WO2023145578A1 - 薬剤点眼による近視誘導モデル - Google Patents

薬剤点眼による近視誘導モデル Download PDF

Info

Publication number
WO2023145578A1
WO2023145578A1 PCT/JP2023/001374 JP2023001374W WO2023145578A1 WO 2023145578 A1 WO2023145578 A1 WO 2023145578A1 JP 2023001374 W JP2023001374 W JP 2023001374W WO 2023145578 A1 WO2023145578 A1 WO 2023145578A1
Authority
WO
WIPO (PCT)
Prior art keywords
myopia
physical
chemical means
animal
endoplasmic reticulum
Prior art date
Application number
PCT/JP2023/001374
Other languages
English (en)
French (fr)
Inventor
一男 坪田
俊英 栗原
真一 池田
Original Assignee
株式会社坪田ラボ
ロート製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社坪田ラボ, ロート製薬株式会社 filed Critical 株式会社坪田ラボ
Publication of WO2023145578A1 publication Critical patent/WO2023145578A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/15Medicinal preparations ; Physical properties thereof, e.g. dissolubility
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing

Definitions

  • the present invention relates to a method for evaluating the effectiveness of interventions (medication, phototherapy, behavior modification, etc.) used for suppressing the progression of myopia or preventing and treating myopia (hereinafter abbreviated as "myopia treatment"). More specifically, the present invention induces myopia in experimental animals by activating the signal transduction system related to endoplasmic reticulum stress, which is the cause of myopia, with a specific compound. ) to evaluate whether the myopia treatment method is effective or not by evaluating whether the biomarkers related to myopia are improved.
  • a study at Keio University School of Medicine has proposed a method of forcing laboratory animals to wear strong minus lenses to induce myopia. Specifically, after acclimating 3-week-old male C57BL6J mice, a -30 diopter (diopter, D) minus lens was applied to the right eye (myopia-induced eye), and a 0D lens or frame alone was applied to the left eye as a control. (control eye) and maintained for an additional 3 weeks.
  • D diopter
  • mice are 6 weeks old when the efficacy of treatment is evaluated.
  • the eye axis of C57BL6 mice is elongated during the period of 3 to 6 weeks of age as well (see Non-Patent Document 6).
  • the method using minus lenses requires a high-level technique of forcibly wearing special animal glasses for a long period of time. (eg, 3-week-old mice) (see Patent Document 1).
  • the object of the present invention is to provide a new in vivo method for evaluating the effectiveness of physical or chemical means (intervention) for myopia treatment.
  • the present inventors found that the signal transduction system related to endoplasmic reticulum stress is strongly involved in pathological axial elongation.
  • the present inventors found that when tunicamycin or thapsigargin, known as endoplasmic reticulum stress inducers, were administered to 3-week-old mice, compared with eyes administered with PBS (phosphate-buffered saline), ocular axis It was found that the elongation of length and the decrease in refractive power were significantly altered, inducing myopia (see US Pat.
  • the present inventors found that changes in biomarkers (e.g., axial length, refractive power) due to the above-mentioned forced activation of the endoplasmic reticulum stress response gene can be suppressed by therapeutic intervention. He found this and completed the present invention.
  • biomarkers e.g., axial length, refractive power
  • the present invention provides the following (1) to (5).
  • a method for evaluating the efficacy of physical or chemical means for treating myopia in vivo comprising: a treatment step of applying the physical or chemical means to a myopia-induced model animal in which the signal transduction system related to endoplasmic reticulum stress has been activated; A measuring step of measuring a biomarker for myopia in an animal that has been subjected to physical or chemical means after a predetermined period of time has elapsed from the treatment step; determining that the physical or chemical means are effective in treating myopia in vivo if the following criteria are met.
  • a myopia-induced model animal in which the amount of change in the measured biomarker for myopia from the value before activation of the signal transduction system for endoplasmic reticulum stress is not affected by the physical or chemical means. It is smaller than the amount of change from the value of the biomarker before activation of the signal transduction system related to endoplasmic reticulum stress in (control).
  • the signal transduction system related to endoplasmic reticulum stress is at least one of PERK pathway, ATF6 pathway and IRE1 pathway.
  • the myopia-induced model animal is one selected from myopia-induced mice, rats, white leghorns, dogs, and monkeys.
  • the biomarker for myopia is one selected from axial length, refractive index, choroidal thickness, scleral thickness, and scleral collagen fiber thickness, according to any one of (1) to (3).
  • Method. (5) further comprising an induction step of administering a myopia-inducing substance to at least one eye of the animal; The method according to any one of (1) to (4), wherein the eye to which the myopia-inducing substance is administered is an object for evaluation of the myopia treatment effect.
  • a myopia-induced model animal can be produced more easily and in a shorter period of time than the method using a minus lens.
  • phenylbutyric acid (4-PBA) which has already been verified to suppress the progression of myopia in a lens-induced myopia animal model, it can be similarly suppressed in a drug-induced myopia-induced animal model. It can be used to assess the efficacy of physical or chemical means for treating myopia in vivo.
  • the dosage and frequency of administration of the myopia-inducing substance can be changed at will, the degree of myopia to be induced can be controlled at will.
  • model animals that use a minus lens that induces myopia in childhood it is not limited by the age of the animal, and various myopia-inducing model animals can be produced according to the pathology to be reproduced.
  • FIG. 10 is a graph showing axial length after instillation of tunicamycin.
  • FIG. 10 is a graph showing axial length after instillation of tunicamycin.
  • One embodiment of the present invention is a method of evaluating the efficacy of physical or chemical means for treating myopia in vivo.
  • the method according to the present embodiment comprises a treatment step of applying the physical or chemical means to a myopia-inducing model animal in which a signal transduction system related to endoplasmic reticulum stress has been activated, and after a predetermined period of time has elapsed from the treatment step, physical measuring a biomarker for myopia in an animal that has undergone a physical or chemical means, and that the physical or chemical means is effective in treating myopia in vivo if the following criteria are met: and a determination step of determining.
  • Criteria The amount of change in the measured biomarker for myopia from the value before the activation of the signal transduction system for endoplasmic reticulum stress is not affected by physical or chemical means in a myopia-induced model animal (control), the amount of change from the value before activation of the signal transduction system related to endoplasmic reticulum stress of the biomarker.
  • the method according to this embodiment may further include an induction step of administering a myopia-inducing substance to at least one eye of the animal for inducing myopia.
  • the method according to the present embodiment may use a separately prepared myopia-induced model animal.
  • activation of a signal transduction system related to endoplasmic reticulum stress means not only inducing endoplasmic reticulum stress itself, but also PERK (PKR-like endoplasmic reticulum kinase) pathway, IRE1 (Inositol requiring 1) and ATF6 (Activating transcription factor 6) pathway.
  • Endoplasmic reticulum stress can be induced by administering a substance that activates at least one of the PERK pathway, IRE1 pathway, and ATF6 pathway. It also means activating a transduction system located downstream of any of the PERK, IRE1 and ATF6 pathways.
  • Endoplasmic reticulum stress is sensed by three stress sensors and signals downstream to prevent excessive accumulation of misfolded proteins. It is known that there are three endoplasmic reticulum stress sensors, the PERK pathway, the IRE1 pathway, and the ATF6 pathway. It is known that suppression of either the PERK pathway or the ATF6 pathway results in the compensatory activation of the other pathway. Therefore, a method for evaluating effective means for myopia treatment in vivo would be useful for the development of myopia treatment means.
  • PERK is an endoplasmic reticulum transmembrane kinase, and factors involved in its signal transduction include eIF2 ⁇ (eukaryotic initiation factor 2 ⁇ ), ATF4 (activating transcription factor 4), CHOP (C/EBP homologous protein), GADD34 ( growth arrest DNA and damage protein 34) and the like.
  • eIF2 ⁇ eukaryotic initiation factor 2 ⁇
  • ATF4 activating transcription factor 4
  • CHOP C/EBP homologous protein
  • GADD34 growth arrest DNA and damage protein 34
  • ATF6 is a membrane-bound transcription factor belonging to the CREB/ATF family, and factors involved in its signal transduction include, for example, BiP (binding immunoglobulin protein, also referred to as "GRP78"), Txndc12 (thioredoxin domain containing 12, Also referred to as “ERp18”), S1P (site-1 protease), S2P (site-2 protease), and the like.
  • BiP binding immunoglobulin protein
  • Txndc12 thioredoxin domain containing 12, Also referred to as "ERp18”
  • S1P site-1 protease
  • S2P site-2 protease
  • IRE1 is a transmembrane protein that is distributed in the endoplasmic reticulum membrane and is activated in response to endoplasmic reticulum stress. IRE1 is bound to the endoplasmic reticulum molecule chaperone BiP, and is separated by endoplasmic reticulum stress to form aggregates.
  • the myopia-inducing step is a step of administering a myopia-inducing substance to at least one eye of an animal to induce myopia in the administered animal. Eyes to which a myopia-inducing substance is administered are induced to have myopia due to the activation of the signal transduction system related to endoplasmic reticulum stress, and are subject to evaluation of therapeutic efficacy for myopia. If the myopia-inducing substance is administered to only one eye, the other eye may serve as a "control eye".
  • the myopia-inducing substance when administered by a method other than one eye (e.g., administration to both eyes, oral administration, administration to blood vessels, etc.), another subject to which the myopia-inducing substance is not administered may be used as a "control". Instillation of excessive myopia-inducing substances in one eye may affect the other eye. In such cases, another individual to whom no myopia-inducing substance is administered can serve as a "control".
  • the myopia-inducing substance can be a known substance, for example, a substance that can activate the signal transduction system related to endoplasmic reticulum stress, and activates at least one of the PERK pathway, ATF6 pathway and IRE1 pathway. It may be a substance. Substances capable of activating these pathways may be substances with agonistic action (direct activation) or substances that inhibit substances that inactivate the pathways (indirect activation). good too.
  • myopia-inducing substances examples include substances that activate the PERK pathway (e.g., CCT020312, azolamide), substances that activate the ATF6 pathway (e.g., AA147), and substances that activate the IRE1 pathway (e.g., APY29). .
  • substances that simultaneously activate a plurality of PERK pathways, ATF6 pathways, or IRE1 pathways eg, tunicamycin, thapsigargin), Brefeldin A, salubrinal, and the like are also included.
  • the above myopia-inducing substances may be administered singly or in combination of two or more. It is preferable to administer a mixture of two or more myopia-inducing substances because the myopia-inducing effect is more reliable. Tunicamycin and thapsigargin are expected to induce stronger myopia since they can activate these three pathways.
  • a substance that activates at least one of the PERK pathway, IRE1 pathway, and ATF6 pathway can be administered, for example, as eye drops.
  • the dosage of the above substances may be 1-200 ⁇ g/mL, 2-190 ⁇ g/mL, 3-180 ⁇ g/mL, 5-170 ⁇ g/mL, 5-160 ⁇ g/mL, 5-150 ⁇ g/mL, 5-150 ⁇ g/mL, It may be 140 ⁇ g/mL, 5-130 ⁇ g/mL, 5-120 ⁇ g/mL, 5-110 ⁇ g/mL, 5-100 ⁇ g/mL, 8-100 ⁇ g/mL, or 10-100 ⁇ g/mL.
  • the dosage of the substance may be 1-200 ⁇ M, 2-190 ⁇ M, 3-180 ⁇ M, 5-170 ⁇ M, 5-160 ⁇ M, 5-150 ⁇ M, 5-140 ⁇ M, 5-130 ⁇ M, 5-120 ⁇ M, 5-120 ⁇ M, It may be 110 ⁇ M, 5-100 ⁇ M, 8-100 ⁇ M, or 10-100 ⁇ M.
  • tunicamycin can induce myopia caused by induction of endoplasmic reticulum stress by administering 50 ⁇ g/mL of tunicamycin to the eye at least once.
  • Thapsigargin can also induce myopia due to the induction of endoplasmic reticulum stress with at least one eye instillation in an amount of 10 ⁇ M.
  • CCT020312 and AA147 can induce myopia due to induction of endoplasmic reticulum stress by a single ocular administration of 100 ⁇ M.
  • the frequency of administration may be 1 to 3 times per day, preferably once per day. To induce myopia, eye drop administration 1-3 times daily may be repeated for a week.
  • the myopia-inducing substance can be administered in any dosage form, and from the viewpoint of acting on ocular cells such as the sclera, for example, it can be administered as an injection or an eye drop, and can be administered as an eye drop. is preferred.
  • tunicamycin When used as eye drops, it can be, for example, 10 to 100 ⁇ g/mL, preferably 20 to 80 ⁇ g/mL, more preferably 40 to 60 ⁇ g/mL.
  • the concentration can be, for example, 1 to 100 ⁇ M, preferably 2 to 60 ⁇ M, more preferably 5 to 30 ⁇ M.
  • the myopia-inducing substance By adjusting the dose and frequency of administration of the myopia-inducing substance, more severe myopia can be induced. For example, administration of a mixture of tunicamycin and thapsigargin tends to increase axial length compared to administration of each alone.
  • the methods of the present invention also allow the induction of a desired degree of myopia (eg, mild, moderate, severe) and assess the effectiveness of treatment therefor.
  • a desired degree of myopia eg, mild, moderate, severe
  • posterior eye diseases caused by severe myopia myopic macular degeneration, myopic retinochoroidal atrophy, myopic choroidal neovascularization, etc.
  • myopia-inducing substance by adjusting the dosage and frequency of administration of the myopia-inducing substance, it is possible to induce mild and gradual myopia.
  • myopia in adulthood is considered to be a mild and gradual progression, and such a myopic pathology can be simulated.
  • a myopia-inducing substance is administered locally to only one eye at a concentration below which it does not affect the other eye through blood flow. You can also cancel the individual variation of.
  • the eye axis changes easily during the growth period, and myopia induction is easier to induce during the growth period. In other words, it is difficult to induce myopia with minus lenses in aged mice.
  • myopia-inducing substance by adjusting the dose and frequency of administration of the myopia-inducing substance, myopia can be induced even in aged mice, in which myopia is normally difficult to induce. A disease can also be simulated.
  • eye drops can contain other active ingredients (pharmacologically active ingredients, physiologically active ingredients, etc.).
  • active ingredients pharmaceutically active ingredients, physiologically active ingredients, etc.
  • the types of such ingredients are not particularly limited. Pharmaceutical ingredients, saccharides, polymer compounds or their derivatives, cellulose or its derivatives, local anesthetic ingredients and the like.
  • ingredients and additives are appropriately selected in accordance with conventional methods according to the application and form, within the range that does not impair the effect of activating the signal transduction system related to endoplasmic reticulum stress.
  • two or more of them can be used in combination.
  • Components or additives thereof include, for example, carriers commonly used in the preparation of liquid formulations, fragrances or cooling agents, preservatives, bactericides or antibacterial agents, pH adjusters, chelating agents, stabilizers, etc.
  • Various additives such as tonicity agents, buffering agents, and thickening agents can be used. Typical ingredients used in eye drops are exemplified below, but are not limited to these.
  • Examples of carriers include aqueous solvents such as water and hydrous ethanol.
  • a solubilizer may be used when various components are difficult to dissolve in an aqueous solvent.
  • solubilizers include polyoxyethylene hydrogenated castor oil, polyoxyl 40 stearate, povidone, polysorbate 80 and the like.
  • Perfumes or cooling agents include, for example, terpenes (specifically, anethole, eugenol, camphor, geraniol, cineole, borneol, menthol, limonene, ryuno, etc. These may be d-, l- or dl-isomers. good), essential oils (fennel oil, cool mint oil, cinnamon oil, spearmint oil, peppermint water, peppermint oil, peppermint oil, bergamot oil, eucalyptus oil, rose oil, etc.).
  • Antiseptics, bactericides or antibacterial agents include, for example, polydronium chloride, alkyldiaminoethylglycine hydrochloride, sodium benzoate, ethanol, benzalkonium chloride, benzethonium chloride, chlorhexidine gluconate, chlorobutanol, sorbic acid, potassium sorbate, Sodium dehydroacetate, methyl parahydroxybenzoate, ethyl parahydroxybenzoate, propyl parahydroxybenzoate, butyl parahydroxybenzoate, oxyquinoline sulfate, phenethyl alcohol, benzyl alcohol, biguanide compounds (specifically, polyhexamethylene biguanide or its hydrochloride) etc.), Growkill (trade name manufactured by Rhodia), and the like.
  • pH adjusters examples include hydrochloric acid, sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, triethanolamine, monoethanolamine, diisopropanolamine, sulfuric acid, and phosphoric acid.
  • Chelating agents include, for example, ascorbic acid, tetrasodium edetate, sodium edetate, citric acid, and the like.
  • Stabilizers include, for example, sodium edetate hydrate, povidone, polysorbate 80, dibutylhydroxytoluene, trometamol, sodium formaldehyde sulfoxylate (Rongalite), tocopherol, sodium pyrosulfite, monoethanolamine, aluminum monostearate, and glyceryl monostearate.
  • tonicity agents examples include potassium chloride, sodium chloride, concentrated glycerin, glucose, D-mannitol, and the like.
  • buffering agents include sodium citrate hydrate, sodium acetate hydrate, sodium hydrogen carbonate, trometamol, boric acid, borax, sodium hydrogen phosphate hydrate, sodium dihydrogen phosphate and the like.
  • thickening agents examples include carboxyvinyl polymer, povidone, polyvinyl alcohol (partially saponified product), hydroxyethylcellulose, hypromellose, methylcellulose, glycerin, and the like.
  • the additive can be added in anticipation of the effect of activating the signal transduction system related to endoplasmic reticulum stress, or within a range that does not inhibit the effect.
  • the content is not particularly limited, it is preferably about 0.001 to 1% by mass with respect to the total amount of eye drops.
  • the pH of the eye drops may be 3 to 10, preferably 4 to 9 from the viewpoint of feeling in use, and more preferably 5 to 8.5 from the viewpoint of feeling in use.
  • Myopia induction model animal Although the myopia-inducing model animal is not particularly limited, it is preferably an animal suitable for the purpose of evaluating physical or chemical means effective in treating myopia in vivo. Also, when evaluating effective means for treating myopia in humans, it is preferable to use animal species that are genetically close to humans.
  • Myopia induction model animals include, for example, rodents such as mice, rats, hamsters and guinea pigs, birds such as white leghorn chicks (also called "chicks" in Japan), fish such as killifish, dogs (e.g. beagle ), monkeys (eg, rhesus monkeys, cynomolgus monkeys), and squirrels (eg, tree shrews).
  • the animal used to create the myopia induction model can be arbitrarily selected from childhood, adulthood, old age, etc. according to the state of myopia to be evaluated. Juvenile stage, adult stage, and old stage can be distinguished depending on the average life span of the animal species, and can be appropriately selected according to the purpose. For example, when evaluating the efficacy of treatment for myopia in juvenile stages when the eye axis tends to change with growth, juvenile animals (e.g., 3-week-old mice, 5-day-old white leghorns) should be used.
  • a myopia-inducing animal model can be produced in a short period of time, so it is also possible to evaluate the effects of physical or chemical means to be tested on physiological or pathological axial elongation. be.
  • a White Leghorn as an animal, it is preferable to use, for example, a 5-day-old White Leghorn chick from the viewpoint of making an animal model assuming application to children.
  • Myopia-inducing eye drops can be prepared by a method commonly used or known to those skilled in the art. For example, after dispersing each component in a carrier such as water, add a solubilizer if necessary, heat as necessary, homogenize, dissolve or emulsify using a homomixer or the like, and adjust the pH. It may be prepared by adjusting the pH with an agent. Moreover, as a method for sterilizing the formulation, methods such as electron beam sterilization, autoclave sterilization, and filtration sterilization can be selected.
  • the treatment step is a step of subjecting a myopia-induced model animal caused by induction of endoplasmic reticulum stress to a physical or chemical means.
  • the term "physical or chemical means effective for myopia treatment” is not particularly limited as long as it is a physical or chemical means that is considered to be effective in treating myopia in vivo.
  • examples thereof include 4-phenylbutyric acid, tauroursodeoxycholic acid, salubrinal, guanabenz, GSK2606414, GSK2656157, ISRIB, nelfinavir, azolamide, and arctigenin, which are endoplasmic reticulum stress gene inhibitors (see Patent Document 1).
  • Other examples include crocetin, which is an EGR-1 gene expression enhancing component, or ginkgo biloba extract (see Patent Document 2).
  • irradiation with light having a specific wavelength can be used (see Patent Document 3).
  • the wavelength of the light to be irradiated, the irradiation time, the irradiation angle, and the like can be changed as appropriate from the viewpoint of evaluating therapeutic efficacy. Exposure to sunlight (outdoor activities) is also possible (see the non-patent document “Tsubota Lab Inc. Annual Report 2020, No. 2”). Also, orthokeratology contact lenses, multifocal contact lenses with off-axis aberration correction function, and spectacles may be used (see Non-Patent Documents 7 and 8).
  • Chemical means can be, for example, the administration of formulations containing compounds or macromolecules (eg, antibodies).
  • Compounds or macromolecules (eg, antibodies) can be administered by methods such as oral administration, transdermal administration, eye drop administration, nasal drop administration, injection (eg, subcutaneous administration, intravenous administration, intraperitoneal administration, intramuscular administration).
  • Preferred modes of administration are eye drop administration, injection or oral ingestion.
  • the formulations used in chemical means can be oral formulations such as tablets, powders, and capsules, transdermal formulations such as patches, tapes, and ointments, eye drops, nasal drops, and injections.
  • Oral formulations can contain other active ingredients (pharmacologically active ingredients, physiologically active ingredients, etc.) in addition to the above-mentioned compounds or macromolecules (eg, antibodies).
  • active ingredients pharmacologically active ingredients, physiologically active ingredients, etc.
  • macromolecules eg, antibodies
  • the types of such components are not particularly limited, and for example, excipients, lubricants, binders, disintegrants and the like can be blended. Additives such as preservatives, antioxidants, coloring agents and sweeteners can also be used as necessary.
  • excipients include sugar alcohols such as D-sorbitol, mannitol and xylitol, sugars such as glucose, sucrose, lactose and fructose, crystalline cellulose, carmellose sodium, croscarmellose sodium, calcium hydrogen phosphate, and wheat starch. , rice starch, corn starch, potato starch, dextrin, ⁇ -cyclodextrin, light anhydrous silicic acid, titanium oxide, magnesium aluminometasilicate, talc, kaolin, olive oil and the like.
  • sugar alcohols such as D-sorbitol, mannitol and xylitol
  • sugars such as glucose, sucrose, lactose and fructose
  • crystalline cellulose carmellose sodium, croscarmellose sodium, calcium hydrogen phosphate
  • wheat starch and wheat starch.
  • rice starch, corn starch, potato starch dextrin, ⁇ -cyclodextrin, light
  • Binders include, for example, cellulose derivatives such as methylcellulose, ethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, polyvinylpyrrolidone, polyvinyl alcohol, acrylic polymers, gelatin, gum arabic, pullulan, pregelatinized starch, agar, tragacanth, Examples include sodium alginate and propylene glycol alginate.
  • disintegrants include starch, low-substituted hydroxypropylcellulose, carboxymethylcellulose calcium, croscarmellose sodium, hydroxypropyl starch, partially pregelatinized starch, and the like.
  • lubricants include stearic acid, magnesium stearate, calcium stearate, polyoxyl stearate, cetanol, talc, hydrogenated oil, sucrose fatty acid ester, dimethylpolysiloxane, beeswax, white beeswax, and the like.
  • the eye drops can contain other active ingredients (pharmacologically active ingredients, physiologically active ingredients, etc.) in addition to the above-mentioned compounds or macromolecules (eg, antibodies).
  • active ingredients pharmaceutically active ingredients, physiologically active ingredients, etc.
  • the types of such ingredients are not particularly limited. Pharmaceutical ingredients, saccharides, polymer compounds or their derivatives, cellulose or its derivatives, local anesthetic ingredients and the like.
  • ingredients and additives are appropriately selected according to conventional methods according to the application and form, and one or more of them are added to the extent that the effects of the present invention are not impaired.
  • Components or additives thereof include, for example, carriers commonly used in the preparation of liquid formulations, fragrances or cooling agents, preservatives, bactericides or antibacterial agents, pH adjusters, chelating agents, stabilizers, etc.
  • Various additives such as tonicity agents, buffering agents, and thickening agents can be used. Typical ingredients used in eye drops are exemplified below, but are not limited to these.
  • Examples of carriers include aqueous solvents such as water and hydrous ethanol.
  • a solubilizer may be used when various components are difficult to dissolve in an aqueous solvent.
  • solubilizers include polyoxyethylene hydrogenated castor oil, polyoxyl 40 stearate, povidone, polysorbate 80 and the like.
  • Perfumes or cooling agents include, for example, terpenes (specifically, anethole, eugenol, camphor, geraniol, cineole, borneol, menthol, limonene, ryuno, etc. These may be d-, l- or dl-isomers. good), essential oils (fennel oil, cool mint oil, cinnamon oil, spearmint oil, peppermint water, peppermint oil, peppermint oil, bergamot oil, eucalyptus oil, rose oil, etc.).
  • Antiseptics, bactericides or antibacterial agents include, for example, polydronium chloride, alkyldiaminoethylglycine hydrochloride, sodium benzoate, ethanol, benzalkonium chloride, benzethonium chloride, chlorhexidine gluconate, chlorobutanol, sorbic acid, potassium sorbate, Sodium dehydroacetate, methyl parahydroxybenzoate, ethyl parahydroxybenzoate, propyl parahydroxybenzoate, butyl parahydroxybenzoate, oxyquinoline sulfate, phenethyl alcohol, benzyl alcohol, biguanide compounds (specifically, polyhexamethylene biguanide or its hydrochloride) etc.), Growkill (trade name manufactured by Rhodia), and the like.
  • pH adjusters examples include hydrochloric acid, sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, triethanolamine, monoethanolamine, diisopropanolamine, sulfuric acid, and phosphoric acid.
  • Chelating agents include, for example, ascorbic acid, tetrasodium edetate, sodium edetate, citric acid, and the like.
  • Stabilizers include, for example, sodium edetate hydrate, povidone, polysorbate 80, dibutylhydroxytoluene, trometamol, sodium formaldehyde sulfoxylate (Rongalite), tocopherol, sodium pyrosulfite, monoethanolamine, aluminum monostearate, and glyceryl monostearate.
  • tonicity agents examples include potassium chloride, sodium chloride, concentrated glycerin, glucose, D-mannitol, and the like.
  • buffering agents include sodium citrate hydrate, sodium acetate hydrate, sodium hydrogen carbonate, trometamol, boric acid, borax, sodium hydrogen phosphate hydrate, sodium dihydrogen phosphate and the like.
  • thickening agents examples include carboxyvinyl polymer, povidone, polyvinyl alcohol (partially saponified product), hydroxyethylcellulose, hypromellose, methylcellulose, glycerin, and the like.
  • additives can be added in anticipation of the effects of the present invention or within a range that does not impede the effects of the present invention.
  • the content is not particularly limited, it is preferably about 0.001 to 1% by mass with respect to the total amount of eye drops.
  • the pH of the eye drops may be 3 to 10, preferably 4 to 9 from the viewpoint of feeling in use, and more preferably 5 to 8.5 from the viewpoint of feeling in use.
  • Formulations used by chemical means can be prepared by methods commonly used or known to those skilled in the art. For example, in the case of an oral formulation, the composition is kneaded and passed through a screen to form extruded granules, which are pulverized and granulated. A method of pulverizing and sieving using a combill after agitating granulation by molding, and a method of compressing the formulation composition with a roller compactor, pulverizing with a roll granulator and sieving, after agitating granulation, A method of fluid bed drying is exemplified.
  • a solubilizer is added if necessary, the mixture is heated as necessary, and homogenized using a homomixer or the like. It may be prepared by dissolving or emulsifying and adjusting the pH with a pH adjuster. Moreover, as a method for sterilizing the formulation, methods such as electron beam sterilization, autoclave sterilization, and filtration sterilization can be selected.
  • the dosage and administration of the formulation can be changed as appropriate within the scope of common general knowledge in the art, depending on the purpose of evaluating therapeutic efficacy.
  • eye drops for example, about 1 to 6 times a day, about 1 to 2 drops per time may be applied, and may be continued for a week.
  • the measurement step is a step of measuring at least one of axial length and refractive power of the animal subjected to physical or chemical means after a predetermined period of time from the treatment step described above. Depending on the treatment process, it may take a certain amount of time for the myopia treatment effect to appear. Therefore, at least one of axial length and refractive power of the treated animal is measured after a predetermined period of time has elapsed from the treatment step.
  • the axial length is the length from the corneal vertex to the retina. When the axial length of the eye is elongated, the retina becomes farther than the focal point, making it difficult to capture an accurate image.
  • the axial length of an adult human eye is approximately 24 mm, and the axial length of a patient with high myopia exceeds 27 mm.
  • the axial length can be measured using, for example, a spectral domain optical coherence tomography device SD-OCT (Spectral-domain OCT, device name: EnvisuR4310, manufactured by Bioptigen Inc.) or B-scan ultrasonography.
  • the degree of refraction is a numerical value that represents the refractive power of the eye that changes so that the retina is perfectly focused when moving the viewpoint, and is expressed in units of D (diopter).
  • the refractive power can be measured using an autorefractometer or a mouse refractometer (Infrared photorefractor for mice, manufactured by Professor Schaeffel, University of Tubingen).
  • the determining step is the process of determining that a physical or chemical means is effective in treating myopia in vivo if the following criteria are met. Criteria: A myopia-induced model animal in which the amount of change in the measured biomarker for myopia from the value before activation of the signal transduction system for endoplasmic reticulum stress is not affected by the physical or chemical means. It is smaller than the amount of change from the value of the biomarker before activation of the signal transduction system related to endoplasmic reticulum stress in (control).
  • "effective for myopia treatment in vivo" can be evaluated according to the amount of change in biomarkers related to myopia. For example, it can be evaluated based on whether or not the elongation of the axial length and/or the decrease in refractive power and/or the thinning of the choroid and/or the thinning of the sclera caused by myopia induction is suppressed.
  • the amount of change from the value before activation of the signal transduction system related to endoplasmic reticulum stress of the measured biomarkers related to myopia is not affected by physical or chemical means Myopia induction If the amount of change in the biomarker is smaller than the value before activation of the signal transduction system related to endoplasmic reticulum stress in the model animal (control), it is determined to be effective for myopia treatment in vivo. be able to. That is, by inducing myopia in a myopia-inducing model animal (control) that has not been affected by physical or chemical means, the value of a biomarker related to myopia changes (variation 1).
  • the value of the biomarker related to myopia is further changed (variation 2).
  • the absolute value of the sum of the amount of change 1 and the amount of change 2 is compared with the absolute value of the amount of change 1, and if it is smaller than the absolute value of the amount of change 1, the physical or Chemical means can be determined to be effective for treating myopia in vivo.
  • the axial length elongates and the refractive power decreases compared to the eyes of the model animal before myopia induction or untreated animals.
  • the physical or chemical means tested are effective in treating myopia in vivo, they exhibit the behavior of reversion of elongated axial length and/or reversion of decreased refractive power. show.
  • multiple tests were performed to compare the axial length or refraction of animals after induction of myopia with the axial length or refraction of animals measured after the treatment step, and no statistically significant differences were found.
  • the physical or chemical means can be evaluated to be effective in treating myopia in vivo.
  • the axial length or refraction of the animal measured after the treatment step is similar to the axial length or refraction of the model animal or untreated animal before the induction of myopia (e.g., each average value within ⁇ 10% is) is preferable.
  • a physical or chemical means may be determined to be effective in treating myopia in vivo if at least one of the following (a) and (b) is satisfied.
  • the value of the measured axial length is smaller than a threshold established based on the axial length of a myopia-induced model animal unaffected by physical or chemical means.
  • the measured refraction value is greater than a threshold established based on the refraction of a myopia-induced model animal unaffected by physical or chemical means;
  • threshold refers to a value that serves as a reference for determining changes in the axial length or refraction of an animal that has been subjected to physical or chemical means, by physical or chemical means It is a value determined based on the value of the axial length or refractive power of an unaffected myopia-induced model animal.
  • the threshold value may be the axial length or refraction of a myopia-induced model animal that has not been subjected to physical or chemical means, or the axial length or refraction measured before the application of physical or chemical means. It may be the axial length or refraction of the other eye (the eye not subjected to the physical or chemical means) when only one eye is subjected to the physical or chemical means.
  • a person skilled in the art can arbitrarily set a threshold value, but it is taken into consideration that numerical values may include variation between individuals, variation accompanying growth, etc., depending on the threshold value. Appropriate thresholds should be set according to the type and/or method of physical or chemical means.
  • the amount of change in axial length of animals subjected to physical or chemical means is the amount of change in axial length of animals not subjected to physical or chemical means. is determined to be effective for myopia treatment when it is smaller than .
  • a general method may be adopted for the significance test.
  • the amount of change in refraction in animals that have undergone physical or chemical means is greater than the amount of change in axial length in animals that have not undergone physical or chemical means. If it is large, it is judged to be effective for myopia treatment.
  • a general method may be adopted for the significance test.
  • Student's t-test can be used for two-group comparison. Multiple comparisons such as Dunnet's, Tukey's, or Bonferoni's can be used for other group comparisons. In either method, a p-value of less than 0.05 can be determined to be statistically significant.
  • Tunicamycin or thapsigargin solutions were prepared by dissolving tunicamycin or thapsigargin in dimethyl sulfoxide (DMSO) to a concentration 1000 times the final concentration and diluting it 1000 times with phosphate buffered saline (PBS). bottom.
  • DMSO-containing PBS solution used as a control was prepared by diluting DMSO with PBS 1000 times.
  • Figures 1 (a) and (b) are graphs showing the axial length and refraction values after tunicamycin administration
  • Figures 1 (c) and (d) are graphs showing the axial length and refraction values after thapsigargin administration. be.
  • Tm indicates the group to which the tunicamycin solution was instilled
  • TG to the group to which the thapsigargin solution was instilled
  • DMSO to the group to which the DMSO-containing PBS solution was instilled.
  • Administration of tunicamycin significantly elongated the axial length of the eye and significantly decreased the refractive value.
  • Axial length and refractive power of 3-week-old C57BL6J male mice were measured using animal-dedicated SD-OCT and a refractometer (measurement before eye drop administration).
  • CCT020312 solution, AA147 solution, or CCT+AA solution (concentration: 100 ⁇ M) was instilled into the right eye of 3-week-old male C57BL6J mice once a day for 1 week.
  • One week after administration the axial length and refractive power of the right eye were measured, and the amount of change was calculated.
  • CCT020312 solution or AA147 solution was prepared by dissolving CCT020312 or AA147 in DMSO to a final concentration of 1000 times and diluting it with PBS to 1000 times.
  • the CCT+AA solution was prepared by dissolving CCT020312 and AA147 in DMSO to 1000 times the final concentration and diluting it 1000 times with PBS.
  • a PBS solution used as a control was prepared by diluting DMSO 1000-fold with PBS.
  • 2(a)-(c) are graphs showing the refraction values in the group with CCT020312 (CCT), the group with AA147 (AA), or the group with CCT020312 and AA147 (CCT+AA), respectively.
  • FIG. 3(a) shows, from the left, a group receiving DMSO-containing PBS solution (DMSO), a group receiving tunicamycin (Tm), a group receiving tunicamycin followed by 4-PBA (Tm+4-PBA), and thapsigargin.
  • DMSO DMSO-containing PBS solution
  • Tm group receiving tunicamycin
  • Tm+4-PBA 4-PBA
  • thapsigargin is a graph showing the axial length of a group (TG) to which thapsigargin was instilled and a group to which 4-PBA was instilled after thapsigargin was instilled (TG+4-PBA).
  • 3(b) shows, from the left, a group receiving DMSO-containing PBS solution (DMSO), a group receiving tunicamycin (Tm), a group receiving tunicamycin followed by 4-PBA (Tm+4-PBA), and thapsigargin.
  • DMSO DMSO-containing PBS solution
  • Tm group receiving tunicamycin
  • Tm+4-PBA 4-PBA
  • thapsigargin is a graph showing the refraction in a group (TG) instilled with thapsigargin and in a group (TG+4-PBA) in which thapsigargin was instilled followed by 4-PBA.
  • FIG. 4 is a graph showing the axial length of a group receiving DMSO-containing PBS solution (DMSO) and a group receiving tunicamycin (Tm). In White Leghorn chicks, tunicamycin administration also significantly elongated the axial length of the eye.
  • DMSO DMSO-containing PBS solution
  • Tm group receiving tunicamycin

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Food Science & Technology (AREA)
  • Pathology (AREA)
  • Hematology (AREA)
  • General Physics & Mathematics (AREA)
  • Urology & Nephrology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本発明は、イン・ビボにおける近視治療に対する物理的又は化学的手段の有効性を評価する方法であって、小胞体ストレスに係るシグナル伝達系を活性化された近視誘導モデル動物に、前記物理的又は化学的手段を施す処置工程と、前記処置工程から所定期間経過後に、前記物理的又は化学的手段を施された動物の近視に係るバイオマーカーを測定する測定工程と、以下の判定基準を満たす場合に、前記物理的又は化学的手段がイン・ビボで近視治療に有効であると判定する判定工程と、を含む、方法を提供する。判定基準:測定された近視に係るバイオマーカーの、小胞体ストレスに係るシグナル伝達系の活性化前の値からの変化量が、前記物理的又は化学的手段による影響を受けていない近視誘導モデル動物(コントロール)における、当該バイオマーカーの小胞体ストレスに係るシグナル伝達系の活性化前の値からの変化量よりも小さい。

Description

薬剤点眼による近視誘導モデル
 本発明は、近視進行の抑制あるいは近視の予防・治療(以下「近視治療」と略記)のために用いられる介入(投薬、光線治療、行動変容等)の有効性評価方法に関する。さらに詳しくは、本発明は、実験動物において近視の原因である小胞体ストレスに係るシグナル伝達系を特定の化合物により活性化することで近視を誘導し、その近視モデル動物に対する介入が非介入(コントロール)に対して近視に係るバイオマーカーが改善したか否かを評価することで、当該近視治療方法が有効か否かを評価するイン・ビボ試験方法に関する。
 近視及び強度近視に関する最新の研究によれば、世界的に顕著な近視人口の増大が予想され、2050年には近視は約50億人、強度近視は約10憶人に上ると予想されている(非特許文献1を参照)。また、2019年の慶應義塾大学医学部の疫学調査によると、東京都内の中学生727人における近視有病率は94.9%であり、どの学年でも90%を超えたという結果であった(非特許文献2を参照)。このように、「近視」は極めて有病率の高い疾患であり、また強度近視は「視力喪失」をもたらし得るという極めて深刻な疾患であり、有効な近視治療方法が強く求められている。
 人間の眼は誕生直後では遠視であり、成長期(8歳まで)の前後方向の眼軸伸長により光軸が伸びることで遠視の程度が小さくなり、学童期に入ると適正な眼軸長となることで正視化する。これを「生理的眼軸伸長」と呼び、この生理的眼軸伸長が何らかの原因で損なわれると、眼軸伸長が不足することで遠視が残り、小児のQOL(QualityofLife)を著しく悪化させる。一方、正視化後も眼軸伸長が止まらず、8歳以降も過剰に眼軸長が伸長することを「病的眼軸伸長」と呼び、これが小児の近視進行の要因であり、ゆえに近視は8歳以降の学童期に急激に進行し、一度伸長した眼軸長をもとに戻すことはできない(非特許文献3を参照)。
 小児の近視進行を抑制するには、この過剰な眼軸伸長(病的眼軸伸長)を抑制する必要があるが、生理的眼軸伸長まで抑制してしまうと、近視にはならないが遠視が残り本末転倒である。ゆえに、適正な小児の近視進行抑制戦略においては、病的眼軸伸長を抑制しつつ同時に生理的眼軸伸長までは抑制しないという、相反する作用を同時に成立させなければならない。そこで、近視治療に有効かどうかを評価するのに適した近視誘導モデル動物を開発するための研究が行われている。
国際公開第2018/164113号 国際公開第2018/212152号 特開2017-40940号公報
Brien A Holden,et.al.,"Global prevalence of myopia and high myopia ando temporal trends from 2000 through 2050",Ophthalmology,Vol.123,Number5,P.1036-1042(May2016). 「小中学生の近視増加傾向への警鐘」、慶應義塾大学医学部、2019年8月19日プレスリリース(https://oklens.co.jp/new/2019/08/21/). 不二門尚、「日本眼科学会専門医制度生涯教育講座 総説54小児の近視の進行防止」、日眼会誌、117巻、4号、397頁~406頁(平成25年4月10日). Jiang,X.,et.al.,A highly efficient murine model of experimental myopia. Scientific reports 8,2026,doi:10.1038/s41598-018-20272-w(2018). Mori,K.,et.al.,Oral crocetin administration suppressed refractive shift and axial elongation in a murine model of lens-induced myopia. Scientific reports 9,295,doi:10.1038/s41598-018-36576-w(2019). Xiangtian Zbou,etal.、The Development of the Refractive Status and Ocular Growth in C57BL6 Mice.Investigative Ophthalmology & Visual Science、December 2008、Vol.49、No.12. 「CLによる近視進行防止」MB OCULISTA No.4:67-74,2013 「眼鏡を用いた近視進行抑制の試みと小児の近視進行の特徴」あたらしい眼科 33(10):1411-1417,2016
 しかしながら、近視発病のメカニズムは十分に解明されているとは言えず、また近視治療成分・方法を評価するための安定で確立された試験方法はほとんどない。また、このような重篤な疾患である近視において有効な近視治療方法は未だ少ない。
 一方で、小児における一般的な近視進行のみならず、高齢者の近視進行による強度近視化や失明のように様々な近視の態様に応じた種々の介入方法の探索が求められており、しかるに、簡便・安定で幼若・成体・老齢に関わらず近視を惹起できる動物モデルの確立が強く求められている。
 慶應義塾大学医学部の研究により、実験動物に強いマイナスレンズを強制的に装着させ近視を誘導する方法が提案されている。具体的には、3週齢の雄性C57BL6Jマウスを馴化させた後、-30ジオプター(diopter、D)のマイナスレンズを右眼(近視誘導眼)に、コントロールとして0Dのレンズ又はフレームのみを左眼(対照眼)に装着させて、さらに3週間飼育する。
 しかし、このレンズ誘導近視動物モデルでは近視誘導に3週間を要するため、治療有効性を評価する時にはマウスは6週齢となる。C57BL6マウスの3~6週齢の期間も成長に伴い眼軸が伸長している(非特許文献6を参照)。このように、マイナスレンズを用いる方法では、特殊な動物用メガネを長期間強制装着させる高度な手技が必要であり、また、使用するマウスが、眼軸が成長に伴って変化しやすい幼若期(例:マウスでは3週齢)に限定される(特許文献1を参照)。
 そこで、本発明の目的は、新たなイン・ビボにおける近視治療に対する物理的又は化学的手段(介入)の有効性を評価する方法を提供することにある。
 本発明者らは、小児の近視進行(病的眼軸伸長)に関する研究において、小胞体ストレスに係るシグナル伝達系が病的眼軸伸長に強く関与していることを見出した。また、本発明者らは、小胞体ストレス誘導物質として知られているツニカマイシン又はタプシガルギンを3週齢マウスに投与すると、PBS(リン酸緩衝生理食塩水)を投与した眼と比較して、眼軸長の伸長及び屈折度の低下が有意に変化し、近視が誘導されることを見出した(特許文献1を参照)。
 本発明者らは、更に研究を進めた結果、上述の強制的な小胞体ストレス応答遺伝子の活性化によるバイオマーカー(例えば、眼軸長、屈折度)の変化が、治療的介入により抑制できることを見出し、本発明を完成させた。
 すなわち、本発明は以下の(1)~(5)を提供する。
(1)
 イン・ビボにおける近視治療に対する物理的又は化学的手段の有効性を評価する方法であって、
 小胞体ストレスに係るシグナル伝達系を活性化された近視誘導モデル動物に、前記物理的又は化学的手段を施す処置工程と、
 前記処置工程から所定期間経過後に、物理的又は化学的手段を施された動物の近視に係るバイオマーカーを測定する測定工程と、
 以下の判定基準を満たす場合に、前記物理的又は化学的手段がイン・ビボで近視治療に有効であると判定する判定工程と、を含む、方法。
 判定基準:測定された近視に係るバイオマーカーの、小胞体ストレスに係るシグナル伝達系の活性化前の値からの変化量が、前記物理的又は化学的手段による影響を受けていない近視誘導モデル動物(コントロール)における、当該バイオマーカーの小胞体ストレスに係るシグナル伝達系の活性化前の値からの変化量よりも小さい。
(2)
 前記小胞体ストレスに係るシグナル伝達系が、PERK経路、ATF6経路及びIRE1経路の少なくとも1つである、(1)に記載の方法。
(3)
 前記近視誘導モデル動物が、近視を誘導されたマウス、ラット、白色レグホン、犬、およびサルから選ばれる1つである、(1)又は(2)に記載の方法。
(4)
 近視に係るバイオマーカーが、眼軸長、屈折度、脈絡膜厚、強膜厚、及び強膜コラーゲン繊維の太さから選ばれる一つである、(1)~(3)のいずれかに記載の方法。
(5)
 動物の少なくとも一方の眼に近視誘導物質を投与する誘導工程をさらに含み、
 近視誘導物質を投与された眼が近視治療効果の評価対象である、(1)~(4)のいずれかに記載の方法。
 本発明の方法によれば、マイナスレンズを用いる方法と比較して、より簡便かつ短期間で近視誘導モデル動物を作製することができる。また、レンズ誘導近視動物モデルにおいて近視進行を抑制することが既に検証されたフェニル酪酸(4-PBA)を投与することによって、薬物誘導された近視誘導動物モデルにおいても同様に抑制できることから、イン・ビボにおける近視治療に対する物理的又は化学的手段の有効性を評価するために使用することができる。また、近視誘導物質の投与量や投与回数を随意に変更できるため、誘導したい近視の程度を随意に制御できる。また、幼若期に近視を誘導するマイナスレンズを用いるモデル動物と異なり、動物の年齢によって限定されず、再現したい病態に応じた多様な近視誘導モデル動物を作製することもできる。
(a)及び(b)は、ツニカマイシンを投与した後の眼軸長及び屈折値を示すグラフであり、(c)及び(d)は、タプシガルギンを投与した後の眼軸長及び屈折値の変化を示すグラフである。 (a)は、CCT020312単独投与した後の屈折値を示すグラフであり、(b)は、AA147単独投与した後の屈折値を示すグラフであり、(c)は、CCT020312及びAA147併用投与した後の屈折値を示すグラフである。 (a)は、ツニカマイシン又はタプシガルギン投与と、その後の4-PBA投与した後の眼軸長を示すグラフである。(b)は、ツニカマイシン又はタプシガルギン投与と、その後の4-PBAを投与した後の屈折度を示すグラフである。 ツニカマイシンを点眼した後の眼軸長を示すグラフである。
 以下、本発明を詳細に説明する。本発明は、以下の実施形態及び実験例に限定されず、本発明の要旨を包含する範囲で種々の変形例や応用例を含む。
 本発明の一実施形態は、イン・ビボにおける近視治療に対する物理的又は化学的手段の有効性を評価する方法である。本実施形態に係る方法は、小胞体ストレスに係るシグナル伝達系を活性化された近視誘導モデル動物に、前記物理的又は化学的手段を施す処置工程と、前記処置工程から所定期間経過後に、物理的又は化学的手段を施された動物の近視に係るバイオマーカーを測定する測定工程と、以下の判定基準を満たす場合に、当該物理的又は化学的手段がイン・ビボで近視治療に有効であると判定する判定工程と、を含む。
 判定基準:測定された近視に係るバイオマーカーの、小胞体ストレスに係るシグナル伝達系の活性化前の値からの変化量が、物理的又は化学的手段による影響を受けていない近視誘導モデル動物(コントロール)における、当該バイオマーカーの小胞体ストレスに係るシグナル伝達系の活性化前の値からの変化量よりも小さい。
 本実施形態に係る方法は、近視を誘導するための動物の少なくとも一方の眼に近視誘導物質を投与する誘導工程をさらに含んでいてもよい。また、本実施形態に係る方法は、別途用意された近視誘導モデル動物を使用してもよい。
(小胞体ストレスに係るシグナル伝達系の活性化)
 本明細書において、「小胞体ストレスに係るシグナル伝達系の活性化」とは、小胞体ストレスそのものを惹起することのみならず、PERK(PKR-like endoplasmic reticulum kinase)経路、IRE1(Inositol requiring 1)経路、及びATF6(Activating transcription factor 6)経路の少なくとも1つを活性化することも意味する。PERK経路、IRE1経路、及びATF6経路の少なくとも1つを活性化する物質を投与することにより、小胞体ストレスを誘導することができる。また、PERK経路、IRE1経路、及びATF6経路のいずれかの下流に位置する伝達系を活性化することも意味する。
 小児の近視進行(病的眼軸伸長)に関する因子として、小胞体中の異常蛋白質である折りたたみ不全蛋白質に応答する遺伝子経路が病的眼軸伸長に関与している。小胞体ストレスは3つのストレスセンサーによって感知され、折りたたみ不全のタンパク質が過剰に蓄積しないように下流ヘシグナルを伝達する。小胞体ストレスセンサーとしてはPERK経路、IRE1経路、ATF6経路の3つの経路があることが知られている。PERK経路又はATF6経路のいずれかのみを抑制した場合には、他方の経路を代償的に活性化してしまうことが知られている。そのため、イン・ビボにおいて近視治療に有効な手段を評価する方法は、近視治療手段の開発に有用であると考えられる。
 PERKは、小胞体膜貫通型キナーゼであり、そのシグナル伝達に関わる因子としては、例えば、eIF2α(eukaryotic initiation factor 2α)、ATF4(Activating transcription factor 4)、CHOP(C/EBP homologous protein)、GADD34(growth arrest DNA and damage protein 34)等が挙げられる。
 ATF6は、CREB/ATFファミリーに属する膜結合型転写因子であり、そのシグナル伝達に関わる因子としては、例えば、BiP(Binding immunoglobulin protein,「GRP78」とも称される)、Txndc12(thioredoxin domain containing 12,「ERp18」とも称される)、S1P(site-1 protease)、S2P(site-2 protease)等が挙げられる。
 IRE1は、小胞体膜に分布して膜貫通タンパク質であり、小胞体ストレスに応じて活性化する。IRE1には小胞体分子シャペロンBiPが結合しており、小胞体ストレスにより離れ、集合体を形成する。
1.近視誘導工程
 近視誘導工程は、動物の少なくとも一方の眼に近視誘導物質を投与し、投与された動物に近視を誘導する工程である。近視誘導物質を投与された眼は、小胞体ストレスに係るシグナル伝達系の活性化に起因する近視が誘導され、近視の治療有効性の評価対象となる。近視誘導物質を片方の眼のみに投与する場合は、他方の眼を「対照眼」(Control)としてもよい。また、近視誘導物質を一方の眼に投与する以外の方法で投与する場合(例えば、両眼への投与や経口での投与、血管への投与等)は、近視誘導物質を投与しない別の個体を「対照」(Control)として使用してもよい。過剰量の近視誘導物質を片方の眼に点眼すると、他方の眼にも影響を及ぼすことがある。そのような場合には、近視誘導物質を投与しない別の個体を「対照」(Control)として扱うこともできる。
(近視誘導物質)
 近視誘導物質は、公知の物質を利用することができ、例えば、小胞体ストレスに係るシグナル伝達系を活性化可能な物質であり、PERK経路、ATF6経路及びIRE1経路の少なくとも1つを活性化する物質であってもよい。これらの経路を活性化できる物質は、アゴニスト作用を有する物質(直接的な活性化)であってもよく、その経路を不活性化する物質を阻害する物質(間接的な活性化)であってもよい。
 近視誘導物質としては、PERK経路を活性化する物質(例えば、CCT020312、アゾラミド)、ATF6経路を活性化する物質(例えば、AA147)、IRE1経路を活性化する物質(例えば、APY29)等が挙げられる。また、PERK経路、ATF6経路、あるいはIRE1経路の複数を同時に活性化する物質(例えば、ツニカマイシン、タプシガルギン)、ブレフェルディンA、サルブリナール等も挙げられる。上記の近視誘導物質を単剤で、又は2種以上を混合して投与してもよい。近視誘導効果がより確実となるため、2種以上の近視誘導物質を混合して投与することが好ましい。ツニカマイシン及びタプシガルギンは、これら3つの経路を活性化し得るのでより強い近視誘導が期待される。
 小胞体ストレスを誘導可能な物質の具体例を以下に示す。
Figure JPOXMLDOC01-appb-C000001
 PERK経路、IRE1経路、及びATF6経路の少なくとも1つを活性化する物質は、例えば、点眼剤として投与され得る。上記物質の投与量は、1~200μg/mLであってもよく、2~190μg/mL、3~180μg/mL、5~170μg/mL、5~160μg/mL、5~150μg/mL、5~140μg/mL、5~130μg/mL、5~120μg/mL、5~110μg/mL、5~100μg/mL、8~100μg/mL、又は10~100μg/mLであってもよい。上記物質の投与量は、1~200μMであってもよく、2~190μM、3~180μM、5~170μM、5~160μM、5~150μM、5~140μM、5~130μM、5~120μM、5~110μM、5~100μM、8~100μM、又は10~100μMであってもよい。
 好ましくは、ツニカマイシンは、50μg/mLの量を少なくとも1回点眼投与することで小胞体ストレスの誘導に起因する近視を誘導することができる。また、タプシガルギンは、10μMの量を少なくとも1回点眼投与する小胞体ストレスの誘導に起因する近視を誘導することができる。CCT020312及びAA147は、100μMの量を1回点眼投与することで小胞体ストレスの誘導に起因する近視を誘導することができる。
 投与回数は、1日あたり1~3回点眼投与してもよく、好ましくは1日あたり1回点眼投与である。近視を誘導するために、1日1~3回の点眼投与を1週間繰り返してもよい。
 近視誘導物質は、任意の剤形で投与することができ、強膜等の眼の細胞へ作用させる観点から、例えば、注射剤又は点眼剤として投与することが可能であり、点眼剤として投与することが好ましい。
 ツニカマイシンを点眼剤として用いる場合は、例えば、10~100μg/mLとすることができ、20~80μg/mLが好ましく、40~60μg/mLがより好ましい。タプシガルギンを点眼剤として用いる場合は、例えば、1~100μMとすることができ、2~60μMが好ましく、5~30μMがより好ましい。
 近視誘導物質の投与量、投与回数を調整することにより、より重度の近視を誘導することもできる。例えば、ツニカマイシン及びタプシガルギンを混合して投与すると、それぞれ単独で投与した場合と比較して、眼軸長がより長くなる傾向がある。本実施形態に係る方法によれば、所望の程度(例えば、軽度、中等度、強度)の近視を誘導して、それに対する治療有効性を評価することもできる。また、強度近視を誘導することで、強度近視によって惹起される後眼部疾患(近視性黄斑変性、近視性網脈絡膜萎縮、近視性脈絡膜新生血管等)を誘導し、それに対する治療有効性を評価することもできる。
 また、近視誘導物質の投与量、投与回数を調整することにより、軽度で漸進的な近視を誘導することもできる。一般に成人期の近視は軽度で漸進的な進行と考えられ、そのような近視病態をシミュレーションすることもできる。
 動物の片眼のみに近視を誘導し、他方の片眼をコントロールとするために、近視誘導物質を血流により対眼に影響を及ぼさない濃度以下として片眼のみに局所投与することで、動物の個体バラつきをキャンセルすることもできる。
 また、ヒトでも動物でも成長期に眼軸が変化し易く、近視誘導はその成長期の方が誘導しやすい。つまり、マイナスレンズによる近視誘導は老齢マウスにおいては難しいと考えられる。一方で、近視誘導物質の投与量、投与回数を調節することにより、通常なら近視が誘導されにくい老齢マウスにおいても近視を誘導でき、高齢者の強度近視化による後眼部疾患というような特殊な病態をシミュレーションすることもできる。
 点眼剤には上述の成分に加えて、その他の有効成分(薬理活性成分、生理活性成分等)を配合することができる。このような成分の種類は特に制限されず、例えば、充血除去成分、眼筋調節薬成分、抗炎症薬成分、収斂薬成分、抗ヒスタミン薬成分、抗アレルギー薬成分、ビタミン類、アミノ酸類、抗菌薬成分、糖類、高分子化合物又はその誘導体、セルロース又はその誘導体、局所麻酔薬成分等が挙げられる。
 点眼剤には、さらに小胞体ストレスに係るシグナル伝達系を活性化する効果を損なわない範囲で、その用途や形態に応じて、常法に従い、様々な成分や添加物を適宜選択し、1種又は2種以上を併用して含有させることができる。それらの成分又は添加物として、例えば、液剤等の調製に一般的に使用される担体、香料又は清涼化剤、防腐剤、殺菌剤又は抗菌剤、pH調節剤、キレート剤、安定化剤、等張化剤、緩衝剤、粘稠化剤等の各種添加剤を挙げることができる。以下に、点眼剤に使用される代表的な成分を例示するが、これらに限定されない。
 担体としては、例えば、水、含水エタノール等の水性溶媒が挙げられる。なお、各種成分が水性溶媒に溶けにくい場合には、可溶化剤を用いてもよい。可溶化剤としては、例えば、ポリオキシエチレン硬化ヒマシ油、ステアリン酸ポリオキシル40、ポビドン、ポリソルベート80等が挙げられる。
 香料又は清涼化剤としては、例えば、テルペン類(具体的には、アネトール、オイゲノール、カンフル、ゲラニオール、シネオール、ボルネオール、メントール、リモネン、リュウノウ等。これらはd体、l体又はdl体のいずれでもよい。)、精油(ウイキョウ油、クールミント油、ケイヒ油、スペアミント油、ハッカ水、ハッカ油、ペパーミント油、ベルガモット油、ユーカリ油、ローズ油等)等が挙げられる。
 防腐剤、殺菌剤又は抗菌剤としては、例えば、塩化ポリドロニウム、塩酸アルキルジアミノエチルグリシン、安息香酸ナトリウム、エタノール、塩化ベンザルコニウム、塩化ベンゼトニウム、グルコン酸クロルヘキシジン、クロロブタノール、ソルビン酸、ソルビン酸カリウム、デヒドロ酢酸ナトリウム、パラオキシ安息香酸メチル、パラオキシ安息香酸エチル、パラオキシ安息香酸プロピル、パラオキシ安息香酸ブチル、硫酸オキシキノリン、フェネチルアルコール、ベンジルアルコール、ビグアニド化合物(具体的には、ポリヘキサメチレンビグアニド又はその塩酸塩等)、グローキル(ローディア社製の商品名)等が挙げられる。
 pH調節剤としては、例えば、塩酸、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化マグネシウム、トリエタノールアミン、モノエタノールアミン、ジイソプロパノールアミン、硫酸、リン酸等が挙げられる。
 キレート剤としては、例えば、アスコルビン酸、エデト酸四ナトリウム、エデト酸ナトリウム、クエン酸等が挙げられる。
 安定化剤としては、例えば、エデト酸ナトリウム水和物、ポビドン、ポリソルベート80、ジブチルヒドロキシトルエン、トロメタモール、ナトリウムホルムアルデヒドスルホキシレート(ロンガリット)、トコフェロール、ピロ亜硫酸ナトリウム、モノエタノールアミン、モノステアリン酸アルミニウム、モノステアリン酸グリセリン等が挙げられる。
 等張化剤としては、例えば、塩化カリウム、塩化ナトリウム、濃グリセリン、ブドウ糖、D-マンニトール等が挙げられる。
 緩衝剤としては、例えば、クエン酸ナトリウム水和物、酢酸ナトリウム水和物、炭酸水素ナトリウム、トロメタモール、ホウ酸、ホウ砂、リン酸水素ナトリウム水和物、リン酸二水素ナトリウム等が挙げられる。
 粘稠化剤としては、例えば、カルボキシビニルポリマー、ポビドン、ポリビニルアルコール(部分けん化物)、ヒドロキシエチルセルロース、ヒプロメロース、メチルセルロース、グリセリン等が挙げられる。
 本発明に係る点眼剤において、添加剤は、小胞体ストレスに係るシグナル伝達系を活性化する効果を期待して、又はその効果を阻害しない範囲内で配合することができる。その含有量は特に限定されないが、点眼剤全量に対して、0.001~1質量%程度であることが好ましい。
 点眼剤のpHは、3~10とすればよく、4~9が使用感の観点から好ましく、5~8.5が使用感の観点からより好ましい。
(近視誘導モデル動物)
 近視誘導モデル動物は、特に限定されないが、イン・ビボにおける近視治療に有効な物理的又は化学的手段を評価する目的に適した動物であることが好ましい。また、ヒトの近視治療に有効な手段を評価する場合には、ヒトに遺伝的に近い動物種を使用することが好ましい。近視誘導モデル動物としては、例えば、マウス、ラット、ハムスター、モルモット等のげっ歯類、白色レグホン雛(日本では、「ひよこ」とも呼ばれる。)等の鳥類、メダカ等の魚類、イヌ(例えば、ビーグル)、サル(例えば、アカゲザル、カニクイザル)、リス(例えば、ツパイ)等の哺乳類が挙げられる。
 近視誘導モデルの作製に使用する動物は、評価しようとする近視の状態に合わせて、幼若期、成体期、高齢期等から任意に選択できる。幼若期、成体期、高齢期の区別は、動物種の平均寿命によって異なるため、目的に合わせて適宜選択すればよい。例えば、眼軸が成長に伴って変化しやすい幼若期における近視への治療有効性を評価する場合には、幼若期の動物(例:3週齢のマウス、5日齢の白色レグホン)を使用すればよい。
 動物への近視誘導の開始時期については、例えば、小児への適用を想定した動物モデルとする場合には、幼若な週齢の動物を用いることが好ましい。C57BL6等のマウスでは、3週齢から6週齢にかけて生理的眼軸伸長が生じる。よって、3週齢から近視を誘導することにより、生理的眼軸伸長に加えて、過剰な眼軸伸長を促進させることができるため、病的眼軸伸長を生じさせることが可能となる。本発明によれば、短時間で近視誘導動物モデルを作製できるので、試験すべき物理的又は化学的手段が、生理的眼軸伸長や病的眼軸伸長に与える影響を評価することも可能である。また、動物として白色レグホンを用いる場合は、小児への適用を想定した動物モデルとする観点から、例えば、5日齢の白色レグホン雛を用いることが好ましい。
(点眼剤の製造方法)
 近視誘導用点眼剤は、当業者に慣用又は公知の方法で調製できる。例えば、各成分を水等の担体に分散させた後、必要であれば可溶化剤を添加し、必要に応じて加温し、ホモミキサー等を用いて均一化、溶解又は乳化させ、pH調整剤でpHを調整することにより調製すればよい。また、製剤の滅菌方法としては、電子線滅菌、オートクレーブ滅菌、ろ過滅菌等の方法を選択することができる。
2.処置工程
 処置工程は、小胞体ストレスの誘導に起因する近視誘導モデル動物に、物理的又は化学的手段を施す工程である。
(近視治療に有効な物理的又は化学的手段)
 本明細書において、「物理的又は化学的手段」とは、イン・ビボにおいて近視治療に有効であると考えられる物理的又は化学的手段であれば、特に制限されない。例えば、小胞体ストレス遺伝子抑制成分である4-フェニル酪酸、タウロウルソデオキシコール酸、サルブリナール、グアナベンツ、GSK2606414、GSK2656157、ISRIB、ネルフィナビル、アゾラミド、あるいはアークティゲニンが挙げられる(特許文献1を参照)。また例えば、EGR-1遺伝子発現増強成分であるクロセチン、あるいはイチョウ葉エキスが挙げられる(特許文献2を参照)。
(物理的手段)
 物理的手段としては、例えば、特定の波長を有する光(例えば、バイオレットライト360~400nm)の照射であり得る(特許文献3を参照)。照射する光の波長、照射時間、照射角度などは、治療有効性の評価の観点から適宜変更することができる。また、太陽光の暴露(屋外での活動)もあり得る(非特許文献「株式会社坪田ラボ年次報告書2020、第2号」を参照)。また、オルソケラトロジーコンタクトレンズや軸外収差補正機能のある多焦点のコンタクトレンズや眼鏡の使用もあり得る(非特許文献7~8を参照)。
(化学的手段)
 化学的手段としては、例えば、化合物または高分子(例えば、抗体)を含む製剤の投与であり得る。化合物または高分子(例えば、抗体)は、経口投与、経皮投与、点眼投与、点鼻投与、注射(例えば、皮下投与、静脈内投与、腹腔内投与、筋肉内投与)等の方法で投与できる。好ましい投与形態は、点眼投与、注射または経口摂取である。
 化学的手段で用いられる製剤は、錠剤、散剤、カプセル剤等の経口剤、貼付剤、テープ剤、軟膏等の経皮吸収製剤、点眼剤、点鼻剤、注射剤であり得る。
 経口剤は、上述の化合物または高分子(例えば、抗体)に加えて、その他の有効成分(薬理活性成分、生理活性成分等)を配合することができる。このような成分の種類は特に制限されず、例えば、賦形剤、滑沢剤、結合剤、崩壊剤等を配合することができる。また必要に応じて、防腐剤、抗酸化剤、着色剤、甘味剤等の添加物を用いることもできる。
 賦形剤としては、例えば、D-ソルビトール、マンニトール、キシリトール等の糖アルコール、ブドウ糖、白糖、乳糖、果糖等の糖類、結晶セルロース、カルメロースナトリウム、クロスカルメロースナトリウム、リン酸水素カルシウム、コムギデンプン、コメデンプン、トウモロコシデンプン、バレイショデンプン、デキストリン、β-シクロデキストリン、軽質無水ケイ酸、酸化チタン、メタケイ酸アルミン酸マグネシウム、タルク、カオリン、オリーブ油等が挙げられる。
 結合剤としては、例えば、メチルセルロース、エチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース等のセルロース誘導体、ポリビニルピロリドン、ポリビニルアルコール、アクリル酸系高分子、ゼラチン、アラビアゴム、プルラン、アルファー化デンプン、カンテン、トラガント、アルギン酸ナトリウム、アルギン酸プロピレングリコールエステル等が挙げられる。
 崩壊剤としては、例えば、デンプン、低置換度ヒドロキシプロピルセルロース、カルボキシメチルセルロースカルシウム、クロスカルメロースナトリウム、ヒドロキシプロピルスターチ、部分アルファー化デンプン等が挙げられる。
 滑沢剤としては、例えば、ステアリン酸、ステアリン酸マグネシウム、ステアリン酸カルシウム、ステアリン酸ポリオキシル、セタノール、タルク、硬化油、ショ糖脂肪酸エステル、ジメチルポリシロキサン、ミツロウ、サラシミツロウ等が挙げられる。
 また、点眼剤には、上述の化合物または高分子(例えば、抗体)に加えて、その他の有効成分(薬理活性成分、生理活性成分等)を配合することができる。このような成分の種類は特に制限されず、例えば、充血除去成分、眼筋調節薬成分、抗炎症薬成分、収斂薬成分、抗ヒスタミン薬成分、抗アレルギー薬成分、ビタミン類、アミノ酸類、抗菌薬成分、糖類、高分子化合物又はその誘導体、セルロース又はその誘導体、局所麻酔薬成分等が挙げられる。
 化学的手段で用いられる製剤には、さらに本発明の効果を損なわない範囲で、その用途や形態に応じて、常法に従い、様々な成分や添加物を適宜選択し、1種又は2種以上を併用して含有させることができる。それらの成分又は添加物として、例えば、液剤等の調製に一般的に使用される担体、香料又は清涼化剤、防腐剤、殺菌剤又は抗菌剤、pH調節剤、キレート剤、安定化剤、等張化剤、緩衝剤、粘稠化剤等の各種添加剤を挙げることができる。以下に、点眼剤に使用される代表的な成分を例示するが、これらに限定されない。
 担体としては、例えば、水、含水エタノール等の水性溶媒が挙げられる。なお、各種成分が水性溶媒に溶けにくい場合には、可溶化剤を用いてもよい。可溶化剤としては、例えば、ポリオキシエチレン硬化ヒマシ油、ステアリン酸ポリオキシル40、ポビドン、ポリソルベート80等が挙げられる。
 香料又は清涼化剤としては、例えば、テルペン類(具体的には、アネトール、オイゲノール、カンフル、ゲラニオール、シネオール、ボルネオール、メントール、リモネン、リュウノウ等。これらはd体、l体又はdl体のいずれでもよい。)、精油(ウイキョウ油、クールミント油、ケイヒ油、スペアミント油、ハッカ水、ハッカ油、ペパーミント油、ベルガモット油、ユーカリ油、ローズ油等)等が挙げられる。
 防腐剤、殺菌剤又は抗菌剤としては、例えば、塩化ポリドロニウム、塩酸アルキルジアミノエチルグリシン、安息香酸ナトリウム、エタノール、塩化ベンザルコニウム、塩化ベンゼトニウム、グルコン酸クロルヘキシジン、クロロブタノール、ソルビン酸、ソルビン酸カリウム、デヒドロ酢酸ナトリウム、パラオキシ安息香酸メチル、パラオキシ安息香酸エチル、パラオキシ安息香酸プロピル、パラオキシ安息香酸ブチル、硫酸オキシキノリン、フェネチルアルコール、ベンジルアルコール、ビグアニド化合物(具体的には、ポリヘキサメチレンビグアニド又はその塩酸塩等)、グローキル(ローディア社製の商品名)等が挙げられる。
 pH調節剤としては、例えば、塩酸、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化マグネシウム、トリエタノールアミン、モノエタノールアミン、ジイソプロパノールアミン、硫酸、リン酸等が挙げられる。
 キレート剤としては、例えば、アスコルビン酸、エデト酸四ナトリウム、エデト酸ナトリウム、クエン酸等が挙げられる。
 安定化剤としては、例えば、エデト酸ナトリウム水和物、ポビドン、ポリソルベート80、ジブチルヒドロキシトルエン、トロメタモール、ナトリウムホルムアルデヒドスルホキシレート(ロンガリット)、トコフェロール、ピロ亜硫酸ナトリウム、モノエタノールアミン、モノステアリン酸アルミニウム、モノステアリン酸グリセリン等が挙げられる。
 等張化剤としては、例えば、塩化カリウム、塩化ナトリウム、濃グリセリン、ブドウ糖、D-マンニトール等が挙げられる。
 緩衝剤としては、例えば、クエン酸ナトリウム水和物、酢酸ナトリウム水和物、炭酸水素ナトリウム、トロメタモール、ホウ酸、ホウ砂、リン酸水素ナトリウム水和物、リン酸二水素ナトリウム等が挙げられる。
 粘稠化剤としては、例えば、カルボキシビニルポリマー、ポビドン、ポリビニルアルコール(部分けん化物)、ヒドロキシエチルセルロース、ヒプロメロース、メチルセルロース、グリセリン等が挙げられる。
 化学的手段で用いられる製剤において、添加剤は、本発明の効果を期待して、又は本発明の効果を阻害しない範囲内で配合することができる。その含有量は特に限定されないが、点眼剤全量に対して、0.001~1質量%程度であることが好ましい。
 点眼剤のpHは、3~10とすればよく、4~9が使用感の観点から好ましく、5~8.5が使用感の観点からより好ましい。
(化学的手段で用いられる製剤の製造方法)
 化学的手段で用いられる製剤は、当業者に慣用又は公知の方法で調製できる。例えば、経口剤の場合には、組成物を練合し、スクリーンを通過させることで成型する押出造粒物を、粉砕し、整粒する方法、前記組成物に練合水を加えバーチカルグラニュレーターによって成型する攪拌造粒の後に、コーミルを用いて粉砕・篩過する方法、及び前記製剤組成物をローラーコンパクターで圧縮した後、ロールグラニュレーターで粉砕し篩過する方法、撹拌造粒の後に、流動層乾燥する方法が例示される。また、点眼剤の場合には、各成分を水等の担体に分散させた後、必要であれば可溶化剤を添加し、必要に応じて加温し、ホモミキサー等を用いて均一化、溶解又は乳化させ、pH調整剤でpHを調整することにより調製すればよい。また、製剤の滅菌方法としては、電子線滅菌、オートクレーブ滅菌、ろ過滅菌等の方法を選択することができる。
(使用方法)
 製剤の用法及び用量は治療有効性の評価の目的に応じて、当業界の技術常識の範囲内で、適宜変更することができる。点眼剤である場合には、例えば、1日約1~6回、1回約1~2滴を点眼すればよく、1週間にわたって継続してもよい。
3.測定工程
 測定工程は、上述の処置工程から所定期間経過後に、物理的又は化学的手段を施された動物の眼軸長及び屈折度の少なくとも1つを測定する工程である。処置工程によっては、近視治療効果が発現するまでに一定の時間を要する場合がある。そのため、処置工程から所定期間が経過した後に、処置された動物の眼軸長及び屈折度の少なくとも1つを測定する。
 眼軸長とは、角膜頂点から網膜までの長さである。眼軸長が伸長すると、網膜が焦点よりも遠くなるため、正確な像を捉えることが困難となる。ヒト成人の眼軸長は、約24mmであり、強度近視患者の眼軸長は27mmを超える。眼軸長の測定は、例えば、スペクトラルドメイン光干渉断層撮影装置SD-OCT(Spectral-domainOCT、装置名:EnvisuR4310、bioptigen Inc.製)やB-scan ultrasonographyを用いて測定できる。
 屈折度とは、視点を動かす際に、網膜に完璧に焦点が合うように変化させる眼の屈折力を表す数値であり、D(ディオプター)という単位で表す。Dは、D=n/f(m)[式中、Dは屈折度、nは屈折率(空気中ではn=1)、f(m)は焦点距離を示す。]で算出される。屈折度は、Autorefractometerやマウス用屈折計(Infrared photorefractor for mice、Tubingen大学Schaeffel教授作製)を用いて測定できる。
4.判定工程
 判定工程は、以下の判定基準を満たす場合に、物理的又は化学的手段がイン・ビボで近視治療に有効であると判定する工程である。
 判定基準:測定された近視に係るバイオマーカーの、小胞体ストレスに係るシグナル伝達系の活性化前の値からの変化量が、前記物理的又は化学的手段による影響を受けていない近視誘導モデル動物(コントロール)における、当該バイオマーカーの小胞体ストレスに係るシグナル伝達系の活性化前の値からの変化量よりも小さい。
 本明細書において、「イン・ビボにおける近視治療に対して有効である」とは、近視に係るバイオマーカーの変化量にしたがって評価することができる。例えば、近視誘導によって生じた眼軸長の伸長及び/又は屈折度の減少及び/又は脈絡膜の菲薄化及び又は強膜の菲薄化が抑制されるかどうかで評価することができる。より具体的には、測定された近視に係るバイオマーカーの、小胞体ストレスに係るシグナル伝達系の活性化前の値からの変化量が、物理的又は化学的手段による影響を受けていない近視誘導モデル動物(コントロール)における、当該バイオマーカーの小胞体ストレスに係るシグナル伝達系の活性化前の値からの変化量よりも小さい場合に、イン・ビボにおける近視治療に対して有効であると判定することができる。すなわち、物理的又は化学的手段による影響を受けていない近視誘導モデル動物(コントロール)に近視を誘導することにより、近視に係るバイオマーカーの値は変化する(変化量1)。その後、近視誘導モデル動物に物理的又は化学的手段を施すことにより、近視に係るバイオマーカーの値はさらに変化する(変化量2)。本実施形態に係る判定基準では、変化量1と変化量2の和の絶対値を、変化量1の絶対値と比較して、変化量1の絶対値よりも小さい場合に、その物理的又は化学的手段はイン・ビボにおける近視治療に対して有効であると判定することができる。
 小胞体ストレスを誘導すると、近視誘導前の当該モデル動物又は未処置動物の眼と比較して、眼軸長が伸長し、屈折度が減少する。試験した物理的又は化学的手段がイン・ビボにおける近視治療に有効である場合には、伸長した眼軸長がもとに戻る、及び/又は、減少した屈折度がもとに戻るという挙動を示す。本明細書では、複数回の試験を行い、近視誘導後の動物の眼軸長又は屈折度と、処置工程後に測定した動物の眼軸長又は屈折度とを比較し、統計的に有意な差があるときに、その物理的又は化学的手段がイン・ビボにおいて近視治療に有効であると評価できる。処置工程後に測定した動物の眼軸長又は屈折度が、近視誘導前の当該モデル動物又は未処置動物の眼軸長又は屈折度と同程度(例えば、各平均値が±10%の範囲内にある)であることが好ましい。
 ある実施形態では、以下の(a)及び(b)の少なくとも一方を満たす場合に、その物理的又は化学的手段がイン・ビボで近視治療に有効であると判定してもよい。
 (a)測定された眼軸長の値が、物理的又は化学的手段による影響を受けていない近視誘導モデル動物の眼軸長に基づいて定められた閾値よりも小さい。
 (b)測定された屈折度の値が、物理的又は化学的手段による影響を受けていない近視誘導モデル動物の屈折度に基づいて定められた閾値よりも大きい。
 本明細書において、「閾値」とは、物理的又は化学的手段を施された動物の眼軸長又は屈折度の変化を判定するための基準となる値であり、物理的又は化学的手段による影響を受けていない近視誘導モデル動物の眼軸長又は屈折度の値に基づいて定められた値である。
 閾値は、物理的又は化学的手段を施していない近視誘導モデル動物の眼軸長又は屈折度であってもよく、物理的又は化学的手段を施す前に測定した眼軸長又は屈折度であってもよく、物理的又は化学的手段を片方の眼のみに施す場合には、他方の眼(物理的又は化学的手段を施していない眼)の眼軸長又は屈折度であってもよい。閾値の設定は、当業者が任意に選択することができるが、閾値によっては、数値が個体間の変動、成長に伴う変動等を包含し得ることを考慮する。物理的又は化学的手段の種類及び/又は方法によって、適切な閾値を設定すべきである。
 眼軸長の変化量で判定する場合には、物理的又は化学的手段を施した動物の眼軸長の変化量が、物理的又は化学的手段を施していない動物の眼軸長の変化量よりも小さい場合に、近視治療に有効であると判定する。複数回の評価を実施し、有意差検定を行うことにより、眼軸長の差が統計的に有意な差であるかを評価できる。有意差検定には、一般的な方法を採用すればよい。
 屈折度の変化量で判定する場合には、物理的又は化学的手段を施した動物の屈折度の変化量が、物理的又は化学的手段を施していない動物の眼軸長の変化量よりも大きい場合に、近視治療に有効であると判定する。複数回の評価を実施し、有意差検定を行うことにより、眼軸長の差が統計的に有意な差であるかを評価できる。有意差検定には、一般的な方法を採用してもよい。
 有意差検定としては、例えば、二群比較であればStudentのt検定を用いることができる。他群比較であれば、Dunnet、Tukey、あるいはBonferoni等の多重比較を用いることができる。いずれの方法でも、p値が0.05未満の場合に統計学的に有意であると判定することができる。
 以下に実験結果を示して、本発明を具体的に説明する。
[実験方法]
 本実験におけるすべての動物実験は、慶応義塾大学動物実験委員会の承認を受け、慶応義塾大学動物実験に関する施設ガイドライン、眼科・視覚研究における動物の使用に関するARVO声明、動物研究:研究における動物の使用に関するin vivo実験の報告(ARRIVE)ガイドラインを遵守した。
(近視誘導幼若マウスの特徴)
1.マウスにおける小胞体ストレス誘導剤点眼による近視誘導モデル
 3週齢のC57BL6J雄性マウスの眼軸長と屈折度を動物専用SD-OCT及びレフラクトメーターにて測定した(点眼投与前の測定)。3週齢のC57BL6J雄性マウスの右眼に、ツニカマイシン溶液(濃度:50μg/mL)またはタプシガルギン溶液(濃度:10μM)を1回点眼投与した。左眼は対照眼(Control)とし、近視誘導物質の代わりにDMSO含有PBS溶液を等量点眼した。投与から1週間後に、右眼の眼軸長と屈折度を測定し、その変化量を算出した。
 ツニカマイシン溶液又はタプシガルギン溶液は、ツニカマイシン又はタプシガルギンを最終濃度の1000倍の濃度となるようにジメチルスルホキシド(DMSO)に溶解させ、それをリン酸緩衝整理食塩水(PBS)で1000倍に希釈して調製した。Controlとして使用したDMSO含有PBS溶液は、DMSOをPBSで1000倍に希釈して調製した。
 結果を図1に示す。図1(a)及び(b)は、ツニカマイシン投与による眼軸長及び屈折値を示すグラフであり、図1(c)及び(d)は、タプシガルギン投与による眼軸長及び屈折値を示すグラフである。図1中、「Tm」はツニカマイシン溶液を点眼した群を示し、「TG」はタプシガルギン溶液を点眼した群を示し、「DMSO」はDMSO含有PBS溶液を点眼した群を示す。ツニカマイシンを投与すると、眼軸長が有意に伸長し、屈折値が有意に低下した。
 3週齢のC57BL6J雄性マウスの眼軸長と屈折度を動物専用SD-OCT及びレフラクトメーターにて測定した(点眼投与前の測定)。3週齢のC57BL6J雄性マウスの右眼に、CCT020312溶液、AA147溶液、又はCCT+AA溶液(濃度:100μM)を1日1回、1週間にわたって点眼投与した。投与から1週間後に、右眼の眼軸長と屈折度を測定し、その変化量を算出した。
 CCT020312溶液又はAA147溶液は、CCT020312又はAA147を最終濃度の1000倍の濃度となるようにDMSOに溶解させ、それをPBSで1000倍に希釈して調製した。CCT+AA溶液は、CCT020312及びAA147を最終濃度の1000倍の濃度となるようにDMSOに溶解させ、それをPBSで1000倍に希釈して調製した。Controlとして使用したPBS溶液は、DMSOをPBSで1000倍に希釈して調製した。
 結果を図2に示す。図2(a)~(c)はそれぞれ、CCT020312を点眼した群(CCT)、AA147を点眼した群(AA)、又はCCT020312及びAA147を点眼した群(CCT+AA)における屈折値を示すグラフである。
 CCT020312又はAA147を単独で投与すると、屈折値が有意に低下した。CCT020312及びAA147を混合して投与すると、いずれかを単独で投与した場合よりも、屈折値の両方がより有意に変化し、顕著な近視化が認められた。
2.小胞体ストレスの誘導による近視誘導モデルマウスに対する4-PBAの投与
 上記1.と同様にして、ツニカマイシン又はタプシガルギンの単独投与により、近視誘導動物モデルを作製した。Controlとして、DMSOをPBSで1000倍に希釈して調製したDMSO含有PBS溶液を投与した。近視誘導を行った当日から、4-PBA(4-フェニル酪酸)の2%PBS溶液を1日1回点眼した。
 結果を図3に示す。図3(a)は、左から、DMSO含有PBS溶液を点眼した群(DMSO)、ツニカマイシンを点眼した群(Tm)、ツニカマイシンを点眼した後に4-PBAを点眼した群(Tm+4-PBA)、タプシガルギンを点眼した群(TG)、タプシガルギンを点眼した後に4-PBAを点眼した群(TG+4-PBA)についての眼軸長を示すグラフである。図3(b)は、左から、DMSO含有PBS溶液を点眼した群(DMSO)、ツニカマイシンを点眼した群(Tm)、ツニカマイシンを点眼した後に4-PBAを点眼した群(Tm+4-PBA)、タプシガルギンを点眼した群(TG)、タプシガルギンを点眼した後に4-PBAを点眼した群(TG+4-PBA)についての屈折度を示すグラフである。
 図3に示すように、ツニカマイシン又はタプシガルギンを投与することによって、眼軸長が有意に伸長し、かつ屈折度が有意に減少した。このようにして作製された近視誘導モデルマウスに4-PBAを投与すると、眼軸長が有意に短くなり、近視誘導していない眼軸長と同程度に戻った。また、屈折度についても、同様の変化が観察された。
3.白色レグホン雛における小胞体ストレス誘導剤点眼による近視誘導モデル
 5日齢の白色レグホン雛の眼軸長と屈折度をB-scan ultrasonography並びにautorefractometerにて測定した(点眼投与前の測定)。5日齢の白色レグホン雛の両眼に、ツニカマイシン溶液(50μg/mL)を1回点眼投与した。対照群にはDMSO含有PBS溶液を等量点眼した。ツニカマイシン溶液及びDMSO含有PBS溶液は、上記と同様にして調製した。投与から1週間後に、眼軸長と屈折度をB-scan ultrasonography並びにautorefractometerにて測定し、その変化量を算出した。
 結果を図4に示す。図4は、DMSO含有PBS溶液を点眼した群(DMSO)、ツニカマイシンを点眼した群(Tm)の眼軸長を示すグラフである。白色レグホン雛においても、ツニカマイシン投与により、眼軸長の有意な伸長が観察された。

Claims (5)

  1.  イン・ビボにおける近視治療に対する物理的又は化学的手段の有効性を評価する方法であって、
     小胞体ストレスに係るシグナル伝達系が活性化された近視誘導モデル動物に、前記物理的又は化学的手段を施す処置工程と、
     前記処置工程から所定期間経過後に、前記物理的又は化学的手段を施された動物の近視に係るバイオマーカーを測定する測定工程と、
     以下の判定基準を満たす場合に、前記物理的又は化学的手段がイン・ビボで近視治療に有効であると判定する判定工程と、を含む、方法。
     判定基準:測定された近視に係るバイオマーカーの、小胞体ストレスに係るシグナル伝達系の活性化前の値からの変化量が、前記物理的又は化学的手段による影響を受けていない近視誘導モデル動物(コントロール)における、当該バイオマーカーの小胞体ストレスに係るシグナル伝達系の活性化前の値からの変化量よりも小さい。
  2.  前記小胞体ストレスに係るシグナル伝達系が、PERK経路、ATF6経路及びIRE1経路の少なくとも1つである、請求項1に記載の方法。
  3.  前記近視誘導モデル動物が、近視を誘導されたマウス、ラット、モルモット、白色レグホン、犬、およびサルから選ばれる1つである、請求項1又は2に記載の方法。
  4.  前記近視に係るバイオマーカーが、眼軸長、屈折度、脈絡膜厚、強膜厚、及び強膜コラーゲン繊維の太さから選ばれる一つである、請求項1~3のいずれか一項に記載の方法。
  5.  動物の少なくとも一方の眼に近視誘導物質を投与する誘導工程をさらに含み、
     近視誘導物質を投与された眼が近視治療効果の評価対象である、請求項1~4のいずれか一項に記載の方法。
PCT/JP2023/001374 2022-01-25 2023-01-18 薬剤点眼による近視誘導モデル WO2023145578A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022009338 2022-01-25
JP2022-009338 2022-01-25

Publications (1)

Publication Number Publication Date
WO2023145578A1 true WO2023145578A1 (ja) 2023-08-03

Family

ID=87471762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001374 WO2023145578A1 (ja) 2022-01-25 2023-01-18 薬剤点眼による近視誘導モデル

Country Status (2)

Country Link
TW (1) TW202340723A (ja)
WO (1) WO2023145578A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018164113A1 (ja) * 2017-03-06 2018-09-13 学校法人 慶應義塾 マウス近視誘導モデル及び近視予防・抑制のための小胞体ストレス抑制剤
WO2018212152A1 (ja) * 2017-05-15 2018-11-22 株式会社坪田ラボ 近視予防用組成物及び機能性食品

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018164113A1 (ja) * 2017-03-06 2018-09-13 学校法人 慶應義塾 マウス近視誘導モデル及び近視予防・抑制のための小胞体ストレス抑制剤
WO2018212152A1 (ja) * 2017-05-15 2018-11-22 株式会社坪田ラボ 近視予防用組成物及び機能性食品

Also Published As

Publication number Publication date
TW202340723A (zh) 2023-10-16

Similar Documents

Publication Publication Date Title
Mastropasqua et al. Conjunctival goblet cells density and preservative‐free tafluprost therapy for glaucoma: an in vivo confocal microscopy and impression cytology study
Rasmussen et al. Benzalkonium chloride and glaucoma
Audren et al. Intravitreal triamcinolone acetonide for diffuse diabetic macular edema: phase 2 trial comparing 4 mg vs 2 mg
Singh et al. Nepafenac 0.3% after cataract surgery in patients with diabetic retinopathy: results of 2 randomized phase 3 studies
JP7450242B2 (ja) シクロデキストリンを用いるアレルギーの眼の状態の処置
Labbé et al. A new gel formulation of topical cysteamine for the treatment of corneal cystine crystals in cystinosis: the Cystadrops OCT-1 study
Calvo-Maroto et al. Optical quality of the diabetic eye: a review
TWI658828B (zh) 用於舒緩及減輕近視之醫藥組合物及其製備方法與用途
JP2006176499A (ja) 眼疾患治療剤
WO2020068986A1 (en) Formulations for treatment of dry eye disease
Danni et al. Preoperative anti‐inflammatory treatment of diabetic patients does not improve recovery from cataract surgery when postoperatively treated with a combination of prednisolone acetate and nepafenac
Zhao et al. Multimodal fundus imaging of sodium iodate-treated mice informs RPE susceptibility and origins of increased fundus autofluorescence
KR20150032552A (ko) 치료 제제 및 치료 방법
AU2005207906B2 (en) Preventive or therapeutic agent for diabetic maculopathy
WO2023145578A1 (ja) 薬剤点眼による近視誘導モデル
Kaldırım et al. Efficacy of hyperbaric oxygen therapy on central corneal thickness, intraocular pressure, and nerve fiber layer in patients with type 2 diabetes: A prospective cohort study
WO2022150580A1 (en) Treatment of dry eye disease
Grzybowski et al. Post-cataract cystoid macular oedema prevention–update 2019
Numaga Phase II placebo-controlled study of nepafenac ophthalmic suspension 0.1% for postoperative inflammation and ocular pain associated with cataract surgery in Japanese patients
Stewart et al. Additive efficacy of unoprostone isopropyl 0.12%(Rescula) to latanoprost 0.005%
Suzuki et al. Multicenter, randomized, controlled study comparing tafluprost/timolol fixed combination with latanoprost/timolol fixed combination in primary open-angle glaucoma and ocular hypertension
TW200916091A (en) Neramexane for the treatment of nystagmus
EP4257148A1 (en) Eyedrops for treating scleral thinning and screening method for therapeutic agent of scleral thinning
WO2022123836A1 (ja) 小児の近視進行抑制用点眼剤及び小児の近視進行抑制剤のスクリーニング方法
Schmidt et al. Effects of systemic administration of 0.5% tropicamide on intraocular pressure, pupillary diameter, blood pressure, and heart rate in normal cats

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23746792

Country of ref document: EP

Kind code of ref document: A1