or less. It is inferred that the optical failure of the dry film resist could be suppressed because of this.
〔ポリエステルフィルムの特性〕
<アンチモンの含有量>
 本実施形態のポリエステルフィルムに含まれるアンチモン(Sb)の含有量は、ポリエステルフィルムの全質量に対して1質量ppm以下である。
 本発明の効果がより優れる点で、上記アンチモンの含有量は、ポリエステルフィルムの全質量に対して0.7質量ppm以下が好ましく、0.6質量ppm以下がより好ましく、0.5質量ppm以下が更に好ましい。下限値は特に制限されず、0質量ppmであってもよい。
 ポリエステルフィルムに含まれるアンチモンの含有量は、ICP-MSにより測定できる。測定方法の詳細については、後述する実施例に記載する。
[Characteristics of polyester film]
<Content of antimony>
The content of antimony (Sb) contained in the polyester film of the present embodiment is 1 mass ppm or less with respect to the total mass of the polyester film.
From the viewpoint that the effect of the present invention is more excellent, the antimony content is preferably 0.7 mass ppm or less, more preferably 0.6 mass ppm or less, and 0.5 mass ppm or less with respect to the total mass of the polyester film. is more preferred. The lower limit is not particularly limited, and may be 0 mass ppm.
The content of antimony contained in the polyester film can be measured by ICP-MS. Details of the measurement method will be described in Examples described later.
<異物及び空隙の総数>
 本実施形態のポリエステルフィルムでは、偏光顕微鏡を用いて観測される直径9~20μmの異物及び空隙の総数が10個/500mm以下である。
 上記の「個/500mm」との単位は、偏光顕微鏡を用いて観測されるポリエステルフィルムの観測領域500mm当たりの異物又は空隙の個数を意味する。
 ポリエステルフィルムに含まれる直径9~20μmの異物及び空隙の総数、並びに、下記直径3μm以上9μm未満の異物及び空隙の総数は、それぞれ、透過型偏光顕微鏡を用いて測定される。偏光レンズを有する透過型偏光顕微鏡を使用することで、異物又は空隙周辺の樹脂の色濃淡の変化(屈折率変化)が観察でき、フィルム内部に存在する異物及び空隙を精度よくカウントできる。上記のポリエステルフィルムの異物及び空隙の総数の測定方法は、後述する実施例に詳述する。
<Total number of foreign matter and voids>
In the polyester film of the present embodiment, the total number of foreign matter and voids with a diameter of 9 to 20 μm observed with a polarizing microscope is 10/500 mm 2 or less.
The unit of "pieces/500 mm 2 " means the number of foreign particles or voids per 500 mm 2 observation area of the polyester film observed using a polarizing microscope.
The total number of foreign particles and voids with a diameter of 9 to 20 μm contained in the polyester film and the total number of foreign particles and voids with a diameter of 3 μm or more and less than 9 μm are measured using a transmission polarizing microscope. By using a transmission polarizing microscope with a polarizing lens, it is possible to observe the change in color density (refractive index change) of the resin around foreign matter or voids, and accurately count the foreign matter and voids present inside the film. The method for measuring the total number of foreign matter and voids in the polyester film will be described in detail in the examples below.
 光学故障抑制効果がより優れる点で、偏光顕微鏡を用いて観測される直径9~20μmの異物及び空隙の総数は少ない方が好ましく、7個/500mm以下が好ましい。
 なお、直径9~20μm未満の異物及び空隙の総数の下限値は特に制限されず、0個/500mmであってもよい。
The total number of foreign particles and voids with a diameter of 9 to 20 μm observed using a polarizing microscope is preferably as small as possible, preferably 7/500 mm 2 or less, from the viewpoint of better optical failure suppression effect.
The lower limit of the total number of foreign matter and voids having a diameter of less than 9 to 20 μm is not particularly limited, and may be 0/500 mm 2 .
 ポリエステルフィルムに含まれる直径9~20μmの異物としては、例えば、ポリエステル樹脂を重合する過程で生成するゲルからなる透明異物、重合により生成されたポリエステルの熱劣化物、並びに、アンチモン化合物、マグネシウム化合物、リン化合物及びチタン化合物のいずれかに起因する異物(例えば、添加剤であるマグネシウム化合物とリン化合物の反応で生成するリン酸塩)が挙げられる。また、ポリエステルフィルムに含まれる直径9~20μmの空隙としては、上記異物の周辺に生じる空隙が挙げられる。
 ポリエステルフィルムに含まれる異物を構成する物質は、ポリエステルフィルムの異物を含む断面のSEM-EDX(走査型電子顕微鏡(Scanning Electron Microscope)-エネルギー分散型X線分析(Energy dispersive X-ray spectrometry))測定により、分析できる。
Foreign matter with a diameter of 9 to 20 μm contained in the polyester film includes, for example, transparent foreign matter composed of a gel produced in the process of polymerizing a polyester resin, heat-degraded polyester produced by polymerization, antimony compounds, magnesium compounds, Contaminants originating from either a phosphorus compound or a titanium compound (for example, a phosphate produced by a reaction between a magnesium compound and a phosphorus compound as additives) can be mentioned. In addition, voids having a diameter of 9 to 20 μm contained in the polyester film include voids generated around the above-mentioned foreign matters.
SEM-EDX (Scanning Electron Microscope-Energy dispersive X-ray spectrometry) measurement of the cross section containing the foreign matter of the polyester film can be analyzed by
 光学故障抑制効果がより優れる点で、本実施形態のポリエステルフィルムに対して偏光顕微鏡を用いて観測される直径3μm以上9μm未満の異物及び空隙の総数は、200個/500mm以下が好ましく、150個/500mm以下がより好ましく、100個/500mm以下が更に好ましく、70個/500mm以下が特に好ましい。直径3μm以上9μm未満の異物及び空隙の総数の下限値は特に制限されず、0個/500mmであってもよい。 The total number of foreign matter and voids with a diameter of 3 μm or more and less than 9 μm observed using a polarizing microscope on the polyester film of the present embodiment is preferably 200 / 500 mm 2 or less, and 150 It is more preferably 100 pieces/500 mm 2 or less, even more preferably 100 pieces/500 mm 2 or less, and particularly preferably 70 pieces/500 mm 2 or less. The lower limit of the total number of foreign matter and voids with a diameter of 3 μm or more and less than 9 μm is not particularly limited, and may be 0/500 mm 2 .
 ポリエステルフィルムに含まれる直径3μm以上9μm未満の異物及び空隙としては、例えば、ポリエステル樹脂を重合する過程で生成するゲルからなる透明異物、Sb由来成分を含む着色異物、及び、添加剤であるマグネシウム化合物とリン化合物の反応で生成するリン酸塩、並びに、着色異物及び透明異物等の異物の周辺に生じる空隙が挙げられる。 Foreign matter and voids with a diameter of 3 μm or more and less than 9 μm contained in the polyester film include, for example, transparent foreign matter made of gel formed in the process of polymerizing the polyester resin, colored foreign matter containing Sb-derived components, and a magnesium compound as an additive. voids generated around foreign substances such as phosphates produced by the reaction of phosphorus compounds and colored foreign substances and transparent foreign substances.
 また、本実施形態のポリエステルフィルムに対して偏光顕微鏡を用いて観測される直径20μm超の異物及び空隙の総数は、1個/500mm未満であることが好ましく、0個/500mm(即ち、観測されないこと)がより好ましい。 In addition, the total number of foreign matter and voids with a diameter of more than 20 μm observed using a polarizing microscope on the polyester film of the present embodiment is preferably less than 1/500 mm 2 , and 0/500 mm 2 (i.e., not observed) is more preferable.
<ヘイズ>
 本実施形態のポリエステルフィルムのヘイズは、0.6%以下である。
 ポリエステルフィルムのヘイズは、透明性及び光学故障の抑制性能がより優れる点で、0.5%以下が好ましく、0.4%以下がより好ましく、0.3%未満が更に好ましい。下限値は特に制限されないが、0%以上が好ましい。
 ポリエステルフィルムのヘイズは、JIS K 7105に準じて、公知のヘイズメーター(例えば、日本電色工業株式会社製「NDH-2000」等)を用いて測定できる。
<Haze>
The haze of the polyester film of this embodiment is 0.6% or less.
The haze of the polyester film is preferably 0.5% or less, more preferably 0.4% or less, and still more preferably less than 0.3%, from the viewpoint of superior transparency and optical failure suppression performance. Although the lower limit is not particularly limited, 0% or more is preferable.
The haze of the polyester film can be measured according to JIS K 7105 using a known haze meter (eg, "NDH-2000" manufactured by Nippon Denshoku Industries Co., Ltd.).
〔構成〕
 本実施形態のポリエステルフィルムは、ポリエステル樹脂の溶融物を用いて形成されたポリエステル基材のみからなる単層構造であってもよく、ポリエステル樹脂の溶融物を用いて形成されたポリエステル基材と、粒子を含有する粒子含有層とを有する多層構造であってもよい。
 本実施形態のポリエステルフィルムが粒子含有層を有する場合、ポリエステル基材の片面に1つの粒子含有層が配置されていてもよく、ポリエステル基材の両面に2つの粒子含有層が配置されていてもよい。中でも、ポリエステル基材の片面に1つの粒子含有層が配置されていることが好ましい。
 本実施形態のポリエステルフィルムは、ポリエステル基材及び粒子含有層以外の他の層を有していてもよい。このような他の層としては、密着層、剥離層、帯電防止層及びオリゴマー析出防止層が挙げられる。また、ポリエステル基材と粒子含有層との間にプライマー層等の中間層を設けてもよい。これら他の層の厚みは、1nm~1μmが好ましく、30~500nmがより好ましい。
〔composition〕
The polyester film of the present embodiment may have a single-layer structure consisting only of a polyester base material formed using a melt of a polyester resin, and a polyester base material formed using a melt of a polyester resin, It may be a multilayer structure having a particle-containing layer containing particles.
When the polyester film of the present embodiment has a particle-containing layer, one particle-containing layer may be arranged on one side of the polyester substrate, or two particle-containing layers may be arranged on both sides of the polyester substrate. good. Among them, it is preferable that one particle-containing layer is arranged on one side of the polyester base material.
The polyester film of the present embodiment may have layers other than the polyester substrate and the particle-containing layer. Such other layers include adhesion layers, release layers, antistatic layers and oligomer precipitation prevention layers. Further, an intermediate layer such as a primer layer may be provided between the polyester base material and the particle-containing layer. The thickness of these other layers is preferably 1 nm to 1 μm, more preferably 30 to 500 nm.
<ポリエステル基材>
 ポリエステル基材は、主たる成分としてポリエステル樹脂を含有するフィルム状の物体である。ここで、「主たる成分」とは、ある物体に含まれる全ての成分のうち最も含有量(質量)が多い成分を意味する。
 ポリエステル基材は、1種単独のポリエステル樹脂を含有していてもよく、2種以上のポリエステル樹脂を含有していてもよい。
<Polyester base material>
A polyester substrate is a film-like object containing a polyester resin as a main component. Here, the “main component” means the component with the largest content (mass) among all the components contained in a certain object.
The polyester base material may contain a single polyester resin, or may contain two or more polyester resins.
 本実施形態のポリエステルフィルムが有するポリエステル基材は、無機粒子を実質的に含まないことが好ましい。即ち、ポリエステル基材について、蛍光X線分析法で上記無機粒子に由来する元素を定量分析した際に、上記無機粒子の含有量がポリエステル基材の全質量に対して50質量ppm以下であることが好ましい。ここで、無機粒子としては、後述する粒子含有層が含む無機粒子が挙げられる。
 ポリエステル基材に含まれる上記粒子の含有量は、ポリエステル基材の全質量に対して10質量ppm以下がより好ましく、検出限界以下が更に好ましい。
The polyester base material of the polyester film of the present embodiment preferably does not substantially contain inorganic particles. That is, the content of the inorganic particles is 50 ppm by mass or less with respect to the total mass of the polyester base material when quantitative analysis of the elements derived from the inorganic particles is performed on the polyester base material by fluorescent X-ray analysis. is preferred. Here, examples of the inorganic particles include inorganic particles contained in the particle-containing layer described later.
The content of the particles contained in the polyester base material is more preferably 10 mass ppm or less with respect to the total mass of the polyester base material, and further preferably below the detection limit.
<<ポリエステル樹脂>>
 ポリエステル樹脂としては、寸法安定性、機械的強度及び透明性に優れていることから、芳香族系ポリエステル樹脂が好ましい。
 芳香族系ポリエステル樹脂としては、例えば、ポリエチレンテレフタレート及びポリエチレン-2,6-ナフタレートが挙げられる。
<<polyester resin>>
As the polyester resin, an aromatic polyester resin is preferable because it is excellent in dimensional stability, mechanical strength and transparency.
Examples of aromatic polyester resins include polyethylene terephthalate and polyethylene-2,6-naphthalate.
 芳香族系ポリエステルの代表例としては、主たるモノマー単位がエチレンテレフタレート又はエチレン-2,6-ナフタレートからなるポリエステル(即ち、ポリエチレンテレフタレート(PET)又はポリエチレン-2,6-ナフタレート(PEN))、及び、エチレンテレフタレート及びエチレン-2,6-ナフタレートの両方のモノマー単位を含むポリエステル(共重合体)が挙げられる。
 上記芳香族系ポリエステルとしては、エチレンテレフタレート単位が0~40モル%とエチレン-2,6-ナフタレート単位が60~100モル%とからなる繰り返し単位を持つ芳香族ポリエステルであることが好ましい。
 また、芳香族ポリエステルの極限粘度は、0.50~0.80の範囲にあることが好ましい。極限粘度が0.50以上であると、延伸倍率を高めてもフィルムの破断が生じ難くなり、強く延伸しても白化現象が起こり難くなる。一方で、極限粘度が0.80以下であると、分子量を大幅に向上させる必要がないので、溶融重合および固相重合工程における負荷が小さく、生産性の観点で好ましい。
Representative examples of aromatic polyesters include polyesters whose main monomer units are ethylene terephthalate or ethylene-2,6-naphthalate (that is, polyethylene terephthalate (PET) or polyethylene-2,6-naphthalate (PEN)), and Included are polyesters (copolymers) containing monomer units of both ethylene terephthalate and ethylene-2,6-naphthalate.
The aromatic polyester is preferably an aromatic polyester having repeating units composed of 0 to 40 mol % of ethylene terephthalate units and 60 to 100 mol % of ethylene-2,6-naphthalate units.
Also, the intrinsic viscosity of the aromatic polyester is preferably in the range of 0.50 to 0.80. When the intrinsic viscosity is 0.50 or more, the film is less likely to break even if the draw ratio is increased, and whitening is less likely to occur even if the film is strongly drawn. On the other hand, when the intrinsic viscosity is 0.80 or less, there is no need to greatly improve the molecular weight, so the load in the melt polymerization and solid phase polymerization steps is small, which is preferable from the viewpoint of productivity.
 ポリエステル樹脂の製造方法は特に制限されず、公知の方法を利用できる。例えば、チタン化合物等の公知の化合物の存在下で、少なくとも1種のジカルボン酸化合物と、少なくとも1種のジオール化合物とを含むポリエステル樹脂前駆体を重縮合させることによりポリエステル樹脂を製造する方法が挙げられる。
 以下、ポリエステル樹脂の製造に用いる材料について説明する。
The method for producing the polyester resin is not particularly limited, and known methods can be used. For example, there is a method of producing a polyester resin by subjecting a polyester resin precursor containing at least one dicarboxylic acid compound and at least one diol compound to polycondensation in the presence of a known compound such as a titanium compound. be done.
The materials used for producing the polyester resin are described below.
(ジカルボン酸化合物)
 ジカルボン酸化合物は、ジカルボン酸及びジカルボン酸エステル化合物からなる群より選択される化合物である。
 ジカルボン酸化合物としては、例えば、脂肪族ジカルボン酸化合物、脂環式ジカルボン酸化合物、及び、芳香族ジカルボン酸化合物等のジカルボン酸、並びに、それらジカルボン酸のメチルエステル化合物及びエチルエステル化合物等のジカルボン酸エステルが挙げられる。中でも、芳香族ジカルボン酸、又は、芳香族ジカルボン酸メチルが好ましい。
(Dicarboxylic acid compound)
A dicarboxylic acid compound is a compound selected from the group consisting of dicarboxylic acids and dicarboxylic acid ester compounds.
Examples of dicarboxylic acid compounds include dicarboxylic acids such as aliphatic dicarboxylic acid compounds, alicyclic dicarboxylic acid compounds, and aromatic dicarboxylic acid compounds, and dicarboxylic acids such as methyl ester compounds and ethyl ester compounds of these dicarboxylic acids. esters. Among them, aromatic dicarboxylic acid or methyl aromatic dicarboxylate is preferable.
 脂肪族ジカルボン酸化合物としては、例えば、マロン酸、コハク酸、グルタル酸、アジピン酸、スベリン酸、セバシン酸、ドデカンジオン酸、ダイマー酸、エイコサンジオン酸、ピメリン酸、アゼライン酸、メチルマロン酸、及び、エチルマロン酸が挙げられる。
 脂環式ジカルボン酸化合物としては、例えば、アダマンタンジカルボン酸、ノルボルネンジカルボン酸、シクロヘキサンジカルボン酸、及び、デカリンジカルボン酸が挙げられる。
Examples of aliphatic dicarboxylic acid compounds include malonic acid, succinic acid, glutaric acid, adipic acid, suberic acid, sebacic acid, dodecanedioic acid, dimer acid, eicosandioic acid, pimelic acid, azelaic acid, methylmalonic acid, and ethylmalonic acid.
Alicyclic dicarboxylic acid compounds include, for example, adamantanedicarboxylic acid, norbornenedicarboxylic acid, cyclohexanedicarboxylic acid, and decalinedicarboxylic acid.
 芳香族ジカルボン酸化合物としては、例えば、テレフタル酸、イソフタル酸、フタル酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸、4,4’-ジフェニルジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、5-ナトリウムスルホイソフタル酸、フェニルインダンジカルボン酸、アントラセンジカルボン酸、フェナントレンジカルボン酸、及び、9,9’-ビス(4-カルボキシフェニル)フルオレン酸、及び、それらのメチルエステル体が挙げられる。
 中でも、テレフタル酸、又は、2,6-ナフタレンジカルボン酸が好ましく、テレフタル酸がより好ましい。
Examples of aromatic dicarboxylic acid compounds include terephthalic acid, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and 1,8-naphthalenedicarboxylic acid. , 4,4′-diphenyldicarboxylic acid, 4,4′-diphenyletherdicarboxylic acid, 5-sodium sulfoisophthalic acid, phenylindanedicarboxylic acid, anthracenedicarboxylic acid, phenanthrene dicarboxylic acid, and 9,9′-bis(4- carboxyphenyl)fluoric acid and their methyl esters.
Among them, terephthalic acid or 2,6-naphthalenedicarboxylic acid is preferable, and terephthalic acid is more preferable.
 ジカルボン酸化合物は1種のみ用いてもよく、2種以上を併用してもよい。ジカルボン酸化合物として、テレフタル酸を使用する場合、テレフタル酸単独で用いてもよく、イソフタル酸等の他の芳香族ジカルボン酸、又は、脂肪族ジカルボン酸と共重合してもよい。 Only one type of dicarboxylic acid compound may be used, or two or more types may be used in combination. When terephthalic acid is used as the dicarboxylic acid compound, terephthalic acid may be used alone, or may be copolymerized with another aromatic dicarboxylic acid such as isophthalic acid, or an aliphatic dicarboxylic acid.
(ジオール化合物)
 ジオール化合物としては、例えば、脂肪族ジオール化合物、脂環式ジオール化合物、及び、芳香族ジオール化合物が挙げられ、脂肪族ジオール化合物が好ましい。
(Diol compound)
Examples of diol compounds include aliphatic diol compounds, alicyclic diol compounds, and aromatic diol compounds, with aliphatic diol compounds being preferred.
 脂肪族ジオール化合物としては、例えば、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,2-ブタンジオール、1,3-ブタンジオール、及び、ネオペンチルグリコールが挙げられ、エチレングリコールが好ましい。
 脂環式ジオール化合物としては、例えば、シクロヘキサンジメタノール、スピログリコール、及び、イソソルビドが挙げられる。
 芳香族ジオール化合物としては、例えば、ビスフェノールA、1,3-ベンゼンジメタノール,1,4-ベンゼンジメタノール、及び、9,9’-ビス(4-ヒドロキシフェニル)フルオレンが挙げられる。
 ジオール化合物は、1種のみ用いてもよく、2種以上を併用してもよい。
Examples of aliphatic diol compounds include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,2-butanediol, 1,3-butanediol, and neo Pentyl glycol may be mentioned, with ethylene glycol being preferred.
Alicyclic diol compounds include, for example, cyclohexanedimethanol, spiroglycol, and isosorbide.
Examples of aromatic diol compounds include bisphenol A, 1,3-benzenedimethanol, 1,4-benzenedimethanol, and 9,9′-bis(4-hydroxyphenyl)fluorene.
Only one kind of diol compound may be used, or two or more kinds thereof may be used in combination.
 ポリエステル樹脂の製造に使用する化合物は、特に制限されず、ポリエステル樹脂の合成に使用可能な公知の化合物を利用できる。
 化合物としては、例えば、アルカリ金属化合物(例えば、カリウム化合物、ナトリウム化合物)、アルカリ土類金属化合物(例えば、カルシウム化合物、マグネシウム化合物)、亜鉛化合物、鉛化合物、マンガン化合物、コバルト化合物、アルミニウム化合物、アンチモン化合物、チタン化合物、ゲルマニウム化合物、及び、リン化合物が挙げられる。中でも、触媒活性、及び、コストの観点から、チタン化合物が好ましい。
 上記化合物は、1種のみ用いてもよく、2種以上を併用してもよい。カリウム化合物、ナトリウム化合物、カルシウム化合物、マグネシウム化合物、亜鉛化合物、鉛化合物、マンガン化合物、コバルト化合物、アルミニウム化合物、アンチモン化合物、チタン化合物、及び、ゲルマニウム化合物から選択される少なくとも1種の金属化合物と、リン化合物とを併用することが好ましく、チタン化合物とリン化合物を併用することがより好ましい。
 上記化合物を添加する場合、各化合物の添加量は、上記金属元素又はリン元素に換算して、ポリエステル樹脂の全質量に対して1~500質量ppmとなる量が一般的であり、1~100質量ppmとなる量が好ましい。
Compounds used for producing polyester resins are not particularly limited, and known compounds that can be used for synthesis of polyester resins can be used.
Compounds include, for example, alkali metal compounds (e.g., potassium compounds, sodium compounds), alkaline earth metal compounds (e.g., calcium compounds, magnesium compounds), zinc compounds, lead compounds, manganese compounds, cobalt compounds, aluminum compounds, antimony compounds, titanium compounds, germanium compounds, and phosphorus compounds. Among them, titanium compounds are preferable from the viewpoint of catalytic activity and cost.
One of the above compounds may be used alone, or two or more thereof may be used in combination. at least one metal compound selected from potassium compounds, sodium compounds, calcium compounds, magnesium compounds, zinc compounds, lead compounds, manganese compounds, cobalt compounds, aluminum compounds, antimony compounds, titanium compounds, and germanium compounds; It is preferable to use a compound together, and it is more preferable to use a titanium compound and a phosphorus compound together.
When the above compounds are added, the amount of each compound added is generally 1 to 500 ppm by mass with respect to the total mass of the polyester resin in terms of the metal element or phosphorus element, and 1 to 100 An amount that gives ppm by mass is preferred.
 上記チタン化合物については、好ましい態様も含めて、第1実施形態の工程1において使用する化合物として挙げたチタン化合物と同じであってよい。
 また、マグネシウム化合物及びリン化合物も、それぞれ、好ましい態様も含めて、第1実施形態の工程1において使用してもよい化合物として挙げたマグネシウム化合物及びリン化合物と同じであってよい。
The titanium compound, including preferred embodiments, may be the same as the titanium compound used in step 1 of the first embodiment.
In addition, the magnesium compound and the phosphorus compound, including preferred embodiments, may be the same as the magnesium compound and the phosphorus compound, respectively, which are listed as the compounds that may be used in step 1 of the first embodiment.
(末端封止剤)
 ポリエステル樹脂の製造においては、必要に応じて、末端封止剤を用いてもよい。末端封止剤を用いることで、ポリエステル樹脂の末端に末端封止剤に由来する構造が導入される。
 末端封止剤としては、制限されず、公知の末端封止剤を利用できる。末端封止剤としては、例えば、オキサゾリン系化合物、カルボジイミド系化合物、及び、エポキシ系化合物が挙げられる。
 末端封止剤としては、特開2014-189002号公報の[0055]~[0064]に記載の内容も参照でき、上記公報の内容は、本明細書に組み込まれる。
(Terminal blocking agent)
In the production of the polyester resin, if necessary, a terminal blocker may be used. By using the terminal blocking agent, a structure derived from the terminal blocking agent is introduced to the terminal of the polyester resin.
The terminal blocking agent is not limited, and known terminal blocking agents can be used. Examples of terminal blocking agents include oxazoline-based compounds, carbodiimide-based compounds, and epoxy-based compounds.
As the end blocking agent, the content described in [0055] to [0064] of JP-A-2014-189002 can also be referred to, and the content of the above publication is incorporated herein.
(その他添加剤)
 ポリエステル樹脂には、目的に応じてその他の金属化合物、含窒素塩基性化合物、酸化防止剤、帯電防止剤、紫外線吸収剤、蛍光増白剤及び染料などが含まれていてもよい。
(Other additives)
The polyester resin may contain other metal compounds, nitrogen-containing basic compounds, antioxidants, antistatic agents, ultraviolet absorbers, fluorescent whitening agents, dyes, and the like depending on the purpose.
 ポリエステル樹脂の製造方法は、特に制限されず、回分式、半回分式及び連続式等の公知の製造方法が挙げられる。ポリエステル樹脂の製造方法としては、エステル交換反応法、及び、直接エステル化反応法も挙げられる。
 中でも、ポリエステル樹脂の製造方法としては、上述した第1実施形態の工程1として記載された方法が特に好ましい。
 更に、これらの重合反応後に、固相重合反応を行ってもよい。
The method for producing the polyester resin is not particularly limited, and includes known production methods such as batch, semi-batch and continuous methods. Examples of the method for producing the polyester resin include a transesterification method and a direct esterification method.
Among them, as a method for producing a polyester resin, the method described as the step 1 of the first embodiment is particularly preferable.
Furthermore, after these polymerization reactions, a solid phase polymerization reaction may be performed.
 ポリエステル基材におけるポリエステル樹脂の含有量は、ポリエステル基材中の樹脂の全質量に対して、85質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上が更に好ましく、98質量%以上が特に好ましい。
 ポリエステル樹脂の含有量の上限は、特に制限されず、ポリエステル基材中の樹脂の全質量に対して、例えば100質量%以下の範囲で適宜設定できる。
The content of the polyester resin in the polyester base is preferably 85% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more, and 98% by mass with respect to the total mass of the resin in the polyester base. The above are particularly preferred.
The upper limit of the content of the polyester resin is not particularly limited, and can be appropriately set, for example, within a range of 100% by mass or less with respect to the total mass of the resin in the polyester base material.
 ポリエステル基材は、ポリエステル樹脂以外の成分(例えば、上述した化合物、未反応の原料成分、粒子、及び、水等)を含んでいてもよい。
 ポリエステル基材は、本発明の効果がより優れる点で、無機粒子を実質的に含まないことが好ましい。ポリエステル基材に含まれる無機粒子としては、例えば、後述する粒子含有層が含む無機粒子が挙げられ、更には、ポリエステル樹脂を重合する工程で使用される金属化合物とリン化合物とが反応して、リン酸金属塩として析出する無機粒子(いわゆる内部粒子)が挙げられる。
 また、ポリエステル基材は、本発明の効果がより優れる点で、有機粒子を実質的に含まないことが好ましい。ポリエステル基材に含まれる有機粒子としては、例えば、後述する粒子含有層が含む有機粒子が挙げられる。
The polyester base material may contain components other than the polyester resin (for example, the compounds described above, unreacted raw material components, particles, water, and the like).
It is preferable that the polyester base material does not substantially contain inorganic particles, in order to obtain a more excellent effect of the present invention. The inorganic particles contained in the polyester base material include, for example, inorganic particles contained in the particle-containing layer described later, and furthermore, the metal compound and the phosphorus compound used in the step of polymerizing the polyester resin react to Inorganic particles (so-called internal particles) that precipitate as metal phosphates can be mentioned.
Moreover, it is preferable that the polyester base material does not substantially contain organic particles from the viewpoint that the effects of the present invention are more excellent. Organic particles contained in the polyester base material include, for example, organic particles contained in the particle-containing layer described later.
<粒子含有層>
 本実施形態のポリエステルフィルムは、滑り性を付与することにより搬送性を向上できる点で、ポリエステル基材の少なくとも片面に、粒子含有層を有することが好ましい。具体的には、巻き品質を向上(ブロッキングを抑制)し、搬送時のキズ及び欠陥の発生を抑制し、高速搬送における搬送シワを低減できる。
 粒子含有層は、ポリエステル基材の表面に直接設けてもよく、中間層を介して設けてもよいが、生産性がより優れる点で、ポリエステル基材の表面に直接設けることが好ましい。
 粒子含有層は、粒子とともにバインダーを含むことが好ましい。粒子含有層は、粒子及びバインダーに加えて添加剤を含んでいてもよい。
<Particle-containing layer>
The polyester film of the present embodiment preferably has a particle-containing layer on at least one side of the polyester substrate in that the transportability can be improved by imparting slipperiness. Specifically, the winding quality can be improved (blocking can be suppressed), the occurrence of scratches and defects during transportation can be suppressed, and wrinkles during high-speed transportation can be reduced.
The particle-containing layer may be provided directly on the surface of the polyester base material or may be provided via an intermediate layer, but it is preferable to provide it directly on the surface of the polyester base material in terms of better productivity.
The particle-containing layer preferably contains a binder together with the particles. The particle-containing layer may contain additives in addition to the particles and binder.
(粒子)
 粒子含有層に含まれる粒子の平均粒子径は、特に制限されず、1~1000nmが好ましく、40~500nmがより好ましい。
 粒子としては、無機粒子及び有機粒子が挙げられる。
 無機粒子としては、例えば、シリカ粒子(二酸化ケイ素粒子、コロイダルシリカ)、チタニア粒子(酸化チタン粒子)、炭酸カルシウム、硫酸バリウム、及び、アルミナ粒子(酸化アルミニウム粒子)が挙げられる。
 有機粒子としては、例えば、樹脂粒子が挙げられる。樹脂粒子を構成する樹脂としては、例えば、ポリメタクリル酸メチル樹脂(PMMA)等のアクリル樹脂、ポリエステル樹脂、シリコーン樹脂、スチレン樹脂、ウレタン樹脂、及び、スチレン-アクリル樹脂が挙げられる。樹脂粒子は、架橋構造を有していても、有していなくてもよい。具体的には、非架橋のアクリル樹脂粒子、非架橋のスチレン樹脂粒子、架橋のアクリル樹脂粒子、架橋のウレタン樹脂粒子、及び、ジビニルベンゼン架橋粒子が挙げられる。なお、本明細書において、アクリル樹脂とは、アクリレート又はメタクリレート由来の構成単位を含む樹脂を意味する。
(particle)
The average particle size of the particles contained in the particle-containing layer is not particularly limited, preferably 1 to 1000 nm, more preferably 40 to 500 nm.
Particles include inorganic particles and organic particles.
Examples of inorganic particles include silica particles (silicon dioxide particles, colloidal silica), titania particles (titanium oxide particles), calcium carbonate, barium sulfate, and alumina particles (aluminum oxide particles).
Examples of organic particles include resin particles. Examples of resins constituting resin particles include acrylic resins such as polymethyl methacrylate resin (PMMA), polyester resins, silicone resins, styrene resins, urethane resins, and styrene-acrylic resins. The resin particles may or may not have a crosslinked structure. Specific examples include non-crosslinked acrylic resin particles, non-crosslinked styrene resin particles, crosslinked acrylic resin particles, crosslinked urethane resin particles, and divinylbenzene crosslinked particles. In addition, in this specification, an acrylic resin means a resin containing structural units derived from acrylate or methacrylate.
 粒子含有層における粒子の含有量は、搬送性の観点から、粒子含有層の全質量に対して、0.1~30質量%が好ましく、1~25質量%がより好ましい。
 また、粒子の含有量は、ポリエステル基材の全質量に対して、0.0001~0.01質量%が好ましく、0.0005~0.005質量%がより好ましい。
From the viewpoint of transportability, the content of particles in the particle-containing layer is preferably 0.1 to 30% by mass, more preferably 1 to 25% by mass, based on the total mass of the particle-containing layer.
Also, the content of the particles is preferably 0.0001 to 0.01% by mass, more preferably 0.0005 to 0.005% by mass, relative to the total mass of the polyester base material.
(バインダー)
 粒子含有層は、バインダーを含むことが好ましい。バインダーとしては、樹脂バインダーが好ましい。樹脂バインダーとしては、非ポリエステル樹脂が好ましく、例えば、アクリル樹脂、ウレタン樹脂、ポリエステル樹脂、及び、オレフィン樹脂が挙げられ、アクリル樹脂、ウレタン樹脂、又は、オレフィン樹脂が好ましい。バインダーとしては、公知の樹脂を利用できる。また、樹脂バインダーは、酸変性樹脂であってもよい。
 また、粒子含有層に含まれるバインダーは、架橋構造を有していてもよい。つまり、粒子含有層は、架橋膜であってもよい。
 粒子含有層は、1種単独のバインダーを含んでいてもよく、2種以上のバインダーを含んでいてもよい。
 バインダーの含有量は、粒子含有層の全質量に対して、30~99.8質量%が好ましく、50~99.5質量%がより好ましい。
(binder)
The particle-containing layer preferably contains a binder. As the binder, a resin binder is preferred. As the resin binder, non-polyester resins are preferable, and examples thereof include acrylic resins, urethane resins, polyester resins, and olefin resins, and acrylic resins, urethane resins, and olefin resins are preferable. A known resin can be used as the binder. Also, the resin binder may be an acid-modified resin.
Moreover, the binder contained in the particle-containing layer may have a crosslinked structure. That is, the particle-containing layer may be a crosslinked film.
The particle-containing layer may contain a single binder, or may contain two or more binders.
The binder content is preferably 30 to 99.8% by mass, more preferably 50 to 99.5% by mass, based on the total mass of the particle-containing layer.
(添加剤)
 粒子含有層に含まれる添加剤としては、例えば、界面活性剤、ワックス、酸化防止剤、紫外線吸収剤、着色剤、強化剤、可塑剤、帯電防止剤、難燃剤、防錆剤、及び、防黴剤が挙げられる。
(Additive)
Additives contained in the particle-containing layer include, for example, surfactants, waxes, antioxidants, ultraviolet absorbers, colorants, reinforcing agents, plasticizers, antistatic agents, flame retardants, rust inhibitors, and anti-rust agents. Examples include fungicides.
 粒子含有層は、その表面の平滑性が向上する点で、界面活性剤を含むことが好ましい。
 界面活性剤としては、特に制限されず、シリコーン系界面活性剤、フッ素系界面活性剤、及び、炭化水素系界面活性剤が挙げられ、フッ素系界面活性剤(特に、炭素数1~4のパーフルオロアルキル基を有するフッ素系界面活性剤)、又は、炭化水素系界面活性剤が好ましい。
 界面活性剤は1種用いてもよいし、2種以上併用してもよい。
 界面活性剤の含有量は、粒子含有層の全質量に対して、0.1~10質量%が好ましく、表面平滑性により優れる点で、0.1~5質量%がより好ましい。
The particle-containing layer preferably contains a surfactant from the viewpoint of improving the smoothness of the surface.
The surfactant is not particularly limited, and includes silicone surfactants, fluorine surfactants, and hydrocarbon surfactants. A fluorine-based surfactant having a fluoroalkyl group) or a hydrocarbon-based surfactant is preferable.
One type of surfactant may be used, or two or more types may be used in combination.
The content of the surfactant is preferably from 0.1 to 10% by mass, more preferably from 0.1 to 5% by mass, based on the total mass of the particle-containing layer, from the viewpoint of better surface smoothness.
 粒子含有層の厚みは、低ヘイズとする観点から、1nm~1μmが好ましく、1~500nmがより好ましく、1~200nmが更に好ましい。
 粒子含有層の厚みは、ポリエステルフィルムの主面に対して垂直な断面を有する切片を作製し、走査型電子顕微鏡(SEM)を用いて測定される、上記切片の5か所の厚みの算術平均値とする。
The thickness of the particle-containing layer is preferably 1 nm to 1 μm, more preferably 1 to 500 nm, even more preferably 1 to 200 nm, from the viewpoint of low haze.
The thickness of the particle-containing layer is the arithmetic mean of the thicknesses of five locations on the section, which is measured using a scanning electron microscope (SEM) by preparing a section having a section perpendicular to the main surface of the polyester film. value.
〔物性等〕
 本実施形態のポリエステルフィルムは、チタンを含んでいてもよく、チタンを含むことが好ましい。
 また、本実施形態のポリエステルフィルムは、上記のポリエステル樹脂に添加される化合物に由来する元素を含んでいてもよい。中でも、ポリエステルフィルムは、マグネシウム及びリンからなる群から選択される少なくとも1つの元素を含むことが好ましく、マグネシウム及びリンを含むことがより好ましい。
 また、本実施形態のポリエステルフィルムは、チタン、マグネシウム及びリンからなる群から選択される少なくとも1つの元素を含むことが好ましく、チタン、マグネシウム及びリンを含むことがより好ましい。
 上記元素の含有量は、それぞれ、ポリエステルフィルムの全質量に対して1~500質量ppmが好ましく、1~100質量ppmがより好ましい。なお、ポリエステルフィルムに含まれる金属元素及びリン元素の含有量は、アンチモンの含有量の測定方法に準じて、ICP-MSにより測定できる。
[Physical properties, etc.]
The polyester film of the present embodiment may contain titanium, and preferably contains titanium.
Moreover, the polyester film of the present embodiment may contain an element derived from the compound added to the polyester resin. Among them, the polyester film preferably contains at least one element selected from the group consisting of magnesium and phosphorus, and more preferably contains magnesium and phosphorus.
Moreover, the polyester film of the present embodiment preferably contains at least one element selected from the group consisting of titanium, magnesium and phosphorus, and more preferably contains titanium, magnesium and phosphorus.
The content of each of the above elements is preferably 1 to 500 mass ppm, more preferably 1 to 100 mass ppm, relative to the total mass of the polyester film. The contents of the metal element and phosphorus element contained in the polyester film can be measured by ICP-MS according to the method for measuring the content of antimony.
 本実施形態のポリエステルフィルムがチタンを含む場合、チタン元素の含有量は、1~30質量ppmが好ましく、3~20質量ppmがより好ましく、5~15質量ppmが更に好ましい。
 本実施形態のポリエステルフィルムがマグネシウムを含む場合、マグネシウム元素の含有量は、高い静電印加性を付与できる点で、ポリエステルフィルムの全質量に対して、50質量ppm以上が好ましく、50~100質量ppmがより好ましく、60~90質量ppmが更に好ましく、70~80質量ppmが特に好ましい。
 本実施形態のポリエステルフィルムがリンを含む場合、リン元素の含有量は、ポリエステルフィルムの全質量に対して、50~90質量ppmが好ましく、60~80質量ppmがより好ましく、65~75質量ppmが更に好ましい。
When the polyester film of the present embodiment contains titanium, the content of the titanium element is preferably 1 to 30 mass ppm, more preferably 3 to 20 mass ppm, and even more preferably 5 to 15 mass ppm.
When the polyester film of the present embodiment contains magnesium, the content of the magnesium element is preferably 50 mass ppm or more with respect to the total mass of the polyester film in that it can impart high static electricity properties, and 50 to 100 mass. ppm is more preferred, 60 to 90 ppm by mass is more preferred, and 70 to 80 ppm by mass is particularly preferred.
When the polyester film of the present embodiment contains phosphorus, the content of the phosphorus element is preferably 50 to 90 mass ppm, more preferably 60 to 80 mass ppm, and 65 to 75 mass ppm, relative to the total mass of the polyester film. is more preferred.
<厚み>
 本実施形態のポリエステルフィルムの厚みは、光学故障の抑制性能がより優れる点で、100μm以下が好ましく、50μm以下がより好ましく、35μm以下が更に好ましい。厚みの下限は特に制限されないが、強度が向上し、加工性が向上する点で、1μm以上が好ましく、5μm以上がより好ましく、10μm以上が更に好ましい。
 ポリエステルフィルムの厚みは、連続式触針式膜厚計を用いて測定したものとする。具体的には、ポリエステルフィルムの厚みを、長手方向に沿って10mにわたり連続式触針式膜厚計で測定する。この測定を、幅方向の位置が異なる5か所において行う。得られた測定値の算術平均値を厚みとする。
 なお、10mに満たないポリエステルフィルムの場合には、ポリエステルフィルムから任意に選択した異なる5か所において、触針式膜厚計で厚みを測定し、得られた測定値の算術平均値を厚みとする。
<Thickness>
The thickness of the polyester film of the present embodiment is preferably 100 μm or less, more preferably 50 μm or less, and even more preferably 35 μm or less, from the viewpoint of superior optical failure suppression performance. Although the lower limit of the thickness is not particularly limited, it is preferably 1 µm or more, more preferably 5 µm or more, and even more preferably 10 µm or more in terms of improving strength and workability.
The thickness of the polyester film should be measured using a continuous stylus film thickness gauge. Specifically, the thickness of the polyester film is measured over 10 m along the longitudinal direction with a continuous stylus film thickness gauge. This measurement is performed at five different positions in the width direction. Let the arithmetic mean value of the obtained measured value be thickness.
In the case of a polyester film of less than 10 m, the thickness is measured with a stylus type film thickness meter at five different locations arbitrarily selected from the polyester film, and the arithmetic average value of the obtained measured values is taken as the thickness. do.
〔製造方法〕
 本実施形態のポリエステルフィルムの製造方法は、上記構成を備えるポリエステルフィルムを製造できる限り、特に制限されない。
 ポリエステル基材及び粒子含有層を有するポリエステルフィルムの製造方法としては、例えば、ポリエステル樹脂を溶融押し出ししてポリエステル基材を作製した後、ポリエステル基材の片面に粒子を含む粒子含有層形成用組成物を塗布し、次いで、延伸する方法、並びに、ポリエステル樹脂の溶融物と粒子及びバインダーを含む粒子含有層形成用組成物を共押出しした後、延伸する方法が挙げられる。
〔Production method〕
The method for producing the polyester film of the present embodiment is not particularly limited as long as the polyester film having the above configuration can be produced.
As a method for producing a polyester film having a polyester substrate and a particle-containing layer, for example, a polyester resin is melt-extruded to prepare a polyester substrate, and then a particle-containing layer-forming composition containing particles on one side of the polyester substrate. and then stretching, and a method of co-extrusion of a particle-containing layer-forming composition containing a polyester resin melt, particles and a binder and then stretching.
 本実施形態のポリエステルフィルムをドライフィルムレジストの製造に用いる場合には、実質的に粒子を含まないポリエステル基材を溶融押し出し成形により作製した後に、ポリエステル基材の片面に粒子を含む組成物を塗布し、ついで延伸してポリエステルフィルムを製造することが好ましい。これにより、滑り性を維持したまま、ポリエステルフィルムに含まれる粒子を極力少なくすることができるため、ポリエステルフィルムのヘイズがより低くなり、かつ、光学故障の抑制性能がより優れたフィルムを製造できる。
 また、本実施形態のポリエステルフィルムの製造方法としては、その好ましい態様も含めて、上述した第1実施形態に係るポリエステルフィルムの製造方法として記載された方法が挙げられる。
When the polyester film of the present embodiment is used for the production of a dry film resist, a substantially particle-free polyester substrate is prepared by melt extrusion molding, and then a composition containing particles is applied to one side of the polyester substrate. and then stretching to produce a polyester film. As a result, the particles contained in the polyester film can be reduced as much as possible while maintaining the slipperiness, so that the haze of the polyester film can be further reduced and a film with excellent optical failure suppression performance can be produced.
Moreover, as the method for producing the polyester film of the present embodiment, the method described as the method for producing the polyester film according to the above-described first embodiment, including its preferred mode, can be mentioned.
〔用途〕
 本実施形態のポリエステルフィルムは、光学故障の抑制効果に優れるため、ドライフィルムレジスト製造用フィルムとして好適に用いられる。
 また、本実施形態のポリエステルフィルムは透明性に優れるため、ドライフィルムレジスト製造用以外の光学用フィルムとしても用いることができる。例えば、各種用途の保護フィルム、加飾シート及び装飾シート等各種用途の支持フィルム、加飾層及び樹脂シート等の成形用フィルム、光学ディスプレイ用フィルム、並びに、導電性フィルムなどにポリエステルフィルムを用いることができる。また、本実施形態のポリエステルフィルムは平滑性にも優れるため、セラミックグリーンシート製造等各種用途の剥離フィルム、半導体製造工程用フィルム、偏光板製造工程用フィルム、磁気テープ用フィルム、並びに、ラベル用、医療用及び事務用品用等の粘着フィルムのセパレーターとして用いることもできる。
[Use]
Since the polyester film of the present embodiment is excellent in the effect of suppressing optical failures, it is suitably used as a film for producing a dry film resist.
Moreover, since the polyester film of the present embodiment is excellent in transparency, it can be used as an optical film other than for dry film resist production. For example, polyester films can be used for protective films for various applications, support films for various applications such as decorative sheets and decorative sheets, molding films such as decorative layers and resin sheets, films for optical displays, and conductive films. can be done. In addition, since the polyester film of the present embodiment is also excellent in smoothness, it can be used as a release film for various applications such as ceramic green sheet production, a film for semiconductor production process, a film for polarizing plate production process, a film for magnetic tape, and for labels, It can also be used as a separator for adhesive films for medical and office supplies.
[ドライフィルムレジスト(DFR)]
 本発明のドライフィルムレジスト(DFR)は、ポリエステルフィルムと、感光性樹脂層とを有する。DFRは、感光性転写部材として使用されることが多い。
 DFRは、ポリエステルフィルムと感光性樹脂層との間に中間層を有していてもよい。
 ここで、中間層とは、ポリエステルフィルムと上記感光性樹脂層との間にある全ての層を意味する。
[Dry film resist (DFR)]
The dry film resist (DFR) of the present invention has a polyester film and a photosensitive resin layer. DFRs are often used as photosensitive transfer members.
The DFR may have an intermediate layer between the polyester film and the photosensitive resin layer.
Here, the intermediate layer means all layers between the polyester film and the photosensitive resin layer.
 本発明のDFRは、ポリエステルフィルムを有する。なお、ポリエステルフィルムを支持体として用いる場合、剥離可能な支持体であることが好ましい。
 ポリエステルフィルムについては、第2実施形態のポリエステルフィルムとして既に説明した通りである。
 ポリエステルフィルムの一方の表面のみに粒子含有層が形成されている場合、感光性樹脂層は、ポリエステルフィルムの粒子含有層とは反対側の表面に形成されていることが好ましい。
The DFR of the present invention has a polyester film. When a polyester film is used as the support, it is preferably a peelable support.
The polyester film has already been described as the polyester film of the second embodiment.
When the particle-containing layer is formed only on one surface of the polyester film, the photosensitive resin layer is preferably formed on the surface of the polyester film opposite to the particle-containing layer.
 感光性樹脂層としては、公知の感光性樹脂層を用いることができる。高速でのラミネート性に優れることから、ネガ型感光性樹脂層であることが好ましい。具体的には、バインダーポリマー(好ましくは酸基を有する重合体)、エチレン性不飽和結合を有する重合性化合物、及び、光重合開始剤を有する感光性樹脂層が好ましい。
 感光性樹脂層としては、例えば、特開2016-224162号公報に記載の感光性樹脂層を用いてもよい。また、国際公開第2018/105313号明細書に記載のバインダーポリマー、エチレン性不飽和結合を有する重合性化合物及び光重合開始剤を含有する感光性樹脂層も好ましい形態として挙げられる。より好ましい形態としては、環状構造を有するアルカリ可溶性のアクリル樹脂と、多官能アクリレートモノマーと、オキシム系光重合開始剤又はビスイミダゾール型光重合開始剤とを有する感光性樹脂層が挙げられる。
A known photosensitive resin layer can be used as the photosensitive resin layer. A negative photosensitive resin layer is preferable because it has excellent lamination properties at high speed. Specifically, a binder polymer (preferably a polymer having an acid group), a polymerizable compound having an ethylenically unsaturated bond, and a photosensitive resin layer having a photopolymerization initiator are preferred.
As the photosensitive resin layer, for example, the photosensitive resin layer described in JP-A-2016-224162 may be used. Further, a photosensitive resin layer containing a binder polymer, a polymerizable compound having an ethylenically unsaturated bond, and a photopolymerization initiator described in International Publication No. 2018/105313 is also preferred. A more preferable form is a photosensitive resin layer containing an alkali-soluble acrylic resin having a cyclic structure, a polyfunctional acrylate monomer, and an oxime-based photopolymerization initiator or a bisimidazole-based photopolymerization initiator.
 DFRは、感光性樹脂層の支持体側とは反対側の表面に、保護フィルムを有することが好ましい。
 保護フィルムとしてポリエステルフィルムを使用する態様も好ましい。
The DFR preferably has a protective film on the surface of the photosensitive resin layer opposite to the support side.
An embodiment using a polyester film as the protective film is also preferred.
〔DFRの製造方法〕
 DFRの製造方法は、特に制限されず、DFRは公知の製造方法で製造できる。
 DFRの製造方法としては、例えば、上述した各層の構成成分と溶媒とを混合してポリエステル樹脂組成物等の各層形成用の組成物をそれぞれ調製する工程と、ポリエステルフィルムの表面上に、上記組成物を塗布して塗布層を形成した後、塗布層を乾燥して各層を形成する工程とを、所望の層構成に応じて順に行うことにより、ポリエステルフィルムと、必要に応じて設ける中間層と、感光性樹脂層とをこの順に有するDFRを製造する方法が挙げられる。
[Method for manufacturing DFR]
A method for producing DFR is not particularly limited, and DFR can be produced by a known production method.
As a method for producing a DFR, for example, a step of mixing the constituent components of each layer and a solvent described above to prepare a composition for forming each layer such as a polyester resin composition, and a step of applying the above composition on the surface of the polyester film After applying a substance to form a coating layer, the step of drying the coating layer to form each layer is performed in order according to the desired layer structure, thereby forming a polyester film and an intermediate layer provided as necessary. , and a photosensitive resin layer in this order.
 本発明のDFRは、高精細なレジストパターンの形成に用いた場合であっても、光学欠陥が少ないレジストパターンが形成できるという優れた効果を有する。
 従って、本発明のDFRの用途としては、レジストパターン及び回路配線の製造に使用することが好ましい。
The DFR of the present invention has the excellent effect of being able to form resist patterns with few optical defects even when used to form high-definition resist patterns.
Therefore, the DFR of the present invention is preferably used for manufacturing resist patterns and circuit wiring.
[第3実施形態:ポリエステルフィルム(2)]
 本発明の第3実施形態であるポリエステルフィルムは、透過型偏光顕微鏡で観測される直径9~20μmの異物及び空隙の総数が1.7個/mm以下であることを特徴とする。
[Third Embodiment: Polyester Film (2)]
The polyester film of the third embodiment of the present invention is characterized in that the total number of foreign matter and voids with a diameter of 9 to 20 μm observed with a transmission polarizing microscope is 1.7/mm 3 or less.
 本実施形態のポリエステルフィルムが上記構成を有することにより、本実施形態のポリエステルフィルムを用いて製造されるセラミックグリーンシートの局所的な凹状欠陥を抑制できる効果(以下、「凹状欠陥抑制効果」とも記載する。)を奏する理由の詳細は明らかではないが、直径9~20μmの異物及び空隙の密度が所定値以下であるポリエステルフィルムでは表面に生じる凸部も少ないことから、ポリエステルフィルムを用いて製造されるセラミックグリーンシートについて局所的な凹状欠陥の発生がより一層抑制され、平滑性をより一層向上できたものと推察している。 Since the polyester film of the present embodiment has the above structure, the effect of suppressing local concave defects in the ceramic green sheet produced using the polyester film of the present embodiment (hereinafter, also referred to as "defect suppression effect" Although the details of the reason for achieving the above are not clear, polyester films having a density of foreign matter and voids with a diameter of 9 to 20 μm below a predetermined value have few protrusions on the surface. It is presumed that the occurrence of localized concave defects in the ceramic green sheet was further suppressed, and the smoothness was further improved.
〔ポリエステルフィルムの特性〕
<異物及び空隙の総数>
 本実施形態のポリエステルフィルムでは、偏光顕微鏡を用いて観測される直径9~20μmの異物及び空隙の総数が1.7個/mm以下である。
 上記の「個/mm以下である」との単位は、偏光顕微鏡を用いて観測されるポリエステルフィルムの体積当たりの異物又は空隙の合計個数を意味する。
 ポリエステルフィルムに含まれる直径9~20μmの異物及び空隙、並びに、下記直径3μm以上9μm未満の異物及び空隙については、第2実施形態において説明した通りである。
 また、ポリエステルフィルムの体積当たりの直径9~20μmの異物又は空隙の総数は、第2実施形態において説明した方法により測定される「ポリエステルフィルムの観測領域500mm当たりの異物又は空隙の個数」を「ポリエステルフィルムの厚み」により除した後、得られた値をポリエステルフィルムの体積1mm当たりの数値に換算することにより求めることができる。ポリエステルフィルムの体積当たりの直径3μm以上9μm未満の異物及び空隙の総数も同様の方法で求めることができる。
[Characteristics of polyester film]
<Total number of foreign matter and voids>
In the polyester film of the present embodiment, the total number of foreign matter and voids with a diameter of 9 to 20 μm observed with a polarizing microscope is 1.7/mm 3 or less.
The unit of "not more than 3 pieces/mm 3 " means the total number of foreign matter or voids per volume of the polyester film observed using a polarizing microscope.
Foreign matter and voids with a diameter of 9 to 20 μm and foreign matter and voids with a diameter of 3 μm or more and less than 9 μm contained in the polyester film are as described in the second embodiment.
In addition, the total number of foreign substances or voids with a diameter of 9 to 20 μm per volume of the polyester film is measured by the method described in the second embodiment. After dividing by the "thickness of the polyester film", the obtained value can be obtained by converting the obtained value into a numerical value per 1 mm 3 of the volume of the polyester film. The total number of foreign matter and voids having a diameter of 3 μm or more and less than 9 μm per volume of the polyester film can also be obtained by the same method.
 偏光顕微鏡を用いて観測される直径9~20μmの異物及び空隙の総数は、凹状欠陥を抑制できる効果がより優れる点で、1.5個/mm以下が好ましい。直径9~20μm未満の異物及び空隙の総数の下限値は特に制限されず、0個/mmであってもよい。
 直径9~20μmの異物及び空隙の総数を上記範囲にする手段としては、後述するポリエステルフィルムに含まれるアンチモンの含有量を1質量ppm以下に低減する方法、及び、ポリエステルフィルムを製造する際、原料として用いるポリエステル樹脂の溶融物を第1実施形態の工程2に準じた方法でろ過する工程を導入する方法等が挙げられる。
The total number of foreign particles and voids with a diameter of 9 to 20 μm observed using a polarizing microscope is preferably 1.5/mm 3 or less in terms of the effect of suppressing concave defects. The lower limit of the total number of foreign matter and voids having a diameter of less than 9 to 20 μm is not particularly limited, and may be 0/mm 3 .
Means for adjusting the total number of foreign matter and voids with a diameter of 9 to 20 μm within the above range include a method of reducing the content of antimony contained in the polyester film to 1 ppm by mass or less, which will be described later, and when producing the polyester film, the raw material and a method of introducing a step of filtering the melt of the polyester resin used as a by a method according to the step 2 of the first embodiment.
 凹状欠陥抑制効果がより優れる点で、ポリエステルフィルムに対して偏光顕微鏡を用いて観測される直径3μm以上9μm未満の異物及び空隙の総数は、27.0個/mm以下が好ましく、26.0個/mm以下がより好ましい。直径3μm以上9μm未満の異物及び空隙の総数の下限値は特に制限されず、0個/mmであってもよい。
 また、ポリエステルフィルムに対して偏光顕微鏡を用いて観測される直径20μm超の異物及び空隙の総数は、1個/500mm未満であることが好ましく、0個/mm(即ち、観測されないこと)がより好ましい。
The total number of foreign substances and voids with a diameter of 3 μm or more and less than 9 μm observed with a polarizing microscope on the polyester film is preferably 27.0/mm 3 or less, and 26.0 Pieces/mm 3 or less is more preferable. The lower limit of the total number of foreign matter and voids with a diameter of 3 μm or more and less than 9 μm is not particularly limited, and may be 0/mm 3 .
In addition, the total number of foreign matter and voids with a diameter of more than 20 μm observed on the polyester film using a polarizing microscope is preferably less than 1/500 mm 2 , and 0/mm 3 (that is, not observed). is more preferred.
<アンチモンの含有量>
 ポリエステルフィルムに含まれるアンチモン(Sb)の含有量は、ポリエステルフィルムの全質量に対して1質量ppm以下が好ましく、0.7質量ppm以下がより好ましく、0.6質量ppm以下が更に好ましく、0.5質量ppm以下が特に好ましい。アンチモンの含有量を上記範囲内にすることで、透過型偏光顕微鏡で観測される直径9~20μmの異物及び空隙の総数が1.7個/mm以下であるポリエステルフィルムの製造がより容易になる。
 アンチモンの含有量の下限値は特に制限されず、ポリエステルフィルムの全質量に対して0質量ppmであってもよい。
 ポリエステルフィルムに含まれるアンチモンの含有量の測定方法については、第2実施形態において説明した通りである。
<Content of antimony>
The content of antimony (Sb) contained in the polyester film is preferably 1 mass ppm or less, more preferably 0.7 mass ppm or less, still more preferably 0.6 mass ppm or less, with respect to the total mass of the polyester film. 0.5 mass ppm or less is particularly preferred. By setting the content of antimony within the above range, it is easier to manufacture a polyester film in which the total number of foreign matter and voids with a diameter of 9 to 20 μm observed with a transmission polarizing microscope is 1.7/mm 3 or less. Become.
The lower limit of the antimony content is not particularly limited, and may be 0 mass ppm based on the total mass of the polyester film.
The method for measuring the content of antimony contained in the polyester film is as described in the second embodiment.
<ヘイズ>
 本実施形態のポリエステルフィルムのヘイズは、5%以下が好ましく、2.0%以下がより好ましく、1.5%以下が更に好ましい。下限値は特に制限されないが、0%以上が好ましい。
 ポリエステルフィルムのヘイズの測定測定方法については、第2実施形態において説明した通りである。
<Haze>
The haze of the polyester film of the present embodiment is preferably 5% or less, more preferably 2.0% or less, even more preferably 1.5% or less. Although the lower limit is not particularly limited, 0% or more is preferable.
The method for measuring the haze of the polyester film is as described in the second embodiment.
〔構成〕
 本実施形態のポリエステルフィルムは、ポリエステル樹脂の溶融物を用いて形成されたポリエステル基材のみからなる単層構造であってもよく、ポリエステル樹脂の溶融物を用いて形成されたポリエステル基材と、粒子を含有する粒子含有層とを有する多層構造であってもよい。
 ポリエステルフィルムが粒子含有層を有する場合、ポリエステル基材の片面に1つの粒子含有層が配置されていてもよく、ポリエステル基材の両面に2つの粒子含有層が配置されていてもよい。中でも、ポリエステル基材の片面に1つの粒子含有層が配置されていることが好ましい。
 ポリエステルフィルムは、ポリエステル基材及び粒子含有層以外の他の層を有していてもよい。このような他の層としては、密着層、剥離層、帯電防止層及びオリゴマー析出防止層が挙げられる。また、ポリエステル基材と粒子含有層との間にプライマー層等の中間層を設けてもよい。これら他の層の厚みは、1nm~1μmが好ましく、30~500nmがより好ましい。
〔composition〕
The polyester film of the present embodiment may have a single-layer structure consisting only of a polyester base material formed using a melt of a polyester resin, and a polyester base material formed using a melt of a polyester resin, It may be a multilayer structure having a particle-containing layer containing particles.
When the polyester film has a particle-containing layer, one particle-containing layer may be disposed on one side of the polyester substrate, or two particle-containing layers may be disposed on both sides of the polyester substrate. Among them, it is preferable that one particle-containing layer is arranged on one side of the polyester base material.
The polyester film may have layers other than the polyester substrate and the particle-containing layer. Such other layers include adhesion layers, release layers, antistatic layers and oligomer precipitation prevention layers. Further, an intermediate layer such as a primer layer may be provided between the polyester base material and the particle-containing layer. The thickness of these other layers is preferably 1 nm to 1 μm, more preferably 30 to 500 nm.
 本実施形態のポリエステルフィルムが有してもよいポリエステル基材及び粒子含有層、並びに、ポリエステルフィルムの物性等については、以下の事項を除いて、第2実施形態において説明した通りである。 The polyester base material and particle-containing layer that the polyester film of this embodiment may have, and the physical properties of the polyester film are as described in the second embodiment, except for the following items.
<厚み>
 本実施形態のポリエステルフィルムの厚みは、製造コストが抑制できる点で、75μm以下が好ましく、50μm以下がより好ましく、35μm以下が更に好ましい。厚みの下限は特に制限されないが、強度が向上し、加工性が向上する点で、5μm以上が好ましく、10μm以上がより好ましく、18μm以上が更に好ましく、25μm以上が特に好ましい。
 ポリエステルフィルムの厚みの測定方法については、第2実施形態において説明した通りである。
<Thickness>
The thickness of the polyester film of the present embodiment is preferably 75 μm or less, more preferably 50 μm or less, and even more preferably 35 μm or less, in terms of reducing production costs. Although the lower limit of the thickness is not particularly limited, it is preferably 5 µm or more, more preferably 10 µm or more, still more preferably 18 µm or more, and particularly preferably 25 µm or more in terms of improving strength and workability.
The method for measuring the thickness of the polyester film is as described in the second embodiment.
〔製造方法〕
 本実施形態のポリエステルフィルムの製造方法は、上記構成を備えるポリエステルフィルムを製造できる限り、特に制限されない。
 ポリエステル基材及び粒子含有層を有するポリエステルフィルムの製造方法としては、例えば、ポリエステル樹脂を溶融押し出ししてポリエステル基材を作製した後、ポリエステル基材の片面に粒子を含む粒子含有層形成用組成物を塗布し、次いで、延伸する方法、並びに、ポリエステル樹脂の溶融物と粒子及びバインダーを含む粒子含有層形成用組成物を共押出しした後、延伸する方法が挙げられる。
〔Production method〕
The method for producing the polyester film of the present embodiment is not particularly limited as long as the polyester film having the above structure can be produced.
As a method for producing a polyester film having a polyester substrate and a particle-containing layer, for example, a polyester resin is melt-extruded to prepare a polyester substrate, and then a particle-containing layer-forming composition containing particles on one side of the polyester substrate. and then stretching, and a method of co-extrusion of a particle-containing layer-forming composition containing a polyester resin melt, particles and a binder and then stretching.
 本実施形態のポリエステルフィルムをドライフィルムレジストの製造に用いる場合には、実質的に粒子を含まないポリエステル基材を溶融押し出し成形により作製した後に、ポリエステル基材の片面に粒子を含む組成物を塗布し、ついで延伸してポリエステルフィルムを製造することが好ましい。これにより、滑り性を維持したまま、ポリエステルフィルムに含まれる粒子を極力少なくすることができ、局所的な凹状欠陥がより一層抑制されたセラミックグリーンシートを製造できる。
 また、本実施形態のポリエステルフィルムの製造方法としては、その好ましい態様も含めて、上述した第1実施形態に係るポリエステルフィルムの製造方法として記載された方法が挙げられる。
When the polyester film of the present embodiment is used for the production of a dry film resist, a substantially particle-free polyester substrate is prepared by melt extrusion molding, and then a composition containing particles is applied to one side of the polyester substrate. and then stretching to produce a polyester film. As a result, the particles contained in the polyester film can be reduced as much as possible while maintaining the slipperiness, and a ceramic green sheet can be produced in which local concave defects are further suppressed.
Moreover, as the method for producing the polyester film of the present embodiment, the method described as the method for producing the polyester film according to the above-described first embodiment, including its preferred mode, can be mentioned.
〔用途〕
 本実施形態のポリエステルフィルムは、凹状欠陥抑制効果に優れるため、セラミックグリーンシート製造用フィルムとして好適に用いられる。
 また、本実施形態のポリエステルフィルムは、平滑性に優れるため、半導体製造工程用フィルム、偏光板製造工程用フィルム、磁気テープ用フィルム、並びに、ラベル用、医療用及び事務用品用等の粘着フィルムのセパレータとして用いることもできる。
 更には、本実施形態のポリエステルフィルムは、透明性及び光学故障の抑制効果に優れるため、光学用フィルムとしても用いることができる。例えば、ドライフィルムレジスト製造用フィルム、各種用途の保護フィルム、加飾シート及び装飾シート等各種用途の支持フィルム、加飾層及び樹脂シート等の成形用フィルム、光学ディスプレイ用フィルム、並びに、導電性フィルムなどにポリエステルフィルムを用いることができる。
[Use]
Since the polyester film of the present embodiment is excellent in the effect of suppressing concave defects, it is suitably used as a film for producing ceramic green sheets.
In addition, since the polyester film of the present embodiment has excellent smoothness, it is used as a film for semiconductor manufacturing processes, a film for polarizing plate manufacturing processes, a film for magnetic tapes, and an adhesive film for labels, medical and office supplies. It can also be used as a separator.
Furthermore, since the polyester film of the present embodiment is excellent in transparency and an effect of suppressing optical failure, it can also be used as an optical film. For example, films for producing dry film resists, protective films for various applications, decorative sheets and support films for various applications such as decorative sheets, molding films such as decorative layers and resin sheets, films for optical displays, and conductive films For example, a polyester film can be used.
〔セラミックグリーンシートの製造方法〕
 本実施形態のポリエステルフィルムを用いてセラミックグリーンシートを製造する方法は、特に制限されず、公知の方法で実施できる。セラミックグリーンシートの製造方法としては、例えば、準備したセラミックスラリーを、本実施形態のポリエステルフィルムを有する剥離フィルムの一方の主面に塗布し、セラミックスラリーに含まれる溶媒を乾燥除去することにより、セラミックグリーンシートを形成する方法が挙げられる。
[Method for producing ceramic green sheet]
A method for producing a ceramic green sheet using the polyester film of the present embodiment is not particularly limited, and a known method can be used. As a method for producing a ceramic green sheet, for example, the prepared ceramic slurry is applied to one main surface of the release film having the polyester film of the present embodiment, and the solvent contained in the ceramic slurry is removed by drying. A method of forming a green sheet is included.
 剥離フィルムの構成は、本実施形態のポリエステルフィルムを有し、セラミックスラリーを塗布する主面(以下、「剥離面」ともいう。)に対して形成後のセラミックグリーンシートが剥離可能である限り、特に制限されない。剥離フィルムは、本実施形態のポリエステルフィルムと、剥離層とを有する積層フィルムであってもよい。
 また、形成されるセラミックグリーンシートが剥離可能な場合(例えば、セラミックグリーンシートが剥離性能を有する場合)、本実施形態のポリエステルフィルムを有する剥離フィルムが剥離層を有さない態様であってもよく、本実施形態のポリエステルフィルムを単独で剥離フィルムとして用いてもよい。
The configuration of the release film has the polyester film of the present embodiment, and as long as the formed ceramic green sheet can be released from the main surface (hereinafter also referred to as "release surface") to which the ceramic slurry is applied, There are no particular restrictions. The release film may be a laminated film having the polyester film of the present embodiment and a release layer.
Further, when the ceramic green sheet to be formed can be peeled off (for example, when the ceramic green sheet has peeling performance), the release film having the polyester film of the present embodiment may have no release layer. , the polyester film of the present embodiment may be used alone as a release film.
 剥離フィルムとしては、本実施形態のポリエステルフィルムと、剥離層とを有する積層フィルムが好ましい。
 上記積層フィルムにおいて、剥離層は最外層に配置され、剥離層の一方の主面が、セラミックグリーンシートが形成される剥離面となる。ポリエステルフィルムの一方の表面のみに粒子含有層が形成されている場合、剥離層はポリエステルフィルムの粒子含有層とは反対側の表面に形成されていることが好ましい。
 上記積層フィルムは、ポリエステルフィルムと剥離層との間に中間層を有していてもよい。ここで、中間層とは、ポリエステルフィルムと剥離層との間にある全ての層を意味する。中間層としては、例えば、ポリエステル基材からのオリゴマーの析出を抑制する非ポリエステル樹脂層、及び、帯電防止層等が挙げられる。
As the release film, a laminate film having the polyester film of the present embodiment and a release layer is preferable.
In the laminated film, the release layer is arranged as the outermost layer, and one main surface of the release layer serves as the release surface on which the ceramic green sheet is formed. When the particle-containing layer is formed only on one surface of the polyester film, the release layer is preferably formed on the surface of the polyester film opposite to the particle-containing layer.
The laminate film may have an intermediate layer between the polyester film and the release layer. Here, the intermediate layer means all layers between the polyester film and the release layer. Examples of the intermediate layer include a non-polyester resin layer that suppresses precipitation of oligomers from the polyester base material, an antistatic layer, and the like.
 剥離フィルムは、例えば、上記ポリエステルフィルムの一方の主面に剥離層を設けることにより製造できる。剥離層は、ポリエステル基材の表面に直接設けてもよく、他の層を介してポリエステル基材上に設けてもよい。
 剥離層は、平滑性がより優れる点では、ポリエステル基材の表面に直接設けることが好ましい。また、必要に応じて、上記中間層を介して、剥離層をポリエステルフィルム上に積層してもよい。
The release film can be produced, for example, by providing a release layer on one main surface of the polyester film. The release layer may be provided directly on the surface of the polyester base material, or may be provided on the polyester base material via another layer.
The release layer is preferably provided directly on the surface of the polyester base material in terms of better smoothness. Also, if necessary, a release layer may be laminated on the polyester film via the intermediate layer.
 剥離層の組成は、セラミックグリーンシートを剥離可能に製造できれば特に制限されないが、剥離層は、剥離剤としての樹脂を含むことが好ましい。
 剥離層に含まれる樹脂は特に制限されず、例えば、シリコーン樹脂、フッ素樹脂、アルキド樹脂、アクリル樹脂、各種ワックス及び脂肪族オレフィンが挙げられ、セラミックグリーンシートの剥離性により優れる点で、シリコーン樹脂が好ましい。剥離層は、剥離層に含まれる成分を硬化してなる硬化層であることも好ましい。
 剥離層は、剥離剤としての樹脂以外に、剥離剤以外の樹脂及び添加剤等の他の成分を含んでいてもよい。添加剤としては、剥離力を調整するための軽剥離添加剤及び重剥離添加剤、密着向上剤、並びに、帯電防止剤が挙げられる。
The composition of the release layer is not particularly limited as long as the ceramic green sheet can be manufactured in a separable manner, but the release layer preferably contains a resin as a release agent.
The resin contained in the release layer is not particularly limited, and examples thereof include silicone resins, fluororesins, alkyd resins, acrylic resins, various waxes, and aliphatic olefins. Silicone resins are preferred in terms of superior release properties of the ceramic green sheet. preferable. The release layer is also preferably a cured layer obtained by curing components contained in the release layer.
The release layer may contain other components such as a resin other than the release agent and additives, in addition to the resin used as the release agent. Additives include light and heavy release additives to adjust release force, adhesion improvers, and antistatic agents.
 シリコーン樹脂とは、分子内にシリコーン構造を有する樹脂を意味する。シリコーン樹脂としては、硬化型シリコーン樹脂、シリコーングラフト樹脂及びアルキル変性等の変性シリコーン樹脂が挙げられ、反応性の硬化型シリコーン樹脂が好ましい。
 反応性の硬化型シリコーン樹脂としては、付加反応系のシリコーン樹脂、縮合反応系のシリコーン樹脂、及び、紫外線又は電子線硬化系のシリコーン樹脂が挙げられる。
A silicone resin means a resin having a silicone structure in its molecule. Examples of silicone resins include curable silicone resins, silicone graft resins, and modified silicone resins such as alkyl-modified silicone resins, and reactive curable silicone resins are preferred.
Examples of reactive curable silicone resins include addition reaction silicone resins, condensation reaction silicone resins, and ultraviolet or electron beam curable silicone resins.
 剥離層の厚みは、剥離性能及び剥離層表面の平滑性がバランス良く優れる点で、10~1000nmが好ましく、30~700nmがより好ましい。
 剥離層の厚みは、剥離フィルムの主面に対して垂直な断面を有する切片を作製し、走査型電子顕微鏡(SEM)又は透過型電子顕微鏡(TEM)を用いて測定される、上記切片の5か所の厚みの算術平均値とする。
The thickness of the release layer is preferably from 10 to 1000 nm, more preferably from 30 to 700 nm, in terms of excellent balance between release performance and smoothness of the release layer surface.
The thickness of the release layer is measured using a scanning electron microscope (SEM) or a transmission electron microscope (TEM) by preparing a section having a cross section perpendicular to the main surface of the release film. Arithmetic mean value of the thickness at each point.
 ポリエステルフィルム上に剥離層を形成する方法としては、例えば、ポリエステルフィルムの表面に剥離層形成用組成物を塗布し、塗布膜を乾燥して溶剤を除去し、必要に応じて加熱又は光を照射する方法が挙げられる。
 剥離層形成用組成物としては、公知の剥離層形成用組成物が使用できる。剥離層形成用組成物は、例えば、剥離剤、溶剤、及び、必要に応じて添加される他の成分を混合することにより調製できる。溶剤としては、例えば、水、アルコール系溶媒、エーテル系溶媒、ケトン系溶媒、及び、芳香族炭化水素系溶媒が挙げられる。剥離層形成用組成物は、1種単独の溶剤を含んでいてもよく、2種以上の溶剤を含んでいてもよい。
 溶剤の含有量は、剥離層形成用組成物の全質量に対して、80~99.5質量%が好ましい。また、剥離層形成用組成物における溶剤以外の成分(固形分)の合計含有量は、剥離層形成用組成物の全質量に対して、0.5~20質量%が好ましい。
As a method of forming a release layer on a polyester film, for example, a release layer forming composition is applied to the surface of the polyester film, the coating film is dried to remove the solvent, and if necessary, heating or irradiation with light is performed. method.
As the release layer-forming composition, a known release layer-forming composition can be used. The release layer-forming composition can be prepared, for example, by mixing a release agent, a solvent, and other components added as necessary. Examples of solvents include water, alcohol solvents, ether solvents, ketone solvents, and aromatic hydrocarbon solvents. The release layer-forming composition may contain a single solvent, or may contain two or more solvents.
The content of the solvent is preferably 80 to 99.5% by mass with respect to the total mass of the release layer-forming composition. The total content of components (solid content) other than the solvent in the release layer-forming composition is preferably 0.5 to 20% by mass with respect to the total mass of the release layer-forming composition.
 剥離層形成用組成物の塗布方法及び塗布膜の乾燥方法は特に制限されず、公知の方法を利用できる。塗布方法の具体例としては、ポリエステルフィルムの製造方法における工程4で挙げたインラインコーティング法、及び、ポリエステルフィルムを製造後、別途コーターを用いて塗布するオフラインコーティング法が挙げられる。上記の塗布方法としては、例えば、グラビアコート法、バーコート法、スプレーコート法、スピンコート法、ナイフコート法、ロールコート法、及び、ダイコート法が挙げられる。
 ポリエステルフィルムと剥離層との密着性を向上させるために、剥離層を設ける前に、ポリエステルフィルムの表面に対して、アンカーコート、コロナ処理及びプラズマ処理等の前処理を施してもよい。
The method for applying the release layer-forming composition and the method for drying the coating film are not particularly limited, and known methods can be used. Specific examples of the coating method include the in-line coating method mentioned in step 4 in the method for producing a polyester film, and the offline coating method in which a separate coater is used after the polyester film is produced. Examples of the coating method include gravure coating, bar coating, spray coating, spin coating, knife coating, roll coating, and die coating.
In order to improve the adhesion between the polyester film and the release layer, the surface of the polyester film may be subjected to pretreatment such as anchor coating, corona treatment and plasma treatment before providing the release layer.
 上記剥離フィルムの剥離面にセラミックスラリーを塗布する方法は、特に制限されず、例えば、セラミック粉体及びバインダー剤を溶媒に分散させてなるセラミックスラリーを塗布し、加熱乾燥により溶媒を除去する方法等の公知の方法が適用できる。バインダー剤としては、例えば、ポリビニルブチラールが挙げられる。また、溶媒としては、例えば、エタノール及びトルエンが挙げられる。 The method of applying the ceramic slurry to the release surface of the release film is not particularly limited. For example, a method of applying a ceramic slurry obtained by dispersing ceramic powder and a binder agent in a solvent and removing the solvent by heating and drying. can be applied. Binder agents include, for example, polyvinyl butyral. Examples of solvents include ethanol and toluene.
 作製されたセラミックグリーンシートは、セラミックコンデンサを製造するために用いられる。セラミックグリーンシートを用いてセラミックコンデンサを製造する方法としては、公知の方法が適用でき、例えば、下記の方法が挙げられる。
 まず、上記の方法で製造された剥離フィルムとセラミックグリーンシートの積層体に導電性ペーストの塗布又は印刷等により内部電極を設ける。次に、セラミックグリーンシートの積層体から剥離フィルムを除去し、内部電極付きセラミックグリーンシートを順次積層し、得られる積層体をプレスすることにより、中間積層体を作製する。中間積層体を所望の形状に切断した後、切断した中間積層体を焼成し、セラミック素体を得る。次に、焼成された中間積層体の2つの端面に、銀等の導電性ペーストを用いて内部電極と電気的に接続する外部電極をそれぞれ形成することにより、セラミックコンデンサが得られる。
The produced ceramic green sheets are used to manufacture ceramic capacitors. A known method can be applied as a method of manufacturing a ceramic capacitor using a ceramic green sheet, and examples thereof include the following method.
First, internal electrodes are provided on the laminate of the release film and the ceramic green sheets produced by the above method by applying or printing a conductive paste. Next, the release film is removed from the laminate of ceramic green sheets, the ceramic green sheets with internal electrodes are successively laminated, and the resulting laminate is pressed to produce an intermediate laminate. After cutting the intermediate laminate into a desired shape, the cut intermediate laminate is fired to obtain a ceramic body. Next, a ceramic capacitor is obtained by forming external electrodes electrically connected to the internal electrodes on the two end surfaces of the fired intermediate laminate using a conductive paste such as silver.
 本実施形態のポリエステルフィルムを有する剥離フィルムは、ドライフィルムレジストの保護フィルム、加飾層及び樹脂シート等のシート成形用フィルム、半導体製造工程用等のプロセス製造用の剥離フィルム、偏光板製造工程用の剥離フィルム、並びに、ラベル用、医療用及び事務用品用等の粘着フィルムのセパレータとしても用いることができる。 The release film having the polyester film of the present embodiment includes a protective film for dry film resist, a film for sheet molding such as a decorative layer and a resin sheet, a release film for process manufacturing such as a semiconductor manufacturing process, and a polarizing plate manufacturing process. It can also be used as a release film, and as a separator for adhesive films for labels, medical and office supplies.
 以下に実施例に基づいて本発明を更に詳細に説明する。
 以下の実施例に示す材料、使用量、割合、処理内容、及び、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更できる。従って、本発明の範囲は以下に示す実施例により限定的に解釈されるべきではない。なお、特に断りのない限り、「部」、「ppm」及び「%」は質量基準である。
The present invention will be described in more detail based on examples below.
The materials, amounts used, proportions, processing details, processing procedures, etc. shown in the following examples can be changed as appropriate without departing from the gist of the present invention. Therefore, the scope of the present invention should not be construed as limited by the examples shown below. Unless otherwise specified, "parts", "ppm" and "%" are based on mass.
 本実施例において、単なる「フィルム」との表記は、ポリエステル基材のみの態様と、ポリエステル基材と粒子含有層とを有するポリエステルフィルムの態様の両者を包含するものとする。また、「フィルム」との表記は、未延伸フィルム、1軸延伸フィルム、及び、2軸延伸フィルムの全てを包含するものとする。 In the present examples, the expression "film" includes both aspects of a polyester base material only and aspects of a polyester film having a polyester base material and a particle-containing layer. Moreover, the notation of "film" shall include all unstretched films, uniaxially stretched films, and biaxially stretched films.
 まず、各実施例及び比較例に用いたフィルムの作製方法について説明する。 First, the method for producing the films used in each example and comparative example will be described.
[実施例1]
〔洗浄前のポリエステルペレットの製造〕
 テレフタル酸及びエチレングリコールを原料として、アンチモン化合物を用いて、連続式の重合装置にてエステル化反応及び重縮合反応を行い、ポリエステルペレットを製造した。連続式の重合装置は、混合槽、第1エステル化反応槽、第2エステル化反応槽、第1重縮合反応槽、第2重縮合反応槽及び第3重縮合反応槽をこの順に有する。以下、第1エステル化反応槽、第2エステル化反応槽、第1重縮合反応槽、第2重縮合反応槽及び第3重縮合反応槽を総称して「反応槽」ともいう。ポリエステルペレットの製造は、チタン化合物に代えてアンチモン化合物を添加すること以外は、後述する〔ポリエステルフィルムの製造〕の(1)及び(2)に記載の方法に準じて行った。ポリエステルペレットの連続的な製造が終了した後、以下に示すようにして、連続式の重合装置が備える反応槽を洗浄した。
[Example 1]
[Production of polyester pellets before washing]
Using terephthalic acid and ethylene glycol as raw materials, an antimony compound was used to conduct an esterification reaction and a polycondensation reaction in a continuous polymerization apparatus to produce polyester pellets. The continuous polymerization apparatus has a mixing tank, a first esterification reaction tank, a second esterification reaction tank, a first polycondensation reaction tank, a second polycondensation reaction tank and a third polycondensation reaction tank in this order. Hereinafter, the first esterification reaction tank, the second esterification reaction tank, the first polycondensation reaction tank, the second polycondensation reaction tank, and the third polycondensation reaction tank are also collectively referred to as "reaction tanks". The production of polyester pellets was carried out according to the method described in (1) and (2) of [Production of polyester film] described later, except that an antimony compound was added in place of the titanium compound. After the continuous production of polyester pellets was completed, the reactor provided in the continuous polymerization apparatus was washed as described below.
〔反応槽の洗浄〕
 ポリエステル樹脂の重合に用いた反応槽に対して、反応槽の70体積%に相当する量のトリエチレングリコールを洗浄液として加え、反応槽のヘッドスペースを窒素で置換した後、洗浄液を攪拌しながら270℃に加熱した。洗浄液を270℃にて6時間攪拌した後、室温まで冷却してから洗浄液を排出した。生成物を輸送するための反応槽間を繋ぐ配管は、トリエチレングリコールと水の混合液を流すことにより洗浄した。反応槽内部を目視で確認したところ、未だ汚れの残存が確認された。
 次いで、反応槽内の汚れが除去され、反応槽の接液部が金属光沢を取り戻すまで、無溶媒にて接液部をバフ研磨することにより洗浄した。その後、高圧水洗により、反応槽内部の汚れを完全に除去した。
 上記の反応槽の洗浄方法と同様にして、ポリエチレンテレフタレートの重合に使用した全ての槽および配管を洗浄した。
[Cleaning of reaction tank]
An amount of triethylene glycol corresponding to 70% by volume of the reaction vessel was added as a cleaning liquid to the reaction vessel used for the polymerization of the polyester resin, and the headspace of the reaction vessel was replaced with nitrogen. °C. After the washing liquid was stirred at 270° C. for 6 hours, it was cooled to room temperature and then the washing liquid was discharged. The piping connecting the reactors for transporting the product was cleaned by flowing a mixture of triethylene glycol and water. When the inside of the reaction vessel was visually checked, it was confirmed that stains still remained.
Next, the wetted part of the reaction tank was cleaned by buffing with no solvent until the dirt in the reaction tank was removed and the wetted part of the reaction tank regained its metallic luster. After that, the inside of the reaction tank was completely cleaned by high-pressure water washing.
All tanks and pipes used for the polymerization of polyethylene terephthalate were washed in the same manner as the above-described method for washing the reaction tank.
〔ポリエステルフィルムの製造〕
 洗浄した反応槽を備える連続式重合装置を用いて、以下の(1)~(3)の手順にてポリエステルフィルムを連続的に製造した。
[Production of polyester film]
A polyester film was continuously produced by the following procedures (1) to (3) using a continuous polymerization apparatus equipped with a washed reaction vessel.
(1)エステル化反応
 混合槽に、ポリエステル樹脂前駆体として高純度テレフタル酸4.7トンとエチレングリコール1.8トンを仕込み、90分間かけて混合物を混合してスラリーを形成した。得られたスラリーを、3800kg/hの流量で連続的に混合槽から第1エステル化反応槽に供給した。更にクエン酸がTi元素に配位したクエン酸キレートチタン錯体(VERTEC AC-420、ジョンソン・マッセイ社製)のエチレングリコール溶液を第1エステル化反応槽に連続的に供給し、槽内温度251℃、攪拌下で平均滞留時間約4.3時間で反応を行った。このとき、クエン酸キレートチタン錯体は、Ti添加量が元素換算値でポリエステル樹脂前駆体の総量に対して7ppmとなるように連続的に添加した。このとき、得られたオリゴマーの酸価は500eq/トンであった。
(1) Esterification Reaction A mixing tank was charged with 4.7 tons of high-purity terephthalic acid and 1.8 tons of ethylene glycol as polyester resin precursors, and the mixture was mixed for 90 minutes to form a slurry. The resulting slurry was continuously supplied from the mixing tank to the first esterification reactor at a flow rate of 3800 kg/h. Furthermore, an ethylene glycol solution of citric acid chelate titanium complex (VERTEC AC-420, manufactured by Johnson Matthey) in which citric acid is coordinated to Ti element was continuously supplied to the first esterification reaction tank, and the temperature in the tank was 251 ° C. , under stirring with an average residence time of about 4.3 hours. At this time, the citric acid chelate titanium complex was continuously added so that the added amount of Ti in terms of element was 7 ppm with respect to the total amount of the polyester resin precursor. At this time, the obtained oligomer had an acid value of 500 eq/ton.
 第1エステル化反応槽で得られた反応物を第2エステル化反応槽に移送し、攪拌下、槽内温度250℃で、平均滞留時間で1.2時間反応させ、酸価が190eq/トンのオリゴマーを得た。第2エステル化反応槽の内部は、オリゴマーが供給される順に第1ゾーン、第2ゾーン及び第3ゾーンからなる3ゾーンに仕切られており、第2ゾーンから酢酸マグネシウムのエチレングリコール溶液を、Mg添加量が元素換算値でオリゴマーの総量に対して75ppmになるように連続的に供給し、続いて第3ゾーンから、リン酸トリメチルのエチレングリコール溶液を、P添加量が元素換算値でオリゴマーの総量に対して65ppmになるように連続的に供給した。 The reactant obtained in the first esterification reaction tank was transferred to the second esterification reaction tank and reacted under stirring at an internal tank temperature of 250° C. for 1.2 hours with an average residence time of 190 eq/ton. was obtained. The inside of the second esterification reactor is partitioned into three zones consisting of a first zone, a second zone and a third zone in the order in which the oligomers are supplied. Continuously supplied so that the amount added was 75 ppm with respect to the total amount of the oligomer in terms of elements, and then from the third zone, an ethylene glycol solution of trimethyl phosphate was added. It was continuously supplied so as to be 65 ppm with respect to the total amount.
(2)重縮合反応
 上記で得られたエステル化反応生成物を連続的に第1重縮合反応槽に供給し、攪拌下、反応温度270℃、槽内圧力20torr(2.67×10-3MPa)で、平均滞留時間約1.8時間で重縮合させた。
 更に、第1重縮合反応槽で得られた中間重合物を第2重縮合反応槽に移送し、攪拌下、槽内温度276℃、槽内圧力3.0torr(3.99×10-4MPa)で滞留時間約1.2時間の条件で反応(重縮合)させた。
 次いで、第2重縮合反応槽で得られた中間重合物を更に第3重縮合反応槽に移送し、槽内温度278℃、槽内圧力1.0torr(1.33×10-4MPa)で、滞留時間1.5時間の条件で反応(重縮合)させ、ポリエチレンテレフタレート(PET)を生成物として第3重縮合反応槽から排出した。
 得られた生成物について、ICP-MS分析装置(アジレント・テクノロジー社製、「Agilent 7800 ICP-MS」)を用いてSb含有量を分析したところ、Sb含有量は生成物の全質量に対して0.9ppmであった。
(2) Polycondensation Reaction The esterification reaction product obtained above is continuously supplied to the first polycondensation reaction tank and stirred at a reaction temperature of 270° C. and a tank pressure of 20 torr (2.67×10 −3 ) . MPa) with an average residence time of about 1.8 hours.
Furthermore, the intermediate polymer obtained in the first polycondensation reaction tank was transferred to the second polycondensation reaction tank, and under stirring, the temperature in the tank was 276 ° C. and the pressure in the tank was 3.0 torr (3.99 × 10 -4 MPa). ) under conditions of a residence time of about 1.2 hours (polycondensation).
Next, the intermediate polymer obtained in the second polycondensation reaction tank was further transferred to the third polycondensation reaction tank, and the temperature in the tank was 278 ° C. and the pressure in the tank was 1.0 torr (1.33 × 10 -4 MPa). , the reaction (polycondensation) was carried out under the conditions of a residence time of 1.5 hours, and polyethylene terephthalate (PET) was discharged from the third polycondensation reactor as a product.
The resulting product was analyzed for Sb content using an ICP-MS analyzer (manufactured by Agilent Technologies, "Agilent 7800 ICP-MS"). It was 0.9 ppm.
 次に、得られた生成物を、冷水にストランド状に吐出し、直ちにカッティングしてポリエステル樹脂のペレット<断面:長径約4mm、短径約2mm、長さ:約3mm>を作製した。
 上記のポリエステル樹脂前駆体の仕込みから生成物の第3重縮合反応槽からの排出を経てペレットを作製するに至るまでの工程を連続的に実施した。即ち、仕込みを開始した際のポリエステル樹脂前駆体の重合により得られる生成物のペレットを作製し始めてから、連続してペレットを作製し続けた。
Next, the obtained product was extruded into cold water in the form of a strand and immediately cut to prepare polyester resin pellets <cross section: about 4 mm long axis, about 2 mm short axis, length: about 3 mm>.
The steps from charging the polyester resin precursor, discharging the product from the third polycondensation reactor, and producing pellets were continuously carried out. That is, after starting to produce pellets of the product obtained by polymerization of the polyester resin precursor when charging was started, pellets were continuously produced.
(3)フィルム化
 上記(2)で得られたペレットを水分含有量が50ppm以下になるまで乾燥させた後、直径30mmの1軸混練押出機のホッパーに投入し、ペレットを280℃に加熱して溶融し、溶融したペレットを押し出した。押し出された溶融物(メルト)を、後述するろ過装置Aに通した後、ダイから25℃の冷却用キャストドラムに押し出し、静電印加法を用いてキャストドラムに密着させた。キャストドラムに対向配置された剥ぎ取りロールを用いてフィルムを剥離することで、粒子を含有しない未延伸ポリエステルフィルムを得た。
 なお、実施例1においては、上記(1)及び(2)に記載の方法で、ポリエステル樹脂前駆体の仕込みを開始してからポリエステルペレットが作製されるまでの連続重合の時間(以下、単に「経過時間」ともいう。)が72時間を経過した以降に作製されたペレットを用いて、未延伸ポリエステルフィルムを製造した。
 ろ過装置Aは、図2に示すろ過装置36と同様の構成を有するろ過装置であって、ステンレス鋼繊維の不織布で構成された繊維状金属焼結体と、粉体状金属焼結体を有するろ材とが取り付けられた積層フィルタを備えており、繊維状金属焼結体のろ過精度が3μmになるように焼結体の空隙率と層厚みが調整された積層フィルタが、145枚設けられているろ過装置であった。
(3) Formation of film After drying the pellets obtained in (2) above until the moisture content is 50 ppm or less, they are put into a hopper of a single-screw kneading extruder with a diameter of 30 mm, and the pellets are heated to 280°C. and extruded the molten pellets. The extruded melt was passed through a filtration device A described later, extruded from a die to a cooling cast drum at 25° C., and brought into close contact with the cast drum using an electrostatic application method. A particle-free unstretched polyester film was obtained by peeling the film using a stripping roll placed opposite the casting drum.
In Example 1, the time for continuous polymerization from the start of charging of the polyester resin precursor to the preparation of polyester pellets by the methods described in (1) and (2) above (hereinafter simply " An unstretched polyester film was produced using the pellets produced after 72 hours had elapsed.
The filtering device A is a filtering device having the same configuration as the filtering device 36 shown in FIG. 145 laminated filters are provided in which the porosity and layer thickness of the sintered body are adjusted so that the filtration accuracy of the fibrous metal sintered body is 3 μm. It was a filtering device with
 国際公開第2020/158316号の[0160]~[0169]に記載の条件を参考に、得られた未延伸ポリエステルフィルムを縦延伸したフィルムの表面に粒子含有層形成用組成物を塗布し、得られた粒子含有層付きフィルムを延伸して、2軸延伸ポリエステルフィルムを作製し、7000m毎に巻き取った。作製された2軸延伸ポリエステルフィルムの厚みは16μm(厚み40nmの粒子含有層を含む)であった。
 得られたポリエステルフィルムについて、上記と同様の方法で、ICP-MS分析装置を用いて分析し、フィルムに含まれる各元素の含有量を測定した。その結果、ポリエステルフィルムの全質量に対して、Sb含有量は0.8ppm、Ti含有量は7ppm、Mg含有量は75ppm、P含有量は65ppmであった。
With reference to the conditions described in [0160] to [0169] of International Publication No. WO 2020/158316, the obtained unstretched polyester film is longitudinally stretched and the particle-containing layer-forming composition is applied to the surface of the film to obtain. The resulting particle-containing layer-attached film was stretched to prepare a biaxially stretched polyester film, which was wound up every 7000 m. The thickness of the produced biaxially stretched polyester film was 16 μm (including a particle-containing layer with a thickness of 40 nm).
The obtained polyester film was analyzed using an ICP-MS analyzer in the same manner as described above, and the content of each element contained in the film was measured. As a result, the Sb content was 0.8 ppm, the Ti content was 7 ppm, the Mg content was 75 ppm, and the P content was 65 ppm with respect to the total mass of the polyester film.
[実施例2~5]
 ろ過装置Aにおける、繊維状金属焼結体のろ過精度を2μmに変更したろ過装置Bを用いたこと、及び、表1に記載の経過時間が経過して以降に第3縮合反応槽から排出された生成物を用いて作製されたポリエステルペレットを用いたこと以外は、実施例1と同様にして、実施例2~5の2軸延伸ポリエステルフィルムをそれぞれ製造した。
[Examples 2 to 5]
The use of the filter B in which the filtration accuracy of the fibrous metal sintered body in the filter A was changed to 2 μm, and the fact that the filter was discharged from the third condensation reaction tank after the elapsed time shown in Table 1 has passed. Biaxially stretched polyester films of Examples 2 to 5 were produced in the same manner as in Example 1, except that polyester pellets produced using the product obtained from the above were used.
[実施例6~7]
 フィルムの製造工程において、2軸延伸ポリエステルフィルムの厚みが表1に記載の厚みとなるように、ダイからキャストドラムに押し出すポリエステルペレットの溶融物の量を変更したこと以外は、実施例5と同様にして、実施例6及び7の2軸延伸フィルムをそれぞれ製造した。
[Examples 6-7]
In the film manufacturing process, the same as in Example 5, except that the amount of melted polyester pellets extruded from the die to the cast drum was changed so that the thickness of the biaxially stretched polyester film was the thickness shown in Table 1. to produce biaxially stretched films of Examples 6 and 7, respectively.
[実施例8~9]
 洗浄前のポリエステルペレットの製造において、アンチモン化合物に代えて実施例1の〔ポリエステルフィルムの製造〕の(1)に記載のチタン化合物を用いたこと、及び、表1に記載の経過時間が経過して以降に第3縮合反応槽から排出された生成物を用いて作製されたポリエステルペレットを用いたこと以外は、実施例2と同様にして、実施例8及び9の2軸延伸ポリエステルフィルムをそれぞれ製造した。
[Examples 8-9]
In the production of polyester pellets before washing, the titanium compound described in (1) of [Production of polyester film] in Example 1 was used instead of the antimony compound, and the elapsed time described in Table 1 passed. The biaxially stretched polyester films of Examples 8 and 9 were prepared in the same manner as in Example 2, except that the polyester pellets made using the product discharged from the third condensation reaction tank were used. manufactured.
[比較例1]
 実施例1の〔ポリエステルフィルムの製造〕において、クエン酸キレートチタン錯体の代わりに、Sb元素換算値でポリエステル樹脂前駆体の総量に対して7質量ppmとなる量のアンチモン化合物(三酸化二アンチモン、日本精鉱株式会社製「PATOX-C」)を第1エステル化反応槽に連続的に添加してポリエステルペレットを連続的に作製したこと以外は、実施例5と同様にして、比較例1の2軸延伸ポリエステルフィルムを製造した。
[Comparative Example 1]
In [Production of polyester film] of Example 1, instead of the citric acid chelate titanium complex, an antimony compound (antimony trioxide, diantimony trioxide, Nippon Seiko Co., Ltd. "PATOX-C") was continuously added to the first esterification reactor to continuously produce polyester pellets in the same manner as in Example 5, Comparative Example 1 A biaxially oriented polyester film was produced.
[比較例2]
 ポリエステルフィルムの製造において、ポリエステルペレットの溶融物を、後述するろ過装置Cに通したこと以外は、実施例5と同様にして2軸延伸ポリエステルフィルムを作製した。
 ここで、ろ過装置Cは、繊維状金属焼結体を有し、ろ過精度が4μmであるろ材が取り付けられたフィルタ「NF2M-4C」(日本精線株式会社製)が、145枚設けられている装置である。
[Comparative Example 2]
A biaxially stretched polyester film was produced in the same manner as in Example 5, except that in the production of the polyester film, the melted polyester pellets were passed through a filtration device C described later.
Here, the filter device C is provided with 145 filters "NF2M-4C" (manufactured by Nippon Seisen Co., Ltd.) having a fibrous metal sintered body and a filter medium with a filtration accuracy of 4 μm attached. It is a device with
[比較例3]
 ポリエステルフィルムを製造する前に反応槽の洗浄を行わなかったこと以外は、実施例5と同様にして、比較例3の2軸延伸ポリエステルフィルムを作製した。
[Comparative Example 3]
A biaxially stretched polyester film of Comparative Example 3 was produced in the same manner as in Example 5, except that the reaction tank was not washed before producing the polyester film.
[参考例1~2]
 粒子を含有する層を表裏面の両方に有する3層構造の2軸延伸PETフィルム「ルミラー16FB40」(東レ株式会社製)を用意した(参考例1)。
 また、微粒子を含有する層を表裏面の両方に有する3層構造の2軸延伸PETフィルム「ルミラー16KS40」(東レ株式会社製)を用意した(参考例2)。
[Reference Examples 1 and 2]
A three-layer structure biaxially stretched PET film "Lumirror 16FB40" (manufactured by Toray Industries, Inc.) having layers containing particles on both front and back surfaces was prepared (Reference Example 1).
In addition, a three-layer structure biaxially stretched PET film "Lumirror 16KS40" (manufactured by Toray Industries, Inc.) having layers containing fine particles on both front and back surfaces was prepared (Reference Example 2).
 実施例2~9及び比較例1~3においてフィルムの製造に用いた生成物、実施例2~9及び比較例1~3において製造されたフィルム、並びに、参考例1~2において使用された2軸延伸PETフィルムのそれぞれについて、実施例1と同様の方法でICP-MS分析装置を用いて分析し、各元素の含有量を測定した。それぞれにおけるSb元素の含有量の測定結果を、表1に示す。実施例2~9及び比較例1~3のいずれにおいても、ポリエステルフィルムの全質量に対して、Ti含有量は7ppm、Mg含有量は75ppm、P含有量は65ppmであった。
 また、実施例1~9及び比較例1~3で作製された未延伸のポリエステルフィルムはいずれも、無機粒子及び有機粒子を含有していなかった。
The products used in the production of the films in Examples 2-9 and Comparative Examples 1-3, the films produced in Examples 2-9 and Comparative Examples 1-3, and the 2 used in Reference Examples 1-2 Each axially stretched PET film was analyzed using an ICP-MS analyzer in the same manner as in Example 1 to measure the content of each element. Table 1 shows the measurement results of the Sb element content in each. In each of Examples 2 to 9 and Comparative Examples 1 to 3, the Ti content was 7 ppm, the Mg content was 75 ppm, and the P content was 65 ppm with respect to the total mass of the polyester film.
Further, none of the unstretched polyester films produced in Examples 1-9 and Comparative Examples 1-3 contained inorganic particles and organic particles.
[フィルムの測定]
<異物及び空隙の総数>
 各フィルムの平滑面側(光学干渉式粗さ計で表面粗さを計測し、粗さが小さい方の面)から可視光を照射し、透過型偏光顕微鏡(OLYMPUS社製、BX51)を用いて倍率100倍にて、各フィルムの5mm×5mmの正方形の視野範囲を観察し、フィルムの厚み方向に存在する直径9~20μmの異物及び空隙、及び、直径3μm以上9μm未満の異物及び空隙の個数を数えた。
 異物及び空隙の計測においては、偏光レンズを有する透過型偏光顕微鏡を使用し、異物又は空隙周辺の樹脂の色濃淡の変化(屈折率変化)を観測することにより、フィルム内部に存在する異物及び空隙をカウントした。また、アプリケーションソフト(OLYMPUS社製、「XD 2D Measurement」)を使用し、モニター上で視野を拡大して観察することにより、微小な異物及び空隙も計測した。
 各フィルムについて、任意に選択した20の視野で上記の観察、並びに、異物及び空隙の計測を行い、計測された異物及び空隙の個数の合計を算出し、5mm×5mm×20視野=500mmにおける異物及び空隙の総数とした。
[Film measurement]
<Total number of foreign matter and voids>
Visible light is irradiated from the smooth surface side of each film (surface roughness is measured with an optical interference type roughness meter, and the surface with smaller roughness), and a transmission polarizing microscope (BX51, manufactured by OLYMPUS) is used. Observe a 5 mm × 5 mm square visual field range of each film at a magnification of 100 times, and the number of foreign substances and voids with a diameter of 9 to 20 μm and foreign substances and voids with a diameter of 3 μm or more and less than 9 μm in the thickness direction of the film. counted.
In the measurement of foreign matter and voids, a transmission polarizing microscope with a polarizing lens is used to observe the change in color density (refractive index change) of the resin around the foreign matter or voids, thereby identifying foreign matter and voids present inside the film. counted. Further, application software (manufactured by OLYMPUS, "XD 2D Measurement") was used to enlarge the field of view on the monitor for observation, thereby measuring minute foreign matters and voids.
For each film, perform the above observation in 20 arbitrarily selected fields of view, and measure the foreign matter and voids, calculate the total number of measured foreign substances and voids, The total number of foreign matter and voids was taken as the total number.
 また、上記の方法で計測された異物及び空隙の個数の合計の算出結果と、各フィルムの観測視野と厚さとを乗算して得られる体積から、各フィルムの体積当たりの直径9~20μmの異物及び空隙の総数(個/mm)、並びに、各フィルムの体積当たりの直径3μm以上9μm未満の異物及び空隙の総数(個/mm)を算出した。
 なお、上記の方法に準じて、直径20μm超の異物及び空隙の計測を実施したが、いずれのフィルムにおいても直径20μm超の異物及び空隙は観測されなかった。
In addition, from the volume obtained by multiplying the result of calculation of the total number of foreign matter and voids measured by the above method by the observation field of view and the thickness of each film, foreign matter with a diameter of 9 to 20 μm per volume of each film And the total number of voids (pieces/mm 3 ), and the total number of foreign matter and voids having a diameter of 3 μm or more and less than 9 μm per volume of each film (pieces/mm 3 ) were calculated.
In addition, according to the above method, foreign matter and voids with a diameter of more than 20 μm were measured, but no foreign matter and voids with a diameter of more than 20 μm were observed in any of the films.
<ヘイズ測定>
 各例で製造又は用意されたフィルムのヘイズを、ヘイズメーター(NDH-2000、日本電色工業株式会社製)を用いて、JIS K 7105に準ずる方法により測定した。測定結果を表1に示す。
<Haze measurement>
The haze of the film produced or prepared in each example was measured by a method according to JIS K 7105 using a haze meter (NDH-2000, manufactured by Nippon Denshoku Industries Co., Ltd.). Table 1 shows the measurement results.
<感光性転写部材の作製>
 各例で得られたフィルムを感光性転写部材の支持体として適用した。即ち、得られたフィルムの粒子含有層とは反対側の表面に下記処方Fからなる熱可塑性樹脂層形成用塗布液を塗布し、得られた塗布膜を80℃で乾燥して熱可塑性樹脂層を形成した。次いで、下記処方Gからなる水溶性樹脂層形成用塗布液を、熱可塑性樹脂層の上に塗布した後、得られた塗布膜を80℃で乾燥して水溶性樹脂層を形成した。更に、下記処方Hからなる感光性樹脂層形成用塗布液を、水溶性樹脂層の上に塗布した後、得られた塗布膜を80℃で乾燥して感光性樹脂層を形成した。最後に、感光性樹脂層の表面に、保護フィルムとしてPETフィルム(東レ社製、ルミラー16KS40)を圧着した後、得られた積層体を巻き取り、ロール形態の感光性転写部材を作製した。
 上記感光性転写部材は、DFRの一例であり、支持体/熱可塑性樹脂層/水溶性樹脂層/感光性樹脂層/保護フィルムからなる層構成を有する。熱可塑性樹脂層の厚さは2μmであり、水溶性樹脂層の厚さは1μmであり、感光性樹脂層の厚さは2μmであった。
 なお、参考例1及び2のフィルムについては、より平滑な表面に、上記方法で熱可塑性樹脂層、水溶性樹脂層、感光性樹脂層及び保護フィルムを積層した。
<Preparation of photosensitive transfer member>
The film obtained in each example was applied as a support for a photosensitive transfer member. That is, a thermoplastic resin layer-forming coating liquid having the following formulation F is applied to the surface of the obtained film opposite to the particle-containing layer, and the obtained coating film is dried at 80° C. to form a thermoplastic resin layer. formed. Next, a coating liquid for forming a water-soluble resin layer having the following formulation G was applied onto the thermoplastic resin layer, and the resulting coating film was dried at 80° C. to form a water-soluble resin layer. Further, a coating solution for forming a photosensitive resin layer having the following formulation H was applied onto the water-soluble resin layer, and the resulting coating film was dried at 80° C. to form a photosensitive resin layer. Finally, a PET film (Lumirror 16KS40, manufactured by Toray Industries, Inc.) was press-bonded to the surface of the photosensitive resin layer as a protective film, and the resulting laminate was wound up to produce a roll-shaped photosensitive transfer member.
The above photosensitive transfer member is an example of DFR, and has a layer structure consisting of support/thermoplastic resin layer/water-soluble resin layer/photosensitive resin layer/protective film. The thickness of the thermoplastic resin layer was 2 μm, the thickness of the water-soluble resin layer was 1 μm, and the thickness of the photosensitive resin layer was 2 μm.
For the films of Reference Examples 1 and 2, a thermoplastic resin layer, a water-soluble resin layer, a photosensitive resin layer and a protective film were laminated on the smoother surface by the method described above.
(処方F:熱可塑性樹脂層形成用塗布液)
 ・ベンジルメタクリレート、メタクリル酸及びアクリル酸を重合してなる共重合体(各モノマーの質量比=75:10:15、分子量3万、固形分濃度30%の水分散体)22.7部
 ・3,6-ビス(ジフェニルアミノ)フルオラン:0.12部
 ・オキシムスルホネート型光酸発生剤(特開2013-047765号公報の段落0227に準じて合成):0.2部
 ・トリシクロデカンジメタノールジアクリレート:3.32部
 ・UV硬化型ウレタンアクリレートオリゴマー(大成ファインケミカル(株)製「8UX-015A」、15官能):1.66部
 ・多官能アクリレートモノマー(東亜合成(株)製「アロニックス(登録商標)TO-2349」):0.55部
 ・界面活性剤(DIC(株)製「メガファック(登録商標)F-552」):0.02部
(Prescription F: Coating liquid for forming thermoplastic resin layer)
22.7 parts of a copolymer obtained by polymerizing benzyl methacrylate, methacrylic acid and acrylic acid (mass ratio of each monomer = 75:10:15, molecular weight of 30,000, solid content concentration of 30%) 22.7 parts , 6-Bis (diphenylamino) fluorane: 0.12 parts Oxime sulfonate-type photoacid generator (synthesized according to paragraph 0227 of JP-A-2013-047765): 0.2 parts Tricyclodecanedimethanol di Acrylate: 3.32 parts ・UV curable urethane acrylate oligomer (Taisei Fine Chemical Co., Ltd. “8UX-015A”, 15 functional): 1.66 parts ・Multifunctional acrylate monomer (Toagosei Co., Ltd. “Aronix (registered Trademark) TO-2349"): 0.55 parts Surfactant (manufactured by DIC Corporation "Megafac (registered trademark) F-552"): 0.02 parts
(処方G:水溶性樹脂層形成用塗布液)
 ・ポリビニルアルコール((株)クラレ製「クラレポバール(登録商標)4-88LA」):3.22部
 ・ポリビニルピロリドン(日本触媒(株)製「K-30」):1.49部
 ・界面活性剤(DIC(株)製「メガファックF-444」):0.0035部
 ・メタノール(三菱ガス化学(株)製):57.1部
 ・イオン交換水:38.12部
(Prescription G: Coating liquid for forming water-soluble resin layer)
・Polyvinyl alcohol (“Kuraray Poval (registered trademark) 4-88LA” manufactured by Kuraray Co., Ltd.): 3.22 parts ・Polyvinylpyrrolidone (“K-30” manufactured by Nippon Shokubai Co., Ltd.): 1.49 parts ・Surfactant Agent ("Megafac F-444" manufactured by DIC Corporation): 0.0035 parts Methanol (manufactured by Mitsubishi Gas Chemical Co., Ltd.): 57.1 parts Ion-exchanged water: 38.12 parts
(処方H:感光性樹脂層形成用塗布液)
 ・スチレン、メタクリル酸及びメタクリル酸メチルを重合してなる共重合体(各モノマーの質量比=52:29:19、分子量6万、固形分濃度30%の水分散体):25.2部
 ・ロイコクリスタルバイオレット:0.06部
 ・光重合開始剤(2-(2-クロロフェニル)-4,5-ジフェニルイミダゾール二量体):1.03部
 ・4,4’-ビス(ジエチルアミノ)ベンゾフェノン:0.04部
 ・N-フェニルカルバモイルメチル-N-カルボキシメチルアニリン:0.02部
 ・エトキシ化ビスフェノールAジメタクリレート(新中村化学工業(株)製「NKエステルBPE-500」):5.61部
 ・多官能アクリレートモノマー(東亞合成(株)製「アロニックスM-270」):0.58部
 ・フェノチアジン:0.04部
 ・4-ヒドロキシメチル-4―メチル-1-フェニル-3-ピラゾリドン:0.002部
 ・界面活性剤(DIC(株)製「メガファックF-552」):0.048部
 ・プロピレングリコールモノメチルエーテルアセテート:19.7部
 ・メチルエチルケトン:43.8部
(Prescription H: Coating liquid for forming photosensitive resin layer)
・Copolymer obtained by polymerizing styrene, methacrylic acid and methyl methacrylate (mass ratio of each monomer = 52:29:19, molecular weight of 60,000, aqueous dispersion with solid concentration of 30%): 25.2 parts ・Leuco crystal violet: 0.06 parts Photopolymerization initiator (2-(2-chlorophenyl)-4,5-diphenylimidazole dimer): 1.03 parts 4,4'-bis (diethylamino) benzophenone: 0 .04 parts N-phenylcarbamoylmethyl-N-carboxymethylaniline: 0.02 parts Ethoxylated bisphenol A dimethacrylate (“NK Ester BPE-500” manufactured by Shin-Nakamura Chemical Co., Ltd.): 5.61 parts Polyfunctional acrylate monomer (“Aronix M-270” manufactured by Toagosei Co., Ltd.): 0.58 parts Phenothiazine: 0.04 parts 4-Hydroxymethyl-4-methyl-1-phenyl-3-pyrazolidone: 0. 002 parts Surfactant ("Megafac F-552" manufactured by DIC Corporation): 0.048 parts Propylene glycol monomethyl ether acetate: 19.7 parts Methyl ethyl ketone: 43.8 parts
[光学故障評価(ピンホール評価)]
 厚さ100μmのポリエチレンテレフタレート(PET)フィルム上に、スパッタ法にて厚さ200nmの銅層を形成することにより、銅層付きPET基板を作製した。
 上記で作製したロール形態の感光性転写部材を巻き出し、感光性転写部材から保護フィルムを剥離した。次いで、感光性転写部材と上記の銅層付きPET基板とを、保護フィルムの剥離により露出した感光性樹脂層と銅層とが互いに接触するように貼り合わせて、積層体を得た。この貼り合わせ工程は、ロール温度100℃、線圧1.0MPa、及び、線速度4.0m/minの条件で行った。
[Optical failure evaluation (pinhole evaluation)]
A PET substrate with a copper layer was produced by forming a copper layer with a thickness of 200 nm on a polyethylene terephthalate (PET) film with a thickness of 100 μm by a sputtering method.
The roll-shaped photosensitive transfer member prepared above was unwound, and the protective film was peeled off from the photosensitive transfer member. Next, the photosensitive transfer member and the PET substrate with the copper layer were laminated together so that the photosensitive resin layer exposed by peeling off the protective film and the copper layer were in contact with each other to obtain a laminate. This bonding step was performed under conditions of a roll temperature of 100° C., a linear pressure of 1.0 MPa, and a linear velocity of 4.0 m/min.
 得られた積層体の支持体(各例で作製又は用意されたフィルム、銅層付PET基板のPET基板ではない)側から、超高圧水銀灯(露光主波長:365nm)を照射して、感光性樹脂層を露光量180mJ/cmで全面露光した。
 露光された積層体から支持体を剥離した後、積層体の熱可塑性樹脂層、水溶性樹脂層及び感光性樹脂層が積層された側の表面に対して、液温25℃の1.0%炭酸ナトリウム水溶液を用いて30秒間のシャワー現像を行った。シャワー現像を行った後、全面露光した感光性樹脂層を観察し、ピンホールの有無を確認した。露光後の感光性樹脂層におけるピンホールは、支持体に含まれる異物又は空隙によって感光性樹脂層に未露光部が生じ、続く現像処理によって、感光性樹脂層の未露光部、並びに、未露光部に積層した水溶性樹脂層及び熱可塑性樹脂層が除去されることにより、生じると考えられる。露光後の感光性樹脂層にピンホールが発生した場合、そのピンホール径を計測した。
 積層体の観察の結果、感光性樹脂層にピンホールが確認されなかった場合、或いは、感光性樹脂層にピンホールが確認されたものの、そのピンホール径が3μm以下であった場合、許容範囲に含まれるものとした。
The support of the obtained laminate (the film produced or prepared in each example, not the PET substrate of the copper layer-attached PET substrate) is irradiated with an ultra-high pressure mercury lamp (main exposure wavelength: 365 nm) to make it photosensitive. The entire surface of the resin layer was exposed with an exposure amount of 180 mJ/cm 2 .
After peeling the support from the exposed laminate, 1.0% at a liquid temperature of 25° C. is applied to the surface of the laminate on which the thermoplastic resin layer, water-soluble resin layer and photosensitive resin layer are laminated. Shower development was performed for 30 seconds using an aqueous sodium carbonate solution. After performing shower development, the entire surface of the exposed photosensitive resin layer was observed to confirm the presence or absence of pinholes. Pinholes in the photosensitive resin layer after exposure are caused by foreign substances or voids contained in the support that cause unexposed areas in the photosensitive resin layer. It is thought that this is caused by removing the water-soluble resin layer and the thermoplastic resin layer laminated on the part. When a pinhole was generated in the photosensitive resin layer after exposure, the pinhole diameter was measured.
As a result of observation of the laminate, if no pinholes were confirmed in the photosensitive resin layer, or if pinholes were confirmed in the photosensitive resin layer but the pinhole diameter was 3 μm or less, the allowable range shall be included in
 下記表1に、各例について、フィルムの製造工程、フィルムの製造に用いたペレットのSb含有量、製造されたフィルムの組成及び物性、並びに、上記評価結果を示す。
 表中、「金属化合物」欄は、ポリエステルフィルム製造における(1)エステル化反応の際に使用した金属化合物を表し、「Ti」との表記はチタン化合物を用いたことを示し、「Sb」との表記はアンチモン化合物を用いたことを示す。
 表中、「反応槽の洗浄」欄の「あり」との表記は、洗浄された反応槽を用いてポリエステルペレットを製造したことを示し、「なし」との表記は、洗浄されていない反応槽を用いてポリエステルペレットを製造したことを示す。
 「洗浄前製造品種」欄は、反応槽の洗浄前のポリエステルペレットの製造において、エステル化反応の際に使用した金属化合物を表し、「Ti」との表記はチタン化合物を用いたことを示し、「Sb」との表記はアンチモン化合物を用いたことを示す。
 「経過時間」欄は、フィルムの作製に用いたポリエステルペレットが、反応槽を用いて連続して製造されたポリエステルペレットのうち、ポリエステル樹脂前駆体の仕込みを開始してからどのくらいの時間が経過した時点で製造されたポリエステルペレットであるかを示す。
Table 1 below shows the production process of the film, the Sb content of the pellets used in the production of the film, the composition and physical properties of the produced film, and the above evaluation results for each example.
In the table, the "metal compound" column represents the metal compound used in (1) the esterification reaction in polyester film production, the notation "Ti" indicates that a titanium compound was used, and "Sb" and indicates that an antimony compound was used.
In the table, the notation "Yes" in the "Reaction vessel cleaning" column indicates that polyester pellets were produced using the cleaned reaction vessel, and the notation "No" indicates the reaction vessel that was not cleaned. It shows that polyester pellets were produced using.
The column "manufactured product type before washing" represents the metal compound used during the esterification reaction in the production of polyester pellets before washing the reaction tank, and the notation "Ti" indicates that a titanium compound was used. The notation "Sb" indicates that an antimony compound was used.
The "elapsed time" column indicates how much time has elapsed since the start of charging of the polyester resin precursor, among the polyester pellets used in the production of the film, among the polyester pellets that were continuously produced using the reaction tank. Indicates whether the polyester pellet was manufactured at the time point.
 「ペレット」の「Sb[ppm]」欄は、ICP-MS分析装置を用いて分析した、ポリエステルペレットの全質量に対するSb含有量(単位:質量ppm)を示す。
 「メルトフィルタ」欄は、ろ材に含まれる繊維状金属焼結体のろ過精度(単位:μm)を示す。
The “Sb [ppm]” column of “Pellets” indicates the Sb content (unit: mass ppm) relative to the total mass of polyester pellets analyzed using an ICP-MS analyzer.
The "melt filter" column shows the filtration accuracy (unit: μm) of the fibrous metal sintered body contained in the filter medium.
 「フィルム」の「3~9μm異物と空隙」欄は、上記の方法で測定されたフィルム500mm当たりの直径3μm以上9μm未満の異物及び空隙の総数を示し、「9~20μm異物と空隙」欄は、上記の方法で測定されたフィルム500mm当たりの直径9~20μmの異物及び空隙の総数を示す。
 なお、参考例1及び2における異物及び空隙の数値は参考値であり、参考例1では、上記の方法に準じて測定されたフィルム500mm当たりの直径1.5~4.5μmの異物及び空隙の総数を示し、参考例2では、上記の方法に準じて測定されたフィルム500mm当たりの直径5μm以上の異物及び空隙の総数を示す。
The "3 to 9 μm foreign matter and voids" column in "Film" indicates the total number of foreign matter and voids with a diameter of 3 μm or more and less than 9 μm per 500 mm 2 of the film measured by the above method. indicates the total number of foreign particles and voids with a diameter of 9 to 20 μm per 500 mm 2 of film measured by the method described above.
The numerical values of foreign matter and voids in Reference Examples 1 and 2 are reference values. In Reference Example 2, the total number of foreign matter and voids with a diameter of 5 μm or more per 500 mm 2 of film measured according to the above method is shown.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より、本発明に係る実施例1~9のポリエステルフィルムは、比較例1~3及び参考例1~2に比べて、ピンホールとして現れる光学欠陥の発生の抑制効果がより優れることが確認された。 From Table 1, it is confirmed that the polyester films of Examples 1 to 9 according to the present invention are more effective in suppressing the occurrence of optical defects appearing as pinholes than Comparative Examples 1 to 3 and Reference Examples 1 and 2. was done.
 また、直径3μm以上9μm未満の異物及び空隙の総数が100個/500mm以下である場合、光学欠陥の発生の抑制効果が更に優れることが確認された(実施例1~9の比較)。
 直径9~20μmの異物及び空隙の総数が7個/500mm以下である場合、光学欠陥の発生の抑制効果が更に優れることが確認された(実施例1~9の比較)。
 ポリエステルペレットにおけるSb含有量が0.8質量ppm以下である場合、光学欠陥の発生の抑制効果が更に優れ、0.6質量ppm以下である場合、光学欠陥の発生の抑制効果が特に優れることが確認された(実施例1~9の比較)。
 ポリエステルフィルムにおけるSb含有量が0.7質量ppm以下である場合、光学欠陥の発生の抑制効果が更に優れ、0.5質量ppm以下である場合、光学欠陥の発生の抑制効果が特に優れることが確認された(実施例1~9の比較)。
It was also confirmed that when the total number of foreign matter and voids with a diameter of 3 μm or more and less than 9 μm is 100/500 mm 2 or less, the effect of suppressing the occurrence of optical defects is further excellent (comparison of Examples 1 to 9).
It was confirmed that when the total number of foreign matter and voids with a diameter of 9 to 20 μm was 7 pieces/500 mm 2 or less, the effect of suppressing the occurrence of optical defects was further excellent (comparison with Examples 1 to 9).
When the Sb content in the polyester pellet is 0.8 mass ppm or less, the effect of suppressing the occurrence of optical defects is further excellent, and when it is 0.6 mass ppm or less, the effect of suppressing the occurrence of optical defects is particularly excellent. Confirmed (comparison of Examples 1-9).
When the Sb content in the polyester film is 0.7 mass ppm or less, the effect of suppressing the occurrence of optical defects is further excellent, and when it is 0.5 mass ppm or less, the effect of suppressing the occurrence of optical defects is particularly excellent. Confirmed (comparison of Examples 1-9).
[実施例11]
 実施例1の「(3)フィルム化」に記載の方法において、縦延伸したポリエステルフィルムの表面に粒子含有層形成用組成物としての下記組成物Aを塗布し、得られた粒子含有層付きフィルムを延伸して、ナーリング加工をせずに巻き取ったこと以外は、実施例1と同様にして、厚みが31μmの2軸延伸ポリエステルフィルムを得た。粒子含有層の厚みは60nmであった。
 なお、得られたポリエステルフィルムの全長全幅における厚みバラツキを、光学式膜厚計で測定した平均値から下記式により算出したところ、3.5%であった。
 厚みバラツキ(%)={6σ(厚み標準偏差)}/(厚み平均値)×100
[Example 11]
In the method described in "(3) Film formation" of Example 1, the following composition A as a composition for forming a particle-containing layer was applied to the surface of a longitudinally stretched polyester film to obtain a film with a particle-containing layer. A biaxially stretched polyester film having a thickness of 31 μm was obtained in the same manner as in Example 1, except that the film was stretched and wound without knurling. The thickness of the particle-containing layer was 60 nm.
The variation in thickness over the entire length and width of the obtained polyester film was 3.5% when calculated from the average value measured with an optical film thickness meter using the following formula.
Thickness variation (%) = {6σ (thickness standard deviation)} / (thickness average value) × 100
(組成物A)
 下記に示す各成分を混合することにより、組成物Aを調製した。調製された組成物Aに対して、孔径が6μmであるフィルター(F20、株式会社マーレフィルターシステムズ製)を用いたろ過処理、及び、膜脱気(2x6ラジアルフロースーパーフォビック、ポリポア株式会社製)を実施した。
・酸変性ポリオレフィン(ザイクセン(登録商標)NC、住友精化株式会社製、固形分25質量%に加水して調整した水分散液):157部
・アニオン性炭化水素系界面活性剤(ラピゾール(登録商標)A-90、スルホコハク酸ジ-2-エチルヘキシルナトリウム、日油株式会社製、固形分1質量%水希釈液):56部
・粒子(スノーテックス(登録商標)ZL、日産化学株式会社製、コロイダルシリカ、固形分40質量%水分散液):11部
・水:776部
(Composition A)
Composition A was prepared by mixing each component shown below. The prepared composition A was subjected to filtration treatment using a filter with a pore size of 6 μm (F20, manufactured by Mahle Filter Systems Co., Ltd.), and membrane degassing (2x6 radial flow superphobic, manufactured by Polypore Co., Ltd.). carried out.
・ Acid-modified polyolefin (Zaixen (registered trademark) NC, manufactured by Sumitomo Seika Co., Ltd., aqueous dispersion prepared by adding water to 25% by mass of solid content): 157 parts ・ Anionic hydrocarbon surfactant (Rapisol (registered Trademark) A-90, di-2-ethylhexyl sodium sulfosuccinate, manufactured by NOF Corporation, solid content 1% by mass diluted with water): 56 parts Particles (Snowtex (registered trademark) ZL, manufactured by Nissan Chemical Co., Ltd., Colloidal silica, solid content 40% by mass aqueous dispersion): 11 parts Water: 776 parts
[実施例12~17、比較例4]
 縦延伸したポリエステルフィルムの表面に粒子含有層形成用組成物として上記組成物Aを塗布し、得られた粒子含有層付きフィルムを延伸して、ナーリング加工をせずに巻き取ったこと以外は、実施例1と同様にして、厚みが31μmの2軸延伸ポリエステルフィルムを得た。粒子含有層の厚みは60nmであった。
 2軸延伸ポリエステルフィルムの厚みを31μmとしたこと、実施例11に記載の方法に従って組成物Aを用いて厚み60nmの粒子含有層を形成したこと以外は、実施例2~5、8~9、及び、比較例1と同様にして、実施例12~17、及び、比較例4の2軸延伸ポリエステルフィルムをそれぞれ製造した。
[Examples 12 to 17, Comparative Example 4]
The above composition A was applied as a composition for forming a particle-containing layer on the surface of a longitudinally stretched polyester film, and the obtained film with a particle-containing layer was stretched and wound without knurling. A biaxially stretched polyester film having a thickness of 31 μm was obtained in the same manner as in Example 1. The thickness of the particle-containing layer was 60 nm.
Examples 2-5, 8-9, And, in the same manner as in Comparative Example 1, biaxially stretched polyester films of Examples 12 to 17 and Comparative Example 4 were produced.
[実施例18]
 2軸延伸ポリエステルフィルムの厚みを25μmとしたこと以外は実施例15と同様にして、2軸延伸ポリエステルフィルムを製造した。
[Example 18]
A biaxially stretched polyester film was produced in the same manner as in Example 15, except that the thickness of the biaxially stretched polyester film was 25 μm.
[実施例19~20]
 表1に記載の経過時間が経過して以降に第3縮合反応槽から排出された生成物を用いて作製されたポリエステルペレットを用いたこと以外は、実施例11と同様にして、実施例19~20の2軸延伸ポリエステルフィルムをそれぞれ製造した。
[Examples 19-20]
Example 19 in the same manner as in Example 11 except that polyester pellets made using the product discharged from the third condensation reactor after the elapsed time shown in Table 1 was used. ∼20 biaxially oriented polyester films were produced respectively.
[フィルムの測定]
 実施例11~20及び比較例4で製造した各フィルムについて、実施例1と同様の方法でICP-MS分析装置を用いて分析し、各元素の含有量を測定した。それぞれにおけるSb元素の含有量の測定結果を、表2に示す。また、実施例11~20及び比較例4のいずれにおいても、ポリエステルフィルムの全質量に対して、Ti含有量は7ppm、Mg含有量は75ppm、P含有量は65ppmであった。
 また、実施例11~20及び比較例4で作製された未延伸のポリエステルフィルムはいずれも、無機粒子及び有機粒子を含有していなかった。
[Film measurement]
The films produced in Examples 11 to 20 and Comparative Example 4 were analyzed using an ICP-MS analyzer in the same manner as in Example 1 to measure the content of each element. Table 2 shows the measurement results of the Sb element content in each. In addition, in each of Examples 11 to 20 and Comparative Example 4, the Ti content was 7 ppm, the Mg content was 75 ppm, and the P content was 65 ppm with respect to the total mass of the polyester film.
Moreover, none of the unstretched polyester films produced in Examples 11 to 20 and Comparative Example 4 contained inorganic particles or organic particles.
 また、実施例11~20及び比較例4で製造した各フィルムについて、実施例1~9等と同様にして、フィルムの厚み方向に存在する直径9~20μmの異物及び空隙の総数(個/500mm)、及び、直径3μm以上9μm未満の異物及び空隙の総数(個/500mm)、並びに、フィルムの体積当たりの直径9~20μmの異物及び空隙の総数(個/mm)、及び、直径3μm以上9μm未満の異物及び空隙の総数(個/mm)を計測した。それぞれの計測結果を、表2に示す。なお、実施例11~20及び比較例4で製造したいずれのフィルムにおいても直径20μm超の異物及び空隙は観測されなかった。
 また、上述の方法により実施例11~20及び比較例4で製造したフィルムのヘイズを測定した。測定結果を表2に示す。
In addition, for each film produced in Examples 11 to 20 and Comparative Example 4, in the same manner as in Examples 1 to 9, etc., the total number of foreign substances and voids with a diameter of 9 to 20 μm present in the thickness direction of the film (pieces / 500 mm 2 ), and the total number of foreign matter and voids with a diameter of 3 μm or more and less than 9 μm (pieces/500 mm 2 ), and the total number of foreign matter and voids with a diameter of 9 to 20 μm per film volume (pieces/mm 3 ), and the diameter The total number (pieces/mm 3 ) of foreign matter and voids of 3 μm or more and less than 9 μm was measured. Each measurement result is shown in Table 2. In any of the films produced in Examples 11 to 20 and Comparative Example 4, no foreign matter with a diameter exceeding 20 μm and voids were observed.
In addition, the haze of the films produced in Examples 11 to 20 and Comparative Example 4 was measured by the method described above. Table 2 shows the measurement results.
 下記表2に、実施例11~20及び比較例4について、フィルムの製造工程、フィルムの製造に用いたペレットのSb含有量、並びに、上記測定結果を示す。
 表中の各表記については、既に説明した通りである。
Table 2 below shows the film manufacturing process, the Sb content of the pellets used in the film manufacturing, and the above measurement results for Examples 11 to 20 and Comparative Example 4.
Each notation in the table is as described above.
〔欠陥評価〕
<セラミックスラリーの調製>
 チタン酸バリウム粉末(BaTiO;堺化学工業株式会社製,製品名「BT-03」)100質量部、バインダーとしてのポリビニルブチラール樹脂(積水化学工業株式会社製,製品名「エスレック(登録商標)B・K BM-2」)8質量部、可塑剤としてのフタル酸ジオクチル(関東化学株式会社製,フタル酸ジオクチル 鹿1級)4質量部、及び、トルエン及びエタノールの混合液(質量比6:4)135質量部を混合した。得られた混合物をジルコニアビーズの存在下でボールミルにて分散させた後、混合物からビーズを除去してセラミックスラリーを調製した。
[Defect evaluation]
<Preparation of ceramic slurry>
Barium titanate powder (BaTiO 3 ; manufactured by Sakai Chemical Industry Co., Ltd., product name “BT-03”) 100 parts by mass, polyvinyl butyral resin as a binder (manufactured by Sekisui Chemical Co., Ltd., product name “S-Lec (registered trademark) B・K BM-2”) 8 parts by mass, 4 parts by mass of dioctyl phthalate as a plasticizer (manufactured by Kanto Chemical Co., Ltd., dioctyl phthalate Deer 1st grade), and a mixture of toluene and ethanol (mass ratio 6:4) ) 135 parts by mass were mixed. The obtained mixture was dispersed in a ball mill in the presence of zirconia beads, and then the beads were removed from the mixture to prepare a ceramic slurry.
<欠陥測定用サンプルの作製及び評価>
 巻き取られた2軸延伸ポリエステルフィルムのフィルムロールを2軸延伸ポリエステルフィルムのポリエステル基材側の表面(つまり、粒子含有層が存在しない面)に剥離層(厚さ1μm)を形成して、剥離フィルムを得た。ここで、剥離層は、特開2015-195291号公報の実施例1に記載の剥離層形成用材料を用いた剥離剤層の形成方法に従って作製した。
 上記セラミックスラリーをダイコーターにて乾燥後の膜厚が1μmになるように、幅250mm、長さ10mにわたって、剥離フィルムの剥離層の表面に塗工し、その後、乾燥機にて80℃で1分間乾燥させた。セラミックグリーンシートと剥離フィルムとの積層フィルムについて、剥離フィルム側から蛍光灯の光を照らして、セラミックグリーンシート側から積層フィルムを透過した光を、成形したすべてのセラミックグリーンシート面にわたって目視で検査した。ピンホール等の周囲と色味が異なる欠陥箇所について、セラミックグリーンシートを剥離し、欠陥箇所の剥離フィルムを透過型偏光顕微鏡で観察する。欠陥箇所の剥離フィルム内部に異物が存在する欠陥箇所(凹状欠陥)の個数を数えた。
<Production and evaluation of sample for defect measurement>
The film roll of the wound biaxially stretched polyester film is peeled by forming a release layer (thickness 1 μm) on the surface of the biaxially stretched polyester film on the polyester substrate side (that is, the surface where the particle-containing layer does not exist). got the film. Here, the release layer was produced according to the method of forming a release agent layer using the release layer-forming material described in Example 1 of JP-A-2015-195291.
The above ceramic slurry is applied to the surface of the release layer of the release film over a width of 250 mm and a length of 10 m so that the film thickness after drying is 1 μm with a die coater, and then dried at 80 ° C. dried for a minute. The laminated film of the ceramic green sheet and the release film was illuminated with fluorescent light from the release film side, and the light transmitted through the laminated film from the ceramic green sheet side was visually inspected over all surfaces of the molded ceramic green sheet. . The ceramic green sheet is peeled off from the defective portion where the color is different from that of the surrounding area such as a pinhole, and the peeled film at the defective portion is observed with a transmission polarizing microscope. The number of defect locations (concave defects) in which foreign matter was present inside the release film at the defect locations was counted.
 実施例11~19で作製したフィルムについては、上記の凹状欠陥の個数は0個であった。実施例20で作製したフィルムについては、2個の凹状欠陥が存在した。比較例4で作製したフィルムについては、5個の凹状欠陥が存在した。
 以上より、本発明に係る実施例11~20のポリエステルフィルムは、比較例4に比べて、セラミックグリーンシートに生じる局所的な凹状欠陥が少なく、凹状欠陥抑制効果がより優れることが確認された。
For the films produced in Examples 11 to 19, the number of concave defects was zero. For the film made in Example 20, two concave defects were present. For the film made in Comparative Example 4, there were 5 concave defects.
From the above, it was confirmed that the polyester films of Examples 11 to 20 according to the present invention have fewer local concave defects occurring in the ceramic green sheet than Comparative Example 4, and have a more excellent concave defect suppressing effect.
 10  フィルム製造装置
 12  反応槽
 14  製膜工程部
 16  縦延伸工程部
 18  横延伸工程部
 20  巻取部
 24  押出機
 26  ダイ
 28  キャストドラム
 30  低速ローラ
 32  高速ローラ
 34  配管
 36  ろ過装置
 38  配管
 40  供給口
 42  排出口
 44  ハウジング
 46  フィルタ
 48  流路
 50  リング部材
 51  貫通孔
 52  焼結体
 53  多孔板
 54  スペーサ
 56  部材
 F  フィルム(ポリエステルフィルム)
 
REFERENCE SIGNS LIST 10 film manufacturing apparatus 12 reaction tank 14 film forming process unit 16 longitudinal stretching process unit 18 transverse stretching process unit 20 winding unit 24 extruder 26 die 28 cast drum 30 low speed roller 32 high speed roller 34 pipe 36 filter device 38 pipe 40 supply port 42 outlet 44 housing 46 filter 48 channel 50 ring member 51 through hole 52 sintered body 53 perforated plate 54 spacer 56 member F film (polyester film)

Claims (20)

  1.  チタン化合物の存在下、ポリエステル樹脂前駆体の重合を連続的に行って、製造されるポリエステル樹脂を含む生成物を誘導結合プラズマ質量分析法で測定して得られるアンチモンの含有量が前記生成物に対して1.0質量ppm以下に低下した後にポリエステル樹脂を得る工程1と、
     前記工程1で得られた前記ポリエステル樹脂の溶融物を、粉末状焼結体を含むろ材、及び、ろ過精度が3μm以下の繊維状焼結体を含むろ材でろ過する工程2と、
     前記工程2でろ過された前記溶融物を用いてポリエステルフィルムを製造する工程3とを有する、ポリエステルフィルムの製造方法。
    The content of antimony obtained by continuously polymerizing a polyester resin precursor in the presence of a titanium compound and measuring the product containing the polyester resin produced by inductively coupled plasma mass spectrometry is in the product. Step 1 of obtaining a polyester resin after decreasing to 1.0 ppm by mass or less,
    A step 2 of filtering the melt of the polyester resin obtained in the step 1 with a filter medium containing a powdery sintered body and a filter medium containing a fibrous sintered body with a filtration accuracy of 3 μm or less;
    A method for producing a polyester film, comprising a step 3 of producing a polyester film using the melt filtered in the step 2.
  2.  前記ポリエステル樹脂前駆体を連続的に重合する前に、重合に用いる反応槽内を洗浄する、請求項1に記載のポリエステルフィルムの製造方法。 The method for producing a polyester film according to claim 1, wherein the inside of the reaction vessel used for polymerization is washed before continuously polymerizing the polyester resin precursor.
  3.  前記ポリエステルフィルムが、無機粒子を実質的に含まないポリエステル基材を有する、請求項1又は2に記載のポリエステルフィルムの製造方法。 The method for producing a polyester film according to claim 1 or 2, wherein the polyester film has a polyester base material that does not substantially contain inorganic particles.
  4.  前記ポリエステル樹脂前駆体が、ジオール化合物と、ジカルボン酸及びジカルボン酸エステル化合物からなる群より選択されるジカルボン酸化合物とを含む、請求項1又は2に記載のポリエステルフィルムの製造方法。 The method for producing a polyester film according to claim 1 or 2, wherein the polyester resin precursor contains a diol compound and a dicarboxylic acid compound selected from the group consisting of dicarboxylic acid and dicarboxylic acid ester compounds.
  5.  前記ポリエステルフィルムが、マグネシウム及びリンからなる群から選択される少なくとも1つの元素を含む、請求項1又は2に記載のポリエステルフィルムの製造方法。 The method for producing a polyester film according to claim 1 or 2, wherein the polyester film contains at least one element selected from the group consisting of magnesium and phosphorus.
  6.  ヘイズが0.6%以下であり、
     誘導結合プラズマ質量分析法で測定して得られるアンチモンの含有量が1質量ppm以下であり、
     透過型偏光顕微鏡で観測される直径9~20μmの異物及び空隙の総数が10個/500mm以下である、ポリエステルフィルム。
    haze is 0.6% or less,
    The content of antimony obtained by measurement by inductively coupled plasma mass spectrometry is 1 mass ppm or less,
    A polyester film in which the total number of foreign matter and voids with a diameter of 9 to 20 μm observed with a transmission polarizing microscope is 10/500 mm 2 or less.
  7.  ドライフィルムレジスト製造用である、請求項6に記載のポリエステルフィルム。 The polyester film according to claim 6, which is for dry film resist production.
  8.  透過型偏光顕微鏡で観測される直径3μm以上9μm未満の異物及び空隙の総数が200個/500mm以下である、請求項6又は7に記載のポリエステルフィルム。 The polyester film according to claim 6 or 7, wherein the total number of foreign matter and voids having a diameter of 3 µm or more and less than 9 µm observed with a transmission polarizing microscope is 200/500 mm2 or less.
  9.  透過型偏光顕微鏡で観測される直径9~20μmの異物及び空隙の総数が1.7個/mm以下である、ポリエステルフィルム。 A polyester film in which the total number of foreign matter and voids with a diameter of 9 to 20 μm observed with a transmission polarizing microscope is 1.7/mm 3 or less.
  10.  セラミックグリーンシート製造用である、請求項9に記載のポリエステルフィルム。 The polyester film according to claim 9, which is used for producing ceramic green sheets.
  11.  誘導結合プラズマ質量分析法で測定して得られるアンチモンの含有量が1質量ppm以下である、請求項9又は10に記載のポリエステルフィルム。 The polyester film according to claim 9 or 10, wherein the content of antimony obtained by measurement by inductively coupled plasma mass spectrometry is 1 ppm by mass or less.
  12.  透過型偏光顕微鏡で観測される直径3μm以上9μm未満の異物及び空隙の総数が27.0個/mm以下である、請求項9又は10に記載のポリエステルフィルム。 The polyester film according to claim 9 or 10, wherein the total number of foreign matter and voids having a diameter of 3 μm or more and less than 9 μm observed with a transmission polarizing microscope is 27.0/mm 3 or less.
  13.  チタン、マグネシウム及びリンを含み、
     誘導結合プラズマ質量分析法で測定して得られるチタンの含有量、マグネシウムの含有量、及び、リンの含有量のそれぞれが、前記ポリエステルフィルムの全質量に対して1~100質量ppmである、請求項6又は9に記載のポリエステルフィルム。
    containing titanium, magnesium and phosphorus,
    Each of the titanium content, magnesium content, and phosphorus content measured by inductively coupled plasma mass spectrometry is 1 to 100 ppm by mass with respect to the total mass of the polyester film. Item 9. The polyester film according to Item 6 or 9.
  14.  無機粒子を実質的に含まないポリエステル基材を有する、請求項6又は9に記載のポリエステルフィルム。 The polyester film according to claim 6 or 9, which has a polyester base material that does not substantially contain inorganic particles.
  15.  ポリエステル基材と、粒子含有層とを有する、請求項6又は9に記載のポリエステルフィルム。 The polyester film according to claim 6 or 9, which has a polyester base material and a particle-containing layer.
  16.  前記ポリエステルフィルムの厚みが1~35μmである、請求項6又は9に記載のポリエステルフィルム。 The polyester film according to claim 6 or 9, wherein the polyester film has a thickness of 1 to 35 µm.
  17.  ヘイズが2.0%以下であり、厚みが1~35μmである、請求項9又は10に記載のポリエステルフィルム。 The polyester film according to claim 9 or 10, which has a haze of 2.0% or less and a thickness of 1 to 35 µm.
  18.  請求項6又は9に記載のポリエステルフィルムと、感光性樹脂層とを有する、ドライフィルムレジスト。 A dry film resist comprising the polyester film according to claim 6 or 9 and a photosensitive resin layer.
  19.  前記感光性樹脂層が、バインダーポリマーと、エチレン性不飽和結合を有する重合性化合物と、光重合開始剤とを含む、請求項18に記載のドライフィルムレジスト。 The dry film resist according to claim 18, wherein the photosensitive resin layer contains a binder polymer, a polymerizable compound having an ethylenically unsaturated bond, and a photopolymerization initiator.
  20.  請求項6又は9に記載のポリエステルフィルムと、剥離層とを有する、剥離フィルム。
     
    A release film comprising the polyester film according to claim 6 or 9 and a release layer.
PCT/JP2023/001071 2022-02-03 2023-01-17 Polyester film production method, polyester film, dry film resist, and release film WO2023149181A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022015464 2022-02-03
JP2022-015464 2022-02-03
JP2022200277 2022-12-15
JP2022-200277 2022-12-15

Publications (1)

Publication Number Publication Date
WO2023149181A1 true WO2023149181A1 (en) 2023-08-10

Family

ID=87552030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001071 WO2023149181A1 (en) 2022-02-03 2023-01-17 Polyester film production method, polyester film, dry film resist, and release film

Country Status (2)

Country Link
TW (1) TW202340339A (en)
WO (1) WO2023149181A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11348186A (en) * 1998-06-04 1999-12-21 Teijin Ltd Release film
JP2000264982A (en) * 1999-03-16 2000-09-26 Fuji Photo Film Co Ltd Production of thermoplastic resin film
JP2001322157A (en) * 2000-05-16 2001-11-20 Toray Ind Inc Method for manufacturing thermoplastic resin film
JP2012166547A (en) * 2011-01-27 2012-09-06 Fujifilm Corp Polyester film, method for manufacturing the same, back sheet for solar cell, and solar cell power generation module
JP2013043411A (en) * 2011-08-25 2013-03-04 Fujifilm Corp Polyester film, method for manufacturing the same, back sheet for solar cell, and solar cell module
JP2017511267A (en) * 2014-03-26 2017-04-20 コベストロ・エルエルシー Method for producing surface protective composite
JP2017165063A (en) * 2016-03-18 2017-09-21 東レ株式会社 Biaxially oriented polyester film and magnetic recording medium
JP2021059031A (en) * 2019-10-04 2021-04-15 三菱ケミカル株式会社 Film for dry film resist substrate

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11348186A (en) * 1998-06-04 1999-12-21 Teijin Ltd Release film
JP2000264982A (en) * 1999-03-16 2000-09-26 Fuji Photo Film Co Ltd Production of thermoplastic resin film
JP2001322157A (en) * 2000-05-16 2001-11-20 Toray Ind Inc Method for manufacturing thermoplastic resin film
JP2012166547A (en) * 2011-01-27 2012-09-06 Fujifilm Corp Polyester film, method for manufacturing the same, back sheet for solar cell, and solar cell power generation module
JP2013043411A (en) * 2011-08-25 2013-03-04 Fujifilm Corp Polyester film, method for manufacturing the same, back sheet for solar cell, and solar cell module
JP2017511267A (en) * 2014-03-26 2017-04-20 コベストロ・エルエルシー Method for producing surface protective composite
JP2017165063A (en) * 2016-03-18 2017-09-21 東レ株式会社 Biaxially oriented polyester film and magnetic recording medium
JP2021059031A (en) * 2019-10-04 2021-04-15 三菱ケミカル株式会社 Film for dry film resist substrate

Also Published As

Publication number Publication date
TW202340339A (en) 2023-10-16

Similar Documents

Publication Publication Date Title
WO2013122025A1 (en) Reflective film
KR20030096024A (en) Polyester film for display
JPH07333853A (en) Laminated polyester film for photoresist
JP7000677B2 (en) Polyester film
KR20230106723A (en) Mold release film for molding of resin sheet
JP2016087854A (en) Biaxially oriented polyester film for dry film resist supporter
JP2018090803A (en) Polyester film roll
JP7428798B2 (en) Polyester film manufacturing method, polyester film, laminated film
JP2018065250A (en) Biaxially oriented polyester film for dry film resist support and production method of the same
JP7006112B2 (en) Biaxially oriented polyester film
WO2023149181A1 (en) Polyester film production method, polyester film, dry film resist, and release film
JP3920094B2 (en) Coverless dry film Laminated film for photoresist
JP2021054055A (en) Biaxially oriented polyester film for dry film resist
TWI811302B (en) Polyester Film for Dry Film Resist Substrates
JP5014616B2 (en) Optical laminated polyester film
JP4692819B2 (en) Laminated polyester film
TW200301191A (en) Laminating film
JP2006281731A (en) Laminated film
JP2011042177A (en) Laminated polyester film
JP4285089B2 (en) Polyester film for photoresist
JP2009241575A (en) Biaxially oriented laminated polyester film
JP7106912B2 (en) Release film for manufacturing ceramic green sheets
JP2011178002A (en) Double-sided mold release film
JP2004066642A (en) Laminated polyester film
JP4919996B2 (en) Release film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23749498

Country of ref document: EP

Kind code of ref document: A1