JPH05272452A - Cryopump regenerating method - Google Patents

Cryopump regenerating method

Info

Publication number
JPH05272452A
JPH05272452A JP10174592A JP10174592A JPH05272452A JP H05272452 A JPH05272452 A JP H05272452A JP 10174592 A JP10174592 A JP 10174592A JP 10174592 A JP10174592 A JP 10174592A JP H05272452 A JPH05272452 A JP H05272452A
Authority
JP
Japan
Prior art keywords
cryopump
regeneration
gas
valve
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10174592A
Other languages
Japanese (ja)
Other versions
JP3279339B2 (en
Inventor
Shigeji Matsumoto
繁治 松本
Akira Odagiri
耀 小田切
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shincron Co Ltd
Original Assignee
Shincron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shincron Co Ltd filed Critical Shincron Co Ltd
Priority to JP10174592A priority Critical patent/JP3279339B2/en
Publication of JPH05272452A publication Critical patent/JPH05272452A/en
Application granted granted Critical
Publication of JP3279339B2 publication Critical patent/JP3279339B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/50Pumps with means for introducing gas under pressure for ballasting

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

PURPOSE:To prevent the explosion of exhaust gas simply and positively by feeding inert gas for dilution onto the exhaust side of a mechanical pump in the case of regenerating a cryopump while exhausting by the mechanical pump after the interruption of regeneration or operation of the cryopump. CONSTITUTION:After using a cryopump 21 for a specified period, the main valve 13 of a vacuum drum 11 is closed, and a rotary pump 31 is connected to the cryopump 21 through a control valve 25 to perform the regeneration of the cryopump 21. At the time of normal regeneration, the cryopump 21 is heated, controlled by the control valve 25 while detecting the pressure of the cryopump 21 by a Pirani gage 23 and exhausted by the rotary pump 31. At the time of resuming regeneration after the interruption of regeneration due to power failure or the like, an air valve 43 is closed, whereas lead-in valves 53, 55 are opened. N2 gas in a bomb 51 is thereby led to an exhaust valve 39 in an exhaust valve chamber 37 and also to a gas ballast valve 35.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、停電等の事故などによ
り、クライオポンプの稼動中または再生中に、クライオ
ポンプの機能停止あるいは再生中断が起こったのちに、
復帰後にクライオポンプを安全に再生する方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cryopump function stop or regeneration interruption during operation or regeneration of the cryopump due to an accident such as power failure.
It relates to a method of safely regenerating a cryopump after returning.

【0002】[0002]

【従来の技術】真空ポンプとして用いられるクライオポ
ンプは、気体分子をポンプ内の冷却面に凝縮して除去す
るものであり、使用を継続することによりトラップした
気体分子量が増大し、ついには飽和する。そのため、所
定期間使用後には、トラップした気体分子を系外に取り
除いて再生することが必要である。
2. Description of the Related Art A cryopump used as a vacuum pump condenses and removes gas molecules on a cooling surface in the pump, and by continuing to use it, the trapped gas molecular weight increases and finally becomes saturated. .. Therefore, after use for a predetermined period, it is necessary to remove the trapped gas molecules out of the system for regeneration.

【0003】この再生方法の一つとして、クライオポン
プ内に吐き出されるガス量を制御しつつ、クライオポン
プを昇温してクライオポンプ内をロータリーポンプによ
り排気し、クライオポンプ内の凝縮物を除く方法があ
る。
As one of the regeneration methods, while controlling the amount of gas discharged into the cryopump, the temperature of the cryopump is raised and the interior of the cryopump is exhausted by a rotary pump to remove the condensate in the cryopump. There is.

【0004】[0004]

【発明が解決しようとする課題】この方法は、予め設定
された条件下で行なわれる限りにおいて、安全かつ効率
的な方法であるが、停電などにより再生操作の中断を余
儀なくされた場合において、停電の回復後に再生操作を
再開すると、ロータリーポンプで爆発を生じることがあ
った。
This method is a safe and efficient method as long as it is carried out under preset conditions. However, if the regeneration operation is forced to be interrupted due to a power failure or the like, a power failure will occur. When the regeneration operation was restarted after the recovery of, the rotary pump could cause an explosion.

【0005】また、クライオポンプの稼動時に停電等が
起こった際も、場合によっては稼動に先立ってクライオ
ポンプを再生する必要があるが、この場合にも再生時に
ロータリーポンプで爆発を生じることがあった。
Further, when a power failure or the like occurs during the operation of the cryopump, it is necessary to regenerate the cryopump prior to the operation in some cases, but in this case as well, an explosion may occur in the rotary pump during regeneration. It was

【0006】[0006]

【課題を解決するための手段】本発明者らが鋭意検討し
たところ、上記の爆発には、各気体分子、特に水素の脱
トラップ速度と、水素/酸素混合ガスの爆発範囲の広さ
に起因していることが判った。
Means for Solving the Problems The inventors of the present invention have made extensive studies and found that the above-mentioned explosion was caused by the detrapping rate of each gas molecule, especially hydrogen, and the broad explosion range of hydrogen / oxygen mixed gas. I found out that

【0007】再生操作においては、その開始とともに先
ず水素が放出されてくる。通常の再生操作では、この水
素が徐々にロータリーポンプにより排気され、水素放出
後に酸素が放出されて排気され、これと前後して他のガ
ス分子が放出され、再生操作が終了する。
In the regeneration operation, hydrogen is first released at the start of the regeneration operation. In a normal regeneration operation, the hydrogen is gradually exhausted by a rotary pump, oxygen is released after the hydrogen is released and exhausted, and other gas molecules are released before and after this, and the regeneration operation ends.

【0008】しかし、水素の放出終了前に停電などによ
り再生操作が中断されると、ロータリーポンプによる排
気は停止され、一方、クライオポンプ内では水素の放出
が引き続き行なわれるので、しだいに水素が蓄積されて
くる。さらに時間が経過すると、酸素の放出も始まり、
クライオポンプ内には水素/酸素混合ガスが蓄積されて
くる。特に、酸素を真空槽に導入して蒸着を行なった場
合は、酸素の放出量も多い。
However, if the regenerating operation is interrupted due to a power failure or the like before the end of hydrogen release, exhaust by the rotary pump is stopped, while hydrogen is continuously released in the cryopump, so that hydrogen accumulates gradually. Will be done. As time goes on, the release of oxygen begins,
Hydrogen / oxygen mixed gas is accumulated in the cryopump. Particularly, when oxygen is introduced into a vacuum chamber for vapor deposition, the amount of released oxygen is large.

【0009】水素は、空気中で4〜75体積%、酸素中
で4〜94体積%と爆発範囲が広いため、停電復帰後に
上記のような高濃度水素ガスや高濃度水素/酸素混合ガ
ス、特に後者がロータリーポンプで排気されると、水素
が圧縮されて高濃度で空気と触れた瞬間に爆発すること
になる。
Since hydrogen has a wide explosion range of 4 to 75% by volume in air and 4 to 94% by volume in oxygen, the high concentration hydrogen gas and the high concentration hydrogen / oxygen mixed gas as described above after recovery from a power failure, In particular, when the latter is exhausted by a rotary pump, hydrogen is compressed and explodes at the moment when it comes into contact with air at a high concentration.

【0010】稼動中に停電や断水などによりクライオポ
ンプの機能が停止した場合も同様であり、特に長期にわ
たってクライオポンプを使用し、クライオポンプ冷却面
上の凝集気体分子が多い場合に問題が大きい。
The same is true when the function of the cryopump is stopped during operation due to a power failure or water interruption, and especially when the cryopump is used for a long period of time and there are many condensed gas molecules on the cooling surface of the cryopump.

【0011】本発明者らは上記知見に基づき鋭意検討し
た結果、停電などにより、クライオポンプの再生中断や
稼動時の機能停止後に再生操作を行なう場合、ロータリ
ーポンプによる圧縮排気時に窒素などの不活性ガスで希
釈して排気することにより爆発を防止できることを見い
出した。
As a result of earnest studies based on the above findings, the present inventors have found that when the regeneration operation of the cryopump is interrupted or the regeneration operation is stopped after the operation is stopped due to a power failure or the like, an inert gas such as nitrogen is generated during the compression discharge by the rotary pump. It was found that explosion can be prevented by diluting with gas and exhausting.

【0012】すなわち、本発明のクライオポンプの再生
方法は、クライオポンプの再生操作中に再生操作が中断
したのちに、クライオポンプをメカニカルポンプで排気
しながら再び再生する場合において、あるいは、クライ
オポンプの稼動中にクライオポンプが機能停止したのち
に、クライオポンプをメカニカルポンプで排気しながら
再生する場合において、メカニカルポンプの排気側に不
活性ガスを供給して、不活性ガスで希釈しつつメカニカ
ルポンプで排気し、クライオポンプを再生することを特
徴とする。
That is, the method for regenerating a cryopump according to the present invention is used when regenerating a cryopump while exhausting it with a mechanical pump after the regenerating operation is interrupted during the regenerating operation of the cryopump. After the cryopump stops functioning during operation, when the cryopump is regenerated while being exhausted by the mechanical pump, an inert gas is supplied to the exhaust side of the mechanical pump, and the mechanical pump is used while diluting with the inert gas. It is characterized by exhausting and regenerating the cryopump.

【0013】[0013]

【実施例】図1は、本発明のクライオポンプの再生方法
の実施例を示す説明図である。クライオポンプ21を所
定期間使用した後は、真空槽11のメインバルブ13を
閉とし、コントロールバルブ25を介してクライオポン
プ21にロータリーポンプ31を接続し、クライオポン
プ21の再生を行なう。通常の再生に際しては、ヒータ
でクライオポンプ21を加熱し、ピラニゲージ23でク
ライオポンプ21の圧力を検知しつつコントロールバル
ブ25により制御し、ロータリーポンプ31で排気す
る。
EXAMPLE FIG. 1 is an explanatory view showing an example of a method for regenerating a cryopump according to the present invention. After the cryopump 21 has been used for a predetermined period, the main valve 13 of the vacuum chamber 11 is closed, the rotary pump 31 is connected to the cryopump 21 via the control valve 25, and the cryopump 21 is regenerated. During normal regeneration, the cryopump 21 is heated by the heater, the pressure of the cryopump 21 is detected by the Pirani gauge 23, the pressure is controlled by the control valve 25, and the rotary pump 31 exhausts.

【0014】ロータリポンプ31は、ポンプ本体33に
対して、ガスバラストバルブ35、排気弁39および排
気口41が設けられており、通常の使用方法とする。す
なわち、N2 導入系の第1N2 導入バルブ53および第
2N2 導入バルブ55は閉とし、エアーバルブ43を開
とし、通常通りにガスバラストバルブ35より空気を導
入しながら排気し、排気弁39を経て排気口41からダ
クト系に強制排気する。
The rotary pump 31 is provided with a gas ballast valve 35, an exhaust valve 39 and an exhaust port 41 with respect to the pump body 33, and is used in a normal manner. That is, the first N 2 introduction valve 53 and the second N 2 introduction valve 55 of the N 2 introduction system are closed, the air valve 43 is opened, the air is introduced from the gas ballast valve 35 as usual, and the exhaust valve 39 is exhausted. After that, the air is forcedly exhausted from the exhaust port 41 to the duct system.

【0015】通常の再生操作においては、再生を開始す
るとまず最初に水素が放出、排気され、ついで、酸素、
水、その他のガスが放出、排気されて再生操作が終了す
る。
In a normal regeneration operation, when regeneration is started, hydrogen is first released and exhausted, and then oxygen,
Water and other gases are released and exhausted, ending the regeneration operation.

【0016】ところが、この通常再生操作中に、停電、
断水等の事故により再生操作が中断せざるを得ない場合
がある。このような場合、停電復帰後に上記の通常再生
を行なう代りに、本発明のN2 導入再生を行なう。これ
は、再生操作の中断後にも、クライオポンプ21内では
トラップされていたガス分子、特に水素分子、酸素分子
の放出が行なわれており、このような高濃度水素ガスあ
るいは水素/酸素混合ガスを通常再生操作により排気す
ると、ロータリーポンプ31で圧縮され空気と触れた瞬
間に爆発する危険があるからである。
However, during this normal reproduction operation, a power failure,
In some cases, the regenerating operation must be interrupted due to an accident such as water interruption. In such a case, the N 2 introduction regeneration of the present invention is performed instead of the above-mentioned normal regeneration after the power failure is restored. This is because the gas molecules trapped in the cryopump 21, particularly the hydrogen molecules and the oxygen molecules, are released even after the regeneration operation is interrupted, and such high concentration hydrogen gas or hydrogen / oxygen mixed gas is discharged. This is because, if exhausted by the normal regenerating operation, there is a risk of explosion when compressed by the rotary pump 31 and touching the air.

【0017】具体的には、停電復帰等の再生の再開が可
能となった時点で、エアーバルブ43を閉とし、第2N
2 導入バルブ55を開とし、ガスバラストバルブ35に
2ボンベ51からN2 ガスを供給し、同時に第1N2
導入バルブ53を開とし、排気弁室37内の排気弁39
の近傍にN2 ガスを導入する。このように、ガスバラス
トバルブ35と排気弁39側の双方にN2 ガスを導入す
ることにより、水素濃度を希釈し、あるいは水素の爆発
範囲から外して、爆発が確実に防止できる。また、N2
ガスの大量供給が可能な場合や、クライオポンプ21の
使用態様によって爆発の危険が少ない場合は、N2 ガス
の供給をガスバラストバルブ35あるいは排気弁39側
のいずれか一方としてもよい。また、N2 ガス以外の不
活性ガスでも同様の効果が得られる。
Specifically, the air valve 43 is closed at the time when the regeneration such as the recovery from the power failure can be resumed, and the second N
2 inlet valve 55 is opened to supply N 2 gas N 2 gas cylinder 51 to the gas ballast valve 35, at the same time the 1N 2
The introduction valve 53 is opened, and the exhaust valve 39 in the exhaust valve chamber 37 is opened.
N 2 gas is introduced in the vicinity of. In this way, by introducing the N 2 gas into both the gas ballast valve 35 and the exhaust valve 39 side, the hydrogen concentration is diluted or removed from the hydrogen explosion range, and the explosion can be reliably prevented. Also, N 2
If a large amount of gas can be supplied or if there is little danger of explosion depending on the usage of the cryopump 21, the N 2 gas may be supplied to either the gas ballast valve 35 or the exhaust valve 39 side. The same effect can be obtained with an inert gas other than N 2 gas.

【0018】上記のN2 導入再生を、クライオポンプ2
1に必要な再生操作の終了時点まで続行してもよいが、
途中でN2 ガスを使わない前述の通常再生に切り代え
て、N2 ガスの無駄な消費を図ってもよい。これは、爆
発の原因となる水素ガスが再生操作の初期に放出、排気
され、その後は爆発の危険がないからである。同様に、
再生操作の中断後に再生を再開する場合であっても、中
断前に水素ガスが十分に放出、排気されているときは、
2 ガス導入操作を行なうことなく通常再生によっても
爆発の危険はない。中断後にN2 導入再生を行なう必要
があるか否かは、経験的にあるいは実験的に、中断まで
の再生時間の長さによって決定できる。また、N2 導入
再生から通常再生への切替えタイミングも同様である。
The above-mentioned N 2 introduction regeneration is performed by the cryopump 2
You may continue until the end of the replay operation required for 1.
It is also possible to switch to the above-mentioned normal regeneration in which N 2 gas is not used on the way to wasteful consumption of N 2 gas. This is because the hydrogen gas that causes the explosion is released and exhausted in the early stage of the regeneration operation, and thereafter there is no danger of explosion. Similarly,
Even when resuming regeneration after interruption of regeneration operation, if hydrogen gas is sufficiently released and exhausted before interruption,
There is no danger of explosion by normal regeneration without performing N 2 gas introduction operation. Whether or not N 2 introduction regeneration needs to be performed after the interruption can be empirically or experimentally determined by the length of the regeneration time until the interruption. The same applies to the switching timing from N 2 introduction regeneration to normal regeneration.

【0019】なお、前述のN2 導入再生の終了後に、真
空室11についても、図1に示したN2 導入系により排
気することが好ましい。これは、クライオポンプ21の
再生中断時に、ガス分子の放出によりクライオポンプ2
1の内圧が高まり、メインバルブ13が押し開けられ、
水素ガスが真空室11内に逆流しているおそれがあるか
らである。そこで、クライオポンプ21のN2 導入再生
の終了後に、コントロールバルブ25を閉とし、チャン
バー側バルブ15を開とし、本発明のN2 導入再生用の
ロータリーポンプ排気系で真空槽11内を排気する。真
空槽11の排気用のロータリーポンプ(図示せず)で真
空槽11内を排気することもできるが、その場合も、図
1に示した場合と同様にロータリーポンプに水素を供給
しつつ排気することが望ましい。
After the above-described N 2 introduction and regeneration, the vacuum chamber 11 is also preferably evacuated by the N 2 introduction system shown in FIG. This is because when the regeneration of the cryopump 21 is interrupted, the cryopump 2 is released by the release of gas molecules.
The internal pressure of 1 increases, the main valve 13 is pushed open,
This is because hydrogen gas may flow back into the vacuum chamber 11. Therefore, after the N 2 introduction regeneration of the cryopump 21 is completed, the control valve 25 is closed and the chamber side valve 15 is opened, and the inside of the vacuum chamber 11 is exhausted by the rotary pump exhaust system for N 2 introduction regeneration of the present invention. .. The inside of the vacuum chamber 11 can be exhausted by a rotary pump (not shown) for exhausting the vacuum chamber 11, but in that case as well, as in the case shown in FIG. 1, hydrogen is exhausted while supplying hydrogen to the rotary pump. Is desirable.

【0020】なお、N2 導入再生時には、ピラニゲージ
等の熱源、放電源は全部OFFとし、爆発を防止するこ
とが望ましい。以上の再生動作をフローチャートにして
図2に示す。次に、クライオポンプの稼動時に停電等に
より運転が中断された場合のクライオポンプの再生につ
いて説明する。
At the time of N 2 introduction and regeneration, it is desirable to turn off all heat sources such as a Pirani gauge and discharge power to prevent explosion. The above reproducing operation is shown as a flowchart in FIG. Next, the regeneration of the cryopump when the operation is interrupted due to a power failure or the like during operation of the cryopump will be described.

【0021】停電復帰後に、クライオポンプ21の温度
(Ct)を検知し、これを予め設定された温度(T)と
比較する。Ct<Tであれば、クライオポンプ21の凝
集面は十分に冷却されており、十分に水素をトラップす
る能力があるので、再生モードを終了し、再生操作を行
なうことなく再稼動する。
After the power failure is restored, the temperature (Ct) of the cryopump 21 is detected and compared with a preset temperature (T). If Ct <T, the aggregating surface of the cryopump 21 is sufficiently cooled and has a sufficient ability to trap hydrogen, so that the regeneration mode is terminated and the cryopump is restarted without performing a regeneration operation.

【0022】また、Ct≧Tであれば、水素分子が多量
に放出されていることが予想されるので、図2の場合と
同様にN2 導入再生を行なう。この場合も、再生操作の
完了までN2 導入再生を続行してもよく、また、水素が
ほぼ放出、排気した時点で通常再生に切り替えてもよ
い。
Further, if Ct ≧ T, it is expected that a large amount of hydrogen molecules are released, so N 2 introduction regeneration is performed as in the case of FIG. Also in this case, the N 2 introduction regeneration may be continued until the regeneration operation is completed, or the normal regeneration may be switched when hydrogen is almost released and exhausted.

【0023】以上の再生動作をフローチャートとして図
3に示す。なお、ロータリーポンプ以外であっても、ク
ライオポンプ中のガスを圧縮、排気するメカニカルポン
プであれば、同様の爆発の危険がある。
The above reproducing operation is shown as a flowchart in FIG. Even if it is not a rotary pump, any mechanical pump that compresses and exhausts the gas in the cryopump has the same danger of explosion.

【0024】[0024]

【発明の効果】本発明によれば、クライオポンプの再生
あるいは稼動時に、停電、断水等の異常事態などによ
り、クライオポンプの再生中断、クライオポンプの稼動
停止が生じた後に再生を行なう場合、メカニカルポンプ
の排気側に不活性ガスを供給して、不活性ガスで希釈し
つつ排気して再生することにより、メカニカルポンプに
よる排気後に排気ガスが爆発することを防止できる。
According to the present invention, when the cryopump is regenerated or stopped, due to an abnormal situation such as power failure or water cutoff, the regeneration of the cryopump is interrupted or the operation of the cryopump is stopped. By supplying an inert gas to the exhaust side of the pump, diluting it with the inert gas, and exhausting and regenerating it, it is possible to prevent the exhaust gas from exploding after being exhausted by the mechanical pump.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の再生方法の実施例を示す説明図であ
る。
FIG. 1 is an explanatory diagram showing an embodiment of a reproducing method of the present invention.

【図2】本発明の再生方法の実施例のフローチャートで
ある。
FIG. 2 is a flowchart of an embodiment of the reproducing method of the present invention.

【図3】稼動中に停電が生じた場合について示すフロー
チャートである。
FIG. 3 is a flowchart showing a case where a power failure occurs during operation.

【符号の説明】[Explanation of symbols]

11 真空槽 13 メインバルブ 15 チャンバー側バルブ 21 クライオポンプ 23 ピラニゲージ 25 コントロールバルブ 31 ロータリーポンプ 33 ポンプ本体 35 ガスバラストバルブ 37 排気弁室 39 排気弁 41 排気口 51 N2 ボンベ 53 第1N2 導入バルブ 55 第2N2 導入バルブ11 vacuum tank 13 main valve 15 chamber side valve 21 cryopump 23 Pirani gauge 25 control valve 31 rotary pump 33 pump body 35 gas ballast valve 37 exhaust valve chamber 39 exhaust valve 41 exhaust port 51 N 2 cylinder 53 1N 2 introduction valve 55 number 2N 2 introduction valve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 クライオポンプの再生操作中に再生操作
が中断したのちに、クライオポンプをメカニカルポンプ
で排気しながら再び再生する場合において、 あるいは、クライオポンプの稼動中にクライオポンプが
機能停止したのちに、クライオポンプをメカニカルポン
プで排気しながら再生する場合において、 メカニカルポンプの排気側に不活性ガスを供給して、不
活性ガスで希釈しつつメカニカルポンプで排気し、クラ
イオポンプを再生することを特徴とするクライオポンプ
の再生方法。
1. When the cryopump is regenerated while being exhausted by a mechanical pump after the regeneration operation is interrupted during the regeneration operation of the cryopump, or after the cryopump stops functioning while the cryopump is operating. In addition, when regenerating a cryopump while exhausting it with a mechanical pump, it is necessary to supply an inert gas to the exhaust side of the mechanical pump, dilute it with an inert gas and exhaust it with a mechanical pump, and regenerate the cryopump. Characteristic cryopump regeneration method.
JP10174592A 1992-03-27 1992-03-27 Cryopump regeneration method Expired - Fee Related JP3279339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10174592A JP3279339B2 (en) 1992-03-27 1992-03-27 Cryopump regeneration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10174592A JP3279339B2 (en) 1992-03-27 1992-03-27 Cryopump regeneration method

Publications (2)

Publication Number Publication Date
JPH05272452A true JPH05272452A (en) 1993-10-19
JP3279339B2 JP3279339B2 (en) 2002-04-30

Family

ID=14308788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10174592A Expired - Fee Related JP3279339B2 (en) 1992-03-27 1992-03-27 Cryopump regeneration method

Country Status (1)

Country Link
JP (1) JP3279339B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2747452A1 (en) * 1996-04-12 1997-10-17 Helix Tech Corp DRAINAGE VALVE, METHOD FOR HEATING THEREOF, AND CRYOGENIC PUMP COMPRISING SAME
CN103711678A (en) * 2013-12-30 2014-04-09 马钢(集团)控股有限公司 Method and device for preventing transmission shaft of cryogenic liquid pump from being frozen
WO2023145385A1 (en) * 2022-01-31 2023-08-03 住友重機械工業株式会社 Cryopump system and regeneration controller

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2747452A1 (en) * 1996-04-12 1997-10-17 Helix Tech Corp DRAINAGE VALVE, METHOD FOR HEATING THEREOF, AND CRYOGENIC PUMP COMPRISING SAME
WO1997039242A1 (en) * 1996-04-12 1997-10-23 Helix Technology Corporation Cryopump with gas heated exhaust valve
US5906102A (en) * 1996-04-12 1999-05-25 Helix Technology Corporation Cryopump with gas heated exhaust valve and method of warming surfaces of an exhaust valve
CN103711678A (en) * 2013-12-30 2014-04-09 马钢(集团)控股有限公司 Method and device for preventing transmission shaft of cryogenic liquid pump from being frozen
WO2023145385A1 (en) * 2022-01-31 2023-08-03 住友重機械工業株式会社 Cryopump system and regeneration controller

Also Published As

Publication number Publication date
JP3279339B2 (en) 2002-04-30

Similar Documents

Publication Publication Date Title
KR100360357B1 (en) Cryopump
US9597608B2 (en) Cryopump system
US20090165470A1 (en) Cryopump, cryopump unit, vacuum processing apparatus including cryopump unit, and cryopump regeneration method
JP2002179401A (en) Method of stopping operation of gaseous hydrogen production system
US20120031113A1 (en) Method and apparatus for regeneration water
KR101904556B1 (en) Method and device for separating carbon dioxide from an exhaust gas of a fossil-fired power generating plant
JP5846966B2 (en) Cryopump and regeneration method thereof
JP3279339B2 (en) Cryopump regeneration method
JPH0861232A (en) Regeneration method for cryopump and device for the same
RU2182513C1 (en) Method of compressed gas dehydration
JPH07208332A (en) Cryopump regenerating method in spattering device
JPH11343972A (en) Cryopump, regenerating method and device for cryopump, and method of controlling cryopump
KR20220084023A (en) How to start operation of cryopump, cryopump system, and cryopump
JPH0868380A (en) Regeneration method for cryopump
JP3424940B2 (en) Evacuation method and apparatus using turbo molecular pump
JP2002081857A (en) Rear gas recovering method and device therefor
JP2001123951A (en) Method for regenerating cryopump
JP2000274356A (en) Regeneration device for cryopump and its regenration method
JPH09126125A (en) Method of regenerating cryopump and device for regenerating thereof
JP2002070737A (en) Regenerating method of cryopump
KR100757805B1 (en) Sputtering apparatus and method for regenerating thereof
JP2017044107A (en) Regeneration method of cryopump, cryopump and vacuum device
JPH0599139A (en) Cryopump regenerating mechanism
JPH05311403A (en) Gas regenerating device for film forming device
RU2073554C1 (en) Method of adsorption dehydration of natural gas

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20080222

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090222

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090222

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100222

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20110222

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees