WO2023145321A1 - 傾斜車両 - Google Patents

傾斜車両 Download PDF

Info

Publication number
WO2023145321A1
WO2023145321A1 PCT/JP2022/047142 JP2022047142W WO2023145321A1 WO 2023145321 A1 WO2023145321 A1 WO 2023145321A1 JP 2022047142 W JP2022047142 W JP 2022047142W WO 2023145321 A1 WO2023145321 A1 WO 2023145321A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
tilt
angle
angular velocity
steering
Prior art date
Application number
PCT/JP2022/047142
Other languages
English (en)
French (fr)
Inventor
圭佑 寺田
誠吾 大西
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to JP2023576702A priority Critical patent/JPWO2023145321A1/ja
Publication of WO2023145321A1 publication Critical patent/WO2023145321A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K25/00Axle suspensions
    • B62K25/04Axle suspensions for mounting axles resiliently on cycle frame or fork
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K5/00Cycles with handlebars, equipped with three or more main road wheels
    • B62K5/02Tricycles
    • B62K5/027Motorcycles with three wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K5/00Cycles with handlebars, equipped with three or more main road wheels
    • B62K5/08Cycles with handlebars, equipped with three or more main road wheels with steering devices acting on two or more wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K5/00Cycles with handlebars, equipped with three or more main road wheels
    • B62K5/10Cycles with handlebars, equipped with three or more main road wheels with means for inwardly inclining the vehicle body on bends

Definitions

  • the present disclosure relates to a tilting vehicle that turns by tilting its body.
  • Patent Document 1 discloses a leaning vehicle including two front wheels and one rear wheel.
  • the two left and right front wheels are connected to the body frame by arms.
  • the frame is provided with a shock tower having a bracket at its top end.
  • Left and right shock absorbers provided for left and right front wheels are connected at one end to brackets of the shock tower and at the other end to arms connecting the front wheels and the frame.
  • An actuator fixed to the frame rotates the shock tower so that the frame and the two front wheels connected to the frame by arms tilt left and right.
  • Incline vehicles use shock absorbers including springs and dampers to mitigate vibrations and shocks transmitted to passengers.
  • the spring of the shock absorber expands and contracts when returning from the tilted state to the upright state.
  • the tower may vibrate.
  • One of the objects of the present disclosure is to provide a tilting vehicle that can reduce vibrations that occur when the tilt angle of the vehicle body is changed.
  • a tilting vehicle includes a frame that configures a vehicle body that tilts when turning, wheels that include a left front steering wheel, a right front steering wheel, and at least one rear wheel, and a left arm member that supports the left front steering wheel on the frame.
  • a right arm member that supports the right front steering wheel on the frame;
  • a tower-shaped member that extends upward from one end supported by the frame to the other end; and
  • a spring element and a spring element, one end of which is supported by the tower member and the other end of which is the right arm member.
  • a right shock absorber supported by an arm member; a tilt actuator for applying tilt torque for changing the tilt angle of the vehicle body by tilting the frame with respect to the tower member; and the control actuator.
  • the controller controls the tilting angular velocity of the vehicle body in the lateral direction.
  • the magnitude of the tilt angular velocity suppression torque is greater than when the tilt angle of the vehicle body is large, and when the tilt angular velocity of the vehicle body is large, the tilt angle is greater than when the tilt angular velocity of the vehicle body is small.
  • the tilt actuator is controlled according to both the tilt angle and the tilt angular velocity so that the magnitude of the angular velocity suppression torque increases.
  • the control device controls the value of the tilt angular velocity suppression torque when the tilt angular velocity of the vehicle body is the first tilt angular velocity, and the value of the tilt angular velocity suppression torque when the tilt angular velocity of the vehicle body is a second tilt angular velocity smaller than the first tilt angular velocity.
  • the difference torque value when the tilt angle of the vehicle body is small is larger than the difference torque value when the tilt angle of the vehicle body is large.
  • the tilt actuator may be controlled such that
  • control device may control the tilt actuator to generate the tilt angular velocity suppression torque at least when the vehicle speed of the tilt vehicle is equal to or less than a preset threshold value.
  • a steering actuator is further provided for changing the steering angle of the left front steering wheel and the right front steering wheel when turning, and the inclination angle of the vehicle body between a vertical axis perpendicular to the ground is adjusted by the gravity acting on the vehicle body. and the centrifugal force in the outward direction of the turn is defined as an angle between the vertical axis and the vertical axis. and the tilting actuator and the steering actuator are controlled so as to create an unbalanced turning state in which a lateral acceleration greater than the lateral acceleration acting on the vehicle body in the balanced turning state is generated. good.
  • a tilting vehicle that can reduce vibrations that occur when the tilt angle of the vehicle body is changed.
  • FIG. 1 is a diagram for explaining an outline of a leaning vehicle according to the present embodiment.
  • FIG. 2 is a diagram for explaining control for suppressing vibration of a leaning vehicle.
  • FIG. 3 is a diagram showing the relationship between the tilt angular velocity and the tilt angular velocity suppression torque.
  • FIG. 4 is a diagram showing the relationship between the tilt angle and the tilt angular velocity suppression torque.
  • FIG. 5 is a diagram showing the relationship between the tilt angle, the tilt angular velocity, and the tilt angular velocity suppression torque.
  • FIG. 6 is a diagram for explaining unbalanced turning control of a leaning vehicle.
  • FIG. 7 is a diagram for explaining control of the steering angle by the control device.
  • FIG. 8 is a diagram for explaining control of the tilt angle by the control device.
  • FIG. 9 is a diagram for explaining an example of unbalanced turning control for a leaning vehicle.
  • FIG. 10 is a diagram for explaining a method of determining the steering angle and the tilt angle for making the lateral acceleration acting on the center of gravity of the leaning vehicle equal to the target lateral acceleration.
  • FIG. 11 is a diagram for explaining another method of determining the steering angle and the tilt angle for making the lateral acceleration acting on the center of gravity of the leaning vehicle equal to the target lateral acceleration.
  • FIG. 12 is a diagram showing a specific example of a leaning vehicle.
  • FIG. 13 is a diagram for explaining specific examples of the steering device, the tilting device, and the control device.
  • FIG. 14 is a diagram for explaining the operation of the tilting device.
  • FIG. 15 is a diagram for explaining an example of unbalanced turning control performed using vehicle speed and steering wheel angle.
  • FIG. 16 is a diagram for explaining an example of unbalanced turning control performed using feedback control.
  • a tilting vehicle has multiple wheels. Although the number of front wheels and rear wheels included in the tilting vehicle is not particularly limited, in the present embodiment, a tilting vehicle including two front wheels and one rear wheel will be described as an example. Hereinafter, the leaning vehicle is simply referred to as "vehicle".
  • FIG. 1 is a schematic diagram for explaining a vehicle 1 according to this embodiment.
  • a front view of the vehicle 1 is shown in the lower center of FIG. 1 with the front of the vehicle 1 as the front.
  • Front views of a tilt mechanism for changing the tilt angle of the vehicle 1 are shown on the left and right sides of the front view of the vehicle 1 .
  • the figure on the left shows a front view of the tilting mechanism of the vehicle 1 traveling straight
  • the figure on the right shows a front view of the tilting mechanism of the vehicle 1 during turning.
  • the top left side of FIG. 1 shows a top view of the vehicle 1 traveling straight ahead
  • the top right side of FIG. 1 shows a top view of the vehicle 1 turning.
  • the control device 100 shown in the upper center of FIG. 1 controls the turning of the vehicle 1 .
  • the vehicle 1 turns in the vehicle state shown on the right side of FIG.
  • illustration of the inclination of the vehicle 1 is omitted and the direction of the steered wheels is shown.
  • the inclination of the vehicle 1 is shown by omitting the direction of the steered wheels.
  • a vehicle 1 has wheels 11 and 12 including two front steered wheels 11 (11L and 11R) and at least one rear wheel 12, and an inclination angle B of the vehicle 1 that can be changed when turning. It includes an actuator 120 and a controller 100 that controls at least the tilt actuator 120 .
  • the tilt angle B of the vehicle 1 is changed by the control device 100 controlling the tilt actuator 120 .
  • the inclination angle B is changed from the inclination angle B in the straight-ahead state.
  • the vehicle 1 further includes a frame 40 forming a vehicle body, a left arm member 600L and a left shock absorber 605L, and a right arm member 600R and a right shock absorber 605R.
  • the left front steering wheel 11L is supported on the frame 40 by the left arm member 600L.
  • the right front steering wheel 11R is supported on the frame 40 by the right arm member 600R.
  • Center arm 620 is a tower-shaped member that extends upward from one end supported by frame 40 to the other end.
  • the left shock absorber 605L has a spring element, one end of which is supported by the center arm 620 and the other end of which is supported by the left arm member 600L.
  • the right shock absorber 605R has a spring element, one end of which is supported by the center arm 620 and the other end of which is supported by the right arm member 600R.
  • the control device 100 controls the tilt actuator 120 to tilt the vehicle 1 .
  • the tilt actuator 120 applies a tilt torque to the center arm 620 to change the tilt angle, thereby tilting the frame 40 with respect to the center arm 620 .
  • center arm (tower-shaped member) 620 When the vehicle 1 tilts in the left-right direction due to turning control, the center arm (tower-shaped member) 620 receives force from the spring element of the left shock absorber 605L and the spring element of the right shock absorber 605R. A center arm (tower-shaped member) 620 vibrates under the force of the spring element. In order to reduce this vibration, control device 100 controls tilt actuator 120 to apply tilt angular velocity suppression torque, which is torque in the direction of decreasing the tilt angular velocity of vehicle 1 , to center arm 620 .
  • tilt angular velocity suppression torque which is torque in the direction of decreasing the tilt angular velocity of vehicle 1
  • the control device 100 controls the tilt actuator 120 so that the tilt angular velocity suppression torque is greater when the tilt angle of the vehicle 1 is small than when the tilt angle is large. Further, the control device 100 performs control so that the tilt angular velocity suppression torque is greater when the tilt angular velocity of the vehicle 1 is high than when the tilt angular velocity is low. That is, the control device 100 can control the tilt actuator 120 based on both the tilt angle and the tilt angular velocity.
  • FIG. 2A is a schematic diagram showing the tilt mechanism 121 of the vehicle 1 traveling straight.
  • FIG. 2B is a schematic diagram showing the tilt mechanism 121 of the vehicle 1 during turning.
  • the vehicle 1 traveling straight is in an upright state with an inclination angle of approximately 0 degrees as shown in FIG. 2(a).
  • the control device 100 performs turning control so that the left front wheel 11L and the right front wheel 11R and the frame 40, that is, the vehicle body, tilt at the same tilt angle as shown in FIG. 2(b). tilted state.
  • the state of the vehicle 1 returns from the tilted state shown in FIG. 2(b) to the upright state shown in FIG. 2(a).
  • the center arm 620 may vibrate around the axis Ca extending in the longitudinal direction of the vehicle 1 .
  • a cause of vibration of the center arm 620 is, for example, that the center arm 620 receives force from the spring element of the left shock absorber 605L and the spring element of the right shock absorber 605R. To reduce this vibration, controller 100 can control tilt actuator 120 to apply torque to center arm 620 .
  • control device 100 acquires the tilt angular velocity of the center arm 620 rotating around the axis Ca, and controls the tilt actuator 120 so that torque corresponding to the tilt angular velocity acts on the center arm 620 .
  • control device 100 controls tilt actuator 120 to apply counterclockwise torque to center arm 620 .
  • the control device 100 controls the tilt actuator 120 to apply clockwise torque to the center arm 620 .
  • the control device 100 outputs a tilt angular velocity suppression torque, which is a torque for reducing vibration caused by the spring element of the left shock absorber 605L and the spring element of the right shock absorber 605R, from the tilt actuator 120, and controls the tower type shock absorber 605R. It is applied to the center arm 620 which is a member. Thereby, vibration of the center arm 620 can be reduced.
  • a method for obtaining the tilt angular velocity is conventionally known, and thus the description thereof is omitted.
  • the tilt angular velocity of the center arm 620 can be obtained by detecting a change in the tilt angle of the rotating center arm 620 with a potentiometer and performing a differentiation operation.
  • FIG. 2(c) is a diagram showing the relationship between the tilt angular velocity of the center arm 620 and the tilt angular velocity suppression torque applied to the center arm 620 by the tilt actuator 120.
  • FIG. 2(c) is a diagram showing the relationship between the tilt angular velocity of the center arm 620 and the tilt angular velocity suppression torque applied to the center arm 620 by the tilt actuator 120.
  • FIG. 2(c) As the value of the tilt angular velocity increases, the value of the tilt angular velocity suppression torque applied from the tilt actuator 120 to the center arm 620 also increases. For example, the value of the tilt angular velocity suppression torque increases in proportion to the increase in the tilt angular velocity.
  • FIG. 2(c) shows an example in which the tilt angular velocity suppression torque applied to the center arm 120 by the tilt actuator 120 when the tilt angular velocity suppression control is executed is linearly set according to the tilt angular velocity.
  • FIG. 2(c) is an example and does not limit the setting of the tilt angular velocity suppression torque.
  • FIG. 3 is a diagram showing another setting example of the tilt angular velocity and the tilt angular velocity suppression torque.
  • FIG. 3 shows a plurality of setting examples including the setting example of FIG. 2(c).
  • the tilt angular velocity suppression torque may be set stepwise instead of linearly, or may be set in a curved line.
  • the tilt angular velocity suppression torque is set to be the same or larger than when the tilt angular velocity is low.
  • the relationship between the tilt angular velocity suppression torque and the tilt angular velocity may be appropriately set according to the characteristics of the vehicle 1, for example.
  • the value of the tilt angular velocity suppression torque applied to the center arm 120 by the tilt actuator 120 when the tilt angular velocity suppression control is executed is also determined based on the tilt angle of the vehicle 1 .
  • FIG. 4 is a diagram showing the relationship between the tilt angle of the vehicle 1 and the tilt angular velocity suppression torque.
  • FIG. 4 shows several setting examples. As indicated by the solid lines in FIG. 4, the tilt angular velocity suppression torque may be set in two or more steps with respect to the tilt angle of the vehicle 1, or may be set in a curved line. good. In either case, when the tilt angle is small, the tilt angular velocity suppression torque is set to be the same or larger than when the tilt angle is large.
  • FIG. 5 is a diagram showing the relationship between the tilt angular velocity, the tilt angle, and the tilt angular velocity suppression torque.
  • a solid line shown in FIG. 5 indicates a plurality of setting examples of the torque with respect to the tilt angular velocity.
  • Data 701 to 704 shown in FIG. 5 have a relationship in which the tilt angle of the vehicle 1 increases in the order of the data 701, 702, 703, and 704.
  • FIG. 5 is a diagram showing the relationship between the tilt angular velocity, the tilt angle, and the tilt angular velocity suppression torque.
  • a solid line shown in FIG. 5 indicates a plurality of setting examples of the torque with respect to the tilt angular velocity.
  • Data 701 to 704 shown in FIG. 5 have a relationship in which the tilt angle of the vehicle 1 increases in the order of the data 701, 702, 703, and 704.
  • the control device 100 uses the data 701 to determine the tilt angular velocity suppression torque based on the tilt angular velocity of the center arm 620, and determines the tilt angular velocity suppression torque.
  • the tilt actuator 120 is controlled so as to apply the applied torque to the center arm 620 .
  • the tilt angular velocity suppression torque is determined based on the tilt angular velocity of the center arm 620 using the data 702 to perform the tilt angular velocity suppression control. executed.
  • the tilt angular velocity suppression control is executed using the data 703, and at a fourth angle that is larger than the third angle. If there is, data 704 is used to execute tilt angular velocity suppression control.
  • the value of the tilt angular velocity suppressing torque when the tilt angular velocity is the first tilt angular velocity and the value of the tilt angular velocity suppressing torque when the tilt angular velocity is the second tilt angular velocity smaller than the first tilt angular velocity is defined as a differential torque value.
  • the tilt actuator 120 is controlled such that the differential torque value when the tilt angle is small is larger than the differential torque value when the tilt angle is large. That is, as shown by the data 701 to 704, the inclination of the data is set so that the larger the inclination angle, the smaller the inclination of the data.
  • a torque based on the tilt angular velocity of the center arm 120 is determined. Note that FIG. 5 illustrates an example in which the tilt angular velocity and the tilt angular velocity suppression torque are proportional, but as shown in FIG. 3, the relationship between the tilt angular velocity and the tilt angular velocity suppression torque is not limited to the proportional relationship.
  • the vehicle speed range of the vehicle 1 in which the control device 100 executes the tilt angular velocity suppression control is not particularly limited, and may be the entire vehicle speed range or a part of the vehicle speed range.
  • the control device 100 tilts so that a larger tilt angular velocity suppression torque is applied to the center arm 620 than when the tilt angle is large.
  • Control actuator 120 the setting information is prepared so that the tilt angular velocity suppression torque applied to the center arm 620 to reduce vibration increases as the vehicle 1 approaches the upright state from the tilted state as the tilt angle of the vehicle 1 decreases. .
  • the control device 100 can perform the tilt angular velocity suppression control by changing the current value flowing through the tilt actuator 120 according to the tilt angle and the tilt angular velocity of the vehicle 1 .
  • control device 100 of the vehicle 1 controls the tilt actuator 120 according to the tilt angle and the tilt angular velocity, and controls the tilt actuator 120 and the steering actuator 110 so that the vehicle 1 turns in an unbalanced turning state.
  • the unbalanced turning control of the vehicle 1 and the configuration of the vehicle 1 will be described with reference to FIGS. 6 to 16.
  • FIG. 6 is a diagram for explaining unbalanced turning control of the vehicle 1.
  • the tilt angle B of the vehicle 1 between the vertical axis perpendicular to the ground during turning is defined as the resultant force of the centrifugal force acting on the center of gravity of the vehicle 1 in the outer turning direction and the gravity. defined as a swivel state such that the angle formed between
  • a conventional vehicle that turns in a balanced turning state has a resultant force of gravity and a centrifugal force ("lateral acceleration G1" in the diagram) in the outward turning direction, and a vertical axis perpendicular to the ground ( The vehicle turns so that the angle between the middle "0 degrees") is the inclination angle B1 of the vehicle.
  • a conventional vehicle running on a substantially horizontal ground turns so that the angle between the resultant force vector and the gravitational vector is the same as the inclination angle B1 of the vehicle.
  • the vehicle 1 turns in an unbalanced turning state in which a lateral acceleration greater than the lateral acceleration acting in the balanced turning state acts on the vehicle 1 due to the unbalanced turning control executed by the control device 100 .
  • the lateral acceleration corresponding to the vehicle speed is prepared in advance as setting information, and the control device 100 executes unbalanced turning control based on the setting information so that the lateral acceleration of the vehicle 1 becomes a value corresponding to the vehicle speed.
  • FIG. 6(b) shows the vehicle turning in an unbalanced turn. As shown in FIG.
  • the unbalanced turning control executed by the control device 100 causes the vehicle 1 to turn in an unbalanced turning state in which a lateral acceleration G2 that is greater than the lateral acceleration G1 that acts in a balanced turning state is generated.
  • a lateral acceleration G2 that is greater than the lateral acceleration G1 that acts in a balanced turning state
  • the vehicle 1 traveling on a substantially horizontal ground and turning in an unbalanced turning state turns such that the angle between the resultant force vector and the gravity vector is greater than the tilt angle B1 of the vehicle. do.
  • the lateral acceleration acting on the center of gravity of the vehicle 1 and the tilt angle of the vehicle 1 can be obtained.
  • the lateral acceleration acting on the vehicle 1 in the balanced turning state can be calculated from the tilt angle acquired by the measuring device.
  • the unbalanced turning control is executed by the control device 100, the lateral acceleration obtained by the measuring device becomes a larger value than the lateral acceleration calculated based on the tilt angle.
  • FIG. 7 is a diagram for explaining control of the steering angle by the control device 100.
  • FIGS. 7A to 7C show top views of the vehicle 1 during straight running, balanced turning, and unbalanced turning control, respectively.
  • FIG. 8 is a diagram for explaining control of the tilt angle by the control device 100.
  • FIGS. 8A to 8C show front views of the vehicle 1 during straight running, balanced turning, and unbalanced turning control, respectively.
  • FIGS. 8(a) to (c) respectively show front views of the vehicle 1 shown in FIGS. 7(a) to (c).
  • the time of balanced turning indicates the balanced turning state of the conventional vehicle
  • the time of unbalanced turning control indicates the unbalanced turning state of the vehicle 1 .
  • the steering actuator 110 and the tilt actuator 120 may be referred to as the steering mechanism drive section 110 and the tilt mechanism drive section 120, respectively.
  • the vehicle 1 includes two front wheels 11 (11L, 11R) that are steering wheels, one rear wheel 12 that is a driving wheel, a frame 40, a prime mover 50, a seat 60, and a power transmission section 70.
  • the vehicle 1 is a saddle type vehicle in which a passenger straddles a seat 60 to ride.
  • the motor 50 supported by the frame 40 drives the rear wheels 12 through the power transmission section 70 , so that the vehicle 1 moves forward while rotating the front wheels 11 and 12 contacting the road surface 700 .
  • the type of prime mover 50 is not particularly limited, and may be an internal combustion engine, an electric motor, or a hybrid prime mover including an engine and an electric motor.
  • the configuration of the power transmission section 70 is also not particularly limited, and may be a configuration including a drive chain or a configuration including a drive shaft.
  • the vehicle 1 includes a steering wheel 30, a control device 100, a steering device 10, and a tilting device 20.
  • the steering device 10 includes a steering mechanism 111 (see FIG. 13) and a steering mechanism driving section 110 .
  • the tilting device 20 includes a tilting mechanism 121 (see FIG. 13) and a tilting mechanism driving section 120 .
  • a tilt actuator consisting of an electric motor is used as tilt mechanism drive 120 .
  • a steering actuator for example an electric motor, is used as the steering mechanism drive 110 .
  • the occupant operates the steering wheel 30 to change the steering angle of the front wheels 11 and the tilt angle of the vehicle 1 during turning operation.
  • the handle 30 functions as a turning operation input device.
  • the occupant turns the steering wheel 30 to the left or right to change the orientation of the front wheels 11, which are steered wheels, to the left or right in the direction of travel and to tilt the vehicle 1 toward the center of turning. can be swiveled.
  • the left-right direction referred to with respect to the vehicle 1 in this embodiment is the left-right direction viewed from the occupant of the vehicle 1 .
  • the steering mechanism 111 can change the directions of the two front wheels 11 in the same direction.
  • the steering mechanism 111 changes the steering angle of the front wheels 11 according to the driving by the steering mechanism driving section 110 .
  • the steering mechanism drive unit 110 can drive the steering mechanism 111 to change the direction of the two front wheels 11 leftward or rightward.
  • the steering angle A (A1, A2) indicates the direction of the front wheels 11 when the direction of the front wheels 11 is changed to the left or the right while the direction of the front wheels 11 is 0 degrees.
  • the tilt mechanism 121 can change the tilt angle of the vehicle 1 to tilt left or right.
  • the tilt mechanism 121 changes the tilt angle of the vehicle 1 according to the drive by the tilt mechanism driving section 120 .
  • the tilt mechanism driving section 120 can drive the tilt mechanism 121 to increase or decrease the tilt angle of the vehicle 1 .
  • the vehicle body that is, the entire vehicle 1 including the front wheels 11 and the rear wheels 12 tilts at the same tilt angle. Therefore, as shown in FIG. 8, the inclination angle B (B1, B2) can be indicated by the inclination of the front wheels 11 to the left or right, with the angle of the front wheels 11 during straight running being 0 degrees.
  • the inclination angle B of the vehicle 1 is the inclination of the front wheels 11 with respect to the road surface 700 when the direction perpendicular to the road surface 700 is 0 degrees.
  • the vehicle 1 is a steer-by-wire vehicle in which the steering wheel 30 and the front wheels 11 are separated.
  • the control device 100 detects the steering wheel angle as the amount of steering wheel operation by the occupant.
  • the steering wheel angle C (C1) indicates the amount of operation of the steering wheel 30 by the occupant when the direction of the steering wheel 30 during straight running is 0 degrees.
  • the control device 100 can acquire vehicle information indicating the state of the vehicle 1 .
  • the vehicle information includes steering wheel angle and tilt angle. For example, when the vehicle is stopped (vehicle speed is zero), when the occupant turns the steering wheel 30 to the right to set the steering wheel angle C to 10 degrees, the control device 100 detects this and controls the steering device 10 to turn the steering angle A of the front wheels 11. to 10 degrees. Specifically, the control device 100 controls the steering mechanism drive unit 110 to drive the steering mechanism 111, so that the front wheels 11 turn to the right and the steering angle A becomes 10 degrees.
  • the unbalanced turning control is a control to turn the vehicle 1 while making the lateral acceleration acting on the center of gravity of the vehicle 1 during turning larger than the lateral acceleration during balanced turning (balanced turning state).
  • the steering angle is controlled to be greater than the steering angle during balanced turning in order to make the lateral acceleration greater than the lateral acceleration during balanced turning.
  • Setting information including the lateral acceleration set according to the vehicle speed is prepared in advance, and the control device 100 refers to the setting information to determine the lateral acceleration of the vehicle 1 .
  • the control device 100 controls the steering device 10 and the tilt device 20 so that the lateral acceleration acting on the center of gravity of the vehicle 1 becomes the determined lateral acceleration.
  • the vehicle 1 tilts toward the turning center side and the tilt angle becomes B1 as shown in FIG. 8(b).
  • the inclination angle B1 of the vehicle 1 is the resultant force of the centrifugal force (lateral acceleration G1) acting on the center of gravity of the vehicle 1 in the turning outer direction and the vertical axis. angle.
  • the steering angle A1 during a balanced turn does not necessarily have to be equal to the steering wheel angle C1, and the steering angle A1 can be made larger or smaller than the steering wheel angle.
  • the setting information includes data indicating the correspondence between vehicle speed and lateral acceleration.
  • the control device 100 uses the setting information to determine the lateral acceleration acting on the center of gravity of the vehicle 1 .
  • the control device 100 detects that the vehicle 1 has started to turn by operating the steering wheel 30, refers to the setting information based on the vehicle speed, and determines the lateral acceleration to act on the center of gravity of the vehicle 1.
  • the control device 100 can perform additional steering control to increase the steering angle of the front wheels 11 during turning from the same angle as the steering wheel angle.
  • the control device 100 controls the steering mechanism driving section 110 to drive the steering mechanism 111, and as shown in FIG. A steering angle A2 larger than A1 is set (A2>A1). That is, as shown in FIG. 7C, during unbalanced turning control, the vehicle 1 turns in a steering angle additional turning state in which the steering angle is larger than the steering angle during balanced turning.
  • the control device 100 suppresses this change by controlling the tilt mechanism driving section 120 to drive the tilt mechanism 121 .
  • the control device 100 can control the tilt mechanism driving section 120 so that the tilt mechanism 121 maintains the tilt angle B1. That is, the control device 100 performs control so that the inclination angle B2 during unbalanced turning control shown in FIG. 8C is the same as the inclination angle B1 during balanced turning.
  • control device 100 controls the steering mechanism driving section 110 so that the steering angle is larger than the steering angle during balanced turning, and the lateral acceleration acting on the center of gravity of the vehicle 1 becomes the lateral acceleration G2. . Further, the control device 100 can suppress a change in the tilt angle of the vehicle 1 caused by the steering angle being larger than the steering angle during balanced turning.
  • FIG. 9 is a diagram showing an example of measured values of lateral acceleration obtained by performing unbalanced turning control of a leaning vehicle.
  • the control device 100 performs unbalanced turning control in which a lateral acceleration greater than the lateral acceleration acting on the vehicle 1 in a balanced turning state acts on the vehicle 1, and also divides the speed range up to the maximum speed of the vehicle 1 into 5 equal parts.
  • a region is defined, steering is performed so that the rate of change of large lateral acceleration in unbalanced turning with respect to changes in vehicle speed in the maximum speed region is smaller than the rate of change in large lateral acceleration in unbalanced turning with respect to changes in vehicle speed in the lowest speed region. It controls the device 10 and the tilting device 20 .
  • the average increase rate of lateral acceleration in the maximum speed range is smaller than the average increase rate of lateral acceleration in the minimum speed range. Also, the average value of the lateral acceleration in the lowest speed range is smaller than the average value of the lateral acceleration in the highest speed range.
  • the lateral acceleration in the unbalanced turning state is controlled to a constant value as the vehicle speed of the vehicle 1 approaches the maximum speed Vmax.
  • Data 210a indicated by a dashed line in FIG. 9 indicates the lateral acceleration that the control device 100 exerts on the center of gravity of the vehicle 1 by performing unbalanced turning control.
  • Data 210b indicated by a solid line in FIG. 9 represents an example of measured values of the lateral acceleration acting on the center of gravity of the vehicle 1 during unbalanced turning control by the control device 100 .
  • the actual measured value of the lateral acceleration varies depending on various factors such as the weight of the occupant, road surface conditions, wind direction, wind speed, equipment of the vehicle 1, setting conditions of the vehicle 1, and the like. Therefore, as shown in FIG. 9, the preset lateral acceleration data 210a may not match the measured lateral acceleration data 210b.
  • the unbalanced turning control by the control device 100 is not limited to control in which the value of the lateral acceleration actually measured by the vehicle 1 matches the lateral acceleration of the preset data 210a.
  • the unbalanced turning control by the control device 100 includes control indicating that the actual measured value of the lateral acceleration of the vehicle 1 differs from the data 210a set by the setting information, as indicated by the data 210b.
  • FIG. 10 is a diagram for explaining a method of determining the steering angle and the tilt angle for making the lateral acceleration acting on the center of gravity of the vehicle 1 equal to the target lateral acceleration.
  • Vmax on the horizontal axis of FIGS. 10A to 10C indicates the maximum speed of the vehicle 1.
  • the maximum speed Vmax of the vehicle 1 referred to in the present embodiment is set to be equal to or higher than the actual maximum speed of the vehicle 1 .
  • the maximum speed may be a design value, a value obtained by actually measuring the maximum speed of the vehicle 1, or a value set based on a design value or an actual measurement value.
  • the solid line data 210 shown in FIG. 10(a) is data indicating the target lateral acceleration.
  • a target lateral acceleration corresponding to the vehicle speed is preset between lateral acceleration 0 and Ac1.
  • Solid line data 220 shown in FIG. 10(b) indicates the target steering angle.
  • a target steering angle corresponding to the vehicle speed is set in advance between steering angles 0 to D1.
  • the solid line in FIG. 10(c) indicates the target tilt angle.
  • a target tilt angle corresponding to the vehicle speed is set in advance between the tilt angles 0 to D2.
  • the dashed line in FIG. 10(a) indicates the lateral acceleration during balanced turning.
  • the target lateral acceleration indicated by solid line data 220 is the difference between the lateral acceleration during balanced turning in a low vehicle speed region and the target lateral acceleration. is set to be smaller than the difference between Further, when the difference between the target lateral acceleration corresponding to the lateral acceleration acting on the vehicle 1 in an unbalanced turning state and the lateral acceleration acting on the vehicle 1 during a balanced turning is defined as the differential lateral acceleration, the vehicle speed in the maximum speed range is defined as the differential lateral acceleration, the vehicle speed in the maximum speed range is The target lateral acceleration is set such that the rate of change of the differential lateral acceleration with respect to change is smaller than the rate of change of the differential lateral acceleration with respect to the vehicle speed change in the lowest speed range.
  • FIG. 10(b) indicates the steering angle during balanced turning.
  • the target steering angle indicated by the solid line data 220 has the same value as the steering angle during balanced turning in a part of the vehicle speed range from 0 (zero) to a predetermined speed, and is the same as the steering angle during balanced turning in other speed ranges. , and the difference from the target steering angle decreases as the vehicle speed increases.
  • FIG. 10(c) does not show the tilt angle during balanced turning. The angle will match the angle of inclination during a balanced turn.
  • the vehicle 1 When the vehicle speed is high, the vehicle 1 turns with a smaller steering angle and a larger tilt angle of the front wheels 11 than when the vehicle speed is low. In other words, when the vehicle speed is low, the vehicle 1 turns with the steering angle of the front wheels 11 increased and the inclination angle decreased compared to when the vehicle speed is high. Therefore, the higher the vehicle speed, the smaller the target steering angle and the larger the target tilt angle.
  • FIG. 10(a) is a diagram showing an example of setting information for the control device 100 to determine the lateral acceleration during unbalanced turning control.
  • the control device 100 controls the steering device 10 and the tilt device 20 so that the target lateral acceleration acts on the center of gravity of the vehicle 1 during unbalanced turning.
  • the control device 100 may acquire the lateral acceleration of the vehicle 1 and control the steering device 10 and the tilt device 20 so that this lateral acceleration becomes the target lateral acceleration.
  • the steering angle of the vehicle 1 becomes the target steering angle and the tilt angle becomes the target tilt angle.
  • a method for acquiring lateral acceleration which is acceleration in the left-right direction of the vehicle 1, is conventionally known, and details thereof will be omitted. ) and the like to obtain the lateral acceleration acting on the center of gravity of the vehicle 1 .
  • the setting information used by the control device 100 includes data 220 shown in FIG. 10(b) and data 230 shown in FIG. 10(c) instead of or in addition to the data 210 shown in FIG. 10(a). You can In this case, the control device 100 can determine the target steering angle and the target tilt angle by referring to the data 220 and 230 based on the vehicle speed of the vehicle 1 .
  • the control device 100 controls the steering device 10 to set the steering angle of the front wheels 11 to the target steering angle, and controls the tilt device 20 to set the tilt angle of the vehicle 1 to the target tilt angle, thereby acting on the center of gravity of the vehicle 1.
  • the resulting lateral acceleration can be used as a target lateral acceleration corresponding to the vehicle speed.
  • FIG. 11 is a diagram for explaining another method of determining the steering angle and the tilt angle for making the lateral acceleration acting on the center of gravity of the vehicle 1 equal to the target lateral acceleration.
  • the target steering angle data 221 and the target tilt angle data 231 shown in FIG. 11 are obtained from the data 210, 220, and 230 shown in FIG.
  • Target lateral acceleration Ac1 and target steering angle D1 shown in FIG. 11(a) correspond to lateral acceleration Ac1 shown in FIG. 10(a) and steering angle D1 shown in FIG. 10(b), respectively.
  • Target lateral acceleration Ac1 and target tilt angle D2 shown in FIG. 11(b) correspond to lateral acceleration Ac1 shown in FIG. 10(a) and tilt angle D2 shown in FIG. 10(c), respectively.
  • Data 221 in FIG. 11(a) indicates the correspondence between the target steering angle and the target lateral acceleration.
  • Data 231 in FIG. 11(b) indicates the correspondence between the target tilt angle and the target lateral acceleration. As the target lateral acceleration increases, the target tilt angle increases. In other words, the smaller the target lateral acceleration, the smaller the target tilt angle.
  • the setting information used by the control device 100 may include data 210 shown in FIG. 10(a), data 221 shown in FIG. 11(a), and data 231 shown in FIG. 11(b).
  • the control device 100 which has determined the target lateral acceleration based on the vehicle speed of the vehicle 1 with reference to the data 210 of FIG.
  • a target steering angle can be determined and a target lean angle can be determined from the data 231 of FIG. 11(b).
  • the control device 100 controls the steering device 10 and the tilting device 20 to set the steering angle and the tilting angle of the vehicle 1 to the target steering angle and the target tilting angle, respectively. It can be lateral acceleration.
  • FIG. 12 is a diagram showing a specific example of the vehicle 1.
  • FIG. 13 is a diagram for explaining specific examples of the steering device 10, the tilting device 20, and the control device 100.
  • a steering mechanism 111 is driven by a steering actuator 110 functioning as a steering mechanism driving section
  • a tilting mechanism 121 is driven by a tilting actuator 120 functioning as a tilting mechanism driving section.
  • the vehicle 1 shown in FIGS. 12 and 13 has a double wishbone type tilting mechanism 121 on the frame 40 in front of the handle 30 .
  • the structure and operation of such a vehicle 1 are disclosed, for example, in International Publication No. WO 2017/082426 by the applicant of the present application, and detailed description thereof will be omitted.
  • the tilt mechanism 121 includes an upper left arm 601L, a lower left arm 602L, and an upper right arm 601R and a lower right arm 602R.
  • the upper left arm 601L and the lower left arm 602L have their right ends rotatably connected to the frame 40, and their left ends rotatably connected to the upper and lower ends of the left member 603L.
  • the upper right arm 601R and the lower right arm 602R are rotatably connected to the frame 40 at their left ends, and rotatably connected to the upper and lower ends of the right member 603R at their right ends.
  • the left front wheel 11L is rotatably connected to the left member 603L
  • the right front wheel 11R is rotatably connected to the right member 603R.
  • the left front wheel 11L and the right front wheel 11R can be vertically moved with respect to the frame 40. As shown in FIG.
  • the lower end of the left shock absorber 605L is rotatably connected to the crossbar forming the left lower arm 602L.
  • One end of the left rod 610L is rotatably connected to the crossbar, and the other end of the left rod 610L is rotatably connected to the right end of the coupling mechanism 630.
  • the lower end of right shock absorber 605R is rotatably connected to a crossbar forming right lower arm 602R.
  • One end of the right rod 610R is rotatably connected to this crossbar, and the other end of the right rod 610R is rotatably connected to the left end of the coupling mechanism 630.
  • the upper end of the left damping device 605L is rotatably connected to the left end of the coupling mechanism 630, and the upper end of the right damping device 605R is rotatably connected to the right end of the coupling mechanism 630.
  • the two shock absorbers 605L and 605R are devices known as so-called front suspensions in conventional vehicles, so a detailed description thereof will be omitted. used to mitigate
  • the upper end of the center arm 620 is rotatably connected to the center of the connecting mechanism 630 .
  • the lower end of center arm 620 is rotatably connected to frame 40 .
  • the coupling mechanism 630 swings left and right around the connection with the center arm 620, the upward movement of the left front wheel 11L is transmitted as the downward movement of the right front wheel 11R, and the right front wheel 11R moves upward. is transmitted as downward movement of the left front wheel 11L.
  • the front left wheel 11L moves upward and the right front wheel 11R moves downward, causing the front wheel 11 and the vehicle 1 to lean leftward. incline.
  • the tilt actuator 120 fixed to the frame 40 rotates the center arm 620 so that the center arm 620 rotates around its lower end.
  • the relative positions of the left front wheel 11L and the right front wheel 11R with respect to the frame 40 via the coupling mechanism 630 change in the vertical direction of the vehicle body.
  • the center arm 620 and the frame 40 rotate relative to each other, so that the vehicle body and the left front wheel 11L and the right front wheel 11R are tilted at the same tilt angle as described in FIG.
  • the control device 100 can control the tilt angle of the vehicle 1 by controlling the rotation direction and rotation angle of the center arm 620 via the tilt actuator 120 .
  • the tilt actuator 120 tilts the front left wheel 11L and the front right wheel 11R to the left.
  • the tilt actuator 120 tilts the left front wheel 11L and the right front wheel 11R rightward.
  • an electric motor fixed to frame 40 is utilized as tilt actuator 120 .
  • the tilt actuator control unit 105 can control the tilt angle of the vehicle 1 by controlling the rotation direction and rotation angle of the output shaft of the electric motor connected to the tilt mechanism 121 .
  • the control of the tilt actuator 120 is performed by controlling the output torque (tilt torque) of the tilt actuator 120, for example.
  • the steering mechanism 111 of the vehicle 1 includes a steering shaft 401, a left tie rod 402L and a right tie rod 402R.
  • a left tie rod 402L connects the steering shaft 401 and a left member 603L that supports the left front wheel 11L.
  • a steering shaft 401 and a right member 603R supporting the right front wheel 11R are connected by a right tie rod 402R.
  • Steering shaft 401 is not mechanically connected to steering wheel 30 .
  • the control device 100 controls the steering actuator 110 to move the left tie rod 402L and the right tie rod 402R via the steering shaft 401, thereby rotating the left front wheel 11L around the axis C2a shown in FIG.
  • the control device 100 can control the steering angle of the front wheels 11 by controlling the direction and amount of movement of the left tie rod 402L and the right tie rod 402R via the steering actuator 110 .
  • the steering actuator 110 moves the left tie rod 402L and the right tie rod 402R so that the left front wheel 11L and the right front wheel 11R turn leftward.
  • the steering actuator 110 moves the left tie rod 402L and the right tie rod 402R so that the left front wheel 11L and the right front wheel 11R turn to the right.
  • an electric motor fixed to the frame 40 is used as the steering actuator 110.
  • the steering angle can be controlled by the steering actuator control section 103 controlling the rotation direction and rotation angle of the output shaft of the electric motor connected to the steering shaft 401 .
  • the steering actuator 110 is controlled, for example, by controlling the output torque (steering torque) of the steering actuator 110 .
  • the control device 100 includes a vehicle information acquisition section 101 , a steering angle determination section 102 , a steering actuator control section 103 , a tilt angle determination section 104 and a tilt actuator control section 105 .
  • the vehicle 1 is provided with a vehicle speed detection device 301 that detects the vehicle speed, and the vehicle information acquisition unit 101 acquires the vehicle speed from the vehicle speed detection device 301 . Since the vehicle speed detection device 301 is conventionally known, the description thereof is omitted. be.
  • the vehicle information acquisition unit 101 acquires the vehicle speed of the vehicle 1 from the vehicle speed detection device 301 .
  • a steering angle determination unit 102 determines a target lateral acceleration based on the vehicle speed acquired by the vehicle information acquisition unit 101, and determines a target steering angle corresponding to this target lateral acceleration.
  • the steering actuator control unit 103 controls the steering actuator 110 that drives the steering mechanism 111 so that the steering angle of the front wheels 11 becomes the target steering angle determined by the steering angle determination unit 102 .
  • the tilt angle determination unit 104 determines the target lateral acceleration based on the vehicle speed acquired by the vehicle information acquisition unit 101, and determines the target tilt angle corresponding to this target lateral acceleration.
  • the tilt actuator control unit 105 controls the tilt actuator 120 that drives the tilt mechanism 121 so that the tilt angle of the vehicle 1 becomes the target tilt angle determined by the tilt angle determination unit 104 .
  • a force acts on the vehicle 1 to raise the vehicle 1 to the outside of the turn.
  • the tilt actuator control unit 105 controls the tilt actuator 120 so that the tilted vehicle 1 does not rise to the outside of the turn.
  • the steering angle of the front wheels 11 becomes the target steering angle that is larger than the steering angle during balanced turning, and the center of gravity of the vehicle 1 is adjusted while the tilt angle of the vehicle 1 is maintained at the target tilt angle.
  • the lateral acceleration acting on the lateral acceleration becomes the target lateral acceleration, and the vehicle 1 turns.
  • FIG. 14A and 14B are diagrams for explaining the operation of the tilt actuator 120 that drives the tilt mechanism 121.
  • the tilt actuator 120 changes the tilt angle of the vehicle 1 by applying torque to the tilt mechanism 121 .
  • the tilt angle of the vehicle 1 is changed by controlling the rotation direction and output torque of the output shaft of the electric motor that functions as the tilt actuator 120 .
  • the value of the output torque of the output shaft is a value that has a proportional relationship with the current value applied to the electric motor.
  • the control device 100 controls the tilt actuator 120 so that the torque increases as the lateral acceleration acting on the center of gravity of the vehicle 1 increases.
  • FIG. 14 shows an example in which the relationship between lateral acceleration and torque changes linearly, this is an example, and the relationship between lateral acceleration and torque is not limited to this.
  • a lateral acceleration determination unit may be provided between the vehicle information acquisition unit 101 shown in FIG. 13 and the steering angle determination unit 102 and the tilt angle determination unit 104 .
  • the lateral acceleration determination unit determines the target lateral acceleration corresponding to the vehicle speed
  • the steering angle determination unit 102 determines the target steering angle based on the target lateral acceleration
  • the tilt angle determination unit 104 determines the target tilt angle. You just have to decide.
  • the control gain when the tilt actuator control section 105 controls the tilt actuator 120 may be set larger than the control gain when the steering actuator control section 103 controls the steering actuator 110 .
  • the control timing and the control gain may be set so as to end earlier.
  • the control device 100 may control the steering angle and tilt angle of the front wheels 11 based on the vehicle speed and steering wheel angle.
  • FIG. 15 is a diagram for explaining an example of unbalanced turning control performed using vehicle speed and steering wheel angle.
  • the vehicle information acquisition unit 101 shown in FIG. 15A acquires the vehicle speed from the vehicle speed detection device 301 and also acquires the steering wheel angle from the steering wheel angle detection device 302 . Since the steering wheel angle detection device 302 is conventionally known, the description thereof is omitted. For example, the steering wheel angle is detected using an angle sensor, an encoder, or the like.
  • FIG. 15(b) is a diagram showing an example of setting information used when performing unbalanced turning control based on vehicle speed and steering wheel angle.
  • a plurality of data 240 (240a to 240c) having different target lateral accelerations depending on steering wheel angles are prepared in advance.
  • FIG. 15(b) shows an example of three data 240a to 240c, and target lateral acceleration data 240 is prepared for each steering wheel angle.
  • the larger the steering wheel angle the larger the target lateral acceleration is set.
  • the steering wheel angles increase to H1, H2, and H3 (H1 ⁇ H2 ⁇ H3), as shown in FIG. , it is set to a value larger than the target lateral acceleration data 40b of the steering wheel angle H2.
  • the target lateral acceleration data 240b for the steering wheel angle H2 is set to a value larger than the target lateral acceleration data 240c for the steering wheel angle H1.
  • the target lateral acceleration of each data 240 is defined by dividing the speed range from 0 (zero) to the maximum speed Vmax of the vehicle 1 into 5 equal parts.
  • the change rate of the target lateral acceleration with respect to the vehicle speed change in the maximum speed range is set to be smaller than the change rate of the target lateral acceleration with respect to the vehicle speed change in the minimum speed range.
  • the average increase rate of lateral acceleration in the maximum speed range is smaller than the average increase rate of lateral acceleration in the minimum speed range.
  • Each data 240 is set such that the average value of the target lateral acceleration in the lowest speed range is smaller than the average value of the target lateral acceleration in the highest speed range.
  • Each data 240 is set so that the lateral acceleration gradually increases in the low vehicle speed range including the lowest speed range, and becomes a constant value in the high vehicle speed range including the maximum speed range.
  • Each data 240 is set so that the target lateral acceleration increases as the steering wheel angle increases.
  • the vehicle information acquisition unit 101 acquires the vehicle speed of the vehicle 1 from the vehicle speed detection device 301 and acquires the steering wheel angle from the steering wheel angle detection device 302 .
  • the steering angle determination unit 102 selects data 240 corresponding to the steering wheel angle acquired by the vehicle information acquisition unit 101 from among the plurality of data 240 .
  • the steering angle determination unit 102 refers to the selected data 240, determines the target lateral acceleration based on the vehicle speed acquired by the vehicle information acquisition unit 101, and determines the target steering angle corresponding to this target lateral acceleration.
  • the steering actuator control section 103 controls the steering actuator 110 so that the steering angle of the front wheels 11 becomes the target steering angle.
  • the tilt angle determination unit 104 selects the data 240 corresponding to the steering wheel angle acquired by the vehicle information acquisition unit 101 from among the plurality of data 240 .
  • the tilt angle determination unit 104 refers to the selected data 240, determines the target lateral acceleration based on the vehicle speed acquired by the vehicle information acquisition unit 101, and determines the target tilt angle corresponding to this target lateral acceleration.
  • the tilt actuator control section 105 controls the steering actuator 110 so that the tilt angle of the vehicle 1 becomes the target tilt angle.
  • the steering angle of the front wheels 11 becomes the target steering angle larger than the steering angle during balanced turning, and the tilt angle of the vehicle 1 is maintained at the target tilt angle.
  • the lateral acceleration acting on the center of gravity becomes the target lateral acceleration, and the vehicle 1 turns.
  • a lateral acceleration determination unit may be provided between the vehicle information acquisition unit 101 and the steering angle determination unit 102 and the tilt angle determination unit 104 .
  • the lateral acceleration determining section may select the data 240 corresponding to the steering wheel angle and determine the target lateral acceleration corresponding to the vehicle speed on the data 240 . Based on this target lateral acceleration, the steering angle determining section 102 determines the target steering angle, and the tilt angle determining section 104 determines the target tilt angle.
  • the control device 100 may perform feedback control to control the steering angle and the tilt angle while detecting the steering angle and the tilt angle of the vehicle 1 .
  • FIG. 16 is a diagram for explaining an example of unbalanced turning control performed using feedback control.
  • a vehicle information acquisition unit 101 shown in FIG. 16 acquires vehicle speed from a vehicle speed detection device 301 and acquires a steering wheel angle from a steering wheel angle detection device 302 .
  • the vehicle information acquisition unit 101 also acquires the tilt angle of the vehicle 1 from the tilt angle detection device 303 and the steering angle of the front wheels 11 from the steering angle detection device 304 . Since the steering angle detection device 304 is conventionally known, the description thereof is omitted.
  • the steering angle is detected using an angle sensor, an encoder, or the like. Since the tilt angle detection device 303 is conventionally known, the description thereof will be omitted.
  • the target steering angle is determined by the steering angle determination unit 102, and the target tilt angle is determined by the tilt angle determination unit 104, as described with reference to FIGS. be done.
  • the steering actuator control section 103 starts controlling the steering actuator 110 that drives the steering mechanism 111 .
  • the steering actuator control section 103 can acquire the steering angle of the front wheels 11 detected by the steering angle detection device 304 via the vehicle information acquisition section 101 .
  • the steering actuator control unit 103 checks the steering angle of the front wheels 11 and controls the steering actuator 110 so that this steering angle becomes the target steering angle.
  • the tilt actuator control unit 105 starts controlling the tilt actuator 120 that drives the tilt mechanism 121 .
  • the tilt actuator control unit 105 can acquire the tilt angle of the vehicle 1 detected by the tilt angle detection device 303 via the vehicle information acquisition unit 101 .
  • the tilt actuator control unit 105 checks the tilt angle of the vehicle 1 and controls the tilt actuator 120 so that the tilt angle becomes the target tilt angle.
  • the steering angle of the front wheels 11 becomes the target steering angle that is larger than the steering angle during balanced turning, and the center of gravity of the vehicle 1 is adjusted while the tilt angle of the vehicle 1 is maintained at the target tilt angle.
  • the lateral acceleration acting on the lateral acceleration becomes the target lateral acceleration, and the vehicle 1 turns.
  • the vehicle 1 turns in a state in which the lateral acceleration acting on the vehicle 1 is greater than that of a conventional vehicle turning in a balanced turning state.
  • Torque is applied to the center arm 620 of the vehicle 1 turning in an unbalanced turning state by unbalanced turning control. Therefore, when unbalanced turning control is performed in a vehicle having a structure in which the left shock absorber 605L and the right shock absorber 605R are supported by the center arm 620, the center arm 620 vibrates more than a conventional vehicle turning in a balanced turn state. may become easier. However, the vibration can be effectively reduced by executing the tilt angle suppression control as described above.
  • the vehicle 1 and the tilt mechanism 121 shown in this embodiment are examples, and the structures of the vehicle 1 and the tilt mechanism 121 are not limited to these.
  • the vehicle is capable of controlling the steering angle and the tilt angle, such as a vehicle having a parallelogram link type tilt mechanism
  • the unbalanced turning control can be performed as described above.
  • any vehicle capable of connecting a vertically elongated tower-shaped member to the left and right steering wheels via an arm-shaped member extending in the left-right direction and controlling an actuator that drives the tower-shaped member to rotate may be used.
  • the tilt angular velocity suppression control can be performed to reduce the vibration of the tower member.
  • the unbalanced turning control has been mainly described for the control until the vehicle 1 is brought into a turning state. Control is performed to return the steering angle and the tilt angle to 0 degrees, and the vehicle 1 returns to the straight-ahead state.
  • the control device 100 detects a change in the steering wheel angle caused by the turning operation by the occupant and starts unbalanced turning control. , and may be started by detecting a change in the tilt angle or the like.
  • the turning operation performed by the passenger includes an operation for changing the steering angle of the front wheels 11 and an operation for changing the tilt angle of the vehicle 1 .
  • the steering wheel angle that is, the steering angle of the front wheels 11, and the tilt angle of the vehicle 1 change.
  • the control device 100 may decide to start unbalanced turning control based on a change in at least one of the steering wheel angle, the steering angle, and the tilt angle.
  • the vehicle 1 has two front wheels 11 that are steered wheels and one rear wheel 12 that is a drive wheel. It may have two rear wheels, or two front wheels, which are steered wheels, and two rear wheels, which are driving wheels. Also, the present invention is not limited to a mode in which only the rear wheels 12 are driven, and may be a mode in which only the front wheels 11 are driven, or a mode in which both the front wheels 11 and the rear wheels 12 are driven. For example, if an in-wheel motor is used, it is possible to drive the steered wheels. In either case, the steering angle and the tilt angle of the front wheels 11 are controlled as described above, and the lateral acceleration acting on the center of gravity of the vehicle 1 can be set to the target lateral acceleration to turn the vehicle 1 .
  • the configuration of the steering device 10 shown in this embodiment is an example, and the configuration of the steering device 10 is not particularly limited as long as the steering angle of the steered wheels can be controlled as described above.
  • the configuration of the tilt device 20 shown in this embodiment is an example, and the configuration of the tilt device 20 is not particularly limited as long as the tilt angle of the steered wheels can be controlled as described above.
  • the control for changing the inclination angle of the vehicle 1 is performed by adjusting the inclination of the vehicle body of the vehicle 1. It corresponds to the control to change the angle.
  • a process of obtaining output values such as a target lateral acceleration, a target steering angle, and a target tilt angle from input values such as a vehicle speed and a steering wheel angle is shown in a graph showing the relationship between the input values and the output values.
  • these processes may be performed using a two-dimensional map or an arithmetic expression that indicates the relationship between the input value and the output value.
  • the aspect using a three-dimensional map may be sufficient.
  • the target lateral acceleration and the target tilt angle may be determined from the vehicle speed using a three-dimensional map showing the relationship between the vehicle speed, the target steering angle and the target tilt angle for obtaining the target lateral acceleration.
  • the execution order of the steering angle control by the steering device 10 and the tilt angle control by the tilt device 20 is not particularly limited.
  • the control of the steering angle and the control of the tilt angle may be executed in parallel.
  • the control of the steering angle may be performed after performing the control to increase the tilt angle first.
  • the tilt angle control may be performed after performing the control to increase the steering angle first.
  • the control device 100 may gradually increase the steering angle of the front wheels 11 and the tilt angle of the vehicle 1 to the target steering angle and the target tilt angle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

車体を構成するフレーム(40)と、左前操舵輪(11L)、右前操舵輪(11R)及び後輪(12)を含む車輪と、前操舵輪(11L、11R)をフレーム(40)に支持するアーム部材(600L、600R)と、フレーム(40)に支持された一端部から上方へ延びるタワー型部材(620)と、ばね要素を有し、タワー型部材(620)とアーム部材(600L、600R)に支持された緩衝装置(605L、605R)と、車体の傾斜角度を変更する傾斜トルクをタワー型部材(620)へ付与する傾斜アクチュエータ(120)と、制御アクチュエータ(120)を制御する制御装置(100)と、を備えた傾斜車両で、緩衝装置(605L、605R)のばね要素に起因するタワー型部材(620)の振動を低減するため、制御装置(100)が、車体の傾斜角度及び傾斜角速度に応じて傾斜アクチュエータ(120)を制御する。

Description

傾斜車両
 本開示は、車体を傾斜させて旋回する傾斜車両に関する。
 従来、車体を傾斜させて旋回する傾斜車両が知られている。例えば、特許文献1には、2つの前輪と1つの後輪とを含む傾斜車両が開示されている。左右2つの前輪はアームによって車体フレームに連結されている。フレームには、上端にブラケットを有するショックタワーが設けられている。左右の前輪それぞれに対応して設けられた左右の緩衝装置は、一端がショックタワーのブラケットと連結され、他端が、前輪とフレームをつなぐアームに連結されている。フレームに固定されたアクチュエータがショックタワーを回動することにより、フレームと、フレームにアームで連結された2つの前輪とが左右に傾斜するようになっている。
米国特許第8123240号
 傾斜車両では、乗員へ伝わる振動や衝撃を緩和するためにスプリング及びダンパーを含む緩衝装置が利用される。上記従来技術の傾斜車両では、ショックタワーが回動して車体を傾斜させて旋回した後、傾斜状態から直立状態へ戻る際に緩衝装置のスプリングが伸縮し、この伸縮動作の影響を受けてショックタワーが振動する場合がある。傾斜アクチュエータによる傾斜車両の制御性をより高めるために、このような振動を低減することが考えられる。
 本開示の目的の1つは、車体の傾斜角度の変更に伴って発生する振動を低減することができる傾斜車両を提供することである。
 本開示に係る傾斜車両は、旋回時に傾斜する車体を構成するフレームと、左前操舵輪と右前操舵輪と少なくとも1つの後輪を含む車輪と、前記左前操舵輪を前記フレームに支持する左アーム部材と、前記右前操舵輪を前記フレームに支持する右アーム部材と、前記フレームに支持された一端部から他端部へと上方へ延びるタワー形状を有するタワー型部材と、ばね要素を有し、一端部が前記タワー型部材に支持されて他端部が前記左アーム部材に支持された左緩衝装置と、ばね要素を有し、一端部が前記タワー型部材に支持されて他端部が前記右アーム部材に支持された右緩衝装置と、前記タワー型部材に対して前記フレームを傾斜させることにより、前記車体の傾斜角度を変更するための傾斜トルクを付与する傾斜アクチュエータと、前記制御アクチュエータを少なくとも制御する制御装置とを備えた傾斜車両であって、前記車体の傾斜角速度の大きさを減少させる方向の傾斜トルクを傾斜角速度抑制トルクと定義した場合、前記制御装置は、前記車体が左右方向に傾斜した場合に前記左緩衝装置のばね要素及び前記右緩衝装置のばね要素から力を受けることによる前記タワー型部材の振動を低減するために、前記車体の傾斜角度の大きさが小さい場合には、前記車体の傾斜角度が大きい場合に比べて前記傾斜角速度抑制トルクの大きさが大きくなり、且つ、前記車体の傾斜角速度が大きい場合には、前記車体の傾斜角速度が小さい場合に比べて前記傾斜角速度抑制トルクの大きさが大きくなるように、前記傾斜角度及び前記傾斜角速度の両方に応じて前記傾斜アクチュエータを制御する。
 上記構成において、前記制御装置は、前記車体の傾斜角速度が第1傾斜角速度であるときの傾斜角速度抑制トルクの値と、前記車体の傾斜角速度が前記第1傾斜角速度よりも小さな第2傾斜角速度であるときの傾斜角速度抑制トルクの値との差分を差分トルク値と定義した場合、前記車体の傾斜角度が大きい場合の差分トルク値よりも、前記車体の傾斜角度が小さい場合の差分トルク値が大きくなるように前記傾斜アクチュエータを制御してもよい。
 上記構成において、前記制御装置は、少なくとも前記傾斜車両の車速が予め設定された閾値以下である場合に、前記傾斜角速度抑制トルクを発生するように前記傾斜アクチュエータを制御してもよい。
 上記構成において、旋回時に前記左前操舵輪と右前操舵輪の操舵角度を変更する操舵アクチュエータをさらに備え、地面と垂直な垂直軸との間でなす前記車体の傾斜角度を、前記車体に作用する重力と旋回外方向の遠心力との合力が前記垂直軸との間でなす角度とするような旋回状態を釣合旋回状態と定義した場合、前記制御装置は、前記傾斜角度及び前記傾斜角速度の両方に応じて前記傾斜アクチュエータを制御すると共に、前記釣合旋回状態の前記車体に作用する横加速度より大きな横加速度が発生する不釣合旋回状態となるように前記傾斜アクチュエータ及び前記操舵アクチュエータを制御してもよい。
 本開示によれば、車体の傾斜角度の変更に伴って発生する振動を低減することができる傾斜車両が提供される。
図1は、本実施形態に係る傾斜車両の概要を説明するための図である。 図2は、傾斜車両の振動を抑制するための制御を説明するための図である。 図3は、傾斜角速度と傾斜角速度抑制トルクの関係を示す図である。 図4は、傾斜角度と傾斜角速度抑制トルクの関係を示す図である。 図5は、傾斜角度と傾斜角速度と傾斜角速度抑制トルクの関係を示す図である。 図6は、傾斜車両の不釣合旋回制御を説明するための図である。 図7は、制御装置による操舵角度の制御を説明するための図である。 図8は、制御装置による傾斜角度の制御を説明するための図である。 図9は、傾斜車両の不釣合旋回制御の例を説明するための図である。 図10は、傾斜車両の重心に作用する横加速度を目標横加速度にするための操舵角度及び傾斜角度の決定方法を説明するための図である。 図11は、傾斜車両の重心に作用する横加速度を目標横加速度にするための操舵角度及び傾斜角度の別の決定方法を説明するための図である。 図12は、傾斜車両の具体例を示す図である。 図13は、操舵装置、傾斜装置及び制御装置の具体例を説明するための図である。 図14は、傾斜装置の動作を説明するための図である。 図15は、車速及びハンドル角度を利用して行われる不釣合旋回制御の例を説明するための図である。 図16は、フィードバック制御を利用して行われる不釣合旋回制御の例を説明するための図である。
 以下、添付図面を参照しながら、本開示に係る傾斜車両について説明する。傾斜車両は複数の車輪を有する。傾斜車両が備える前輪及び後輪の数は特に限定されないが、本実施形態では、2つの前輪と1つの後輪とを含む傾斜車両を例に説明する。以下、傾斜車両を単に「車両」と記載する。
 図1は、本実施形態に係る車両1を説明するための模式図である。車両1の前面を正面として、図1の下段中央に車両1の正面図を示している。車両1の正面図の左右に、車両1の傾斜角度を変更する傾斜機構の正面図を示している。左側の図は直進中の車両1の傾斜機構の正面図を示し、右側の図は旋回中の車両1の傾斜機構の正面図を示している。これらの図に対応して、図1の上段左側に、直進中の車両1の上面図を示し、上段右側に、旋回中の車両1の上面図を示している。図1左側に示す直進中の車両1が旋回する際、図1上段中央に示す制御装置100によって車両1の旋回制御が行われる。制御装置100によって行われる車両1の旋回制御の結果、車両1は図1右側に示す車両状態となって、車両1が旋回する。なお、本実施形態に示す旋回中の車両1の上面図では、車両1の傾きの図示は省略して操舵輪の向きを示している。旋回中の車両1の正面図では、操舵輪の向きの図示は省略して車両1の傾きを示している。
 図1に示すように、車両1は、2つの前操舵輪11(11L、11R)と少なくとも1つの後輪12を含む車輪11、12と、旋回時に車両1の傾斜角度Bを変更可能な傾斜アクチュエータ120と、少なくとも傾斜アクチュエータ120を制御する制御装置100とを含む。制御装置100が傾斜アクチュエータ120を制御することにより、車両1の傾斜角度Bが変更される。車両1が旋回する場合には、傾斜角度Bが直進状態の傾斜角度Bから変更される。
 車両1は、さらに、車体を構成するフレーム40と、左アーム部材600L及び左緩衝装置605Lと、右アーム部材600R及び右緩衝装置605Rとを有する。左前操舵輪11Lは、左アーム部材600Lによってフレーム40に支持されている。右前操舵輪11Rは、右アーム部材600Rによってフレーム40に支持されている。センターアーム620は、フレーム40に支持された一端部から他端部へと上方へ延びるタワー型部材である。左緩衝装置605Lは、ばね要素を有し、一端部がセンターアーム620に支持されて他端部が左アーム部材600Lに支持されている。右緩衝装置605Rは、ばね要素を有し、一端部がセンターアーム620に支持されて他端部が右アーム部材600Rに支持されている。
 制御装置100が、傾斜アクチュエータ120を制御することにより、車両1が傾斜する。具体的には、傾斜アクチュエータ120が、傾斜角度を変更するための傾斜トルクをセンターアーム620に付与することによって、センターアーム620に対してフレーム40が傾斜する。
 旋回制御により車両1が左右方向に傾斜した場合に、センターアーム(タワー型部材)620は、左緩衝装置605Lのばね要素及び右緩衝装置605Rのばね要素から力を受ける。センターアーム(タワー型部材)620は、ばね要素からの力を受けて振動する。この振動を低減するため、制御装置100は、傾斜アクチュエータ120を制御して、車両1の傾斜角速度の大きさを減少させる方向のトルクである傾斜角速度抑制トルクをセンターアーム620に付与する。
 制御装置100は、車両1の傾斜角度が小さい場合には傾斜角度が大きい場合に比べて傾斜角速度抑制トルクが大きくなるように傾斜アクチュエータ120を制御する。また、制御装置100は、車両1の傾斜角速度が大きい場合には斜角速度が小さい場合に比べて傾斜角速度抑制トルクが大きくなるように制御する。すなわち、制御装置100は、傾斜角度及び傾斜角速度の両方に基づいて傾斜アクチュエータ120を制御することができる。
<傾斜角速度抑制制御>
 次に、車両1で行われる傾斜角速度抑制制御について説明する。図2(a)は直進中の車両1の傾斜機構121を示す模式図である。図2(b)は旋回中の車両1の傾斜機構121を示す模式図である。
 直進中の車両1は、図2(a)に示すように傾斜角度が略0度の直立状態にある。一方、旋回中の車両1は、制御装置100が旋回制御を行うことにより、図2(b)に示すように左前輪11L及び右前輪11Rと、フレーム40すなわち車体とが、同じ傾斜角度で傾斜した傾斜状態となる。旋回を終えると、図2(b)に示す傾斜状態から図2(a)に示す直立状態へと車両1の状態が戻る。このとき、車両1の前後方向に延びる軸線Ca周りにセンターアーム620が振動することがある。センターアーム620の振動の原因としては、例えば、左緩衝装置605Lのばね要素及び右緩衝装置605Rのばね要素からセンターアーム620が力を受けることが挙げられる。この振動を低減するため、制御装置100は、傾斜アクチュエータ120を制御してセンターアーム620にトルクを作用させることができる。
 具体的には、制御装置100は、軸線Ca周りに回転するセンターアーム620の傾斜角速度を取得して、傾斜角速度に応じたトルクがセンターアーム620に作用するよう傾斜アクチュエータ120を制御する。センターアーム620が図2に示す軸線Caを中心として時計回りに回転する場合、制御装置100は、傾斜アクチュエータ120を制御して、センターアーム620に反時計回りのトルクを作用させる。センターアーム620が図2に示す軸線Caを中心として反時計回りに回転する場合、制御装置100は、傾斜アクチュエータ120を制御して、センターアーム620に時計回りのトルクを作用させる。すなわち、制御装置100は、左緩衝装置605Lのばね要素及び右緩衝装置605Rのばね要素に起因する振動を低減するためのトルクである傾斜角速度抑制トルクを、傾斜アクチュエータ120から出力して、タワー型部材であるセンターアーム620に付与する。これにより、センターアーム620の振動を低減することができる。なお、傾斜角速度の取得方法は従来知られているため説明は省略するが、ポテンショメータ、ジャイロ、IMU等を利用して傾斜角速度が検出される。例えば、回動するセンターアーム620の傾斜角度の変化をポテンショメータによって検出して微分演算を行うことにより、センターアーム620の傾斜角速度を取得することができる。
 図2(c)は、センターアーム620の傾斜角速度と、傾斜アクチュエータ120がセンターアーム620に付与する傾斜角速度抑制トルクの関係を示す図である。傾斜角速度の値が大きくなるほど傾斜アクチュエータ120からセンターアーム620に付与する傾斜角速度抑制トルクの値も大きくなる。例えば傾斜角速度の増加に比例して傾斜角速度抑制トルクの値が増加する。
 図2(c)では、傾斜角速度抑制制御の実行時に傾斜アクチュエータ120がセンターアーム120に付与する傾斜角速度抑制トルクが、傾斜角速度に応じて直線的に設定された例を示した。しかし、図2(c)は例示であって、傾斜角速度抑制トルクの設定を限定するものではない。図3は、傾斜角速度と傾斜角速度抑制トルクの別の設定例を示す図である。図3は、図2(c)の設定例を含む複数の設定例を示している。図3に各実線で示すように、傾斜角速度抑制トルクが、直線状ではなく、ステップ状に設定されていてもよいし、曲線状で設定されていてもよい。いずれの場合も、傾斜角速度が大きい場合には傾斜角速度が小さい場合に比べて、傾斜角速度抑制トルクが同じか大きくなるように設定されている。傾斜角速度抑制トルクと傾斜角速度との関係は、例えば車両1の特性に応じて適宜設定すればよい。
 本実施形態において、傾斜角速度抑制制御の実行時に傾斜アクチュエータ120がセンターアーム120に付与する傾斜角速度抑制トルクの値は、車両1の傾斜角度にも基づいて定められる。図4は、車両1の傾斜角度と傾斜角速度抑制トルクとの関係を示す図である。図4は、複数の設定例を示している。図4に各実線で示すように、車両1の傾斜角度に対して、傾斜角速度抑制トルクが2段又は3段以上のステップ状に設定されていてもよいし、曲線状に設定されていてもよい。いずれの場合も、傾斜角度が小さい場合には傾斜角度が大きい場合に比べて、傾斜角速度抑制トルクが同じか大きくなるように設定されている。
 図5は、傾斜角速度、傾斜角度及び傾斜角速度抑制トルクの関係を示す図である。図5に示す実線は、傾斜角速度に対するトルクの複数の設定例を示している。図5に示すデータ701~704は、データ701、702、703、704の順に、車両1の傾斜角度が大きい関係にある。
 具体的には、例えば車両1の傾斜角度が第1の角度である場合に、制御装置100は、データ701を利用して、センターアーム620の傾斜角速度に基づく傾斜角速度抑制トルクを決定し、決定したトルクをセンターアーム620に付与するように傾斜アクチュエータ120を制御する。車両1の傾斜角度が、第1の角度より大きい第2の角度である場合は、データ702を利用して、センターアーム620の傾斜角速度に基づく傾斜角速度抑制トルクが決定されて傾斜角速度抑制制御が実行される。同様に、車両1の傾斜角度が、第2の角度より大きい第3の角度である場合はデータ703を利用して傾斜角速度抑制制御が実行されて、第3の角度より大きい第4の角度である場合はデータ704を利用して傾斜角速度抑制制御が実行される。
 説明のため、傾斜角速度が第1の傾斜角速度であるときの傾斜角速度抑制トルクの値と、傾斜角速度が第1の傾斜角速度よりも小さな第2の傾斜角速度であるときの傾斜角速度抑制トルクの値との差分を差分トルク値と定義する。図5に示すように、傾斜角度が大きい場合の差分トルク値よりも、傾斜角度が小さい場合の差分トルク値が大きくなるように、傾斜アクチュエータ120が制御される。すなわち、データ701~704で示すように、傾斜角度が大きいほど、データの傾きが小さくなるように設定されており、傾斜角速度抑制制御では、車両1の傾斜角度に応じたデータを利用して、センターアーム120の傾斜角速度に基づくトルクが決定されるようになっている。なお、図5では傾斜角速度と傾斜角速度抑制トルクが比例する場合を例に説明したが、図3に示した通り、傾斜角速度と傾斜角速度抑制トルクとの関係は比例関係に限定されない。
 制御装置100が傾斜角速度抑制制御を実行する車両1の車速域は特に限定されず、全車速域であってもよいし一部の車速域であってもよい。車速が低いときほど、車両1に生じる振動に対する左緩衝装置605L及び右緩衝装置605Rのばね要素に起因する振動の影響は大きくなる傾向がある。したがって、制御装置100は、少なくとも車速の低い所定車速域で傾斜角速度抑制制御を実行すればよい。
 上述した通り、傾斜角度抑制制御においては、車両1の傾斜角度が小さい場合に、傾斜角度が大きい場合に比べて大きな傾斜角速度抑制トルクがセンターアーム620に付与されるように、制御装置100が傾斜アクチュエータ120を制御する。すなわち、車両1の傾斜角度の減少に伴い車両が傾斜状態から直立状態へ近づくほど、振動を低減するためにセンターアーム620に付与される傾斜角速度抑制トルクが大きくなるように設定情報が準備される。
 例えば傾斜アクチュエータ120として電気モータを利用することが考えられる。電気モータの出力トルクは電気モータに流れる電流値と比例関係を有するため、図2(c)、図3~図5の縦軸は、傾斜アクチュエータ120に流れる電流値と読み替えることができる。すなわち、制御装置100は、車両1の傾斜角度及び傾斜角速度に応じて、傾斜アクチュエータ120に流れる電流値を変更する制御を行うことによって、傾斜角速度抑制制御を実行することができる。
 他の実施形態として、車両1の制御装置100は、傾斜角度及び傾斜角速度に応じて傾斜アクチュエータ120を制御するとともに、車両1が不釣合旋回状態で旋回するように傾斜アクチュエータ120及び操舵アクチュエータ110を制御してもよい。以下、図6~図16を参照して、車両1の不釣合旋回制御及び車両1の構成について説明する。
 図6は、車両1の不釣合旋回制御を説明するための図である。釣合旋回状態を、旋回時に地面に垂直な垂直軸との間でなす車両1の傾斜角度Bを、車両1の重心に作用する旋回外方向の遠心力と重力との合力が垂直軸との間でなす角度とするような旋回状態と定義する。釣合旋回状態で旋回する従来車両は、図6(a)に示すように、重力と旋回外方向の遠心力(図中「横加速度G1」)の合力と、地面と垂直な垂直軸(図中「0度」)との間の角度が、車両の傾斜角度B1となるように旋回する。例えば略水平な地面を走行する従来車両は、合力ベクトルと重力ベクトルとの間の角度が、車両の傾斜角度B1と同一になるように旋回する。
 一方、車両1は、制御装置100が実行する不釣合旋回制御により、釣合旋回状態で作用する横加速度よりも大きな横加速度が車両1に作用する不釣合旋回状態で旋回する。例えば車速に応じた横加速度が予め設定情報として準備され、制御装置100は、設定情報に基づいて、車両1の横加速度が車速に応じた値となるように不釣合旋回制御を実行する。図6(b)は、不釣合旋回状態で旋回する車両を示す。図6(b)に示すように、制御装置100が実行する不釣合旋回制御により、釣合旋回状態で作用する横加速度G1よりも大きな横加速度G2が発生する不釣合旋回状態で車両1が旋回する。不釣合旋回状態では、重力と旋回外方向の遠心力(図中「横加速度G2」)の合力と、地面と垂直な垂直軸との間の角度が、車両の傾斜角度B1とは異なる角度となる。例えば略水平な地面を走行し且つ不釣合旋回状態で旋回する車両1は、合力ベクトルと重力ベクトルとの間の角度が、車両の傾斜角度B1よりも大きな角度となるように旋回する。
する。
 例えば、慣性計測装置(IMU)等の計測装置を利用すると、車両1の重心に作用する横加速度及び車両1の傾斜角度を取得することができる。釣合旋回状態時の車両1に作用する横加速度は、計測装置で取得した傾斜角度から算出することができる。制御装置100による不釣合旋回制御が実行された場合、計測装置で得られる横加速度は、傾斜角度に基づいて算出された横加速度よりも大きな値となる。傾斜角度の実測値から算出した横加速度と、横加速度の実測値とを比較ことにより、車両1が不釣合旋回状態で旋回していることを確認することができる。すなわち、同様の方法により、制御装置100による不釣合旋回制御が実行されていることを確認することができる。
<車両の旋回動作>
 図7は、制御装置100による操舵角度の制御を説明するための図である。図7(a)~(c)はそれぞれ、直進時、釣合旋回時、不釣合旋回制御時の車両1の上面図を示している。図8は、制御装置100による傾斜角度の制御を説明するための図である。図8(a)~(c)はそれぞれ、直進時、釣合旋回時、不釣合旋回制御時の車両1の正面図を示している。図8(a)~(c)はそれぞれ、図7(a)~(c)に示す車両1の正面図を示している。釣合旋回時が、従来車両の釣合旋回状態を示し、不釣合旋回制御時が車両1の不釣合旋回状態を示している。以下、操舵アクチュエータ110を操舵機構駆動部110、傾斜アクチュエータ120を傾斜機構駆動部120と記載する場合がある。
 車両1は、操舵輪である2つの前輪11(11L、11R)と、駆動輪である1つの後輪12と、フレーム40と、原動機50と、シート60と、動力伝達部70とを含む。車両1は、乗員がシート60に跨がって乗車する鞍乗り型車両である。フレーム40に支持された原動機50が動力伝達部70を介して後輪12を駆動することにより、路面700に接地した前輪11及び後輪12を回転させながら車両1が前進する。原動機50の種類は特に限定されず、内燃機関であるエンジンであってもよいし、電気モータであってもよいし、エンジン及び電気モータを含むハイブリッド型原動機であってもよい。動力伝達部70の構成も特に限定されず、ドライブチェーンを含む構成であってもよいし、ドライブシャフトを含む構成であってもよい。
 車両1は、ハンドル30と、制御装置100と、操舵装置10と、傾斜装置20とを含む。操舵装置10は、操舵機構111(図13参照)及び操舵機構駆動部110を含む。傾斜装置20は、傾斜機構121(図13参照)及び傾斜機構駆動部120を含む。例えば、電気モータから成る傾斜アクチュエータが、傾斜機構駆動部120として利用される。同様に、例えば電気モータから成る操舵アクチュエータが、操舵機構駆動部110として利用される。
 乗員は、旋回操作時に、前輪11の操舵角度及び車両1の傾斜角度を変更するためにハンドル30を操作する。ハンドル30は旋回操作入力装置として機能する。乗員は、ハンドル30を左又は右へ回す旋回操作を行って、操舵輪である前輪11の向きを進行方向左又は右へ変更すると共に車両1を旋回中心側へ傾斜させることにより、車両1を旋回させることができる。本実施形態で車両1に関して言う左右方向は、車両1の乗員から見た左右方向である。
 操舵機構111は、2つの前輪11の向きを同じ方向へ変更することができる。操舵機構111は、操舵機構駆動部110による駆動に応じて、前輪11の操舵角度を変更する。操舵機構駆動部110は、操舵機構111を駆動して、2つの前輪11の向きを左方向へ変更することもできるし右方向へ変更することもできる。図7に示すように、操舵角度A(A1、A2)は、直進中の前輪11の向きを0度として、進行方向左又は右へと変更された前輪11の向きを示す。
 傾斜機構121は、車両1の傾斜角度を変更して左へ傾けることもできるし右へ傾けることもできる。傾斜機構121は、傾斜機構駆動部120による駆動に応じて、車両1の傾斜角度を変更する。傾斜機構駆動部120は、傾斜機構121を駆動して、車両1の傾斜角度を大きくすることもできるし小さくすることもできる。車両1が傾斜する際には、車体、すなわち前輪11及び後輪12を含む車両1全体が同じ傾斜角度で傾斜する。このため、図8に示すように、傾斜角度B(B1、B2)は、直進中の前輪11の角度を0度として、左側又は右側への前輪11の傾きによって示すことができる。例えば、路面700に垂直な方向を0度として路面700に対する前輪11の傾きが、車両1の傾斜角度Bとなる。
 車両1は、ハンドル30と前輪11との間が切り離されたステアバイワイヤ式の車両である。乗員がハンドル30を回すと、制御装置100が、乗員によるハンドル操作量としてハンドル角度を検出する。図7に示すように、ハンドル角度C(C1)は、直進中のハンドル30の向きを0度として、乗員がハンドル30を回した操作量を示している。
 制御装置100は、車両1の状態を示す車両情報を取得することができる。車両情報には、ハンドル角度及び傾斜角度が含まれる。例えば、停車時(車速ゼロ)に、乗員がハンドル30を右へ回してハンドル角度Cを10度にすると、これを検知した制御装置100が操舵装置10を制御して、前輪11の操舵角度Aを10度にする。具体的には、制御装置100が、操舵機構駆動部110を制御して操舵機構111を駆動することにより、前輪11が右を向いて操舵角度Aが10度になる。
 直進走行中に乗員が車両1の旋回を開始すると、制御装置100は、車両1の不釣合旋回制御を実行する。不釣合旋回制御は、旋回中の車両1の重心に作用する横加速度を、釣合旋回時(釣合旋回状態)の横加速度より大きな横加速度にした状態で車両1を旋回させる制御である。不釣合旋回制御では、横加速度を釣合旋回時の横加速度よりも大きな横加速度とするために、操舵角度が釣合旋回時の操舵角度よりも大きな操舵角度になるように制御される。
 車速に応じて設定された横加速度を含む設定情報が予め準備されており、制御装置100は、設定情報を参照して、車両1の横加速度を決定する。制御装置100は、車両1の重心に作用する横加速度が、決定した横加速度になるよう操舵装置10及び傾斜装置20を制御する。
<不釣合旋回制御>
 図7(a)及び図8(a)に示すように、直進走行中は、ハンドル角度、操舵角度及び傾斜角度が0度で、車両1に横加速度は生じていない。乗員がハンドル30を操作して、図7(b)、図7(c)に示すようにハンドル角度をC1にすると、車両1は旋回する。釣合旋回時においては、図7(b)に示すように、制御装置100が操舵装置10を制御することにより前輪11の操舵角度がA1になる。このときの操舵角度A1はハンドル角度C1と等しい(A1=C1)。また、乗員のハンドル操作に応じて、図8(b)に示すように車両1が旋回中心側へ傾いて傾斜角度がB1になる。上述した通り、釣合旋回時においては、車両1の傾斜角度B1は、車両1の重心に作用する旋回外方向の遠心力(横加速度G1)と重力との合力が垂直軸との間でなす角度となる。なお、釣合旋回時における操舵角度A1は、ハンドル角度C1と必ずしも等しくなくてもよく、操舵角度A1をハンドル角度より大きくすることや小さくすることも可能である。
 制御装置100が不釣合旋回制御に利用する設定情報は予め準備されている。設定情報は、車速と横加速度の対応を示すデータを含む。制御装置100は、設定情報を利用して、車両1の重心に作用させる横加速度を決定する。乗員がハンドル30を操作して車両1の旋回を開始したことを検知した制御装置100は、車両1の車速に基づいて設定情報を参照し、車両1の重心に作用させる横加速度を決定する。
 制御装置100は、旋回中の前輪11の操舵角度を、ハンドル角度と同一の角度からよりも大きい角度にする切り増し制御を行うことができる。不釣合旋回制御において、制御装置100は、操舵機構駆動部110を制御して操舵機構111を駆動し、図7(c)に示すように、前輪11の操舵角度を、釣合旋回時の操舵角度A1よりも大きな操舵角度A2に設定する(A2>A1)。すなわち、図7(c)に示すように、不釣合旋回制御時においては、車両1は、釣合旋回時の操舵角度よりも操舵角度が増加した舵角追加旋回状態で旋回する。
 舵角追加旋回状態で旋回する不釣合旋回制御時においては、図6(b)に示すように、車両1の重心に作用する横加速度と重力の合力ベクトルが地面に対する垂直軸との間でなす角度は、車両1の傾斜角度よりも大きくなる。したがって、車両1には、傾斜角度を減少させる力が作用する。制御装置100は、傾斜機構駆動部120を制御して傾斜機構121を駆動することにより、この変化を抑制する。具体的には、制御装置100は、傾斜機構121が傾斜角度B1を維持するように傾斜機構駆動部120を制御することができる。すなわち、制御装置100は、図8(c)に示す不釣合旋回制御時の傾斜角度B2が、釣合旋回時の傾斜角度B1と同じ角度になるように制御を行う。
 このように、制御装置100は、釣合旋回時における操舵角度よりも大きな操舵角度となるように操舵機構駆動部110を制御して、車両1の重心に作用する横加速度を横加速度G2にする。また、制御装置100は、操舵角度が釣合旋回時の操舵角度よりも大きいことに伴って生ずる車両1の傾斜角度の変化を抑制することができる。
 図9は、傾斜車両の不釣合旋回制御を行って得られた横加速度の実測値の例を示す図である。制御装置100は、釣合旋回状態の車両1に作用する横加速度よりも大きな横加速度が車両1に作用する不釣合旋回制御を実施すると共に、車両1の最高速度までの速度域を5等分した領域を定義した場合に、最高速度域における車速変化に対する不釣合旋回状態の大きな横加速度の変化率が、最低速度域における車速変化に対する不釣合旋回状態の大きな横加速度の変化率よりも小さくなるように操舵装置10及び傾斜装置20を制御する。最高速度域における横加速度の増加率の平均値は、最低速度域における横加速度の増加率の平均値より小さくなる。また、最低速度域の横加速度の平均値は、最高速度域の横加速度の平均値より小さい値となる。本実施形態においては、図9に示すように、不釣合旋回状態における横加速度は、車両1の車速が最高速度Vmaxに近づくにつれて一定の値になるように制御される。
 図9に破線で示すデータ210aは、制御装置100が不釣合旋回制御を行って車両1の重心に作用させる横加速度を示している。図9に実線で示すデータ210bは、制御装置100による不釣合旋回制御時に、車両1の重心に作用する横加速度を実測した値の例を示している。横加速度の実測値は、乗員の体重、路面の状況、風向、風速、車両1の装備、車両1のセッティング状況等、様々な要因によって変化する。このため、図9に示すように、予め設定された横加速度のデータ210aと、横加速度を実測したデータ210bとが一致しない場合もある。本実施形態で言う制御装置100による不釣合旋回制御は、車両1で実測した横加速度の値が、予め設定されたデータ210aの横加速度と一致する制御のみに限定されるものではない。制御装置100による不釣合旋回制御には、データ210bで示すように、車両1の横加速度の実測値が、設定情報で設定されたデータ210aと異なる値を示す制御も含まれる。
 以下、説明を簡単にするため、制御装置100が不釣合旋回制御を行って車両1の重心に作用させる横加速度を目標横加速度、目標横加速度を得るための車両1の操舵角度及び傾斜角度をそれぞれ目標操舵角度及び目標傾斜角度と記載して説明を続ける。図10は、車両1の重心に作用する横加速度を目標横加速度にするための操舵角度及び傾斜角度の決定方法を説明するための図である。図10(a)~(c)の横軸のVmaxは車両1の最高速度を示している。なお、本実施形態で言う車両1の最高速度Vmaxは、車両1の実際の最高速度と同一又は実際の最高速度よりも高い速度に設定されている。例えば、最高速度は、設計値であってもよいし、車両1の最高速度を実測した値であってもよいし、設計値又は実測値に基づいて設定された値であってもよい。
 図10(a)に示す実線のデータ210は、目標横加速度を示すデータである。横加速度0~Ac1の間で、車速に応じた目標横加速度が予め設定されている。図10(b)に示す実線のデータ220は、目標操舵角度を示している。操舵角度0~D1の間で、車速に応じた目標操舵角度が予め設定されている。図10(c)の実線は、目標傾斜角度を示している。傾斜角度0~D2の間で、車速に応じた目標傾斜角度が予め設定されている。
 図10(a)の破線は、釣合旋回時の横加速度を示している。実線のデータ220で示す目標横加速度は、車速が低い領域での釣合旋回時の横加速度と目標横加速度との差が、車速が高い領域での釣合旋回時の横加速度と目標横加速度との差よりも小さくなるように設定されている。また、不釣合旋回状態において車両1に作用する横加速度に対応する目標横加速度と、釣合旋回時において車両1に作用する横加速度との差を差分横加速度と定義した場合、最高速度域における車速変化に対する差分横加速度の変化率が、最低速度域における車速変化に対する差分横加速度の変化率よりも小さくなるように、目標横加速度が設定されている。図10(b)の破線は釣合旋回時の操舵角度を示している。実線のデータ220で示す目標操舵角度は、車速が0(ゼロ)から所定速度までの一部の速度域で釣合旋回時の操舵角度と同一の値となり、他の速度域では釣合旋回時の操舵角度より大きく、車速が高いほど目標操舵角度との差が小さくなる。図10(c)には釣合旋回時の傾斜角度を示していないが、制御装置100が釣合旋回時の傾斜角度を維持する不釣合旋回制御を行う場合、図10(c)に示す目標傾斜角度が釣合旋回時の傾斜角度と一致することになる。
 車速が高い場合、車速が低い場合に比べて前輪11の操舵角度を小さく傾斜角度を大きくして車両1が旋回する。言い換えると、車速が低い場合、車速が高い場合に比べて前輪11の操舵角度を大きく傾斜角度を小さくして車両1が旋回する。このため、車速が高くなるほど、目標操舵角度は小さくなり、目標傾斜角度は大きくなっている。
 図10(a)は、制御装置100が不釣合旋回制御時に横加速度を決定するための設定情報の例を示す図である。制御装置100は、不釣合旋回中の車両1の重心に目標横加速度が作用するように、操舵装置10及び傾斜装置20を制御する。例えば、制御装置100は、車両1の横加速度を取得して、この横加速度が目標横加速度となるように操舵装置10及び傾斜装置20を制御すればよい。これにより車両1の操舵角度が目標操舵角度となり傾斜角度が目標傾斜角度となる。車両1の左右方向の加速度である横加速度を取得する方法は従来知られているため詳細は省略するが、例えば、静電容量型センサ、ピエゾ抵抗型センサ、圧電型センサ、慣性計測装置(IMU)等を利用して、車両1の重心に作用する横加速度を取得すればよい。
 制御装置100が利用する設定情報が、図10(a)に示すデータ210に代えて又は加えて、図10(b)に示すデータ220と、図10(c)に示すデータ230とを含んでいてもよい。この場合、制御装置100は、車両1の車速に基づいてデータ220、230を参照することにより、目標操舵角度及び目標傾斜角度を決定することができる。制御装置100が、操舵装置10を制御して前輪11の操舵角度を目標操舵角度とし、傾斜装置20を制御して車両1の傾斜角度を目標傾斜角度とすることで、車両1の重心に作用する横加速度を、車速に対応する目標横加速度とすることができる。
 図11は、車両1の重心に作用する横加速度を目標横加速度にするための操舵角度及び傾斜角度の別の決定方法を説明するための図である。図11に示す目標操舵角度のデータ221及び目標傾斜角度のデータ231は、図10に示すデータ210、220、230から得られるデータである。図11(a)に示す目標横加速度Ac1及び目標操舵角度D1はそれぞれ、図10(a)に示す横加速度Ac1及び図10(b)に示す操舵角度D1に対応している。図11(b)に示す目標横加速度Ac1及び目標傾斜角度D2はそれぞれ、図10(a)に示す横加速度Ac1及び図10(c)に示す傾斜角度D2に対応している。
 図11(a)のデータ221は、目標操舵角度と目標横加速度との対応を示している。目標横加速度が小さくなるほど目標操舵角度が大きくなる。言い換えると目標横加速度が大きくなるほど目標操舵角度が小さくなる。図11(b)のデータ231は、目標傾斜角度と目標横加速度との対応を示している。目標横加速度が大きくなるほど目標傾斜角度が大きくなる。言い換えると目標横加速度が小さくなるほど目標傾斜角度が小さくなる。
 制御装置100が利用する設定情報が、図10(a)に示すデータ210と、図11(a)に示すデータ221及び図11(b)に示すデータ231とを含んでいてもよい。この場合、車両1の車速に基づいて図10(a)のデータ210を参照して目標横加速度を決定した制御装置100は、この目標横加速度に基づいて、図11(a)のデータ221から目標操舵角度を決定し、図11(b)のデータ231から目標傾斜角度を決定することができる。制御装置100が、操舵装置10及び傾斜装置20を制御して、車両1の操舵角度及び傾斜角度をそれぞれ目標操舵角度及び目標傾斜角度とすることで、車両1の重心に作用する横加速度を目標横加速度とすることができる。
<傾斜車両の具体例>
 次に、車両1で行われる不釣合旋回制御を、具体例を挙げて説明する。図12は、車両1の具体例を示す図である。図13は、操舵装置10、傾斜装置20及び制御装置100の具体例を説明するための図である。図13に示す例では、操舵機構駆動部として機能する操舵アクチュエータ110によって操舵機構111が駆動され、傾斜機構駆動部として機能する傾斜アクチュエータ120によって傾斜機構121が駆動される。
 図12及び図13に示す車両1は、ハンドル30よりも前方にあるフレーム40に、ダブルウィッシュボーン型の傾斜機構121を有している。このような車両1の構造及び動作は、例えば本願出願人による国際公開2017/082426号公報等に開示されているため詳細な説明は省略する。
 図13に示すように、傾斜機構121は、左上アーム601L及び左下アーム602Lと、右上アーム601R及び右下アーム602Rとを含む。左上アーム601L及び左下アーム602Lは、それぞれの右端部がフレーム40に回転可能に接続され、それぞれの左端部が左部材603Lの上端部及び下端部に回転可能に接続されている。右上アーム601R及び右下アーム602Rは、それぞれの左端部がフレーム40に回転可能に接続され、それぞれの右端部が右部材603Rの上端部及び下端部に回転可能に接続されている。左前輪11Lは左部材603Lに回転可能に接続され、右前輪11Rは右部材603Rに回転可能に接続されている。これにより、左前輪11L及び右前輪11Rのフレーム40に対する上下移動が可能となっている。
 左下アーム602Lを形成するクロスバーに左緩衝装置605Lの下端部が回転可能に接続されている。このクロスバーに左ロッド610Lの一端が回転可能に接続され、左ロッド610Lの他端は、連結機構630の右端部に回転可能に接続されている。右下アーム602Rを形成するクロスバーに右緩衝装置605Rの下端部が回転可能に接続されている。このクロスバーに右ロッド610Rの一端が回転可能に接続され、右ロッド610Rの他端は、連結機構630の左端部に回転可能に接続されている。また、左緩衝装置605Lの上端部は連結機構630の左端部と回転可能に接続され、右緩衝装置605Rの上端部は連結機構630の右端部と回転可能に接続されている。2つの緩衝装置605L、605Rは、従来車両で所謂フロントサスペンションとして知られている装置であるため詳細な説明は省略するが、スプリング(ばね要素)及びダンパーを含み、走行時に路面から受ける衝撃及び振動を緩和するために利用される。
 連結機構630の中央部には、センターアーム620の上端部が回転可能に接続されている。センターアーム620の下端部はフレーム40に回転可能に接続されている。連結機構630が、センターアーム620との接続部を中心に左右に揺動することにより、左前輪11Lの上方への動きが右前輪11Rの下方への動きとして伝達され、右前輪11Rの上方への動きが左前輪11Lの下方への動きとして伝達される。左前輪11Lが上方へ右前輪11Rが下方へと動くことにより前輪11及び車両1が左に傾斜し、右前輪11Rが上方へ左前輪11Lが下方へ動くことにより前輪11及び車両1が右に傾斜する。
 フレーム40に固定された傾斜アクチュエータ120が、センターアーム620を回転駆動することにより、センターアーム620がその下端部を中心に回動するようになっている。センターアーム620が回動すると、連結機構630を介して左前輪11L及び右前輪11Rのフレーム40に対する車体上下方向の相対位置が変化する。センターアーム620の回動により、センターアーム620とフレーム40とが相対回転することで、図1で説明したように、車体と左前輪11L及び右前輪11Rとが同じ傾斜角度で傾斜する。制御装置100は、傾斜アクチュエータ120を介してセンターアーム620の回転方向及び回転角度を制御することにより、車両1の傾斜角度を制御することができる。
 車両1を左方向に旋回させる場合、傾斜アクチュエータ120が、左前輪11L及び右前輪11Rを左方向に傾斜させる。車両1を右方向に旋回させる場合は、傾斜アクチュエータ120が、左前輪11L及び右前輪11Rが右方向に傾斜させる。例えば、フレーム40に固定された電気モータが、傾斜アクチュエータ120として利用される。傾斜アクチュエータ制御部105が、傾斜機構121に接続された電気モータの出力軸の回転方向及び回転角度を制御することにより、車両1の傾斜角度を制御することができる。傾斜アクチュエータ120の制御は、例えば、傾斜アクチュエータ120の出力トルク(傾斜トルク)を制御することによって行われる。
 図13に示すように、車両1の操舵機構111は、ステアリングシャフト401と、左タイロッド402L及び右タイロッド402Rとを含む。ステアリングシャフト401と、左前輪11Lを支持する左部材603Lとが左タイロッド402Lによって接続されている。ステアリングシャフト401と、右前輪11Rを支持する右部材603Rとが右タイロッド402Rによって接続されている。ステアリングシャフト401は、ハンドル30と機械的に接続されていない。乗員がハンドル30を回すと、制御装置100が、操舵アクチュエータ110を制御し、ステアリングシャフト401を介して左タイロッド402L及び右タイロッド402Rを動かすことにより、左前輪11Lが図13に示す軸線C2a回りに回転し、右前輪11Rが軸線C2b回りに回転する。制御装置100は、操舵アクチュエータ110を介して左タイロッド402L及び右タイロッド402Rの移動方向及び移動量を制御することにより、前輪11の操舵角度を制御することができる。
 車両1を左方向に旋回させる場合、操舵アクチュエータ110が、左前輪11L及び右前輪11Rが左方向に向くように左タイロッド402L及び右タイロッド402Rを移動させる。車両1を右方向に旋回させる場合は、操舵アクチュエータ110が、左前輪11L及び右前輪11Rが右方向に向くように左タイロッド402L及び右タイロッド402Rを移動させる。
 例えば、フレーム40に固定された電気モータが、操舵アクチュエータ110として利用される。操舵アクチュエータ制御部103が、ステアリングシャフト401に接続された電気モータの出力軸の回転方向及び回転角度を制御することにより、操舵角度を制御することができる。操舵アクチュエータ110の制御は、例えば、操舵アクチュエータ110の出力トルク(操舵トルク)を制御することによって行われる。
 制御装置100は、車両情報取得部101、操舵角度決定部102、操舵アクチュエータ制御部103、傾斜角度決定部104及び傾斜アクチュエータ制御部105を含む。車両1には、車速を検出する車速検出装置301が設けられ、車両情報取得部101は、車速検出装置301から車速を取得する。車速検出装置301は従来知られているため説明は省略するが、例えば、回転センサを利用して取得した車輪11、12の回転速度と車輪11、12の外径とに基づいて車速が検出される。
 乗員がハンドル30を回して旋回操作を開始すると、車両1の不釣合旋回制御が開始される。車両情報取得部101は、車速検出装置301から車両1の車速を取得する。操舵角度決定部102は、車両情報取得部101が取得した車速に基づいて目標横加速度を決定し、この目標横加速度に対応する目標操舵角度を決定する。操舵アクチュエータ制御部103は、前輪11の操舵角度が、操舵角度決定部102が決定した目標操舵角度となるように、操舵機構111を駆動する操舵アクチュエータ110を制御する。
 また、傾斜角度決定部104は、車両情報取得部101が取得した車速に基づいて目標横加速度を決定し、この目標横加速度に対応する目標傾斜角度を決定する。傾斜アクチュエータ制御部105は、車両1の傾斜角度が、傾斜角度決定部104が決定した目標傾斜角度となるように、傾斜機構121を駆動する傾斜アクチュエータ120を制御する。例えば、不釣合旋回によって車両1の操舵角度が釣合旋回時の操舵角度よりも大きな角度に制御されると、車両1には旋回外側へ車両1を起こそうとする力が作用する。傾斜アクチュエータ制御部105は、傾斜状態の車両1が旋回外側へ起きないように、傾斜アクチュエータ120を制御する。
 この結果、上述したように、前輪11の操舵角度が、釣合旋回時の操舵角度よりも大きな目標操舵角度となり、車両1の傾斜角度が目標傾斜角度に維持された状態で、車両1の重心に作用する横加速度が目標横加速度となって車両1が旋回する。
 図14は、傾斜機構121を駆動する傾斜アクチュエータ120の動作を説明するための図である。傾斜アクチュエータ120は、傾斜機構121にトルクをかけることにより、車両1の傾斜角度を変更する。例えば、傾斜アクチュエータ120として機能する電気モータの出力軸の回転方向及び出力トルクを制御することにより車両1の傾斜角度が変更される。出力軸の出力トルクの値は、電気モータに付与する電流値と比例関係を有する値である。
 車両1の車速が高いと、車速が低い場合に比べて、旋回を開始した車両1の重心に作用する横加速度が大きくなる。また、車両1の車速が高いと、車速が低い場合に比べて、旋回中に操舵角度を増加させることによって発生する、車両1を起こそうとする力、も大きくなる。従って、車両1の傾斜角度を目標傾斜角度に維持するために、傾斜アクチュエータ120のトルクも大きくする必要がある。このため、図14に示すように、制御装置100は、車両1の重心に作用する横加速度が大きいほどトルクが大きくなるように傾斜アクチュエータ120を制御する。なお、図14は横加速度とトルクとの関係が直線状に変化する例を示しているが、これは例示であって、横加速度とトルクとの関係がこれに限定されるものではない。
 なお、図13に示す車両情報取得部101と、操舵角度決定部102及び傾斜角度決定部104との間に、横加速度決定部が設けられていてもよい。この場合、横加速度決定部が車速に応じた目標横加速度を決定し、この目標横加速度に基づいて、操舵角度決定部102が目標操舵角度を決定し、傾斜角度決定部104が目標傾斜角度を決定すればよい。
 目標傾斜角度とするために傾斜アクチュエータ制御部105が傾斜アクチュエータ120の制御を開始するタイミングが、目標操舵角度とするために操舵アクチュエータ制御部103が操舵アクチュエータ110の制御を開始するタイミングよりも先であってもよい。傾斜アクチュエータ制御部105が、傾斜アクチュエータ120を制御する際の制御ゲインが、操舵アクチュエータ制御部103が、操舵アクチュエータ110を制御する際の制御ゲインより大きく設定されていてもよい。言い換えれば、車両1の旋回完了後に、傾斜角度を直進時の0度に戻す動作と、操舵角度を直進時の0度に戻す動作とを比べた際に、傾斜角度を0度に戻す動作が先に終了するように、制御タイミング及び制御ゲインが設定される態様であってもよい。
 制御装置100が、車速及びハンドル角度に基づいて、前輪11の操舵角度及び傾斜角度を制御する態様であってもよい。図15は、車速及びハンドル角度を利用して行われる不釣合旋回制御の例を説明するための図である。図15(a)に示す車両情報取得部101は、車速検出装置301から車速を取得すると共に、ハンドル角度検出装置302からハンドル角度を取得する。ハンドル角度検出装置302は従来知られているため説明は省略するが、例えば、角度センサやエンコーダ等を利用してハンドル角度が検出される。
 図15(b)は、車速及びハンドル角度に基づいて不釣合旋回制御を行う際に利用される設定情報の例を示す図である。ハンドル角度によって目標横加速度が異なる複数のデータ240(240a~240c)が予め準備されている。図15(b)には3つのデータ240a~240cの例を示しているが、目標横加速度のデータ240はハンドル角度毎に準備されている。
 ハンドル角度が大きいほど目標横加速度が大きい値に設定される。ハンドル角度がH1、H2、H3と大きくなる場合(H1<H2<H3)、図15(b)に示すように、ハンドル角度H3の目標横加速度のデータ240aは、最高速度Vmax迄の全速度域で、ハンドル角度H2の目標横加速度のデータ40bより大きい値に設定される。同様に、ハンドル角度H2の目標横加速度のデータ240bは、ハンドル角度H1の目標横加速度のデータ240cより大きい値に設定される。
 例えば、図15(b)に示すように、各データ240の目標横加速度は、車両1の車速が0(ゼロ)から最高速度Vmaxまでの速度域を5等分した領域を定義した場合に、最高速度域の車速変化に対する目標横加速度の変化率が、最低速度域の車速変化に対する目標横加速度の変化率よりも小さくなるように設定されている。最高速度域における横加速度の増加率の平均値は、最低速度域における横加速度の増加率の平均値より小さくなる。また、各データ240は、最低速度域の目標横加速度の平均値が、最高速度域の目標横加速度の平均値より小さくなるように設定されている。各データ240は、最低速度域を含む車速が低い速度域で横加速度が徐々に増加して、最高速度域を含む車速が高い速度域では横加速度が一定の値になるよう設定されている。各データ240は、ハンドル角度が大きいほど目標横加速度が大きくなるように設定されている。
 乗員がハンドル30を回して旋回操作を開始すると、車両1の不釣合旋回制御が開始される。車両情報取得部101は、車速検出装置301から車両1の車速を取得して、ハンドル角度検出装置302からハンドル角度を取得する。操舵角度決定部102は、複数のデータ240の中から、車両情報取得部101が取得したハンドル角度に対応するデータ240を選択する。操舵角度決定部102は、選択したデータ240を参照して、車両情報取得部101が取得した車速に基づいて目標横加速度を決定し、この目標横加速度に対応する目標操舵角度を決定する。操舵アクチュエータ制御部103は、前輪11の操舵角度が目標操舵角度となるように、操舵アクチュエータ110を制御する。
 同様に、傾斜角度決定部104は、複数のデータ240の中から、車両情報取得部101が取得したハンドル角度に対応するデータ240を選択する。傾斜角度決定部104は、選択したデータ240を参照して、車両情報取得部101が取得した車速に基づいて目標横加速度を決定し、この目標横加速度に対応する目標傾斜角度を決定する。傾斜アクチュエータ制御部105は、車両1の傾斜角度が目標傾斜角度となるように、操舵アクチュエータ110を制御する。
 この結果、上述したように、前輪11の操舵角度が、釣合旋回時の操舵角度よりも大きな目標操舵角度になり、車両1の傾斜角度が目標傾斜角度に維持された状態で、車両1の重心に作用する横加速度が目標横加速度となって車両1が旋回する。
 車両情報取得部101と、操舵角度決定部102及び傾斜角度決定部104との間に、横加速度決定部が設けられていてもよい。この場合、横加速度決定部が、ハンドル角度に応じたデータ240を選択して、このデータ240上で、車速に応じた目標横加速度を決定すればよい。そして、この目標横加速度に基づいて、操舵角度決定部102が目標操舵角度を決定し、傾斜角度決定部104が目標傾斜角度を決定すればよい。
 制御装置100が、車両1の操舵角度及び傾斜角度を検出しながら、操舵角度及び傾斜角度を制御するフィードバック制御を行う態様であってもよい。図16は、フィードバック制御を利用して行われる不釣合旋回制御の例を説明するための図である。図16に示す車両情報取得部101は、車速検出装置301から車速を取得して、ハンドル角度検出装置302からハンドル角度を取得する。また、車両情報取得部101は、傾斜角度検出装置303から車両1の傾斜角度を取得して、操舵角度検出装置304から前輪11の操舵角度を取得する。操舵角度検出装置304は従来知られているため説明は省略するが、例えば、角度センサやエンコーダ等を利用して操舵角度が検出される。傾斜角度検出装置303は従来知られているため説明は省略するが、例えば、角度センサ、ジャイロ、エンコーダ、IMU等を利用して車両1の傾斜角度が検出される。
 車両情報取得部101が取得した車両情報に基づいて、図13及び図15で説明したように、操舵角度決定部102によって目標操舵角度が決定されて、傾斜角度決定部104によって目標傾斜角度が決定される。
 目標操舵角度が決定されると、操舵アクチュエータ制御部103は、操舵機構111を駆動する操舵アクチュエータ110の制御を開始する。操舵アクチュエータ制御部103は、車両情報取得部101を介して、操舵角度検出装置304が検出した前輪11の操舵角度を取得することができる。操舵アクチュエータ制御部103は、前輪11の操舵角度を確認しながら、この操舵角度が目標操舵角度となるように操舵アクチュエータ110を制御する。
 また、目標傾斜角度が決定されると、傾斜アクチュエータ制御部105は、傾斜機構121を駆動する傾斜アクチュエータ120の制御を開始する。傾斜アクチュエータ制御部105は、車両情報取得部101を介して、傾斜角度検出装置303が検出した車両1の傾斜角度を取得することができる。傾斜アクチュエータ制御部105は、車両1の傾斜角度を確認しながら、この傾斜角度が目標傾斜角度となるように傾斜アクチュエータ120を制御する。
 この結果、上述したように、前輪11の操舵角度が、釣合旋回時の操舵角度よりも大きな目標操舵角度となり、車両1の傾斜角度が目標傾斜角度に維持された状態で、車両1の重心に作用する横加速度が目標横加速度となって車両1が旋回する。
 車両1は、制御装置100による不釣合旋回制御により、釣合旋回状態で旋回する従来車両に比べて、車両1に作用する横加速度が大きい状態で旋回する。不釣合旋回状態で旋回する車両1のセンターアーム620には、不釣合旋回制御によるトルクが付与される。したがって、左緩衝装置605L及び右緩衝装置605Rがセンターアーム620に支持される構成を備える車両において不釣合旋回制御を実施すると、釣合旋回状態で旋回する従来車両に比べてセンターアーム620で振動が発生しやすくなる可能性がある。しかし、上述したように傾斜角度抑制制御を実行することで、振動を効果的に低減することができる。
 本実施形態に示した車両1及び傾斜機構121は一例であって、車両1及び傾斜機構121の構造がこれらに限定されるものではない。例えば、パラレログラムリンク方式の傾斜機構を有する車両等、操舵角度及び傾斜角度を制御可能な車両であれば、上述したように不釣合旋回制御を行うことができる。また、例えば、上下方向に長いタワー型部材を、左右方向に延びるアーム型部材を介して左右の各操舵輪と接続し、タワー型部材を回転駆動するアクチュエータを制御可能な車両であれば、上述したように、タワー型部材の振動を低減するための傾斜角速度抑制制御を行うことができる。
 本実施形態では、不釣合旋回制御について、車両1を旋回状態とするまでの制御を主に説明したが、旋回を終えた後、乗員がハンドル角度を0度に戻し、制御装置100が前輪11の操舵角度及び傾斜角度を0度に戻す制御を行って車両1が直進状態に戻る。
 本実施形態では、制御装置100が、乗員による旋回操作によって生ずるハンドル角度の変化を検出して不釣合旋回制御を開始する例を説明したが、制御装置100による不釣合旋回制御が、車両1の操舵角度、傾斜角度等の変化を検出して開始される態様であってもよい。乗員が行う旋回操作には、前輪11の操舵角度を変更するための操作と、車両1の傾斜角度を変更するための操作とが含まれる。車両1が旋回する際には、ハンドル角度、すなわち前輪11の操舵角度と、車両1の傾斜角度とが変化する。制御装置100は、ハンドル角度、操舵角度、傾斜角度のうち少なくともいずれか1つが変化したことに基づいて、不釣合旋回制御の開始を決定すればよい。
 本実施形態では、車両1が、操舵輪である2つの前輪11と、駆動輪である1つの後輪12とを有する例を説明したが、車両1が、操舵輪である1つの前輪と駆動輪である2つの後輪とを有する態様であってもよいし、操舵輪である2つの前輪と駆動輪である2つの後輪とを有する態様であってもよい。また、後輪12のみが駆動される態様に限定されず、前輪11のみが駆動される態様であってもよいし、前輪11と後輪12の両方が駆動される態様であってもよい。例えば、ホイール内モータを利用すれば操舵輪の駆動も可能となる。いずれの場合も、上述したように前輪11の操舵角度及び傾斜角度を制御し、車両1の重心に作用する横加速度を目標横加速度にして車両1を旋回させることができる。
 本実施形態に示した操舵装置10の構成は例示であって、操舵輪の操舵角度を上述したように制御することができれば、操舵装置10の構成は特に限定されない。同様に、本実施形態に示した傾斜装置20の構成は例示であって、操舵輪の傾斜角度を上述したように制御することができれば、傾斜装置20の構成は特に限定されない。また、旋回中には前輪11、後輪12及び車体を含む車両1全体が同じ角度に傾斜することから、上述した例において、車両1の傾斜角度を変更する制御は、車両1の車体の傾斜角度を変更する制御に相当する。
 本実施形態では、不釣合旋回制御について、車速、ハンドル角度等を入力値として、目標横加速度、目標操舵角度、目標傾斜角度等の出力値を得る処理を、入力値と出力値の関係を示すグラフを用いて説明したが、これらの処理が、入力値と出力値の関係を示す2次元マップ又は演算式を用いて行われる態様であってもよい。また、3次元マップが利用される態様であってもよい。例えば、目標横加速度を得るための車速、目標操舵角度及び目標傾斜角度の関係を示す3次元マップを利用して、車速から目標横加速度及び目標傾斜角度が決定される態様であってもよい。
 本実施形態で説明した不釣合旋回制御について、操舵装置10による操舵角度の制御と、傾斜装置20による傾斜角度の制御の実行順序は特に限定されない。操舵角度の制御と傾斜角度の制御とが並列して同時に実行されてもよい。先に傾斜角度を増加させる制御を行ってから、操舵角度の制御が行われてもよい。先に操舵角度を増加させる制御を行ってから、傾斜角度の制御が行われてもよい。例えば、制御装置100が、前輪11の操舵角度及び車両1の傾斜角度を徐々に増加させて、これらを目標操舵角度及び目標傾斜角度にすればよい。
1 車両
2 カウル
10 操舵装置
11(11L、11R) 前輪
12 後輪
20 傾斜装置
30 ハンドル
40 フレーム
50 原動機
60 シート
70 動力伝達部
100 制御装置
110 操舵機構駆動部(操舵アクチュエータ)
111 操舵機構
120 傾斜機構駆動部(傾斜アクチュエータ)
121 傾斜機構

Claims (4)

  1.  旋回時に傾斜する車体を構成するフレームと、
     左前操舵輪と右前操舵輪と少なくとも1つの後輪を含む車輪と、
     前記左前操舵輪を前記フレームに支持する左アーム部材と、
     前記右前操舵輪を前記フレームに支持する右アーム部材と、
     前記フレームに支持された一端部から他端部へと上方へ延びるタワー形状を有するタワー型部材と、
     ばね要素を有し、一端部が前記タワー型部材に支持されて他端部が前記左アーム部材に支持された左緩衝装置と、
     ばね要素を有し、一端部が前記タワー型部材に支持されて他端部が前記右アーム部材に支持された右緩衝装置と、
     前記タワー型部材に対して前記フレームを傾斜させることにより、前記車体の傾斜角度を変更するための傾斜トルクを付与する傾斜アクチュエータと、
     前記制御アクチュエータを少なくとも制御する制御装置と
    を備えた傾斜車両であって、
     前記車体の傾斜角速度の大きさを減少させる方向の傾斜トルクを傾斜角速度抑制トルクと定義した場合、
     前記制御装置は、前記車体が左右方向に傾斜した場合に前記左緩衝装置のばね要素及び前記右緩衝装置のばね要素から力を受けることによる前記タワー型部材の振動を低減するために、前記車体の傾斜角度の大きさが小さい場合には、前記車体の傾斜角度が大きい場合に比べて前記傾斜角速度抑制トルクの大きさが大きくなり、且つ、前記車体の傾斜角速度が大きい場合には、前記車体の傾斜角速度が小さい場合に比べて前記傾斜角速度抑制トルクの大きさが大きくなるように、前記傾斜角度及び前記傾斜角速度の両方に応じて前記傾斜アクチュエータを制御する
    ことを特徴とする傾斜車両。
  2.  前記制御装置は、
     前記車体の傾斜角速度が第1傾斜角速度であるときの傾斜角速度抑制トルクの値と、前記車体の傾斜角速度が前記第1傾斜角速度よりも小さな第2傾斜角速度であるときの傾斜角速度抑制トルクの値との差分を差分トルク値と定義した場合、
     前記車体の傾斜角度が大きい場合の差分トルク値よりも、前記車体の傾斜角度が小さい場合の差分トルク値が大きくなるように前記傾斜アクチュエータを制御する
    ことを特徴とする請求項1に記載の傾斜車両。
  3.  前記制御装置は、少なくとも前記傾斜車両の車速が予め設定された閾値以下である場合に、前記傾斜角速度抑制トルクを発生するように前記傾斜アクチュエータを制御することを特徴とする請求項1又は2に記載の傾斜車両。
  4.  旋回時に前記左前操舵輪と右前操舵輪の操舵角度を変更する操舵アクチュエータ
    をさらに備え、
     地面と垂直な垂直軸との間でなす前記車体の傾斜角度を、前記車体に作用する重力と旋回外方向の遠心力との合力が前記垂直軸との間でなす角度とするような旋回状態を釣合旋回状態と定義した場合、
     前記制御装置は、
     前記傾斜角度及び前記傾斜角速度の両方に応じて前記傾斜アクチュエータを制御すると共に、前記釣合旋回状態の前記車体に作用する横加速度より大きな横加速度が発生する不釣合旋回状態となるように前記傾斜アクチュエータ及び前記操舵アクチュエータを制御する
    ことを特徴とする請求項1~3のいずれか1項に記載の傾斜車両。
PCT/JP2022/047142 2022-01-26 2022-12-21 傾斜車両 WO2023145321A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023576702A JPWO2023145321A1 (ja) 2022-01-26 2022-12-21

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/002878 WO2023144924A1 (ja) 2022-01-26 2022-01-26 傾斜車両
JPPCT/JP2022/002878 2022-01-26

Publications (1)

Publication Number Publication Date
WO2023145321A1 true WO2023145321A1 (ja) 2023-08-03

Family

ID=87471259

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2022/002878 WO2023144924A1 (ja) 2022-01-26 2022-01-26 傾斜車両
PCT/JP2022/047142 WO2023145321A1 (ja) 2022-01-26 2022-12-21 傾斜車両

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002878 WO2023144924A1 (ja) 2022-01-26 2022-01-26 傾斜車両

Country Status (2)

Country Link
JP (1) JPWO2023145321A1 (ja)
WO (2) WO2023144924A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168943A1 (ja) * 2017-03-14 2018-09-20 ヤマハ発動機株式会社 前二輪逆操舵リーン車両
JP2018149962A (ja) * 2017-03-14 2018-09-27 ヤマハ発動機株式会社 リーン車両及びロール角制御方法
JP2018193010A (ja) * 2017-05-19 2018-12-06 株式会社エクォス・リサーチ 車両
JP2019098885A (ja) * 2017-11-30 2019-06-24 株式会社エクォス・リサーチ 車両

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168943A1 (ja) * 2017-03-14 2018-09-20 ヤマハ発動機株式会社 前二輪逆操舵リーン車両
JP2018149962A (ja) * 2017-03-14 2018-09-27 ヤマハ発動機株式会社 リーン車両及びロール角制御方法
JP2018193010A (ja) * 2017-05-19 2018-12-06 株式会社エクォス・リサーチ 車両
JP2019098885A (ja) * 2017-11-30 2019-06-24 株式会社エクォス・リサーチ 車両

Also Published As

Publication number Publication date
JPWO2023145321A1 (ja) 2023-08-03
WO2023144924A1 (ja) 2023-08-03

Similar Documents

Publication Publication Date Title
JP6557841B2 (ja) 車両
JP6408168B2 (ja) 車両
US10639953B2 (en) Automatic tilting vehicle
CN108025784B (zh) 车辆
US7788011B2 (en) Braking and drive force control apparatus for a vehicle
WO2017086352A1 (ja) リーン車両
WO2017086351A1 (ja) リーン車両
US20130226405A1 (en) Vehicle control device
WO2018168943A1 (ja) 前二輪逆操舵リーン車両
CN110386216B (zh) 自动倾斜车辆
WO2018212360A1 (ja) 車両
JP2018172073A (ja) 車両
CN108407946A (zh) 自动倾斜车辆
JP2010000989A (ja) 二輪自動車
JP5151307B2 (ja) サスペンション
WO2023145321A1 (ja) 傾斜車両
JP2013023018A (ja) 車体傾動制御装置、車体傾動制御方法
WO2018180754A1 (ja) 車両
WO2023120572A1 (ja) 傾斜車両
WO2023145320A1 (ja) 傾斜車両
WO2023120582A1 (ja) 傾斜車両
WO2023120580A1 (ja) 傾斜車両
JP2019156316A (ja) 自動傾斜車両
WO2024053513A1 (ja) 懸架システム
JP2018165060A (ja) 車両制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22924169

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023576702

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE