WO2023145385A1 - Cryopump system and regeneration controller - Google Patents

Cryopump system and regeneration controller Download PDF

Info

Publication number
WO2023145385A1
WO2023145385A1 PCT/JP2022/048620 JP2022048620W WO2023145385A1 WO 2023145385 A1 WO2023145385 A1 WO 2023145385A1 JP 2022048620 W JP2022048620 W JP 2022048620W WO 2023145385 A1 WO2023145385 A1 WO 2023145385A1
Authority
WO
WIPO (PCT)
Prior art keywords
cryopump
purge
discharge
valve
exhaust
Prior art date
Application number
PCT/JP2022/048620
Other languages
French (fr)
Japanese (ja)
Inventor
走 ▲高▼橋
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to CN202280086928.9A priority Critical patent/CN118475770A/en
Publication of WO2023145385A1 publication Critical patent/WO2023145385A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/06Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means
    • F04B37/08Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means by condensing or freezing, e.g. cryogenic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/14Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high vacuum
    • F04B37/16Means for nullifying unswept space

Definitions

  • the present invention relates to a cryopump system and a regeneration controller for the cryopump system.
  • a cryopump is a vacuum pump that traps gas molecules by condensation or adsorption in a cryopanel cooled to an extremely low temperature and exhausts it.
  • Cryopumps are generally used to realize a clean vacuum environment required for semiconductor circuit manufacturing processes and the like. Since the cryopump is a so-called trapped-gas type vacuum pump, it requires regeneration to periodically discharge the captured gas to the outside.
  • Dangerous gases with various hazards such as explosive, corrosive, and toxic are sometimes used in the semiconductor manufacturing process.
  • Hazardous gases trapped in the cryopump are discharged from the cryopump through regeneration and are rendered harmless or treated to reduce the risk in a treatment device, also called an abatement device.
  • a treatment device also called an abatement device.
  • the dangerous gas can be diluted, the concentration of the dangerous gas flowing into the processing apparatus can be lowered, and safety can be improved.
  • the stored dangerous gas can be rapidly re-vaporized and the concentration of the dangerous gas can increase significantly.
  • Large amounts of purge gas are required to ensure that hazardous gas concentrations are kept low enough to be safe.
  • One exemplary objective of certain aspects of the present invention is to efficiently dilute hazardous gases exhausted from cryopumps and entering processing equipment.
  • a cryopump system includes a plurality of cryopump vessels, each comprising a cryopump vessel, an exhaust valve for exhausting exhaust fluid from the cryopump vessel, and an exhaust purge valve for supplying a purge gas to or downstream of the exhaust valve. and a plurality of tributaries each connected to a corresponding cryopump exhaust valve and an exhaust purge valve, and a plurality of tributaries for discharging exhaust fluid from the plurality of cryopumps to the processing equipment.
  • a discharge line comprising a junction connecting the to the processing unit.
  • a cryopump system includes a plurality of cryopumps, each comprising a cryopump vessel, an exhaust valve for evacuating exhaust fluid from the cryopump vessel, and an exhaust purge valve for supplying purge gas to or downstream of the exhaust valve;
  • a discharge line that discharges from a plurality of cryopumps to the processing equipment, and includes a plurality of branch lines each connected to a discharge valve and a discharge purge valve of the corresponding cryopump, and a confluence line that joins the plurality of branch lines to the processing equipment.
  • the plurality of cryopumps includes a first cryopump and a second cryopump.
  • the regeneration controller controls the first cryopump to discharge exhaust fluid from the first cryopump to the processing device, and controls the second cryopump to supply the purge gas from the second cryopump to the junction of the discharge line. configured to control.
  • a cryopump system includes a cryopump comprising a cryopump vessel, an exhaust valve for exhausting exhaust fluid from the cryopump vessel, and an exhaust purge valve for supplying a purge gas at or downstream of the exhaust valve; an additional exhaust purge valve connected to the exhaust valve and the exhaust purge valve and provided in the exhaust line for exhausting the exhaust fluid from the cryopump to the processing equipment and supplying a purge gas to the exhaust purge valve to the processing equipment side.
  • FIGS. 3A to 3C are graphs showing changes in concentration of hydrogen gas in fluid discharged from the cryopump according to the embodiment.
  • FIGS. 4A to 4C are graphs showing changes in concentration of hydrogen gas in fluid discharged from the cryopump according to the embodiment.
  • 1 schematically shows a cryopump system according to another embodiment;
  • FIG. 1 and 2 schematically show a cryopump system according to an embodiment.
  • 1 schematically shows the appearance of the cryopump
  • FIG. 2 schematically shows the internal structure of the cryopump 10.
  • the cryopump 10 is mounted, for example, in the vacuum chamber of an ion implanter, sputtering device, vapor deposition device, or other vacuum process device to increase the degree of vacuum inside the vacuum chamber to the level required for the desired vacuum process. used.
  • a high degree of vacuum of, for example, 10 ⁇ 5 Pa to 10 ⁇ 8 Pa is realized in the vacuum chamber.
  • the cryopump 10 includes a compressor 12 , a refrigerator 14 and a cryopump container 16 .
  • the cryopump container 16 has a cryopump inlet 17 .
  • the cryopump 10 also includes a rough valve 18 , a body purge valve 20 , an exhaust valve 22 , and an exhaust purge valve 24 , which are installed in the cryopump container 16 .
  • the compressor 12 is configured to recover the refrigerant gas from the refrigerator 14, pressurize the recovered refrigerant gas, and supply the refrigerant gas to the refrigerator 14 again.
  • Refrigerator 14, also referred to as an expander or coldhead, together with compressor 12 constitutes a cryogenic refrigerator.
  • the circulation of the refrigerant gas between the compressor 12 and the refrigerator 14 is performed with an appropriate combination of pressure and volume fluctuations of the refrigerant gas within the refrigerator 14 to form a thermodynamic cycle that produces cold. and refrigerator 14 can provide cryogenic cooling.
  • the refrigerant gas is typically helium gas, although other suitable gases may be used.
  • the direction in which the refrigerant gas flows is indicated by arrows in FIG.
  • Cryogenic refrigerators are, by way of example, two-stage Gifford-McMahon (GM) refrigerators, but may also be pulse tube refrigerators, Stirling refrigerators, or other types of cryogenic refrigerators. good too.
  • the refrigerator 14 includes a room temperature section 26, a first cylinder 28, a first cooling stage 30, a second cylinder 32, and a second cooling stage .
  • Refrigerator 14 is configured to cool first cooling stage 30 to a first cooling temperature and second cooling stage 34 to a second cooling temperature.
  • the second cooling temperature is lower than the first cooling temperature.
  • the first cooling stage 30 is cooled to about 65K to 120K, preferably 80K to 100K
  • the second cooling stage 34 is cooled to about 10K to 20K.
  • First cooling stage 30 and second cooling stage 34 may also be referred to as a hot cooling stage and a cold cooling stage, respectively.
  • the first cylinder 28 connects the first cooling stage 30 to the room temperature section 26 so that the first cooling stage 30 is structurally supported by the room temperature section 26 .
  • a second cylinder 32 connects a second cooling stage 34 to the first cooling stage 30 such that the second cooling stage 34 is structurally supported to the first cooling stage 30 .
  • the first cylinder 28 and the second cylinder 32 extend coaxially along the radial direction. , are arranged in a straight line in this order.
  • a first displacer and a second displacer are reciprocally arranged inside the first cylinder 28 and the second cylinder 32, respectively.
  • a first regenerator and a second regenerator are incorporated in the first displacer and the second displacer, respectively.
  • the room temperature section 26 also has a drive mechanism (not shown) such as a motor for reciprocating the first displacer and the second displacer.
  • the drive mechanism includes a channel switching mechanism that switches the channel of the working gas so as to periodically repeat the supply and discharge of the working gas (for example, helium) to the interior of the refrigerator 14 .
  • the cryopump 10 also includes a radiation shield 36 and a cryopanel 38 .
  • Radiation shield 36 is thermally coupled to first cooling stage 30 to provide a cryogenic surface for protecting cryopanel 38 from radiant heat from outside cryopump 10 or from cryopump vessel 16 . combined and cooled to a first cooling temperature.
  • the radiation shield 36 has, for example, a cylindrical shape and is arranged so as to surround the cryopanel 38 and the second cooling stage 34 .
  • the end of the radiation shield 36 on the side of the cryopump inlet 17 is open so that the radiation shield 36 can receive gas entering through the cryopump inlet 17 from outside the cryopump 10 .
  • the end of the radiation shield 36 opposite the cryopump inlet 17 may be closed or open or open.
  • the radiation shield 36 has a gap with the cryopanel 38 and the radiation shield 36 is not in contact with the cryopanel 38 . Radiation shield 36 is also not in contact with cryopump vessel 16 .
  • inlet baffle 37 may be provided to protect 38 .
  • Inlet baffle 37 may be secured to the open end of radiation shield 36 and thermally coupled to first cooling stage 30 of refrigerator 14 through radiation shield 36 .
  • inlet baffle 37 may be attached to first cooling stage 30 .
  • the inlet baffle 37 is cooled to the same temperature as the radiation shield 36 and is capable of condensing so-called Type 1 gases (gases that condense at relatively high temperatures, such as water vapor) on its surface.
  • a cryopanel 38 is thermally coupled to the second cooling stage 34 to provide a cryogenic surface for condensing Type 2 gases (e.g., gases that condense at relatively low temperatures, such as argon, nitrogen, etc.). cooled to temperature.
  • the cryopanel 38 has at least a part of its surface (for example, the surface opposite to the cryopump inlet 17) for adsorbing Type 3 gas (for example, non-condensable gas such as hydrogen), for example, activated carbon or Other adsorbents are placed.
  • Type 3 gas for example, non-condensable gas such as hydrogen
  • Gas that enters the radiation shield 36 from outside the cryopump 10 through the cryopump inlet 17 is captured by the cryopanel 38 by condensation or adsorption.
  • Various known configurations can be appropriately adopted for the arrangement and shape of the radiation shield 36 and the cryopanel 38, and thus the details thereof will not be described here.
  • the cryopump container 16 has a container body 16a and a refrigerator housing cylinder 16b.
  • the cryopump vessel 16 is a vacuum vessel designed to hold a vacuum during the evacuation operation of the cryopump 10 and to withstand ambient pressure (eg, atmospheric pressure).
  • the container body 16a has a cylindrical shape with a cryopump inlet 17 at one end and a closed other end.
  • a radiation shield 36 is accommodated in the container body 16a, and the cryopanel 38 is accommodated in the radiation shield 36 together with the second cooling stage 34 as described above.
  • One end of the refrigerator housing tube 16 b is coupled to the container body 16 a and the other end is fixed to the room temperature section 26 of the refrigerator 14 .
  • the refrigerator 14 is inserted into the refrigerator housing tube 16b, and the first cylinder 28 is housed therein.
  • the cryopump 10 is a so-called horizontal cryopump in which the refrigerator 14 is provided on the side of the container body 16a.
  • a refrigerator insertion opening is provided in the side portion of the container body 16a, and the refrigerator housing cylinder 16b is coupled to the side portion of the container body 16a at the refrigerator insertion opening.
  • a hole through which the refrigerator 14 is inserted is also provided on the side of the radiation shield 36 adjacent to the refrigerator insertion opening of the container body 16a. Through these holes, the second cylinder 32 and second cooling stage 34 of the refrigerator 14 are inserted into the radiation shield 36, which is thermally coupled to the first cooling stage 30 around its side holes. It is
  • the cryopump can be installed in various positions at the site where it is used.
  • the cryopump 10 can be installed in the illustrated sideways orientation, that is, with the cryopump inlet 17 facing upward.
  • the bottom of the container body 16a is positioned below the cryopump inlet 17, and the refrigerator 14 extends horizontally.
  • the cryopump 10 includes a first temperature sensor 40 for measuring the temperature of the first cooling stage 30 and a second temperature sensor 42 for measuring the temperature of the second cooling stage 34 .
  • a first temperature sensor 40 is attached to the first cooling stage 30 .
  • a second temperature sensor 42 is attached to the second cooling stage 34 .
  • a first temperature sensor 40 may measure the temperature of radiation shield 36 and output a first measured temperature signal indicative of the measured temperature of radiation shield 36 .
  • a second temperature sensor 42 may measure the temperature of the cryopanel 38 and output a second measured temperature signal indicative of the measured temperature of the cryopanel 38 .
  • a pressure sensor 44 is provided inside the cryopump container 16 . The pressure sensor 44 is installed, for example, in the refrigerator container 16b, measures the internal pressure of the cryopump container 16, and can output a measured pressure signal indicating the measured pressure.
  • the cryopump 10 also includes a controller 46 that controls the cryopump 10 .
  • the controller 46 may be provided integrally with the cryopump 10 or may be configured as a control device separate from the cryopump 10 .
  • the controller 46 may control the refrigerator 14 based on the cooling temperature of the radiation shield 36 and/or the cryopanel 38 during the evacuation operation of the cryopump 10 .
  • a controller 46 is connected to the first temperature sensor 40 to receive the first measured temperature signal from the first temperature sensor 40 and the second temperature sensor 42 to receive the second measured temperature signal from the second temperature sensor 42 . may be connected to
  • the controller 46 can operate as a regeneration controller for the cryopump 10 .
  • the controller 46 controls the refrigeration temperature based on the pressure within the cryopump vessel 16 (or based on the temperature of the cryopanel 38 and the pressure within the cryopump vessel 16, as appropriate).
  • Machine 14, rough valve 18, body purge valve 20, exhaust valve 22, and exhaust purge valve 24 may be controlled.
  • Controller 46 may be connected to pressure sensor 44 to receive the measured pressure signal from pressure sensor 44 .
  • the internal configuration of the controller 46 is realized as a hardware configuration by elements and circuits such as a computer CPU and memory, and as a software configuration is achieved by a computer program, etc., but in the figure, it is realized by linking them as appropriate. It is drawn as a function block to be It should be understood by those skilled in the art that these functional blocks can be implemented in various ways by combining hardware and software.
  • the controller 46 can be implemented by a combination of a CPU (Central Processing Unit), a processor (hardware) such as a microcomputer, and a software program executed by the processor (hardware).
  • the software program may be a computer program for causing the controller 46 to regenerate the cryopump 10 .
  • the rough valve 18 is installed in the cryopump container 16, for example, the refrigerator housing cylinder 16b.
  • the rough valve 18 is connected to a rough pump (not shown) installed outside the cryopump 10 .
  • the rough pump is a vacuum pump for evacuating the cryopump 10 to its operation start pressure.
  • the cryopump container 16 is communicated with the rough pump, and when the rough valve 18 is closed, the cryopump container 16 is disconnected from the rough pump.
  • the cryopump 10 can be depressurized by opening the rough valve 18 and operating the rough pump.
  • the body purge valve 20 is installed in the cryopump container 16, for example, the container body 16a.
  • the body purge valve 20 is connected to a purge gas source 48 or a purge gas supply device installed outside the cryopump 10 .
  • Purge gas is supplied from the purge gas source 48 to the cryopump vessel 16 when the body purge valve 20 is opened under the control of the controller 46, and purge gas supply to the cryopump vessel 16 is cut off when the body purge valve 20 is closed.
  • the pressure of the cryopump 10 can be increased.
  • the temperature of the cryopump 10 can be raised from cryogenic to room temperature or higher.
  • the purge gas may be, for example, nitrogen gas, or other dry gas, and the temperature of the purge gas is adjusted, for example, to room temperature (greater than 0°C, such as 15°C to 30°C) or higher than room temperature (eg, 50°C). or 80° C. or less).
  • the discharge valve 22 is installed in the cryopump container 16, for example, the refrigerator housing cylinder 16b.
  • a discharge valve 22 is provided as an outlet of the cryopump vessel 16 to discharge fluid from the inside of the cryopump 10 to the outside.
  • the exhaust valve 22 is also the inlet to the exhaust line 50, which will be described later. Fluid is discharged from the cryopump container 16 when the discharge valve 22 is opened under the control of the controller 46, and fluid discharge from the cryopump container 16 is blocked when the discharge valve 22 is closed.
  • the fluid discharged from the discharge valve 22 is essentially a gas, but can also be a liquid or a gas-liquid mixture.
  • the exhaust valve 22 may be, for example, a normally closed control valve.
  • exhaust valve 22 may function as a vent valve or safety valve and may be configured to mechanically open when a predetermined differential pressure is applied. In that case, the discharge valve 22 is mechanically opened without requiring control when the inside of the cryopump becomes high pressure for some reason. This allows internal high pressure to escape to exhaust line 50 .
  • the exhaust purge valve 24 is provided to supply purge gas to the exhaust line 50 .
  • a separate exhaust valve 22 and an exhaust purge valve 24 may be provided and the exhaust purge valve 24 may be plumbed downstream of the exhaust valve 22 .
  • exhaust purge valve 24 may be provided integral with exhaust valve 22 to supply purge gas to exhaust valve 22 or downstream thereof.
  • the exhaust purge valve 24 may be installed in the cryopump vessel 16, such as the refrigerator housing cylinder 16b.
  • the exhaust purge valve 24 is connected to a purge gas source 48 or another purge gas source. Under the control of controller 46, purge gas is supplied from purge gas source 48 to exhaust line 50 when exhaust purge valve 24 is opened, and purge gas supply to exhaust line 50 is cut off when exhaust purge valve 24 is closed.
  • a discharge line 50 is provided for discharging the discharge fluid from the cryopump 10 to the processing device 60, is connected to the discharge valve 22 and the discharge purge valve 24 at its upstream end, and is connected to the processing device 60 at its downstream end.
  • the treatment device 60 treats hazardous gases contained in the effluent (such as hydrogen gas, or other gases that are explosive, or that are corrosive or toxic) to produce harmless gases. It may be an abatement device, or it may be a treatment device that treats a hazardous gas to reduce its danger. As such a treatment device 60, a well-known abatement device or treatment device can be appropriately employed, so details thereof will not be described here.
  • hazardous gases contained in the effluent such as hydrogen gas, or other gases that are explosive, or that are corrosive or toxic
  • It may be an abatement device, or it may be a treatment device that treats a hazardous gas to reduce its danger.
  • a well-known abatement device or treatment device can be appropriately employed, so details thereof will not be described here.
  • the exhaust line 50 includes an (additional) purge gas receiving port 52 on the processing device 60 side with respect to the exhaust purge valve 24 .
  • the purge gas receiving port 52 is at the downstream end of the exhaust line 50 and is connected to the processing device 60 . As shown, purge gas receiving port 52 may be adjacent to processing equipment 60 . Alternatively, purge gas receiving port 52 and processing device 60 may not be adjacent, and purge gas receiving port 52 may be connected to processing device 60 via other equipment included in exhaust line 50 .
  • An additional exhaust purge valve 54 may be connected to this purge gas receiving port 52 .
  • An additional exhaust purge valve 54 may be connected to the purge gas source 48 or another purge gas source.
  • the exhaust purge valve 54 may form part of the cryopump 10 and may be controlled by the controller 46 .
  • Purge gas is supplied from the purge gas source 48 to the exhaust line 50 when the exhaust purge valve 54 is opened, and purge gas supply to the exhaust line 50 is cut off when the exhaust purge valve 54 is closed.
  • the exhaust purge valve 24 supplies purge gas to the exhaust line 50 upstream of the exhaust line 50 (on the exhaust valve 22 side), and the additional exhaust purge valve 54 exhausts on the downstream side of the exhaust line 50 (on the exhaust valve 22 side).
  • Purge gas is supplied in line 50 .
  • the body purge valve 20 enables “body purge” to supply purge gas to the container body 16a of the cryopump container 16
  • the discharge purge valve 24 enables "upstream purge” to supply purge gas to the upstream end of the discharge line 50
  • An additional exhaust purge valve 54 allows for a “downstream purge,” supplying purge gas to the downstream end of exhaust line 50 .
  • the flow rate of each of the body purge, upstream purge, and downstream purge may be selected, for example, from a range of 20 L/min or more to 100 L/min.
  • the bodypurge, upstream purge, and downstream purge flow rates may be equal or different from each other.
  • the downstream purge flow rate may be greater than the upstream purge (or body purge) flow rate.
  • the purge gas receiving port 52 may be connected to the exhaust valve 22 and the exhaust purge valve 24 of the other cryopump 10 , and the downstream purge of the exhaust line 50 is performed by supplying the purge gas from the other cryopump 10 . may be done.
  • the exhaust line 50 has a buffer volume 56 through which exhaust fluid from the cryopump vessel 16 flows from the exhaust valve 22 through the buffer volume 56 into the processing device 60 .
  • Exhaust purge valve 24 supplies purge gas upstream in exhaust line 50 to buffer volume 56 and additional exhaust purge valve 54 supplies purge gas downstream in exhaust line 50 to buffer volume 56 .
  • Buffer volume 56 may be, for example, 1 L (liter) or greater, or 3 L or greater. From a space-saving point of view, the buffer volume 56 may be, for example, 30 L or less, or 10 L or less.
  • the buffer volume 56 may be the volume of the tubing that makes up the drain line 50 , ie, the tubing that connects the drain valve 22 to the processing device 60 .
  • the buffer volume 56 may consist of a pipe that constitutes the discharge line 50 and a buffer tank connected to this pipe.
  • the piping may be flexible or rigid.
  • cryopump 10 As the evacuation operation of the cryopump 10 continues, gas accumulates in the cryopump 10 .
  • the cryopump 10 is regenerated in order to discharge the accumulated gas to the outside. Regeneration of the cryopump 10 generally includes heating, evacuation, and cooling down steps.
  • the temperature raising process includes raising the temperature of the cryopump 10 to a temperature exceeding the melting point of the dangerous gas among the gases trapped in the cryopump 10, further raising the temperature of the cryopump 10 to the regeneration temperature, including.
  • Hazardous gases are typically, for example, type 2 or type 3 gases, and the melting point of the hazardous gas is, for example, 100K or less.
  • the regeneration temperature is, for example, room temperature or higher. Therefore, in many cases, the dangerous gas is re-vaporized in the first half of the temperature raising process, especially immediately after the start, and is discharged from the cryopump 10 and flows into the processing device 60 . Hazardous gases are removed from the cryopump 10 during the heating process.
  • the heat source for raising the temperature is, for example, the refrigerator 14.
  • the refrigerator 14 enables temperature rising operation (so-called reverse temperature rising). That is, the refrigerator 14 is configured such that adiabatic compression occurs in the working gas when the drive mechanism provided in the room temperature section 26 operates in the direction opposite to the cooling operation.
  • the refrigerator 14 heats the first cooling stage 30 and the second cooling stage 34 with the heat of compression thus obtained.
  • the radiation shield 36 and the cryopanel 38 are heated using the first cooling stage 30 and the second cooling stage 34 as heat sources, respectively.
  • the purge gas supplied from the body purge valve 20 into the cryopump container 16 also contributes to the temperature rise of the cryopump 10 .
  • the cryopump 10 may be provided with a heating device such as an electric heater.
  • an electric heater that is controllable independently of the operation of refrigerator 14 may be attached to first cooling stage 30 and/or second cooling stage 34 of refrigerator 14 .
  • the gas trapped in the cryopump 10 is re-vaporized or liquefied and discharged through the discharge line 50 or through the rough valve 18 as a gas, liquid, or gas-liquid mixture. Since the type 2 gas and the type 3 gas can already be easily discharged from the cryopump 10 during the heating process, the discharge process is mainly for discharging the type 1 gas.
  • the cool-down process is started. In the cooldown step, the cryopump 10 is recooled to cryogenic temperatures for evacuation operation. When the regeneration is completed in this way, the cryopump 10 can start the evacuation operation again.
  • one of the main uses of the cryopump 10 is to evacuate an ion implanter.
  • hydrogen gas is stored in the cryopump 10 .
  • the hydrogen gas trapped in the cryopanel 38 can be re-vaporized all at once during regeneration, particularly immediately after the regeneration (heating process) starts.
  • the hydrogen gas is diluted in the cryopump vessel 16 by the bodypurge, the exhaust fluid flowing from the cryopump vessel 16 through the exhaust line 50 to the processing device 60 may still temporarily contain hydrogen gas in significantly higher concentrations. . Since high-concentration hydrogen gas has the risk of explosion or combustion, from the viewpoint of safety management of the cryopump 10 and the discharge line 50, it is desirable to suppress the hydrogen gas concentration peak in the discharge fluid as low as possible.
  • FIGS. 3(a) to 3(c) are graphs showing changes in concentration of hydrogen gas in the fluid discharged from the cryopump 10 according to the embodiment.
  • Each figure shows the inventor's calculation of the concentration of hydrogen gas in the exhaust fluid at the purge gas receiving port 52 of the exhaust line 50, that is, in the exhaust fluid flowing into the processing device 60.
  • the calculation conditions are as follows.
  • the volume of the cryopump 10 (that is, the cryopump container 16) is assumed to be 30 L, and the initial hydrogen gas concentration in the cryopump container 16 is assumed to be 60% (corresponding to the maximum hydrogen gas storage amount of the cryopump 10).
  • the body purge flow rate (purge gas flow rate supplied from the body purge valve 20 to the cryopump container 16) is set to 20 L/min
  • the upstream purge flow rate purge gas flow rate supplied from the discharge purge valve 24 to the upstream of the discharge line 50) is set to The flow rate is 20 L/min and the downstream purge is 0 L/min (that is, no downstream purge).
  • the size of the buffer volume 56 is different; in FIG. 3(a) the buffer volume 56 is 1 L, in FIG. 3(b) the buffer volume 56 is 3 L, and in FIG. 3(c) the buffer volume 56 is 30 L.
  • the controller 46 opens the body purge valve 20, the discharge valve 22, and the discharge purge valve 24 at the same time.
  • the hydrogen gas concentration at the purge gas receiving port 52 is 0% as shown.
  • Carrying the exhaust fluid from the cryopump vessel 16 down the exhaust line 50 along with the bodypurge and upstream purge temporarily increases the hydrogen gas concentration at the purge gas receiving port 52 and reaches a peak concentration.
  • the hydrogen gas concentration at the purge gas receiving port 52 gradually decreases to 0% again.
  • concentration change trends are common regardless of the size of the buffer volume 56, as shown in FIGS. 3(a) to 3(c).
  • the hydrogen gas concentration peak in the exhaust fluid upstream of the buffer volume 56 is estimated to be half of the initial concentration (that is, 30%).
  • the mixing of the exhaust fluid flowing therefrom into the buffer volume 56 and the purge gas initially filling the buffer volume 56 causes the hydrogen gas concentration peak downstream of the buffer volume 56, i.e. at the purge gas receiving port 52, expected to drop somewhat further.
  • the effect of the buffer volume 56 can be clarified by comparing the hydrogen gas concentration peaks shown in FIGS. 3(a) to 3(c).
  • the hydrogen gas concentration peak is 28.0%.
  • the hydrogen gas concentration peak is 25.6%.
  • the hydrogen gas concentration peak is 15.0%.
  • the larger the buffer volume 56 the lower the peak hydrogen gas concentration in the effluent.
  • FIGS. 4(a) to 4(c) are graphs showing changes in concentration of hydrogen gas in the fluid discharged from the cryopump 10 according to the embodiment.
  • 3(a) to 3(c) each figure shows the inventor's calculation of the hydrogen gas concentration in the exhaust fluid at the purge gas receiving port 52 of the exhaust line 50.
  • the calculation conditions are as follows.
  • the volume of the cryopump 10 (that is, the cryopump container 16) is assumed to be 30 L, and the initial concentration of hydrogen gas in the cryopump container 16 is assumed to be 60%.
  • the buffer volume 56 is assumed to be 30L.
  • a flow rate of 40 L/min is added to the upstream purge, the body purge is 20 L/min, the upstream purge is 60 L/min, and the downstream purge is not performed.
  • a downstream purge is performed, with a body purge of 20 L/min, an upstream purge of 20 L/min, and a downstream purge of 40 L/min.
  • the controller 46 When the regeneration (heating process) is started, the controller 46 simultaneously opens the body purge valve 20, the exhaust valve 22, the exhaust purge valve 24, and (if downstream purging is performed) the additional exhaust purge valve 54.
  • the tendency of change in the hydrogen gas concentration at the purge gas receiving port 52 initially increases from 0%, reaches a concentration peak, and then gradually decreases to 0% again. This is common to FIGS. 4(a) to 4(c).
  • the hydrogen gas concentration peak at the purge gas receiving port 52 is 9.5%. Comparing FIG. 4(b) and FIG. 3(c), by increasing the upstream purge from 20 L/min to 60 L/min, the hydrogen gas concentration peak at the purge gas receiving port 52 is reduced from 15% to 9.5%. is decreasing. Therefore, increasing the flow rate of the upstream purge is effective in suppressing the hydrogen gas concentration peak.
  • the hydrogen gas concentration peak at the purge gas receiving port 52 is 7.5%. Comparing FIG. 4(c) with FIG. 3(c), by newly adding the downstream purge, the hydrogen gas concentration peak at the purge gas receiving port 52 is reduced from 15% to 7.5%. The hydrogen gas concentration peak is lower than the increase in the flow rate of the upstream purge shown in FIG. 4(b). Therefore, downstream purging is most effective in suppressing hydrogen gas concentration peaks. It is considered that supplying the purge gas at the downstream side of the exhaust line 50 (on the side of the processing device 60) as much as possible contributes to the reduction of the hydrogen gas concentration peak.
  • the hydrogen gas concentration peak at the purge gas receiving port 52 is determined by the flow rate ratio of the body purge, upstream purge, and downstream purge.
  • the flow rates of the body purge, upstream purge, and downstream purge themselves affect the time required for discharge (the time from the start of regeneration until the hydrogen gas concentration becomes 0% again), but the hydrogen gas at the purge gas receiving port 52 It does not affect gas concentration peaks.
  • increasing the flow rate of the downstream purge relative to the flow rate of the body purge (or upstream purge) may reduce the amount of exhaust fluid at the purge gas receiving port 52 of the exhaust line 50, i.e., the exhaust entering the processing device 60. It is effective for suppressing the hydrogen gas concentration peak in the fluid. Also, the flow rate of the downstream purge may be made larger than the total flow rate of the body purge and the upstream purge. Also in this way, the peak of the hydrogen gas concentration in the discharged fluid flowing into the treatment device 60 can be suppressed.
  • hydrogen gas does not burn when the hydrogen gas concentration is 4% or less. Therefore, it is beneficial for safety to suppress the hydrogen gas concentration peak at the purge gas receiving port 52 to 4% or less.
  • the purge gas receiving port The hydrogen gas concentration peak at 52 can be 3.9%.
  • the hydrogen gas concentration peak during regeneration can also be suppressed.
  • the body purge, the upstream purge, and the downstream purge at a flow rate ratio of 1:1:1 the hydrogen gas concentration peak at the purge gas receiving port 52 can be 3.7%.
  • the hydrogen gas concentration peak at the purge gas receiving port 52 can be 3.8%.
  • the hydrogen gas concentration peak at the purge gas receiving port 52 is 3.8% by setting the flow rate ratio of the body purge, upstream purge, and downstream purge to 1:1:1. %.
  • the downstream purge flow rate may be selected from the range of 1 to 11 times the body purge (or upstream purge) flow rate.
  • the buffer volume 56 is relatively large (eg, 10 L or more and 30 L or less)
  • the downstream purge flow rate may be selected from the range of 1 to 6 times the body purge (or upstream purge) flow rate.
  • the discharge line 50 has the buffer volume 56
  • the dangerous gas discharged from the cryopump 10 and flowing into the processing apparatus 60 is efficiently diluted, and the concentration of the dangerous gas is reduced. peak can be suppressed.
  • the dangerous gas flowing into the processing device 60 can be efficiently diluted and the concentration peak of the dangerous gas can be suppressed. Purge gas consumption can be reduced compared to using only body purge (or upstream purge).
  • the dangerous gas is typically type 2 gas or type 3 gas, and the concentration change in the discharge line 50 is similar to that of hydrogen gas. Therefore, for other hazardous gases as well, the buffer volume 56 and the downstream purge are effective in effectively diluting the hazardous gases entering the processing system 60 and reducing the concentration peaks of the hazardous gases.
  • FIG. 5 schematically shows a cryopump system according to another embodiment.
  • the cryopump system shown in FIG. 5 includes a plurality of (three in this example) cryopumps 10, unlike the cryopump systems shown in FIGS. These multiple cryopumps 10 are connected to a common processing unit 60 by an exhaust line 50 .
  • the cryopumps 10a, 10b, and 10c may be used when the plurality of cryopumps 10 need to be distinguished.
  • Each cryopump 10 includes a rough valve 18, a body purge valve 20, an exhaust valve 22, and an exhaust purge valve 24, which are installed in the cryopump container 16 of each cryopump.
  • the cryopump system is provided with a controller 46 that controls the plurality of cryopumps 10 , and the controller 46 is operable as a regeneration controller that controls each of the aforementioned valves of each cryopump 10 during regeneration of the plurality of cryopumps 10 . is.
  • the configuration of the cryopump 10 shown in FIG. 5 may be similar to the cryopump 10 shown in FIGS. 1 and 2, and descriptions of similar components are omitted to avoid redundancy.
  • the discharge line 50 is provided to discharge the discharge fluid from the plurality of cryopumps 10 to the processing device 60 .
  • the discharge line 50 includes a plurality of branch paths 50 a and a joint path 50 b that connects the plurality of branch paths 50 a to the processing device 60 .
  • Each branch channel 50a is connected at its upstream end to the discharge valve 22 and the discharge purge valve of the corresponding cryopump 10, and connected at its downstream end to the combined channel 50b.
  • Each branch channel 50a includes a buffer volume 56 that connects the exhaust valve 22 of the corresponding cryopump 10 to the combined channel 50b.
  • the buffer volume 56 of each tributary 50a may be in the range of 1 to 30 liters, as described above.
  • the exhaust purge valve 24 of each cryopump 10 is connected to the branch 50 a on the upstream side (exhaust valve 22 side) with respect to the buffer volume 56 . Fluid discharged from the cryopump vessel 16 of each cryopump 10 passes from the discharge valve 22 of each cryopump 10 through the buffer volume 56 of each branch 50a of the discharge line 50 and joins in the combined flow path 50b. flow into
  • the body purge valve 20 of each cryopump 10 enables the body purge of the cryopump 10 .
  • the exhaust purge valve 24 of each cryopump 10 supplies purge gas upstream of the exhaust line 50 to the buffer volume 56 to enable upstream purging of that cryopump 10 . Also, by opening the exhaust valve 22, the body purge from the body purge valve 20 can be used as an upstream purge.
  • the combined channel 50b of the discharge line 50 corresponds to the purge gas receiving port 52 in the above embodiment.
  • the discharge valve 22 or the discharge purge valve 24 of another cryopump 10 eg, the second cryopump 10b or the third cryopump 10c
  • the downstream purge of a certain cryopump 10 causes the body purge or upstream purge of another cryopump 10 (for example, the second cryopump 10b or the third cryopump 10c) from the combined channel 50b. This is possible by receiving in the tributary 50a of a certain cryopump 10 (for example, the first cryopump 10a).
  • cryopump system is provided with a roughing line 58 in addition to the discharge line 50 .
  • a roughing line 58 connects the rough valve 18 of each cryopump 10 to a common roughing pump 59 .
  • the plurality of cryopumps 10 are roughed by roughing pumps 59 through roughing valves 18 and roughing lines 58 of each cryopump 10 .
  • the combined purge gas flow from the second cryopump 10b and the third cryopump 10c can be utilized for downstream purging of the first cryopump 10a.
  • gas flowing from another cryopump eg, second cryopump 10b or third cryopump 10c
  • a cryopump 10 eg, first cryopump 10a
  • the start of regeneration of a certain cryopump 10 may be prioritized over the rest of the cryopumps 10 .
  • the start of regeneration of the remaining cryopumps 10 may be delayed with respect to the cryopump 10 that starts regeneration first.
  • the delay time may be, for example, several minutes (eg, 2 to 10 minutes).
  • the controller 46 controls one cryopump 10 to discharge the discharge fluid from one cryopump 10 to the processing device 60 and controls another cryopump 10 to supply the purge gas to the junction 50 b of the discharge line 50 .
  • Controller 46 may be configured to open body purge valve 20 of a given cryopump 10 in order to expel exhaust fluid from the given cryopump 10 to processing device 60 .
  • Controller 46 may be configured to open exhaust purge valve 24 of another cryopump 10 to supply purge gas from another cryopump 10 to junction 50 b of exhaust line 50 .
  • the regeneration (heating process) of the first cryopump 10a is started first, and the discharge fluid is discharged from the first cryopump 10a to the discharge line 50 using the body purge of the first cryopump 10a.
  • the exhaust purge valves 24 of the remaining second cryopump 10b and third cryopump 10c are opened, and the first cryopump 10a utilizes the purge gas from these two cryopumps 10b, 10c as a downstream purge to the processing equipment 60. can effectively dilute the discharge fluid entering the .
  • the dangerous gas is discharged from the first cryopump 10a in this way, regeneration (temperature raising process) of one of the remaining cryopumps 10 (for example, the second cryopump 10b) is started.
  • the bodypurge and upstream purge of the first cryopump 10a can be utilized as the downstream purge for the second cryopump 10b.
  • the upstream purge for the third cryopump 10c is still available as the downstream purge for the second cryopump 10b.
  • the regeneration (heating process) of the third cryopump 10c is started.
  • the body purge and upstream purge of the first cryopump 10a and the second cryopump 10b can be used as the downstream purge for the third cryopump 10c.
  • the controller 46 may be configured to open both the body purge valve 20 and the exhaust purge valve 24 of a given cryopump 10 to exhaust the exhaust fluid from the given cryopump 10 to the processing device 60 . In this way, the exhaust fluid can be efficiently discharged from the cryopump 10 to the discharge line 50 using the body purge and the upstream purge.
  • the controller 46 controls the discharge purge valve of the other cryopump 10 while controlling the refrigerator 14 to cool the other cryopump 10 to prevent the formation of discharge fluid within the cryopump vessel 16 of the other cryopump 10 .
  • 24 may be configured to open. In this way, when the regeneration (heating process) of the first cryopump 10a is started, the remaining second cryopump 10b and the third cryopump 10c can be maintained in a cooled state. Discharge from the cryopumps 10b and 10c can be reliably blocked.
  • the first cryopump 10a can utilize the purge gas from these two cryopumps 10b, 10c as a downstream purge to effectively dilute the effluent flowing into the processing device 60.
  • the controller 46 operates the cryopump 10 and the other cryopump 10 so that the flow rate of the purge gas from the cryopump 10 to the combined channel 50b is greater than the flow rate of the purge gas from the other cryopump 10 to the combined channel 50b.
  • the hydrogen gas concentration peak is 4% or less
  • the cryopump volume is 30 L
  • the buffer volume 56 of each branch 50a of the discharge line 50 is 10 L
  • the initial hydrogen gas concentration is 60%
  • the hydrogen gas in the combined flow path 50b of the discharge line 50 is The concentration peak can be 4.0%.
  • the buffer volume 56 of each branch 50a of the discharge line 50 is reduced to 3 L, and the flow rates of the body purge and upstream purge of each cryopump 10 are reduced to Even if both are reduced to 20 L/min, the hydrogen gas concentration peak in the combined flow path 50b of the discharge line 50 can be less than 4.0%.
  • the present invention can be used in the field of cryopump systems and regeneration controllers for cryopump systems.
  • cryopump 10 cryopump, 14 refrigerator, 16 cryopump container, 20 body purge valve, 22 exhaust valve, 24 exhaust purge valve, 46 controller, 50 exhaust line, 50a branch, 50b combined passage, 52 purge gas receiving port, 56 buffer volume, 60 processing equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

This cryopump system comprises: a cryopump container (16); a cryopump (10) comprising a discharge valve (22) which discharges a discharge fluid from the cryopump container (16), and a discharge purge valve (24) which supplies a purge gas to the discharge valve (22) or to the downstream side thereof; and a discharge line (50) which discharges the discharge fluid from the cryopump (10) to a processing device (60), the discharge line (50) being connected to the discharge valve (22) and the discharge purge valve (24). The discharge line (50) is provided with a purge gas receiving port (52) on the processing device (60) side with respect to the discharge purge valve (24).

Description

クライオポンプシステムおよび再生コントローラCryopump system and regeneration controller
 本発明は、クライオポンプシステム、およびクライオポンプシステムのための再生コントローラに関する。 The present invention relates to a cryopump system and a regeneration controller for the cryopump system.
 クライオポンプは、極低温に冷却されたクライオパネルに気体分子を凝縮または吸着により捕捉して排気する真空ポンプである。クライオポンプは半導体回路製造プロセス等に要求される清浄な真空環境を実現するために一般に利用される。クライオポンプはいわゆる気体溜め込み式の真空ポンプであるから、捕捉した気体を外部に定期的に排出する再生を要する。 A cryopump is a vacuum pump that traps gas molecules by condensation or adsorption in a cryopanel cooled to an extremely low temperature and exhausts it. Cryopumps are generally used to realize a clean vacuum environment required for semiconductor circuit manufacturing processes and the like. Since the cryopump is a so-called trapped-gas type vacuum pump, it requires regeneration to periodically discharge the captured gas to the outside.
特開2012-237293号公報JP 2012-237293 A
 半導体製造プロセスでは、爆発性、腐食性、有毒性などさまざまな危険性をもつ危険ガスが使用されることがある。クライオポンプ内に溜め込まれた危険ガスは、再生によりクライオポンプから排出され、除害装置とも呼ばれる処理装置で無害化され又は危険性を低減するように処理される。このとき、クライオポンプにパージガスを供給することで危険ガスを希釈し、処理装置に流入する危険ガスの濃度を低くして、安全性を高めることができる。  Dangerous gases with various hazards such as explosive, corrosive, and toxic are sometimes used in the semiconductor manufacturing process. Hazardous gases trapped in the cryopump are discharged from the cryopump through regeneration and are rendered harmless or treated to reduce the risk in a treatment device, also called an abatement device. At this time, by supplying the purge gas to the cryopump, the dangerous gas can be diluted, the concentration of the dangerous gas flowing into the processing apparatus can be lowered, and safety can be improved.
 しかし、再生開始直後はクライオポンプの昇温により、溜め込まれた危険ガスが急速に再気化して危険ガス濃度が顕著に高まりうる。危険ガス濃度を安全上十分に低く維持することを保証するためには、大量のパージガスが必要になる。 However, immediately after the start of regeneration, due to the temperature rise of the cryopump, the stored dangerous gas can be rapidly re-vaporized and the concentration of the dangerous gas can increase significantly. Large amounts of purge gas are required to ensure that hazardous gas concentrations are kept low enough to be safe.
 本発明のある態様の例示的な目的のひとつは、クライオポンプから排出され処理装置に流入する危険ガスを効率的に希釈することにある。 One exemplary objective of certain aspects of the present invention is to efficiently dilute hazardous gases exhausted from cryopumps and entering processing equipment.
 本発明のある態様によると、クライオポンプシステムは、各々が、クライオポンプ容器と、クライオポンプ容器から排出流体を排出する排出バルブと、排出バルブまたはその下流にパージガスを供給する排出パージバルブとを備える複数のクライオポンプと、排出流体を複数のクライオポンプから処理装置に排出する排出ラインであって、各々が対応するクライオポンプの排出バルブおよび排出パージバルブに接続される複数の支路と、複数の支路を処理装置に接続する合流路とを備える排出ラインと、を備える。 According to one aspect of the invention, a cryopump system includes a plurality of cryopump vessels, each comprising a cryopump vessel, an exhaust valve for exhausting exhaust fluid from the cryopump vessel, and an exhaust purge valve for supplying a purge gas to or downstream of the exhaust valve. and a plurality of tributaries each connected to a corresponding cryopump exhaust valve and an exhaust purge valve, and a plurality of tributaries for discharging exhaust fluid from the plurality of cryopumps to the processing equipment. a discharge line comprising a junction connecting the to the processing unit.
 本発明のある態様によると、クライオポンプシステムのための再生コントローラが提供される。クライオポンプシステムは、各々が、クライオポンプ容器と、クライオポンプ容器から排出流体を排出する排出バルブと、排出バルブまたはその下流にパージガスを供給する排出パージバルブとを備える複数のクライオポンプと、排出流体を複数のクライオポンプから処理装置に排出する排出ラインであって、各々が対応するクライオポンプの排出バルブおよび排出パージバルブに接続される複数の支路と、複数の支路を処理装置に合流させる合流路とを備える排出ラインと、を備える。複数のクライオポンプは、第1クライオポンプおよび第2クライオポンプを含む。再生コントローラは、第1クライオポンプから排出流体を処理装置に排出するように第1クライオポンプを制御するとともに、第2クライオポンプからパージガスを排出ラインの合流路に供給するように第2クライオポンプを制御するように構成される。 According to one aspect of the invention, a regeneration controller for a cryopump system is provided. A cryopump system includes a plurality of cryopumps, each comprising a cryopump vessel, an exhaust valve for evacuating exhaust fluid from the cryopump vessel, and an exhaust purge valve for supplying purge gas to or downstream of the exhaust valve; A discharge line that discharges from a plurality of cryopumps to the processing equipment, and includes a plurality of branch lines each connected to a discharge valve and a discharge purge valve of the corresponding cryopump, and a confluence line that joins the plurality of branch lines to the processing equipment. and a discharge line comprising: The plurality of cryopumps includes a first cryopump and a second cryopump. The regeneration controller controls the first cryopump to discharge exhaust fluid from the first cryopump to the processing device, and controls the second cryopump to supply the purge gas from the second cryopump to the junction of the discharge line. configured to control.
 本発明のある態様によると、クライオポンプシステムは、クライオポンプ容器と、クライオポンプ容器から排出流体を排出する排出バルブと、排出バルブまたはその下流にパージガスを供給する排出パージバルブとを備えるクライオポンプと、排出バルブおよび排出パージバルブに接続され、排出流体をクライオポンプから処理装置に排出する排出ラインに設けられ、排出パージバルブに対して処理装置側にパージガスを供給する追加の排出パージバルブと、を備える。 According to one aspect of the invention, a cryopump system includes a cryopump comprising a cryopump vessel, an exhaust valve for exhausting exhaust fluid from the cryopump vessel, and an exhaust purge valve for supplying a purge gas at or downstream of the exhaust valve; an additional exhaust purge valve connected to the exhaust valve and the exhaust purge valve and provided in the exhaust line for exhausting the exhaust fluid from the cryopump to the processing equipment and supplying a purge gas to the exhaust purge valve to the processing equipment side.
 なお、以上の構成要素の任意の組み合わせや本発明の構成要素や表現を、方法、装置、システムなどの間で相互に置換したものもまた、本発明の態様として有効である。 It should be noted that arbitrary combinations of the above-described constituent elements and those in which the constituent elements and expressions of the present invention are replaced with each other between methods, devices, systems, etc. are also effective as embodiments of the present invention.
 本発明によれば、クライオポンプから排出され処理装置に流入する危険ガスを効率的に希釈することができる。 According to the present invention, it is possible to efficiently dilute the dangerous gas discharged from the cryopump and flowing into the processing equipment.
実施の形態に係るクライオポンプシステムを模式的に示す。1 schematically shows a cryopump system according to an embodiment; 実施の形態に係るクライオポンプシステムを模式的に示す。1 schematically shows a cryopump system according to an embodiment; 図3(a)から図3(c)は、実施の形態に係り、クライオポンプからの排出流体における水素ガスの濃度変化を示すグラフである。FIGS. 3A to 3C are graphs showing changes in concentration of hydrogen gas in fluid discharged from the cryopump according to the embodiment. 図4(a)から図4(c)は、実施の形態に係り、クライオポンプからの排出流体における水素ガスの濃度変化を示すグラフである。FIGS. 4A to 4C are graphs showing changes in concentration of hydrogen gas in fluid discharged from the cryopump according to the embodiment. 他の実施の形態に係るクライオポンプシステムを模式的に示す。1 schematically shows a cryopump system according to another embodiment;
 以下、図面を参照しながら、本発明を実施するための形態について詳細に説明する。説明および図面において同一または同等の構成要素、部材、処理には同一の符号を付し、重複する説明は適宜省略する。図示される各部の縮尺や形状は、説明を容易にするために便宜的に設定されており、特に言及がない限り限定的に解釈されるものではない。実施の形態は例示であり、本発明の範囲を何ら限定するものではない。実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. In the description and drawings, the same or equivalent constituent elements, members, and processes are denoted by the same reference numerals, and overlapping descriptions are omitted as appropriate. The scales and shapes of the illustrated parts are set for convenience in order to facilitate explanation, and should not be construed as limiting unless otherwise specified. The embodiment is an example and does not limit the scope of the present invention. All features and combinations thereof described in the embodiments are not necessarily essential to the invention.
 図1および図2は、実施の形態に係るクライオポンプシステムを模式的に示す。図1にはクライオポンプ10の外観が模式的に示され、図2にはクライオポンプ10の内部構造が模式的に示される。クライオポンプ10は、例えばイオン注入装置、スパッタリング装置、蒸着装置、またはその他の真空プロセス装置の真空チャンバに取り付けられて、真空チャンバ内部の真空度を所望の真空プロセスに要求されるレベルまで高めるために使用される。例えば10-5Pa乃至10-8Pa程度の高い真空度が真空チャンバに実現される。 1 and 2 schematically show a cryopump system according to an embodiment. 1 schematically shows the appearance of the cryopump 10, and FIG. 2 schematically shows the internal structure of the cryopump 10. As shown in FIG. The cryopump 10 is mounted, for example, in the vacuum chamber of an ion implanter, sputtering device, vapor deposition device, or other vacuum process device to increase the degree of vacuum inside the vacuum chamber to the level required for the desired vacuum process. used. A high degree of vacuum of, for example, 10 −5 Pa to 10 −8 Pa is realized in the vacuum chamber.
 クライオポンプ10は、圧縮機12と、冷凍機14と、クライオポンプ容器16とを備える。クライオポンプ容器16は、クライオポンプ吸気口17を有する。また、クライオポンプ10は、ラフバルブ18と、ボディパージバルブ20と、排出バルブ22と、排出パージバルブ24とを備え、これらはクライオポンプ容器16に設置されている。 The cryopump 10 includes a compressor 12 , a refrigerator 14 and a cryopump container 16 . The cryopump container 16 has a cryopump inlet 17 . The cryopump 10 also includes a rough valve 18 , a body purge valve 20 , an exhaust valve 22 , and an exhaust purge valve 24 , which are installed in the cryopump container 16 .
 圧縮機12は、冷媒ガスを冷凍機14から回収し、回収した冷媒ガスを昇圧して、再び冷媒ガスを冷凍機14に供給するよう構成されている。冷凍機14は、膨張機またはコールドヘッドとも称され、圧縮機12とともに極低温冷凍機を構成する。圧縮機12と冷凍機14との間の冷媒ガスの循環が冷凍機14内での冷媒ガスの適切な圧力変動と容積変動の組み合わせをもって行われることにより、寒冷を発生する熱力学的サイクルが構成され、冷凍機14は極低温冷却を提供することができる。冷媒ガスは、通例はヘリウムガスであるが、適切な他のガスが用いられてもよい。理解のために、冷媒ガスの流れる方向を図1に矢印で示す。極低温冷凍機は、一例として、二段式のギフォード・マクマホン(Gifford-McMahon;GM)冷凍機であるが、パルス管冷凍機、スターリング冷凍機、またはそのほかのタイプの極低温冷凍機であってもよい。 The compressor 12 is configured to recover the refrigerant gas from the refrigerator 14, pressurize the recovered refrigerant gas, and supply the refrigerant gas to the refrigerator 14 again. Refrigerator 14, also referred to as an expander or coldhead, together with compressor 12 constitutes a cryogenic refrigerator. The circulation of the refrigerant gas between the compressor 12 and the refrigerator 14 is performed with an appropriate combination of pressure and volume fluctuations of the refrigerant gas within the refrigerator 14 to form a thermodynamic cycle that produces cold. and refrigerator 14 can provide cryogenic cooling. The refrigerant gas is typically helium gas, although other suitable gases may be used. For the sake of understanding, the direction in which the refrigerant gas flows is indicated by arrows in FIG. Cryogenic refrigerators are, by way of example, two-stage Gifford-McMahon (GM) refrigerators, but may also be pulse tube refrigerators, Stirling refrigerators, or other types of cryogenic refrigerators. good too.
 図2に示されるように、冷凍機14は、室温部26、第1シリンダ28、第1冷却ステージ30、第2シリンダ32、および第2冷却ステージ34を備える。冷凍機14は、第1冷却ステージ30を第1冷却温度に冷却し、第2冷却ステージ34を第2冷却温度に冷却するよう構成されている。第2冷却温度は第1冷却温度よりも低温である。例えば、第1冷却ステージ30は65K~120K程度、好ましくは80K~100Kに冷却され、第2冷却ステージ34は10K~20K程度に冷却される。第1冷却ステージ30及び第2冷却ステージ34はそれぞれ、高温冷却ステージ及び低温冷却ステージとも称しうる。このように第1冷却ステージ30と第2冷却ステージ34がそれぞれの目標冷却温度に冷却されることで、クライオポンプ10は真空排気運転をすることができる。 As shown in FIG. 2, the refrigerator 14 includes a room temperature section 26, a first cylinder 28, a first cooling stage 30, a second cylinder 32, and a second cooling stage . Refrigerator 14 is configured to cool first cooling stage 30 to a first cooling temperature and second cooling stage 34 to a second cooling temperature. The second cooling temperature is lower than the first cooling temperature. For example, the first cooling stage 30 is cooled to about 65K to 120K, preferably 80K to 100K, and the second cooling stage 34 is cooled to about 10K to 20K. First cooling stage 30 and second cooling stage 34 may also be referred to as a hot cooling stage and a cold cooling stage, respectively. By cooling the first cooling stage 30 and the second cooling stage 34 to their respective target cooling temperatures in this way, the cryopump 10 can perform the evacuation operation.
 第1シリンダ28は第1冷却ステージ30を室温部26に接続し、それにより第1冷却ステージ30は室温部26に構造的に支持される。第2シリンダ32は第2冷却ステージ34を第1冷却ステージ30に接続し、それにより第2冷却ステージ34は第1冷却ステージ30に構造的に支持される。第1シリンダ28と第2シリンダ32は径方向に沿って同軸に延在しており、室温部26、第1シリンダ28、第1冷却ステージ30、第2シリンダ32、及び第2冷却ステージ34は、この順に直線状に一列に並ぶ。 The first cylinder 28 connects the first cooling stage 30 to the room temperature section 26 so that the first cooling stage 30 is structurally supported by the room temperature section 26 . A second cylinder 32 connects a second cooling stage 34 to the first cooling stage 30 such that the second cooling stage 34 is structurally supported to the first cooling stage 30 . The first cylinder 28 and the second cylinder 32 extend coaxially along the radial direction. , are arranged in a straight line in this order.
 冷凍機14が二段式のGM冷凍機の場合、第1シリンダ28及び第2シリンダ32それぞれの内部には第1ディスプレーサ及び第2ディスプレーサ(図示せず)が往復動可能に配設されている。第1ディスプレーサ及び第2ディスプレーサにはそれぞれ第1蓄冷器及び第2蓄冷器(図示せず)が組み込まれている。また、室温部26は、第1ディスプレーサ及び第2ディスプレーサを往復動させるためのモータなど駆動機構(図示せず)を有する。駆動機構は、冷凍機14の内部への作動気体(例えばヘリウム)の供給と排出を周期的に繰り返すよう作動気体の流路を切り替える流路切替機構を含む。 When the refrigerator 14 is a two-stage GM refrigerator, a first displacer and a second displacer (not shown) are reciprocally arranged inside the first cylinder 28 and the second cylinder 32, respectively. . A first regenerator and a second regenerator (not shown) are incorporated in the first displacer and the second displacer, respectively. The room temperature section 26 also has a drive mechanism (not shown) such as a motor for reciprocating the first displacer and the second displacer. The drive mechanism includes a channel switching mechanism that switches the channel of the working gas so as to periodically repeat the supply and discharge of the working gas (for example, helium) to the interior of the refrigerator 14 .
 また、クライオポンプ10は、放射シールド36とクライオパネル38を備える。放射シールド36は、放射シールド36は、クライオポンプ10の外部またはクライオポンプ容器16からの輻射熱からクライオパネル38を保護するための極低温表面を提供するために、第1冷却ステージ30に熱的に結合され、第1冷却温度に冷却される。 The cryopump 10 also includes a radiation shield 36 and a cryopanel 38 . Radiation shield 36 is thermally coupled to first cooling stage 30 to provide a cryogenic surface for protecting cryopanel 38 from radiant heat from outside cryopump 10 or from cryopump vessel 16 . combined and cooled to a first cooling temperature.
 放射シールド36は、例えば筒型の形状を有し、クライオパネル38と第2冷却ステージ34を包囲するように配置されている。クライオポンプ吸気口17側の放射シールド36の端部は開放されており、クライオポンプ10の外からクライオポンプ吸気口17を通じて進入する気体を放射シールド36内に受け入れることができる。クライオポンプ吸気口17と反対側の放射シールド36の端部は閉塞され、または開口を有し、または開放されていてもよい。放射シールド36はクライオパネル38との間に隙間を有しており、放射シールド36はクライオパネル38と接触していない。放射シールド36はクライオポンプ容器16とも接触していない。 The radiation shield 36 has, for example, a cylindrical shape and is arranged so as to surround the cryopanel 38 and the second cooling stage 34 . The end of the radiation shield 36 on the side of the cryopump inlet 17 is open so that the radiation shield 36 can receive gas entering through the cryopump inlet 17 from outside the cryopump 10 . The end of the radiation shield 36 opposite the cryopump inlet 17 may be closed or open or open. The radiation shield 36 has a gap with the cryopanel 38 and the radiation shield 36 is not in contact with the cryopanel 38 . Radiation shield 36 is also not in contact with cryopump vessel 16 .
 クライオポンプ吸気口17に、またはクライオポンプ吸気口17とクライオパネル38の間には、クライオポンプ10の外部の熱源(例えば、クライオポンプ10が取り付けられる真空チャンバ内の熱源)からの輻射熱からクライオパネル38を保護するために、入口バッフル37が設けられてもよい。入口バッフル37は、放射シールド36の開放端に固定され、放射シールド36を介して冷凍機14の第1冷却ステージ30に熱的に結合されてもよい。あるいは、入口バッフル37は、第1冷却ステージ30に取り付けられてもよい。入口バッフル37は放射シールド36と同温度に冷却され、その表面にいわゆるタイプ1ガス(水蒸気などの比較的高温で凝縮する気体)を凝縮することができる。 At the cryopump inlet 17 or between the cryopump inlet 17 and the cryopanel 38, radiant heat from a heat source outside the cryopump 10 (for example, a heat source in the vacuum chamber to which the cryopump 10 is attached) is applied to the cryopanel. An inlet baffle 37 may be provided to protect 38 . Inlet baffle 37 may be secured to the open end of radiation shield 36 and thermally coupled to first cooling stage 30 of refrigerator 14 through radiation shield 36 . Alternatively, inlet baffle 37 may be attached to first cooling stage 30 . The inlet baffle 37 is cooled to the same temperature as the radiation shield 36 and is capable of condensing so-called Type 1 gases (gases that condense at relatively high temperatures, such as water vapor) on its surface.
 クライオパネル38は、タイプ2ガス(例えばアルゴン、窒素などの比較的低温で凝縮する気体)を凝縮する極低温表面を提供するために、第2冷却ステージ34に熱的に結合され、第2冷却温度に冷却される。また、クライオパネル38には、タイプ3ガス(例えば水素などの非凝縮性気体)を吸着するために、少なくとも一部の表面(例えばクライオポンプ吸気口17とは反対側の表面)に例えば活性炭またはその他の吸着材が配置されている。クライオポンプ10の外からクライオポンプ吸気口17を通じて放射シールド36内に進入する気体はクライオパネル38に凝縮または吸着により捕捉される。放射シールド36やクライオパネル38の配置や形状など、これらがとりうる形態は、種々の公知の構成を適宜採用することができるので、ここでは詳述しない。 A cryopanel 38 is thermally coupled to the second cooling stage 34 to provide a cryogenic surface for condensing Type 2 gases (e.g., gases that condense at relatively low temperatures, such as argon, nitrogen, etc.). cooled to temperature. In addition, the cryopanel 38 has at least a part of its surface (for example, the surface opposite to the cryopump inlet 17) for adsorbing Type 3 gas (for example, non-condensable gas such as hydrogen), for example, activated carbon or Other adsorbents are placed. Gas that enters the radiation shield 36 from outside the cryopump 10 through the cryopump inlet 17 is captured by the cryopanel 38 by condensation or adsorption. Various known configurations can be appropriately adopted for the arrangement and shape of the radiation shield 36 and the cryopanel 38, and thus the details thereof will not be described here.
 クライオポンプ容器16は、容器胴体16aと冷凍機収容筒16bを有する。クライオポンプ容器16は、クライオポンプ10の真空排気運転中に真空を保持し、周囲環境の圧力(例えば大気圧)に耐えるように設計された真空容器である。容器胴体16aは、その一端にクライオポンプ吸気口17を有し、他端が閉じられた筒型の形状を有する。容器胴体16aには、放射シールド36が収容され、上述のように放射シールド36内にはクライオパネル38が第2冷却ステージ34とともに収容されている。冷凍機収容筒16bは、一端が容器胴体16aに結合され他端が冷凍機14の室温部26に固定されている。冷凍機収容筒16bには、冷凍機14が挿入され、第1シリンダ28が収容されている。 The cryopump container 16 has a container body 16a and a refrigerator housing cylinder 16b. The cryopump vessel 16 is a vacuum vessel designed to hold a vacuum during the evacuation operation of the cryopump 10 and to withstand ambient pressure (eg, atmospheric pressure). The container body 16a has a cylindrical shape with a cryopump inlet 17 at one end and a closed other end. A radiation shield 36 is accommodated in the container body 16a, and the cryopanel 38 is accommodated in the radiation shield 36 together with the second cooling stage 34 as described above. One end of the refrigerator housing tube 16 b is coupled to the container body 16 a and the other end is fixed to the room temperature section 26 of the refrigerator 14 . The refrigerator 14 is inserted into the refrigerator housing tube 16b, and the first cylinder 28 is housed therein.
 この実施の形態では、クライオポンプ10は、冷凍機14が容器胴体16aの側部に設けられたいわゆる横型のクライオポンプである。容器胴体16aの側部には、冷凍機挿入口が設けられ、冷凍機収容筒16bは、この冷凍機挿入口で容器胴体16aの側部に結合されている。同様に、容器胴体16aの冷凍機挿入口に隣接して、放射シールド36の側部にも冷凍機14を通す穴が設けられている。これらの穴を通じて冷凍機14の第2シリンダ32と第2冷却ステージ34が放射シールド36の中に挿入され、放射シールド36はその側部の穴の周囲で第1冷却ステージ30と熱的に結合されている。 In this embodiment, the cryopump 10 is a so-called horizontal cryopump in which the refrigerator 14 is provided on the side of the container body 16a. A refrigerator insertion opening is provided in the side portion of the container body 16a, and the refrigerator housing cylinder 16b is coupled to the side portion of the container body 16a at the refrigerator insertion opening. Similarly, a hole through which the refrigerator 14 is inserted is also provided on the side of the radiation shield 36 adjacent to the refrigerator insertion opening of the container body 16a. Through these holes, the second cylinder 32 and second cooling stage 34 of the refrigerator 14 are inserted into the radiation shield 36, which is thermally coupled to the first cooling stage 30 around its side holes. It is
 クライオポンプは、使用される現場で様々な姿勢で設置されうる。一例として、クライオポンプ10は、図示される横向きの姿勢、すなわちクライオポンプ吸気口17を上方に向けた姿勢で設置されることができる。このとき、容器胴体16aの底部がクライオポンプ吸気口17に対して下方に位置し、冷凍機14は水平方向に延在する。 The cryopump can be installed in various positions at the site where it is used. As an example, the cryopump 10 can be installed in the illustrated sideways orientation, that is, with the cryopump inlet 17 facing upward. At this time, the bottom of the container body 16a is positioned below the cryopump inlet 17, and the refrigerator 14 extends horizontally.
 クライオポンプ10は、第1冷却ステージ30の温度を測定するための第1温度センサ40と、第2冷却ステージ34の温度を測定するための第2温度センサ42と、を備える。第1温度センサ40は、第1冷却ステージ30に取り付けられている。第2温度センサ42は、第2冷却ステージ34に取り付けられている。第1温度センサ40は、放射シールド36の温度を測定し、放射シールド36の測定温度を示す第1測定温度信号を出力することができる。第2温度センサ42は、クライオパネル38の温度を測定し、クライオパネル38の測定温度を示す第2測定温度信号を出力することができる。また、クライオポンプ容器16の内部に圧力センサ44が設けられている。圧力センサ44は例えば、冷凍機収容筒16bに設置され、クライオポンプ容器16の内圧を測定し、測定圧力を示す測定圧力信号を出力することができる。 The cryopump 10 includes a first temperature sensor 40 for measuring the temperature of the first cooling stage 30 and a second temperature sensor 42 for measuring the temperature of the second cooling stage 34 . A first temperature sensor 40 is attached to the first cooling stage 30 . A second temperature sensor 42 is attached to the second cooling stage 34 . A first temperature sensor 40 may measure the temperature of radiation shield 36 and output a first measured temperature signal indicative of the measured temperature of radiation shield 36 . A second temperature sensor 42 may measure the temperature of the cryopanel 38 and output a second measured temperature signal indicative of the measured temperature of the cryopanel 38 . A pressure sensor 44 is provided inside the cryopump container 16 . The pressure sensor 44 is installed, for example, in the refrigerator container 16b, measures the internal pressure of the cryopump container 16, and can output a measured pressure signal indicating the measured pressure.
 また、クライオポンプ10は、クライオポンプ10を制御するコントローラ46を備える。コントローラ46は、クライオポンプ10に一体に設けられていてもよいし、クライオポンプ10とは別体の制御装置として構成されていてもよい。 The cryopump 10 also includes a controller 46 that controls the cryopump 10 . The controller 46 may be provided integrally with the cryopump 10 or may be configured as a control device separate from the cryopump 10 .
 コントローラ46は、クライオポンプ10の真空排気運転においては、放射シールド36及び/またはクライオパネル38の冷却温度に基づいて、冷凍機14を制御してもよい。コントローラ46は、第1温度センサ40からの第1測定温度信号を受信するよう第1温度センサ40と接続され、第2温度センサ42からの第2測定温度信号を受信するよう第2温度センサ42と接続されていてもよい。 The controller 46 may control the refrigerator 14 based on the cooling temperature of the radiation shield 36 and/or the cryopanel 38 during the evacuation operation of the cryopump 10 . A controller 46 is connected to the first temperature sensor 40 to receive the first measured temperature signal from the first temperature sensor 40 and the second temperature sensor 42 to receive the second measured temperature signal from the second temperature sensor 42 . may be connected to
 また、コントローラ46は、クライオポンプ10の再生コントローラとして動作可能である。コントローラ46は、クライオポンプ10の再生運転においては、クライオポンプ容器16内の圧力に基づいて(または、必要に応じて、クライオパネル38の温度およびクライオポンプ容器16内の圧力に基づいて)、冷凍機14、ラフバルブ18、ボディパージバルブ20、排出バルブ22、排出パージバルブ24を制御してもよい。コントローラ46は、圧力センサ44からの測定圧力信号を受信するよう圧力センサ44と接続されていてもよい。 Also, the controller 46 can operate as a regeneration controller for the cryopump 10 . During regeneration operation of the cryopump 10, the controller 46 controls the refrigeration temperature based on the pressure within the cryopump vessel 16 (or based on the temperature of the cryopanel 38 and the pressure within the cryopump vessel 16, as appropriate). Machine 14, rough valve 18, body purge valve 20, exhaust valve 22, and exhaust purge valve 24 may be controlled. Controller 46 may be connected to pressure sensor 44 to receive the measured pressure signal from pressure sensor 44 .
 コントローラ46の内部構成は、ハードウェア構成としてはコンピュータのCPUやメモリをはじめとする素子や回路で実現され、ソフトウェア構成としてはコンピュータプログラム等によって実現されるが、図では適宜、それらの連携によって実現される機能ブロックとして描いている。これらの機能ブロックはハードウェア、ソフトウェアの組合せによっていろいろなかたちで実現できることは、当業者には理解されるところである。 The internal configuration of the controller 46 is realized as a hardware configuration by elements and circuits such as a computer CPU and memory, and as a software configuration is achieved by a computer program, etc., but in the figure, it is realized by linking them as appropriate. It is drawn as a function block to be It should be understood by those skilled in the art that these functional blocks can be implemented in various ways by combining hardware and software.
 たとえば、コントローラ46は、CPU(Central Processing Unit)、マイコンなどのプロセッサ(ハードウェア)と、プロセッサ(ハードウェア)が実行するソフトウェアプログラムの組み合わせで実装することができる。ソフトウェアプログラムは、クライオポンプ10の再生をコントローラ46に実行させるためのコンピュータプログラムであってもよい。 For example, the controller 46 can be implemented by a combination of a CPU (Central Processing Unit), a processor (hardware) such as a microcomputer, and a software program executed by the processor (hardware). The software program may be a computer program for causing the controller 46 to regenerate the cryopump 10 .
 ラフバルブ18は、クライオポンプ容器16、例えば冷凍機収容筒16bに設置されている。ラフバルブ18は、クライオポンプ10の外部に設置されたラフポンプ(図示せず)に接続される。ラフポンプは、クライオポンプ10をその動作開始圧力まで真空引きをするための真空ポンプである。コントローラ46の制御によりラフバルブ18が開放されるときクライオポンプ容器16がラフポンプに連通され、ラフバルブ18が閉鎖されるときクライオポンプ容器16がラフポンプから遮断される。ラフバルブ18を開きかつラフポンプを動作させることにより、クライオポンプ10を減圧することができる。 The rough valve 18 is installed in the cryopump container 16, for example, the refrigerator housing cylinder 16b. The rough valve 18 is connected to a rough pump (not shown) installed outside the cryopump 10 . The rough pump is a vacuum pump for evacuating the cryopump 10 to its operation start pressure. When the rough valve 18 is opened under the control of the controller 46, the cryopump container 16 is communicated with the rough pump, and when the rough valve 18 is closed, the cryopump container 16 is disconnected from the rough pump. The cryopump 10 can be depressurized by opening the rough valve 18 and operating the rough pump.
 ボディパージバルブ20は、クライオポンプ容器16、例えば容器胴体16aに設置されている。ボディパージバルブ20は、クライオポンプ10の外部に設置されたパージガス源48またはパージガス供給装置に接続される。コントローラ46の制御によりボディパージバルブ20が開放されるときパージガスがパージガス源48からクライオポンプ容器16に供給され、ボディパージバルブ20が閉鎖されるときクライオポンプ容器16へのパージガス供給が遮断される。ボディパージバルブ20を開きパージガスをクライオポンプ容器16に導入することにより、クライオポンプ10を昇圧することができる。また、クライオポンプ10を極低温から室温またはそれより高い温度に昇温することができる。 The body purge valve 20 is installed in the cryopump container 16, for example, the container body 16a. The body purge valve 20 is connected to a purge gas source 48 or a purge gas supply device installed outside the cryopump 10 . Purge gas is supplied from the purge gas source 48 to the cryopump vessel 16 when the body purge valve 20 is opened under the control of the controller 46, and purge gas supply to the cryopump vessel 16 is cut off when the body purge valve 20 is closed. By opening the body purge valve 20 and introducing the purge gas into the cryopump vessel 16 , the pressure of the cryopump 10 can be increased. Also, the temperature of the cryopump 10 can be raised from cryogenic to room temperature or higher.
 パージガスは例えば窒素ガス、またはその他の乾燥したガスであってもよく、パージガスの温度は、たとえば室温(0℃より高く、例えば15℃~30℃)に調整され、または室温より高温(例えば50℃以下または80℃以下)に加熱されていてもよい。 The purge gas may be, for example, nitrogen gas, or other dry gas, and the temperature of the purge gas is adjusted, for example, to room temperature (greater than 0°C, such as 15°C to 30°C) or higher than room temperature (eg, 50°C). or 80° C. or less).
 排出バルブ22は、クライオポンプ容器16、例えば冷凍機収容筒16bに設置されている。排出バルブ22は、クライオポンプ10の内部から外部に流体を排出するために、クライオポンプ容器16の出口として設けられている。排出バルブ22は、後述する排出ライン50への入口でもある。コントローラ46の制御により排出バルブ22が開放されるときクライオポンプ容器16から流体が排出され、排出バルブ22が閉鎖されるときクライオポンプ容器16からの流体排出が遮断される。排出バルブ22から排出される流体は基本的にはガスであるが、液体または気液の混合物であってもよい。排出バルブ22は、例えば常閉型の制御弁であってもよい。加えて、排出バルブ22は、ベントバルブまたは安全弁として機能してもよく、所定の差圧が作用したときに機械的に開放されるよう構成されてもよい。その場合、クライオポンプ内部が何らかの理由で高圧となったときに制御を要することなく排出バルブ22は機械的に開放される。それにより内部の高圧を排出ライン50に逃がすことができる。 The discharge valve 22 is installed in the cryopump container 16, for example, the refrigerator housing cylinder 16b. A discharge valve 22 is provided as an outlet of the cryopump vessel 16 to discharge fluid from the inside of the cryopump 10 to the outside. The exhaust valve 22 is also the inlet to the exhaust line 50, which will be described later. Fluid is discharged from the cryopump container 16 when the discharge valve 22 is opened under the control of the controller 46, and fluid discharge from the cryopump container 16 is blocked when the discharge valve 22 is closed. The fluid discharged from the discharge valve 22 is essentially a gas, but can also be a liquid or a gas-liquid mixture. The exhaust valve 22 may be, for example, a normally closed control valve. Additionally, exhaust valve 22 may function as a vent valve or safety valve and may be configured to mechanically open when a predetermined differential pressure is applied. In that case, the discharge valve 22 is mechanically opened without requiring control when the inside of the cryopump becomes high pressure for some reason. This allows internal high pressure to escape to exhaust line 50 .
 排出パージバルブ24は、排出ライン50にパージガスを供給するために設けられている。排出バルブ22と排出パージバルブ24が別々に設けられ、排出パージバルブ24が排出バルブ22の下流に配管で接続されてもよい。あるいは、排出パージバルブ24は、排出バルブ22またはその下流にパージガス供給するように排出バルブ22と一体に設けられてもよい。排出パージバルブ24は、クライオポンプ容器16、例えば冷凍機収容筒16bに設置されてもよい。排出パージバルブ24は、パージガス源48または別のパージガス源に接続される。コントローラ46の制御により排出パージバルブ24が開放されるときパージガスがパージガス源48から排出ライン50に供給され、排出パージバルブ24が閉鎖されるとき排出ライン50へのパージガス供給が遮断される。 The exhaust purge valve 24 is provided to supply purge gas to the exhaust line 50 . A separate exhaust valve 22 and an exhaust purge valve 24 may be provided and the exhaust purge valve 24 may be plumbed downstream of the exhaust valve 22 . Alternatively, exhaust purge valve 24 may be provided integral with exhaust valve 22 to supply purge gas to exhaust valve 22 or downstream thereof. The exhaust purge valve 24 may be installed in the cryopump vessel 16, such as the refrigerator housing cylinder 16b. The exhaust purge valve 24 is connected to a purge gas source 48 or another purge gas source. Under the control of controller 46, purge gas is supplied from purge gas source 48 to exhaust line 50 when exhaust purge valve 24 is opened, and purge gas supply to exhaust line 50 is cut off when exhaust purge valve 24 is closed.
 排出ライン50は、排出流体をクライオポンプ10から処理装置60に排出するために設けられ、その上流端で排出バルブ22および排出パージバルブ24に接続され、下流端で処理装置60に接続される。 A discharge line 50 is provided for discharging the discharge fluid from the cryopump 10 to the processing device 60, is connected to the discharge valve 22 and the discharge purge valve 24 at its upstream end, and is connected to the processing device 60 at its downstream end.
 処理装置60は例えば、排出流体に含まれる危険ガス(例えば水素ガス、または爆発性をもつ他のガス、または、腐食性または有毒性をもつ他のガス)を処理して無害なガスを生成する除害装置であってもよく、または、危険ガスを処理してその危険性を低減する処理装置であってもよい。こうした処理装置60としては、公知の除害装置または処理装置を適宜採用することができるので、ここではその詳細は述べない。 The treatment device 60, for example, treats hazardous gases contained in the effluent (such as hydrogen gas, or other gases that are explosive, or that are corrosive or toxic) to produce harmless gases. It may be an abatement device, or it may be a treatment device that treats a hazardous gas to reduce its danger. As such a treatment device 60, a well-known abatement device or treatment device can be appropriately employed, so details thereof will not be described here.
 排出ライン50は、排出パージバルブ24に対して処理装置60側に(追加の)パージガス受入ポート52を備える。パージガス受入ポート52は、排出ライン50の下流端にあたり、処理装置60に接続される。図示されるように、パージガス受入ポート52は、処理装置60に隣接していてもよい。あるいは、パージガス受入ポート52と処理装置60は隣接していなくてもよく、パージガス受入ポート52は、排出ライン50に含まれる他の機器を介して処理装置60に接続されてもよい。 The exhaust line 50 includes an (additional) purge gas receiving port 52 on the processing device 60 side with respect to the exhaust purge valve 24 . The purge gas receiving port 52 is at the downstream end of the exhaust line 50 and is connected to the processing device 60 . As shown, purge gas receiving port 52 may be adjacent to processing equipment 60 . Alternatively, purge gas receiving port 52 and processing device 60 may not be adjacent, and purge gas receiving port 52 may be connected to processing device 60 via other equipment included in exhaust line 50 .
 このパージガス受入ポート52には、追加の排出パージバルブ54が接続されてもよい。追加の排出パージバルブ54は、パージガス源48または別のパージガス源に接続されてもよい。排出パージバルブ54は、クライオポンプ10の一部を構成してもよく、コントローラ46によって制御されてもよい。排出パージバルブ54が開放されるときパージガスがパージガス源48から排出ライン50に供給され、排出パージバルブ54が閉鎖されるとき排出ライン50へのパージガス供給が遮断される。 An additional exhaust purge valve 54 may be connected to this purge gas receiving port 52 . An additional exhaust purge valve 54 may be connected to the purge gas source 48 or another purge gas source. The exhaust purge valve 54 may form part of the cryopump 10 and may be controlled by the controller 46 . Purge gas is supplied from the purge gas source 48 to the exhaust line 50 when the exhaust purge valve 54 is opened, and purge gas supply to the exhaust line 50 is cut off when the exhaust purge valve 54 is closed.
 したがって、排出パージバルブ24は、排出ライン50の上流側(排出バルブ22側)で排出ライン50にパージガスを供給し、追加の排出パージバルブ54は、排出ライン50の下流側(排出バルブ22側)で排出ライン50にパージガスを供給する。ボディパージバルブ20は、クライオポンプ容器16の容器胴体16aにパージガスを供給する「ボディパージ」を可能とし、排出パージバルブ24は、排出ライン50の上流端にパージガスを供給する「上流パージ」を可能とし、追加の排出パージバルブ54は、排出ライン50の下流端にパージガスを供給する「下流パージ」を可能とする。 Thus, the exhaust purge valve 24 supplies purge gas to the exhaust line 50 upstream of the exhaust line 50 (on the exhaust valve 22 side), and the additional exhaust purge valve 54 exhausts on the downstream side of the exhaust line 50 (on the exhaust valve 22 side). Purge gas is supplied in line 50 . The body purge valve 20 enables "body purge" to supply purge gas to the container body 16a of the cryopump container 16, the discharge purge valve 24 enables "upstream purge" to supply purge gas to the upstream end of the discharge line 50, An additional exhaust purge valve 54 allows for a “downstream purge,” supplying purge gas to the downstream end of exhaust line 50 .
 ボディパージ、上流パージ、下流パージそれぞれの流量は、例えば、毎分20L以上毎分100Lの範囲から選択されてもよい。ボディパージ、上流パージ、下流パージの流量は、等しくてもよく、あるいは互いに異なってもよい。後述のように、上流パージ(またはボディパージ)の流量に比べて、下流パージの流量が大きくてもよい。 The flow rate of each of the body purge, upstream purge, and downstream purge may be selected, for example, from a range of 20 L/min or more to 100 L/min. The bodypurge, upstream purge, and downstream purge flow rates may be equal or different from each other. As described below, the downstream purge flow rate may be greater than the upstream purge (or body purge) flow rate.
 後述のように、パージガス受入ポート52には他のクライオポンプ10の排出バルブ22および排出パージバルブ24が接続されてもよく、排出ライン50の下流パージは、他のクライオポンプ10からのパージガスの供給によって行われてもよい。 As will be described later, the purge gas receiving port 52 may be connected to the exhaust valve 22 and the exhaust purge valve 24 of the other cryopump 10 , and the downstream purge of the exhaust line 50 is performed by supplying the purge gas from the other cryopump 10 . may be done.
 排出ライン50は、バッファ容積56を有し、クライオポンプ容器16からの排出流体は、排出バルブ22からバッファ容積56を通過して処理装置60に流入する。排出パージバルブ24は、バッファ容積56に対して排出ライン50の上流側にパージガスを供給し、追加の排出パージバルブ54は、バッファ容積56に対して排出ライン50の下流側にパージガスを供給する。 The exhaust line 50 has a buffer volume 56 through which exhaust fluid from the cryopump vessel 16 flows from the exhaust valve 22 through the buffer volume 56 into the processing device 60 . Exhaust purge valve 24 supplies purge gas upstream in exhaust line 50 to buffer volume 56 and additional exhaust purge valve 54 supplies purge gas downstream in exhaust line 50 to buffer volume 56 .
 排出ライン50にバッファ容積56を設けることは、後述のように排出ライン50における危険ガスの濃度ピークを抑制するうえで有利である。バッファ容積56は、例えば、1L(リットル)またはそれより大きくてもよく、または、3Lまたはそれより大きくてもよい。省スペースの観点から、バッファ容積56は、例えば、30L以下、または10L以下の容積であってもよい。バッファ容積56は、排出ライン50を構成する配管、つまり排出バルブ22を処理装置60に接続する配管の容積であってもよい。あるいは、バッファ容積56に大容積が望まれる場合には、バッファ容積56は、排出ライン50を構成する配管とこの配管に接続されるバッファタンクにより構成されてもよい。配管は、フレキシブル管またはリジッド管であってもよい。 Providing the discharge line 50 with the buffer volume 56 is advantageous in suppressing the concentration peak of the dangerous gas in the discharge line 50 as described later. Buffer volume 56 may be, for example, 1 L (liter) or greater, or 3 L or greater. From a space-saving point of view, the buffer volume 56 may be, for example, 30 L or less, or 10 L or less. The buffer volume 56 may be the volume of the tubing that makes up the drain line 50 , ie, the tubing that connects the drain valve 22 to the processing device 60 . Alternatively, if a large volume is desired for the buffer volume 56, the buffer volume 56 may consist of a pipe that constitutes the discharge line 50 and a buffer tank connected to this pipe. The piping may be flexible or rigid.
 クライオポンプ10の真空排気運転が継続されることによりクライオポンプ10には気体が蓄積されていく。蓄積した気体を外部に排出するために、クライオポンプ10の再生が行われる。クライオポンプ10の再生は一般に、昇温工程、排出工程、及びクールダウン工程を含む。 As the evacuation operation of the cryopump 10 continues, gas accumulates in the cryopump 10 . The cryopump 10 is regenerated in order to discharge the accumulated gas to the outside. Regeneration of the cryopump 10 generally includes heating, evacuation, and cooling down steps.
 昇温工程は、クライオポンプ10に捕捉されているガスのうち危険ガスの融点またはそれを超える温度にクライオポンプ10を昇温することと、クライオポンプ10を再生温度までさらに昇温することと、を含む。危険ガスは典型的に、例えばタイプ2ガスまたはタイプ3ガスであり、危険ガスの融点は、例えば100K以下である。再生温度は、例えば室温またはそれより高い温度である。よって、多くの場合危険ガスは、昇温工程の前半、とくに開始直後に再気化しクライオポンプ10から排出され処理装置60に流入する。危険ガスは昇温工程でクライオポンプ10から除去される。 The temperature raising process includes raising the temperature of the cryopump 10 to a temperature exceeding the melting point of the dangerous gas among the gases trapped in the cryopump 10, further raising the temperature of the cryopump 10 to the regeneration temperature, including. Hazardous gases are typically, for example, type 2 or type 3 gases, and the melting point of the hazardous gas is, for example, 100K or less. The regeneration temperature is, for example, room temperature or higher. Therefore, in many cases, the dangerous gas is re-vaporized in the first half of the temperature raising process, especially immediately after the start, and is discharged from the cryopump 10 and flows into the processing device 60 . Hazardous gases are removed from the cryopump 10 during the heating process.
 昇温のための熱源は、例えば、冷凍機14である。冷凍機14は、昇温運転(いわゆる逆転昇温)を可能とする。すなわち、冷凍機14は、室温部26に設けられた駆動機構が冷却運転とは逆方向に動作するとき作動気体に断熱圧縮が生じるよう構成されている。こうして得られる圧縮熱で冷凍機14は第1冷却ステージ30及び第2冷却ステージ34を加熱する。放射シールド36とクライオパネル38はそれぞれ第1冷却ステージ30及び第2冷却ステージ34を熱源として加熱される。また、ボディパージバルブ20からクライオポンプ容器16内に供給されるパージガスもクライオポンプ10の昇温に寄与する。あるいは、クライオポンプ10には、例えば電気ヒータなどの加熱装置が設けられてもよい。例えば、冷凍機14の運転から独立して制御可能な電気ヒータが冷凍機14の第1冷却ステージ30及び/または第2冷却ステージ34に装着されていてもよい。 The heat source for raising the temperature is, for example, the refrigerator 14. The refrigerator 14 enables temperature rising operation (so-called reverse temperature rising). That is, the refrigerator 14 is configured such that adiabatic compression occurs in the working gas when the drive mechanism provided in the room temperature section 26 operates in the direction opposite to the cooling operation. The refrigerator 14 heats the first cooling stage 30 and the second cooling stage 34 with the heat of compression thus obtained. The radiation shield 36 and the cryopanel 38 are heated using the first cooling stage 30 and the second cooling stage 34 as heat sources, respectively. The purge gas supplied from the body purge valve 20 into the cryopump container 16 also contributes to the temperature rise of the cryopump 10 . Alternatively, the cryopump 10 may be provided with a heating device such as an electric heater. For example, an electric heater that is controllable independently of the operation of refrigerator 14 may be attached to first cooling stage 30 and/or second cooling stage 34 of refrigerator 14 .
 排出工程においてはクライオポンプ10に捕捉された気体が再気化または液化され、気体、液体または気液の混合物として、排出ライン50を通じて、またはラフバルブ18を通じて排出される。タイプ2ガスおよびタイプ3ガスは既に昇温工程でクライオポンプ10から容易に排出されうるので、排出工程は主にタイプ1ガスを排出するための工程である。排出工程が完了すれば、クールダウン工程が開始される。クールダウン工程においてはクライオポンプ10が真空排気運転のための極低温に再冷却される。こうして再生が完了すれば、クライオポンプ10は再び真空排気運転を始めることができる。 In the discharge process, the gas trapped in the cryopump 10 is re-vaporized or liquefied and discharged through the discharge line 50 or through the rough valve 18 as a gas, liquid, or gas-liquid mixture. Since the type 2 gas and the type 3 gas can already be easily discharged from the cryopump 10 during the heating process, the discharge process is mainly for discharging the type 1 gas. After the discharge process is completed, the cool-down process is started. In the cooldown step, the cryopump 10 is recooled to cryogenic temperatures for evacuation operation. When the regeneration is completed in this way, the cryopump 10 can start the evacuation operation again.
 ところで、クライオポンプ10の主な用途の1つにイオン注入装置の真空排気がある。この場合、クライオポンプ10には水素ガスが溜め込まれる。クライオパネル38に捕捉されていた水素ガスは、再生中、とりわけ再生(昇温工程)の開始直後に一挙に再気化しうる。水素ガスはクライオポンプ容器16内でボディパージによって希釈されるが、それでも、クライオポンプ容器16から排出ライン50を処理装置60へと流れる排出流体は一時的にかなり高い濃度で水素ガスを含有しうる。高濃度の水素ガスには爆発または燃焼のリスクがあるから、クライオポンプ10および排出ライン50の安全管理上、排出流体における水素ガスの濃度ピークをなるべく低く抑えることが望まれる。 By the way, one of the main uses of the cryopump 10 is to evacuate an ion implanter. In this case, hydrogen gas is stored in the cryopump 10 . The hydrogen gas trapped in the cryopanel 38 can be re-vaporized all at once during regeneration, particularly immediately after the regeneration (heating process) starts. Although the hydrogen gas is diluted in the cryopump vessel 16 by the bodypurge, the exhaust fluid flowing from the cryopump vessel 16 through the exhaust line 50 to the processing device 60 may still temporarily contain hydrogen gas in significantly higher concentrations. . Since high-concentration hydrogen gas has the risk of explosion or combustion, from the viewpoint of safety management of the cryopump 10 and the discharge line 50, it is desirable to suppress the hydrogen gas concentration peak in the discharge fluid as low as possible.
 図3(a)から図3(c)は、実施の形態に係り、クライオポンプ10からの排出流体における水素ガスの濃度変化を示すグラフである。各図には、排出ライン50のパージガス受入ポート52での排出流体、つまり処理装置60に流入する排出流体における水素ガス濃度を発明者が計算した結果が示される。各図で縦軸は水素ガスの濃度(%)を表し、横軸は再生開始時点からの経過時間(分)を表す。 FIGS. 3(a) to 3(c) are graphs showing changes in concentration of hydrogen gas in the fluid discharged from the cryopump 10 according to the embodiment. Each figure shows the inventor's calculation of the concentration of hydrogen gas in the exhaust fluid at the purge gas receiving port 52 of the exhaust line 50, that is, in the exhaust fluid flowing into the processing device 60. FIG. In each figure, the vertical axis represents the hydrogen gas concentration (%), and the horizontal axis represents the elapsed time (minutes) from the start of regeneration.
 計算の条件は次の通りである。クライオポンプ10(つまりクライオポンプ容器16)の容積を30Lとし、クライオポンプ容器16内の水素ガスの初期濃度を60%(クライオポンプ10の水素ガス最大吸蔵量に相当する)とする。また、ボディパージの流量(ボディパージバルブ20からクライオポンプ容器16に供給されるパージガス流量)を毎分20Lとし、上流パージの流量(排出パージバルブ24から排出ライン50の上流に供給されるパージガス流量)を毎分20Lとし、下流パージは毎分0Lとする(つまり下流パージは行わない)。これらの条件は、図3(a)から図3(c)の計算に共通である。バッファ容積56の大きさについては異なり、図3(a)ではバッファ容積56を1Lとし、図3(b)ではバッファ容積56を3Lとし、図3(c)ではバッファ容積56を30Lとしている。 The calculation conditions are as follows. The volume of the cryopump 10 (that is, the cryopump container 16) is assumed to be 30 L, and the initial hydrogen gas concentration in the cryopump container 16 is assumed to be 60% (corresponding to the maximum hydrogen gas storage amount of the cryopump 10). Also, the body purge flow rate (purge gas flow rate supplied from the body purge valve 20 to the cryopump container 16) is set to 20 L/min, and the upstream purge flow rate (purge gas flow rate supplied from the discharge purge valve 24 to the upstream of the discharge line 50) is set to The flow rate is 20 L/min and the downstream purge is 0 L/min (that is, no downstream purge). These conditions are common to the calculations of FIGS. 3(a) to 3(c). The size of the buffer volume 56 is different; in FIG. 3(a) the buffer volume 56 is 1 L, in FIG. 3(b) the buffer volume 56 is 3 L, and in FIG. 3(c) the buffer volume 56 is 30 L.
 再生(昇温工程)が開始されると、コントローラ46によってボディパージバルブ20、排出バルブ22、排出パージバルブ24が同時に開放される。この再生開始時点ではパージガス受入ポート52での水素ガス濃度は、図示されるように、0%である。ボディパージおよび上流パージとともにクライオポンプ容器16から排出ライン50の下流へと排出流体が運ばれることで、パージガス受入ポート52での水素ガス濃度が一時的に高まり、濃度はピークに達する。その後、排出流体が処理装置60に流入するにつれて、パージガス受入ポート52での水素ガス濃度は再び0%へと徐々に低下していく。こうした濃度変化の傾向は、図3(a)から図3(c)に示されるように、バッファ容積56の大きさにかかわらず共通である。 When the regeneration (heating process) is started, the controller 46 opens the body purge valve 20, the discharge valve 22, and the discharge purge valve 24 at the same time. At the start of regeneration, the hydrogen gas concentration at the purge gas receiving port 52 is 0% as shown. Carrying the exhaust fluid from the cryopump vessel 16 down the exhaust line 50 along with the bodypurge and upstream purge temporarily increases the hydrogen gas concentration at the purge gas receiving port 52 and reaches a peak concentration. Thereafter, as the exhaust fluid flows into the processing device 60, the hydrogen gas concentration at the purge gas receiving port 52 gradually decreases to 0% again. Such concentration change trends are common regardless of the size of the buffer volume 56, as shown in FIGS. 3(a) to 3(c).
 ボディパージと同流量の上流パージの効果により、バッファ容積56の上流での排出流体の水素ガス濃度ピークは、初期濃度の半分(つまり30%)となると見積もられる。そこからバッファ容積56に流入する排出流体とバッファ容積56を当初満たしているパージガスが混ざることで、バッファ容積56の下流つまりパージガス受入ポート52での水素ガス濃度ピークは、バッファ容積56の容積に応じてさらにいくらか下がることが期待される。 Due to the effect of the upstream purge at the same flow rate as the body purge, the hydrogen gas concentration peak in the exhaust fluid upstream of the buffer volume 56 is estimated to be half of the initial concentration (that is, 30%). The mixing of the exhaust fluid flowing therefrom into the buffer volume 56 and the purge gas initially filling the buffer volume 56 causes the hydrogen gas concentration peak downstream of the buffer volume 56, i.e. at the purge gas receiving port 52, expected to drop somewhat further.
 図3(a)から図3(c)に示される水素ガス濃度ピークを比較することで、バッファ容積56の効果を明らかにすることができる。実際、図3(a)に示されるように、バッファ容積56を1Lとする場合、水素ガス濃度ピークは28.0%となる。図3(b)に示されるように、バッファ容積56を3Lとする場合、水素ガス濃度ピークは25.6%となる。図3(c)に示されるように、バッファ容積56を30Lとする場合、水素ガス濃度ピークは15.0%となる。このように、バッファ容積56が大きいほど、排出流体の水素ガス濃度ピークを下げることができる。 The effect of the buffer volume 56 can be clarified by comparing the hydrogen gas concentration peaks shown in FIGS. 3(a) to 3(c). Actually, as shown in FIG. 3(a), when the buffer volume 56 is 1 L, the hydrogen gas concentration peak is 28.0%. As shown in FIG. 3B, when the buffer volume 56 is 3 L, the hydrogen gas concentration peak is 25.6%. As shown in FIG. 3(c), when the buffer volume 56 is 30 L, the hydrogen gas concentration peak is 15.0%. Thus, the larger the buffer volume 56, the lower the peak hydrogen gas concentration in the effluent.
 図4(a)から図4(c)は、実施の形態に係り、クライオポンプ10からの排出流体における水素ガスの濃度変化を示すグラフである。各図には、図3(a)から図3(c)と同様に、排出ライン50のパージガス受入ポート52での排出流体における水素ガス濃度の発明者による計算結果が示される。各図で縦軸は水素ガスの濃度(%)を表し、横軸は再生開始時点からの経過時間(分)を表す。 4(a) to 4(c) are graphs showing changes in concentration of hydrogen gas in the fluid discharged from the cryopump 10 according to the embodiment. 3(a) to 3(c), each figure shows the inventor's calculation of the hydrogen gas concentration in the exhaust fluid at the purge gas receiving port 52 of the exhaust line 50. FIG. In each figure, the vertical axis represents the hydrogen gas concentration (%), and the horizontal axis represents the elapsed time (minutes) from the start of regeneration.
 計算の条件は次の通りである。クライオポンプ10(つまりクライオポンプ容器16)の容積を30Lとし、クライオポンプ容器16内の水素ガスの初期濃度を60%とする。また、バッファ容積56は30Lとする。これらの条件は、図4(a)から図4(c)の計算に共通である。異なるのはパージ流量である。図4(a)では、ボディパージに毎分40Lの流量が追加され、ボディパージが毎分60L、上流パージが毎分20Lであり、下流パージは行わない。図4(b)では、上流パージに毎分40Lの流量が追加され、ボディパージが毎分20L、上流パージが毎分60Lであり、下流パージは行わない。図4(c)では、下流パージが行われ、ボディパージが毎分20L、上流パージが毎分20L、下流パージが毎分40Lである。 The calculation conditions are as follows. The volume of the cryopump 10 (that is, the cryopump container 16) is assumed to be 30 L, and the initial concentration of hydrogen gas in the cryopump container 16 is assumed to be 60%. Also, the buffer volume 56 is assumed to be 30L. These conditions are common to the calculations of FIGS. 4(a) to 4(c). The difference is the purge flow rate. In FIG. 4(a), a flow rate of 40 L/min is added to the body purge, the body purge is 60 L/min, the upstream purge is 20 L/min, and the downstream purge is not performed. In FIG. 4(b), a flow rate of 40 L/min is added to the upstream purge, the body purge is 20 L/min, the upstream purge is 60 L/min, and the downstream purge is not performed. In FIG. 4(c), a downstream purge is performed, with a body purge of 20 L/min, an upstream purge of 20 L/min, and a downstream purge of 40 L/min.
 再生(昇温工程)が開始されると、コントローラ46によってボディパージバルブ20、排出バルブ22、排出パージバルブ24、(下流パージが行われる場合)追加の排出パージバルブ54が同時に開放される。パージガス受入ポート52での水素ガス濃度の変化の傾向は、当初0%から一時的に高まり濃度ピークに達し、その後再び0%へと徐々に低下していく。これは図4(a)から図4(c)に共通である。 When the regeneration (heating process) is started, the controller 46 simultaneously opens the body purge valve 20, the exhaust valve 22, the exhaust purge valve 24, and (if downstream purging is performed) the additional exhaust purge valve 54. The tendency of change in the hydrogen gas concentration at the purge gas receiving port 52 initially increases from 0%, reaches a concentration peak, and then gradually decreases to 0% again. This is common to FIGS. 4(a) to 4(c).
 図3(c)および図4(a)から図4(c)に示される水素ガス濃度ピークを比較することで、パージガスの供給場所の違いの効果を明らかにすることができる。図4(a)に示されるように、ボディパージを毎分60Lとする場合、パージガス受入ポート52での水素ガス濃度ピークは19.0%となる。図4(a)と図3(c)を対比すると、ボディパージを毎分20Lから毎分60Lに増加することで、パージガス受入ポート52での水素ガス濃度ピークが15%から19%に増加している。これは、ボディパージの流量増加に伴い、水素ガスを含有する排出流体がクライオポンプ容器16から排出ライン50へと、より急速に押し出されるように排出されたために、濃度ピークが高まる結果となったものと考えられる。 By comparing the hydrogen gas concentration peaks shown in FIGS. 3(c) and 4(a) to 4(c), it is possible to clarify the effect of different purge gas supply locations. As shown in FIG. 4A, when the body purge is 60 L/min, the hydrogen gas concentration peak at the purge gas receiving port 52 is 19.0%. Comparing FIG. 4(a) and FIG. 3(c), by increasing the body purge from 20 L/min to 60 L/min, the hydrogen gas concentration peak at the purge gas receiving port 52 increases from 15% to 19%. ing. This resulted in higher concentration peaks because the discharge fluid containing hydrogen gas was forced out of the cryopump vessel 16 into the discharge line 50 more rapidly as the flow rate of the body purge increased. It is considered to be a thing.
 図4(b)に示されるように、上流パージを毎分60Lとする場合、パージガス受入ポート52での水素ガス濃度ピークは9.5%となる。図4(b)と図3(c)を対比すると、上流パージを毎分20Lから毎分60Lに増加することで、パージガス受入ポート52での水素ガス濃度ピークが15%から9.5%に減少している。したがって、上流パージの流量増加は、水素ガス濃度ピークの抑制に有効である。 As shown in FIG. 4(b), when the upstream purge is 60 L/min, the hydrogen gas concentration peak at the purge gas receiving port 52 is 9.5%. Comparing FIG. 4(b) and FIG. 3(c), by increasing the upstream purge from 20 L/min to 60 L/min, the hydrogen gas concentration peak at the purge gas receiving port 52 is reduced from 15% to 9.5%. is decreasing. Therefore, increasing the flow rate of the upstream purge is effective in suppressing the hydrogen gas concentration peak.
 図4(c)に示されるように、下流パージを毎分40Lとする場合、パージガス受入ポート52での水素ガス濃度ピークは7.5%となる。図4(c)と図3(c)を対比すると、下流パージを新たに追加することで、パージガス受入ポート52での水素ガス濃度ピークが15%から7.5%に減少している。図4(b)に示される上流パージの流量増加と比べても、水素ガス濃度ピークが低下している。したがって、下流パージは、水素ガス濃度ピークの抑制に最も有効である。排出ライン50のなるべく下流側(処理装置60側)でパージガスを供給することが水素ガス濃度ピークの低下に寄与すると考えられる。 As shown in FIG. 4(c), when the downstream purge is 40 L/min, the hydrogen gas concentration peak at the purge gas receiving port 52 is 7.5%. Comparing FIG. 4(c) with FIG. 3(c), by newly adding the downstream purge, the hydrogen gas concentration peak at the purge gas receiving port 52 is reduced from 15% to 7.5%. The hydrogen gas concentration peak is lower than the increase in the flow rate of the upstream purge shown in FIG. 4(b). Therefore, downstream purging is most effective in suppressing hydrogen gas concentration peaks. It is considered that supplying the purge gas at the downstream side of the exhaust line 50 (on the side of the processing device 60) as much as possible contributes to the reduction of the hydrogen gas concentration peak.
 次に、ボディパージ、上流パージ、下流パージの流量比に着目する。発明者の検討によると、クライオポンプ容積とバッファ容積を一定とすると、パージガス受入ポート52での水素ガス濃度ピークは、ボディパージ、上流パージ、下流パージの流量比によって決まる。ボディパージ、上流パージ、下流パージの流量の大きさそれ自体は、排出の所要時間(再生開始から水素ガス濃度が再び0%となるまでの時間)に影響するが、パージガス受入ポート52での水素ガス濃度ピークには影響しない。 Next, focus on the flow rate ratio of body purge, upstream purge, and downstream purge. According to the inventor's study, if the cryopump volume and the buffer volume are constant, the hydrogen gas concentration peak at the purge gas receiving port 52 is determined by the flow rate ratio of the body purge, upstream purge, and downstream purge. The flow rates of the body purge, upstream purge, and downstream purge themselves affect the time required for discharge (the time from the start of regeneration until the hydrogen gas concentration becomes 0% again), but the hydrogen gas at the purge gas receiving port 52 It does not affect gas concentration peaks.
 このことを踏まえると、ボディパージ(または上流パージ)の流量に比べて、下流パージの流量を大きくすることは、排出ライン50のパージガス受入ポート52での排出流体、つまり処理装置60に流入する排出流体における水素ガス濃度のピークを抑えるために有効である。また、ボディパージと上流パージの合計流量に比べて、下流パージの流量を大きくしてもよい。このようにしても、処理装置60に流入する排出流体における水素ガス濃度のピークを抑えることができる。 With this in mind, increasing the flow rate of the downstream purge relative to the flow rate of the body purge (or upstream purge) may reduce the amount of exhaust fluid at the purge gas receiving port 52 of the exhaust line 50, i.e., the exhaust entering the processing device 60. It is effective for suppressing the hydrogen gas concentration peak in the fluid. Also, the flow rate of the downstream purge may be made larger than the total flow rate of the body purge and the upstream purge. Also in this way, the peak of the hydrogen gas concentration in the discharged fluid flowing into the treatment device 60 can be suppressed.
 知られているように、水素ガス濃度が4%以下である場合、水素ガスは燃焼しない。よって、パージガス受入ポート52での水素ガス濃度ピークを4%以下に抑えることが、安全上有益である。 As is known, hydrogen gas does not burn when the hydrogen gas concentration is 4% or less. Therefore, it is beneficial for safety to suppress the hydrogen gas concentration peak at the purge gas receiving port 52 to 4% or less.
 そこで、水素ガス濃度ピークを4%以下とする例示的な条件を考察すると、例えば、図3(b)の条件(クライオポンプ容積が30L、バッファ容積が3L、水素ガス初期濃度が60%、ボディパージと上流パージの流量がそれぞれ毎分20L)のもとで、ボディパージ、上流パージ、下流パージの流量比を1:1:11とするとき(つまり下流パージは毎分220L)、パージガス受入ポート52での水素ガス濃度ピークを3.9%とすることができる。 Therefore, considering exemplary conditions under which the hydrogen gas concentration peak is 4% or less, for example, the conditions of FIG. When the flow rate of the body purge, upstream purge, and downstream purge is 1:1:11 (i.e., the downstream purge is 220 L/min), the purge gas receiving port The hydrogen gas concentration peak at 52 can be 3.9%.
 クライオポンプ10に溜め込む水素ガス量を抑えることによっても、再生時の水素ガス濃度ピークを抑えることができる。例えば、図3(b)の条件のもとで、水素ガス初期濃度を13%とするとき(クライオポンプ10の水素ガス吸蔵量を最大値の22%(=13/60*100)とするとき)、ボディパージ、上流パージ、下流パージの流量比を1:1:1とすることで、パージガス受入ポート52での水素ガス濃度ピークを3.7%とすることができる。 By suppressing the amount of hydrogen gas stored in the cryopump 10, the hydrogen gas concentration peak during regeneration can also be suppressed. For example, under the conditions of FIG. ), the body purge, the upstream purge, and the downstream purge at a flow rate ratio of 1:1:1, the hydrogen gas concentration peak at the purge gas receiving port 52 can be 3.7%.
 また、図3(c)の条件(クライオポンプ容積が30L、バッファ容積が30L、水素ガス初期濃度が60%、ボディパージと上流パージの流量がそれぞれ毎分20L)のもとで、ボディパージ、上流パージ、下流パージの流量比を1:1:6とするとき(つまり下流パージは毎分120L)、パージガス受入ポート52での水素ガス濃度ピークを3.8%とすることができる。この場合において水素ガス初期濃度を23%とするとき、ボディパージ、上流パージ、下流パージの流量比を1:1:1とすることで、パージガス受入ポート52での水素ガス濃度ピークを3.8%とすることができる。 Also, under the conditions of FIG. When the flow rate ratio of the upstream purge and the downstream purge is 1:1:6 (that is, the downstream purge is 120 L/min), the hydrogen gas concentration peak at the purge gas receiving port 52 can be 3.8%. In this case, when the initial hydrogen gas concentration is 23%, the hydrogen gas concentration peak at the purge gas receiving port 52 is 3.8% by setting the flow rate ratio of the body purge, upstream purge, and downstream purge to 1:1:1. %.
 したがって、バッファ容積56が比較的小さい場合(10L未満、例えば3L)、下流パージの流量は、ボディパージ(または上流パージ)の流量の1倍から11倍の範囲から選択されてもよい。一方、バッファ容積56が比較的大きい場合(例えば、10L以上30L以下)、下流パージの流量は、ボディパージ(または上流パージ)の流量の1倍から6倍の範囲から選択されてもよい。このようにすれば、パージガス受入ポート52での水素ガス濃度ピークをおよそ4%以下に抑えられるものと期待される。 Therefore, if the buffer volume 56 is relatively small (less than 10 L, eg, 3 L), the downstream purge flow rate may be selected from the range of 1 to 11 times the body purge (or upstream purge) flow rate. On the other hand, if the buffer volume 56 is relatively large (eg, 10 L or more and 30 L or less), the downstream purge flow rate may be selected from the range of 1 to 6 times the body purge (or upstream purge) flow rate. By doing so, it is expected that the hydrogen gas concentration peak at the purge gas receiving port 52 can be suppressed to approximately 4% or less.
 以上説明したように、この実施の形態によると、排出ライン50がバッファ容積56を有することにより、クライオポンプ10から排出され処理装置60に流入する危険ガスを効率的に希釈し、危険ガスの濃度ピークを抑えることができる。また、この実施の形態によると、排出ライン50に下流パージを適用することにより、処理装置60に流入する危険ガスを効率的に希釈し、危険ガスの濃度ピークを抑えることができる。ボディパージ(または上流パージ)のみを使用する場合に比べて、パージガスの消費量を抑えることができる。 As described above, according to this embodiment, since the discharge line 50 has the buffer volume 56, the dangerous gas discharged from the cryopump 10 and flowing into the processing apparatus 60 is efficiently diluted, and the concentration of the dangerous gas is reduced. peak can be suppressed. Further, according to this embodiment, by applying a downstream purge to the discharge line 50, the dangerous gas flowing into the processing device 60 can be efficiently diluted and the concentration peak of the dangerous gas can be suppressed. Purge gas consumption can be reduced compared to using only body purge (or upstream purge).
 上述の説明では、水素ガスを例に挙げているが、危険ガスは典型的にタイプ2ガスまたはタイプ3ガスであり、排出ライン50における濃度変化は水素ガスと同様となる。したがって、他の危険ガスについても、バッファ容積56と下流パージは、処理装置60に流入する危険ガスを効率的に希釈し、危険ガスの濃度ピークを抑えるために有効である。 In the above description, hydrogen gas is taken as an example, but the dangerous gas is typically type 2 gas or type 3 gas, and the concentration change in the discharge line 50 is similar to that of hydrogen gas. Therefore, for other hazardous gases as well, the buffer volume 56 and the downstream purge are effective in effectively diluting the hazardous gases entering the processing system 60 and reducing the concentration peaks of the hazardous gases.
 図5は、他の実施の形態に係るクライオポンプシステムを模式的に示す。図5に示されるクライオポンプシステムは、図1および図2に示されるクライオポンプシステムとは異なり、複数(この例では3台)のクライオポンプ10を備える。これら複数のクライオポンプ10は、排出ライン50により共通の処理装置60に接続される。以下の説明で、複数のクライオポンプ10を区別する必要があるときは、クライオポンプ10a、10b、10cと表記することがある。 FIG. 5 schematically shows a cryopump system according to another embodiment. The cryopump system shown in FIG. 5 includes a plurality of (three in this example) cryopumps 10, unlike the cryopump systems shown in FIGS. These multiple cryopumps 10 are connected to a common processing unit 60 by an exhaust line 50 . In the following description, the cryopumps 10a, 10b, and 10c may be used when the plurality of cryopumps 10 need to be distinguished.
 各クライオポンプ10は、ラフバルブ18と、ボディパージバルブ20と、排出バルブ22と、排出パージバルブ24とを備え、これらは各クライオポンプのクライオポンプ容器16に設置されている。クライオポンプシステムには、複数のクライオポンプ10を制御するコントローラ46が設けられ、コントローラ46は、複数のクライオポンプ10の再生中に各クライオポンプ10の上述の各バルブを制御する再生コントローラとして動作可能である。図5に示されるクライオポンプ10の構成は、図1および図2に示されるクライオポンプ10と同様であってもよく、同様の構成要素の説明は冗長を避けるため省略する。 Each cryopump 10 includes a rough valve 18, a body purge valve 20, an exhaust valve 22, and an exhaust purge valve 24, which are installed in the cryopump container 16 of each cryopump. The cryopump system is provided with a controller 46 that controls the plurality of cryopumps 10 , and the controller 46 is operable as a regeneration controller that controls each of the aforementioned valves of each cryopump 10 during regeneration of the plurality of cryopumps 10 . is. The configuration of the cryopump 10 shown in FIG. 5 may be similar to the cryopump 10 shown in FIGS. 1 and 2, and descriptions of similar components are omitted to avoid redundancy.
 排出ライン50は、排出流体を複数のクライオポンプ10から処理装置60に排出するために設けられている。排出ライン50は、複数の支路50aと、複数の支路50aを処理装置60に接続する合流路50bとを備える。各支路50aは、上流端で、対応するクライオポンプ10の排出バルブ22および排出パージバルブに接続され、下流端で合流路50bに接続される。 The discharge line 50 is provided to discharge the discharge fluid from the plurality of cryopumps 10 to the processing device 60 . The discharge line 50 includes a plurality of branch paths 50 a and a joint path 50 b that connects the plurality of branch paths 50 a to the processing device 60 . Each branch channel 50a is connected at its upstream end to the discharge valve 22 and the discharge purge valve of the corresponding cryopump 10, and connected at its downstream end to the combined channel 50b.
 各支路50aは、対応するクライオポンプ10の排出バルブ22を合流路50bに接続するバッファ容積56を備える。各支路50aのバッファ容積56は上述のように、1リットルから30リットルの範囲内にあってもよい。各クライオポンプ10の排出パージバルブ24が、バッファ容積56に対して上流側(排出バルブ22側)で支路50aに接続される。各クライオポンプ10のクライオポンプ容器16からの排出流体は、各クライオポンプ10の排出バルブ22から排出ライン50の各支路50aのバッファ容積56を通過して合流路50bで合流し、処理装置60に流入する。 Each branch channel 50a includes a buffer volume 56 that connects the exhaust valve 22 of the corresponding cryopump 10 to the combined channel 50b. The buffer volume 56 of each tributary 50a may be in the range of 1 to 30 liters, as described above. The exhaust purge valve 24 of each cryopump 10 is connected to the branch 50 a on the upstream side (exhaust valve 22 side) with respect to the buffer volume 56 . Fluid discharged from the cryopump vessel 16 of each cryopump 10 passes from the discharge valve 22 of each cryopump 10 through the buffer volume 56 of each branch 50a of the discharge line 50 and joins in the combined flow path 50b. flow into
 各クライオポンプ10のボディパージバルブ20は、当該クライオポンプ10のボディパージを可能とする。各クライオポンプ10の排出パージバルブ24は、バッファ容積56に対して排出ライン50の上流側にパージガスを供給し、当該クライオポンプ10の上流パージを可能とする。また、排出バルブ22を開くことによって、ボディパージバルブ20からのボディパージを上流パージとして利用することもできる。 The body purge valve 20 of each cryopump 10 enables the body purge of the cryopump 10 . The exhaust purge valve 24 of each cryopump 10 supplies purge gas upstream of the exhaust line 50 to the buffer volume 56 to enable upstream purging of that cryopump 10 . Also, by opening the exhaust valve 22, the body purge from the body purge valve 20 can be used as an upstream purge.
 排出ライン50の合流路50bは、上述の実施の形態におけるパージガス受入ポート52に相当する。また、あるクライオポンプ10(例えば第1クライオポンプ10a)にとって、別のクライオポンプ10(例えば第2クライオポンプ10bまたは第3クライオポンプ10c)の排出バルブ22または排出パージバルブ24が、上述の実施の形態における追加の排出パージバルブ54に相当する。よって、あるクライオポンプ10(例えば第1クライオポンプ10a)の下流パージは、別のクライオポンプ10(例えば第2クライオポンプ10bまたは第3クライオポンプ10c)のボディパージまたは上流パージを合流路50bから当該あるクライオポンプ10(例えば第1クライオポンプ10a)の支路50aに受け入れることによって可能となる。 The combined channel 50b of the discharge line 50 corresponds to the purge gas receiving port 52 in the above embodiment. Further, for a certain cryopump 10 (eg, the first cryopump 10a), the discharge valve 22 or the discharge purge valve 24 of another cryopump 10 (eg, the second cryopump 10b or the third cryopump 10c) is the same as the above embodiment. corresponds to an additional exhaust purge valve 54 in . Therefore, the downstream purge of a certain cryopump 10 (for example, the first cryopump 10a) causes the body purge or upstream purge of another cryopump 10 (for example, the second cryopump 10b or the third cryopump 10c) from the combined channel 50b. This is possible by receiving in the tributary 50a of a certain cryopump 10 (for example, the first cryopump 10a).
 なお、クライオポンプシステムには、排出ライン50とは別に、粗引きライン58が設けられている。粗引きライン58は、各クライオポンプ10のラフバルブ18を共通の粗引きポンプ59に接続する。複数のクライオポンプ10は、各クライオポンプ10のラフバルブ18および粗引きライン58を通じて、粗引きポンプ59によって粗引きされる。 Note that the cryopump system is provided with a roughing line 58 in addition to the discharge line 50 . A roughing line 58 connects the rough valve 18 of each cryopump 10 to a common roughing pump 59 . The plurality of cryopumps 10 are roughed by roughing pumps 59 through roughing valves 18 and roughing lines 58 of each cryopump 10 .
 この構成によると、クライオポンプシステムが有するクライオポンプ10の台数に依存するが、大流量の下流パージを実現することが容易となる。例えば、第1クライオポンプ10aの下流パージのために、第2クライオポンプ10bと第3クライオポンプ10cからの合計のパージガス流量を利用することができる。 According to this configuration, depending on the number of cryopumps 10 included in the cryopump system, it is easy to achieve a large flow rate of downstream purge. For example, the combined purge gas flow from the second cryopump 10b and the third cryopump 10c can be utilized for downstream purging of the first cryopump 10a.
 ただし、この場合、あるクライオポンプ10(例えば第1クライオポンプ10a)に下流パージとして別のクライオポンプ(例えば第2クライオポンプ10bまたは第3クライオポンプ10c)から流入するガスにこの別のクライオポンプから排出された危険ガスが含有されることは望まれない。 However, in this case, gas flowing from another cryopump (eg, second cryopump 10b or third cryopump 10c) into a cryopump 10 (eg, first cryopump 10a) as a downstream purge is It is not desired to contain discharged hazardous gases.
 そこで、複数のクライオポンプ10を同時に再生する場合において、あるクライオポンプ10の再生開始が残りのクライオポンプ10よりも優先されてもよい。言い換えれば、最初に再生を開始するクライオポンプ10に対して残りのクライオポンプ10の再生開始が遅延されてもよい。遅延時間は、例えば数分(例えば2分から10分)であってもよい。 Therefore, when regenerating a plurality of cryopumps 10 at the same time, the start of regeneration of a certain cryopump 10 may be prioritized over the rest of the cryopumps 10 . In other words, the start of regeneration of the remaining cryopumps 10 may be delayed with respect to the cryopump 10 that starts regeneration first. The delay time may be, for example, several minutes (eg, 2 to 10 minutes).
 したがって、コントローラ46は、あるクライオポンプ10から排出流体を処理装置60に排出するようにあるクライオポンプ10を制御するとともに、別のクライオポンプ10からパージガスを排出ライン50の合流路50bに供給するように別のクライオポンプ10を制御するように構成されてもよい。コントローラ46は、あるクライオポンプ10から排出流体を処理装置60に排出するために、あるクライオポンプ10のボディパージバルブ20を開くように構成されてもよい。コントローラ46は、別のクライオポンプ10からパージガスを排出ライン50の合流路50bに供給するために、別のクライオポンプ10の排出パージバルブ24を開くように構成されてもよい。 Therefore, the controller 46 controls one cryopump 10 to discharge the discharge fluid from one cryopump 10 to the processing device 60 and controls another cryopump 10 to supply the purge gas to the junction 50 b of the discharge line 50 . may be configured to control another cryopump 10 at the same time. Controller 46 may be configured to open body purge valve 20 of a given cryopump 10 in order to expel exhaust fluid from the given cryopump 10 to processing device 60 . Controller 46 may be configured to open exhaust purge valve 24 of another cryopump 10 to supply purge gas from another cryopump 10 to junction 50 b of exhaust line 50 .
 このようにすれば、まず第1クライオポンプ10aの再生(昇温工程)が開始され、第1クライオポンプ10aのボディパージを利用して第1クライオポンプ10aから排出流体が排出ライン50に排出される。残りの第2クライオポンプ10bおよび第3クライオポンプ10cの排出パージバルブ24が開かれ、第1クライオポンプ10aは、これら2台のクライオポンプ10b、10cからのパージガスを下流パージとして利用し、処理装置60に流入する排出流体を効率的に希釈することができる。 In this way, the regeneration (heating process) of the first cryopump 10a is started first, and the discharge fluid is discharged from the first cryopump 10a to the discharge line 50 using the body purge of the first cryopump 10a. be. The exhaust purge valves 24 of the remaining second cryopump 10b and third cryopump 10c are opened, and the first cryopump 10a utilizes the purge gas from these two cryopumps 10b, 10c as a downstream purge to the processing equipment 60. can effectively dilute the discharge fluid entering the .
 こうして第1クライオポンプ10aから危険ガスが排出された後、残りのクライオポンプ10のうちいずれか(例えば第2クライオポンプ10b)の再生(昇温工程)が開始される。第1クライオポンプ10aのボディパージおよび上流パージは、第2クライオポンプ10bのための下流パージとして利用することができる。第3クライオポンプ10cの上流パージも第2クライオポンプ10bのための下流パージとして引き続き利用できる。 After the dangerous gas is discharged from the first cryopump 10a in this way, regeneration (temperature raising process) of one of the remaining cryopumps 10 (for example, the second cryopump 10b) is started. The bodypurge and upstream purge of the first cryopump 10a can be utilized as the downstream purge for the second cryopump 10b. The upstream purge for the third cryopump 10c is still available as the downstream purge for the second cryopump 10b.
 そして、第2クライオポンプ10bから危険ガスが排出された後、第3クライオポンプ10cの再生(昇温工程)が開始される。第1クライオポンプ10aおよび第2クライオポンプ10bのボディパージと上流パージは、第3クライオポンプ10cのための下流パージとして利用できる。 Then, after the dangerous gas is discharged from the second cryopump 10b, the regeneration (heating process) of the third cryopump 10c is started. The body purge and upstream purge of the first cryopump 10a and the second cryopump 10b can be used as the downstream purge for the third cryopump 10c.
 コントローラ46は、あるクライオポンプ10から排出流体を処理装置60に排出するために、あるクライオポンプ10のボディパージバルブ20および排出パージバルブ24を共に開くように構成されてもよい。このようにすれば、ボディパージと上流パージを利用して、クライオポンプ10から排出流体を排出ライン50へと効率的に排出することができる。 The controller 46 may be configured to open both the body purge valve 20 and the exhaust purge valve 24 of a given cryopump 10 to exhaust the exhaust fluid from the given cryopump 10 to the processing device 60 . In this way, the exhaust fluid can be efficiently discharged from the cryopump 10 to the discharge line 50 using the body purge and the upstream purge.
 コントローラ46は、別のクライオポンプ10のクライオポンプ容器16内での排出流体の生成を妨げるように別のクライオポンプ10を冷却すべく冷凍機14を制御しつつ、別のクライオポンプ10の排出パージバルブ24を開くように構成されてもよい。このようにすれば、第1クライオポンプ10aの再生(昇温工程)が開始されたとき、残りの第2クライオポンプ10bおよび第3クライオポンプ10cを冷却状態に維持することができ、これら残りのクライオポンプ10b、10cからの排出を確実に遮断することができる。それとともに、第1クライオポンプ10aは、これら2台のクライオポンプ10b、10cからのパージガスを下流パージとして利用し、処理装置60に流入する排出流体を効率的に希釈することができる。 The controller 46 controls the discharge purge valve of the other cryopump 10 while controlling the refrigerator 14 to cool the other cryopump 10 to prevent the formation of discharge fluid within the cryopump vessel 16 of the other cryopump 10 . 24 may be configured to open. In this way, when the regeneration (heating process) of the first cryopump 10a is started, the remaining second cryopump 10b and the third cryopump 10c can be maintained in a cooled state. Discharge from the cryopumps 10b and 10c can be reliably blocked. In addition, the first cryopump 10a can utilize the purge gas from these two cryopumps 10b, 10c as a downstream purge to effectively dilute the effluent flowing into the processing device 60. FIG.
 コントローラ46は、あるクライオポンプ10から合流路50bへのパージガスの流量に比べて別のクライオポンプ10から合流路50bへのパージガスの流量を大きくするように、あるクライオポンプ10および別のクライオポンプ10を制御するように構成されてもよい。このようにすれば、ボディパージ(または上流パージ)の流量に比べて、下流パージの流量を大きくすることができ、処理装置60に流入する排出流体における危険ガス濃度のピークを抑えるために有効である。 The controller 46 operates the cryopump 10 and the other cryopump 10 so that the flow rate of the purge gas from the cryopump 10 to the combined channel 50b is greater than the flow rate of the purge gas from the other cryopump 10 to the combined channel 50b. may be configured to control the In this way, the flow rate of the downstream purge can be made larger than the flow rate of the body purge (or upstream purge), which is effective in suppressing the peak concentration of dangerous gases in the exhaust fluid entering the processing device 60. be.
 水素ガスの濃度ピークを4%以下とする例示的な条件を考察すると、例えば、クライオポンプ容積が30L、排出ライン50の各支路50aのバッファ容積56が10L、水素ガス初期濃度が60%、各クライオポンプ10のボディパージおよび上流パージの流量がそれぞれ毎分20L、毎分60Lとするとき(この場合、下流パージは毎分160Lに相当する)、排出ライン50の合流路50bでの水素ガス濃度ピークを4.0%とすることができる。 Considering an exemplary condition in which the hydrogen gas concentration peak is 4% or less, for example, the cryopump volume is 30 L, the buffer volume 56 of each branch 50a of the discharge line 50 is 10 L, the initial hydrogen gas concentration is 60%, When the flow rates of the body purge and upstream purge of each cryopump 10 are respectively 20 L/min and 60 L/min (in this case, the downstream purge corresponds to 160 L/min), the hydrogen gas in the combined flow path 50b of the discharge line 50 is The concentration peak can be 4.0%.
 また、この例において、水素ガス初期濃度を25%に低下させた場合、排出ライン50の各支路50aのバッファ容積56を3Lに縮小し、各クライオポンプ10のボディパージおよび上流パージの流量がともに毎分20Lに低下させても、排出ライン50の合流路50bでの水素ガス濃度ピークを4.0%未満とすることができる。 Further, in this example, when the initial hydrogen gas concentration is reduced to 25%, the buffer volume 56 of each branch 50a of the discharge line 50 is reduced to 3 L, and the flow rates of the body purge and upstream purge of each cryopump 10 are reduced to Even if both are reduced to 20 L/min, the hydrogen gas concentration peak in the combined flow path 50b of the discharge line 50 can be less than 4.0%.
 以上、本発明を実施例にもとづいて説明した。本発明は上記実施形態に限定されず、種々の設計変更が可能であり、様々な変形例が可能であること、またそうした変形例も本発明の範囲にあることは、当業者に理解されるところである。 The present invention has been described above based on the examples. It should be understood by those skilled in the art that the present invention is not limited to the above embodiments, and that various design changes and modifications are possible, and that such modifications are within the scope of the present invention. By the way.
 本発明は、クライオポンプシステム、およびクライオポンプシステムのための再生コントローラの分野における利用が可能である。 The present invention can be used in the field of cryopump systems and regeneration controllers for cryopump systems.
 10 クライオポンプ、 14 冷凍機、 16 クライオポンプ容器、 20 ボディパージバルブ、 22 排出バルブ、 24 排出パージバルブ、 46 コントローラ、 50 排出ライン、 50a 支路、 50b 合流路、 52 パージガス受入ポート、 56 バッファ容積、 60 処理装置。 10 cryopump, 14 refrigerator, 16 cryopump container, 20 body purge valve, 22 exhaust valve, 24 exhaust purge valve, 46 controller, 50 exhaust line, 50a branch, 50b combined passage, 52 purge gas receiving port, 56 buffer volume, 60 processing equipment.

Claims (11)

  1.  各々が、クライオポンプ容器と、前記クライオポンプ容器から排出流体を排出する排出バルブと、前記排出バルブまたはその下流にパージガスを供給する排出パージバルブとを備える複数のクライオポンプと、
     前記排出流体を前記複数のクライオポンプから処理装置に排出する排出ラインであって、各々が対応するクライオポンプの前記排出バルブおよび前記排出パージバルブに接続される複数の支路と、前記複数の支路を前記処理装置に接続する合流路とを備える排出ラインと、を備えることを特徴とするクライオポンプシステム。
    a plurality of cryopumps each comprising a cryopump vessel, an exhaust valve for exhausting exhaust fluid from the cryopump vessel, and an exhaust purge valve for supplying a purge gas to or downstream of the exhaust valve;
    a plurality of tributaries for discharging the effluent fluid from the plurality of cryopumps to a processing device, the plurality of tributaries each connected to the discharge valve and the discharge purge valve of a corresponding cryopump; and the plurality of tributaries. and a discharge line comprising a confluence line connecting the to the processing device.
  2.  各支路は、前記対応するクライオポンプの前記排出バルブを前記合流路に接続するバッファ容積を備え、前記対応するクライオポンプの前記排出パージバルブが、前記バッファ容積に対して前記排出バルブ側で前記支路に接続されることを特徴とする請求項1に記載のクライオポンプシステム。 Each branch includes a buffer volume connecting the discharge valve of the corresponding cryopump to the combined channel, and the discharge purge valve of the corresponding cryopump is aligned with the buffer volume on the side of the discharge valve. 2. The cryopump system of claim 1, wherein the cryopump system is connected to a line.
  3.  前記バッファ容積は、1リットルから30リットルの範囲内にあることを特徴とする請求項2に記載のクライオポンプシステム。 The cryopump system of claim 2, wherein the buffer volume is in the range of 1 liter to 30 liters.
  4.  前記複数のクライオポンプは、第1クライオポンプおよび第2クライオポンプを含み、
     前記クライオポンプシステムの再生を制御する再生コントローラであって、前記第1クライオポンプから前記排出流体を前記処理装置に排出するように前記第1クライオポンプを制御するとともに、前記第2クライオポンプから前記パージガスを前記排出ラインの前記合流路に供給するように前記第2クライオポンプを制御するように構成される再生コントローラをさらに備えることを特徴とする請求項1から3のいずれかに記載のクライオポンプシステム。
    the plurality of cryopumps includes a first cryopump and a second cryopump;
    A regeneration controller for controlling regeneration of the cryopump system, the regeneration controller controlling the first cryopump to discharge the discharged fluid from the first cryopump to the processing device, and controlling the discharge fluid from the second cryopump to the 4. The cryopump of any preceding claim, further comprising a regeneration controller configured to control the second cryopump to supply purge gas to the junction of the exhaust line. system.
  5.  前記複数のクライオポンプは、第3クライオポンプをさらに含み、
     前記再生コントローラは、前記第1クライオポンプから前記排出流体を前記処理装置に排出するように前記第1クライオポンプを制御するとともに、前記第2クライオポンプおよび前記第3クライオポンプから前記パージガスを前記排出ラインの前記合流路に供給するように前記第2クライオポンプおよび前記第3クライオポンプを制御するように構成されることを特徴とする請求項4に記載のクライオポンプシステム。
    the plurality of cryopumps further includes a third cryopump;
    The regeneration controller controls the first cryopump to discharge the discharge fluid from the first cryopump to the processing device, and discharges the purge gas from the second cryopump and the third cryopump. 5. The cryopump system of claim 4, configured to control the second cryopump and the third cryopump to supply the combined path of a line.
  6.  前記複数のクライオポンプの各々は、前記クライオポンプ容器にパージガスを供給するボディパージバルブを備え、
     前記再生コントローラは、前記第1クライオポンプから前記排出流体を前記処理装置に排出するために、前記第1クライオポンプの前記ボディパージバルブおよび前記排出パージバルブを共に開くように構成されることを特徴とする請求項4または5に記載のクライオポンプシステム。
    each of the plurality of cryopumps includes a body purge valve that supplies purge gas to the cryopump vessel;
    The regeneration controller is configured to open both the body purge valve and the exhaust purge valve of the first cryopump to exhaust the exhaust fluid from the first cryopump to the processing device. 6. The cryopump system according to claim 4 or 5.
  7.  前記複数のクライオポンプの各々は、前記クライオポンプを冷却する冷凍機を備え、
     前記再生コントローラは、前記第2クライオポンプの前記クライオポンプ容器内での前記排出流体の生成を妨げるように前記第2クライオポンプを冷却すべく前記冷凍機を制御しつつ、前記第2クライオポンプの前記排出パージバルブを開くように構成されることを特徴とする請求項4から6のいずれかに記載のクライオポンプシステム。
    each of the plurality of cryopumps includes a refrigerator that cools the cryopump;
    The regeneration controller controls the refrigerator to cool the second cryopump to prevent formation of the exhaust fluid within the cryopump vessel of the second cryopump while controlling the refrigerator to cool the second cryopump. 7. The cryopump system of any of claims 4-6, wherein the exhaust purge valve is configured to open.
  8.  前記再生コントローラは、前記第1クライオポンプから前記合流路への前記パージガスの流量に比べて前記第2クライオポンプから前記合流路への前記パージガスの流量を大きくするように、前記第1クライオポンプおよび前記第2クライオポンプを制御するように構成されることを特徴とする請求項4から7のいずれかに記載のクライオポンプシステム。 The regeneration controller increases the flow rate of the purge gas from the second cryopump to the combined channel compared to the flow rate of the purge gas from the first cryopump to the combined channel. 8. The cryopump system of any of claims 4-7, configured to control the second cryopump.
  9.  クライオポンプシステムのための再生コントローラであって、
     前記クライオポンプシステムは、
      各々が、クライオポンプ容器と、前記クライオポンプ容器から排出流体を排出する排出バルブと、前記排出バルブまたはその下流にパージガスを供給する排出パージバルブとを備える複数のクライオポンプと、
      前記排出流体を前記複数のクライオポンプから処理装置に排出する排出ラインであって、各々が対応するクライオポンプの前記排出バルブおよび前記排出パージバルブに接続される複数の支路と、前記複数の支路を前記処理装置に合流させる合流路とを備える排出ラインと、を備え、
     前記複数のクライオポンプは、第1クライオポンプおよび第2クライオポンプを含み、
     前記再生コントローラは、前記第1クライオポンプから前記排出流体を前記処理装置に排出するように前記第1クライオポンプを制御するとともに、前記第2クライオポンプから前記パージガスを前記排出ラインの前記合流路に供給するように前記第2クライオポンプを制御するように構成されることを特徴とする再生コントローラ。
    A regeneration controller for a cryopump system, comprising:
    The cryopump system includes:
    a plurality of cryopumps each comprising a cryopump vessel, an exhaust valve for exhausting exhaust fluid from the cryopump vessel, and an exhaust purge valve for supplying a purge gas to or downstream of the exhaust valve;
    a plurality of tributaries for discharging the effluent fluid from the plurality of cryopumps to a processing device, the plurality of tributaries each connected to the discharge valve and the discharge purge valve of a corresponding cryopump; and the plurality of tributaries. and a discharge line comprising a confluence path for joining the processing equipment,
    the plurality of cryopumps includes a first cryopump and a second cryopump;
    The regeneration controller controls the first cryopump to discharge the discharge fluid from the first cryopump to the processing device, and directs the purge gas from the second cryopump to the junction of the discharge line. A regeneration controller configured to control the second cryopump to supply.
  10.  クライオポンプ容器と、前記クライオポンプ容器から排出流体を排出する排出バルブと、前記排出バルブまたはその下流にパージガスを供給する排出パージバルブとを備えるクライオポンプと、
     前記排出バルブおよび前記排出パージバルブに接続され、前記排出流体を前記クライオポンプから処理装置に排出する排出ラインに設けられ、前記排出パージバルブに対して前記処理装置側にパージガスを供給する追加の排出パージバルブと、を備えることを特徴とするクライオポンプシステム。
    a cryopump comprising a cryopump container, a discharge valve for discharging discharged fluid from the cryopump container, and a discharge purge valve for supplying a purge gas to the discharge valve or its downstream;
    an additional discharge purge valve connected to the discharge valve and the discharge purge valve, provided in a discharge line for discharging the discharge fluid from the cryopump to the processing device, and supplying a purge gas to the processing device side with respect to the discharge purge valve; A cryopump system comprising:
  11.  前記排出ラインは、前記排出パージバルブと前記追加の排出パージバルブとの間に接続されたバッファ容積を備えることを特徴とする請求項10に記載のクライオポンプシステム。 11. The cryopump system of claim 10, wherein the exhaust line comprises a buffer volume connected between the exhaust purge valve and the additional exhaust purge valve.
PCT/JP2022/048620 2022-01-31 2022-12-28 Cryopump system and regeneration controller WO2023145385A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280086928.9A CN118475770A (en) 2022-01-31 2022-12-28 Cryopump system and regeneration controller

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022013219 2022-01-31
JP2022-013219 2022-01-31

Publications (1)

Publication Number Publication Date
WO2023145385A1 true WO2023145385A1 (en) 2023-08-03

Family

ID=87471217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/048620 WO2023145385A1 (en) 2022-01-31 2022-12-28 Cryopump system and regeneration controller

Country Status (3)

Country Link
CN (1) CN118475770A (en)
TW (1) TWI832665B (en)
WO (1) WO2023145385A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05272452A (en) * 1992-03-27 1993-10-19 Shincron:Kk Cryopump regenerating method
JP2000274356A (en) * 1999-03-19 2000-10-03 Daikin Ind Ltd Regeneration device for cryopump and its regenration method
JP2012237293A (en) * 2011-05-13 2012-12-06 Sumitomo Heavy Ind Ltd Cryopump system and method for regenerating cryopump

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602004005047T2 (en) * 2003-06-27 2007-09-27 Helix Technology Corp., Mansfield INTEGRATION OF AN AUTOMATED CRYOPUMP SAFETY RINSE
JP5963459B2 (en) * 2012-01-31 2016-08-03 住友重機械工業株式会社 Cryopump and cryopump repair method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05272452A (en) * 1992-03-27 1993-10-19 Shincron:Kk Cryopump regenerating method
JP2000274356A (en) * 1999-03-19 2000-10-03 Daikin Ind Ltd Regeneration device for cryopump and its regenration method
JP2012237293A (en) * 2011-05-13 2012-12-06 Sumitomo Heavy Ind Ltd Cryopump system and method for regenerating cryopump

Also Published As

Publication number Publication date
TWI832665B (en) 2024-02-11
CN118475770A (en) 2024-08-09
TW202332833A (en) 2023-08-16

Similar Documents

Publication Publication Date Title
TWI521179B (en) Cryogenic pump system, very low temperature system, compressor unit control device and its control method
US20120255314A1 (en) Cryopump system, compressor, and method for regenerating cryopumps
US10273949B2 (en) Cryopump and method of operating the cryopump
US9597608B2 (en) Cryopump system
JP5545858B2 (en) Cryopump system and control method thereof
JP2631827B2 (en) Steam cryopump
US9810208B2 (en) Cryopump and method for regenerating the cryopump using two-stage discharge process
TWI677626B (en) Compressor unit and cryopump system for cryogenic refrigerator
WO2023145385A1 (en) Cryopump system and regeneration controller
JPH10252651A (en) Evacuation system
JP7455037B2 (en) Cryopump and cryopump regeneration method
JP4554628B2 (en) Cryopump and cryopump regeneration method
JPH1073078A (en) Vacuum evacuating system
TW202424354A (en) Cryopump and cryopump regeneration method
JP4301532B2 (en) Cryopump regeneration method
JP2000274356A (en) Regeneration device for cryopump and its regenration method
JP3114092B2 (en) Cryopump regeneration apparatus and regeneration method
JP7548783B2 (en) Cryopump and cryopump regeneration method
JPH09317688A (en) Turbo-molecular pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22924232

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023576730

Country of ref document: JP