WO2023149140A1 - シール構造及び排熱回収ボイラ並びに排ガスのシール方法 - Google Patents

シール構造及び排熱回収ボイラ並びに排ガスのシール方法 Download PDF

Info

Publication number
WO2023149140A1
WO2023149140A1 PCT/JP2022/048231 JP2022048231W WO2023149140A1 WO 2023149140 A1 WO2023149140 A1 WO 2023149140A1 JP 2022048231 W JP2022048231 W JP 2022048231W WO 2023149140 A1 WO2023149140 A1 WO 2023149140A1
Authority
WO
WIPO (PCT)
Prior art keywords
duct
catalyst
seal portion
seal
exhaust gas
Prior art date
Application number
PCT/JP2022/048231
Other languages
English (en)
French (fr)
Inventor
剛 平井
剛 山口
Original Assignee
三菱重工業株式会社
三菱パワー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社, 三菱パワー株式会社 filed Critical 三菱重工業株式会社
Priority to CN202280090673.3A priority Critical patent/CN118661060A/zh
Publication of WO2023149140A1 publication Critical patent/WO2023149140A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/88Handling or mounting catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J13/00Fittings for chimneys or flues 
    • F23J13/02Linings; Jackets; Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes

Definitions

  • the present disclosure relates to a seal structure, an exhaust heat recovery boiler, and a method of sealing exhaust gas.
  • HRSG heat recovery steam generator
  • exhaust gas discharged from a gas turbine or the like passes through a duct, and heat is exchanged between the exhaust gas and water or steam in heat transfer tubes to generate steam.
  • a plurality of heat exchangers having a large number of heat transfer tubes through which water and steam flow, a denitrification device for removing nitrogen oxides (NOx) in exhaust gas, and the like are installed.
  • NOx nitrogen oxides
  • a gap is formed between the denitration equipment and the duct that houses the denitration equipment.
  • a short pass of exhaust gas exhaust gas flowing to the downstream side of the denitration device without passing through the denitration device
  • a sealing structure is provided in the gap in order to suppress the short pass of the exhaust gas (for example, Patent Document 1).
  • Patent Document 1 discloses an exhaust heat recovery boiler in which a lower heat transfer tube group, a denitration device (catalyst), and an upper heat transfer tube group are arranged at predetermined intervals from bottom to top inside a casing. Further, in this device, an elastically deformable sealing member is interposed between the inner surface of the casing and the denitrification device. The sealing member connects a horizontal flange fixed over the entire circumference of the inner wall surface of the casing and a mounting flange fixed over the entire circumference of the lower outer peripheral portion of the frame.
  • a heat insulating material is provided on the outer peripheral surface or the inner peripheral surface of the casing so that the heat of the exhaust gas does not move to the outside.
  • the heat insulating material is attached to the inner peripheral surface of the casing (hereinafter referred to as "internal heat insulation type")
  • the temperature difference and the thermal expansion difference between the casing and the denitrification device become large. Therefore, the gap formed between the casing and the denitrification device also increases. In this way, a gap is formed between the casing and the denitrification device in both cases of applying the external heat insulation type and the case of applying the internal heat insulation type, but the gap is formed between the casing and the denitrification device when the internal heat insulation type is applied.
  • the gap formed between the casing and the denitrification device tends to increase, the amount of exhaust gas that short-passes tends to increase.
  • the duct and the denitrification apparatus thermally expand in the vertical direction with the load support point as the base point, and expand in the horizontal direction. Heat expands evenly around the central axis of the duct. Therefore, the gap formed between the casing and the denitrification device is substantially uniform over the entire circumference.
  • the duct and the denitrification device thermally expand from the bottom, which is the load-supporting point, in the direction of expansion, so the difference in displacement between the bottom and the ceiling is large. .
  • the gap formed between the casing and the denitration device is not substantially uniform over the entire circumference.
  • the seal structure described in Patent Document 1 is fixed to the duct and the denitrification device. For this reason, when the seal structure described in Patent Document 1 is applied to a lateral flow type duct, the amount of deformation of the seal member varies due to the difference in displacement between the vicinity of the bottom surface and the vicinity of the ceiling. The sealing member is easily deteriorated or damaged. When the seal member is deteriorated or damaged, the sealing performance is deteriorated at the deteriorated or damaged portion, and the exhaust gas may be short-passed, which may increase the amount of short-passed exhaust gas.
  • the present disclosure has been made in view of such circumstances, and provides a seal structure, an exhaust heat recovery boiler, and an exhaust gas seal that can reduce the amount of non-denitrified exhaust gas flowing downstream of a denitrification device.
  • the purpose is to provide a method.
  • the present invention provides a sealing structure, an exhaust heat recovery boiler, and an exhaust gas sealing method that can effectively reduce the amount of exhaust gas that has not been denitrified and flows downstream of a denitrification device in the case of an internal heat insulation type or a horizontal flow method. for the purpose.
  • a seal structure according to an aspect of the present disclosure is a seal structure that seals a gap formed between a duct through which exhaust gas flows and a denitrification device arranged in the duct, wherein the duct a duct-side seal portion that is fixed and arranged in the gap; a denitration-device-side seal portion that is fixed to the denitrification device, is arranged in the gap, and abuts or is adjacent to the duct-side seal portion; a first catalyst seal fixed to the device, disposed in the gap, and pushing the duct-side seal toward the denitrification device-side seal, wherein the first catalyst seal is a denitration catalyst; formed.
  • An exhaust gas sealing method uses a seal structure for sealing a gap formed between a duct through which exhaust gas flows and a denitrification device arranged in the duct.
  • the seal structure includes a duct-side seal portion fixed to the duct and arranged in the gap, and a duct-side seal portion fixed to the denitrification device and arranged in the gap.
  • a denitrification device-side seal portion that abuts or is adjacent to the denitrification device-side seal portion; wherein the first catalyst seal portion is formed of a denitration catalyst, and is formed between the duct and the denitration device by the duct side seal portion, the denitration device side seal portion, and the first catalyst seal portion seal the gap.
  • the present disclosure it is possible to reduce the amount of exhaust gas that has not been denitrified and flows downstream of the denitrification device.
  • the internal heat insulation type or the horizontal flow type it is possible to effectively reduce the amount of exhaust gas that has not been denitrified and flows downstream of the denitrification apparatus.
  • FIG. 1 is a configuration diagram showing an exhaust heat recovery boiler according to a first embodiment of the present disclosure
  • FIG. 1 is a perspective view showing a denitration device and a seal structure according to a first embodiment of the present disclosure
  • FIG. 1 is a cross-sectional view showing a seal structure according to a first embodiment of the present disclosure
  • FIG. It is a figure which shows the modification of FIG.
  • FIG. 6 is a perspective view showing a denitrification device and a seal structure according to a second embodiment of the present disclosure
  • FIG. 11 is a perspective view showing a denitrification device and a seal structure according to a third embodiment of the present disclosure
  • a sealing structure, an exhaust heat recovery boiler, and an exhaust gas sealing method according to an embodiment of the present disclosure will be described with reference to Figs. 1 to 7 .
  • the vertical direction is referred to as the Z-axis direction
  • the horizontal direction in which exhaust gas flows is referred to as the X-axis direction
  • the direction perpendicular to the X-axis direction and the Z-axis direction is referred to as the Y-axis direction.
  • an arrow E indicates the flow direction of the exhaust gas.
  • FIG. 1 A first embodiment of the present disclosure will be described below with reference to FIGS. 1 to 5.
  • FIG. 1 A first embodiment of the present disclosure will be described below with reference to FIGS. 1 to 5.
  • the heat recovery boiler 1 is a horizontal heat recovery boiler in which the exhaust gas flows horizontally.
  • the direction of flow of the exhaust gas is the horizontal direction
  • the direction perpendicular thereto is the vertical direction
  • the longitudinal direction of the heat transfer tubes is the vertical direction.
  • the heat recovery boiler 1 includes a heat exchange section 5 such as an economizer, an evaporator, or a superheater, and a denitrification section 5 in a horizontally extending duct 2.
  • a device 6 and the like are provided.
  • High-temperature flue gas (exhaust gas) discharged from a gas turbine or the like is introduced into the duct 2 from the duct inlet 3, passes through a plurality of heat exchange sections 5 in sequence, and then flows through the duct outlet 4 into a chimney (not shown). ).
  • the duct 2, as shown in FIG. 2 has a heat insulating material 7 provided over substantially the entire inner peripheral surface.
  • the heat exchange section 5 has a plurality of heat transfer tubes (not shown) extending in the vertical direction so as to intersect the flow direction of the exhaust gas.
  • a header (not shown) connecting a plurality of heat transfer tubes is provided inside the duct 2
  • a drum 9 is provided outside the duct 2 .
  • Each of the headers is connected to the drum 9 via a connecting pipe (not shown).
  • the heat exchange section 5 recovers the heat of the exhaust gas through heat exchange between the exhaust gas and a heat medium (for example, water or steam) flowing inside the heat transfer tubes.
  • the heat medium heated by the heat of the exhaust gas is led to the drum 9 via the header and the connecting pipe.
  • FIG. 1 simply referring to “center side” and “outside” means “center side” and “outside” based on the central axis of the duct 2. As shown in FIG.
  • the denitrification device 6 includes a plurality of catalyst packs 11 for removing (denitration) nitrogen oxides contained in the exhaust gas, and a support frame 12 for supporting each catalyst pack 11 from below. , a plurality of leg portions (not shown) erected on the bottom surface of the duct 2 to support the support frame 12 from below, and a wall portion 13 covering the side surface of the catalyst pack 11 in the Y-axis direction.
  • the plurality of catalyst packs 11 are arranged side by side so as to cover substantially the entire cross section of the duct 2 (the cross section formed in the Z-axis direction and the Y-axis direction).
  • a plurality of catalyst packs 11 are provided in the Z-axis direction, and a plurality of catalyst packs are provided in the Y-axis direction.
  • Each catalyst pack 11 is mounted on the upper surface of the support frame 12 .
  • Each catalyst pack 11 has, for example, a rectangular tubular rectangular frame (not shown) and a plurality of catalysts (not shown) provided inside the rectangular frame.
  • the shape of the catalyst include a honeycomb shape and a corrugated plate shape, but are not limited to these.
  • the catalyst promotes a reduction reaction of NOx (nitrogen oxides) contained in the exhaust gas (combustion gas) passing through the interior to remove at least part of NOx.
  • the components of the catalyst are based, for example, on titanium oxide.
  • the support frame 12 has a first support beam 12a extending in the Y-axis direction and a second support beam 12b extending in the X-axis direction.
  • the first support beams 12a and the second support beams 12b are long members, so-called shaped steels, having a cross section that is substantially H-shaped, substantially C-shaped, or the like when cut along a plane orthogonal to the extending direction. is.
  • the plurality of first support beams 12a are arranged side by side at predetermined intervals along the X-axis direction.
  • the plurality of second support beams 12b are arranged side by side at predetermined intervals along the Y-axis direction.
  • the support frame 12 provided at the bottom is supported from below by legs.
  • the wall portion 13 is erected on the upper surface of the support frame 12 .
  • a flange portion 13a extending in the Y-axis direction is provided at the end portion of the wall portion 13 in the X-axis direction.
  • the wall portion 13 is provided between the catalyst packs 11 arranged adjacent to each other in the Y-axis direction.
  • a wall portion 13 arranged at the end in the Y-axis direction is provided between the catalyst pack 11 and the inner peripheral surface of the duct 2 so as to face the inner peripheral surface of the duct 2 .
  • a gap G is formed between the inner peripheral surface of the duct 2 and the wall portion 13 arranged at the end in the Y-axis direction. Also, between the bottom surface of the catalyst pack 11 arranged in the lowest stage and the inner peripheral surface of the duct 2, and between the upper surface of the catalyst pack 11 arranged in the uppermost stage and the inner peripheral surface of the duct 2, A gap G is formed.
  • a gap G formed between the wall 13 arranged at the end in the Y-axis direction and the inner peripheral surface of the duct 2 is provided with a seal structure 20 for sealing the gap G so that the exhaust gas does not flow in. It is In addition, it is formed between the bottom surface of the catalyst pack 11 arranged in the lowest stage and the inner peripheral surface of the duct 2, and between the upper surface of the catalyst pack 11 arranged in the uppermost stage and the inner peripheral surface of the duct 2.
  • the gap G is also provided with a seal structure 20 that seals the gap G so that the exhaust gas does not flow.
  • the seal structure 20 includes a seal mounting bar 21 fixed to the inner peripheral surface of the duct 2 and projecting from the inner peripheral surface toward the center, and a seal mounting bar 21 at the center side end of the seal mounting bar 21. and a plurality of fixed sealing devices (duct-side seal portions) 22 .
  • the seal structure 20 includes a seal plate (denitrification apparatus side seal portion) 23 that is fixed to the wall portion 13 and/or the support frame 12 and protrudes outward from the wall portion 13 and/or the support frame 12; and a plurality of first plate-like catalysts (first catalyst seal portions) 24 fixed to the upstream surface.
  • the seal mounting bar 21 is a plate-shaped member and is fixed to substantially the entire circumference of the inner peripheral surface of the duct 2 .
  • a seal mounting bar 21 protrudes from the inner peripheral surface of the duct 2 .
  • the outer end of seal mounting bar 21 is embedded in heat insulating material 7 .
  • the central end of the seal mounting bar 21 is positioned at the gap G when viewed from the duct entrance 3 side.
  • a flange portion 21a is provided at the central end portion of the seal mounting bar 21 so as to bend and extend in the downstream direction.
  • a sealing device 22 is fixed to the center side surface of the flange portion 21a.
  • the sealing device 22 is a plate-like member fixed to the duct 2 . Specifically, the sealing device 22 is fixed to the duct 2 via a seal mounting bar 21 .
  • the sealing device 22 is an elongated member extending in the Z-axis direction or the Y-axis direction.
  • the sealing device 22 is provided at the position of the gap G when viewed from the duct inlet 3 side.
  • a plurality of sealing devices 22 extending in the Y-axis direction are arranged side by side along the Y-axis direction.
  • a plurality of sealing devices 22 extending in the Z-axis direction are arranged side by side along the Z-axis direction. Adjacent sealing devices 22 are arranged such that their longitudinal ends overlap.
  • the sealing device 22 includes a fixed portion 22a that is in surface contact with the seal mounting bar 21 via a gasket 26, and a curved portion that curves substantially perpendicularly from the downstream end of the fixed portion 22a toward the center. 22b and a contact portion 22c extending from the central end of the curved portion 22b to the central side.
  • a sealing device 22 is biased against a seal plate 23 . That is, the sealing device 22 pushes the seal plate 23 toward the downstream side by elastic force.
  • the sealing device 22 is not fixed to the seal plate 23 and the first plate-like catalyst 24 . That is, the sealing device 22 is arranged so as to be relatively movable with respect to the seal plate 23 and the first plate-like catalyst 24 .
  • the fixing portion 22a is provided at the outer edge of the sealing device 22. As shown in FIGS. The fixed portion 22a is pressed by a pressing metal fitting 27 from the center side. The fixed portion 22 a is fixed to the flange portion 21 a of the seal mounting bar 21 by a plurality of fasteners 28 . Specifically, the fixed portion 22a is fixed to the flange portion 21a by a fastener 28 penetrating through the presser fitting 27, the fixed portion 22a, and the gasket 26. As shown in FIG. Note that the fastener 28 is omitted in FIG. 2 for the sake of illustration.
  • the abutting portion 22c is provided at the end of the sealing device 22 on the central side.
  • the contact portion 22c is arranged between the seal plate 23 and the first plate-shaped catalyst 24. As shown in FIG. Specifically, the upstream surface of the contact portion 22c is in surface contact with the downstream surface of the first plate catalyst 24 . In addition, the downstream surface of the contact portion 22 c is in surface contact with the upstream surface of the seal plate 23 .
  • the seal plate 23 is a plate-like member, as shown in FIGS.
  • the center end of the seal plate 23 is fixed to the upstream surface of the flange portion 13a of the wall portion 13, the upstream surface of the second support beam 12b, and the like.
  • the seal plate 23 protrudes outward from the upstream surface of the flange portion 13a of the wall portion 13, the upstream surface of the second support beam 12b, and the like.
  • the seal plate 23 is arranged downstream of the sealing device 22 .
  • the seal plate 23 is provided over substantially the entire circumference of the denitrification device 6 .
  • the outer end of the seal plate 23 is located outside the fixing portion 22a of the sealing device 22 in the gap G when viewed from the duct inlet 3 side.
  • An outer end of the seal plate 23 is provided with a flange portion 23a that bends and extends downstream.
  • the outer surface of the flange portion 23 a faces the inner peripheral surface of the heat insulating material 7 .
  • the first plate-like catalyst 24 is a plate-like member.
  • the first plate-like catalyst 24 is fixed with respect to the denitrification device 6 .
  • the first plate-shaped catalyst 24 is fixed to the denitrification device 6 via the seal plate 23 .
  • the first plate-shaped catalyst 24 is an elongated member extending in the Z-axis direction or the Y-axis direction.
  • the outer end portion of the first plate-shaped catalyst 24 is provided at the position of the gap G when viewed from the duct inlet 3 side.
  • a plurality of first plate-shaped catalysts 24 extending in the Y-axis direction are arranged side by side along the Y-axis direction.
  • the plurality of first plate-shaped catalysts 24 extending in the Z-axis direction are arranged side by side along the Z-axis direction.
  • the first plate-like catalyst 24 is fixed to the seal plate 23 at the central end.
  • the outer end of the first plate-like catalyst 24 is in contact with the contact portion 22 c of the sealing device 22 .
  • the first plate-shaped catalyst 24 is arranged to face the seal plate 23 .
  • the contact portion 22 c of the sealing device 22 is sandwiched between the first plate catalyst 24 and the seal plate 23 .
  • the central end portion of the first plate-shaped catalyst 24 is pressed by a pressing metal fitting 31 from the upstream side.
  • a central end portion of the first plate-shaped catalyst 24 is fixed to the upstream surface of the seal plate 23 with a plurality of fasteners 32 .
  • the central end of the first plate-shaped catalyst 24 is fixed to the seal plate 23 by a fastener 32 penetrating through the presser fitting 31 and the first plate-shaped catalyst 24 .
  • the outer edge of the first plate-shaped catalyst 24 is not fixed to any member.
  • the first plate-shaped catalyst 24 is provided upstream of the sealing device 22 and the seal plate 23 .
  • the first plate-shaped catalyst 24 covers the gap between the sealing device 22 and the seal plate 23 from the upstream side.
  • the first plate-shaped catalyst 24 is formed of a denitration catalyst.
  • the first plate-like catalyst 24 is a plate-like metal member (for example, stainless steel) carrying a denitrification catalyst component.
  • the first plate-shaped catalyst 24 is elastically deformable like a leaf spring.
  • the denitration catalyst component is based on, for example, titanium oxide. Further, the denitrification catalyst component of the first plate-shaped catalyst 24 is exposed on the surface. Therefore, the first plate-like catalyst 24 can denitrify the exhaust gas that comes into contact with it.
  • the following effects are obtained. Since high-temperature exhaust gas flows through the duct 2, the duct 2 and the denitrification device 6 are thermally stretched by the heat of the exhaust gas. In this embodiment, since the heat insulating material 7 is provided on the inner wall surface of the duct 2, a temperature difference may occur between the duct 2 and the denitrification device 6, resulting in a difference in thermal expansion. In this embodiment, a seal member (seal mounting bar 21 and sealing device 22) fixed to the duct 2 and a seal member (seal plate 23 and first plate catalyst 24) fixed to the denitrification device 6 are provided. and is not fixed.
  • the seal member fixed to the duct 2 and the seal member fixed to the denitrification device 6 seal the gap G in a relatively movable state.
  • the seal member (the seal mounting bar 21 and the sealing device 22) fixed to the duct 2 and the denitrification device 6 Since the seal member (the seal plate 23 and the first plate-like catalyst 24) fixed to each other moves (sliding) relative to each other, the difference in thermal expansion can be absorbed.
  • the first plate-like catalyst 24 is arranged in the gap G formed between the duct 2 and the denitrification device 6 . Therefore, the exhaust gas that passes through the gap G formed between the duct 2 and the denitrification device 6 in a short path (flows downstream of the denitrification device 6 without passing through the denitrification device 6) passes through the first plate. It is denitrified by contact with the catalyst 24 . In this way, the flue gas that short-passes through the gap G formed between the duct 2 and the denitration device 6 can be denitrified, so the amount of non-denitrified flue gas flowing downstream of the denitration device 6 is can be reduced.
  • the first plate-like catalyst 24 covers the gap between the sealing device 22 and the seal plate 23 from the upstream side, it short-passes through the gap between the sealing device 22 and the seal plate 23. Exhaust gas can be denitrified.
  • the first plate-like catalyst 24 pushes the sealing device 22 toward the seal plate 23 . Therefore, the gap formed between the sealing device 22 and the seal plate 23 can be reduced. Alternatively, it is possible to make it difficult to form a gap between the sealing device 22 and the seal plate 23 . Therefore, the amount of exhaust gas that short-passes through the gap formed between the sealing device 22 and the seal plate 23 can be reduced. Therefore, the amount of exhaust gas that has not been denitrified and flows downstream of the denitrification device 6 can be reduced.
  • the first plate-like catalyst 24 is a plate-like metal member.
  • the first plate-like catalyst 24 is elastically deformed relatively strongly. Therefore, the first plate-shaped catalyst 24 can push the sealing device 22 toward the seal plate 23 more strongly. Therefore, since the gap formed between the sealing device 22 and the seal plate 23 can be made smaller, the amount of exhaust gas that short-passes can be further reduced.
  • the seal structure 20A has a second plate-shaped catalyst (second catalyst seal portion) 25 between the sealing device 22 and the seal plate 23 .
  • the second plate-like catalyst 25 is a plate-like member.
  • the second plate-shaped catalyst 25 is fixed with respect to the denitrification device 6 .
  • the second plate-shaped catalyst 25 is fixed to the denitrification device 6 via a seal plate 23 .
  • the second plate-shaped catalyst 25 is an elongated member extending in the Z-axis direction or the Y-axis direction.
  • the outer end of the second plate-shaped catalyst 25 is provided at the position of the gap G when viewed from the duct inlet 3 side.
  • a plurality of second plate-shaped catalysts 25 extending in the Y-axis direction are arranged side by side along the Y-axis direction. Also, the plurality of second plate-shaped catalysts 25 extending in the Z-axis direction are arranged side by side along the Z-axis direction.
  • the second plate-shaped catalyst 25 is made of a denitration catalyst, like the first plate-shaped catalyst 24. Since the structure of the second plate-shaped catalyst 25 is the same as that of the first plate-shaped catalyst 24, detailed description thereof will be omitted.
  • the second plate-shaped catalyst 25 is fixed to the seal plate 23 at the central end.
  • the second plate-like catalyst 25 is in contact with the contact portion 22c of the sealing device 22 at its outer end.
  • the upstream surface of the second plate-like catalyst 25 is in contact with the contact portion 22 c of the sealing device 22 .
  • the second plate-shaped catalyst 25 is arranged so that the upstream surface faces the first plate-shaped catalyst 24 .
  • the contact portion 22c of the sealing device 22 is sandwiched between the second plate-shaped catalyst 25 and the first plate-shaped catalyst 24. As shown in FIG.
  • the downstream surface of the second plate-shaped catalyst 25 is in surface contact with the upstream surface of the seal plate 23 .
  • the central end of the second plate-shaped catalyst 25 is fixed to the upstream surface of the seal plate 23 with a plurality of fasteners 32 .
  • the central end of the second plate-shaped catalyst 25 is fixed to the seal plate 23 by a fastener 32 penetrating through the presser fitting 31, the first plate-shaped catalyst 24, and the second plate-shaped catalyst 25.
  • the outer ends of the first plate-like catalyst 24 and the second plate-like catalyst 25 are not fixed to any member.
  • This modification includes a second plate-shaped catalyst 25 arranged between the sealing device 22 and the seal plate 23 .
  • the second plate-shaped catalyst 25 is formed of a denitrification catalyst.
  • the exhaust gas that short-passes through the gap formed between the sealing device 22 and the seal plate 23 contacts the second plate-like catalyst 25 and is denitrified.
  • the exhaust gas that short-passes through the gap formed between the sealing device 22 and the seal plate 23 can be denitrified. can be further reduced.
  • the second plate-shaped catalyst 25 is provided between the sealing device 22 and the seal plate 23, the pressure of the exhaust gas that short-passes through the gap formed between the sealing device 22 and the seal plate 23 is reduced.
  • the first plate-shaped catalyst 24 is arranged so as to be inclined with respect to the seal plate 23 .
  • the first plate-like catalyst 24 is inclined so that the distance from the sealing device 22 in the flow direction increases as it moves away from the contact portion 22c (outer end) that contacts the sealing device 22 .
  • the first plate-like catalyst 24 is inclined such that the outer end (unfixed end) is closer to the seal plate 23 than the central end (fixed end).
  • the seal plate 23 is provided with an engagement portion 35 with which the fastener 32 engages on the upper surface.
  • the following effects are obtained.
  • the elastic force of the first plate-shaped catalyst 24 can push the sealing device 22 toward the seal plate 23 more strongly. Therefore, the gap formed between the sealing device 22 and the seal plate 23 can be made smaller.
  • FIG. 6 is an exploded view of the seal structure 20C.
  • a first catalyst portion 40 made of a denitrification catalyst is provided between the ends of overlapping sealing devices 22 .
  • the first catalyst part 40 is arranged so that one end in the Y-axis direction contacts the upper surface of the sealing device 22 and the other end in the Y-axis direction contacts the lower surface of the sealing device 22 .
  • the first catalyst portion 40 is a plate-like member having flexibility and has a shape corresponding to the sealing device 22 . In particular, it has a shape corresponding to the curved portion 22 b of the sealing device 22 .
  • the first catalyst part 40 is formed of a denitration catalyst.
  • the first catalyst part 40 is a cloth made of heat-resistant fibers carrying a denitrification catalyst component. Examples of heat-resistant fibers include ceramic fibers and glass fibers.
  • the sealing device 22 may deform due to heat, gaps may form between the ends of the overlapping sealing device 22 .
  • a first catalyst portion 40 is provided between the ends of overlapping sealing devices 22 . Therefore, the exhaust gas that short-passes through the gap formed between the ends of the overlapping sealing devices 22 is denitrified by coming into contact with the first catalyst portion 40 . In this way, the exhaust gas short-passing through the gap formed between the ends of the overlapping sealing devices 22 can be denitrified. amount can be reduced.
  • the first catalyst portion 40 is provided between the overlapping ends of the sealing devices 22 , the first catalyst portion 40 is separated from the overlapping ends of the sealing devices 22 through the gaps formed between the overlapping ends of the sealing devices 22 . It is possible to increase the pressure loss of the exhaust gas that short-passes. This makes it difficult for the exhaust gas to pass through the gap. Therefore, since the amount of exhaust gas that short-passes through the gap can be further reduced, the amount of non-denitrified exhaust gas that flows downstream of the denitrification device 6 can be further reduced.
  • the first catalyst part 40 is a cloth made of heat-resistant fibers carrying a denitrification catalyst component.
  • the first catalyst part 40 has more flexibility than when it is made of, for example, a metal material. Therefore, the first catalyst portion 40 deforms into a shape corresponding to the gap formed between the ends of the overlapping sealing devices 22, so that the gap can be filled more effectively. Therefore, it becomes more difficult for the exhaust gas to pass through the gap. Therefore, since the amount of exhaust gas that short-passes through the gap can be further reduced, the amount of non-denitrified exhaust gas that flows downstream of the denitrification device 6 can be further reduced.
  • FIG. 7 differs from the second embodiment in that a second catalyst portion (fourth catalyst seal portion) 45 is provided. Since the other points are the same as those of the second embodiment, the same reference numerals are assigned to the same configurations, and detailed description thereof will be omitted. It should be noted that the first plate-like catalyst 24 is omitted in FIG. 7 for the sake of illustration.
  • the seal structure 20D is between one end of a first sealing device 22A extending in the Z-axis direction and one end of a second sealing device 22B extending in the Y-axis direction.
  • a second catalyst portion 45 is provided to cover the formed gap.
  • the second catalyst portion 45 integrally has a first portion that covers the upstream surface of the first sealing device 22A and a second portion that covers the upstream surface of the second sealing device 22B.
  • the second catalyst portion 45 is formed in a substantially L shape.
  • the second catalyst part 45 is made of a denitration catalyst. Specifically, the second catalyst part 45 is formed by coating the entire cloth formed of heat-resistant fibers with a denitrification catalyst component. Examples of heat-resistant fibers include ceramic fibers and glass fibers.
  • the second catalyst portion 45 is provided to cover the gap formed between one end of the first sealing device 22A and one end of the second sealing device 22B. Therefore, the exhaust gas that short-passes through the gap formed between one end of the first sealing device 22A and one end of the second sealing device 22B comes into contact with the second catalyst portion 45 and is denitrified. In this way, exhaust gas that short-passes through the gap formed between one end of the first sealing device 22A and one end of the second sealing device 22B can be denitrified. It is possible to reduce the amount of exhaust gas that has not been denitrified.
  • the second catalyst portion 45 covers the gap formed between one end of the first sealing device 22A and one end of the second sealing device 22B, the one end of the first sealing device 22A and the second sealing device 22B are covered. It becomes difficult for the exhaust gas to pass through the gap formed between the one end of the Therefore, since the amount of exhaust gas that short-passes through the gap can be further reduced, the amount of non-denitrified exhaust gas that flows downstream of the denitrification device 6 can be further reduced.
  • the second catalyst part 45 is formed by coating the entire cloth formed of heat-resistant fibers with a denitrification catalyst component.
  • the second catalyst part 45 has more flexibility than when it is made of, for example, a metal material. Therefore, the second catalyst portion 45 can be easily deformed into a shape corresponding to the first sealing device 22A and the second sealing device 22B, so that one end of the first sealing device 22A and one end of the second sealing device 22B can be more preferably connected to each other. can cover the gap formed between Therefore, since the amount of exhaust gas that short-passes through the gap can be further reduced, the amount of non-denitrified exhaust gas that flows downstream of the denitrification device 6 can be further reduced.
  • modification 1 and modification 2 of the first embodiment may be combined.
  • modification 1 and/or the modification 2 of the first embodiment may be combined with the second embodiment and/or the third embodiment.
  • gas to be denitrified is not limited to exhaust gas discharged from gas turbines, but can also be applied to gases discharged from boilers, engines, combustion furnaces, incinerators, and various reactors.
  • the denitrification device may be provided in a duct (hereinafter referred to as "external heat-retaining duct") provided with heat insulating material on the outer peripheral surface.
  • the seal structure described in the above embodiment consists of a seal member (the seal mounting bar 21 and the sealing device 22) fixed to the duct 2 and a seal member fixed to the denitrification device 6. (seal plate 23 and first plate-shaped catalyst 24) can sufficiently absorb the difference in thermal expansion between the duct and the denitrification device, compared to the case of application to the external thermal insulation duct. It is more effective when applied to thermal insulation ducts.
  • the denitrification device and the seal structure are provided in the horizontal duct in which the exhaust gas flows horizontally, but the present disclosure is not limited to this.
  • the denitrification device and seal structure may be provided in a vertical duct through which exhaust gas flows vertically.
  • the seal structure described in the above embodiment consists of a seal member (the seal mounting bar 21 and the sealing device 22) fixed to the duct 2 and a seal member fixed to the denitrification device 6. Since (the seal plate 23 and the first plate-like catalyst 24) are not fixed and can move relative to each other, even if a difference in displacement occurs along the entire circumference of the duct 2, they are unlikely to be damaged. Therefore, it is effective to use a horizontal duct in which a displacement difference is more likely to occur along the entire circumference of the duct 2 than a vertical duct.
  • a seal structure according to an aspect of the present disclosure seals a gap formed between a duct (2) in which exhaust gas flows and a denitration device (6) arranged in the duct (2).
  • the duct and the denitrification device are thermally stretched by the heat of the exhaust gas.
  • a difference in thermal expansion may occur between the duct and the denitrification device.
  • the duct-side seal portion fixed to the duct side and the seal portion fixed to the denitrification device side are not fixed. That is, the duct-side seal portion and the denitrification device-side seal portion seal the gap in a relatively movable state.
  • the duct-side seal portion and the denitration device-side seal portion move relative to each other (sliding), so the difference in thermal expansion is absorbed. can do.
  • the first catalyst seal portion is arranged in the gap formed between the duct and the denitrification device. Therefore, the exhaust gas that short-passes (flows to the downstream side of the denitration device without passing through the denitration device) through the gap formed between the duct and the denitration device comes into contact with the first catalyst seal portion. It is denitrified.
  • exhaust gas short-passing through the gap formed between the duct and the denitration device can be denitrified, so that the amount of non-denitrified exhaust gas flowing downstream of the denitration device can be reduced.
  • the first catalyst seal pushes the duct-side seal toward the denitration device-side seal. Therefore, the gap formed between the duct-side seal portion and the denitrification apparatus-side seal portion can be reduced.
  • the first catalyst seal portion (24) is a plate-like metal member carrying a denitration catalyst component.
  • the first catalyst seal portion is a plate-like metal member.
  • the first catalyst seal portion is elastically deformed relatively strongly. Therefore, the first catalyst seal portion can push the duct side seal portion toward the denitrification apparatus side seal portion more strongly. Therefore, the gap formed between the duct-side seal portion and the denitrification apparatus-side seal portion can be made smaller, so that the amount of short-pass exhaust gas can be further reduced.
  • An example of the metal used for the first catalyst seal portion is stainless steel.
  • the seal structure according to one aspect of the present disclosure is fixed to the denitrification device (6) and arranged between the duct side seal portion (22) and the denitrification device side seal portion (23).
  • a second catalyst seal portion (25) is provided, and the second catalyst seal portion (25) is formed of a denitrification catalyst.
  • the above configuration includes the second catalyst seal portion arranged between the duct-side seal portion and the denitrification device-side seal portion. Also, the second catalyst seal portion is formed of a denitrification catalyst. As a result, the exhaust gas that short-passes through the gap formed between the duct-side seal portion and the denitrification device-side seal portion contacts the second catalyst seal portion, thereby being denitrified. In this way, exhaust gas short-passing through the gap formed between the duct-side seal portion and the denitrification device-side seal portion can be denitrified. can be further reduced.
  • the second catalyst seal portion is provided between the duct-side seal portion and the denitrification device-side seal portion, a short circuit occurs through the gap formed between the duct-side seal portion and the denitrification device-side seal portion.
  • the pressure loss of passing exhaust gas can be increased. This makes it difficult for the exhaust gas to pass through the gap. Therefore, the amount of exhaust gas that short-passes through the gap can be further reduced, so that the amount of non-denitrified exhaust gas that flows downstream of the denitrification device can be further reduced.
  • the first catalyst seal portion (24) contacts the duct side seal portion (22) with respect to the denitrification device side seal portion (23). It is inclined so that the distance from the duct-side seal portion (22) increases as the distance from the portion increases.
  • the first catalyst seal portion is inclined so that the distance from the duct-side seal portion increases as it moves away from the contact portion that contacts the duct-side seal portion.
  • the duct-side seal portion can be pushed more strongly toward the denitrification device-side seal portion by the first catalyst seal portion. Therefore, the gap formed between the duct-side seal portion and the denitrification apparatus-side seal portion can be made smaller, so that the amount of short-pass exhaust gas can be further reduced.
  • a plurality of the duct-side seal portions (22) are provided, and the plurality of the duct-side seal portions (22) are arranged in a direction intersecting the flow of the exhaust gas. Adjacent duct-side seal portions (22) are arranged side by side along the cross direction so that their ends overlap each other, and a denitrification catalyst is placed between the overlapping ends.
  • a third catalyst sealing portion (40) is provided.
  • the third catalyst seal portion is provided between the ends of the overlapping duct side seal portions. Therefore, the exhaust gas that short-passes through the gap formed between the ends of the overlapping duct-side seal portions is denitrified by coming into contact with the third catalyst seal portion. In this way, the exhaust gas short-passing through the gap formed between the ends of the overlapping duct-side seal portions can be denitrified. amount can be reduced. Further, since the third catalyst seal portion is provided between the ends of the overlapping duct side seal portions, the gap formed between the ends of the overlapping duct side seal portions of the third catalyst seal portion It is possible to increase the pressure loss of the exhaust gas that short-passes through. This makes it difficult for the exhaust gas to pass through the gap. Therefore, the amount of exhaust gas that short-passes through the gap can be further reduced, so that the amount of non-denitrified exhaust gas that flows downstream of the denitrification device can be further reduced.
  • the third catalyst seal portion (40) carries a denitration catalyst component on a cloth made of heat-resistant fibers.
  • the third catalyst sealing portion is made of a fabric made of heat-resistant fibers carrying a denitrification catalyst component.
  • the third catalyst sealing portion has more flexibility than when it is made of, for example, a metal material. Therefore, the third catalyst seal portion deforms into a shape corresponding to the gap formed between the ends of the overlapping duct-side seal portions, so that the gap can be filled more effectively. Therefore, it becomes more difficult for the exhaust gas to pass through the gap. Therefore, the amount of exhaust gas that short-passes through the gap can be further reduced, so that the amount of non-denitrified exhaust gas that flows downstream of the denitrification device can be further reduced.
  • a plurality of the duct-side seal portions (22) are provided, and the plurality of the duct-side seal portions (22) are arranged in the direction intersecting the flow of the exhaust gas.
  • a first duct-side seal portion (22A) extending along a first crossing direction (Z-axis direction), which is one of the a second duct-side seal portion (22B) extending along a second cross direction that is a direction crossing the direction (Z-axis direction), and one end of the first duct-side seal portion (22A)
  • a fourth catalyst seal portion (45) is provided to cover a gap formed between one end of the second duct-side seal portion (22B), and the fourth catalyst seal portion (45) is formed of a denitrification catalyst.
  • the above configuration includes the fourth catalyst seal portion that covers the gap formed between one end of the first duct-side seal portion and one end of the second duct-side seal portion. Therefore, the exhaust gas that short-passes through the gap formed between one end of the first duct-side seal portion and one end of the second duct-side seal portion is denitrified by coming into contact with the fourth catalyst seal portion. . In this way, exhaust gas that short-passes through the gap formed between one end of the first duct-side seal portion and one end of the second duct-side seal portion can be denitrified. It is possible to reduce the amount of circulating exhaust gas that has not been denitrified.
  • the fourth catalyst seal covers the gap formed between one end of the first duct-side seal and one end of the second duct-side seal, the one end of the first duct-side seal and the second seal are separated from each other. It becomes difficult for the exhaust gas to pass through the gap formed between the one end of the duct-side seal portion. Therefore, the amount of exhaust gas that short-passes through the gap can be further reduced, so that the amount of non-denitrified exhaust gas that flows downstream of the denitrification device can be further reduced.
  • the fourth catalyst seal portion (45) carries a denitration catalyst component on a cloth made of heat-resistant fibers.
  • the fourth catalyst sealing portion is made of a fabric made of heat-resistant fibers carrying a denitrification catalyst component.
  • the fourth catalyst sealing portion has more flexibility than when it is made of, for example, a metal material. Therefore, the fourth catalyst seal portion can be easily deformed into a shape corresponding to the first duct side seal portion and the second duct side seal portion. It can cover the gap formed between the one end of the seal portion. Therefore, the amount of exhaust gas that short-passes through the gap can be further reduced, so that the amount of non-denitrified exhaust gas that flows downstream of the denitrification device can be further reduced.
  • An exhaust heat recovery boiler includes a duct (2) in which exhaust gas flows, a heat exchange unit arranged in the duct (2) for recovering heat of the exhaust gas, and the duct (2). a denitrification device (6) arranged inside; and any of the above seal structures (20) for sealing a gap formed between the duct (2) and the denitrification device (6). .
  • An exhaust gas sealing method seals a gap formed between a duct (2) in which exhaust gas flows and a denitrification device (6) arranged in the duct (2).
  • the part (24) is formed of a denitrification catalyst, and the duct (2) and the It seals the gap formed between it and the denitrification device (6).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Mechanical Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Chimneys And Flues (AREA)

Abstract

脱硝装置の下流側へ流通する脱硝されていない排ガスの量を低減することを目的とする。シール構造(20)は、内部に排ガスが流通するダクト(2)とダクト(2)内に配置される脱硝装置(6)との間に形成された隙間をシールするシール構造(20)である。シール構造(20)は、ダクト(2)に対して固定され、隙間に配置されるシーリングデバイス(22)と、脱硝装置(6)に対して固定され、隙間に配置され、シーリングデバイス(22)と当接又は近接するシールプレート(23)と、脱硝装置(6)に対して固定され、隙間に配置され、シーリングデバイス(22)をシールプレート(23)に向かって押す第1板状触媒(24)と、を備えている。第1板状触媒(24)は、脱硝触媒で形成されている。

Description

シール構造及び排熱回収ボイラ並びに排ガスのシール方法
 本開示は、シール構造及び排熱回収ボイラ並びに排ガスのシール方法に関するものである。
 排熱回収ボイラ(HRSG)は、ガスタービン等から排出される排ガスがダクト内を通過し、排ガスと伝熱管内の水又は蒸気とが熱交換することによって、蒸気を生成する。排熱回収ボイラのダクト内部には、水や蒸気が流通する多数の伝熱管を有する複数の熱交換器や、排ガス中の窒素酸化物(NOx)を取り除く脱硝装置等が設置される。
 脱硝装置と脱硝装置を収容するダクトとの間には隙間が形成されている。この隙間で排ガスのショートパス(脱硝装置を通過せずに排ガスが脱硝装置の下流側へ流通すること)が発生することがある。このため、排ガスのショートパスを抑制するため、当該隙間にシール構造を設ける場合がある(例えば、特許文献1)。
 特許文献1には、ケーシングの内部に下部伝熱管群と脱硝装置(触媒)と上部伝熱管群が下方から上方に向かって所定間隔で配置されている排熱回収ボイラが開示されている。また、この装置では、ケーシングの内面と脱硝装置との間には、弾性変形可能なシール部材が介装されている。シール部材は、ケーシングの内壁面の全周にわたって固定されている水平フランジと、枠体の下部外周部の全周にわたって固定されている取付フランジとを接続している。
特開2014-178103号公報
 近年、温室効果ガス排出量削減の観点から、水素やアンモニアを燃料とする発電プラントが注目されている。しかしながら、水素やアンモニアを燃料とする場合、石炭等の従来燃料を使用する場合よりもNOx(窒素酸化物)の発生量が大幅に増加することが予想される。このため、水素やアンモニアを燃料とする発電プラントで、NOx排出量を低減するためには、排ガスのショートパスをより厳密に抑制する必要がある。このような観点から、より効果的に排ガスのショートパスを抑制する技術が望まれている。
 ケーシング内では高温の排ガスが通過することから、ケーシング及び脱硝装置は、排ガスの熱によって昇温されて熱伸びする。また、排ガスの熱が外部へ移動しないようにケーシングの外周面または内周面に断熱材を設けている。断熱材がケーシングの外周面に貼り付けられている場合(以下、「外部保温形式」と称する。)は、ケーシングと脱硝装置との間の温度差および熱伸び差が小さいため、ケーシングと脱硝装置との間に形成される隙間も小さい。一方で、断熱材がケーシングの内周面に貼り付けられている場合(以下、「内部保温形式」と称する。)には、ケーシングと脱硝装置との間の温度差および熱伸び差が大きくなるため、ケーシングと脱硝装置との間に形成される隙間も大きくなる。
 このように、外部保温形式を適用した場合及び、内部保温形式を適用した場合の何れの場合でもケーシングと脱硝装置との間には隙間が形成されるが、内部保温形式を適用した場合の方がケーシングと脱硝装置との間に形成される隙間が大きくなる傾向にあることから、ショートパスする排ガスの量が多くなる傾向にある。
 また、特許文献1に記載の装置のように、排ガスが上下方向に流通する縦流れ方式のダクトの場合、ダクト及び脱硝装置は、上下方向へは荷重支持点を基点として熱伸びし、水平方向へはダクトの中心軸を中心にして均等に熱伸びする。このため、ケーシングと脱硝装置との間に形成される隙間は、全周において略均一となる。一方で、排ガスが水平方向に流通する横流れ方式のダクトの場合、ダクト及び脱硝装置は、荷重支持点である底面から膨張方向へ熱伸びするため、底面付近と天井付近とで変位差が大きく異なる。このため、ケーシングと脱硝装置との間に形成される隙間は、全周において略均一とはならない。
 特許文献1に記載のシール構造は、ダクトと脱硝装置とに固定されている。このため、特許文献1に記載のシール構造を横流れ方式のダクトに適用した場合には、底面付近と天井付近との変位差によってシール部材の変形量にばらつきが生じ、変形量の大きい一部のシール部材が劣化や損傷し易い。シール部材が劣化や損傷した場合には、劣化部分や損傷部分でシール性が低下し、排ガスがショートパスしてしまうことから、ショートパスする排ガスの量が増大してしまう可能性があった。
 このように、縦流れ方式のダクトを用いた場合及び、横流れ方式のダクトを用いた場合の何れの場合でもケーシングと脱硝装置との間には隙間が形成されるが、横流れ方式のダクトを採用した場合の方が全周においてダクト等の変位差が生じる傾向にあることから、ショートパスする排ガスの量が多くなる傾向にある。
 以上述べたように、外部保温形式、内部保温形式、縦流れ方式のダクト及び横流れ方式のダクトの何れの場合でもショートパスが発生する可能性があるが、特に、内部保温形式や横流れ方式の場合に排ガスのショートパスが増大する可能性があった。
 本開示は、このような事情に鑑みてなされたものであって、脱硝装置の下流側へ流通する脱硝されていない排ガスの量を低減することができるシール構造及び排熱回収ボイラ並びに排ガスのシール方法を提供することを目的とする。
 特に、内部保温形式や横流れ方式の場合に脱硝装置の下流側へ流通する脱硝されていない排ガスの量を効果的に低減することができるシール構造及び排熱回収ボイラ並びに排ガスのシール方法を提供することを目的とする。
 上記課題を解決するために、本開示のシール構造及び排熱回収ボイラ並びに排ガスのシール方法は以下の手段を採用する。
 本開示の一態様に係るシール構造は、内部に排ガスが流通するダクトと前記ダクト内に配置される脱硝装置との間に形成された隙間をシールするシール構造であって、前記ダクトに対して固定され、前記隙間に配置されるダクト側シール部と、前記脱硝装置に対して固定され、前記隙間に配置され、前記ダクト側シール部と当接又は近接する脱硝装置側シール部と、前記脱硝装置に対して固定され、前記隙間に配置され、前記ダクト側シール部を前記脱硝装置側シール部に向かって押す第1触媒シール部と、を備え、前記第1触媒シール部は、脱硝触媒で形成されている。
 本開示の一態様に係る排ガスのシール方法は、内部に排ガスが流通するダクトと前記ダクト内に配置される脱硝装置との間に形成された隙間をシールするシール構造を用いた排ガスのシール方法であって、前記シール構造は、前記ダクトに対して固定され、前記隙間に配置されるダクト側シール部と、前記脱硝装置に対して固定され、前記隙間に配置され、前記ダクト側シール部と当接又は近接する脱硝装置側シール部と、前記脱硝装置に対して固定され、前記隙間に配置され、前記ダクト側シール部を前記脱硝装置側シール部に向かって押す第1触媒シール部と、を備え、前記第1触媒シール部は、脱硝触媒で形成されていて、前記ダクト側シール部、前記脱硝装置側シール部及び前記第1触媒シール部によって前記ダクトと前記脱硝装置との間に形成された隙間をシールする。
 本開示によれば、脱硝装置の下流側へ流通する脱硝されていない排ガスの量を低減することができる。
 特に、内部保温形式や横流れ方式の場合に脱硝装置の下流側へ流通する脱硝されていない排ガスの量を効果的に低減することができる。
本開示の第1実施形態に係る排熱回収ボイラを示す構成図である。 本開示の第1実施形態に係る脱硝装置及びシール構造を示す斜視図である。 本開示の第1実施形態に係るシール構造を示す断面図である。 図3の変形例を示す図である。 図3の変形例を示す図である。 本開示の第2実施形態に係る脱硝装置及びシール構造を示す斜視図である。 本開示の第3実施形態に係る脱硝装置及びシール構造を示す斜視図である。
 以下、本開示の実施形態に係るシール構造及び排熱回収ボイラ並びに排ガスのシール方法について、図1から図7を用いて説明する。以下の説明及び図面において、上下方向をZ軸方向と称し、水平方向のうち排ガスが流通する方向をX軸方向と称し、X軸方向及びZ軸方向と直交する方向をY軸方向と称する。また、図1から図7において排ガスの流通方向を矢印Eで示している。
[第1実施形態]
 以下、本開示の第1実施形態について、図1から図5を用いて説明する。
 まず、図1を参照して、本実施形態に係る排熱回収ボイラを説明する。
 本実施形態に係る排熱回収ボイラ1は、図1に示すように、排ガスが水平方向に流れる横型の排熱回収ボイラである。本実施形態では、排ガス流れ方向が水平方向で、これに直交する方向が鉛直方向となり、また、伝熱管の長手方向が鉛直方向になる。
 本実施形態に係る排熱回収ボイラ1は、図1に示すように、水平方向に延設されたダクト2の内部に、節炭器、蒸発器又は過熱器等の熱交換部5と、脱硝装置6などを備える。ガスタービン等から排出された高温の燃焼排ガス(排ガス)は、ダクト入口3からダクト2内に導入され、複数の熱交換部5を順次通過した後にダクト出口4を介して煙突(図示せず。)から排出される。ダクト2は、図2に示すように、内周面の略全域に設けられている断熱材7を有している。
 図1に示すように、熱交換部5は、排ガス流れ方向と交差するように鉛直方向に延設された複数の伝熱管(図示省略)を有する。また、複数の伝熱管を連結するヘッダ(図示省略)が、ダクト2内部に設けられ、ドラム9がダクト2の外部に設けられる。ヘッダのそれぞれは、連絡管(図示省略)を介してドラム9と接続される。
 熱交換部5は、伝熱管の内部を流通する熱媒体(例えば、水や蒸気)と排ガスとの熱交換により、排ガスの熱を回収する。排ガスの熱によって加熱された熱媒体はヘッダ及び連絡管を介してドラム9へ導かれる。
 次に、本実施形態に係る脱硝装置6及びシール構造20の詳細について、図2から図5を用いて説明する。なお、以下の説明において、単に「中心側」及び「外側」と述べた場合には、ダクト2の中心軸線に基づいた「中心側」及び「外側」を意味している。
 本実施形態に係る脱硝装置6は、図2に示すように、排ガスに含まれる窒素酸化物を除去(脱硝)する複数の触媒パック11と、各触媒パック11を下方から支持する支持架構12と、ダクト2の底面に立設して支持架構12を下方から支持する複数の脚部(図示省略)と、触媒パック11のY軸方向の側面を覆う壁部13と、を有する。
 複数の触媒パック11は、ダクト2の流路断面(Z軸方向とY軸方向とで形成される断面)の略全域を覆うように並んで配置されている。なお、本実施形態では、触媒パック11は、Z軸方向に複数個、Y軸方向に複数個設けられている。各触媒パック11は、支持架構12の上面に載置されている。
 各触媒パック11は、例えば、矩形筒状の矩形枠部(図示省略)と、矩形枠部の内部に設けられる複数の触媒(図示省略)と、を有する。触媒の形状としては、ハニカム形状や波板形状のものが例示されるが、これらに限定されない。触媒は、内部を通過する排ガス(燃焼ガス)に含まれるNOx(窒素酸化物)の還元反応を促して、NOxの少なくとも一部を除去する。触媒の成分は、例えば、酸化チタンがベースとされている。
 支持架構12は、Y軸方向に延在する第1支持梁12aと、X軸方向に延在する第2支持梁12bと、を有する。第1支持梁12a及び第2支持梁12bは、延在方向と直交する面で切断した際の断面が、略H形状や略C形状などの形状とされている長尺状の部材、いわゆる型鋼である。複数の第1支持梁12aは、X軸方向に沿って所定の間隔で並んで配置されている。複数の第2支持梁12bは、Y軸方向に沿って所定の間隔で並んで配置されている。最下段に設けられる支持架構12は、脚部によって下方から支持されている。
 壁部13は、支持架構12の上面に立設している。壁部13のX軸方向の端部にはY軸方向に延びるフランジ部13aが設けられている。壁部13は、Y軸方向に隣接して配置される触媒パック11同士の間に設けられている。また、最もY軸方向の端部に配置される壁部13は、ダクト2の内周面と対向するように、触媒パック11とダクト2の内周面との間に設けられている。最もY軸方向の端部に配置される壁部13とダクト2の内周面との間には隙間Gが形成されている。
 また、最下段に配置される触媒パック11の底面とダクト2の内周面との間、及び、最上段に配置される触媒パック11の上面とダクト2の内周面との間にも、隙間Gが形成されている。
 最もY軸方向の端部に配置される壁部13とダクト2の内周面との間に形成された隙間Gには、排ガスが流入しないように当該隙間Gをシールするシール構造20が設けられている。また、最下段に配置される触媒パック11の底面とダクト2の内周面との間、及び、最上段に配置される触媒パック11の上面とダクト2の内周面との間に形成された隙間Gにも、排ガスが流入しないように当該隙間Gをシールするシール構造20が設けられている。シール構造20は、当該隙間Gをシールすることで、排ガスのショートパス(脱硝装置6を通過せずに脱硝装置6の下流側へ排ガスが流通すること)を抑制している。
 図2及び図3に示すように、シール構造20は、ダクト2の内周面に固定され、内周面から中心側に突出するシールマウンティングバー21と、シールマウンティングバー21の中心側端部に固定される複数のシーリングデバイス(ダクト側シール部)22と、を備えている。また、シール構造20は、壁部13または/および支持架構12に固定され、壁部13または/および支持架構12から外側に突出するシールプレート(脱硝装置側シール部)23と、シールプレート23の上流側の面に固定される複数の第1板状触媒(第1触媒シール部)24と、を備えている。
 シールマウンティングバー21は、板状の部材であって、ダクト2の内周面の略全周に固定されている。シールマウンティングバー21は、ダクト2の内周面から突出している。シールマウンティングバー21の外側の端部は断熱材7に埋設されている。シールマウンティングバー21の中心側の端部は、ダクト入口3側から見て隙間Gの位置に配置されている。シールマウンティングバー21の中心側の端部には、下流方向に曲折して延びるフランジ部21aが設けられている。フランジ部21aの中心側の面にはシーリングデバイス22が固定されている。
 シーリングデバイス22は、板状の部材であって、ダクト2に対して固定されている。詳細には、シーリングデバイス22は、シールマウンティングバー21を介してダクト2に固定されている。シーリングデバイス22は、Z軸方向又はY軸方向に延在する長尺状の部材である。シーリングデバイス22は、ダクト入口3側から見て隙間Gの位置に設けられている。
 Y軸方向に延在する複数のシーリングデバイス22は、Y軸方向に沿って並んで配置されている。また、Z軸方向に延在する複数のシーリングデバイス22は、Z軸方向に沿って並んで配置されている。隣接するシーリングデバイス22同士は、長手方向の端部が重複するように配置されている。
 シーリングデバイス22は、図3に示すように、ガスケット26を介してシールマウンティングバー21と面接触する固定部22aと、固定部22aの下流側の端部から中央側に略直角に湾曲した湾曲部22bと、湾曲部22bの中央側の端部から中央側に延在する当接部22cと、を一体的に有している。シーリングデバイス22は、シールプレート23に付勢している。すなわち、シーリングデバイス22は、弾性力によってシールプレート23を下流側に向かって押している。また、シーリングデバイス22は、シールプレート23及び第1板状触媒24と固定されていない。すなわち、シーリングデバイス22は、シールプレート23及び第1板状触媒24に対して相対移動可能に配置されている。
 図2及び図3に示すように、固定部22aは、シーリングデバイス22の外側の端部に設けられている。固定部22aは、中央側から押え金具27によって押えられている。固定部22aは、複数の締結具28によってシールマウンティングバー21のフランジ部21aに固定されている。詳細には、固定部22aは、押え金具27、固定部22a及びガスケット26を貫通する締結具28によってフランジ部21aに固定されている。なお、図2では、図示の関係上、締結具28を省略している。
 当接部22cは、シーリングデバイス22の中央側の端部に設けられている。当接部22cは、シールプレート23と第1板状触媒24との間に配置されている。詳細には、当接部22cの上流側の面は、第1板状触媒24の下流側の面と面接触している。また、当接部22cの下流側の面は、シールプレート23の上流側の面と面接触している。
 シールプレート23は、図2及び図3に示すように、板状の部材である。シールプレート23は、中央側の端部が、壁部13のフランジ部13aの上流側の面や第2支持梁12bの上流側の面などに固定されている。シールプレート23は、壁部13のフランジ部13aの上流側の面や第2支持梁12bの上流側の面などから、外側に向かって突出している。シールプレート23は、シーリングデバイス22よりも下流側に配置されている。シールプレート23は、脱硝装置6の周方向の略全域に亘って設けられている。シールプレート23の外側の端部は、ダクト入口3側から見て隙間Gにおいてシーリングデバイス22の固定部22aよりも外側に位置している。シールプレート23の外側の端部には、下流側に曲折して延びるフランジ部23aが設けられている。フランジ部23aの外側の面は、断熱材7の内周面と対向している。
 第1板状触媒24は、平板状の部材である。第1板状触媒24は、脱硝装置6に対して固定されている。詳細には、第1板状触媒24は、シールプレート23を介して、脱硝装置6に固定されている。第1板状触媒24は、Z軸方向又はY軸方向に延在する長尺状の部材である。第1板状触媒24の外側の端部は、ダクト入口3側から見て隙間Gの位置に設けられている。
 Y軸方向に延在する複数の第1板状触媒24は、Y軸方向に沿って並んで配置されている。また、Z軸方向に延在する複数の第1板状触媒24は、Z軸方向に沿って並んで配置されている。
 第1板状触媒24は、中央側の端部がシールプレート23に固定されている。第1板状触媒24は、外側の端部がシーリングデバイス22の当接部22cと当接している。第1板状触媒24は、シールプレート23と対向するように配置されている。第1板状触媒24は、シールプレート23との間にシーリングデバイス22の当接部22cを挟んでいる。
 図2及び図3に示すように、第1板状触媒24の中央側の端部は、上流側から押え金具31によって押えられている。第1板状触媒24の中央側の端部は、複数の締結具32によってシールプレート23の上流側の面に固定されている。詳細には、第1板状触媒24の中央側の端部は、押え金具31及び第1板状触媒24を貫通する締結具32によってシールプレート23に固定されている。第1板状触媒24の外側の端部はいずれの部材にも固定されていない。締結具32を締めることで、第1板状触媒24の自由端(外側の端部)は、弾性力によってシーリングデバイス22をシールプレート23に向かって押すこととなる。なお、図2では、図示の関係上、締結具32を省略している。
 第1板状触媒24は、シーリングデバイス22及びシールプレート23よりも上流側に設けられている。第1板状触媒24は、シーリングデバイス22とシールプレート23との隙間を上流側から覆っている。
 第1板状触媒24は、脱硝触媒で形成されている。詳細には、第1板状触媒24は、板状の金属部材(例えば、ステンレス鋼)に脱硝触媒成分を担持したものである。第1板状触媒24は、板バネのように弾性変形可能とされている。脱硝触媒成分は、例えば、酸化チタンがベースとされている。
 また、第1板状触媒24は、脱硝触媒成分が表面に露出している。このため、第1板状触媒24は、接触した排ガスを脱硝することができる。
 本実施形態によれば、以下の作用効果を奏する。
 ダクト2内には高温の排ガスが流通するので、ダクト2及び脱硝装置6は排ガスの熱によって熱伸びが生じる。本実施形態では、ダクト2の内壁面に断熱材7が設けられているので、ダクト2と脱硝装置6との間で温度差が生じて熱伸び差が発生する場合がある。
 本実施形態では、ダクト2に対して固定されたシール部材(シールマウンティングバー21及びシーリングデバイス22)と、脱硝装置6に対して固定されたシール部材(シールプレート23及び第1板状触媒24)とが、固定されていない。すなわち、ダクト2に対して固定されたシール部材と脱硝装置6に対して固定されたシール部材とが、相対移動可能な状態で隙間Gをシールしている。これにより、ダクト2と脱硝装置6との間で熱伸び差が発生した場合であっても、ダクト2に対して固定されたシール部材(シールマウンティングバー21及びシーリングデバイス22)と、脱硝装置6に対して固定されたシール部材(シールプレート23及び第1板状触媒24)とが、相対移動(スライド移動)するので、熱伸び差を吸収することができる。
 また、本実施形態では、第1板状触媒24が、ダクト2と脱硝装置6との間に形成された隙間Gに配置されている。このため、ダクト2と脱硝装置6との間に形成された隙間Gを介してショートパス(脱硝装置6を通過せずに脱硝装置6の下流側へ流通すること)する排ガスは、第1板状触媒24と接触することで脱硝される。このように、ダクト2と脱硝装置6との間に形成された隙間Gを介してショートパスする排ガスを脱硝することができるので、脱硝装置6の下流側へ流通する脱硝されていない排ガスの量を低減することができる。
 特に、本実施形態では、第1板状触媒24は、シーリングデバイス22とシールプレート23との隙間を上流側から覆っているので、シーリングデバイス22とシールプレート23との隙間を介してショートパスする排ガスを脱硝することができる。
 また、本実施形態では、第1板状触媒24が、シーリングデバイス22をシールプレート23に向かって押している。このため、シーリングデバイス22とシールプレート23との間に形成される隙間を小さくすることができる。もしくは、シーリングデバイス22とシールプレート23との間に隙間が形成され難くすることができる。したがって、シーリングデバイス22とシールプレート23との間に形成される隙間を介してショートパスする排ガスの量を低減することができる。よって、脱硝装置6の下流側へ流通する脱硝されていない排ガスの量を低減することができる。
 本実施形態では、第1板状触媒24が、板状の金属部材とされている。これにより、第1板状触媒24が比較的強く弾性変形する。したがって、第1板状触媒24は、シーリングデバイス22をシールプレート23に向かってより強く押すことができる。よって、シーリングデバイス22とシールプレート23との間に形成される隙間をより小さくすることができるので、ショートパスする排ガスの量をより低減することができる。
[変形例1]
 次に、本実施形態の変形例について、図4を参照して説明する。本変形例では、シーリングデバイス22とシールプレート23との間に第2板状触媒25を設けている点で上記第1実施形態と異なっている。その他の点は、上記第1実施形態と同様であるので、同様の構成については同一の符号を付してその詳細な説明を省略する。
 図4に示すように、本変形例に係るシール構造20Aは、シーリングデバイス22とシールプレート23との間に第2板状触媒(第2触媒シール部)25が設けられている。
 第2板状触媒25は、平板状の部材である。第2板状触媒25は、脱硝装置6に対して固定されている。詳細には、第2板状触媒25は、シールプレート23を介して、脱硝装置6に固定されている。第2板状触媒25は、Z軸方向又はY軸方向に延在する長尺状の部材である。第2板状触媒25の外側の端部は、ダクト入口3側から見て隙間Gの位置に設けられている。
 Y軸方向に延在する複数の第2板状触媒25は、Y軸方向に沿って並んで配置されている。また、Z軸方向に延在する複数の第2板状触媒25は、Z軸方向に沿って並んで配置されている。
 第2板状触媒25は、第1板状触媒24と同様に、脱硝触媒で形成されている。第2板状触媒25の構造は、第1板状触媒24と同様であるので詳細な説明は省略する。
 第2板状触媒25は、中央側の端部がシールプレート23に固定されている。第2板状触媒25は、外側の端部がシーリングデバイス22の当接部22cと当接している。第2板状触媒25は、上流側の面がシーリングデバイス22の当接部22cと当接している。第2板状触媒25は、上流側の面が第1板状触媒24と対向するように配置されている。第2板状触媒25は、第1板状触媒24との間にシーリングデバイス22の当接部22cを挟んでいる。第2板状触媒25は、下流側の面がシールプレート23の上流側の面と面接触している。
 第2板状触媒25の中央側の端部は、複数の締結具32によってシールプレート23の上流側の面に固定されている。詳細には、第2板状触媒25の中央側の端部は、押え金具31、第1板状触媒24及び第2板状触媒25を貫通する締結具32によってシールプレート23に固定されている。第1板状触媒24及び第2板状触媒25の外側の端部はいずれの部材にも固定されていない。
 本変形例によれば、以下の作用効果を奏する。
 本変形例では、シーリングデバイス22とシールプレート23との間に配置される第2板状触媒25を備えている。また、第2板状触媒25は、脱硝触媒で形成されている。これにより、シーリングデバイス22とシールプレート23との間に形成される隙間を介してショートパスする排ガスが第2板状触媒25と接触することで、脱硝される。このように、シーリングデバイス22とシールプレート23との間に形成される隙間を介してショートパスする排ガスを脱硝することができるので、脱硝装置6の下流側へ流通する脱硝されていない排ガスの量をより低減することができる。
 また、第2板状触媒25がシーリングデバイス22とシールプレート23との間に設けられているので、シーリングデバイス22とシールプレート23との間に形成される隙間を介してショートパスする排ガスの圧力損失を増大させることができる。これにより、当該隙間を排ガスが通過し難くなる。したがって、当該隙間を介してショートパスする排ガスの量をより低減することができるので、脱硝装置6の下流側へ流通する脱硝されていない排ガスの量をより低減することができる。
[変形例2]
 次に、本実施形態の変形例について、図5を参照して説明する。本実施形態では、第1板状触媒24がシールプレート23に対して傾斜している点で上記第1実施形態と異なっている。その他の点は、上記第1実施形態と同様であるので、同様の構成については同一の符号を付してその詳細な説明を省略する。
 図5に示すように、本変形例に係るシール構造20Bは、第1板状触媒24がシールプレート23に対して傾斜するように配置されている。詳細には、第1板状触媒24は、シーリングデバイス22と当接する当接部22c(外側端部)から離れるにしたがって流れ方向におけるシーリングデバイス22との距離が大きくなるように傾斜している。換言すれば、第1板状触媒24は、外側端部(固定されていない端部)が、中央側の端部(固定されている端部)よりもシールプレート23に近づくように傾斜している。
 シールプレート23には、上面に締結具32が係合する係合部35が設けられている。
 本変形例によれば、以下の作用効果を奏する。
 本変形例では、締結具32を締めることで、第1板状触媒24の弾性力によって、シーリングデバイス22をシールプレート23に向かってより強く押すことができる。よって、シーリングデバイス22とシールプレート23との間に形成される隙間をより小さくすることができる。もしくは、シーリングデバイス22とシールプレート23との間に、より隙間が形成され難くすることができる。よって、ショートパスする排ガスの量をより低減することができる。
[第2実施形態]
 次に、本開示の第2実施形態について、図6を参照して説明する。本実施形態では、隣接するシーリングデバイス22同士の重複部分に第1触媒部(第3触媒シール部)40が設けられている点で上記第1実施形態と異なっている。その他の点は、上記第1実施形態と同様であるので、同様の構成については同一の符号を付してその詳細な説明を省略する。なお、図6では、図示の関係上、第1板状触媒24を省略している。また、図6の一転鎖線で囲った部分は、シール構造20Cの分解図である。
 図6に示すように、本実施形態に係るシール構造20Cは、重複するシーリングデバイス22の端部同士の間に、脱硝触媒で形成されている第1触媒部40が設けられている。第1触媒部40は、Y軸方向の一側の端部がシーリングデバイス22の上面と接触し、Y軸方向の他側の端部がシーリングデバイス22の下面と接触するように配置されている。
 第1触媒部40は柔軟性を有する板状の部材であって、シーリングデバイス22に応じた形状をしている。特に、シーリングデバイス22の湾曲部22bに応じた形状をしている。
 第1触媒部40は、脱硝触媒で形成されている。詳細には、第1触媒部40は、耐熱性の繊維で形成された布に脱硝触媒成分を担持したものである。耐熱性の繊維としては、セラミックファイバーやグラスファイバーが例示される。
 本実施形態によれば、以下の作用効果を奏する。
 シーリングデバイス22は熱により変形する可能性があるので、重複するシーリングデバイス22の端部同士の間に隙間が形成される可能性がある。
 本実施形態では、重複するシーリングデバイス22の端部同士の間に第1触媒部40が設けられている。このため、重複するシーリングデバイス22の端部同士の間に形成された隙間を介してショートパスする排ガスは、第1触媒部40と接触することで脱硝される。このように、重複するシーリングデバイス22の端部同士の間に形成された隙間を介してショートパスする排ガスを脱硝することができるので、脱硝装置6の下流側へ流通する脱硝されていない排ガスの量を低減することができる。
 また、第1触媒部40が重複するシーリングデバイス22の端部同士の間に設けられているので、第1触媒部40が重複するシーリングデバイス22の端部同士の間に形成される隙間を介してショートパスする排ガスの圧力損失を増大させることができる。これにより、当該隙間を排ガスが通過し難くなる。したがって、当該隙間を介してショートパスする排ガスの量をより低減することができるので、脱硝装置6の下流側へ流通する脱硝されていない排ガスの量をより低減することができる。
 本実施形態では、第1触媒部40が、耐熱性の繊維で形成された布に脱硝触媒成分を担持したものである。これにより、第1触媒部40は、例えば金属材料で形成される場合と比較して、柔軟性を有する。したがって、第1触媒部40は、重複するシーリングデバイス22の端部同士の間に形成される隙間に応じた形状に変形するので、より当該隙間を埋めることができる。よって、当該隙間を排ガスがより通過し難くなる。したがって、当該隙間を介してショートパスする排ガスの量をより低減することができるので、脱硝装置6の下流側へ流通する脱硝されていない排ガスの量をより低減することができる。
[第3実施形態]
 次に、本開示の第3実施形態について、図7を参照して説明する。本実施形態では、第2触媒部(第4触媒シール部)45が設けられている点で上記第2実施形態と異なっている。その他の点は、上記第2実施形態と同様であるので、同様の構成については同一の符号を付してその詳細な説明を省略する。なお、図7では、図示の関係上、第1板状触媒24を省略している。
 図7に示すように、本実施形態に係るシール構造20Dは、Z軸方向に延在する第1シーリングデバイス22Aの一端とY軸方向に延在する第2シーリングデバイス22Bの一端との間に形成された隙間を覆う第2触媒部45を備えている。第2触媒部45は、第1シーリングデバイス22Aの上流側の面を覆う第1部分と、第2シーリングデバイス22Bの上流側の面を覆う第2部分とを一体的に有している。第2触媒部45は、略L字形状に形成されている。
 第2触媒部45は、脱硝触媒で形成されている。詳細には、第2触媒部45は、脱硝触媒成分で耐熱性の繊維で形成された布の全体をコーティングしたものである。耐熱性の繊維としては、セラミックファイバーやグラスファイバーが例示される。
 本実施形態によれば、以下の作用効果を奏する。
 本実施形態では、第1シーリングデバイス22Aの一端と第2シーリングデバイス22Bの一端との間に形成された隙間を覆う第2触媒部45を備えている。このため、第1シーリングデバイス22Aの一端と第2シーリングデバイス22Bの一端との間に形成された隙間を介してショートパスする排ガスは、第2触媒部45と接触することで脱硝される。このように、第1シーリングデバイス22Aの一端と第2シーリングデバイス22Bの一端との間に形成された隙間を介してショートパスする排ガスを脱硝することができるので、脱硝装置6の下流側へ流通する脱硝されていない排ガスの量を低減することができる。
 また、第2触媒部45が第1シーリングデバイス22Aの一端と第2シーリングデバイス22Bの一端との間に形成された隙間を覆っているので、第1シーリングデバイス22Aの一端と第2シーリングデバイス22Bの一端との間に形成された隙間を排ガスが通過し難くなる。したがって、当該隙間を介してショートパスする排ガスの量をより低減することができるので、脱硝装置6の下流側へ流通する脱硝されていない排ガスの量をより低減することができる。
 本実施形態では、第2触媒部45が、脱硝触媒成分で耐熱性の繊維で形成された布の全体をコーティングしたものである。これにより、第2触媒部45は、例えば金属材料で形成される場合と比較して、柔軟性を有する。したがって、第2触媒部45を第1シーリングデバイス22A及び第2シーリングデバイス22Bに応じた形状に容易変形させることができるので、より好適に第1シーリングデバイス22Aの一端と第2シーリングデバイス22Bの一端との間に形成された隙間を覆うことができる。したがって、当該隙間を介してショートパスする排ガスの量をより低減することができるので、脱硝装置6の下流側へ流通する脱硝されていない排ガスの量をより低減することができる。
 なお、本開示は、上記各実施形態に限定されるものではなく、その要旨を逸脱しない範囲において、適宜変形が可能である。
 例えば、上記第1実施形態の変形例1と変形例2とを組み合わせてもよい。また、上記第1実施形態の変形例1及び/又は変形例2と、第2実施形態及び/又は第3実施形態とを組み合わせてもよい。
 また、脱硝処理の対象となるガスとしては、ガスタービンから排出される排ガスに限らず、ボイラ、エンジン、燃焼炉、焼却炉、及び各種反応炉から排出されるガスにも適用可能である。
 また、上記実施形態では、内周面に断熱材7が設けられているダクト2(以下、「内部保温ダクト」と称する。)内に脱硝装置が設けられている例について説明したが、本開示はこれに限定されない。例えば、外周面に断熱材が設けられているダクト(以下、「外部保温ダクト」と称する。)内に脱硝装置が設けられていてもよい。ただし、上述のように、上記実施形態で説明したシール構造は、ダクト2に対して固定されたシール部材(シールマウンティングバー21及びシーリングデバイス22)と、脱硝装置6に対して固定されたシール部材(シールプレート23及び第1板状触媒24)との熱伸び差を十分に吸収することができるので、外部保温ダクトに適用される場合よりも、ダクトと脱硝装置との熱伸び差が大きい内部保温ダクトに適用された場合の方がより効果的である。
 また、上記実施形態では、排ガスが水平方向に流れる横型のダクト内に脱硝装置及びシール構造を設ける例について説明したが、本開示はこれに限定されない。例えば、脱硝装置及びシール構造は、排ガスが鉛直方向に流れる縦型のダクト内に設けられてもよい。ただし、上述のように、上記実施形態で説明したシール構造は、ダクト2に対して固定されたシール部材(シールマウンティングバー21及びシーリングデバイス22)と、脱硝装置6に対して固定されたシール部材(シールプレート23及び第1板状触媒24)とが固定されておらず、相対移動可能とされているので、ダクト2の全周において変位差が生じた場合であっても損傷し難い。このため、縦型のダクトよりもダクト2の全周において変位差が生じ易い横型のダクトであっても効果的である。
 以上説明した実施形態に記載のシール構造及び排熱回収ボイラ並びに排ガスのシール方法は、例えば以下のように把握される。
 本開示の一態様に係るシール構造は、内部に排ガスが流通するダクト(2)と前記ダクト(2)内に配置される脱硝装置(6)との間に形成された隙間をシールするシール構造(20)であって、前記ダクト(2)に対して固定され、前記隙間に配置されるダクト側シール部(22)と、前記脱硝装置(6)に対して固定され、前記隙間に配置され、前記ダクト側シール部(22)と当接又は近接する脱硝装置側シール部(23)と、前記脱硝装置(6)に対して固定され、前記隙間に配置され、前記ダクト側シール部(22)を前記脱硝装置側シール部(23)に向かって押す第1触媒シール部(24)と、を備え、前記第1触媒シール部(24)は、脱硝触媒で形成されている。
 ダクト内には高温の排ガスが流通するので、ダクト及び脱硝装置は排ガスの熱によって熱伸びが生じる。このとき、例えば、ダクトの内壁面に断熱材が設けられている場合等には、ダクトと脱硝装置との間で熱伸び差が発生する場合がある。
 上記構成では、ダクト側に固定されたダクト側シール部と、脱硝装置側に固定されたシール部(脱硝装置側シール部及び第1触媒シール部)とが、固定されていない。すなわち、ダクト側シール部と脱硝装置側のシール部とが、相対移動可能な状態で隙間をシールしている。これにより、ダクトと脱硝装置との間で熱伸び差が発生した場合であっても、ダクト側シール部と脱硝装置側のシール部とが相対移動(スライド移動)するので、熱伸び差を吸収することができる。
 また、上記構成では、第1触媒シール部が、ダクトと脱硝装置との間に形成された隙間に配置されている。このため、ダクトと脱硝装置との間に形成された隙間を介してショートパス(脱硝装置を通過せずに脱硝装置の下流側へ流通すること)する排ガスは、第1触媒シール部と接触することで脱硝される。このように、ダクトと脱硝装置との間に形成された隙間を介してショートパスする排ガスを脱硝することができるので、脱硝装置の下流側へ流通する脱硝されていない排ガスの量を低減することができる。
 また、上記構成では、第1触媒シール部が、ダクト側シール部を脱硝装置側シール部に向かって押している。このため、ダクト側シール部と脱硝装置側シール部との間に形成される隙間を小さくすることができる。もしくは、ダクト側シール部と脱硝装置側シール部との間に隙間が形成され難くすることができる。したがって、ダクト側シール部と脱硝装置側シール部との間に形成される隙間を介してショートパスする排ガスの量を低減することができる。よって、脱硝装置の下流側へ流通する脱硝されていない排ガスの量を低減することができる。
 また、本開示の一態様に係るシール構造は、前記第1触媒シール部(24)は、脱硝触媒成分を担持した板状の金属部材である。
 上記構成では、第1触媒シール部が、板状の金属部材とされている。これにより、第1触媒シール部が比較的強く弾性変形する。したがって、第1触媒シール部は、ダクト側シール部を脱硝装置側シール部に向かってより強く押すことができる。よって、ダクト側シール部と脱硝装置側シール部との間に形成される隙間をより小さくすることができるので、ショートパスする排ガスの量をより低減することができる。
 なお、第1触媒シール部に用いられる金属の例として、ステンレス鋼が挙げられる。
 また、本開示の一態様に係るシール構造は、前記脱硝装置(6)に対して固定され、前記ダクト側シール部(22)と前記脱硝装置側シール部(23)との間に配置される第2触媒シール部(25)を備え、前記第2触媒シール部(25)は、脱硝触媒で形成されている。
 上記構成では、ダクト側シール部と脱硝装置側シール部との間に配置される第2触媒シール部を備えている。また、第2触媒シール部は、脱硝触媒で形成されている。これにより、ダクト側シール部と脱硝装置側シール部との間に形成される隙間を介してショートパスする排ガスが第2触媒シール部と接触することで、脱硝される。このように、ダクト側シール部と脱硝装置側シール部との間に形成される隙間を介してショートパスする排ガスを脱硝することができるので、脱硝装置の下流側へ流通する脱硝されていない排ガスの量をより低減することができる。
 また、第2触媒シール部がダクト側シール部と脱硝装置側シール部との間に設けられているので、ダクト側シール部と脱硝装置側シール部との間に形成される隙間を介してショートパスする排ガスの圧力損失を増大させることができる。これにより、当該隙間を排ガスが通過し難くなる。したがって、当該隙間を介してショートパスする排ガスの量をより低減することができるので、脱硝装置の下流側へ流通する脱硝されていない排ガスの量をより低減することができる。
 また、本開示の一態様に係るシール構造は、前記第1触媒シール部(24)は、前記脱硝装置側シール部(23)に対して、前記ダクト側シール部(22)と当接する当接部から離れるにしたがって前記ダクト側シール部(22)との距離が大きくなるように傾斜している。
 上記構成では、第1触媒シール部が、ダクト側シール部と当接する当接部から離れるにしたがってダクト側シール部との距離が大きくなるように傾斜している。これにより、第1触媒シール部によって、ダクト側シール部を脱硝装置側シール部に向かってより強く押すことができる。よって、ダクト側シール部と脱硝装置側シール部との間に形成される隙間をより小さくすることができるので、ショートパスする排ガスの量をより低減することができる。
 また、本開示の一態様に係るシール構造は、前記ダクト側シール部(22)は、複数設けられており、複数の前記ダクト側シール部(22)は、排ガスの流れと交差する方向である交差方向に沿って並んで配置されていて、隣接する前記ダクト側シール部(22)同士は、端部が重複するように配置されていて、重複する前記端部同士の間には、脱硝触媒で形成されている第3触媒シール部(40)が設けられている。
 上記構成では、重複するダクト側シール部の端部同士の間に第3触媒シール部が設けられている。このため、重複するダクト側シール部の端部同士の間に形成された隙間を介してショートパスする排ガスは、第3触媒シール部と接触することで脱硝される。このように、重複するダクト側シール部の端部同士の間に形成された隙間を介してショートパスする排ガスを脱硝することができるので、脱硝装置の下流側へ流通する脱硝されていない排ガスの量を低減することができる。
 また、第3触媒シール部が重複するダクト側シール部の端部同士の間に設けられているので、第3触媒シール部が重複するダクト側シール部の端部同士の間に形成される隙間を介してショートパスする排ガスの圧力損失を増大させることができる。これにより、当該隙間を排ガスが通過し難くなる。したがって、当該隙間を介してショートパスする排ガスの量をより低減することができるので、脱硝装置の下流側へ流通する脱硝されていない排ガスの量をより低減することができる。
 また、本開示の一態様に係るシール構造は、前記第3触媒シール部(40)は、耐熱性の繊維で形成された布に脱硝触媒成分を担持したものである。
 上記構成では、第3触媒シール部が、耐熱性の繊維で形成された布に脱硝触媒成分を担持したものとされている。これにより、第3触媒シール部は、例えば金属材料で形成される場合と比較して、柔軟性を有する。したがって、第3触媒シール部は、重複するダクト側シール部の端部同士の間に形成される隙間に応じた形状に変形するので、より当該隙間を埋めることができる。よって、当該隙間を排ガスがより通過し難くなる。したがって、当該隙間を介してショートパスする排ガスの量をより低減することができるので、脱硝装置の下流側へ流通する脱硝されていない排ガスの量をより低減することができる。
 また、本開示の一態様に係るシール構造は、前記ダクト側シール部(22)は、複数設けられており、複数の前記ダクト側シール部(22)は、排ガスの流れと交差する方向のうちの1つである第1交差方向(Z軸方向)に沿って延在する第1ダクト側シール部(22A)と、排ガスの流れと交差する方向のうちの1つであって前記第1交差方向(Z軸方向)と交差する方向である第2交差方向に沿って延在する第2ダクト側シール部(22B)と、を有し、前記第1ダクト側シール部(22A)の一端と前記第2ダクト側シール部(22B)の一端との間に形成された隙間を覆う第4触媒シール部(45)を備え、前記第4触媒シール部(45)は、脱硝触媒で形成されている。
 上記構成では、第1ダクト側シール部の一端と第2ダクト側シール部の一端との間に形成された隙間を覆う第4触媒シール部を備えている。このため、第1ダクト側シール部の一端と第2ダクト側シール部の一端との間に形成された隙間を介してショートパスする排ガスは、第4触媒シール部と接触することで脱硝される。このように、第1ダクト側シール部の一端と第2ダクト側シール部の一端との間に形成された隙間を介してショートパスする排ガスを脱硝することができるので、脱硝装置の下流側へ流通する脱硝されていない排ガスの量を低減することができる。
 また、第4触媒シール部が第1ダクト側シール部の一端と第2ダクト側シール部の一端との間に形成された隙間を覆っているので、第1ダクト側シール部の一端と第2ダクト側シール部の一端との間に形成された隙間を排ガスが通過し難くなる。したがって、当該隙間を介してショートパスする排ガスの量をより低減することができるので、脱硝装置の下流側へ流通する脱硝されていない排ガスの量をより低減することができる。
 また、本開示の一態様に係るシール構造は、前記第4触媒シール部(45)は、耐熱性の繊維で形成された布に脱硝触媒成分を担持したものである。
 上記構成では、第4触媒シール部が、耐熱性の繊維で形成された布に脱硝触媒成分を担持したものとされている。これにより、第4触媒シール部は、例えば金属材料で形成される場合と比較して、柔軟性を有する。したがって、第4触媒シール部を第1ダクト側シール部及び第2ダクト側シール部に応じた形状に容易変形させることができるので、より好適に第1ダクト側シール部の一端と第2ダクト側シール部の一端との間に形成された隙間を覆うことができる。したがって、当該隙間を介してショートパスする排ガスの量をより低減することができるので、脱硝装置の下流側へ流通する脱硝されていない排ガスの量をより低減することができる。
 本開示の一態様に係る排熱回収ボイラは、内部に排ガスが流通するダクト(2)と、前記ダクト(2)内に配置され排ガスの熱を回収する熱交換部と、前記ダクト(2)内に配置される脱硝装置(6)と、前記ダクト(2)と前記脱硝装置(6)との間に形成された隙間をシールする上記いずれかに記載のシール構造(20)と、を備える。
 本開示の一態様に係る排ガスのシール方法は、内部に排ガスが流通するダクト(2)と前記ダクト(2)内に配置される脱硝装置(6)との間に形成された隙間をシールするシール構造(20)を用いた排ガスのシール方法であって、前記シール構造(20)は、前記ダクト(2)に対して固定され、前記隙間に配置されるダクト側シール部(22)と、前記脱硝装置(6)に対して固定され、前記隙間に配置され、前記ダクト側シール部(22)と当接又は近接する脱硝装置側シール部(23)と、前記脱硝装置(6)に対して固定され、前記隙間に配置され、前記ダクト側シール部(22)を前記脱硝装置側シール部(23)に向かって押す第1触媒シール部(24)と、を備え、前記第1触媒シール部(24)は、脱硝触媒で形成されていて、前記ダクト側シール部(22)、前記脱硝装置側シール部(23)及び前記第1触媒シール部(24)によって前記ダクト(2)と前記脱硝装置(6)との間に形成された隙間をシールする。
1   :排熱回収ボイラ
2   :ダクト
3   :ダクト入口
4   :ダクト出口
5   :熱交換部
6   :脱硝装置
7   :断熱材
9   :ドラム
11  :触媒パック
12  :支持架構
12a :第1支持梁
12b :第2支持梁
13  :壁部
13a :フランジ部
20  :シール構造
20A :シール構造
20B :シール構造
20C :シール構造
20D :シール構造
21  :シールマウンティングバー
21a :フランジ部
22  :シーリングデバイス
22A :第1シーリングデバイス
22B :第2シーリングデバイス
22a :固定部
22b :湾曲部
22c :当接部
23  :シールプレート
23a :フランジ部
24  :第1板状触媒
25  :第2板状触媒
26  :ガスケット
27  :押え金具
28  :締結具
31  :押え金具
32  :締結具
35  :係合部
40  :第1触媒部
45  :第2触媒部
G   :隙間 

Claims (10)

  1.  内部に排ガスが流通するダクトと前記ダクト内に配置される脱硝装置との間に形成された隙間をシールするシール構造であって、
     前記ダクトに対して固定され、前記隙間に配置されるダクト側シール部と、
     前記脱硝装置に対して固定され、前記隙間に配置され、前記ダクト側シール部と当接又は近接する脱硝装置側シール部と、
     前記脱硝装置に対して固定され、前記隙間に配置され、前記ダクト側シール部を前記脱硝装置側シール部に向かって押す第1触媒シール部と、を備え、
     前記第1触媒シール部は、脱硝触媒で形成されているシール構造。
  2.  前記第1触媒シール部は、脱硝触媒成分を担持した板状の金属部材である請求項1に記載のシール構造。
  3.  前記脱硝装置に対して固定され、前記ダクト側シール部と前記脱硝装置側シール部との間に配置される第2触媒シール部を備え、
     前記第2触媒シール部は、脱硝触媒で形成されている請求項1または請求項2に記載のシール構造。
  4.  前記第1触媒シール部は、前記脱硝装置側シール部に対して、前記ダクト側シール部と当接する当接部から離れるにしたがって前記ダクト側シール部との距離が大きくなるように傾斜している請求項1から請求項3のいずれかに記載のシール構造。
  5.  前記ダクト側シール部は、複数設けられており、
     複数の前記ダクト側シール部は、排ガスの流れと交差する方向である交差方向に沿って並んで配置されていて、
     隣接する前記ダクト側シール部同士は、端部が重複するように配置されていて、
     重複する前記端部同士の間には、脱硝触媒で形成されている第3触媒シール部が設けられている請求項1から請求項4のいずれかに記載のシール構造。
  6.  前記第3触媒シール部は、耐熱性の繊維で形成された布に脱硝触媒成分を担持したものである請求項5に記載のシール構造。
  7.  前記ダクト側シール部は、複数設けられており、
     複数の前記ダクト側シール部は、排ガスの流れと交差する方向のうちの1つである第1交差方向に沿って延在する第1ダクト側シール部と、排ガスの流れと交差する方向のうちの1つであって前記第1交差方向と交差する方向である第2交差方向に沿って延在する第2ダクト側シール部と、を有し、
     前記第1ダクト側シール部の一端と前記第2ダクト側シール部の一端との間に形成された隙間を覆う第4触媒シール部を備え、
     前記第4触媒シール部は、脱硝触媒で形成されている請求項1から請求項6のいずれかに記載のシール構造。
  8.  前記第4触媒シール部は、耐熱性の繊維で形成された布に脱硝触媒成分を担持したものである請求項7に記載のシール構造。
  9.  内部に排ガスが流通するダクトと、
     前記ダクト内に配置され排ガスの熱を回収する熱交換部と、
     前記ダクト内に配置される脱硝装置と、
     前記ダクトと前記脱硝装置との間に形成された隙間をシールする請求項1から請求項8のいずれかに記載のシール構造と、を備える排熱回収ボイラ。
  10.  内部に排ガスが流通するダクトと前記ダクト内に配置される脱硝装置との間に形成された隙間をシールするシール構造を用いた排ガスのシール方法であって、
     前記シール構造は、
     前記ダクトに対して固定され、前記隙間に配置されるダクト側シール部と、
     前記脱硝装置に対して固定され、前記隙間に配置され、前記ダクト側シール部と当接又は近接する脱硝装置側シール部と、
     前記脱硝装置に対して固定され、前記隙間に配置され、前記ダクト側シール部を前記脱硝装置側シール部に向かって押す第1触媒シール部と、を備え、
     前記第1触媒シール部は、脱硝触媒で形成されていて、
     前記ダクト側シール部、前記脱硝装置側シール部及び前記第1触媒シール部によって前記ダクトと前記脱硝装置との間に形成された隙間をシールする排ガスのシール方法。
PCT/JP2022/048231 2022-02-04 2022-12-27 シール構造及び排熱回収ボイラ並びに排ガスのシール方法 WO2023149140A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280090673.3A CN118661060A (zh) 2022-02-04 2022-12-27 密封构造及废热回收锅炉以及废气的密封方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-016521 2022-02-04
JP2022016521A JP2023114253A (ja) 2022-02-04 2022-02-04 シール構造及び排熱回収ボイラ並びに排ガスのシール方法

Publications (1)

Publication Number Publication Date
WO2023149140A1 true WO2023149140A1 (ja) 2023-08-10

Family

ID=87552300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/048231 WO2023149140A1 (ja) 2022-02-04 2022-12-27 シール構造及び排熱回収ボイラ並びに排ガスのシール方法

Country Status (4)

Country Link
JP (1) JP2023114253A (ja)
CN (1) CN118661060A (ja)
TW (1) TWI847500B (ja)
WO (1) WO2023149140A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011163304A (ja) * 2010-02-15 2011-08-25 Babcock Hitachi Kk ダクトシール構造と該シール構造の形成方法
JP2019128106A (ja) * 2018-01-25 2019-08-01 三菱日立パワーシステムズ株式会社 シール装置およびこれを備えた排熱回収ボイラならびに排熱回収ボイラのシール方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102512954A (zh) * 2011-12-23 2012-06-27 东方电气集团东方锅炉股份有限公司 余热锅炉烟气脱硝装置
JP5995814B2 (ja) * 2013-10-04 2016-09-21 三菱日立パワーシステムズ株式会社 シール部材及び排ガス用触媒装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011163304A (ja) * 2010-02-15 2011-08-25 Babcock Hitachi Kk ダクトシール構造と該シール構造の形成方法
JP2019128106A (ja) * 2018-01-25 2019-08-01 三菱日立パワーシステムズ株式会社 シール装置およびこれを備えた排熱回収ボイラならびに排熱回収ボイラのシール方法

Also Published As

Publication number Publication date
TWI847500B (zh) 2024-07-01
CN118661060A (zh) 2024-09-17
TW202345959A (zh) 2023-12-01
JP2023114253A (ja) 2023-08-17

Similar Documents

Publication Publication Date Title
US9400102B2 (en) Heat exchanger including flow regulating plates
US7021248B2 (en) Passive system for optimal NOx reduction via selective catalytic reduction with variable boiler load
KR20090003233A (ko) 스팀 발생기
WO2023149140A1 (ja) シール構造及び排熱回収ボイラ並びに排ガスのシール方法
JP6971867B2 (ja) シール装置およびこれを備えた排熱回収ボイラならびに排熱回収ボイラのシール方法
WO2023136137A1 (ja) 脱硝装置及びボイラ並びに脱硝装置の設置方法
JP2001272001A (ja) ボイラ装置
US6405791B1 (en) Air heater gas inlet plenum
CN111351066A (zh) 锅炉的密封结构及锅炉、以及锅炉的运转方法
WO2019208496A1 (ja) 熱交換器
JPH0714461B2 (ja) 脱硝装置
JP7126805B2 (ja) 排熱回収ボイラ及びその製造方法
CN221258819U (zh) 一种高压余热锅炉
JP7465792B2 (ja) 排熱回収ボイラのサポート機構
JPH07213867A (ja) ボイラ排ガス処理装置
JP6108107B2 (ja) 熱交換器及び熱交換器の製造方法
JP2015085230A (ja) 排ガス用触媒装置
JPH01217117A (ja) ダクト装置
RU2229655C2 (ru) Петлевая ширмовая поверхность нагрева
JPS6391494A (ja) 熱交換器の支持装置
JPH025445B2 (ja)
JP2003336803A (ja) ボイラ装置
JP2003222304A (ja) 伝熱管パネルのサポート構造と排熱回収ボイラ
JPH09257202A (ja) 排熱回収装置
JPS597890A (ja) 伝熱管支持体の形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22925042

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11202405238V

Country of ref document: SG