WO2023149144A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2023149144A1
WO2023149144A1 PCT/JP2022/048392 JP2022048392W WO2023149144A1 WO 2023149144 A1 WO2023149144 A1 WO 2023149144A1 JP 2022048392 W JP2022048392 W JP 2022048392W WO 2023149144 A1 WO2023149144 A1 WO 2023149144A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
conductor layer
recess
semiconductor device
layer
Prior art date
Application number
PCT/JP2022/048392
Other languages
English (en)
French (fr)
Inventor
順平 楠川
健 徳山
隆宏 荒木
ティ チェン
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Publication of WO2023149144A1 publication Critical patent/WO2023149144A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components

Definitions

  • the present invention relates to semiconductor devices.
  • Power converters that use power semiconductor elements are widely used in fields such as consumer, automobile, railway, industrial, and infrastructure.
  • power semiconductor devices for automobiles are applied to motor-driven electric vehicles (EV), hybrid vehicles (HEV) that combine motor drive and engine drive, and the like.
  • EVs and HEVs a DC voltage of a battery is converted into a pseudo AC voltage by switching a power semiconductor device to drive a motor with high efficiency.
  • a power converter equipped with this power semiconductor element it is required to mount high-voltage circuit components on a printed circuit board so as not to impair reliability.
  • Patent Document 1 a recess is formed in the thickness direction of a printed circuit board, a high-voltage circuit component is placed in the recess, and an insulating material is filled in the recess to secure the insulation of the high-voltage component and the insulating material.
  • a configuration of an electrical device is disclosed that suppresses an increase in the number of parts and manufacturing man-hours in the application of .
  • a power conversion device includes a semiconductor element, two heat spreaders joined to both surfaces of the semiconductor element on one side thereof, and an external terminal, and the other side of the two heat spreaders. and a semiconductor device sealed with an insulating resin so that a part of the external terminals are exposed, a circuit board on which the semiconductor device is mounted and having a first insulating layer, and a circuit board for cooling the semiconductor device wherein the circuit board includes a recess in which the semiconductor device is installed, a first conductor layer forming a bottom surface of the recess, and a layer different from the first conductor layer.
  • one of the two heat spreaders has the other surface in contact with the bottom surface of the recess, and
  • the external terminal is bonded to the first conductor layer via one metal bonding material, the external terminal is bonded to the second conductor layer via a second metal bonding material, and is connected to the other of the two heat spreaders.
  • the other surface of the heat spreader is pressed against the cooler via a second insulating layer different from the first insulating layer.
  • FIG. 4 is a cross-sectional view of a circuit board showing a step of forming a first conductor layer according to one embodiment of the power conversion device of the present invention
  • the electronic component 10 provided in the power converter has external terminals 15 for connecting with the circuit conductors 22 of the circuit board 20 .
  • the circuit board 20 is provided with a solder resist 23, which is an insulating film, over the entire surface.
  • the circuit board 20 When the electronic component 10 is a precision device such as a power module (semiconductor device) having a power semiconductor element (hereinafter referred to as a semiconductor element), the circuit board 20 must be protected with an insulating resin. Therefore, the recess 24 is formed in the circuit board 20 , the electronic component 10 is placed inside the recess 24 , and the insulating resin filler 33 is filled between the recess 24 and the electronic component 10 .
  • a cooler 41 having a water channel 42 is arranged on the opposite side of the recess 24 with the bottom surface (the insulating layer 21 of the circuit board 20) therebetween.
  • the power module when the power module is placed in the concave portion 24 , if the solder paste used for bonding is not constant, the power module may be installed with a deviation or inclination with respect to the circuit board 20 , which may cause electrical damage. It may become unreliable for connectivity and stability.
  • the power converter 100 includes a power module (semiconductor device 10) including a semiconductor element 11 such as an IGBT (Insulated Gate Bipolar Transistor), a printed circuit board 20, a cooler 41, a busbar, a capacitor, and the like (not shown). It is configured. Note that FIG. 2A shows an example in which the power conversion device 100 has two semiconductor devices 10 and these are mounted on the circuit board 20, but the number of semiconductor devices 10 is not limited to two. Any number can be used.
  • the semiconductor device 10 In the power conversion device 100, the semiconductor device 10 generates heat due to the switching of a large current in the semiconductor element 11, and the circuit board 20, the bus bar, the capacitor, etc. also flow to each due to the loss due to the electrical resistance component of each material. Heat is generated in proportion to the product of the square of the current. Cooler 41 cools these heat-generating components.
  • a power conversion device 100 equipped with such a structure is installed in HEVs and EVs.
  • HEVs which run by assisting the driving force of the motor with the driving force of the engine
  • EVs run only by the driving force of the motor, which is purely electric power, so that the power conversion device 100 can handle a larger amount of electric power. is required.
  • the loss increases in proportion to the square of the current, and the amount of heat generated increases. need to lower.
  • the volume and weight of the power conversion device 100 are increased, causing an increase in size.
  • EVs are required to increase the capacity of the battery to be installed because of the problem of increasing the cruising distance, and accordingly, the power conversion device 100 is required to be smaller and lighter.
  • Heat spreaders 12 and 13 are bonded to both surfaces of semiconductor element 11 via solder (not shown), and wires 14 are used to electrically connect (control terminals of) semiconductor element 11 and external terminals 15 .
  • the heat spreaders 12 and 13 are exposed on the opposite side to the surface joined to the semiconductor element 11, and the external terminals 15 are partly exposed. Seal with a transfer mold according to 16.
  • the semiconductor device 10 is electrically connected by bonding heat spreaders 12 and 13 to both surfaces of a semiconductor element 11, and is provided with external terminals 15 for electrically connecting the semiconductor element 11 to a circuit board 20.
  • the other surface of the heat spreader 12 that is not bonded to the semiconductor element 11 is connected to the bottom surface of the recess 24 provided in the circuit board 20, and the other surface of the heat spreader 13 that is not bonded to the semiconductor element 11 is a cooler. 41 is connected.
  • the semiconductor element 11 is, for example, an IGBT, and the heat spreader 12 connected to the collector electrode side is joined to the bottom surface of the recess 24 .
  • the first metal bonding material 31 is arranged on the first conductor layer 25 provided on the bottom surface of the recess 24 .
  • the first metal bonding material 31 is, for example, a solder sheet.
  • the second conductor layer 26, which is a board wiring layer one step higher than the first conductor layer 25 toward the upper side of the paper surface and is partly exposed at the step provided in the recess 24, is coated with the second metal.
  • a bonding material 32 is applied and arranged.
  • the second metal bonding material is, for example, solder paste.
  • the first conductor layer 25 is more efficient.
  • the heat from the semiconductor element 11 can be spread evenly, and the heat dissipation performance can be improved.
  • the first metal bonding material 31 and the second metal bonding material 32 are coated and arranged with the same solder material. may be used.
  • the semiconductor device 10 is mounted in the recess 24 so that the external terminals 15 are connected to the second conductor layer 26 .
  • a reflow device (not shown)
  • the first conductor layer 25 is bonded to the heat spreader 12, and the second conductor layer is formed. 26 joins with the external terminal 15 .
  • the semiconductor device 10 is fixed to the recess 24 .
  • the gap between the semiconductor device 10 fixed by the reflow device and the concave portion 24 is filled with the resin filler 33 and cured at a predetermined temperature. By doing so, high insulation reliability can be obtained even when a high voltage is applied.
  • the cooler 41 presses the semiconductor device 10 from above and below, and an insulating layer 43 made of a mixture of an inorganic filler and an epoxy resin and made of a mixture of an inorganic filler and an epoxy resin, which is an insulating sheet having high thermal conductivity, is attached to the pressure contact surface. . Furthermore, an electrically insulating heat radiating material 44 is applied on the insulating layer 43 .
  • a ceramic plate such as aluminum nitride or silicon nitride may be used for the insulating layer 43 instead of the high thermal conductive resin sheet.
  • the cooler 41 is pressed against the semiconductor device 10 installed in the recess 24 of the circuit board 20 from the opening side of the recess 24 via the insulating layer 43 and the electrically insulating heat dissipation material 44 .
  • the cooler 41 is also press-contacted from the outer surface of the bottom surface of the recess 24 , and the double-sided cooler 41 improves the heat dissipation of the semiconductor device 10 .
  • heat generated in the semiconductor element 11 is transferred through the heat spreaders 12 and 13 bonded to the semiconductor element 11 to a metal layer having a lower thermal resistance than the insulating resin 16 and the insulating layer 21 of the circuit board 20 . It is transmitted to the first conductor layer 25 forming the bottom surface of the recess 24 of the circuit board 20 via the bonding materials 31 and 32 .
  • the heat that has reached the first conductor layer 25 is pressure-contacted through an insulating layer 43 different from the insulating layer 21 of the circuit board 20 from the surface of the circuit board 20 on the outer side of the surface where the recess 24 is formed. Since the heat is radiated to the cooler 41, the heat radiation performance of the semiconductor device 10 is improved.
  • the metal bonding material 31 is provided to absorb the tilt and maintain the reliability of the device 10 without lowering the heat dissipation performance. ing. It also prevents unnecessary enlargement and contributes to miniaturization of the device.
  • the heat spreader 12 is bonded to the first conductor layer 25 via the first metal bonding material 31 , only the external terminals 15 of the semiconductor device 10 and the second conductor layer 26 of the circuit board 20 are metallized.
  • the bonding area between the semiconductor device 10 and the circuit board 20 can be increased compared to the case where they are bonded, and vibration resistance and connection reliability are improved.
  • the recess 24 is provided in the circuit board 20 including the semiconductor device 10, so that the entire board may warp and cause a defect. Therefore, the first conductor layer 25 of the circuit board 20 is made of thick copper, and accordingly, the conductor layer on the opposite side of the circuit board 20 is also made of thick copper circuit conductor 27 . By doing so, the warping of the circuit board 20 and the semiconductor device 10 as a whole can be reduced, and the heat dissipation can be improved without impairing the reliability of the device. In this configuration, both the first conductor layer 25 and the thick copper circuit conductor 27 have a thickness of 1 mm.
  • FIG. 5(a) a multilayer printed circuit board having four conductor layers 22 on a circuit board 20 is prepared. Since the electric current handled by the power converter is several 100 A (amperes), the conductor layer 22 of the circuit board 20 is made of a copper foil of 500 ⁇ m, which is thicker than the copper foil commonly used in electronic equipment. Also, the insulating layer 21 of the circuit board 20 uses a glass fiber reinforced epoxy resin base material. Each conductor layer 22 of the circuit board 20 is formed by etching a copper foil in advance so as to form the circuit of the power converter.
  • a recess 24a is formed by counterbore processing a portion of the circuit board 20 where the semiconductor device is to be arranged, until the surface of the third conductor layer (the above-described second conductor layer 26) can be seen. formed.
  • the recess 24a formed in FIG. A concave portion 24b is similarly formed by counterbore processing up to a position where the conductor layer 25) can be seen. Thereby, the recess 24 is formed in the circuit board 20 .
  • Circuit board 20 is manufactured by a method different from that described in FIG. First, as shown in FIG. 6A, a multilayer printed circuit board having four conductor layers 22 is prepared as the circuit board 20 .
  • the current to be handled, the material of the conductor layer, the material of the insulating layer, and the formation of the conductor layer of the circuit board 20 are the same as in FIG.
  • a concave portion 24a is formed by spot-facing the portion of the circuit board 20 where the semiconductor device 10 is arranged, until the surface of the third conductor layer (second conductor layer 26) can be seen from the top. bottom.
  • a recess 24b is formed by leaving a part of the second conductor layer 26 exposed and opening the circuit board 20 therethrough.
  • a 1 mm thick copper plate different from the copper foil of the conductor layer 22 of the circuit board 20 is applied to the recess 24b penetrated in FIG. 6(c) using an adhesive 28. By bonding to the bottom side of 24b, the first conductor layer 25 was formed and the recess 24 of the circuit board 20 was completed.
  • the first conductor layer 25 is one of the first conductor layers 25 from the viewpoint of achieving both the heat dissipation of the semiconductor device 10 and the reduction in inductance due to the second conductor layer 26 and the external terminal 15 being joined at close positions.
  • the second conductor layer 26 overlaps the circuit board 20 in the thickness direction.
  • the thickness of the first conductor layer 25 is not affected by restrictions on the manufacturing of the circuit board 20, so that a thicker conductor layer 25 can be formed according to requirements, improving the heat dissipation performance. can be made
  • the power conversion device 100 has a semiconductor element 11, two heat spreaders 12 and 13 joined to both surfaces of the semiconductor element 11 on one side thereof, and an external terminal 15.
  • the semiconductor device 10 is sealed with an insulating resin 16 so that the other surfaces of the heat spreaders 12 and 13 and part of the external terminals 15 are exposed, and the semiconductor device 10 is mounted, and has a first insulating layer 21.
  • a circuit board 20 and a cooler for cooling the semiconductor device 10 were provided.
  • the circuit board 20 is arranged in a recess 24 in which the semiconductor device 10 is installed, a first conductor layer 25 forming the bottom surface of the recess 24 , and a layer different from the first conductor layer 25 . and a second conductor layer 26 that is at least partially exposed.
  • One heat spreader 12 of the two heat spreaders 12 and 13 is in contact with the bottom surface of the recess 24 on the other surface and is bonded to the first conductor layer 25 via the first metal bonding material 31, and the external terminal 15 is
  • the other heat spreader 13 of the two heat spreaders 12 and 13 is joined to the second conductor layer 26 via the second metal joining material 32, and the other heat spreader 13 has a second insulating layer 21 different from the first insulating layer 21 on the other surface.
  • a cooler 41 is pressure-welded through an insulating layer 43 .
  • the first conductor layer 25 is formed so as to partially overlap the second conductor layer 26 in the thickness direction of the circuit board 20 . By doing so, it is possible to achieve both the heat dissipation performance of the power converter 100 and the reduction in inductance.
  • the first conductor layer 25 has a larger outer shape than the other surface of the heat spreader 12 exposed from the insulating resin 16 . By doing so, the heat dissipation performance of the power converter 100 can be improved.
  • An insulating resin filler 33 is filled between the recess 24 and the semiconductor device 10 .
  • the first metal bonding material 31 and the second metal bonding material 32 have the same composition. By doing so, the productivity of the power converter 100 can be improved.
  • the semiconductor element 11 is an IGBT, and the heat spreader 12 on the collector electrode side of the IGBT is joined to the bottom surface of the recess 24 . By doing so, the heat dissipation of the power conversion device 100 using IGBTs can be improved.
  • the circuit board 20 having a plurality of conductor layers 22 is prepared, the circuit board 20 is opened up to the surface of the certain conductor layer 22, and the circuit board is opened from the inner peripheral side of the surface of the certain conductor layer 22.
  • a manufacturing method is adopted in which an opening is formed in the circuit board 20 by counterbore processing so as to penetrate to the opposite side of the circuit board 20, and a recess 24 is formed in the circuit board 20 by bonding a copper plate to the opening.
  • the conductor layer 25 can be formed thicker according to the demand, and the heat radiation performance can be improved, because it is not influenced by the manufacturing restrictions of the circuit board 20 .
  • the present invention is not limited to the above embodiments, and various modifications and other configurations can be combined without departing from the scope of the invention. Moreover, the present invention is not limited to those having all the configurations described in the above embodiments, and includes those having some of the configurations omitted.

Abstract

電力変換装置は、半導体素子と2つのヒートスプレッダと外部端子とを有した半導体装置と、第1の絶縁層を有する回路基板と、冷却器と、を備え、前記回路基板は、前記半導体装置が設置される凹部と、前記凹部の底面を形成する第1の導体層と、前記第1の導体層とは異なる層に配設されるとともに前記凹部において少なくとも一部が露出している第2の導体層と、を有し、一方の前記ヒートスプレッダは、前記凹部の底面に接し、第1の金属接合材を介して前記第1の導体層と接合され、前記外部端子は、第2の金属接合材を介して前記第2の導体層と接合され、他方の前記ヒートスプレッダは、前記第1の絶縁層とは異なる第2の絶縁層を介して前記冷却器が圧接されている。

Description

半導体装置
 本発明は、半導体装置に関する。
 パワー半導体素子を用いた電力変換装置は、民生用、自動車用、鉄道用、産業用、インフラ用などの分野に幅広く利用されている。例えば自動車用のパワー半導体素子は、モータで駆動する電気自動車(EV)や、モータ駆動とエンジン駆動を組み合わせたハイブリッドカー(HEV)などで適用されている。これらEVやHEVでは、バッテリーの直流電圧を、パワー半導体素子のスイッチングにより、擬似的な交流電圧を作りだし、高効率にモータを駆動させている。このパワー半導体素子を備えた電力変換装置では、高電圧となる回路部品をプリント基板に信頼性を損なわないように実装することが求められている。
 特許文献1では、プリント基板の厚さ方向に凹部を形成し、その凹部に高電圧となる回路部品を配置し、かつ凹部に絶縁材料が充填し、高電圧部品の絶縁性の確保と絶縁材料の塗布における部品点数及び製造工数の増大を抑制している電気装置の構成が開示されている。
特開2020-77744号公報
 電子部品を備えたパワーモジュールの発熱量が増大した場合に、冷却器に放熱する必要があるが、従来の構成において、基板に備えるパワーモジュールの設置状況によっては放熱性が下がり、装置全体の信頼性が低下する可能性がある。これを鑑みて、本発明は放熱性、耐振性、接続信頼性、絶縁信頼性を向上させた電力変換装置を提供することが目的である。
 本発明の電力変換装置は、半導体素子と、前記半導体素子の両面に対してそれぞれ一方の面側で接合される2つのヒートスプレッダと、外部端子と、を有し、2つの前記ヒートスプレッダの他方の面と前記外部端子の一部が露出されるように、絶縁樹脂で封止された半導体装置と、前記半導体装置が実装され、第1の絶縁層を有する回路基板と、前記半導体装置を冷却するための冷却器と、を備え、前記回路基板は、前記半導体装置が設置される凹部と、前記凹部の底面を形成する第1の導体層と、前記第1の導体層とは異なる層に配設されるとともに前記凹部において少なくとも一部が露出している第2の導体層と、を有し、2つの前記ヒートスプレッダのうち一方の前記ヒートスプレッダは、前記他方の面で前記凹部の底面に接し、第1の金属接合材を介して前記第1の導体層と接合され、前記外部端子は、第2の金属接合材を介して前記第2の導体層と接合され、2つの前記ヒートスプレッダのうち他方の前記ヒートスプレッダは、前記他方の面で前記第1の絶縁層とは異なる第2の絶縁層を介して前記冷却器が圧接されている。
 本発明によれば、放熱性能、耐振性、接続信頼性、絶縁信頼性を向上させた電力変換装置を提供できる。
従来の電力変換装置の断面図である。 本発明の電力変換装置の一実施の形態の断面構造を示す図である。 半導体装置の断面構造を示す図である。 本発明の電力変換装置の一実施の形態の断面構造を示す図である。 本発明の電力変換装置の一実施の形態の断面構造を示す図である。 第一導体層を形成する工程を示す回路基板の断面図である。 本発明の電力変換装置の一実施の形態に係る、第一導体層を形成する工程を示す回路基板の断面図である。
 以下、図面を参照して本発明の実施形態を説明する。以下の記載および図面は、本発明を説明するための例示であって、説明の明確化のため、適宜、省略および簡略化がなされている。本発明は、他の種々の形態でも実施する事が可能である。特に限定しない限り、各構成要素は単数でも複数でも構わない。
 図面において示す各構成要素の位置、大きさ、形状、範囲などは、発明の理解を容易にするため、実際の位置、大きさ、形状、範囲などを表していない場合がある。このため、本発明は、必ずしも、図面に開示された位置、大きさ、形状、範囲などに限定されない。
(従来の構成)
(図1)
 電力変換装置に備える電子部品10は、回路基板20の回路導体22と接続するための外部端子15を有している。回路基板20は、回路導体22を含む回路パターンを保護するために、絶縁膜であるソルダーレジスト23が表面全体に設けられている。
 電子部品10は例えばパワー半導体素子(以下、半導体素子)を備えたパワーモジュール(半導体装置)などの精密機器であった場合に、回路基板20においては絶縁性の樹脂で保護する必要がある。そのため、回路基板20に凹部24を形成し、その凹部24の内部に電子部品10を配置し、凹部24と電子部品10との間に絶縁性の樹脂充填材33を充填させる。また、凹部24の底面(回路基板20の絶縁層21)を間にして反対側に水路42を有する冷却器41を配置する。このようにすることで、電子部品10の安定性と放熱性とを両立させた電力変換装置が実現し、信頼性が向上する。
 しかしながら、例えば、パワーモジュールは凹部24への配置の際に、接合に用いるはんだペーストが一定ではない場合、回路基板20に対してずれて設置されたり、傾いて設置されたりすることで、電気的接続や安定性に対して信頼性が維持できなくなる可能性がある。
(本発明の一実施形態に係る電力変換装置)
(図2A,図2B)
 電力変換装置の基本構造について説明する。電力変換装置100は、IGBT(Insulated Gate Bipolar Transistor)等の半導体素子11を含んで構成されたパワーモジュール(半導体装置10)、プリント回路基板20、冷却器41、バスバ、キャパシタ等(図示なし)で構成されている。なお図2Aでは、電力変換装置100が2つの半導体装置10を有し、これらが回路基板20上に搭載されている例を示しているが、半導体装置10の個数は2つに限定されず、任意の個数とすることができる。電力変換装置100において、半導体素子11での大電流のスイッチングで半導体装置10は発熱し、また、回路基板20、バスバ、キャパシタ等も、各材料の電気的な抵抗成分による損失で、それぞれに流れる電流の二乗の積に比例して発熱する。冷却器41は、これらの発熱部品を冷却している。
 このような構造を搭載した電力変換装置100は、HEVやEVに搭載される。エンジンの駆動力にモータの駆動力を補助して走行するHEVに対し、EVでは純粋に電気の力であるモータの駆動力のみで走行するため、電力変換装置100にはより大きな電力が扱えることが求められている。電流を大きくする場合には、電流の二乗に比例して損失が増加し発熱量が増大するため、発熱を低減するためには、電力変換装置100に使用される導体量を増やし、導体抵抗を下げる必要がある。結果として、電力変換装置100の体積と重量が大きくなり、大型化の原因になる。また、EVでは航続距離の拡大が課題になっている理由で、搭載するバッテリーの容量を大きくする必要があり、これに伴い、電力変換装置100の小型軽量化が求められている。
 半導体装置10について説明する。半導体素子11の両面にヒートスプレッダ12,13をはんだ(図示なし)を介して接合し、半導体素子11(の制御端子)と外部端子15との間を、ワイヤ14を用いて電気的に接合する。ヒートスプレッダ12,13は半導体素子11と接合されている面とは反対側の面が露出されている状態で、かつ外部端子15はその一部が露出されている状態で、半導体装置10を絶縁樹脂16によるトランスファーモールドで封止する。
 半導体装置10は、半導体素子11の両面にヒートスプレッダ12,13が接合されることで電気的に接続され、また、半導体素子11を回路基板20と電気的に接続するための外部端子15を備えている。また、ヒートスプレッダ12は、半導体素子11と接合されていない他方の面で回路基板20に設けられた凹部24の底面と接続され、ヒートスプレッダ13は半導体素子11と接合されていない他方の面で冷却器41と接続されている。なお、半導体素子11は例えばIGBTであり、コレクタ電極側に接続されるヒートスプレッダ12が凹部24の底面に接合される。
 半導体装置10が配置される回路基板20は、凹部24の底面に設けられている第1の導体層25に、第1の金属接合材31が配置されている。第1の金属接合材31は、例えばはんだシートである。また、第1の導体層25から紙面上方側に一段高い基板配線層であり、かつ凹部24に設けられた段差において一部が露出している第2の導体層26には、第2の金属接合材32が塗布配置されている。第2の金属接合材は、例えばはんだペーストである。これにより、半導体装置10の外部端子15を屈曲させることなく、短い距離で回路基板20の第2の導体層26に接合できるため、主回路インダクタンスを低減できる。
 また、第1の導体層25の外形は、第1の金属接合材31を介して接合される半導体装置100のヒートスプレッダ12の外形よりも大きくすることで、第1の導体層25でより効率的に半導体素子11からの熱を広げられ、放熱性能が向上できる。
 なお、第1の金属接合材31と第2の金属接合材32は、同じはんだ材料により塗布配置されているが、電気的接続および半導体装置100の安定性に問題がなければ、それぞれ別の材料を用いてもよい。
 半導体装置10は、外部端子15が第2の導体層26に接続されるように凹部24に搭載される。リフロー装置(図示なし)により、第1の金属接合材31と第2の金属接合材32それぞれを溶融、固化することで、第1の導体層25がヒートスプレッダ12と接合し、第2の導体層26が外部端子15と接合する。これにより、凹部24に半導体装置10が固定される。リフロー装置で固定された半導体装置10と凹部24との隙間を、樹脂充填材33で充填させ、所定の温度で硬化させる。このようにすることで、高電圧が印加された場合においても高い絶縁信頼性が得られる。
 冷却器41は、半導体装置10を上下両方向から圧接するが、その圧接面には、無機フィラーとエポキシ樹脂の混合物でできた、熱伝導率の高い高熱伝導絶縁シートである絶縁層43が貼付けられる。さらに、この絶縁層43上には、電気絶縁性放熱材44が塗布される。なお、絶縁層43には、高熱伝導樹脂シートではなく、窒化アルミニウムや窒化ケイ素などのセラミック板を用いてもよい。
 冷却器41は、回路基板20の凹部24に設置された半導体装置10に対して、凹部24の開口側から絶縁層43と電気絶縁性放熱材44とを介して圧接される。一方で、冷却器41は、凹部24の底面の外部側の面からも圧接され、両面冷却の冷却器41により、半導体装置10の放熱を向上させている。
 このような構成にすることで、半導体素子11で発生した熱は、半導体素子11に接合されるヒートスプレッダ12,13を介し、絶縁樹脂16や回路基板20の絶縁層21よりも熱抵抗の低い金属接合材31,32を介して、回路基板20の凹部24の底面を形成する第1導体層25に伝達される。第1導体層25に達した熱は、回路基板20の凹部24が形成されている面の外部側の面から、回路基板20の絶縁層21とは異なる絶縁層43を介して圧接されている冷却器41に放熱されるため、半導体装置10の放熱性能が向上する。また、図3で後述するが半導体装置10の設置時に傾いた場合、金属接合材31が設けられていることで、傾きを吸収し、放熱性能を低下させずに装置10の信頼性を維持させている。また、不必要な大型化を防ぎ、装置の小型化にも貢献している。
 また、ヒートスプレッダ12は、第1の導体層25と第1の金属接合材31を介して接合されているため、半導体装置10の外部端子15と回路基板20の第2の導体層26のみで金属接合されている場合よりも、半導体装置10と回路基板20との接合面積を拡大でき、耐振性、接続信頼性を向上させている。
(図3)
 電力変換装置100において、半導体装置10が回路基板20に対して傾いて実装されてしまった場合であっても、半導体装置10の傾きを第1の金属接合材31が吸収するため、半導体装置10の信頼性を維持することができる。
(図4)
 電力変換装置100において、半導体装置10を備える回路基板20は凹部24を設けることで、基板全体の反りが発生し不良を起こす可能性が生じる。そのため、回路基板20が有する第1の導体層25を厚銅にし、それに伴い、回路基板20の反対側の導体層も厚銅回路導体27にした。このようにすることで、回路基板20と半導体装置10全体の反りを低減し、装置の信頼性を損なわず放熱性も向上させることができる。なお、本構成では、第1の導体層25と厚銅回路導体27とはともに1mmの厚さとした。
(基板の製造方法)
(図5)
 まず、図5(a)のように、回路基板20には導体層22が4層設けられている多層プリント基板を準備する。なお、電力変換装置で取り扱う電流は数100A(アンペア)であるため、回路基板20の導体層22には銅箔500μmと、一般的で電子機器で使用されている銅箔より厚い材質とした。また、回路基板20の絶縁層21にはガラス繊維強化エポキシ樹脂基材を使用している。回路基板20の各導体層22は、電力変換装置の回路となるように、予め銅箔をエッチングで形成してある。
 次に図5(b)において、回路基板20において半導体装置が配置される箇所をザグリ加工によって、上から3層目の導体層表面(前述の第2の導体層26)が見える位置まで凹部24aを形成した。
 図5(c)では、図5(b)で形成した凹部24aに対し、第2の導体層26の一部の露出箇所を残して、さらに上から4層目の導体層表面(第1の導体層25)が見える位置まで、同様にザグリ加工で凹部24bを形成する。これにより、回路基板20に凹部24が形成される。
(図6)
 図4で説明した厚銅である第1の導体層25を設ける回路基板20の製造方法について説明する。回路基板20は図5で説明した方法とは異なる方法で製造される。まず、図6(a)のように回路基板20として、導体層22を4層有する多層プリント基板を準備する。なお、取り扱う電流、導体層の材質、絶縁層の材質、回路基板20の導体層の形成については、図5と同様である。
 次に図6(b)では、回路基板20の半導体装置10が配置される箇所をザグリ加工で上から3層目の導体層表面(第2の導体層26)が見える位置まで凹部24aを形成した。図6(c)では、第2の導体層26の一部露出箇所を残し、かつ回路基板20が貫通するように開口させた凹部24bを形成した。図6(d)では、図6(c)で貫通させた凹部24bに、回路基板20の導体層22の銅箔とは異なる1mm厚の銅板を、接着剤28を用いて回路基板20の凹部24bの底面側に接合することで、第1の導体層25を形成し回路基板20の凹部24を完成させた。なお、第1の導体層25は、半導体装置10の放熱性と、第2の導体層26と外部端子15とが近い位置で接合されることによるインダクタンス低減と、を両立させる観点から、その一部が第2の導体層26と回路基板20の厚さ方向において重なるように形成されている。
 このようにすることで、第1の導体層25の厚さについて回路基板20の製造上の制約に左右されないので、要求に応じてより厚い導体層25を形成することができ、放熱性能を向上させることができる。
 以上説明した本発明の一実施形態によれば、以下の作用効果を奏する。
(1)電力変換装置100は、半導体素子11と、半導体素子11の両面に対してそれぞれ一方の面側で接合される2つのヒートスプレッダ12,13と、外部端子15と、を有し、2つのヒートスプレッダ12,13の他方の面と外部端子15の一部が露出されるように、絶縁樹脂16で封止された半導体装置10と、半導体装置10が実装され、第1の絶縁層21を有する回路基板20と、半導体装置10を冷却するための冷却器と、を備えた。回路基板20は、半導体装置10が設置される凹部24と、凹部24の底面を形成する第1の導体層25と、第1の導体層25とは異なる層に配設されるとともに凹部24において少なくとも一部が露出している第2の導体層26と、を有している。2つのヒートスプレッダ12,13のうち一方のヒートスプレッダ12は、他方の面で凹部24の底面に接し、第1の金属接合材31を介して第1の導体層25と接合され、外部端子15は、第2の金属接合材32を介して第2の導体層26と接合され、2つのヒートスプレッダ12,13のうち他方のヒートスプレッダ13は、他方の面で第1の絶縁層21とは異なる第2の絶縁層43を介して冷却器41が圧接されている。このようにしたことで、放熱性能、耐振性、接続信頼性、絶縁信頼性を向上させた電力変換装置100を提供できる。
(2)第1の導体層25は、その一部が第2の導体層26と回路基板20の厚さ方向において重なるように形成されている。このようにしたことで、電力変換装置100の放熱性とインダクタンス低減とを両立できる。
(3)第1の導体層25は、絶縁樹脂16から露出するヒートスプレッダ12の他方の面の外形よりも大きい外形である。このようにしたことで、電力変換装置100の放熱性能を向上させることができる。
(4)凹部24と半導体装置10との間には、絶縁性の樹脂充填材33が充填されている。このようにしたことで、電力変換装置100は、高電圧が印加された場合においても高い絶縁信頼性が得られる。
(5)第1の金属接合材31および第2の金属接合材32は、同一の組成である。このようにしたことで、電力変換装置100の生産性を向上させることができる。
(6)半導体素子11はIGBTであり、IGBTのコレクタ電極側のヒートスプレッダ12が凹部24の底面に接合される。このようにしたことで、IGBTを利用した電力変換装置100の放熱性を向上させることができる。
(7)回路基板20は、導体層22を複数有する回路基板20を準備し、回路基板20を一定の導体層22の表面まで開口させ、一定の導体層22の表面の内周側から回路基板20の反対側まで貫通するようにザグリ加工することで、回路基板20に開口部を形成し、開口部に銅板を接合することで、回路基板20に凹部24を形成する製造方法を採用する。このようにしたことで、回路基板20の製造上の制約に左右されないので、要求に応じてより厚い導体層25を形成することができ、放熱性能を向上させることができる。
 なお、本発明は上記の実施形態に限定されるものではなく、その要旨を逸脱しない範囲内で様々な変形や他の構成を組み合わせることができる。また本発明は、上記の実施形態で説明した全ての構成を備えるものに限定されず、その構成の一部を削除したものも含まれる。
10:電子部品(半導体装置)
11:パワー半導体素子
12:ヒートスプレッダ(IGBTのコレクタ側)
13:ヒートスプレッダ(IGBTのエミッタ側)
14:ワイヤ
15:外部端子
16:絶縁樹脂
20:回路基板
21:回路基板の絶縁層
22:回路基板の回路導体
23:ソルダーレジスト
24:回路基板の凹部
 24a:第1の凹部
 24b:第2の凹部
25:第1の導体層
26:第2の導体層
27:厚銅回路導体
28:接着剤
31:第1の金属接合材
32:第2の金属接合材
33:樹脂充填材
41:冷却器
42:冷却器の水路
43:冷却器の絶縁層
44:電気絶縁性放熱材
100:電力変換装置

Claims (7)

  1.  半導体素子と、前記半導体素子の両面に対してそれぞれ一方の面側で接合される2つのヒートスプレッダと、外部端子と、を有し、2つの前記ヒートスプレッダの他方の面と前記外部端子の一部が露出されるように、絶縁樹脂で封止された半導体装置と、
     前記半導体装置が実装され、第1の絶縁層を有する回路基板と、
     前記半導体装置を冷却するための冷却器と、を備え、
     前記回路基板は、前記半導体装置が設置される凹部と、前記凹部の底面を形成する第1の導体層と、前記第1の導体層とは異なる層に配設されるとともに前記凹部において少なくとも一部が露出している第2の導体層と、を有し、
     2つの前記ヒートスプレッダのうち一方の前記ヒートスプレッダは、前記他方の面で前記凹部の底面に接し、第1の金属接合材を介して前記第1の導体層と接合され、
     前記外部端子は、第2の金属接合材を介して前記第2の導体層と接合され、
     2つの前記ヒートスプレッダのうち他方の前記ヒートスプレッダは、前記他方の面で前記第1の絶縁層とは異なる第2の絶縁層を介して前記冷却器が圧接されている
     電力変換装置。
  2.  請求項1に記載された電力変換装置であって、
     前記第1の導体層は、その一部が前記第2の導体層と前記回路基板の厚さ方向において重なるように形成されている
     電力変換装置。
  3.  請求項1に記載された電力変換装置であって、
     前記第1の導体層は、前記絶縁樹脂から露出する前記ヒートスプレッダの前記他方の面の外形よりも大きい外形である
     電力変換装置。
  4.  請求項1に記載された電力変換装置であって、
     前記凹部と前記半導体装置との間には、絶縁性の樹脂充填材が充填されている
     電力変換装置。
  5.  請求項1に記載された電力変換装置であって、
     前記第1の金属接合材および前記第2の金属接合材は、同一の組成である
     電力変換装置。
  6.  請求項1乃至5のいずれか一項に記載された電力変換装置であって、
     前記半導体素子はIGBTであり、前記IGBTのコレクタ電極側の前記ヒートスプレッダが前記凹部の底面に接合される
     電力変換装置。
  7.  導体層を複数有する回路基板を準備し、
     前記回路基板を一定の導体層表面まで開口させ、前記一定の導体層表面の内周側から前記回路基板の反対側まで貫通するようにザグリ加工することで、前記回路基板に開口部を形成し、前記開口部に銅板を接合することで、前記回路基板に凹部を形成する
     回路基板の製造方法。
PCT/JP2022/048392 2022-02-02 2022-12-27 半導体装置 WO2023149144A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022015058A JP2023112990A (ja) 2022-02-02 2022-02-02 半導体装置
JP2022-015058 2022-02-02

Publications (1)

Publication Number Publication Date
WO2023149144A1 true WO2023149144A1 (ja) 2023-08-10

Family

ID=87552232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/048392 WO2023149144A1 (ja) 2022-02-02 2022-12-27 半導体装置

Country Status (2)

Country Link
JP (1) JP2023112990A (ja)
WO (1) WO2023149144A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH098175A (ja) * 1995-06-14 1997-01-10 Fuji Kiko Denshi Kk 多層プリント基板のボンディング用棚形成方法
JP2011224790A (ja) * 2010-04-15 2011-11-10 Panasonic Corp マスクのクリーニング装置、半田印刷機及びマスクのクリーニング方法
JP2012151342A (ja) * 2011-01-20 2012-08-09 Aisin Aw Co Ltd 半導体装置
JP2019170109A (ja) * 2018-03-26 2019-10-03 株式会社Soken 電動機駆動システム
WO2020240699A1 (ja) * 2019-05-28 2020-12-03 三菱電機株式会社 半導体モジュール、半導体モジュールの製造方法および電力変換装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH098175A (ja) * 1995-06-14 1997-01-10 Fuji Kiko Denshi Kk 多層プリント基板のボンディング用棚形成方法
JP2011224790A (ja) * 2010-04-15 2011-11-10 Panasonic Corp マスクのクリーニング装置、半田印刷機及びマスクのクリーニング方法
JP2012151342A (ja) * 2011-01-20 2012-08-09 Aisin Aw Co Ltd 半導体装置
JP2019170109A (ja) * 2018-03-26 2019-10-03 株式会社Soken 電動機駆動システム
WO2020240699A1 (ja) * 2019-05-28 2020-12-03 三菱電機株式会社 半導体モジュール、半導体モジュールの製造方法および電力変換装置

Also Published As

Publication number Publication date
JP2023112990A (ja) 2023-08-15

Similar Documents

Publication Publication Date Title
US8610263B2 (en) Semiconductor device module
JP2000164800A (ja) 半導体モジュール
US20070257343A1 (en) Die-on-leadframe (dol) with high voltage isolation
US9437508B2 (en) Method for manufacturing semiconductor device and semiconductor device
JP3780230B2 (ja) 半導体モジュール及び電力変換装置
CN113039636A (zh) 功率半导体装置
JP2002314038A (ja) パワー半導体モジュール
CN111276447A (zh) 双侧冷却功率模块及其制造方法
JP3673776B2 (ja) 半導体モジュール及び電力変換装置
JP7176397B2 (ja) 半導体装置とその製造方法
WO2020174584A1 (ja) 半導体装置、半導体装置の製造方法および電力変換装置
WO2012046578A1 (ja) 半導体装置及び半導体装置の生産方法
WO2023149144A1 (ja) 半導体装置
JP2011023748A (ja) 電子機器装置
US11735557B2 (en) Power module of double-faced cooling
JP7059714B2 (ja) 電力変換装置及び電力変換装置の製造方法
JP7290420B2 (ja) パワー半導体装置
JP4961314B2 (ja) パワー半導体装置
WO2023100980A1 (ja) 半導体モジュール、電力変換装置および電力変換装置の製造方法
JP6447914B2 (ja) パワーモジュールの直流側配線基板及びその製造方法
JP2010239033A (ja) 半導体装置及びその製造方法
WO2024024067A1 (ja) 電力変換装置、電力変換装置の製造方法
JP7428679B2 (ja) パワー半導体装置および電力変換装置
CN219476670U (zh) 功率芯片模块
JP7019024B2 (ja) 半導体装置及び電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22925046

Country of ref document: EP

Kind code of ref document: A1