WO2023147756A1 - 一种Φ40mm大尺寸高对比度光纤倒像器的制备方法、应用 - Google Patents

一种Φ40mm大尺寸高对比度光纤倒像器的制备方法、应用 Download PDF

Info

Publication number
WO2023147756A1
WO2023147756A1 PCT/CN2023/071265 CN2023071265W WO2023147756A1 WO 2023147756 A1 WO2023147756 A1 WO 2023147756A1 CN 2023071265 W CN2023071265 W CN 2023071265W WO 2023147756 A1 WO2023147756 A1 WO 2023147756A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
light
preparation
inverter
contrast
Prior art date
Application number
PCT/CN2023/071265
Other languages
English (en)
French (fr)
Inventor
张磊
贾金升
赵越
石钰
许慧超
于浩洋
张敬
樊志恒
张弦
汤晓峰
宋普光
王久旺
王云
付杨
独雅婕
黄永刚
Original Assignee
中国建筑材料科学研究总院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国建筑材料科学研究总院有限公司 filed Critical 中国建筑材料科学研究总院有限公司
Priority to GB2309395.8A priority Critical patent/GB2624492A/en
Priority to US18/356,173 priority patent/US20240092679A1/en
Publication of WO2023147756A1 publication Critical patent/WO2023147756A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/04Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/02Other methods of shaping glass by casting molten glass, e.g. injection moulding
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/028Drawing fibre bundles, e.g. for making fibre bundles of multifibres, image fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • C03C13/046Multicomponent glass compositions
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/04Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres
    • G02B6/06Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres the relative position of the fibres being the same at both ends, e.g. for transporting images
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the invention relates to the field of manufacturing optical fiber image transmission components, in particular to a preparation method and application of a ⁇ 40mm large-size high-contrast optical fiber image inverter.
  • Optical fiber image transmission components include fiber optic panels, fiber image inverters, fiber optic cones, fiber optic image transmission bundles, etc., which are photoelectric imaging components with excellent performance.
  • the output window plays an important role in improving the quality of imaging devices.
  • the image transmission mechanism of optical fiber image transmission element is realized by the principle of total reflection of optical fiber.
  • the astigmatic light-absorbing material glass filament is prepared by hot-melt pressing using rod-tube combination and vacuum drawing process. Because the optical fibers are completely fused together by leather glass, the adjacent optical fibers are close together, resulting in cross-light between adjacent fibers, or due to the uneven temperature field or drawing force during the preparation process.
  • Low-light night vision technology plays a very important role in nighttime observation.
  • the low-light night vision device which is widely used in the field of night vision, has the ability to observe and aim at night under low-light conditions, and has high resolution and stereo vision.
  • the characteristic of good sense is the main equipment for soldiers to fight at night, which can ensure that soldiers can complete the tasks of detecting, aiming and hitting combat targets at night.
  • Whether the low-light night vision device can capture sufficiently clear details has a lot to do with the contrast of the optical fiber image transmission components. Contrast is an important performance index in optical fiber image transmission products. With the continuous development of optical fiber image transmission technology, The performance requirements of the product are getting higher and higher, and the fiber optic inverter is the key material to ensure the imaging quality of the low-light night vision device.
  • the fiber optic inverter whose effective area is larger than ⁇ 40mm is called a large-size fiber optic inverter.
  • the large-size fiber optic image inverter has the characteristics of large size, high resolution, large field of view, etc., and stable image transmission. It is widely used in machine vision, flight simulators, etc., and can be used for gun aiming of main battle tanks and periscope reconnaissance and surveillance. , Timely collection of nuclear experiment images, low-light night vision systems for large armored vehicles, tanks, and large ships.
  • the large-size fiber optic inverter is a hard fiber optic image transmission component that can transfer images and is prepared by tens of thousands of optical fibers with a unit fiber diameter less than 6 ⁇ m, which are closely packed, hot-melted and pressed, and twisted.
  • Each optical fiber in the large-size fiber optic image inverter has good optical insulation, so each optical fiber can transmit light and image independently without being affected by other adjacent optical fibers, as an optical coupling image transmission device It has the characteristics of high resolution, zero distortion, high light transmission efficiency, etc., and has the function of image inversion, which can obtain large size, large field of view, and long-distance observation.
  • the size of fiber optic inverters that can be mass-produced in China is mostly below ⁇ 30mm in diameter, and because large-size fiber optic inverters are mainly used in cathode ray tubes, camera tubes, image intensifiers and other instruments and equipment that need to transmit images, so for The production process of the product is extremely demanding.
  • the invention provides a method for preparing a large-size high-contrast optical fiber inverter with an effective area diameter greater than ⁇ 40mm.
  • a preparation method of a ⁇ 40mm large-size high-contrast optical fiber inverter comprising the following steps:
  • (1) Preparation of monofilament and light-absorbing filament After matching the high-refractive index fiber core glass rod and the low-refractive index skin glass tube, carry out monofilament drawing to obtain the drawn monofilament.
  • the diameter of the monofilament is 3.20-4.20 mm; the light-absorbing material glass is drawn into light-absorbing filaments, and the diameter of the light-absorbing filaments is 0.49-0.64 mm;
  • (2) Drawing a composite rod Arrange the drawn monofilaments into a hexagon with a regular hexagonal cross section, and insert the light-absorbing filaments into the adjacent gaps between the drawn monofilaments to obtain a primary composite rod.
  • rod in the hexagon, there are 4 monofilaments on each side, and the total number of monofilaments is 37; the number of inserted wires of the light-absorbing filaments is 24-60, and then a composite rod is drawn into a primary multifilament, the cross-section of the primary multifilament is a regular hexagon, and the hexagonal dimension of the primary multifilament is 0.78-0.98mm;
  • Hot-melt pressing and torsion molding After the secondary multifilament is cut to a fixed length, it is arranged into a plate segment, and it is hot-melt press-molded according to the designed compression ratio before and after hot-melt pressing of the plate segment, and the unit wire diameter ⁇ 4.0 ⁇ m is obtained. ⁇ 40mm large-size high-contrast fiber optic inverter blank, and then the two ends of the fiber optic blank are twisted at an angle of 180° to obtain a large-size high-contrast fiber optic inverter with an effective area larger than ⁇ 40mm.
  • the preparation method of the light-absorbing material glass comprises the following steps:
  • Raw material equipment Weigh quartz sand, alumina, boric acid or boric anhydride, sodium carbonate, potassium carbonate, basic magnesium carbonate, calcium carbonate, zinc oxide, titanium dioxide, zirconia, ferric oxide, Dicobalt oxide, vanadium pentoxide and molybdenum oxide are uniformly mixed to obtain a raw material mixture;
  • the high-temperature melting includes melting at a temperature of 1450-1550° C. for 3-5 hours, and the raw material mixture is stirred 1-2 times during the melting process;
  • the clarification temperature is 1300-1400°C, and the clarification time is 1-2 hours;
  • the annealing treatment is to keep warm at 500-549°C for 2-3 hours, and then cool down to room temperature in 20-24 hours;
  • It also includes, when the molten glass is not completely solidified after casting, using an oscillator to vibrate the molten glass evenly to remove internal holes and air bubbles in the molten glass.
  • the preparation method of the core glass rod comprises the following steps:
  • the first temperature is 1450-1550°C; the second temperature is 1380-1420°C; the melting time is 5-10 hours; the clarification time is 1.5-2.5 hours; the annealing treatment is 590 -610°C for 1.5-2.5 hours and then cool down to 100°C in 20-24 hours.
  • the light-absorbing material glass is composed of the following components in molar percentages:
  • the light-absorbing material glass is composed of the following mole percent components:
  • the light-absorbing material glass has strong and uniform light-absorbing ability and spectral absorption effect in the wavelength range of 400-700nm under the thickness of 0.3 ⁇ 0.01mm, and the spectral transmittance is ⁇ 0.1%.
  • the core glass used in the core glass rod has a refractive index of 1.79-1.82 and is composed of the following components in molar percentages: SiO 2 20-25%, B 2 O 3 19-27%, CaO 0.5-5 %, SrO 1-5%, BaO 15-25%, TiO 2 10-15%, La 2 O 3 5-15%, Gd 2 O 3 7.1-10%, Nb 2 O 5 1-5%.
  • the core glass is composed of the following mole percent components:
  • the average coefficient of linear thermal expansion of the core glass in the range of 30-300°C is (89 ⁇ 4) ⁇ 10 -7 /°C.
  • the invention also provides a ⁇ 40mm large-size and high-contrast optical fiber image inverter, which is prepared according to the preparation method.
  • the ⁇ 40mm large-size high-contrast fiber optic inverter has less than 1.0% crosstalk at a distance of 0.1mm from the knife edge; the resolution of the fiber optic inverter is greater than 140lp/mm; the fiber optic inverter is within the wavelength range of 400-700nm Spectral transmittance > 70%.
  • the present invention further provides an application of the ⁇ 40mm large-size and high-contrast optical fiber image inverter in a low-light image intensifier.
  • the light-absorbing material glass of the invention can be applied to a high-contrast optical fiber image inverter, and the high-contrast optical fiber image inverter can be applied to a low-light image intensifier.
  • the light-absorbing material glass of the present invention has good light-absorbing performance, is suitable for being used as an external absorbing glass material of glass fibers when preparing optical fiber image transmission components, and is especially suitable for preparing high-contrast optical fiber image inverters.
  • Fiber optic image transmission components include fiber optic panels, fiber optic image inverters, fiber optic cones, fiber optic image transmission bundles, etc.
  • SiO 2 is the main body that forms the skeleton of glass, and is a component that plays a major role in the skeleton of glass.
  • the molar percentage (mol.%) of SiO 2 is 20.0-25.0, and the SiO 2 content in the fiber core glass is lower than 20.0 mol.%, it is difficult to obtain glass with high refractive index, and it will reduce the Chemical resistance; when the SiO 2 content in the core glass is higher than 25.0mol.%, the high-temperature viscosity of the glass will increase, causing the glass melting temperature to be too high, and the thermal expansion coefficient of the glass will decrease.
  • the molar percentage (mol.%) of SiO 2 is 60-69.9.
  • the SiO 2 content in the light-absorbing material glass is lower than 60mol.%, it is difficult to obtain a thermal expansion coefficient similar to that of leather glass, and it will reduce the chemical resistance of the glass; when the SiO 2 content in the light-absorbing material glass is higher than 69.9mol.%. , the high-temperature viscosity of the glass will increase, causing the glass melting temperature to be too high.
  • B 2 O 3 is a glass-forming oxide, which is also a component of the glass skeleton, and is also a co-solvent for reducing the viscosity of glass melting.
  • Boron-oxygen triangle [BO 3 ] and boron-oxygen tetrahedron [BO 4 ] are the structural components. Boron may exist as triangle [BO 3 ] or boron-oxygen tetrahedron [BO 4 ] under different conditions. Melted at high temperature Under certain conditions, it is generally difficult to form boron-oxygen tetrahedrons, and can only exist in the form of trihedra.
  • B 3+ has a tendency to capture free oxygen to form tetrahedrons under certain conditions, making the structure compact and improving the glass.
  • Low-temperature viscosity but because it has the characteristics of reducing glass viscosity at high temperature and increasing glass viscosity at low temperature, it is also the main component to reduce the refractive index of glass, so its content range is determined to be small.
  • the molar percentage (mol.%) of B 2 O 3 is 19.0-27.0, and the content of B 2 O 3 is lower than 19.0 mol.%, which cannot play the role of solubilization, and will reduce the glass Chemical stability: B 2 O 3 content greater than 27.0 mol.%, will reduce the glass refractive index, and at the same time increase the phase separation tendency of the glass.
  • the molar percentage (mol.%) of B 2 O 3 is 10.1-15.0, and the content of B 2 O 3 is greater than 15.0 mol.%, which will reduce the refractive index of the glass and make the phase separation of the glass tend to increase.
  • CaO is an oxide of the outer body of the glass structure network.
  • the molar percentage (mol.%) of CaO is 0.5-5.0, and the content of CaO is greater than 5.0mol.%, which will reduce the chemical resistance of the glass and increase the strength of the glass. coefficient of thermal expansion; in the light-absorbing material glass, the content of CaO is greater than 5.0mol.%, which will reduce the chemical resistance of the glass, increase the refractive index of the glass, and increase the crystallization tendency of the glass. Therefore, in the light-absorbing material glass The molar percentage (mol.%) of CaO is 0.5-5.0.
  • TiO 2 in the core glass is used to increase the refractive index and transmittance of the glass, the molar percentage (mol.%) of TiO 2 is 10.0-15.0, and the content of TiO 2 is greater than 15 mol.%, which will reduce the glass the transmittance.
  • TiO2 in the light-absorbing material glass is used to adjust the chemical stability and crystallization resistance of the glass, the molar percentage (mol.%) of TiO2 is 0-0.1, and the content of TiO2 is greater than 0.1mol.%. It will reduce the chemical resistance of glass and increase the tendency of crystallization.
  • SrO is an alkaline earth metal oxide, which is an oxide of the outer body of the glass structure network.
  • the molar percentage (mol.%) of SrO is 1.0-5.0, and the content of SrO is greater than 5.0mol.%, which will reduce the glass resistance.
  • Chemical stability increase the thermal expansion coefficient of the glass.
  • the molar percentage of SrO is 0.1-5.0 mol.%, and the content of SrO is greater than 5.0 mol.%, which will reduce the chemical resistance stability of the glass and increase the crystallization tendency of the glass.
  • BaO is an oxide of the outer body of the glass structure network, which can effectively increase the refractive index of the glass.
  • the molar percentage (mol.%) of BaO is 15.0-25.0, and the content of BaO is greater than 25.0mol.%, which will increase
  • the crystallization temperature of the glass increases the crystallization tendency of the glass, and at the same time makes the density of the glass significantly increase.
  • La 2 O 3 is a lanthanide rare earth oxide that can increase the refractive index of the glass.
  • the molar percentage (mol.%) of La 2 O 3 is 5.0-15.0, but the La 2 O 3 content is greater than 15.0 mol.% will cause the thermal expansion coefficient of the glass to increase.
  • Gd 2 O 3 is also a rare earth oxide, which can increase the refractive index of the glass.
  • the weight percentage (mol.%) of Gd 2 O 3 is 7.1-10.0. When the Gd 2 O 3 content is greater than 10.0 mol.%, it will cause the density and The coefficient of thermal expansion increases.
  • Nb 2 O 5 is also a rare earth oxide, which can increase the refractive index of the glass.
  • the weight percentage (mol.%) of Nb 2 O 5 is 1.0-5.0, but when the Nb 2 O 5 content is greater than 5.0 mol.%, it will cause the density of the glass and thermal expansion coefficient increase.
  • Al 2 O 3 belongs to the intermediate oxide of glass, and can reduce the phase separation tendency of glass.
  • Al 3+ has two coordination states in the glass, that is, it is located in tetrahedron or octahedron.
  • AlO 4 aluminum-oxygen tetrahedron
  • AlO 6 aluminum-oxygen octahedron
  • Al 2 O 3 content greater than 10.0 mol.% will significantly increase the high-temperature viscosity of the glass and increase the melting temperature of the glass. Therefore, the molar percentage (mol.%) of Al 2 O 3 is 1.0 -10.0.
  • Na 2 O is an alkali metal oxide, which is an oxide of the outer body of the glass structure network.
  • the thermal expansion coefficient of the glass will be increased, and the refractive index of the glass will be increased at the same time. , so the mole percentage (mol.%) of Na 2 O is 1.0-8.0.
  • K 2 O is an alkali metal oxide, which is an oxide outside the glass structure network.
  • the content of K 2 O is greater than 10.0 mol.%, it will increase the thermal expansion coefficient of the glass, and at the same time increase the refractive index of the glass , so the mole percentage (mol.%) of K 2 O is 3.0-10.0.
  • MgO is an alkaline earth metal oxide, which is an oxide of the outer body of the glass structure.
  • the content of MgO is greater than 1.0mol.%, the crystallization tendency of the glass will be increased, and the density of the glass will be reduced at the same time.
  • the refractive index of the glass therefore, the mole percent (mol.%) of MgO is 0.1-1.0.
  • ZnO is used to adjust glass crystallization temperature and chemical resistance in the light-absorbing material glass.
  • the molar percentage of ZnO is 0-0.1mol.%, and the content of ZnO is greater than 0.1mol.%, which will reduce the resistance of glass. Chemical stability, increased crystallization tendency.
  • ZrO2 is used to adjust the chemical resistance and crystallization of the glass in the light-absorbing material glass, and the molar percentage (mol.%) of ZrO2 is 0.1-1.0, and the content of ZrO2 is greater than 1.0mol.%. It will reduce the chemical resistance of glass and increase the tendency of crystallization.
  • Fe 2 O 3 is a light-absorbing colorant for light-absorbing glass, and the molar percentage (mol.%) of Fe 2 O 3 is 3.0-6.5.
  • Fe 2 O 3 is the main light absorbing agent, and Fe 3 + ions have good light-absorbing properties, and the light-absorbing range is mainly concentrated in the visible light to infrared region.
  • the content of Fe 2 O 3 is greater than 6.5mol.%, which will reduce the chemical resistance of the glass and increase the crystallization tendency of the glass.
  • the content of O 3 is less than 3.0mol.%, which will make the coloring of Fe 2 O 3 become unstable or even fade during the high-temperature wire drawing process, directly affect the light absorption effect, and have a serious impact on improving the image transmission quality of the fiber optic inverter. It cannot meet the application requirements of improving the contrast of the fiber optic image inverter.
  • Co 2 O 3 is a colorant for light-absorbing glass, and the molar percentage (mol.%) of Co 2 O 3 is 0.1-0.5. Co 2 O 3 can combine with iron ions to form a stable form in the glass, so that The coloring of light absorbing materials is more stable. When the content of Co 2 O 3 is greater than 0.5 mol.%, the chemical resistance stability of the glass will be reduced, and the crystallization tendency of the glass will be increased.
  • V 2 O 5 is a coloring agent for light-absorbing glass, and the molar percentage (mol.%) of V 2 O 5 is 0.51-1.5. V 2 O 5 can cure the coloring of iron ions, thereby making the coloring of the light-absorbing material more stable. When the content of V 2 O 5 is greater than 1.5 mol.%, the chemical resistance stability of the glass will be reduced, and the crystallization tendency of the glass will be increased.
  • MoO 3 is a transition metal oxide and also a colorant for light-absorbing glass.
  • the mole percentage (mol.%) of MoO 3 is 0.1-1.0.
  • MoO 3 can combine with iron ions, cobalt ions, etc. to form in glass Stable coloring, using composite absorption, can ensure the absorption of stray light in the wavelength range of 400nm-700nm, and obtain better light absorption effect, so that the light absorption curve does not appear obvious transmission peaks in the visible light region, but the content of MoO3 is greater than 1.0mol.%, it will reduce the chemical stability of the glass and increase the crystallization tendency of the glass.
  • the light-absorbing material glass used in a ⁇ 40mm large-size high-contrast fiber optic inverter of the present invention has the following characteristics:
  • a ⁇ 40mm large-size high-contrast optical fiber core glass for an optical fiber inverter of the present invention has the following characteristics:
  • a ⁇ 40mm large-size high-contrast fiber optic inverter prepared by using the above-mentioned fiber core glass and light-absorbing material glass has the following advantages:
  • the light crosstalk of the large-size high-contrast fiber optic inverter at a distance of 0.1mm from the knife edge is less than 1.0%;
  • the resolution of the large-size high-contrast fiber optic inverter is greater than 140 lp/mm;
  • the large-size high-contrast fiber optic inverter has excellent fixed pattern noise performance, and there is no obvious multifilament boundary when observed under a 10X microscope;
  • the light-absorbing material glass of the present invention is applied to a large-size high-contrast optical fiber inverter, which can effectively improve the absorption of stray light between optical fibers, so as to reduce the light crossing between fibers, so as to improve the imaging performance of the optical fiber inverter The effect of contrast and sharpness.
  • the invention provides a ⁇ 40mm large-size fiber optic inverter with the advantages of less stray light crosstalk, high resolution and high contrast.
  • the application of the contrast technology of the imager to the low-light image intensifier will greatly improve the key performances such as the imaging quality of the fiber optic inverter, so that the large-size fiber optic inverter can meet the supporting needs of the low-light night vision industry, and can also replace the traditional
  • the fiber optic image inverter products improve the comprehensive performance and promote the development of optoelectronic devices in related fields such as space vision measurement and detection imaging to the direction of high performance and wide field of view, which has a good application and promotion prospect.
  • Fig. 1 is a schematic diagram of the internal structure of the optical fiber forming the ⁇ 40mm large-size high-contrast optical fiber inverter provided by the embodiment of the present invention
  • Fig. 2 is a schematic diagram of the optical fiber structure provided by the embodiment of the present invention.
  • Fig. 3 is a contrast test diagram of a ⁇ 40mm large-size high-contrast fiber optic inverter prepared by Example 1 of the present invention.
  • 1 is light-absorbing material glass
  • 2 is core glass
  • 3 is skin glass
  • the skin glass tube and the core glass rod are matched and then drawn into monofilaments
  • the monofilaments include the outer skin glass 3 and the inner core glass 2
  • the multiple monofilaments are closely arranged into a cross-section of A regular hexagonal hexagon, with a light-absorbing filament drawn from light-absorbing material glass 1 between adjacent monofilaments, a composite rod is formed after the light-absorbing filament is inserted into the hexagon, and a composite rod is drawn into a A multifilament as shown in Figure 1.
  • the method of inserting wires outside the wall by adopting the light-absorbing material glass of the present invention can effectively absorb the string light inside the optical fiber.
  • the hexagonal dimension L of the primary multifilament with a regular hexagonal cross section is 0.78-0.98mm.
  • the measured parameters and measuring methods and instruments of the core-skin glass of the present invention are as follows:
  • the refractive index n D of the glass is measured by a refractive index tester; the light transmittance of the glass at 400nm-700nm is measured by a transmittance tester, and the thickness of the glass sheet is 0.3mm ⁇ 0.01mm; Expansion coefficient ⁇ 30/300 [10 -7 /°C] is measured by a horizontal dilatometer, expressed as an average linear expansion coefficient, measured by the method specified in ISO 7991; the anti-devitrification temperature of glass is measured by ASTM C829-1981 It is measured by the standard method of measuring the liquidus temperature of glass by gradient furnace method.
  • Quartz sand or crystal powder high purity, 150 ⁇ m sieve is less than 1%, 45 ⁇ m sieve is less than 30%, Fe 2 O 3 content is less than 1ppm
  • alumina powder analytically pure, average particle size 50 ⁇ m
  • boric acid Or boric anhydride 400 ⁇ m sieve is less than 10%, 63 ⁇ m sieve is less than 10%
  • sodium carbonate industrial soda ash
  • potassium carbonate analytical pure, purity ⁇ 99.0%
  • basic magnesium carbonate chemically pure, Average particle size 50 ⁇ m
  • calcium carbonate analytical pure, average particle size 250 ⁇ m
  • zinc oxide analytical pure
  • titanium dioxide analytical pure
  • zirconia analytical pure
  • ferric oxide analytical pure
  • diferric oxide Gu analytical pure
  • vanadium oxide analytical pure
  • molybdenum oxide analytical pure
  • strontium carbonate analytical pure, purity ⁇ 99.0%
  • barium nitrate analytic
  • the basic properties of the sample are shown in Table 2.
  • the visible light transmittance of the sample with a thickness of 0.3mm is 0%, and the coefficient of thermal expansion is 80 ⁇ 10 -7 /°C.
  • a method for a ⁇ 40mm large-size high-contrast fiber optic inverter prepared using the light-absorbing material glass comprises the following steps:
  • (1) Preparation of monofilament and light-absorbing filament After matching the high-refractive index fiber core glass rod and the low-refractive index skin glass tube, carry out monofilament drawing to obtain the drawn monofilament.
  • the diameter of the monofilament is 3.70mm; the light-absorbing material glass is drawn into light-absorbing filaments, and the diameter of the light-absorbing filaments is 0.56mm;
  • (2) Drawing a composite rod Arrange the drawn monofilaments into a hexagon with a regular hexagonal cross section, and insert the light-absorbing filaments into the adjacent gaps between the drawn monofilaments to obtain a primary composite rod.
  • Rod in the hexagon, there are 4 monofilaments on each side, and in the composite rod formed by the monofilaments, the total number of the monofilaments is 37; , and then draw the primary composite rod into a primary multifilament, the cross-section of the primary multifilament is a regular hexagon, and the hexagonal dimension of the primary multifilament is 0.88mm;
  • Hot-melt pressing and torsion molding the secondary multifilaments are cut to length and arranged into plate sections, and the plate sections are formed by hot-melt pressing according to the designed compression ratio of the hot-melt pressing forming of the plate sections to obtain the unit wire diameter 3.99 ⁇ m optical fiber plate blank, and then the two ends of the optical fiber plate blank are twisted at an angle of 180° to obtain a large-size high-contrast optical fiber inverter with an effective area size greater than 40mm.
  • the contrast performance test of a ⁇ 40mm large-size high-contrast fiber optic inverter prepared by using the above-mentioned light-absorbing material glass shows that the prepared ⁇ 40mm large-size high-contrast fiber optic inverter crosses light at a distance of 0.1mm from the knife edge It is 0.90%, that is, its contrast ratio at 0.1mm away from the knife edge is less than 1.0%. And the ⁇ 40mm large-size high-contrast fiber optic inverter has no obvious multifilament boundary when observed under a 10X microscope, and the high-contrast fiber optic inverter has a transmittance of 72% in the wavelength range of 400-700nm.
  • Example 2 in Table 1 for the actual composition of the glass, use the same raw materials and raw material requirements as in Example 1 in Table 1, and take melting at 1500 ° C for 8 hours. During the glass melting process, the glass is stirred twice to make The glass is melted evenly. After the glass is melted, the temperature is lowered to 1400°C to clarify for 1.5 hours, and then the molten glass is cast into the specified test product requirements, and then annealed. The annealing treatment is 600°C for 1.5 hours and then used for 23 hours. Cool down to 100°C, then cool down to room temperature with the furnace.
  • Table 1 shows the basic properties of the samples. (1) The refractive index is 1.81; (2) The average coefficient of linear expansion at 30-300°C is 91 ⁇ 10 -7 /°C.
  • Example 2 in Table 2 for the actual composition of the glass, use the same raw materials and raw material requirements as in Example 1, and then use a quartz crucible to melt at a temperature of 1450 ° C for 5 hours. During the glass melting process, the glass is melted 1 to 2 times. Stir to make the glass melt evenly. After the glass is melted, clarify the glass melt at 1400°C for 1 hour, cast the molten glass into the specified specifications, and perform annealing treatment after uniform vibration. After 2.5 hours of heat preservation, it takes 20 hours to cool down to room temperature, and the light-absorbing material glass of the present invention is obtained.
  • Table 2 The basic properties of the samples are shown in Table 2. The visible light transmittance of the sample with a thickness of 0.3 mm is 0%, and the coefficient of thermal expansion is 81 ⁇ 10 -7 /°C.
  • a preparation method of a ⁇ 40mm large-size high-contrast fiber optic inverter is basically the same as in Example 1, except that:
  • the filament diameter of the monofilament is 3.20 mm; the filament diameter of the light-absorbing filament is 0.49 mm;
  • Hot-melt pressing and torsion molding the secondary multifilaments are cut to length and arranged into plate sections, and the plate sections are formed by hot-melt pressing according to the designed compression ratio of the hot-melt pressing forming of the plate sections to obtain the unit wire diameter 3.94 ⁇ m optical fiber plate blank, and then the two ends of the optical fiber plate blank are twisted at an angle of 180° to obtain a large-size high-contrast optical fiber inverter with an effective area size greater than 40mm.
  • a preparation method of a ⁇ 40mm large-size high-contrast fiber optic inverter is as in Example 1.
  • the crosstalk of the prepared ⁇ 40mm large-size high-contrast fiber optic inverter is 0.86% at a distance of 0.1mm from the knife edge, and the high-contrast fiber optic inverter There is no obvious multifilament boundary under a 10X microscope, and the transmittance of the high-contrast fiber optic inverter is 71% in the wavelength range of 400-700nm.
  • the actual composition of the glass refers to Example 3 in Table 1, using the same raw materials and raw material requirements as in Example 1 in Table 1, and melting at 1480°C for 10 hours.
  • the glass is stirred three times to make The glass is melted evenly.
  • the temperature is lowered to 1380°C for 2.5 hours, and then the molten glass is cast into the specified test product requirements, and then annealed.
  • the annealing treatment is 595°C for 2.5 hours and then used for 20 hours. Cool down to 100°C, then cool down to room temperature with the furnace
  • Table 1 shows the basic properties of the samples. (1) The refractive index is 1.80; (2) The average coefficient of linear expansion at 30-300°C is 93 ⁇ 10 -7 /°C.
  • Example 3 in Table 2 for the actual composition of the glass, use the same raw materials and raw material requirements as in Example 1, and then use a quartz crucible to melt at a temperature of 1550 ° C for 3 hours. During the glass melting process, the glass is melted 1 to 2 times. Stir to make the glass melt evenly. After the glass is melted, clarify the glass melt at 1300°C for 2 hours, cast the molten glass into the specified specifications, and perform annealing treatment. After cooling down to room temperature in 21 hours, the light-absorbing material glass of the present invention is obtained.
  • the basic properties of the sample are shown in Table 2.
  • the visible light transmittance of the sample with a thickness of 0.3 mm is 0%, and the coefficient of thermal expansion is 84 ⁇ 10 -7 /°C.
  • a preparation method of a ⁇ 40mm large-size high-contrast fiber optic inverter is basically the same as in Example 1, except that:
  • the filament diameter of the monofilament is 4.20mm; the filament diameter of the light-absorbing filament is 0.64mm;
  • Hot-melt and torsion forming After the secondary multifilament is cut to a fixed length, it is arranged into a plate section, and the plate section is formed by hot-melt pressing according to the designed compression ratio of the hot-melt pressing forming of the plate section, and the unit wire diameter is 3.98. ⁇ m optical fiber plate blank, and then the two ends of the optical fiber plate blank are twisted at an angle of 180° to obtain a large-size high-contrast optical fiber inverter with an effective area size greater than 40mm.
  • a preparation method of a ⁇ 40mm ⁇ 40mm large-size high-contrast fiber optic inverter is as in Example 1.
  • the crosstalk of the prepared ⁇ 40mm large-size high-contrast fiber optic inverter is 0.96% at a distance of 0.1mm from the knife edge, and the high-contrast fiber optic inverter There is no obvious multifilament boundary under a 10X microscope, and the transmittance of the high-contrast fiber optic inverter is 71% in the wavelength range of 400-700nm.
  • the actual composition of the glass refers to Example 4 in Table 1, using the same raw materials and raw material requirements as in Example 1 in Table 1, and melting at 1450°C for 5 hours, and stirring the glass 2-3 times during the glass melting process , so that the glass is melted evenly. After the glass is melted, it is cooled to 1390 ° C for 2 hours to clarify, and then the molten glass is cast into the specified test product requirements, and then annealed. Cool down to 100°C in 24 hours, then cool down to room temperature with the furnace,
  • Table 1 shows the basic properties of the samples. (1) The refractive index is 1.82; (2) The average coefficient of linear expansion at 30-300°C is 89 ⁇ 10 -7 /°C.
  • Example 4 in Table 2 for the actual composition of the glass, use the same raw materials and raw material requirements as in Example 1, and then use a quartz crucible to melt at a temperature of 1480 ° C for 5 hours. During the glass melting process, the glass is melted 1 to 2 times. Stir to make the glass melt evenly. After the glass is melted, clarify the glass melt at 1380°C for 1.5 hours, cast the molten glass into specified specifications, and perform annealing treatment. After cooling down to room temperature in 22 hours, the light-absorbing glass of the present invention is obtained.
  • the basic properties of the sample are shown in Table 2.
  • the visible light transmittance of the sample with a thickness of 0.3 mm is 0%, and the coefficient of thermal expansion is 84 ⁇ 10 -7 /°C.
  • a preparation method of a ⁇ 40mm large-size high-contrast fiber optic inverter is as in Example 1.
  • the crosstalk of the prepared ⁇ 40mm large-size high-contrast fiber optic inverter is 0.89% at a distance of 0.1mm from the knife edge, and the high-contrast fiber optic inverter There is no obvious multifilament boundary under a 10X microscope, and the transmittance of the high-contrast fiber optic inverter is 71% in the wavelength range of 400-700nm.
  • Example 5 in Table 1 for the actual composition of the glass, use the same raw materials and raw material requirements as in Example 1 in Table 1, and adopt the same melting process system and test conditions.
  • Table 1 shows the basic properties of the samples. (1) The refractive index is 1.79; (2) The average coefficient of linear expansion at 30-300°C is 87 ⁇ 10 -7 /°C.
  • the actual composition of the glass refers to Example 5 in Table 2, using the same raw materials and raw material requirements as in Example 1, and then using a quartz crucible to melt at a temperature of 1460 ° C for 4 hours. During the glass melting process, the glass is melted 1 to 2 times. Stir to make the glass melt evenly. After the glass is melted, clarify the glass melt at 1350°C for 2 hours, cast the molten glass into the specified specifications, and perform annealing treatment. After cooling down to room temperature in 20 hours, the light-absorbing material glass of the present invention is obtained.
  • the basic properties of the sample are shown in Table 2.
  • the visible light transmittance of the sample with a thickness of 0.3mm is 0%, and the coefficient of thermal expansion is 83 ⁇ 10 -7 /°C.
  • a preparation method of a ⁇ 40mm large-size high-contrast fiber optic inverter is as in Example 1.
  • the crosstalk of the prepared ⁇ 40mm large-size high-contrast fiber optic inverter is 0.91% at a distance of 0.1mm from the knife edge, and the high-contrast fiber optic inverter There is no obvious multifilament boundary under a 10X microscope, and the transmittance of the high-contrast fiber optic inverter is 71% in the wavelength range of 400-700nm.
  • the preparation method and performance of the core glass rod are as in Example 1;
  • Example 5 in Table 2 for the actual composition of the glass, use the same raw materials and raw material requirements as in Example 1, and then use a quartz crucible to melt at a temperature of 1470 ° C for 5 hours. During the glass melting process, the glass is melted 1 to 2 times. Stir to make the glass melt evenly. After the glass is melted, clarify the glass melt at 1370°C for 2 hours, cast the molten glass into the specified specifications, and perform annealing treatment. After cooling down to room temperature in 24 hours, the light-absorbing material glass of the present invention is obtained.
  • the basic properties of the samples are shown in Table 2.
  • the visible light transmittance of the sample with a thickness of 0.3 mm is 0%, and the coefficient of thermal expansion is 82 ⁇ 10 -7 /°C.
  • a preparation method of a ⁇ 40mm large-size high-contrast fiber optic inverter is as in Example 1.
  • the crosstalk of the prepared ⁇ 40mm large-size high-contrast fiber optic inverter is 0.90% at a distance of 0.1mm from the knife edge, and the high-contrast fiber optic inverter There is no obvious multifilament boundary under a 10X microscope, and the transmittance of the high-contrast fiber optic inverter is 71% in the wavelength range of 400-700nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Glass Compositions (AREA)

Abstract

一种Φ40mm大尺寸高对比度光纤倒像器的制备方法、应用,属于光纤传像元件制造领域。制备Φ40mm大尺寸高对比度光纤倒像器的光吸收料玻璃(1)由以下摩尔百分含量的组分组成:SiO 2 60-69.9,Al 2O 3 1.0-10.0,B 2O 310.1-15.0,Na 2O 1.0-8.0,K 2O 3.0-10.0,MgO 0.1-1.0,CaO 0.5-5.0,ZnO 0-0.1,TiO 2 0-0.1,ZrO 2 0.1-1.0,Fe 2O 3 3.0-6.5,Co 2O 3 0.1-0.5,V 2O 5 0.51-1.5,MoO 3 0.1-1.0。光纤倒像器具有杂散光串扰少、分辨率高、对比度高的优点。

Description

一种Φ40mm大尺寸高对比度光纤倒像器的制备方法、应用 技术领域
本发明涉及光纤传像元件制造领域,特别涉及一种Φ40mm大尺寸高对比度光纤倒像器的制备方法、应用。
背景技术
光纤传像元件包括光纤面板、光纤倒像器、光纤光锥、光纤传像束等,是一种性能优异的光电成像元器件,其最典型的应用是作为微光像增强器的光学输入、输出窗口,对提高成像器件的品质起着重要的作用。光纤传像元件的传像机理是利用光学纤维的全反射原理实现的,构成光纤传像元件的光学纤维是由低折射率的皮料玻璃管、高折射率的纤芯玻璃棒和高效吸收杂散光的光吸收料玻璃丝利用棒管结合和真空拉制工艺经热熔压制备而成的。由于光学纤维完全由皮料玻璃紧密地熔合在一起,各相邻之间的光学纤维靠的近,导致相邻纤维间会出现串光,或者由于制备过程中温度场或者拉制受力不均匀可能导致的皮层玻璃管壁厚不均匀等问题,最终导致输入光线会在全反射过程中穿透皮层发生光渗透现象,造成漏光,或者光纤纤维的芯料或皮料接触界面因为存在缺陷或污染物而破坏了光的全反射条件,使光线在此发生了散射,这些散射光进入到相邻纤维中,就造成了串光。杂散光的存在是直接影响光纤传像元件的对比度等成像质量的重要因素,为了解决上述难题,通常采用在相邻的光学纤维的空隙处填充光吸收料玻璃丝,利用光吸收料玻璃丝来吸收杂散光以提高光纤传像元件的成像质量。在排列好的光学纤维的间隙中插入光吸收纤维丝,从而起到吸收串光、漏光等作用,但是不能完全实现光绝缘,其中关键就是光吸收料玻璃材料的问题。普通的光吸收料玻璃在0.5mm厚度下对可见光范围仍然具有较高的透过率,随着厚度减薄,透过率会逐渐增加,而传统的光纤传像元件的光吸收料普遍存在杂散光吸收效率低、成像对比度差等问题,特别是应用于光纤传像元件中的纤维丝径不大于4μm的光学纤维丝,光吸收料中的着色离子有可能会扩散到皮层玻璃中去,无法满足高对比度光纤传像元件的应用需求。微光夜视技术对夜间的观察起着非常重要的作用,在夜视领域被广泛应用的微光夜视仪,具有在夜间低照度条件下观察及瞄准的能力,具有分辨力高、体视感好的特点,是士兵夜间作战的主要装备,能够保证士兵在夜间完成探测、瞄准和击中作战目标的任务。微光夜视仪能否捕捉到足够清晰的细节信息,与光纤传像元件的对比度有很大关系,对比度是光纤传像产品中的一个重要性能指标,随着光纤传像技术的不断发展,对产品的各项性能要求越来越高,而光纤倒像器则是保障微光夜视仪成像质量的关键材料,有效区尺寸大于Φ40mm的光纤倒像器称为大尺寸光纤倒像器。大尺寸光纤倒像器具有体积大、分辨力高、大视野等特点,图像传输稳定,被广泛应用于机器视觉、飞行模拟器等方面的瞄准,可用于主战坦克的枪瞄准、潜望镜侦察监视、核实验图像及时采集、大型装甲车、坦克、大型舰船的微光夜视系统中等。大尺寸光纤倒像器是一种由成千上万根具有单元纤维丝径小于6μm的光学纤维经过紧密堆积排列、热熔压成型、扭转成型制备的可传递图像的硬质光纤传像元器件。大尺寸光纤倒像器中的每根光学纤维都具有很好的光学绝缘性,因此每根光学纤维都能够独立传光传像,而不受临近其它光学纤维的影响,作为光学耦合传像器件具有高分辨率、零畸变、传光效率高等特点,同时具有倒像的功能,可以获得大尺寸、大视野、远距离的观测。
目前国内能够批量生产的光纤倒像器尺寸大都在直径Φ30mm以下,而由于大尺寸光纤 倒像器主要用于阴极射线管、摄像管、像增强器等需要传送图像的仪器和设备中,因此对产品制作工艺要求极高。大尺寸光纤倒像器由于直径大,体积大,在制备过程中,光纤板毛坯体积越大,光纤板毛坯加热渗透过程越困难,需要受热的时间越长,扭转成型过程也就越困难,但是受热时间越长,导致光吸收料中的着色离子渗透到皮层玻璃管的几率也就越大,光纤倒像器中的纤维结构在高温过程中被拉伸破坏的几率也就越大,会导致光纤倒像器出现复丝阴影、网格、斑点、边缘分辨力消失等缺陷,特别是随着光纤倒像器外形尺寸增大,会给制备工艺带来极大困难,在制备过程中不但要考虑边缘透过率的要求,还要考虑制备过程中,温度、工艺过程中3种材料的粘度匹配、成分相互扩散对光纤倒像器边缘分辨率、像畸变及内部斑点缺陷等的影响,所以大尺寸的高对比度光纤倒像器的制造难度很大。
发明内容
为了解决现有技术存在的问题,本发明提供了一种有效区直径大于Φ40mm的大尺寸高对比度光纤倒像器的制备方法。
为了实现上述目的,本发明采取的技术方案是:
一种Φ40mm大尺寸高对比度的光纤倒像器的制备方法,包括以下步骤:
(1)制备单丝和光吸收丝:将高折射率的纤芯玻璃棒和低折射率的皮料玻璃管匹配后进行单丝拉制,得到拉制的单丝,所述单丝的丝径为3.20~4.20mm;将光吸收料玻璃拉制成光吸收丝,所述光吸收丝的丝径为0.49~0.64mm;
(2)拉制一次复合棒:将拉制的单丝排列成横截面为正六边形的六方体,并将光吸收丝插入到拉制的单丝之间相邻的空隙中,得到一次复合棒;所述六方体中,每边为4根单丝,所述单丝总根数为37根;所述光吸收丝的插丝根数为24-60根,再将一次复合棒拉制成一次复丝,所述一次复丝的横截面为正六边形,所述一次复丝的六方对边尺寸0.78-0.98mm;
(3)拉制二次复合棒:将一次复丝再排列成横截面为正六边形的六方体,得到二次复合棒,二次复合棒的每边为17根一次复丝,一次复丝排成的二次复合棒中,一次复丝的总根数为817根,将二次复合棒再拉制成二次复丝,所述二次复丝的横截面为正六边形,所述二次复丝的六方对边尺寸为0.87-0.89mm;
(4)热熔压、扭转成型:将二次复丝定长切割后排列成板段,按照板段热熔压成型前后设计好的压缩比热熔压成型,得到单元丝径≤4.0μm的Φ40mm大尺寸高对比度光纤倒像器的光纤维板毛坯,再将光纤维板毛坯的两端经过180°角度的扭转成型,即可得到有效区尺寸大于Φ40mm的大尺寸高对比度光纤倒像器。
所述光吸收料玻璃的制备方法,包括以下步骤:
(1)原料配备:按照配比称取石英砂、氧化铝、硼酸或硼酐、碳酸钠、碳酸钾、碱式碳酸镁、碳酸钙、氧化锌、二氧化钛、氧化锆、三氧化二铁、三氧化二钴、五氧化二钒和氧化钼,混合均匀,得到原料混合物;
(2)玻璃熔融:将原料混合物放入坩埚中进行高温熔融,待原料混合物熔融后澄清,将熔融澄清后的玻璃液在模具中浇铸成规定规格的玻璃,待玻璃冷却凝固后进行退火处理,得到光吸收料玻璃。
所述高温熔融包括在1450-1550℃温度下熔融3-5小时,所述原料混合物在熔融过程中进行1-2次的搅拌;
所述澄清的温度为1300-1400℃,所述澄清的时间为1-2小时;
所述退火处理为在500-549℃下保温2-3小时,再用20-24小时降温至室温;
还包括,待浇铸完成后玻璃液还未完全凝固时,用震荡器将玻璃熔液振动均匀,以去除玻璃熔体中的内部孔洞和气泡。
所述纤芯玻璃棒的制备方法,包括以下步骤:
(1)将原料石英砂、硼酸或硼酐、碳酸钙、碳酸锶、硝酸钡、二氧化钛、氧化镧、氧化钆和氧化铌按照配料要求放入铂金坩埚中;
(2)在第一温度下熔融,玻璃熔制过程中进行2-3次的搅拌,再降温至第二温度下澄清;
(3)将澄清后的熔融玻璃液浇铸成规定的玻璃制品;
(4)将成型后的玻璃制品在退火炉中退火,再随炉冷却至室温。
所述第一温度为1450-1550℃;所述第二温度为1380-1420℃;所述熔融的时间为5-10小时;所述澄清的时间为1.5-2.5小时;所述退火处理为590-610℃保温1.5-2.5小时后用20-24小时降温至100℃。
所述光吸收料玻璃由以下摩尔百分含量的组分组成:
Figure PCTCN2023071265-appb-000001
优选的,所述光吸收料玻璃由以下摩尔百分含量的组分组成:
Figure PCTCN2023071265-appb-000002
Figure PCTCN2023071265-appb-000003
所述光吸收料玻璃在0.3±0.01mm厚度下,在400-700nm波长范围内具有强烈均匀的光吸收能力和光谱吸收效果,光谱透过率≤0.1%。
所述纤芯玻璃棒所用的纤芯玻璃具有1.79-1.82的折射率,由以下摩尔百分含量的组份组成:SiO 220-25%、B 2O 319-27%、CaO 0.5-5%、SrO 1-5%、BaO 15-25%、TiO 210-15%、La 2O 35-15%、Gd 2O 37.1-10%、Nb 2O 51-5%。
优选的,所述纤芯玻璃由以下摩尔百分含量的组分组成:
Figure PCTCN2023071265-appb-000004
所述的纤芯玻璃在30~300℃范围的平均线热膨胀系数为(89±4)×10 -7/℃。本发明还提供一种Φ40mm大尺寸高对比度的光纤倒像器,按照所述的制备方法制备得到。
所述Φ40mm大尺寸高对比度光纤倒像器在距刀口0.1mm处串光小于1.0%;所述光纤倒像器的分辨率大于140lp/mm;所述光纤倒像器在400-700nm波长范围内光谱透过率>70%。
本发明又提供一种所述的Φ40mm大尺寸高对比度的光纤倒像器在微光像增强器中的应用。
本发明的光吸收料玻璃可应用于高对比度光纤倒像器中,该高对比度光纤倒像器可应用于微光像增强器中。
本发明的光吸收料玻璃具有良好的光吸收性能,适合用来制备光纤传像元件时用作玻璃纤维的壁外吸收玻璃材料,特别适合用于制备高对比度光纤倒像器。光纤传像元件包括光纤面板、光纤倒像器、光纤光锥、光纤传像束等。
本发明中,SiO 2是玻璃形成骨架的主体,是玻璃骨架中起主要作用的成分。所述的纤芯玻璃中,SiO 2的摩尔百分比(mol.%)为20.0-25.0,纤芯玻璃中SiO 2含量低于20.0mol.%,不易获得高折射率的玻璃,同时会降低玻璃的耐化学稳定性;纤芯玻璃中SiO 2含量高于25.0mol.%时,玻璃的高温黏度会增加,造成玻璃熔制温度过高,同时玻璃的热膨胀系数会降低。
所述光吸收料玻璃中,SiO 2的摩尔百分比(mol.%)为60-69.9。光吸收料玻璃中SiO 2含量低于60mol.%,不易获得与皮料玻璃相似的热膨胀系数,同时会降低玻璃的耐化学稳定性;光吸收料玻璃中SiO 2含量高于69.9mol.%时,玻璃的高温黏度会增加,造成玻璃熔制温度过高。
B 2O 3为玻璃形成氧化物,也是构成玻璃骨架的成分,同时又是一种降低玻璃熔制黏度的助溶剂。硼氧三角体[BO 3]和硼氧四面体[BO 4]为结构组元,在不同条件下硼可能以三角体[BO 3]或硼氧四面体[BO 4]存在,在高温熔制条件时,一般难于形成硼氧四面体,而只能以三面体的方式存,但在低温时,在一定条件下B 3+有夺取游离氧形成四面体的趋势,使结构紧密而提高玻璃的低温黏度,但由于它有高温降低玻璃黏度和低温提高玻璃黏度的特性,也是降低玻 璃折射率的主要成分,由此决定了它的含量范围较小。所述纤芯玻璃中,B 2O 3的摩尔百分比(mol.%)为19.0-27.0,B 2O 3的含量低于19.0mol.%,无法起到助溶的作用,同时会降低玻璃的化学稳定性;B 2O 3含量大于27.0mol.%,会降低玻璃折射率,同时使玻璃的分相倾向增加。所述光吸收料玻璃中,B 2O 3的摩尔百分比(mol.%)为10.1-15.0,B 2O 3的含量大于15.0mol.%,会降低玻璃的折射率,同时使玻璃的分相倾向增加。
CaO是玻璃结构网络外体氧化物,所述纤芯玻璃中,CaO的摩尔百分比(mol.%)为0.5-5.0,CaO的含量大于5.0mol.%,会降低玻璃耐化学稳定性,增加玻璃的热膨胀系数;所述光吸收料玻璃中,CaO的含量大于5.0mol.%,会降低玻璃耐化学稳定性,提高玻璃的折射率,增大玻璃的析晶倾向,因此,光吸收料玻璃中CaO的摩尔百分比(mol.%)为0.5-5.0。
TiO 2在所述纤芯玻璃中是用来提高玻璃的折射率和透过率的,TiO 2的摩尔百分比(mol.%)为10.0-15.0,TiO 2的含量大于15mol.%,会降低玻璃的透过率。TiO 2在所述光吸收料玻璃中是用来调节玻璃耐化学稳定性和析晶性的,TiO 2的摩尔百分比(mol.%)为0-0.1,TiO 2的含量大于0.1mol.%,会降低玻璃的耐化性,增加析晶倾向。
SrO是碱土金属氧化物,是玻璃结构网络外体氧化物,所述纤芯玻璃中,SrO的摩尔百分比(mol.%)为1.0-5.0,SrO的含量大于5.0mol.%,会降低玻璃耐化学稳定性,增加玻璃的热膨胀系数。所述皮层玻璃中,SrO的摩尔百分比为0.1-5.0mol.%,SrO的含量大于5.0mol.%,会降低玻璃耐化学稳定性,增大玻璃的析晶倾向。
BaO是玻璃结构网络外体氧化物,能有效提高玻璃的折射率,所述纤芯玻璃中,BaO的摩尔百分比(mol.%)为15.0-25.0,BaO的含量大于25.0mol.%,会增加玻璃的析晶温度,增大玻璃的析晶倾向,同时使得玻璃的密度显著提高。
La 2O 3是镧系稀土氧化物,能提高玻璃的折射率,所述纤芯玻璃中,La 2O 3的摩尔百分比(mol.%)为5.0-15.0,但La 2O 3含量大于15.0mol.%时会造成玻璃的热膨胀系数增加。
Gd 2O 3也是稀土氧化物,能增加玻璃的折射率,Gd 2O 3的重量百分比(mol.%)为7.1-10.0,Gd 2O 3含量大于10.0mol.%时会造成玻璃的密度和热膨胀系数增加。
Nb 2O 5也是稀土氧化物,能增加玻璃的折射率,Nb 2O 5的重量百分比(mol.%)为1.0-5.0,但Nb 2O 5含量大于5.0mol.%时会造成玻璃的密度和热膨胀系数增加。
Al 2O 3属于玻璃的中间体氧化物,同时能降低玻璃的分相倾向。Al 3+在玻璃中有两种配位状态,即位于四面体或八面体中,当玻璃中氧足够多时,形成铝氧四面体[AlO 4],与硅氧四面体形成连续的网络,当玻璃中氧不足时,形成铝氧八面体[AlO 6],为网络外体而处于硅氧结构网络的空穴中,所以在一定含量范围内可以和SiO 2一样成为玻璃网络形成主体。所述光吸收料玻璃中,Al 2O 3含量大于10.0mol.%会显著增加玻璃高温黏度,使玻璃的熔制温度升高,因此,Al 2O 3的摩尔百分比(mol.%)为1.0-10.0。
Na 2O是碱金属氧化物,是玻璃结构网络外体氧化物,所述光吸收料玻璃中,Na 2O的含量大于8.0mol.%时会增加玻璃的热膨胀系数,同时提高玻璃的折射率,因此Na 2O的摩尔百分比(mol.%)为1.0-8.0。
K 2O是碱金属氧化物,是玻璃结构网络外体氧化物,所述光吸收料玻璃中,K 2O的含量大于10.0mol.%时会增加玻璃的热膨胀系数,同时提高玻璃的折射率,因此K 2O的摩尔百分比(mol.%)为3.0-10.0。
MgO是碱土金属氧化物,是玻璃结构的网络外体氧化物,所述光吸收料玻璃中,MgO的含量大于1.0mol.%时会增加玻璃的析晶倾向,同时会降低玻璃的密度,提高玻璃的折射率, 因此,MgO的摩尔百分比(mol.%)为0.1-1.0。
ZnO在所述光吸收料玻璃中是用来调节玻璃析晶温度和耐化学稳定性的,ZnO的摩尔百分比为0-0.1mol.%,ZnO的含量大于0.1mol.%,会降低玻璃的耐化学稳定性,增加析晶倾向。
ZrO 2在所述光吸收料玻璃中是用来调节玻璃耐化学稳定性和析晶性的,ZrO 2的摩尔百分比(mol.%)为0.1-1.0,ZrO 2的含量大于1.0mol.%,会降低玻璃的耐化性,增加析晶倾向。
Fe 2O 3是光吸收玻璃的光吸收着色剂,Fe 2O 3的摩尔百分比(mol.%)为3.0-6.5,在本发明中Fe 2O 3是起主要作用的光吸收剂,Fe 3+离子具有很好的吸光性能,且吸光范围主要集中在可见光至红外区域,Fe 2O 3的含量大于6.5mol.%,会降低玻璃耐化学稳定性,增大玻璃的析晶倾向,Fe 2O 3的含量小于3.0mol.%,会使得Fe 2O 3的着色在高温拉丝过程中变得不稳定甚至褪色,直接影响光吸收效果,对提高光纤倒像器的传像质量具有严重影响,无法满足提高光纤倒像器对比度的应用需求。
Co 2O 3是光吸收玻璃的着色剂,Co 2O 3的摩尔百分比(mol.%)为0.1-0.5,Co 2O 3能与铁离子结合起来,在玻璃中形成稳定的形态,从而使光吸收料着色更稳定。Co 2O 3的含量大于0.5mol.%时,会降低玻璃耐化学稳定性,增大玻璃的析晶倾向。
V 2O 5是光吸收玻璃的着色剂,V 2O 5的摩尔百分比(mol.%)为0.51-1.5,V 2O 5能固化铁离子着色,从而使光吸收料着色更稳定。V 2O 5的含量大于1.5mol.%时,会降低玻璃耐化学稳定性,增大玻璃的析晶倾向。
MoO 3是一种过渡金属氧化物,也是光吸收玻璃的着色剂,MoO 3的摩尔百分比(mol.%)为0.1-1.0,MoO 3能与铁离子、钴离子等相结合,在玻璃中形成稳定的着色,利用复合吸收作用,可以保证吸收400nm-700nm波长范围的杂散光,获得较好的光吸收效果,使光吸收曲线在可见光区域不出现明显的透过峰,但MoO 3的含量大于1.0mol.%,会降低玻璃耐化学稳定性,增大玻璃的析晶倾向。
与现有技术相比,本发明的一种Φ40mm大尺寸高对比度光纤倒像器所用的光吸收料玻璃具有以下特性:
(1)具有良好的光吸收性能,在0.3±0.01mm厚度下,在400-700nm波长范围内具有强烈均匀的光吸收能力和光谱吸收效果,光谱透过率≤0.1%;
(2)具有与皮料玻璃相似的热膨胀系数和粘度特性,玻璃的热膨胀系数(82±2)×10 -7/℃;
(3)具有良好的化学稳定性和抗析晶性能,光吸收料玻璃熔融后内部无结石、无气泡孔洞,在820℃保温6小时不分相、不析晶,抗析晶性能好,化学稳定性优良;
本发明的一种Φ40mm大尺寸高对比度光纤倒像器用纤芯玻璃,具有以下特性:
(1)具有合适的热膨胀系数,在30~300℃范围的平均线热膨胀系数为(89±4)×10 -7/℃;
(2)具有高折射率,折射率n D为1.79~1.82;
(3)具有良好的抗析晶性能,析晶温度大于850℃;
(4)具有良好的对可见光辐射透明和良好的化学稳定性。
(5)不含有对环境有危害的重金属元素氧化物如As 2O 3、Sb 2O 3、PbO、CdO等;
(6)具有与皮层玻璃相匹配的粘度特性;
(7)具有合适的玻璃熔制成型温度。
采用上述纤芯玻璃和光吸收料玻璃制备的一种Φ40mm大尺寸高对比度光纤倒像器具有以下优点:
(1)该大尺寸高对比度光纤倒像器在距刀口0.1mm处串光小于1.0%;
(2)该大尺寸高对比度光纤倒像器分辨率大于140lp/mm;
(3)该大尺寸高对比度光纤倒像器具有优良的固定图案噪声性能,在10倍显微镜下观察无明显复丝边界;
(4)该大尺寸高对比度光纤倒像器在400-700nm波长范围内透过率>70%;
(5)采用本发明的光吸收料玻璃应用在大尺寸高对比度光纤倒像器上,能有效提高光学纤维间杂散光的吸收,以降低纤维间的串光,从而达到提升光纤倒像器成像的对比度和清晰度的效果。
本发明提供的一种Φ40mm大尺寸光纤倒像器具有杂散光串扰少、分辨率高、对比度高的优点。通过对Φ40mm大尺寸光纤倒像器的工艺设计、光吸收料的组成配比及插丝排布的设置,解决了Φ40mm大尺寸光纤倒像器对比度低的难题,该光吸收料玻璃提高光纤倒像器对比度的技术应用到微光像增强器中,将大幅提升光纤倒像器成像质量等关键性能,使得大尺寸光纤倒像器产品可满足微光夜视行业的配套需求,还可替代传统的光纤倒像器产品,提高综合使用性能,促进空间视觉测量、探测成像等相关领域光电器件向高新能、宽视野的方向发展,具有很好的应用推广前景。
附图说明
图1为本发明实施例提供的组成Φ40mm大尺寸高对比度光纤倒像器的光学纤维内部结构示意图;
图2为本发明实施例提供的光学纤维结构示意图;
图3为采用本发明实施例1制备的Φ40mm大尺寸高对比度光纤倒像器的对比度测试图。
其中,1为光吸收料玻璃,2为纤芯玻璃,3为皮料玻璃。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面结合附图和具体实施方式对本发明做进一步详细的说明,但不作为对本发明的限定。
参见图1和图2,皮层玻璃管和纤芯玻璃棒匹配后拉制成单丝,单丝包括外部的皮层玻璃3和内部的纤芯玻璃2,多个单丝经过紧密排列成横截面为正六边形的六方体,在相邻的单丝之间设有光吸收料玻璃1拉制而成的光吸收丝,六方体中插入光吸收丝后组成一次复合棒,一次复合棒拉制成如图1所示的一次复丝。采用本发明的光吸收料玻璃的壁外插丝方法能有效吸收光学纤维内部的串光。图中,横截面是正六边形的一次复丝的六方对边尺寸L为0.78-0.98mm。
对本发明芯皮玻璃所测定的参数及测定方法和仪器如下:
(1)折射率n D[λ=589.3nm时玻璃的折射率];
(2)30-300℃的平均热膨胀系数α 30/300[10 -7/℃];
(3)玻璃的析晶温度T c(℃)。
其中,玻璃的折射率n D采用折射率测试仪来测定;玻璃在400nm-700nm的光透过率采用透过率测试仪来测定,玻璃片厚度0.3mm±0.01mm;30-300℃的线膨胀系数α 30/300[10 -7/℃]采用卧式膨胀仪测量,以平均线膨胀系数表示,采用ISO 7991规定的方法测量;玻璃的抗析晶温度采用的是ASTM C829-1981规定的用梯度炉法测量玻璃的液化温度的规程方法来测量。
在本文中,所有的“摩尔百分比mol.%”是基于最终的玻璃组合物的总摩尔量,在表1 和表2中分别详细列出了纤芯玻璃和光吸收料玻璃实施例的化学组成(mol.%)。
表1纤芯玻璃实施例的化学组成(mol.%)和玻璃性能
Figure PCTCN2023071265-appb-000005
表2光吸收料玻璃实施例的化学组成(mol.%)和玻璃性能
Figure PCTCN2023071265-appb-000006
以下实施例中所用原料及原料要求如下:
石英砂或水晶粉(高纯,150μm筛上物为1%以下、45μm筛下物为30%以下、Fe 2O 3含量小于1ppm)、氧化铝粉(分析纯,平均粒径50μm)、硼酸或硼酐(400μm筛上物为10%以下、63μm筛下物为10%以下)、碳酸钠(工业纯碱)、碳酸钾(分析纯,纯度≥99.0%)、碱式碳酸镁(化学纯,平均粒径50μm)、碳酸钙(分析纯,平均粒径250μm)、氧化锌(分析纯)、二氧化钛(分析纯)、氧化锆(分析纯)、三氧化二铁(分析纯)、三氧化二姑(分析纯)、氧化钒(分析纯)、氧化钼(分析纯)、碳酸锶(分析纯,纯度≥99.0%)、硝酸钡(分析纯,纯度≥99.0%)、三氧化二镧(5N)、三氧化二钆(5N)、五氧化二铌(5N)。
实施例1
纤芯玻璃棒的制备方法:
首先,按表1实施例1玻璃成份选择原料,并且要求对玻璃原料中的变价元素的氧化物如Fe 2O 3等进行严格控制,成品玻璃Fe 2O 3含量小于150PPm,并使其配料满足表1的玻璃化学组成,然后使用铂金坩埚在1550℃温度下熔融6小时,在玻璃熔制过程中,对玻璃进行2至3次的搅拌,使玻璃熔制均匀,待玻璃熔融后,再降温至1420℃温度澄清2小时,然后再将熔融玻璃液浇铸成规定的测试制品要求,再进行退火,退火处理为605℃保温2小时后用24小时降温至100℃,再随炉冷却至室温。其测试性能如表1所示,(1)折射率为1.81;(2)30-300℃的平均线膨胀系数85×10 -7/℃。
光吸收料玻璃的制备:
首先,按表2实施例1玻璃成份选择原料,并使其配料满足表2的玻璃化学组成。然后使用石英坩埚在1500℃温度下熔融4小时,在玻璃熔制过程中,对玻璃进行1至2次的搅拌,使玻璃熔制均匀,待玻璃熔融后将玻璃熔体在1350℃温度下澄清2小时,将熔融玻璃液浇铸成规定的规格,待浇铸完成后玻璃液还未完全凝固时,用震荡器将玻璃熔液振动均匀以去除玻璃熔体中的内部孔洞和气泡,待玻璃棒冷却凝固后进行退火处理,退火处理为在530℃下保温2小时,再用24小时降温至室温,即得到本发明的光吸收料玻璃。在表2中显示了试样的基本性能,厚度0.3mm的样品的可见光透过率为0%,热膨胀系数为80×10 -7/℃。
使用所述的光吸收料玻璃制备的一种Φ40mm大尺寸高对比度光纤倒像器的方法,包括以下步骤:
(1)制备单丝和光吸收丝:将高折射率的纤芯玻璃棒和低折射率的皮料玻璃管匹配后进行单丝拉制,得到拉制的单丝,所述单丝的丝径为3.70mm;将光吸收料玻璃拉制成光吸收丝,所述光吸收丝的丝径为0.56mm;
(2)拉制一次复合棒:将拉制的单丝排列成横截面为正六边形的六方体,并将光吸收丝插入到拉制的单丝之间相邻的空隙中,得到一次复合棒;所述六方体中,每边为4根单丝,单丝排成的一次复合棒中,所述单丝总根数为37根;所述光吸收丝的插丝根数为42根,再将一次复合棒拉制成一次复丝,所述一次复丝的横截面为正六边形,所述一次复丝的六方对边尺寸0.88mm;
(3)拉制二次复合棒:将一次复丝再排列成横截面为正六边形的六方体,得到二次复合棒,二次复合棒的每边为17根一次复丝,一次复丝排成的二次复合棒中,一次复丝的总根数为817根,将二次复合棒再拉制成二次复丝,所述二次复丝的横截面为正六边形,所述二次复丝的六方对边尺寸为0.87mm;
(4)热熔压、扭转成型:将二次复丝定长切割后排列成板段,按照板段热熔压成型设计好的压缩比,将板段经热熔压成型,得到单元丝径3.99μm的光纤维板毛坯,再将光纤维板毛坯的两端经过180°角度的扭转成型,得到有效区尺寸大于40mm的大尺寸高对比度光纤倒像器。
参见图3,采用上述光吸收料玻璃所制备的一种Φ40mm大尺寸高对比度光纤倒像器的对比度性能测试显示,所制备的Φ40mm大尺寸高对比度光纤倒像器在距刀口0.1mm处串光为0.90%,即其在距刀口0.1mm处的对比度小于1.0%。且该Φ40mm大尺寸高对比度光纤倒像器在10倍显微镜下观察无明显复丝边界,该高对比度光纤倒像器在400-700nm波长范围内透过率为72%。
实施例2
纤芯玻璃棒的制备方法:
玻璃实际组成参照表1实施例2,使用与表1中实施例1相同的原料及原料要求,并且采取在1500℃下熔融8小时,在玻璃熔制过程中,对玻璃进行2次搅拌,使玻璃熔制均匀,待玻璃熔融后,再降温至1400℃温度澄清1.5小时,然后再将熔融玻璃液浇铸成规定的测试制品要求,再进行退火,退火处理为600℃保温1.5小时后用23小时降温至100℃,再随炉冷却至室温。
采用与实施例1相同的测试条件,在表1显示了试样的基本性能。(1)折射率为1.81;(2)30-300℃的平均线膨胀系数91×10 -7/℃。
光吸收料玻璃的制备:
玻璃实际组成参照表2实施例2,使用与实施例1相同的原料及原料要求,然后使用石英坩埚在1450℃温度下熔融5小时,在玻璃熔制过程中,对玻璃进行1至2次的搅拌,使玻璃熔制均匀,待玻璃熔融后将玻璃熔体在1400℃温度下澄清1小时,将熔融玻璃液浇铸成规定的规格,并振动均匀后进行退火处理,退火处理为在525℃下保温2.5小时后用20小时降温至室温,即得到本发明的光吸收料玻璃。在表2中显示了试样的基本性能,厚度0.3mm的样品的可见光透过率为0%,热膨胀系数为81×10 -7/℃。
一种Φ40mm大尺寸高对比度光纤倒像器的制备方法与实施例1基本相同,所不同的是:
(1)制备单丝和光吸收丝:所述单丝的丝径为3.20mm;所述光吸收丝的丝径为0.49mm;
(2)拉制一次复合棒:光吸收丝的插丝根数为60根,再将一次复合棒拉制成一次复丝,所述一次复丝的六方对边尺寸0.78mm;
(3)拉制二次复合棒:所述二次复丝的六方对边尺寸为0.87mm;
(4)热熔压、扭转成型:将二次复丝定长切割后排列成板段,按照板段热熔压成型设计好的压缩比,将板段经热熔压成型,得到单元丝径3.94μm的光纤维板毛坯,再将光纤维板毛坯的两端经过180°角度的扭转成型,得到有效区尺寸大于40mm的大尺寸高对比度光纤倒像器。
一种Φ40mm大尺寸高对比度光纤倒像器的制备方法如实施例1,所制备的Φ40mm大尺寸高对比度光纤倒像器在距刀口0.1mm处串光为0.86%,且该高对比度光纤倒像器在10倍显微镜下观察无明显复丝边界,该高对比度光纤倒像器在400-700nm波长范围内透过率为71%。
实施例3
纤芯玻璃棒的制备方法:
玻璃实际组成参照表1实施例3,使用与表1中实施例1相同的原料及原料要求,并且采取在1480℃下熔融10小时,在玻璃熔制过程中,对玻璃进行3次搅拌,使玻璃熔制均匀,待玻璃熔融后,再降温至1380℃温度澄清2.5小时,然后再将熔融玻璃液浇铸成规定的测试制品要求,再进行退火,退火处理为595℃保温2.5小时后用20小时降温至100℃,再随炉冷却至室温度
采用与实施例1相同的测试条件,在表1显示了试样的基本性能。(1)折射率为1.80;(2)30-300℃的平均线膨胀系数93×10 -7/℃。
光吸收料玻璃的制备:
玻璃实际组成参照表2实施例3,使用与实施例1相同的原料及原料要求,然后使用石英坩埚在1550℃温度下熔融3小时,在玻璃熔制过程中,对玻璃进行1至2次的搅拌,使玻璃熔制均匀,待玻璃熔融后将玻璃熔体在1300℃温度下澄清2小时,将熔融玻璃液浇铸成规定的规格,并进行退火处理,退火处理为在540℃下保温3小时后用21小时降温至室温,即 得到本发明的光吸收料玻璃。在表2中显示了试样的基本性能,厚度0.3mm的样品的可见光透过率为0%,热膨胀系数为84×10 -7/℃。
一种Φ40mm大尺寸高对比度光纤倒像器的制备方法与实施例1基本相同,所不同的是:
(1)拉制单丝:所述单丝的丝径为4.20mm;所述光吸收丝的丝径为0.64mm;
(2)拉制一次复合棒:光吸收丝的插丝根数为24根,再将一次复合棒拉制成一次复丝,所述一次复丝的六方对边尺寸0.98mm;
(3)拉制二次复合棒:所述二次复丝的六方对边尺寸为0.89mm;
(4)热熔、扭转成型:将二次复丝定长切割后排列成板段,按照板段热熔压成型设计好的压缩比,将板段经热熔压成型,得到单元丝径3.98μm的光纤维板毛坯,再将光纤维板毛坯的两端经过180°角度的扭转成型,得到有效区尺寸大于40mm的大尺寸高对比度光纤倒像器。
一种Φ40mmΦ40mm大尺寸高对比度光纤倒像器的制备方法如实施例1,所制备的Φ40mm大尺寸高对比度光纤倒像器在距刀口0.1mm处串光为0.96%,且该高对比度光纤倒像器在10倍显微镜下观察无明显复丝边界,该高对比度光纤倒像器在400-700nm波长范围内透过率为71%。
实施例4
纤芯玻璃棒的制备方法:
玻璃实际组成参照表1实施例4,使用与表1中实施例1相同的原料及原料要求,并且采取在1450℃下熔融5小时,在玻璃熔制过程中,对玻璃进行2-3次搅拌,使玻璃熔制均匀,待玻璃熔融后,再降温至1390℃温度澄清2小时,然后再将熔融玻璃液浇铸成规定的测试制品要求,再进行退火,退火处理为610℃保温2小时后用24小时降温至100℃,再随炉冷却至室温,
采用与实施例1相同的测试条件,在表1显示了试样的基本性能。(1)折射率为1.82;(2)30-300℃的平均线膨胀系数89×10 -7/℃。
光吸收料玻璃的制备:
玻璃实际组成参照表2实施例4,使用与实施例1相同的原料及原料要求,然后使用石英坩埚在1480℃温度下熔融5小时,在玻璃熔制过程中,对玻璃进行1至2次的搅拌,使玻璃熔制均匀,待玻璃熔融后将玻璃熔体在1380℃温度下澄清1.5小时,将熔融玻璃液浇铸成规定的规格,并进行退火处理,退火处理为在500℃下保温2.5小时后用22小时降温至室温,即得到本发明的光吸收玻璃。在表2中显示了试样的基本性能,厚度0.3mm的样品的可见光透过率为0%,热膨胀系数为84×10 -7/℃。
一种Φ40mm大尺寸高对比度光纤倒像器的制备方法如实施例1,所制备的Φ40mm大尺寸高对比度光纤倒像器在距刀口0.1mm处串光为0.89%,且该高对比度光纤倒像器在10倍显微镜下观察无明显复丝边界,该高对比度光纤倒像器在400-700nm波长范围内透过率为71%。
实施例5
纤芯玻璃棒的制备方法:
玻璃实际组成参照表1实施例5,使用与表1中实施例1相同的原料及原料要求,并且采取相同熔化工艺制度和测试条件,在表1显示了试样的基本性能。(1)折射率为1.79;(2)30-300℃的平均线膨胀系数87×10 -7/℃。
光吸收料玻璃的制备:
玻璃实际组成参照表2实施例5,使用与实施例1相同的原料及原料要求,然后使用石 英坩埚在1460℃温度下熔融4小时,在玻璃熔制过程中,对玻璃进行1至2次的搅拌,使玻璃熔制均匀,待玻璃熔融后将玻璃熔体在1350℃温度下澄清2小时,将熔融玻璃液浇铸成规定的规格,并进行退火处理,退火处理为在549℃下保温3小时后用20小时降温至室温,即得到本发明的光吸收料玻璃。在表2中显示了试样的基本性能,厚度0.3mm的样品的可见光透过率为0%,热膨胀系数为83×10 -7/℃。
一种Φ40mm大尺寸高对比度光纤倒像器的制备方法如实施例1,所制备的Φ40mm大尺寸高对比度光纤倒像器在距刀口0.1mm处串光为0.91%,且该高对比度光纤倒像器在10倍显微镜下观察无明显复丝边界,该高对比度光纤倒像器在400-700nm波长范围内透过率为71%。
实施例6
纤芯玻璃棒的制备方法和性能如实施例1;
光吸收料玻璃的制备:
玻璃实际组成参照表2实施例5,使用与实施例1相同的原料及原料要求,然后使用石英坩埚在1470℃温度下熔融5小时,在玻璃熔制过程中,对玻璃进行1至2次的搅拌,使玻璃熔制均匀,待玻璃熔融后将玻璃熔体在1370℃温度下澄清2小时,将熔融玻璃液浇铸成规定的规格,并进行退火处理,退火处理为在540℃下保温3小时后用24小时降温至室温,即得到本发明的光吸收料玻璃。在表2中显示了试样的基本性能,厚度0.3mm的样品的可见光透过率为0%,热膨胀系数为82×10 -7/℃。
一种Φ40mm大尺寸高对比度光纤倒像器的制备方法如实施例1,所制备的Φ40mm大尺寸高对比度光纤倒像器在距刀口0.1mm处串光为0.90%,且该高对比度光纤倒像器在10倍显微镜下观察无明显复丝边界,该高对比度光纤倒像器在400-700nm波长范围内透过率为71%。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (14)

  1. 一种Φ40mm大尺寸高对比度的光纤倒像器的制备方法,其特征在于,包括以下步骤:
    (1)制备单丝和光吸收丝:将高折射率的纤芯玻璃棒和低折射率的皮料玻璃管匹配后进行单丝拉制,得到拉制的单丝,所述单丝的丝径为3.20~4.20mm;将光吸收料玻璃拉制成光吸收丝,所述光吸收丝的丝径为0.49~0.64mm;
    (2)拉制一次复合棒:将拉制的单丝排列成横截面为正六边形的六方体,并将光吸收丝插入到拉制的单丝之间相邻的空隙中,得到一次复合棒;所述六方体中,每边为4根单丝,所述单丝总根数为37根;所述光吸收丝的插丝根数为24-60根,再将一次复合棒拉制成一次复丝,所述一次复丝的横截面为正六边形,所述一次复丝的六方对边尺寸0.78-0.98mm;
    (3)拉制二次复合棒:将一次复丝再排列成横截面为正六边形的六方体,得到二次复合棒,二次复合棒的每边为17根一次复丝,一次复丝排成的二次复合棒中,一次复丝的总根数为817根,将二次复合棒再拉制成二次复丝,所述二次复丝的横截面为正六边形,所述二次复丝的六方对边尺寸为0.87-0.89mm;
    (4)热熔压、扭转成型:将二次复丝定长切割后排列成板段,按照板段热熔压成型前后设计好的压缩比热熔压成型,得到单元丝径≤4.0μm的Φ40mm大尺寸高对比度光纤倒像器的光纤维板毛坯,再将光纤维板毛坯的两端经过180°角度的扭转成型,即可得到有效区尺寸大于Φ40mm的大尺寸高对比度光纤倒像器。
  2. 根据权利要求1所述的制备方法,其特征在于,所述光吸收料玻璃的制备方法,包括以下步骤:
    (1)原料配备:按照配比称取石英砂、氧化铝、硼酸或硼酐、碳酸钠、碳酸钾、碱式碳酸镁、碳酸钙、氧化锌、二氧化钛、氧化锆、三氧化二铁、三氧化二钴、五氧化二钒和氧化钼,混合均匀,得到原料混合物;
    (2)玻璃熔融:将原料混合物放入坩埚中进行高温熔融,待原料混合物熔融后澄清,将熔融澄清后的玻璃液在模具中浇铸成规定规格的玻璃,待玻璃冷却凝固后进行退火处理,得到光吸收料玻璃。
  3. 根据权利要求2所述的制备方法,其特征在于,所述高温熔融包括在1450-1550℃温度下熔融3-5小时,所述原料混合物在熔融过程中进行1-2次的搅拌;
    所述澄清的温度为1300-1400℃,所述澄清的时间为1-2小时;
    所述退火处理为在500-549℃下保温2-3小时,再用20-24小时降温至室温;
    还包括,待浇铸完成后光吸收料玻璃液还未完全凝固时,用震荡器将玻璃熔液振动均匀,以去除玻璃熔体中的内部孔洞和气泡。
  4. 根据权利要求1所述的制备方法,其特征在于,所述纤芯玻璃棒的制备方法,包括以下步骤:
    (1)将原料石英砂、硼酸或硼酐、碳酸钙、碳酸锶、硝酸钡、二氧化钛、氧化镧、氧化钆和氧化铌按照配料要求放入铂金坩埚中;
    (2)在第一温度下熔融,玻璃熔制过程中进行2-3次的搅拌,再降温至第二温度下澄清;
    (3)将澄清后的熔融玻璃液浇铸成规定的玻璃制品;
    (4)将成型后的玻璃制品在退火炉中退火,再随炉冷却至室温。
  5. 根据权利要求4所述的制备方法,其特征在于,所述第一温度为1450-1550℃;所述第二温度为1380-1420℃;所述熔融的时间为5-10小时;
    所述澄清的时间为1.5-2.5小时;
    所述退火处理为590-610℃保温1.5-2.5小时,再用20-24小时降温至100℃。
  6. 根据权利要求1-5任一项所述的制备方法,其特征在于,所述光吸收料玻璃由以下摩尔百分含量的组分组成:
    Figure PCTCN2023071265-appb-100001
  7. 根据权利要求6所述的制备方法,其特征在于,所述光吸收料玻璃由以下摩尔百分含量的组分组成:
    Figure PCTCN2023071265-appb-100002
  8. 根据权利要求6所述的制备方法,其特征在于:
    所述光吸收料玻璃在0.3±0.01mm厚度下,在400-700nm波长范围内具有强烈均匀的光吸收能力和光谱吸收效果,光谱透过率≤0.1%。
  9. 根据权利要求6所述的制备方法,其特征在于:
    所述纤芯玻璃棒所用的纤芯玻璃具有1.79-1.82的折射率,由以下摩尔百分含量的组份组成:SiO 220-25%、B 2O 319-27%、CaO 0.5-5%、SrO 1-5%、BaO 15-25%、TiO 210-15%、La 2O 35-15%、Gd 2O 37.1-10%、Nb 2O 51-5%。
  10. 根据权利要求9所述的制备方法,其特征在于:
    所述纤芯玻璃由以下摩尔百分含量的组分组成:
    Figure PCTCN2023071265-appb-100003
  11. 根据权利要求10所述的制备方法,其特征在于,所述的纤芯玻璃在30~300℃范围的平均线热膨胀系数为(89±4)×10 -7/℃。
  12. 一种Φ40mm大尺寸高对比度的光纤倒像器,其特征在于,按照权利要求1-11任一项所述的制备方法制备得到。
  13. 根据权利要求12所述的Φ40mm大尺寸高对比度的光纤倒像器,其特征在于,所述光纤倒像器在距刀口0.1mm处串光小于1.0%;所述光纤倒像器的分辨率大于140lp/mm;所述光纤倒像器在400-700nm波长范围内光谱透过率>70%。
  14. 一种权利要求12或13所述的Φ40mm大尺寸高对比度的光纤倒像器在微光像增强器中的应用。
PCT/CN2023/071265 2022-09-09 2023-01-09 一种Φ40mm大尺寸高对比度光纤倒像器的制备方法、应用 WO2023147756A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB2309395.8A GB2624492A (en) 2022-09-09 2023-01-09 Preparation method and use for Ø40 mm large-size high-contrast optical fiber inverter
US18/356,173 US20240092679A1 (en) 2022-09-09 2023-07-20 FABRICATION METHOD AND USE OF F40 mm LARGE-SIZE AND HIGH-CONTRAST

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211101456.8 2022-09-09
CN202211101456.8A CN115542456B (zh) 2022-09-09 2022-09-09 Φ40mm大尺寸高对比度光纤倒像器的制备方法、应用

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/356,173 Continuation US20240092679A1 (en) 2022-09-09 2023-07-20 FABRICATION METHOD AND USE OF F40 mm LARGE-SIZE AND HIGH-CONTRAST

Publications (1)

Publication Number Publication Date
WO2023147756A1 true WO2023147756A1 (zh) 2023-08-10

Family

ID=84725234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/071265 WO2023147756A1 (zh) 2022-09-09 2023-01-09 一种Φ40mm大尺寸高对比度光纤倒像器的制备方法、应用

Country Status (2)

Country Link
CN (1) CN115542456B (zh)
WO (1) WO2023147756A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115368014B (zh) * 2022-09-09 2023-04-07 中国建筑材料科学研究总院有限公司 用于高对比度光纤倒像器的光吸收料玻璃及其制备方法
CN115542456B (zh) * 2022-09-09 2023-04-11 中国建筑材料科学研究总院有限公司 Φ40mm大尺寸高对比度光纤倒像器的制备方法、应用
GB2625610A (en) * 2022-09-09 2024-06-26 China Building Mat Academy Co Ltd Light absorption material glass for high-contrast optical fiber inverter, and preparation method therefor
GB2624492A (en) * 2022-09-09 2024-05-22 China Building Mat Academy Co Ltd Preparation method and use for Ø40 mm large-size high-contrast optical fiber inverter

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1224446A (en) * 1968-05-13 1971-03-10 Nippon Sheet Glass Co Ltd Optical glass
FR3036700A1 (fr) * 2015-05-29 2016-12-02 Eurokera Vitroceramiques du type aluminosilicate de lithium, transparentes, essentiellement incolores, affinees a l'etain, avec une microstructure amelioree et des proprietes de dilatation thermique ameliorees
US20190023603A1 (en) * 2017-07-19 2019-01-24 Corning Incorporated Organic-inorganic composite fibers and methods thereof
CN111393023A (zh) * 2020-04-22 2020-07-10 中国建筑材料科学研究总院有限公司 一种高清晰度光纤倒像器及其制备方法、用途
CN113603366A (zh) * 2021-09-14 2021-11-05 中国建筑材料科学研究总院有限公司 一种中膨胀光纤传像元件及其制备方法
CN115368014A (zh) * 2022-09-09 2022-11-22 中国建筑材料科学研究总院有限公司 用于高对比度光纤倒像器的光吸收料玻璃及其制备方法
CN115542456A (zh) * 2022-09-09 2022-12-30 中国建筑材料科学研究总院有限公司 一种Φ40mm大尺寸高对比度光纤倒像器的制备方法、应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1449215A (en) * 1973-11-30 1976-09-15 Gen Electric Co Ltd Manufacture of laser glass
JP5963144B2 (ja) * 2012-12-27 2016-08-03 Hoya株式会社 光学ガラス、プレス成形用ガラス素材、光学素子
CN203616499U (zh) * 2013-11-22 2014-05-28 广州宏晟光电科技有限公司 4微米光纤倒像器
CN107935381B (zh) * 2017-11-17 2021-05-28 中国建筑材料科学研究总院有限公司 用于中膨胀光纤传像元件的高折射率玻璃的组合物及其制备方法
CN110183108B (zh) * 2019-05-21 2021-10-01 中国建筑材料科学研究总院有限公司 用于光纤传像元件的光纤皮层玻璃及其机械拉管成型方法
CN111253068B (zh) * 2020-01-29 2022-02-18 北方夜视技术股份有限公司 高分辨率高调制度倒像器用吸收玻璃及其制备方法
CN111190251B (zh) * 2020-02-25 2022-02-25 南京春辉科技实业有限公司 一种大截面高分辨率柔性光纤传像束制造方法
CN111410423B (zh) * 2020-04-22 2022-09-20 中国建筑材料科学研究总院有限公司 一种用于光纤传像元件的光吸收料玻璃及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1224446A (en) * 1968-05-13 1971-03-10 Nippon Sheet Glass Co Ltd Optical glass
FR3036700A1 (fr) * 2015-05-29 2016-12-02 Eurokera Vitroceramiques du type aluminosilicate de lithium, transparentes, essentiellement incolores, affinees a l'etain, avec une microstructure amelioree et des proprietes de dilatation thermique ameliorees
US20190023603A1 (en) * 2017-07-19 2019-01-24 Corning Incorporated Organic-inorganic composite fibers and methods thereof
CN111393023A (zh) * 2020-04-22 2020-07-10 中国建筑材料科学研究总院有限公司 一种高清晰度光纤倒像器及其制备方法、用途
CN113603366A (zh) * 2021-09-14 2021-11-05 中国建筑材料科学研究总院有限公司 一种中膨胀光纤传像元件及其制备方法
CN115368014A (zh) * 2022-09-09 2022-11-22 中国建筑材料科学研究总院有限公司 用于高对比度光纤倒像器的光吸收料玻璃及其制备方法
CN115542456A (zh) * 2022-09-09 2022-12-30 中国建筑材料科学研究总院有限公司 一种Φ40mm大尺寸高对比度光纤倒像器的制备方法、应用

Also Published As

Publication number Publication date
CN115542456A (zh) 2022-12-30
CN115542456B (zh) 2023-04-11

Similar Documents

Publication Publication Date Title
WO2023147756A1 (zh) 一种Φ40mm大尺寸高对比度光纤倒像器的制备方法、应用
WO2023147757A1 (zh) 用于高对比度光纤倒像器的光吸收料玻璃及其制备方法
CN107935381B (zh) 用于中膨胀光纤传像元件的高折射率玻璃的组合物及其制备方法
CN111393023B (zh) 一种高清晰度光纤倒像器及其制备方法、用途
US11802071B2 (en) Fiber optic imaging element with medium-expansion and fabrication method therefor
CN111410423B (zh) 一种用于光纤传像元件的光吸收料玻璃及其制备方法
CN106517772B (zh) 用于拉板成型制备光纤面板的低折射率玻璃及其制备方法
CN115469395A (zh) 一种高均匀性光纤倒像器及其制备方法
CN115536283B (zh) 用于光纤传像元件的高折射率纤芯玻璃及其制备方法
CN103482867A (zh) 一种用于光纤面板的环保型高折射率玻璃及光学元件
CN115453680A (zh) 3微米光纤元器件及其制备方法
CN105481245B (zh) 用于制备闪烁光纤面板的闪烁玻璃的组合物及其制备方法
US11858846B2 (en) Glass with high refractive index for fiber optic imaging element with medium-expansion and fabrication method therefor
CN115304284B (zh) 一种用于光纤传像元件的低折射率皮层玻璃及其制备方法
JPH0230640A (ja) ファイバープレート用芯ガラス
US20240092679A1 (en) FABRICATION METHOD AND USE OF F40 mm LARGE-SIZE AND HIGH-CONTRAST
CN115368011B (zh) 用于光纤传像元件的相容性匹配良好的芯皮玻璃及其制备方法
CN115353284B (zh) 一种高对比度光纤传像元件及其制备方法
CN117602828A (zh) 用于中膨胀光纤传像元件的低折射率玻璃及其制备方法
CN117658457A (zh) 高透过率光纤传像元件用高折射率玻璃及其制备方法
CN117666014A (zh) 一种2.5μm光纤倒像器及其制备方法
CN117623620A (zh) 一种高透过率光纤传像元件及其制备方法、应用
CN116253507B (zh) 高折射率耐辐射玻璃材料及其制备方法和应用
CN117602825A (zh) 高分辨力高均匀性光纤倒像器用光吸收玻璃及其制备方法
CN117602817A (zh) 一种高分辨力高均匀性光纤倒像器及其制备方法、应用

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 202309395

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20230109

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23749335

Country of ref document: EP

Kind code of ref document: A1