WO2023143638A1 - 一种变温异质界面接触电阻率测试装置与测试方法 - Google Patents
一种变温异质界面接触电阻率测试装置与测试方法 Download PDFInfo
- Publication number
- WO2023143638A1 WO2023143638A1 PCT/CN2023/083814 CN2023083814W WO2023143638A1 WO 2023143638 A1 WO2023143638 A1 WO 2023143638A1 CN 2023083814 W CN2023083814 W CN 2023083814W WO 2023143638 A1 WO2023143638 A1 WO 2023143638A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sample
- temperature
- tested
- probe
- interface
- Prior art date
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 61
- 238000010998 test method Methods 0.000 title abstract description 6
- 239000000523 sample Substances 0.000 claims abstract description 169
- 238000006073 displacement reaction Methods 0.000 claims abstract description 47
- 238000010438 heat treatment Methods 0.000 claims abstract description 23
- 238000005259 measurement Methods 0.000 claims abstract description 16
- 238000012634 optical imaging Methods 0.000 claims description 17
- 239000000919 ceramic Substances 0.000 claims description 14
- 230000007246 mechanism Effects 0.000 claims description 11
- 238000012546 transfer Methods 0.000 claims description 11
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 10
- 229910052802 copper Inorganic materials 0.000 claims description 10
- 239000010949 copper Substances 0.000 claims description 10
- 238000012937 correction Methods 0.000 claims description 8
- 238000003384 imaging method Methods 0.000 claims description 7
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 4
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 4
- 230000005540 biological transmission Effects 0.000 claims description 3
- 239000011810 insulating material Substances 0.000 claims description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 239000010937 tungsten Substances 0.000 claims description 3
- 238000005516 engineering process Methods 0.000 abstract description 14
- 238000000034 method Methods 0.000 abstract description 14
- 239000000463 material Substances 0.000 abstract description 12
- 239000007772 electrode material Substances 0.000 abstract description 3
- 238000001816 cooling Methods 0.000 description 14
- 239000004065 semiconductor Substances 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 229910052797 bismuth Inorganic materials 0.000 description 3
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 3
- 238000012512 characterization method Methods 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- XSOKHXFFCGXDJZ-UHFFFAOYSA-N telluride(2-) Chemical compound [Te-2] XSOKHXFFCGXDJZ-UHFFFAOYSA-N 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- -1 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 230000005679 Peltier effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000012858 packaging process Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R27/00—Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
- G01R27/02—Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
- G01R27/08—Measuring resistance by measuring both voltage and current
Definitions
- the invention relates to the technical field of electrical performance measurement, in particular to a test device and a test method for contact resistivity of a variable temperature heterogeneous interface.
- Semiconductor devices always have interface contact between heterogeneous materials such as semiconductor materials and metal alloy electrodes. Different from the physical effects in the semiconductor body, these surface and interface physical effects have a great impact on the characteristic parameters, stability and reliability of the device. Influence.
- the production of ohmic contacts is always in the packaging process in the later stage of device manufacturing. Device failure due to interface resistance will greatly increase production costs and losses. Therefore, it is of great importance to characterize the contact resistivity of metal/semiconductor and other heterogeneous interfaces. significance and economic value.
- thermoelectric refrigeration technology is a technology based on the Peltier effect that can realize directional heat transfer and active cooling. Since this technology uses electrons inside materials as heat carriers, it has high temperature control accuracy, full static, high reliability, and easy integration. features. Compared with traditional passive cooling methods such as air cooling, water cooling, and heat pipes, thermoelectric cooling technology also has ultra-high cooling density and cooling rate, and does not require complicated auxiliary mechanisms and external field conditions. Therefore, thermoelectric cooling technology has become one of the most promising active cooling technologies for optoelectronic chips and other high-power chip hotspots, which is of great significance to the future development of the semiconductor chip industry.
- the heterogeneous interface of thermoelectric devices is usually a sandwich structure composed of thermoelectric materials, barrier layers, transition layers, solder, and electrodes, and the thickness of each layer reaches the micron level.
- the function of the barrier layer is to block the interdiffusion and chemical reaction between the thermoelectric material and the electrode layer, forming a stable interface layer
- the function of the transition layer is to play the function of the activation layer, promote the combination of the thermoelectric material and the electrode, and improve the bonding strength
- the solder is the filler for welding
- the thermoelectric material is firmly connected with the electrode to realize the conduction of electric current and heat flow.
- thermoelectric devices due to the limitation of machining precision, the mutual contact between heterogeneous interfaces of thermoelectric devices often only occurs in some discrete local areas, and the actual contact area is much smaller than the theoretical area, which affects the electrical transfer between the interfaces and forms interface resistance. boundary Surface resistance seriously restricts the cooling performance of thermoelectric devices. For example, in the steady-state operation mode of thermoelectric devices, the maximum temperature difference ⁇ T steady,max , cooling capacity Q C and cooling efficiency coefficient COP will be reduced; Cold temperature difference ⁇ T transient,max and exacerbated temperature overshoot ⁇ T overshoot .
- thermoelectric device it is necessary to characterize the contact resistance of the heterogeneous interface of the thermoelectric device, and the result can be used as a reference for the control of the interface resistance, optimize the manufacturing process of the thermoelectric device and improve the simulation theoretical model, establish the optimization standard of the interface resistance, and realize the low resistance and high reliability of the thermoelectric particle and the electrode Heterointerface connectivity.
- the experimental measurement data of the interface resistivity of the heterogeneous interface of semiconductor devices is single, and usually it is a fixed measurement value at room temperature.
- the interface resistivity will change with the change of temperature, and small changes will greatly affect the cooling performance of thermoelectric devices.
- the fixed measurement value at room temperature is not sufficient for the characterization of the interface resistivity, and it cannot be more comprehensively and accurately established.
- Optimal control method of interface resistance At the same time, the thickness of the heterogeneous interface of the thermoelectric device reaches the micron level. Conventional control methods are used to drive the motor to drive the probe to perform precise step-by-step scanning.
- Chinese patent CN 108508273 A discloses a device and method for directly measuring interface contact resistivity, which is characterized in that the sample to be tested is installed on the sample test fixture, a fixed current is provided for both ends of the sample, and a conventional control means is used to drive the motor to drive The probe performs precise step-by-step scanning and obtains the voltage, and finally converts the curve of the relationship between the scanning path and the resistance value at room temperature.
- this method can only obtain a fixed interface resistivity at room temperature, and cannot directly measure the interface resistivity corresponding to different temperatures under actual working conditions. Since the interface resistivity will change with the change of temperature under actual working conditions, small changes will greatly affect the cooling performance of thermoelectric devices.
- the fixed measurement value at room temperature is not sufficient for the characterization of the interface resistivity, and it cannot be more comprehensively and accurately established.
- Optimal control method of interface resistance At the same time, the thickness of the heterogeneous interface of the thermoelectric device reaches the micron level. Due to the swing between the probe arm and the probe, the actual positioning accuracy of the probe is low, and the scanning path interval is too large or inaccurate, resulting in the relationship between the scanning path and the resistance value. The error of the interface resistivity extracted from the graph is large. Therefore, there is an urgent need for a testing device and method for accurately measuring the interface contact resistivity between electrode materials and thermoelectric materials under different temperature field conditions.
- the present invention provides a variable temperature heterogeneous interface contact resistivity testing device and testing method, which uses three-probe method and heating temperature control technology to simulate the actual temperature field of thermoelectric devices Working conditions, accurately measuring the contact resistivity of metal/semiconductor heterogeneous interfaces under different temperature field conditions, has reference significance for optimizing the manufacturing process of thermoelectric devices and improving the simulation theoretical model; for the interface of electronic components such as thermoelectric devices and semiconductor packaging interconnections Characterization of electrical properties has potential application value.
- variable temperature heterogeneous interface contact resistivity testing device including:
- the probe test platform is used to control the scanning of the micro-probe on the surface of the sample to be tested; it includes: a micro-probe seat, which is used to clamp the micro-probe; a variable temperature clamping platform, which is used to clamp and heat the test sample Sample; image collection module, used to collect surface image information of the sample to be tested;
- a displacement control unit for controlling the movement of the micron probe on the surface of the sample to be measured including an X displacement module, a Y displacement module and a Z displacement module; wherein the X displacement module and the Z displacement module Connected to the micron probe base, the Y displacement module is connected to the variable temperature clamping platform;
- the resistance measuring unit is connected with the variable temperature clamping platform and the micron probe.
- the temperature-variable clamping platform includes a first power interface, a second power interface, a heater for clamping and heating the sample to be tested, and a temperature-measuring thermocouple; the temperature-measuring thermocouple is arranged in contact with the heater.
- variable temperature clamping platform also includes a base, a bracket for fixing the heater, and a hand-operated clamping mechanism for adjusting the clamping tightness of the sample to be tested;
- the bracket includes a fixed A bracket and a sliding bracket;
- the hand-operated clamping mechanism is arranged on the base and connected with the sliding bracket.
- the manual clamping mechanism includes a hand wheel and a slider; the slider is arranged on the bottom
- the seat is fixedly connected with the sliding bracket; the hand wheel is connected with the slider in transmission.
- the heater is selected from any one of alumina ceramics, aluminum nitride ceramics and silicon nitride ceramics with a built-in heating wire; the heater is wrapped with a copper heat transfer block, and the sample to be tested passes through The copper heat transfer block forms a closed loop with the first power supply interface and the second power supply interface; the temperature measuring thermocouple is arranged at one end of the copper heat transfer block contacting the sample to be tested;
- the micron probe base is made of low thermal conductivity insulating and heat-resistant materials, such as zirconia ceramics, glass fiber composites and polytetrafluoroethylene;
- said microprobes are made of tungsten.
- a PID controller is also included, and the PID controller realizes precise temperature control of the heater according to the temperature information collected by the temperature measuring thermocouple; the temperature control range of the heater is from room temperature to 800°C, The temperature control accuracy is preferably within ⁇ 1°C.
- the image collection module includes an optical imaging system for collecting surface image information of the sample to be tested; the light source of the optical imaging system illuminates the sample to be tested, in some specific embodiments , the optical imaging system is an industrial camera;
- the image acquisition module further includes an XYZ imaging fine-tuning module for fine-tuning the focus of the optical imaging system.
- the resistance measurement unit includes a voltage-stabilized power supply and a data acquisition module; the voltage-stabilized power supply is electrically connected to the first power interface to supply power to the sample to be tested; the data acquisition module It is connected with the second power supply interface and the micron probe, and is used for measuring the contact voltage between the sample to be tested and the micron probe.
- it also includes a computer unit, which is used to read the surface image information of the sample to be tested collected by the image acquisition module, read the information of the data acquisition module, and set the displacement control unit.
- a computer unit which is used to read the surface image information of the sample to be tested collected by the image acquisition module, read the information of the data acquisition module, and set the displacement control unit. Moving parameters, controlling the focus of the XYZ imaging fine-tuning module; the optical imaging system collects the surface image information of the sample to be tested and inputs it into the computer, and positions the micron probe as the closed-loop correction information of the displacement control unit;
- the movement of the displacement control unit is performed by the computer unit control, and its accuracy can reach below 1 ⁇ m.
- the pixels of the industrial camera are not less than 20 million pixels.
- the micron probe After the closed-loop correction of the displacement control unit is performed by using an industrial camera with more than 20 million pixels, the micron probe The positioning accuracy of the needle can reach below 0.5 ⁇ m.
- the test process of the test device needs to be completed under vacuum conditions; in some specific embodiments, the test device also includes a vacuum cover, and a vacuum pump is used to evacuate the cover to a vacuum during the test. , the vacuum degree of the vacuum ⁇ 10Pa.
- the present invention provides a test method using the above-mentioned variable temperature heterogeneous interface contact resistivity test device, comprising the following steps:
- each step of the micron probe performs a resistance measurement, draws a graph of the relationship between the scanning path and the voltage value, and calculates the contact resistance R c of the heterogeneous interface at the heating temperature, according to the sample to be tested The geometric parameters of and the contact resistance R c are calculated to obtain the contact resistivity ⁇ c of the heterogeneous interface at the heating temperature.
- test method of the variable temperature heterogeneous interface contact resistivity test device specifically includes the following steps:
- Step 1 the sample to be tested is clamped in the temperature-variable clamping platform, and the hand wheel is shaken to clamp the sample to be tested;
- Step 2 connecting the first power supply interface to a constant voltage and constant current power supply to provide a fixed current for the sample to be tested;
- Step 3 setting the heating temperature for the heater, the temperature measuring thermocouple collects the temperature of the heater and feeds it back to the PID controller, and the PID controller controls the precise temperature control of the heater;
- step 4 connect the data acquisition module with the micron probe and the second power supply interface, and set the scanning interval of the micron probe on the surface of the sample to be measured through the computer unit;
- Step 5 scanning measurement, with the movement of the micro-probe, the optical imaging system collects the surface image information of the sample to be tested and inputs it into the computer, and positions the micro-probe as the closed-loop correction information of the displacement control unit, according to each Scan the corresponding voltage for measurement, and generate a graph of the relationship between the scanning path and the voltage value in the computer;
- Step 6 according to the curve diagram of the relationship between the scanning path and the voltage value and the fixed current value passing through the sample to be tested, calculate the contact resistance R c of the heterogeneous interface at the temperature;
- Step 7 adjusting the heating temperature of the heater, and repeating steps 3-6, to obtain the contact resistance of the heterogeneous interface under different temperature field conditions; combining the cross-sectional area size S of the sample to be tested to calculate the variable temperature heterogeneous interface the contact resistivity.
- the present invention provides a testing device and testing method for contact resistivity of variable temperature heterogeneous interfaces, using three-probe method, heating temperature control technology and machine
- the vision can accurately correct the probe positioning, and can accurately measure the interface contact resistivity between the electrode material and the thermoelectric material under different temperature field conditions.
- the three-probe method and heating temperature control technology can simulate the actual temperature field conditions of thermoelectric devices, and measure the corresponding contact resistivity, which has great reference value for optimizing the manufacturing process of thermoelectric devices and improving the simulation theoretical model;
- vision and positioning probe technology industrial cameras can be used to capture images and identify the position of the probe.
- high-precision closed-loop correction information for positioning probes the positioning accuracy of the probe can reach below 0.5 ⁇ m, which greatly improves the test accuracy of contact resistivity. .
- FIG. 1 is a schematic structural diagram of a temperature-variable heterogeneous interface contact resistivity test device provided in Example 1 of the present invention.
- Figure 2 is the variable temperature clamp of the variable temperature heterogeneous interface contact resistivity test device provided in Example 1 of the present invention Schematic diagram of the stand structure.
- Fig. 3 is a partial (A) enlarged view of the variable temperature clamping platform of the variable temperature heterogeneous interface contact resistivity testing device provided in Example 1 of the present invention.
- FIG. 4 is a graph showing the relationship between the scanning path and the resistance value in Embodiment 2 of the present invention.
- FIG. 5 is a graph showing the relationship between the scanning path and the resistance value in Embodiment 3 of the present invention.
- thermoelectric device heterogeneous interface contact resistivity testing technology in the prior art, provides a variable temperature heterogeneous interface contact resistivity testing device, as shown in Figure 1-3: including:
- the probe test platform is used to control the scanning of the micron probe 51 on the surface of the sample 53 to be tested; it includes: the micron probe seat 4 is used to clamp the micron probe 51; the variable temperature clamping platform 5 is used for clamping and Heating the sample 53 to be tested; the image acquisition module 6 is used to collect the surface image information of the sample 53 to be tested;
- the displacement control unit is used to control the movement of the micron probe 51 on the surface of the sample 53 to be measured; it includes the X displacement module 2, the Y displacement module 3 and the Z displacement module 1; wherein the X displacement module 2 and the Z displacement module 1 is connected to the micron probe holder 4, and the Y displacement module 3 is connected to the variable temperature clamping platform 5;
- the resistance measuring unit is connected with the variable temperature clamping platform 5 and the micron probe 51 .
- the sample 53 to be tested is installed in the variable temperature clamping platform 5, and the X displacement module 2 and the Y displacement module 3 control the movement of the micrometer probe holder 4 to realize the micrometer probe 51 moves on the horizontal plane; the Y displacement module 3 adjusts the height of the sample 53 to be tested by controlling the clamping platform 5 with variable temperature.
- the temperature-variable clamping platform 5 includes a first power supply interface 52-1, a second power supply interface 52-2, a heater 54 that clamps and heats the sample 53 to be tested, and a temperature measuring thermocouple 55; a temperature measuring thermocouple 55 Set at one end of the heater 54 contacting the sample to be tested 53; the first power interface 52-1 is electrically connected with the resistance test unit and the sample to be tested 53 to form a closed loop; the sample to be tested 53 is set at the first power interface 52-1 1 and the second power interface 52-2.
- the heater 54 is used to heat the sample 53 to be tested, thereby measuring the contact resistivity at different temperatures, and the temperature of the sample 53 to be tested can be monitored by setting the temperature measuring thermocouple 54 .
- the temperature-variable clamping platform 5 also includes a base 59, a bracket 56 for fixing the heater 54, and a hand-operated clamping mechanism for adjusting the clamping tightness of the sample 53 to be tested;
- the bracket 56 includes a fixed bracket 56- 1 and the sliding bracket 56-2;
- the hand-operated clamping mechanism is arranged on the base 59 and connected with the sliding bracket 56-2.
- the device provided by the present invention can adjust the distance between the sliding bracket 56-1 and the sliding bracket 56-2 through the hand-operated clamping mechanism during use. On the one hand, samples of different specifications can be measured; Measure the clamping tightness of the sample 53.
- the manual clamping mechanism includes a hand wheel 57 and a slider 58; the slider 58 is arranged on a base 59 and fixedly connected with the sliding bracket 56-2;
- the device provided by the present invention adopts the cooperation of the hand wheel 57 and the slider 58.
- the slider 58 moves toward or away from the fixed bracket 56-1, thereby shortening or increasing the sliding distance.
- the distance between the bracket 56-2 and the fixed heater and the fixed bracket 56-1 and its fixed heater can realize the measurement of samples of different specifications and adjust the clamping degree of the sample 53 to be tested.
- the heater 54 is selected from any one of alumina ceramics, aluminum nitride ceramics, and silicon nitride ceramics with a built-in heating wire; the heater 54 is wrapped with a copper heat transfer block, and the sample 53 to be tested is heat-conducted by copper.
- the block forms a closed circuit with the first power supply interface 52-1 and the second power supply interface 52-2; the temperature measuring thermocouple 55 is arranged at one end of the copper heat transfer block contacting the sample 53 to be tested;
- micron probe base 4 is made of heat-resistant insulating materials with low thermal conductivity, such as zirconia ceramics, glass fiber composite materials and polytetrafluoroethylene, etc.;
- microprobe 51 is made of tungsten.
- the sample 53 to be tested is heated by alumina ceramics, aluminum nitride ceramics or silicon nitride ceramics with a built-in heating wire, and the outer surface of the heater 54 is wrapped by a copper heat transfer block, so that the sample 53 to be tested is It forms a closed loop with the first power supply interface 52-1 and the second power supply interface 52-2, and the heater 54 is powered by an external power supply.
- a PID controller is also included, and the PID controller realizes precise temperature control of the heater 54 according to the temperature information collected by the temperature measuring thermocouple 55; the temperature control range of the heater 54 is room temperature to 800°C, and the temperature control accuracy is preferably within ⁇ 1°C.
- the temperature information collected by the temperature measuring thermocouple 55 is fed back to the PID controller, and the temperature control of the heater 54 is realized through the PID controller.
- the image acquisition module 6 includes an optical imaging system for acquiring surface image information of the sample 53 to be tested; the light source of the optical imaging system illuminates the sample 53 to be tested.
- an XYZ imaging fine-tuning module 7 for fine-tuning the focus of the optical imaging system is also included.
- the test device provided by the present invention realizes the fine-tuning and focusing of the optical imaging system through the XYZ imaging fine-tuning module 7, collects the surface image of the sample 53 to be tested, and performs image processing to effectively realize machine vision For positioning, compared with the existing device that adopts microscope observation, the operation is simpler and the positioning accuracy is high.
- the resistance measurement unit includes a voltage-stabilized power supply and a data acquisition module; the voltage-stabilized power supply is electrically connected to the first power interface 52-1 to supply power to the sample 53 to be tested; the data acquisition module is connected to the second power supply
- the interface 52 - 2 is connected with the microprobe 51 and is used for measuring the contact voltage between the sample 53 to be tested and the microprobe 51 .
- the optical imaging system collects the surface image information of the sample 53 to be tested and inputs it into the computer, and uses it as the closed-loop correction information of the displacement control unit to position the micron probe 51.
- the X displacement module 2, the Y displacement module 3 and the Z displacement module 1 include a stepper motor and a slide table connected by transmission thereof, and the computer unit can control the slide table by adjusting and controlling the parameters of the stepper motor.
- the displacement of the stage is preferably controlled with an accuracy of less than 1 ⁇ m.
- an industrial camera with auto-focus and more than 20 million pixels is used as the optical imaging system to collect the surface image of the sample 53 to be tested and input it into the computer to perform closed-loop correction on the probe position information fed back by the displacement control unit, and finally correct the position of the probe.
- the positioning accuracy can reach below 0.5 ⁇ m.
- the test device provided by the present invention also includes a vacuum cover 8.
- a vacuum pump is used to evacuate the inside of the cover to a vacuum, and the vacuum degree of the vacuum is ⁇ 10Pa.
- the test method using the above-mentioned variable temperature heterogeneous interface contact resistivity test device includes the following steps:
- Step 1 the sample 53 to be tested is clamped in the temperature-variable clamping stand 5, and the handwheel 57 is shaken, so that the sample 53 to be tested is clamped;
- step 2 connect the first power interface 52-1 to a constant voltage and constant current power supply to provide a fixed current for the sample 53 to be tested;
- Step 3 setting the heating temperature for the heater 54, the temperature measuring thermocouple 55 collects the temperature of the heater 54 and feeds it back to the PID controller, and the PID controller controls the precise temperature control of the heater 54;
- Step 4 Connect the data acquisition module with the micron probe 51 and the second power supply interface 52-2, and set the scanning interval of the micron probe 51 on the surface of the sample 53 to be measured through the computer unit;
- Step 5 scanning measurement, with the movement of the micron probe 51, the optical imaging system collects the surface image information of the sample 53 to be tested and inputs it into the computer, and uses it as the closed-loop correction information of the displacement control unit to position the micron probe 51, according to each scan
- the measured corresponding voltage generates a curve diagram of the relationship between the scanning path and the voltage value in the computer;
- Step 6 according to the curve diagram of the relationship between the scanning path and the voltage value and the fixed current value passing through the sample 53 to be tested, calculate the contact resistance R c of the heterogeneous interface at the temperature;
- Step 7 adjust the heating temperature of the heater 54, and repeat steps 3-6, to obtain the contact resistance of the heterogeneous interface under different temperature field conditions; combine the cross-sectional area size S of the sample 53 to be tested to calculate the contact of the variable temperature heterogeneous interface resistivity.
- the contact resistivity of the sample bismuth telluride material/Co interface is tested by using the testing device and method in Example 1.
- the sample is a bismuth telluride/Co/bismuth telluride sandwich structure, and the size is 3mm high*3mm wide* The length is 4mm, the test temperature is room temperature 27°C, the test current is 100mA DC, and the vacuum environment; the test results are shown in Figure 4, the interface contact resistance value is 0.12m ⁇ , and the calculated interface contact resistance rate is 10.8 ⁇ cm 2 .
- the contact resistivity of the sample skutterudite material/Mo interface is tested using the testing device and method in Example 1.
- the sample is a sandwich structure of Yb 0.3 Co 4 Sb 12 /Mo/Yb 0.3 Co 4 Sb 12 with a size of Height 2.52mm*width 2.77mm*length 4mm, the test temperature is 477°C, the test current is 100mA DC, and the vacuum environment; the test results are shown in Figure 5, the interface contact resistance value is 0.06m ⁇ , and the calculated interface contact resistivity is 4.2 ⁇ cm 2 .
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measurement Of Resistance Or Impedance (AREA)
Abstract
一种变温异质界面接触电阻率测试装置与测试方法,测试装置包括探针测试平台,用于控制微米探针(51)在待测样品(53)表面的扫描;包括:微米探针座(4),用于夹持微米探针(51);变温夹持台架(5),用于夹持和加热待测样品(53);图像采集模组(6),用于采集待测样品(53)的表面图像信息;位移控制单元,用于控制微米探针(51)在待测样品(53)表面的移动;包括X位移模组(2)、Y位移模组(3)和Z位移模组(1);其中X位移模组(2)和Z位移模组(1)与微米探针座(4)相连,Y位移模组(3)与变温夹持台架(5)相连;电阻测量单元,与变温夹持台架(5)和微米探针(51)相连。采用三探针法、加热控温技术和机器视觉对探针定位进行精确矫正,可精确测量不同温场工况下的电极材料与热电材料间的界面接触电阻率。
Description
本发明涉及电学性能测量技术领域,尤其涉及一种变温异质界面接触电阻率测试装置与测试方法。
半导体器件总是存在半导体材料、金属合金电极等异质材料之间的界面接触,不同于半导体体内的物理效应,这些表面及界面物理效应对器件的特性参数、稳定性和可靠性产生很大的影响。特别是类欧姆接触的制作总是在器件制造后期的封装工艺,由于界面电阻而引起的器件失效将大大增加生产成本和损耗,因此对金属/半导体等异质界面接触电阻率表征具有重大的技术意义和经济价值。
例如热电制冷技术是基于帕尔贴效应可实现热量定向输运与主动制冷的技术,由于该技术是以材料内部电子为热量载体,具有控温精度高、全静态、可靠性高、易集成等特点。与传统风冷、水冷、热管等被动散热方式相比,热电制冷技术还具有超高的制冷密度和制冷速率,且无须复杂附属机构与外场条件。因此,热电制冷技术成为最具有潜力的光电子芯片以及其他大功率芯片热点主动冷却的技术之一,对于未来半导体芯片产业的发展具有重要意义。
热电器件异质界面通常为热电材料、阻挡层、过渡层、焊料、及电极等多层复合的三明治结构,各层厚度达到微米级别。其中阻挡层作用是阻挡热电材料与电极层的互扩散和化学反应,形成稳定的界面层;过渡层作用是发挥活化层功能,促进热电材料与电极的结合,提高结合强度;焊料是焊接的填充物,将热电材料与电极紧固连接,实现电流和热流的导通。但由于机械加工精度的限制,热电器件异质界面的相互接触往往只发生在一些离散的局部区域,实际接触面积远小于理论面积,从而影响了界面之间的电传递,形成界面电阻。界
面电阻严重制约热电器件的制冷性能,比如热电器件稳态运行模式下,会降低器件两端最大温差ΔTsteady,max、制冷量QC和制冷效率系数COP;瞬态运行模式下,会降低过冷温差ΔTtransient,max和加剧温度超调ΔTovershoot。因此必须对热电器件异质界面接触电阻进行表征,其结果作为界面电阻调控的参考依据,优化热电器件制造工艺和完善仿真理论模型,建立界面电阻优化标准,实现热电粒子与电极的低电阻高可靠异质界面连接。
目前半导体器件异质界面的界面电阻率实验测量数据单一,通常情况为室温下的固定测量值。但是实际工况下界面电阻率会随着温度的改变而发生变化,微小的变化都会极大影响热电器件制冷性能,室温下固定测量值对界面电阻率的表征不充分,无法更全面和精确建立界面电阻的优化调控方法。同时,热电器件异质界面的厚度达到微米级别,采用常规控制手段驱动电机带动探针进行精密步进扫描,但是由于探针臂与探针存在摆动,实际可实现的探针定位精度低,扫描路径间隔过大或者不精确,导致从扫描路径与电阻值关系曲线图提取的界面电阻率误差大。例如中国专利CN 108508273 A公布了一种直接测量界面接触电阻率的装置和方法,其特点是将待测样品安装到样品测试夹具上,为样品两端提供固定电流,采用常规控制手段驱动电机带动探针进行精密步进扫描并获取电压,最终换算得到室温下扫描路径与电阻值关系曲线图。但是这种方法只能得到室温下固定的界面电阻率,无法直接测量得到实际工况下不同温度对应的界面电阻率。由于实际工况下界面电阻率会随着温度的改变而发生变化,微小的变化都会极大影响热电器件制冷性能,室温下固定测量值对界面电阻率的表征不充分,无法更全面和精确建立界面电阻的优化调控方法。同时,热电器件异质界面的厚度达到微米级别,由于探针臂与探针存在摆动,实际可实现的探针定位精度低,扫描路径间隔过大或者不精确,导致从扫描路径与电阻值关系曲线图提取的界面电阻率误差大。因此目前还急缺一种精确测量不同温场工况下电极材料与热电材料间界面接触电阻率的测试装置和方法。
发明内容
针对以上热电器件异质界面接触电阻率测试技术的弊端,本发明提供一种变温异质界面接触电阻率测试装置与测试方法,采用三探针法、加热控温技术模拟热电器件的实际温场工况,精确测量不同温场工况下金属/半导体等异质界面接触电阻率,对优化热电器件制造工艺和完善仿真理论模型具有参考意义;对热电器件、半导体封装互联等电子元器件的界面电学性能表征具有潜在的应用价值。
为实现上述目的,本发明采取的技术方案为:
一方面,本发明提出一种变温异质界面接触电阻率测试装置,包括:
探针测试平台,用于控制微米探针在待测样品表面的扫描;包括:微米探针座,用于夹持所述微米探针;变温夹持台架,用于夹持和加热待测样品;图像采集模组,用于采集所述待测样品的表面图像信息;
位移控制单元,用于控制所述微米探针在所述待测样品表面的移动;包括X位移模组、Y位移模组和Z位移模组;其中所述X位移模组和Z位移模组与所述微米探针座相连,所述Y位移模组与所述变温夹持台架相连;
电阻测量单元,与所述变温夹持台架和微米探针相连。
优选地,所述变温夹持台架包括第一电源接口、第二电源接口、夹持待测样品并加热的加热器和测温热电偶;所述测温热电偶设置于所述加热器接触所述待测样品的一端;所述第一电源接口与所述电阻测试单元和所述待测样品电性连接,构成闭合的回路;所述待测样品设置于所述第一电源接口和第二电源接口之间。
优选地,所述变温温夹持台架还包括底座、用于固定所述加热器的支架和用于调节所述待测样品夹持松紧度的手摇式夹紧机构;所述支架包括固定支架和滑动支架;所述手摇式夹紧机构设置于所述底座上,并且与所述滑动支架连接。
优选地,所述手摇式夹紧机构包括手摇轮和滑块;所述滑块设置于所述底
座上并且与所述滑动支架固定连接;所述手摇轮与所述滑块传动连接。
优选地,所述加热器选自内置加热丝的氧化铝陶瓷、氮化铝陶瓷和氮化硅陶瓷中的任一种;所述加热器外包裹有铜传热块,所述待测样品通过所述铜传热块与所述第一电源接口和所述第二电源接口构成闭合的回路;所述测温热电偶设置于所述铜传热块接触所述待测样品的一端;
优选地,所述微米探针座由低热导率绝缘耐热材料制成,如氧化锆陶瓷、玻璃纤维复材和聚四氟乙烯等;
优选地,所述微米探针由钨制成。
优选地,还包括PID控制器,所述PID控制器根据所述测温热电偶采集的温度信息实现对所述加热器的精准控温;所述加热器的控温范围为室温~800℃,控温精度优选为±1℃之内。
优选地,所述图像采集模组包括光学成像系统,用于采集所述待测样品的表面图像信息;所述光学成像系统的光源照向所述待测样品,在某些具体的实施方式中,所述光学成像系统为工业相机;
优选地,所述图像采集模组还包括用于所述光学成像系统微调对焦的XYZ成像微调模块。
优选地,所述电阻测量单元包括稳压稳流电源和数据采集模组;所述稳压稳流电源与所述第一电源接口电性连接,为待测样品供电;所述数据采集模组与所述第二电源接口和微米探针相连,用于测量所述待测样品与微米探针的接触电压。
优选地,还包括计算机单元,用于读取所述图像采集模组采集的所述待测样品的表面图像信息、读取所述数据采集模组的信息、用于设置所述位移控制单元的移动参数、控制所述XYZ成像微调模块的对焦;所述光学成像系统采集待测样品表面图像信息并输入计算机,并作为所述位移控制单元的闭环矫正信息定位所述微米探针;
在本发明的技术方案中,所述位移控制单元的移动由所述计算机单元进行
控制,其精度可达到1μm以下。
优选地,所述工业相机的像素不低于2000万像素,在本发明的技术方案中,采用2000万像素以上的工业相机对所述位移控制单元的进行闭环矫正后,所述所述微米探针的定位精度可达到0.5μm以下。
优选地,所述测试装置的测试过程中需在真空条件下完成;在某些具体的实施方式中,所述测试装置还包括真空罩体,测试时,采用真空泵将所述罩体内抽至真空,所述真空的真空度≤10Pa。
又一方面,本发明提供应用上述变温异质界面接触电阻率测试装置的测试方法,包括如下步骤:
(1)将待测样品安装于变温夹持台架中,并加热所述待测样品;
(2)采集所述待测样品的表面图像,设置扫描路径和扫描步长,生成微米探针目标位置;
(3)扫描测量,微米探针每走一步执行一次电阻测量,绘制扫描路径与电压值关系曲线图,计算得到所述加热温度下的异质界面的接触电阻Rc,根据所述待测样品的几何参数和所述接触电阻Rc,计算得到所述加热温度下的异质界面的接触电阻率ρc。
进一步地,所述变温异质界面接触电阻率测试装置的测试方法具体包括如下步骤:
步骤①,将待测样品夹持于变温夹持台架中,摇动手摇轮,使所述待测样品被夹紧;
步骤②,将第一电源接口与稳压稳流电源连接,为所述待测样品提供固定电流;
步骤③,给加热器设置加热温度,测温热电偶采集所述加热器的温度并反馈于PID控制器,由所述PID控制器控制所述加热器的精准控温;
步骤④,将数据采集模组与微米探针和第二电源接口连接,通过计算机单元设置微米探针在待测样品表面的扫描间隔;
步骤⑤,扫描测量,随着微米探针的移动,光学成像系统采集所述待测样品的表面图像信息并输入计算机,并作为位移控制单元的闭环矫正信息定位所述微米探针,根据每次扫描测量的对应电压,在计算机中生成扫描路径与电压值关系曲线图;
步骤⑥,根据所述扫描路径与电压值关系曲线图和通过待测样品的固定电流值,计算得到所述温度下的异质界面的接触电阻Rc;
步骤⑦,调整所述加热器的加热温度,并重复步骤③-⑥,得到不同温场工况下的异质界面的接触电阻;结合所述待测样品的截面积尺寸S计算变温异质界面的接触电阻率。
在本发明的技术方案中,所述计算变温界面的接触电阻率的计算公式为ρc=Rc×S。
上述技术方案具有如下优点或者有益效果:
针对现有技术中,热电器件异质界面接触电阻率测试技术的弊端,本发明提供一种变温异质界面接触电阻率的测试装置与测试方法,采用三探针法、加热控温技术以及机器视觉对探针定位进行精确矫正,可精确测量不同温场工况下的电极材料与热电材料间的界面接触电阻率。
其中采用三探针法和加热控温技术,可以模拟热电器件的实际温场工况,测量得到对应的接触电阻率,对优化热电器件制造工艺和完善仿真理论模型有巨大的参考价值;采用机器视觉配合定位探针技术,可以通过工业相机拍摄图像并识别探针位置,作为定位探针的高精度闭环矫正信息,探针定位精度可达0.5μm以下,极大提高了接触电阻率的测试精度。
图1是本发明实施例1提供的变温异质界面接触电阻率测试装置的结构示意图。
图2是本发明实施例1提供的变温异质界面接触电阻率测试装置的变温夹
持台架的结构示意图。
图3是本发明实施例1提供的变温异质界面接触电阻率测试装置的变温夹持台架的局部(A)放大图。
图4是本发明实施例2中的扫描路径与电阻值关系曲线图。
图5是本发明实施例3中的扫描路径与电阻值关系曲线图。
下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的说明,显然所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。因此,以下对附图中提供的本发明实施例中的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明的实施例,本领域技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本发明的保护范围。
在本发明的描述中,需要说明的是,如出现术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等,其所指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,如出现术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
实施例1:
针对现有技术中,热电器件异质界面接触电阻率测试技术的弊端,本发明提供一种变温异质界面接触电阻率测试装置,如图1-3所示:包括:
探针测试平台,用于控制微米探针51在待测样品53表面的扫描;包括:微米探针座4,用于夹持微米探针51;变温夹持台架5,用于夹持和加热待测样品53;图像采集模组6,用于采集待测样品53的表面图像信息;
位移控制单元,用于控制微米探针51在待测样品53表面的移动;包括X位移模组2、Y位移模组3和Z位移模组1;其中X位移模组2和Z位移模组1与微米探针座4相连,Y位移模组3与变温夹持台架5相连;
电阻测量单元,与变温夹持台架5与微米探针51相连。
本发明提供的装置在使用过程中,将待测样品53安装于变温夹持台架5中,X位移模组2、Y位移模组3通过控制微米探针座4的运动,实现微米探针51在水平面的移动;Y位移模组3通过控制变温夹持台架5,调节待测样品53的高度。
进一步地,变温夹持台架5包括第一电源接口52-1、第二电源接口52-2、夹持待测样品53并加热的加热器54和测温热电偶55;测温热电偶55设置于加热器54接触待测样品53的一端;第一电源接口52-1与电阻测试单元和待测样品53电性连接,构成闭合的回路;待测样品53设置于第一电源接口52-1和第二电源接口52-2之间。
本发明提供的装置,加热器54用于给待测样品53加热,从而测定不同温度下的接触电阻率,通过设置测温热电偶54可以监控待测样品53的温度。
进一步地,变温夹持台架5还包括底座59、用于固定加热器54的支架56和用于调节待测样品53夹持松紧度的手摇式夹紧机构;支架56包括固定支架56-1和滑动支架56-2;手摇式夹紧机构设置于底座59上,并且与滑动支架56-2连接。
本发明提供的装置,使用过程中,通过手摇式夹紧机构可以调节滑动支架56-1与滑动支架56-2之间的距离,一方面可以测量不同规格的样品,另一方面可以调节待测样品53的夹持松紧度。
优选地,手摇式夹紧机构包括手摇轮57和滑块58;滑块58设置于底座59
上并且与滑动支架56-2固定连接;手摇轮57与滑块58传动连接。
本发明提供的装置,采用手摇轮57和滑块58的配合,使用过程中,通过摇动手摇轮57使滑块58朝向或远离固定支架56-1的方向移动,从而缩短或增大滑动支架56-2和固定的加热器与固定支架56-1和其固定的加热器之间的距离,实现不同规格样品的测量以及调节待测样品53的夹紧度。
进一步地,加热器54选自内置加热丝的氧化铝陶瓷、氮化铝陶瓷和氮化硅陶瓷中的任一种;加热器54外包裹有铜传热块,待测样品53通过铜传热块与第一电源接口52-1和第二电源接口52-2构成闭合的回路;测温热电偶55设置于铜传热块接触待测样品53的一端;
进一步地,微米探针座4由低热导率耐热绝缘材料制成,如氧化锆陶瓷、玻璃纤维复材和聚四氟乙烯等;
进一步地,微米探针51由钨制成。
本发明提供的测试装置,通过内置加热丝的氧化铝陶瓷、氮化铝陶瓷或氮化硅陶瓷对待测样品53进行加热,加热器54外表面由铜传热块包裹,从而将待测样品53与第一电源接口52-1和第二电源接口52-2构成闭合的回路,加热器54由外接电源供电。
进一步地,还包括PID控制器,PID控制器根据测温热电偶55采集的温度信息实现对加热器54的精准控温;加热器54的控温范围为室温~800℃,控温精度优选为±1℃之内。
本发明提供的测试装置,测温热电偶55采集的温度信息反馈于PID控制器,通过PID控制器实现对加热器54的控温。
进一步地,图像采集模组6包括光学成像系统,用于采集待测样品53的表面图像信息;光学成像系统的光源照向待测样品53。
进一步地,还包括用于光学成像系统微调对焦的XYZ成像微调模块7。
本发明提供的测试装置,通过XYZ成像微调模块7实现光学成像系统的微调对焦,采集待测样品53的表面图像,并进行图像处理,有效地实现机器视觉
定位,相对现有的装置采用显微镜观察,操作更简单,且定位精度高。
进一步地,电阻测量单元包括稳压稳流电源和数据采集模组;稳压稳流电源与第一电源接口52-1电性连接,为待测样品53供电;数据采集模组与第二电源接口52-2和微米探针51相连,用于测量待测样品53与微米探针51的接触电压。
进一步地,还包括计算机单元,用于读取图像采集模组6采集的待测样品53的表面图像信息、读取数据采集模组的信息、用于设置位移控制单元的移动参数、控制XYZ成像微调模块7的对焦;光学成像系统采集待测样品53表面图像信息并输入计算机,并作为位移控制单元的闭环矫正信息定位微米探针51。
本实施例提供的测试装置,X位移模组2、Y位移模组3和Z位移模组1包括步进电机和其传动连接的滑台,计算机单元可以通过调控步进电机的参数,控制滑台的位移,其控制精度优选为小于1μm。本实施例采用具有自动对焦以及2000万以上像素的工业相机作为光学成像系统,采集待测样品53表面图像并输入计算机,对位移控制单元反馈的探针位置信息进行闭环矫正,最终对探针的定位精度可达到0.5μm以下。
进一步地,本发明提供的测试装置还包括真空罩体8,测试时,采用真空泵将罩体内抽至真空,真空的真空度≤10Pa。
应用上述变温异质界面接触电阻率测试装置的测试方法,包括如下步骤:
步骤①,将待测样品53夹持于变温夹持台架5中,摇动手摇轮57,使待测样品53被夹紧;
步骤②,将第一电源接口52-1与稳压稳流电源连接,为待测样品53提供固定电流;
步骤③,给加热器54设置加热温度,测温热电偶55采集加热器54的温度并反馈于PID控制器,由PID控制器控制加热器54的精准控温;
步骤④,将数据采集模组与微米探针51和第二电源接口52-2连接,通过计算机单元设置微米探针51在待测样品53表面的扫描间隔;
步骤⑤,扫描测量,随着微米探针51的移动,光学成像系统采集待测样品53的表面图像信息并输入计算机,并作为位移控制单元的闭环矫正信息定位微米探针51,根据每次扫描测量的对应电压,在计算机中生成扫描路径与电压值关系曲线图;
步骤⑥,根据扫描路径与电压值关系曲线图和通过待测样品53的固定电流值,计算得到温度下的异质界面的接触电阻Rc;
步骤⑦,调整加热器54的加热温度,并重复步骤③-⑥,得到不同温场工况下的异质界面的接触电阻;结合待测样品53的截面积尺寸S计算变温异质界面的接触电阻率。
进一步地,计算变温界面的接触电阻率的计算公式为ρc=Rc×S。
实施例2:
本实施例采用实施例1中的测试装置和方法测试了样品碲化铋材料/Co界面的接触电阻率,样品为碲化铋/Co/碲化铋三明治结构,尺寸为高3mm*宽3mm*长4mm,测试温度为室温27℃,测试电流为100mA直流,真空环境;测试结果见图4所示,界面接触接触电阻值为0.12mΩ,计算得到界面接触电阻率为10.8μΩcm2。
实施例3:
本实施例采用实施例1中的测试装置和方法测试了样品方钴矿材料/Mo界面的接触电阻率,样品为Yb0.3Co4Sb12/Mo/Yb0.3Co4Sb12三明治结构,尺寸为高2.52mm*宽2.77mm*长4mm,测试温度为477℃,测试电流为100mA直流,真空环境;测试结果见图5所示,界面接触电阻值为0.06mΩ,计算得到界面接触电阻率为4.2μΩcm2。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
Claims (10)
- 一种变温异质界面接触电阻率测试装置,其特征在于,包括:探针测试平台,用于控制微米探针在待测样品表面的扫描;包括:微米探针座,用于夹持所述微米探针;变温夹持台架,用于夹持和加热待测样品;图像采集模组,用于采集所述待测样品的表面图像信息;位移控制单元,用于控制所述微米探针在所述待测样品表面的移动;包括X位移模组、Y位移模组和Z位移模组;其中所述X位移模组和Z位移模组与所述微米探针座相连,所述Y位移模组与所述变温夹持台架相连;电阻测量单元,与所述变温夹持台架和微米探针相连。
- 根据权利要求1所述的测试装置,其特征在于,所述变温夹持台架包括第一电源接口、第二电源接口、夹持待测样品并加热的加热器和测温热电偶;所述测温热电偶设置于所述加热器接触所述待测样品的一端;所述第一电源接口与所述电阻测试单元和所述待测样品电性连接,构成闭合的回路;所述待测样品设置于所述第一电源接口和第二电源接口之间。
- 根据权利要求2所述的测试装置,其特征在于,所述变温夹持台架还包括底座、用于固定所述加热器的支架和用于调节所述待测样品夹持松紧度的手摇式夹紧机构;所述支架包括固定支架和滑动支架;所述手摇式夹紧机构设置于所述底座上,并且与所述滑动支架连接。
- 根据权利要求3所述的测试装置,其特征在于,所述手摇式夹紧机构包括手摇轮和滑块;所述滑块设置于所述底座上并且与所述滑动支架固定连接;所述手摇轮与所述滑块传动连接。
- 根据权利要求2所述的测试装置,其特征在于,所述加热器选自内置加热丝的氧化铝陶瓷、氮化铝陶瓷和氮化硅陶瓷中的任一种;所述加热器外包裹有铜传热块,所述待测样品通过所述铜传热块与所述第一电源接口和所述第二电源接口构成闭合的回路;所述测温热电偶设置于所述铜传热块接触所述待测样品的一端;优选地,所述微米探针座由低热导率耐热绝缘材料制成;优选地,所述微米探针由钨制成。
- 根据权利要求2所述的测试装置,其特征在于,还包括PID控制器,所述PID控制器根据所述测温热电偶采集的温度信息实现对所述加热器的精准控温;所述加热器的控温范围为室温~800℃,控温精度优选为±1℃之内。
- 根据权利要求2所述的测试装置,其特征在于,所述图像采集模组包括光学成像系统,用于采集所述待测样品的表面图像信息;所述光学成像系统的光源照向所述待测样品;优选地,所述图像采集模组还包括用于所述光学成像系统微调对焦的XYZ成像微调模块。
- 根据权利要求7所述的测试装置,其特征在于,所述电阻测量单元包括稳压稳流电源和数据采集模组;所述稳压稳流电源与所述第一电源接口电性连接;所述数据采集模组与所述第二电源接口和微米探针相连,用于测量所述待测样品与微米探针的接触电压。
- 根据权利要求8所述的测试装置,其特征在于,还包括计算机单元,用于读取所述图像采集模组采集的所述待测样品的表面图像信息、读取所述数据采集模组的信息、用于设置所述位移控制单元的移动参数、控制所述XYZ成像微调模块的对焦;所述光学成像系统采集待测样品表面图像信息并输入计算机,并作为所述位移控制单元的闭环矫正信息定位所述微米探针;优选地,所述位移控制单元的移动精度为1μm以下;优选地,所述微米探针的定位精度为0.5μm以下。
- 权利要求1-9任一所述的变温异质界面接触电阻率测试装置的测试方法,其特征在于,包括如下步骤:(1)将待测样品安装于变温夹持台架中,并加热所述待测样品;(2)采集所述待测样品的表面图像,设置扫描路径和扫描步长,生成微米探针目标位置;(3)扫描测量,微米探针每走一步执行一次电阻测量,绘制扫描路径与电 压值关系曲线图,计算得到所述加热温度下的异质界面的接触电阻Rc,根据所述待测样品的几何参数,和所述接触电阻Rc,计算得到所述加热温度下的异质界面的接触电阻率ρc。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210111711 | 2022-01-29 | ||
CN202210111711.0 | 2022-01-29 | ||
CN202210132524.0 | 2022-02-14 | ||
CN202210132524.0A CN114487607A (zh) | 2022-01-29 | 2022-02-14 | 一种变温异质界面接触电阻率测试装置与测试方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023143638A1 true WO2023143638A1 (zh) | 2023-08-03 |
Family
ID=81480729
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/083814 WO2023143638A1 (zh) | 2022-01-29 | 2023-03-24 | 一种变温异质界面接触电阻率测试装置与测试方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114487607A (zh) |
WO (1) | WO2023143638A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114487607A (zh) * | 2022-01-29 | 2022-05-13 | 深圳先进电子材料国际创新研究院 | 一种变温异质界面接触电阻率测试装置与测试方法 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002131211A (ja) * | 2000-08-18 | 2002-05-09 | Internatl Business Mach Corp <Ibm> | 薄膜熱電物質の熱的及び電気的特性を測定する方法及び装置 |
JP2008051744A (ja) * | 2006-08-28 | 2008-03-06 | National Institute Of Advanced Industrial & Technology | 熱電材料の熱物性値を測定する方法および熱電材料測定装置 |
CN201716370U (zh) * | 2010-03-09 | 2011-01-19 | 北京交通大学 | 真空变温薄膜电阻测试仪 |
CN102539927A (zh) * | 2011-12-14 | 2012-07-04 | 东华大学 | 一种温度可调控四探针方块电阻及电阻率的测试方法 |
CN104635058A (zh) * | 2015-02-12 | 2015-05-20 | 武汉嘉仪通科技有限公司 | 自动化测量半导体电阻率及赛贝克系数的测试方法及系统 |
CN207623414U (zh) * | 2017-12-20 | 2018-07-17 | 中国科学院深圳先进技术研究院 | 一种精确进针的四探针测试仪 |
CN108508273A (zh) * | 2018-05-15 | 2018-09-07 | 中国科学院上海硅酸盐研究所 | 一种直接测量界面接触电阻率的装置和方法 |
CN111948250A (zh) * | 2020-08-13 | 2020-11-17 | 上海大学 | 一种高通量热电材料的变温测量装置 |
CN113466557A (zh) * | 2021-05-19 | 2021-10-01 | 包头稀土研究院 | 钕铁硼电阻率测量系统及其测量方法 |
CN113820543A (zh) * | 2021-10-29 | 2021-12-21 | 南京工程学院 | 一种薄膜材料电阻率和霍尔效应测量装置及方法 |
CN114487607A (zh) * | 2022-01-29 | 2022-05-13 | 深圳先进电子材料国际创新研究院 | 一种变温异质界面接触电阻率测试装置与测试方法 |
-
2022
- 2022-02-14 CN CN202210132524.0A patent/CN114487607A/zh active Pending
-
2023
- 2023-03-24 WO PCT/CN2023/083814 patent/WO2023143638A1/zh unknown
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002131211A (ja) * | 2000-08-18 | 2002-05-09 | Internatl Business Mach Corp <Ibm> | 薄膜熱電物質の熱的及び電気的特性を測定する方法及び装置 |
JP2008051744A (ja) * | 2006-08-28 | 2008-03-06 | National Institute Of Advanced Industrial & Technology | 熱電材料の熱物性値を測定する方法および熱電材料測定装置 |
CN201716370U (zh) * | 2010-03-09 | 2011-01-19 | 北京交通大学 | 真空变温薄膜电阻测试仪 |
CN102539927A (zh) * | 2011-12-14 | 2012-07-04 | 东华大学 | 一种温度可调控四探针方块电阻及电阻率的测试方法 |
CN104635058A (zh) * | 2015-02-12 | 2015-05-20 | 武汉嘉仪通科技有限公司 | 自动化测量半导体电阻率及赛贝克系数的测试方法及系统 |
CN207623414U (zh) * | 2017-12-20 | 2018-07-17 | 中国科学院深圳先进技术研究院 | 一种精确进针的四探针测试仪 |
CN108508273A (zh) * | 2018-05-15 | 2018-09-07 | 中国科学院上海硅酸盐研究所 | 一种直接测量界面接触电阻率的装置和方法 |
CN111948250A (zh) * | 2020-08-13 | 2020-11-17 | 上海大学 | 一种高通量热电材料的变温测量装置 |
CN113466557A (zh) * | 2021-05-19 | 2021-10-01 | 包头稀土研究院 | 钕铁硼电阻率测量系统及其测量方法 |
CN113820543A (zh) * | 2021-10-29 | 2021-12-21 | 南京工程学院 | 一种薄膜材料电阻率和霍尔效应测量装置及方法 |
CN114487607A (zh) * | 2022-01-29 | 2022-05-13 | 深圳先进电子材料国际创新研究院 | 一种变温异质界面接触电阻率测试装置与测试方法 |
Also Published As
Publication number | Publication date |
---|---|
CN114487607A (zh) | 2022-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023143638A1 (zh) | 一种变温异质界面接触电阻率测试装置与测试方法 | |
Zhu et al. | Realizing high conversion efficiency of Mg3Sb2-based thermoelectric materials | |
CN102053100B (zh) | 热电材料参数自动测定仪 | |
JP4744382B2 (ja) | プローバ及びプローブ接触方法 | |
CN105203940B (zh) | 一种热电元件可靠性评价系统及方法 | |
CN108508273B (zh) | 一种直接测量界面接触电阻率的装置和方法 | |
CN201555819U (zh) | 一种真空高温环境下测试赛贝克系数的装置 | |
CN109613051B (zh) | 一种采用对比法测量材料Seebeck系数的装置及方法 | |
Gao et al. | Bonding of large substrates by silver sintering and characterization of the interface thermal resistance | |
CN112034002A (zh) | 一种热电材料塞贝克系数的测量装置和方法 | |
CN115436727A (zh) | 一种热电器件性能测试装置 | |
CN104752305A (zh) | 用于退火装置的样品座与使用样品座的电流辅助退火装置 | |
JP5121322B2 (ja) | プローバおよびプローバのウエハチャックの温度制御方法 | |
JP2014130898A (ja) | 電子デバイス用試験装置及び試験方法 | |
CN109570811B (zh) | 一种检测梯形结构工件焊接质量的方法及装置 | |
CN116183662A (zh) | 一种散热性能测试装置及导热硅脂散热性能测试方法 | |
Naithani et al. | Apparatus for measurement of thermoelectric properties of a single leg under large temperature differences | |
CN220154578U (zh) | 一种温差电器件制冷性能测试系统 | |
CN111948342B (zh) | 一种钯合金氢气传感器 | |
CN212207180U (zh) | 一种塞贝克系数测量装置 | |
CN220105576U (zh) | 研究焊点发生电迁移条件的温度控制装置 | |
Min et al. | Preparation and Characterization of TE Interfaces/Junctions | |
Chen et al. | Thermal conductivity and interface thermal resistance evaluation of DBC/DBA in power die attach modules | |
JPH06300719A (ja) | 熱電変換特性の測定方法及び装置 | |
CN219065346U (zh) | 一种散热性能测试装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23746514 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |