WO2023143592A1 - 激光系统及激光测量方法 - Google Patents

激光系统及激光测量方法 Download PDF

Info

Publication number
WO2023143592A1
WO2023143592A1 PCT/CN2023/073759 CN2023073759W WO2023143592A1 WO 2023143592 A1 WO2023143592 A1 WO 2023143592A1 CN 2023073759 W CN2023073759 W CN 2023073759W WO 2023143592 A1 WO2023143592 A1 WO 2023143592A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
signal
scanning
component
emitted light
Prior art date
Application number
PCT/CN2023/073759
Other languages
English (en)
French (fr)
Inventor
陈如新
杜德涛
Original Assignee
睿镞科技(北京)有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 睿镞科技(北京)有限责任公司 filed Critical 睿镞科技(北京)有限责任公司
Publication of WO2023143592A1 publication Critical patent/WO2023143592A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4818Constructional features, e.g. arrangements of optical elements using optical fibres

Definitions

  • the present disclosure relates to the field of radar technology, and more particularly, to a laser system and a laser measurement method.
  • Radar is an electronic device that uses electromagnetic waves to detect target objects.
  • the radar emits electromagnetic waves to the target object and receives its echoes. After processing, the distance, azimuth, height and other information from the target object to the electromagnetic wave emission point can be obtained.
  • Radar that uses laser light as its working beam is called lidar.
  • the present disclosure relates to laser systems and laser measurement methods.
  • a laser system may include:
  • the main body component generates a scan control signal and a launch signal, and emits multiple groups of emitted light according to the emitted signal; wherein, the emitted signal includes time information indicating the start time of emission of each group of emitted light; and
  • At least one probe assembly is provided separately from the main body assembly and is optically connected to the main body assembly;
  • the probe assembly is configured to sequentially irradiate multiple groups of emitted light to at least one target object in the target scene according to the scanning control signal, and convert at least one group of reflected light reflected by at least one target object to is the output signal; where, the output The type of signal is an optical signal or an electrical signal;
  • the body assembly is configured to determine at least one of a distance of the target object, a reflectivity of the target object, and a profile of the target object based on the transmit signal and/or the output signal.
  • the laser measurement method may include:
  • the emission signal includes time information representing the emission start time of each group of emission light
  • the type of the output signal is an optical signal or an electrical signal
  • At least one of the distance of the target object, the reflectivity of the target object and the profile of the target object is determined by the main body component according to the transmission signal and/or the output signal.
  • the probe assembly and the main assembly by setting the probe assembly and the main assembly separately, and making the probe assembly and the main assembly photoelectrically connected, when installing the laser system, it is only necessary to install the probe assembly on the application object or application position without installing the entire laser
  • the application range of the laser system can be extended by installing the system on the application object or application location.
  • the probe assembly since the emission of light to the target object and the reception of the reflected light of the target object are completed by the probe assembly, and the probe assembly is installed on the application object or application position, it can ensure that the detection range of the entire laser system will not be affected.
  • Figure 1 is one of the block diagrams of a laser system according to an embodiment of the disclosure
  • FIG. 2 is a second block diagram of a laser system according to an embodiment of the disclosure.
  • Fig. 3 is the third block diagram of the laser system according to the embodiment of the present disclosure.
  • FIG. 4 is a fourth block diagram of a laser system according to an embodiment of the present disclosure.
  • FIG. 5 is one of schematic diagrams of an optical scanning assembly according to an embodiment of the disclosure.
  • Fig. 6 is a second schematic diagram of an optical scanning assembly according to an embodiment of the present disclosure.
  • FIG. 7 is a third schematic diagram of an optical scanning component according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of the working principle of a probe assembly according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of the working principle of a photoelectric conversion module according to an embodiment of the present disclosure.
  • FIG. 10 is one of the flowcharts of the laser measurement method according to an embodiment of the present disclosure.
  • Fig. 11 is the second flowchart of the laser measurement method according to the embodiment of the present disclosure.
  • an embodiment of the present disclosure provides a laser system.
  • the laser system includes a main body assembly 100 and at least one probe assembly 200 that is separately provided from the main body assembly 100 .
  • the probe assembly 200 and the main body assembly 100 are photoelectrically connection, the body assembly 100 raw Scan control signals and emission signals, and emit multiple sets of emission light according to the emission signals.
  • the emission signal includes time information representing the emission start time of each group of emission light
  • the probe assembly 200 is configured to sequentially irradiate multiple groups of emission light to at least one target object 500 in the target scene 400 according to the scanning control signal, and convert at least one group of reflected light reflected by at least one target object 500 into an output signal, the type of the output signal is an optical signal or an electrical signal
  • the main body assembly 100 is configured to determine the distance of the target object 500 according to the transmitted signal and/or the output signal , at least one of the reflectivity of the target object 500 and the profile of the target object 500 .
  • the probe assembly 200 and the main body assembly 100 are separately arranged in the embodiment of the present disclosure, and the two are photoelectrically connected, the probe assembly 200 and the main body assembly 100 can be fixed and installed separately. Compared with the entire laser system, the volume of the probe assembly 200 Being small, the probe assembly 200 can be installed on small volume application objects or application locations. Taking the application object as glasses for the blind as an example, the probe assembly 200 may be fixed on the frame of the glasses for the blind, and the main body assembly 100 is clamped on the user's waist or placed in the user's clothes pocket. Taking the rearview mirror of a car as an example, the probe assembly 200 can be fixed on the rearview mirror of the car, and the main assembly 100 can be fixed on the ceiling of the car.
  • the main body assembly 100 when the laser system is running, the main body assembly 100 generates a scanning control signal and an emission signal, and the emission light emitted by the main body assembly 100 according to the emission signal is transmitted to the probe assembly 200, and the probe assembly 200 emits the emission light to the target scene 400 according to the scanning control signal
  • At least one target object 500 inside, at least one group of reflected light after the emitted light is reflected by at least one target object 500 is received by the probe assembly 200 and converted into an output signal, and the output signal is transmitted to the main assembly 100, and the main assembly 100 according to the
  • the output signal and/or the transmitted signal may determine at least one of the distance of the target object 500 , the reflectivity of the target object 500 , and the profile of the target object 500 .
  • the probe assembly 200 and the main body assembly 100 are arranged separately, and the probe assembly 200 and the main body assembly 100 are optically connected.
  • the probe assembly 200 When installing the laser system, it is only necessary to install the probe assembly 200 on the application object or application position , without having to install the entire laser system on the application object or application location, thereby expanding the scope of application of the laser system.
  • the emission of light to the target object 500 and the reception of the reflected light of the target object 500 are both completed by the probe assembly 200, and the probe assembly 200 is installed on the application object or application position, it can be guaranteed that the detection range of the entire laser system will not be affected .
  • the main body assembly 100 and the probe assembly 200 can be optically connected through a flexible cable 300, and the flexible cable 300 can conduct both electric current and light beam.
  • flexible cable 300 includes optical fiber 320 and wire 310 . Since the length of the flexible cable 300 directly determines the furthest distance between the probe assembly 200 and the main body assembly 100 , the flexible cable 300 of a corresponding length can be selected according to the requirement of distinguishing distance in practical application.
  • the main body assembly 100 and the probe assembly 200 can also transmit electrical and optical signals through space by means of other optical elements and wireless communication elements to achieve an optical connection.
  • the multiple probe assemblies 200 can respectively irradiate the corresponding emitted light to the target objects 500 in different target scenes 400 .
  • the type of the output signal is determined by the specific structure of the probe assembly 200, that is, different types of output signals correspond to different structural forms of the probe assembly 200, for example:
  • the probe assembly 200 includes a light receiving assembly 210 and an optical scanning assembly 220 .
  • the light scanning component 220 deflects the emitted light emitted by the main body component 100 according to the scanning control signal and then illuminates at least one target object 500, and/or deflects at least one set of reflected light reflected by the at least one target object 500 and then irradiates it to The light receiving component 210; the light receiving component 210 converts the reflected light into a first light signal.
  • the main body assembly 100 includes a light emission assembly 110 , a scan controller 120 , a photoelectric conversion assembly 130 and a processor 150 .
  • the light emitting component 110 generates a transmitting signal and emits multiple sets of emitted light according to the transmitting signal
  • the scanning control component 120 generates a scanning control signal
  • the photoelectric conversion component 130 converts the first optical signal into a first electrical signal. If the output end of the photoelectric conversion assembly 130 is directly electrically connected to the input end of the processor 150, the processor 150 can directly or indirectly determine the distance of the target object 500 and the reflectivity of the target object 500 according to the transmitted signal and/or the first electrical signal. and at least one of the outline of the target object 500 .
  • the output end of the photoelectric conversion assembly 130 may also be electrically connected to the input end of the processor 150 through the electrical amplification module 140, and the electrical amplification module 140
  • the first electrical signal is amplified into a second electrical signal.
  • the electrical amplifying module 140 includes multiple stages of amplifiers that are electrically connected in sequence, and the intensity of the electrical signal output from the upper amplifier of two adjacent amplifiers is smaller than that of the electrical signal output from the lower amplifier.
  • the electrical amplification module 140 includes a first-stage amplifier and a second stage amplifier; wherein, the intensity of the electric signal output by the first stage amplifier is smaller than that of the electric signal output by the second stage amplifier, and the second stage amplifier amplifies the electric signal output by the first stage amplifier.
  • the processor 150 may determine at least one of the distance of the target object 500, the reflectivity of the target object 500, and the profile of the target object 500 directly or indirectly according to the transmission signal and/or the second electrical signal.
  • the main body assembly 100 further includes a comparator and a duration determination module, and the electrical amplification module 140 is electrically connected to the processor 150 through the comparator and the duration determination module in turn.
  • the number of comparators may be one or multiple.
  • the comparator is connected to the duration determination module through any amplifier, for example, the comparator is connected to the output terminal of the last stage amplifier; when the number of comparators is multiple, the output terminals of multiple amplifiers Comparators are all connected, and the voltage values of the comparison inputs of each comparator are different.
  • the comparator is connected to the comparison input, which is used to compare the voltage value of the comparison input with the electrical signal output by the corresponding amplifier to determine the trigger start time, trigger end time and pulse width; wherein, the trigger start time and trigger end time are respectively The intensity of the electrical signal output by the amplifier is higher than the start time and end time of the compared input voltage value, and the pulse width is the difference between the trigger end time and the trigger start time; the duration determination module is set in one-to-one correspondence with the comparator, and the duration is determined The module is used to determine the light flight duration according to the emission start time and the corresponding trigger start time.
  • the corresponding pulse width is also different.
  • the light flight time is corrected, and then the distance and/or reflectivity and/or profile of the target object 500 is determined according to the light speed and the corrected light flight time.
  • the comparison input may be a dynamic voltage curve input to the comparator from outside, or a dynamic voltage curve pre-stored in the comparator.
  • the duration determination module may be, but not limited to, a TDC (time-to-digital converter, referred to as a time-to-digital converter).
  • the duration determining module and the processor may be independent components, or may be integrated into one component.
  • the probe assembly 200 includes a light receiving assembly 210 , an optical scanning assembly 220 and a photoelectric conversion assembly 130 .
  • the light scanning component 220 deflects the emitted light emitted by the main component 100 according to the scanning control signal. Then irradiate to at least one target object 500, and/or deflect at least one set of reflected light reflected by at least one target object 500 and then irradiate to the light receiving component 210; the light receiving component 210 receives the reflected light reflected by the target object 500 and The reflected light is converted into a first optical signal, and the photoelectric conversion component 130 converts the first optical signal into a first electrical signal.
  • the main body component 100 includes a light emitting component 110, a scanning control part 120 and a processor 150, and the processor 150 can directly or indirectly At least one of the distance of the target object 500, the reflectivity of the target object 500, and the profile of the target object 500 is determined according to the transmission signal and/or the first electrical signal.
  • the main body assembly 100 also includes an electric amplification module 140 in addition to the light emitting assembly 110, the scanning control part 120 and the processor 150.
  • the output terminal of the component 130 is electrically connected to the input terminal of the processor 150 through the electrical amplification module 140.
  • the electrical amplification module 140 amplifies the first electrical signal into a second electrical signal.
  • the electrical signal is at least one of the distance of the target object 500 , the reflectivity of the target object 500 and the profile of the target object 500 .
  • the probe assembly 200 includes a light receiving assembly 210 , an optical scanning assembly 220 , a photoelectric conversion assembly 130 and an electrical amplification module 140 .
  • the main body assembly 100 includes a light emitting assembly 110, a scanning control part 120 and a processor 150
  • the electric amplification module 140 of the probe assembly 200 is electrically connected to the input end of the processor 150 of the main body assembly 100
  • the processor 150 can directly Or indirectly according to at least one of the distance of the target object 500 , the reflectivity of the target object 500 and the profile of the target object 500 by the transmitted signal and/or the second electric signal.
  • the main body assembly 100 also includes a comparator and a duration determination module, and the electric amplification module 140 of the probe assembly 200 communicates with the comparator and the duration determination module of the main body assembly 100 in turn.
  • the module and the processor 150 are electrically connected.
  • the probe assembly 200 includes a light receiving assembly 210 , an optical scanning assembly 220 , a photoelectric conversion assembly 130 , an electrical amplification module 140 and a comparator.
  • the body assembly 100 includes a light emission assembly 110, a scan control 120, a duration determination module and a processor 150, a comparator of the probe assembly 200
  • the output end of the main assembly 100 is in turn electrically connected to the duration determining module and the processor 150, and the processor 150 is based on the transmitted signal and/or the output end signal of the comparator for the distance of the target object 500, the reflectivity of the target object 500 and the distance of the target object 500. At least one of the contours of .
  • the probe assembly 200 includes a light receiving assembly 210, an optical scanning assembly 220, a photoelectric conversion assembly 130, an electrical amplification module 140, a comparator, and a duration determination module.
  • the main body assembly 100 includes a light emitting assembly 110, a scanning control part 120 and a processor 150
  • the duration determination module of the probe assembly 200 is electrically connected to the input end of the processor 150 of the main body assembly 100, and the processor 150 And/or at least one of the distance of the target object 500 , the reflectivity of the target object 500 and the profile of the target object 500 in the second electric signal.
  • the duration can represent the distance of the target object 500, that is to say, if the probe assembly 200 receives the reflected light outside the first preset duration from the start of emission of the emitted light, it means that the target object 500 is far away.
  • the light receiving assembly 210 includes at least one lens group, the lens group includes a plurality of receiving lenses 211 arranged in sequence along the optical path of the reflected light, and the plurality of receiving lenses 211 along the reflection
  • the optical path direction of the light is arranged at intervals in sequence, and the distance between at least two receiving lenses 211 is adjustable; the focal length of the lens group gradually increases within the first preset time length from the starting moment of the emission of the emitted light, that is to say, The imaging position of the lens group remains unchanged and the imaging area decreases with time, so that the viewing angle of the lens group decreases synchronously.
  • the laser system can operate with a larger detection field of view for a first preset period of time to detect a larger scene, and then operate with a smaller detection field of view to detect a longer distance.
  • the first preset duration is longer than the pulse time width of the emitted light.
  • the focal length of the lens group can be realized by adjusting the distance between two adjacent receiving lenses 211 .
  • the light scanning component 220 includes a MEMS vibrating mirror 221, a rotating prism, a rotating wedge mirror, an optical phased array, At least one of a photoelectric deflection device and a liquid crystal scanning part; wherein, the liquid crystal scanning part includes a liquid crystal spatial light modulator, a liquid crystal supercrystal, a liquid crystal wire-controlled array, a see-through one-dimensional liquid crystal array, a transmissive two-dimensional liquid crystal array, or LCD module.
  • the scanning dimension of the light scanning component 220 may be, but not limited to, one-dimensional or two-dimensional.
  • the scanning control signal includes a first analog voltage signal; the light scanning component 220 rotates along the first scanning direction within the scanning time of the frame according to the first analog voltage signal, so as to sequentially deflect multiple groups of emitted light in the direction Then irradiate to the target object 500 , and/or deflect the emitted light from the reflected light reflected by the target object 500 and irradiate it to the light receiving component 210 .
  • the emitted light when the first scanning direction is the horizontal direction, each group of emitted light is deflected by the light scanning component 220 and then directed to a different direction.
  • the trajectory of the target object 500 after the deflection of the 220 can form a horizontal fan-shaped surface.
  • the first scanning direction may be, but not limited to, a vertical direction, a horizontal direction or an oblique direction; wherein, the oblique direction is between the vertical direction and the horizontal direction.
  • the light scanning assembly 220 can also rotate in other directions besides the first scanning direction.
  • the scanning control signal includes a second analog voltage signal; the light scanning component 220 rotates along the second scanning direction within the scanning time of the current frame according to the second analog voltage signal, so as to deflect multiple groups of emitted light in sequence and shoot them to the target object 500 , and/or deflect the reflected light reflected by the target object 500 to the light receiving component 210 after the emitted light is deflected.
  • each group of emitted light is deflected by the light scanning component and shoots in different directions, and multiple groups of emitted light pass through the light scanning component sequentially within the scanning time of this frame
  • the trajectory directed toward the target object 500 after the deflection direction can be surrounded to form a vertical fan-shaped surface.
  • the first scanning direction is different from the second scanning direction, and the second scanning direction can be, but not limited to, a vertical direction, a horizontal direction or an oblique direction; wherein, the oblique direction is between the vertical direction and the horizontal direction. between.
  • the scanning control signal includes a first analog voltage signal and a second analog voltage signal
  • the first analog voltage signal controls the time period of the optical scanning component 220
  • the second analog voltage signal controls the time period of the optical scanning component 220
  • the first analog voltage signal and the second analog voltage signal simultaneously control the optical scanning component 220
  • the optical scanning component 220 scans the current frame according to the first analog voltage signal and the second analog voltage signal. Simultaneously rotate along the first scanning direction and the second scanning direction, so as to sequentially deflect multiple groups of emitted light and then shoot to the target object 500, and/or deflect the reflected light reflected by the target object 500 and then irradiate to the target object 500 Receive component 210 .
  • the light scanning component 220 rotates in the horizontal direction around a certain vertical axis during the scanning time of this frame, and at the same time, the light scanning component 220 as a whole It rotates vertically about a horizontal axis.
  • the light scanning assembly 220 rotates an angle ⁇ in the horizontal direction and an angle ⁇ in the vertical direction at the same time, the reflected light is deflected after being reflected by the scanning light assembly 220 ( ⁇ , ⁇ ).
  • each group of reflected light is deflected by the light scanning component 220 and shoots in different directions.
  • the trajectory towards the light receiving component 210 can be surrounded to form a similar cone figure, that is to say, a coordinate system is established with the first scanning direction as the x-axis and the second scanning direction as the y-axis.
  • the projection of each group of reflected light of the light receiving component 210 on the xy plane has components along the x-axis and the y-axis.
  • the waveform parameters of the first analog voltage signal and/or the second analog voltage signal include at least one of frequency, amplitude and phase.
  • the MEMS oscillating mirror 221 is configured to rotate along the first scanning direction within the scan duration of the current frame according to the first analog voltage signal and/or according to the first analog voltage signal.
  • the two analog voltage signals rotate along the second scanning direction.
  • the optical scanning assembly 220 further includes a rotating mirror 224, the rotating mirror 224 is located on the optical path of the emitted light emitted by the MEMS vibrating mirror 221 to the target object 500, the rotating mirror 224 is configured to rotate along the third scanning direction according to the scanning control signal, In order to reflect the emitted light reflected by the MEMS vibrating mirror 221 to the target object 500 .
  • the third scanning direction and the first scanning direction or the second scanning direction may be in the same direction or different directions.
  • the advantage of this setting is that since the scanning frequency of the MEMS oscillating mirror 221 is very fast, the scanning frequency of the rotating mirror 224 is relatively slow, and the cost of the rotating mirror 224 is much lower than that of the MEMS oscillating mirror 221, so by using the MEMS oscillating mirror in turn 221 and the rotating mirror 224 deflect the emitted light so as to expand the receiving viewing angle of the light receiving component 210 at a lower cost.
  • the scanning direction of the MEMS vibrating mirror 221 is the vertical direction and the scanning direction of the rotating mirror 224 is the horizontal direction
  • the MEMS The vibrating mirror 221 quickly and sequentially deflects multiple groups of emitted light and shoots them to the rotating mirror 224.
  • the multiple groups of emitted light are directed to the target object 500 at a large horizontal scanning angle.
  • the trajectory of the emitted light directed toward the target object 500 after being deflected by the rotating mirror 224 forms a fan-shaped surface with a large central angle on the horizontal plane.
  • the optical scanning component 220 can realize vertical high-frequency scanning + horizontal wide-angle scanning.
  • the rotating mirror 224 may be, but not limited to, a rotating prism or a rotating wedge mirror.
  • the light scanning assembly 220 also includes a light guide 222 and a light collimator 223, and the light inlet of the light guide 222 is connected to the main body assembly 100 through a flexible cable 300 , the light outlet of the light guide 222 is close to and faces the light inlet of the light collimating mirror 223 , and the light outlet of the light collimating mirror 223 faces the reflection surface of the MEMS vibrating mirror 221 .
  • the light guide 222 can be fixed on the support member 700 for carrying the MEMS oscillating mirror 221 , and the light inlet of the light guide 222 is connected to the optical fiber 320 of the flexible cable 300 by optical fiber fusion.
  • the multiple sets of emitted light emitted by the main body assembly 100 are transmitted through the optical fiber 320 in sequence After reaching the light outlet of the light guide 222 , the light passes through the light collimating mirror 223 and directly directs to the reflection surface of the MEMS oscillating mirror 221 .
  • the optical path of the emitted light emitted by the light outlet of the light collimating mirror 223 is located between the reflective surface of the MEMS vibrating mirror 221 and the specific tapered surface 600, and the emitted light emitted by the light outlet of the light collimating mirror 223
  • the angle between the optical path and the generatrix of a specific cone 600 Less than the preset angle; wherein, the central axis of the specific cone surface 600 is perpendicular to the reflective surface of the MEMS vibrating mirror 221, and the apex of the specific conical surface 600 is located on the reflective surface of the MEMS galvanometer 221, and the bus bar of the specific cone surface 600 is in line with the MEMS galvanometer
  • the included angle ⁇ between the reflective surfaces of 221 is an acute angle, and the size of the acute angle may be, but not limited to, 15° ⁇ 75°.
  • the preset angle may be, but not limited to, 0° ⁇ 45°.
  • the distance d between the light outlet of the light collimating mirror 223 and the center of the reflective surface of the MEMS vibrating mirror 221 is less than a preset distance, for example, the preset distance can be but not limited to 0.1cm, 1cm , 2cm or 5cm.
  • the preset distance may be, but not limited to, 0.1, 1, 2 or 5 times the radius of the reflecting surface of the MEMS vibrating mirror 221 .
  • the MEMS vibrating mirror 221, the light guide 222 and the light collimating mirror 223 are all arranged on the same chip.
  • the probe assembly 200 also includes a driver 230, the driver 230 is electrically connected to the main body assembly 100, the optical scanning assembly 220 is arranged on the driver 230, and the driver 230 is used for The optical scanning assembly 220 is driven to swing or rotate according to the scanning control signal.
  • the light receiving component 210 can also be disposed on the driving member 230 , in this case, the driving component 230 can drive the light receiving component 210 and the light scanning component 220 to swing or rotate synchronously relative to the target object 500 .
  • the above “rotation” generally means that the light scanning component 220 can be deflected by a certain angle relative to the target object 500 in the horizontal direction, or can be deflected by a certain angle in the vertical direction relative to the target object 500, and of course it can also be deflected in any direction in space. deflection by a certain angle.
  • “Swing” generally means that the light scanning assembly 220 rotates back and forth in a certain direction.
  • the driving member 230 may include, but is not limited to, a cardan shaft and a drive motor, the optical scanning assembly 220 is disposed on the cardan shaft, and the drive motor drives the cardan shaft to rotate.
  • the photoelectric conversion component 130 includes a plurality of photoelectric conversion units 131 distributed in an array, and the photoelectric conversion unit 131 converts a first optical signal into a first electrical signal; wherein, the plurality of photoelectric conversion units The number of photoelectric conversion units 131 in the operating state in the unit 131 gradually decreases within the first preset time length since the emission start moment when the emitted light is emitted; wherein, the photoelectric conversion units 131 in the operating state are adjacent to each other, The first preset duration is longer than the pulse time width of the emitted light.
  • the photoelectric conversion unit 131 may be, but not limited to, an avalanche photodiode (Avalanche Photo Diode, APD for short) or a single photon avalanche diode (Single Photon Avalanche Diode, SPAD for short).
  • APD avalanche Photo Diode
  • SPAD Single Photon Avalanche Diode
  • the photoelectric conversion assembly 130 includes 6 ⁇ 9 photoelectric conversion units 131 distributed in a rectangular array, wherein the black photoelectric conversion unit 131 indicates that the photoelectric conversion unit 131 is in operation, that is, the photoelectric conversion unit 131
  • the unit 131 is an effective photoelectric conversion unit
  • the white photoelectric conversion unit 131 indicates that the photoelectric conversion unit 131 is in a shutdown state, that is, the photoelectric conversion unit 131 is an ineffective photoelectric conversion unit.
  • the photoelectric conversion unit 131 has a certain area, so each photoelectric conversion unit 131 corresponds to a certain receiving area in the target scene 400 through the receiving lens 211, that is, the field of view angle, and the photoelectric conversion unit 130
  • the viewing angle ⁇ is determined by the photoelectric conversion unit 131 in the operating state, that is, the receiving area corresponding to the effective photoelectric conversion unit.
  • the embodiment of the present disclosure starts from the emission start moment emitted by the emitted light at the first predetermined Adjusting the number of photoelectric conversion units 131 in the operating state within a set time period can change the detection field angle of the laser system, so that the laser system can operate with a larger detection field angle within the first preset time period, and then Probe a larger scene, then run with a smaller detection field of view to detect greater distances.
  • the laser system in order to improve the resolution in a certain direction, the laser system has multiple emission fields of view along the direction, and it also needs to match the same number of receiving fields of view as the emission fields of view. In order to accurately and synchronously match the emission field of view and the reception field of view, the laser system needs to set up a complex control system to precisely control the light scanning component.
  • the emission field of view of the light emitting component 110 is located in the receiving field of view of the corresponding photoelectric conversion component 130 within the preset receiving time period from the emission start moment of the corresponding emission light, and the receiving field of view
  • the area of the field is not less than twice the area of the emission field of view; the emission field of view is the projection area of each group of emitted light in the target scene 400, and the reception field of view is that all light beams that the photoelectric conversion assembly 130 can receive correspond to in the target scene 400 Area.
  • the photoelectric conversion assembly 130 includes a plurality of photoelectric conversion units 131 arranged in sequence along the length direction and width direction of the receiving field of view, that is to say, the plurality of photoelectric conversion units 131 are distributed in a two-dimensional array, and the plurality of photoelectric conversion units 131 are distributed in a two-dimensional array.
  • the photoelectric conversion unit 131 in the operating state of the unit 131 converts all first optical signals into corresponding first electrical signals.
  • the light scanning component 220 is further configured to generate a current scanning angle signal when deflecting the reflected light reflected by the target object 500 and send it to the processor 150 of the main body component 100 .
  • a code wheel is disposed on the rotating mirror 224 .
  • the code wheel detects the current scanning angle of the rotating mirror 224 in real time, and sends the detection result, that is, the current scanning angle signal, to the processor 150 of the main assembly 100 .
  • a torque detector is disposed on the MEMS vibrating mirror 221 .
  • the torque detector detects the torque of the MEMS vibrating mirror 221 in real time, converts the torque of the MEMS vibrating mirror 221 into a current scanning angle signal and sends it to the processor 150 of the main assembly 100 .
  • the processor 150 of the main body assembly 100 is configured to determine the irradiation angle at which the emitted light irradiates the target object 500 according to at least one of the scanning control signal, the current scanning angle signal, the output signal, and the position on the photoelectric conversion assembly 130 where the first electrical signal is output. .
  • the photoelectric conversion module 130 includes a plurality of photoelectric conversion units 131
  • "light The "position where the first electrical signal is output on the electrical conversion component 130" generally refers to the position where the photoelectric conversion unit 131 that outputs the first electrical signal is located.
  • the multiple sets of emitted light include at least one set of first emitted light and at least one set of second emitted light, and the emission moment of the first emitted light Earlier than the emission moment of the second emitted light, the reflected light after the first emitted light is reflected by the corresponding target object 500 is converted into an output signal, and the second emitted light is visible light, that is to say, the first emitted light is used to measure the distance At least one of , reflectivity or profile, the second emitted light is used to project an image.
  • the light scanning component 220 is configured to irradiate the first emitted light to the plurality of target objects 500, according to at least one of the distance of the target objects 500, the irradiation angle, the reflectivity of the target objects 500, and the outline of the target objects 500, the second The emitted light is projected on the surface of one of the target objects 500 according to a preset effect. Since the second emitted light is projected on the surface of the target object 500 according to at least one of the distance of the target object 500, the angle of illumination, the reflectivity of the target object 500, and the outline of the target object 500, the second emitted light is projected on the surface of the target object 500.
  • the imaging can reproduce the real image.
  • the light emitting assembly 110 first emits at least one set of first emitted light to the surface of the target object 500 through the probe assembly 200 , and then emits at least one set of second emitted light.
  • the processor 150 determines at least one of the distance of the target object 500, the reflectivity of the target object 500, and the profile of the target object 500 according to the emission signal and/or output signal corresponding to the first emission light, and at the same time, the processor 150 also An irradiation angle at which the emitted light is irradiated to the target object 500 is determined according to at least one of the scanning control signal, the current scanning angle signal, the output signal, and the position on the photoelectric conversion assembly that outputs the first electrical signal. Afterwards, the light scanning component 220 sends the second emitted light such as insect The image is projected on the surface of the target object 500 .
  • the second emitted light is projected on the surface of the target object 500 according to at least one of the distance of the target object 500, the irradiation angle, the reflectivity of the target object 500, and the outline of the target object 500, the image of the insect is not captured by the target object.
  • the curved surface of the object 500 is distorted, but covers the curved surface of the target object 500 according to a certain curvature, so that the target object 500 truly restores the insect.
  • the second emitted light can include but not limited to include At least one of red light, blue light and green light.
  • the light scanning component 220 first projects the first emitted light on the car windshield or AR glasses, and then At least one of the reflectivity of the object 500 and the outline of the target object 500, projecting the preset virtual AR image, that is, the second emitted light, on the car windshield or AR glasses, so that the user can see the augmented reality The world and virtual world scene.
  • the light scanning component 220 can also directly project the first emitted light and the second emitted light on the surfaces of two different target objects 500 respectively, in this case the laser system is equivalent to a common projection device.
  • the main body assembly 100 further includes a display component and/or a prompt component; wherein, the display component is used to display at least one of the distance of the target object 500, the angle of illumination, the reflectivity of the target object 500 and the outline of the target object 500
  • the prompting component is used to output a prompting signal according to at least one of the distance of the target object 500 , the irradiation angle, the reflectivity of the target object 500 and the outline of the target object 500 .
  • the prompting component may be, but not limited to, a microphone or a vibrator.
  • the light emitting component 110 includes a plurality of light emitting units, and the included angles of the emitted light generated by at least two of the multiple light emitting units with respect to the light scanning component are different.
  • the light emitting unit may include, but is not limited to, any one of a point light source, a line light source and a surface light source.
  • the optical characteristics of emitted light or reflected light include light intensity, AM modulation function, namely amplitude modulation modulation function, FM modulation function, namely frequency modulation modulation function, light wave type, light polarization, light wavelength, light wavelength distribution, spot shape and at least one of the light pulse time width.
  • the divergence angle of each group of emitted light emitted by the light emitting component 110 gradually increases within a second preset time period from the corresponding emission start moment. Decrease; wherein, the second preset duration is less than the pulse time width of the emitted light.
  • the target object 500 is located in the target scene, and the ratio of each group of emitted light emitted by the probe assembly 200 in the projection range of the target scene to the range of the target scene is less than a preset ratio; wherein, the preset ratio is 1:10 , 1:100, 1:1000, 1:10000 or 1:100000.
  • an embodiment of the present disclosure also provides a laser measurement method, which is implemented based on the above-mentioned laser system, and the distance measurement method includes:
  • the probe assembly 200 uses the probe assembly 200 to sequentially irradiate multiple sets of emitted light to at least one target object 500 in the target scene according to the scanning control signal, and convert at least one set of reflected light reflected by at least one target object 500 into an output signal; wherein, the output
  • the type of signal is an optical signal or an electrical signal;
  • S3. Determine at least one of the distance of the target object 500, the reflectivity of the target object 500, and the profile of the target object 500 by the main body assembly 100 according to the transmission signal and/or the output signal.
  • step S2 includes:
  • S2.1 Use the light scanning component 220 to deflect the direction of the emitted light according to the scanning control signal and then irradiate it to at least one target object 500, and/or deflect at least one set of reflected light reflected by at least one target object 500 and then irradiate it to the receiving direction ;
  • Step S2.1 includes: using the optical scanning component 220 to scan along the first scanning direction within the scanning time of the current frame and/or scan along the second scanning direction within the scanning time of the current frame according to the first analog voltage signal, so as to combine multiple The emitted light of the group is deflected sequentially and then shoots towards the target object 500;
  • the optical scanning component 220 scans along the first scanning direction during the scanning time of the frame and/or scans along the second scanning direction during the scanning time of the frame according to the first analog voltage signal, so as to transmit the emitted light through
  • the reflected light reflected by the target object 500 is deflected in a direction and irradiated in a receiving direction.
  • the first analog voltage signal controls the time period of the light scanning component 220 and the second analog voltage signal
  • the pseudo-voltage signal controls the light scanning component 220 for the same period of time, and the first scanning direction and the second scanning direction are different.
  • the first scan direction is perpendicular to the second scan direction.
  • step S1 using the main body assembly 100 to emit multiple groups of emitted light according to the emission signal includes: emitting through the main body assembly 100 the emitted light whose emission angle gradually decreases within a second preset time period since the emission start moment ; Wherein, the second preset duration is longer than the pulse time width of the emitted light.
  • the laser measurement method further includes: converting the first optical signal into a first electrical signal by the photoelectric conversion assembly 130 .
  • the ranging method may further include: amplifying the first electrical signal into a second electrical signal by the electrical amplification module 140 .
  • the laser measurement method further includes: deflecting the reflected light reflected by the target object 500 through the light scanning component 220 to generate a current scanning angle signal; At least one of the position on the conversion component 130 where the first light signal is output and the output signal determines the irradiation angle at which the emitted light is irradiated to the target object 500 .
  • Emitting multiple sets of emitted light through the main body assembly 100 in step S1 includes: emitting at least one set of first emitted light and at least one set of second emitted light through the main body assembly 100; wherein, the emission time of the first emitted light is earlier than that of the second emitted light At the moment of emission, the reflected light after the first emission light is reflected by the corresponding target object is converted into an output signal, and the second emission light is visible light.
  • the laser measurement method further includes: after the light scanning component 220 irradiates the first emission light to the plurality of target objects 500, according to at least one of the distance, irradiation angle, reflectivity and profile, the second emission light according to The preset effect is projected on the surface of one target object 500 among the plurality of target objects 500 ; or, the light scanning component 220 irradiates the first emitted light and the second emitted light to two different target objects 500 respectively.
  • the former enables the laser system to be applied to the fields of AR, VR and metaverse, and the latter enables the laser system to have the projection function of ordinary projection equipment.
  • the main body assembly 100 further includes a display component and/or a prompt component.
  • the prompting component may be, but not limited to, a microphone or a vibrator.
  • the laser measurement method also includes displaying at least one of distance, reflectivity, and profile via a display component; and/or via The prompting part outputs a prompting signal according to at least one of distance, reflectivity and profile.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种激光系统及激光测量方法,该激光系统包括:主体组件(100),生成扫描控制信号和发射信号,并根据发射信号射出多组发射光;至少一个探头组件(200),与主体组件(100)分体设置,并与主体组件(100)光电连接;探头组件(200)被配置为根据扫描控制信号将多组发射光依次照射至目标场景内的至少一个目标物体,并将至少一个目标物体反射的至少一组反射光转换为输出信号;输出信号的类型为光信号或电信号;主体组件(100)被配置为根据发射信号和/或输出信号确定目标物体的距离、目标物体的反射率和目标物体的轮廓中的至少一个。该系统在安装时只需将探头组件安装于应用对象或应用位置,而无需将整个激光系统安装在应用对象或应用位置上,从而便可扩大激光系统的适用范围。

Description

激光系统及激光测量方法
相关申请的交叉引用
本公开要求于2022年01月30日提交于中国国家知识产权局(CNIPA)的专利申请号为202210116241.7的中国专利申请的优先权和权益,上述中国专利申请通过引用整体并入本文。
技术领域
本公开涉及雷达技术领域,更具体地,涉及激光系统及激光测量方法。
背景技术
雷达是利用电磁波探测目标物体的电子设备,雷达对目标物体发射电磁波并接收其回波,通过处理后可获得目标物体至电磁波发射点的距离、方位、高度等信息。以激光为工作光束的雷达称为激光雷达。
随着科技融入生活,日常生活中的许多小体积物品例如盲人眼镜、AR眼镜或者汽车两侧门交接处和各后视镜处均有设置雷达的需求。而相关技术中的雷达整体体积较大,无法安装于小体积的物体。
发明内容
本公开涉及激光系统及激光测量方法。
根据本公开的实施方式,激光系统可以包括:
主体组件,生成扫描控制信号和发射信号,并根据所述发射信号射出多组发射光;其中,所述发射信号包括表示每组所述发射光的发射起始时刻的时刻信息;以及
至少一个探头组件,与所述主体组件分体设置,并与所述主体组件光电连接;
其中,所述探头组件被配置为根据所述扫描控制信号将多组所述发射光依次照射至目标场景内的至少一个目标物体,并将至少一个所述目标物体反射的至少一组反射光转换为输出信号;其中,所述输出 信号的类型为光信号或电信号;
所述主体组件被配置为根据所述发射信号和/或所述输出信号确定所述目标物体的距离、所述目标物体的反射率和所述目标物体的轮廓中的至少一个。
根据本公开的实施方式,激光测量方法可以包括:
通过所述主体组件生成扫描控制信号和发射信号并根据所述发射信号射出多组发射光;其中,所述发射信号包括表示每组所述发射光的发射起始时刻的时刻信息;
通过所述探头组件根据所述扫描控制信号将多组所述发射光依次照射至目标场景内的至少一个目标物体,并将至少一个所述目标物体反射的至少一组反射光转换为输出信号;其中,所述输出信号的类型为光信号或电信号;
通过所述主体组件根据所述发射信号和/或所述输出信号确定所述目标物体的距离、所述目标物体的反射率和所述目标物体的轮廓中的至少一个。
在本公开中,通过将探头组件和主体组件分体设置,并使探头组件与主体组件光电连接,安装该激光系统时便只需将探头组件安装于应用对象或应用位置,而无需将整个激光系统安装在应用对象或应用位置上,从而便可扩大激光系统的适用范围。此外,由于向目标物体射出发射光以及接收目标物体的反射光均由探头组件完成,而探头组件安装在应用对象或应用位置上,因此可以保证整个激光系统的探测范围不受影响。
本领域技术人员将理解的是,以上发明内容仅是说明性的,并且不旨在以任何方式进行限制。除了上述说明性方面、实施方式和特征之外,通过参考附图和以下详细描述,其他方面、实施方式和特征将变得显而易见。
附图说明
通过阅读参照以下附图所作的对非限制性实施方式的详细描述,本公开的其它特征、目的和优点将会变得更明显。其中:
图1是根据本公开实施方式的激光系统的框图之一;
图2是根据本公开实施方式的激光系统的框图之二;
图3是根据本公开实施方式的激光系统的框图之三;
图4是根据本公开实施方式的激光系统的框图之四;
图5是根据本公开实施方式的光扫描组件的示意图之一;
图6是根据本公开实施方式的光扫描组件的示意图之二;
图7是根据本公开实施方式的光扫描组件的示意图之三;
图8是根据本公开实施方式的探头组件的工作原理示意图;
图9是根据本公开实施方式的光电转换组件的工作原理示意图;
图10是根据本公开实施方式的激光测量方法的流程图之一;
图11是根据本公开实施方式的激光测量方法的流程图之二。
具体实施方式
为了更好地理解本公开,将参照附图对本公开的各个方面做出更详细的说明。应理解的是,这些详细说明只是对本公开的示例性实施方式的描述,而非以任何方式限制本公开的范围。为了便于描述,附图中仅示出了与本发明相关的部分而非全部结构。
除非另外限定,否则本文中使用的所有术语(包括工程术语和科技术语)具有与本公开所属领域普通技术人员通常理解的含义相同的含义。还应理解的是,除非本公开中有明确的说明,否则诸如在常用词典中限定的术语应被解释为具有与它们在相关技术的上下文中的含义一致的含义,而不应以理想化或过于形式化的意义解释。
需要说明的是,在不冲突的情况下,本公开中的实施方式及实施方式中的特征可以相互组合。另外,除非明确限定或与上下文相矛盾,否则本公开所记载的方法中包含的具体步骤不必限于所记载的顺序,而可以任意顺序执行或并行地执行。下面将参照附图并结合实施方式来详细说明本公开。
如图1至图8所示,本公开实施例提供了一种激光系统,该激光系统包括主体组件100以及至少一个与主体组件100分体设置的探头组件200,探头组件200与主体组件100光电连接,主体组件100生 成扫描控制信号和发射信号,并根据发射信号射出多组发射光。其中,发射信号包括表示每组所述发射光的发射起始时刻的时刻信息;探头组件200被配置为根据扫描控制信号将多组发射光依次照射至目标场景400内的至少一个目标物体500,并将至少一个目标物体500反射的至少一组反射光转换为输出信号,输出信号的类型为光信号或电信号;主体组件100被配置为根据发射信号和/或输出信号确定目标物体500的距离、目标物体500的反射率和目标物体500的轮廓中的至少一个。
由于本公开实施例中探头组件200与主体组件100分体设置,且两者光电连接,因此探头组件200和主体组件100可以分开固定安装,相比于整个激光系统来说,探头组件200的体积很小,探头组件200能够安装在小体积的应用对象或应用位置上。以应用对象是盲人眼镜为例,探头组件200可以固定在盲人眼镜的镜架上,主体组件100夹持在用户的腰部或者放置在用户的衣服口袋内。再以应用对象是汽车的后视镜为例,探头组件200可以固定在汽车的后视镜上,主体组件100则固定在汽车的天花板。由此,激光系统运行时,主体组件100生成扫描控制信号和发射信号,主体组件100根据发射信号射出的发射光传输至探头组件200,探头组件200根据扫描控制信号将发射光射向目标场景400内的至少一个目标物体500,发射光经至少一个目标物体500反射后的至少一组反射光又被探头组件200接收并转换为输出信号,该输出信号传输至主体组件100,主体组件100根据该输出信号和/或发射信号便可确定目标物体500的距离、目标物体500的反射率和目标物体500的轮廓中的至少一个。可见,本公开实施例通过将探头组件200和主体组件100分体设置,并使探头组件200与主体组件100光电连接,安装该激光系统时便只需将探头组件200安装于应用对象或应用位置,而无需将整个激光系统安装在应用对象或应用位置上,从而便可扩大激光系统的适用范围。此外,由于向目标物体500射出发射光以及接收目标物体500的反射光均由探头组件200完成,而探头组件200安装在应用对象或应用位置上,因此可以保证整个激光系统的探测范围不受影响。
需要说明的是,主体组件100与探头组件200可通过柔性线缆300实现光电连接,该柔性线缆300既可以传导电流,又可以传导光束。例如,柔性线缆300包括光纤320和导线310。由于柔性线缆300的长度直接决定探头组件200与主体组件100之间的最远距离,因此实际应用过程中可根据分辨距离的需求选择相应长度的柔性线缆300。当然,主体组件100与探头组件200也可以借助其他光学元件和无线通信元件通过空间传送电信号和光信号来实现光电连接。
在探头组件200的数量为多个的情况下,多个探头组件200可分别将对应的发射光照射至不同目标场景400内的目标物体500。
此外,输出信号的类型由探头组件200的具体结构决定,也就是说,不同类型的输出信号对应不同的结构形式探头组件200,例如:
形式一、若输出信号为第一光信号,那么如图1所示,探头组件200包括光接收组件210和光扫描组件220。其中,光扫描组件220根据扫描控制信号将主体组件100射出的发射光偏转方向后照射至至少一个目标物体500,和/或将至少一个目标物体500反射的至少一组反射光偏转方向后照射至光接收组件210;光接收组件210将反射光转换为第一光信号。
在此情况下,主体组件100包括光发射组件110、扫描控制件120、光电转换组件130和处理器150。其中,光发射组件110生成发射信号并根据发射信号射出多组发射光,扫描控制件120生成扫描控制信号,光电转换组件130将第一光信号转换为第一电信号。若光电转换组件130的输出端直接与处理器150的输入端电连接,则处理器150可直接或间接根据发射信号和/或第一电信号确定目标物体500的距离、目标物体500的反射率和目标物体500的轮廓中的至少一个。
当然,考虑到第一电信号的信号强度可能较弱,为了提高测量的准确性,光电转换组件130的输出端也可以通过电放大模块140与处理器150的输入端电连接,电放大模块140将第一电信号放大为第二电信号。其中,电放大模块140包括多级依次电连接的放大器,相邻两级放大器中上一级放大器输出的电信号的强度小于下一级放大器输出的电信号的强度。例如,电放大模块140包括第一级放大器和第二 级放大器;其中,第一级放大器输出的电信号的强度小于第二级放大器输出的电信号的强度小于,第二级放大器将第一级放大器输出的电信号进行放大。处理器150可直接或间接根据发射信号和/或第二电信号确定目标物体500的距离、目标物体500的反射率和目标物体500的轮廓中的至少一个。
此外,当处理器150基于飞行时间法来确定目标物体500的距离时,主体组件100还包括比较器和时长确定模块,电放大模块140依次通过比较器和时长确定模块与处理器150电连接。其中,比较器的数量可以为一个,也可以为多个。当比较器的数量为一个时,比较器通过任意一个放大器与时长确定模块连接,例如比较器与最后一级放大器的输出端连接;当比较器的数量为多个时,多个放大器的输出端均连接有比较器,且每个比较器的比较输入的电压值不同。比较器接入比较输入,用于将比较输入的电压值与对应放大器输出的电信号进行比较,以确定触发起始时刻、触发结束时刻和脉冲宽度;其中,触发起始时刻和触发结束时刻分别为放大器输出的电信号的强度高于比较输入的电压值的起始时刻和终止时刻,脉冲宽度为触发结束时刻触发起始时刻的差值;时长确定模块与比较器一一对应设置,时长确定模块用于根据发射起始时刻与对应的触发起始时刻确定光飞行时长。由于触发起始时刻受到比较输入的电压值大小的影响,而触发放大器输出的电信号的比较输入的电压值不同时对应的脉冲宽度也不同,因此为了减小上述影响,处理器先根据脉冲宽度修正光飞行时长,然后再根据光速和修正后的光飞行时长确定目标物体500的距离和/或反射率和/或轮廓。
其中,比较输入可以是从外部输入比较器的动态电压曲线,也可以是预存在比较器内的动态电压曲线。此外,时长确定模块可以但不限于是TDC(时间数字转换器,全称为时间数字转换器)。时长确定模块与处理器可以均为独立部件,也可以集成为一个部件。
形式二、若输出信号为第一电信号,那么如图3所示,探头组件200包括光接收组件210、光扫描组件220和光电转换组件130。光扫描组件220根据扫描控制信号将主体组件100射出的发射光偏转方向 后照射至至少一个目标物体500,和/或将至少一个目标物体500反射的至少一组反射光偏转方向后照射至光接收组件210;光接收组件210接收经目标物体500反射的反射光并将反射光转换为第一光信号,光电转换组件130将第一光信号转换为第一电信号。
在此情况下,若光电转换组件130的输出端直接与处理器150的输入端电连接,那么主体组件100包括光发射组件110、扫描控制件120和处理器150,处理器150可直接或间接根据发射信号和/或第一电信号确定目标物体500的距离、目标物体500的反射率和目标物体500的轮廓中的至少一个。
若光电转换组件130的输出端不直接与处理器150的输入端电连接,那么主体组件100除了包括光发射组件110、扫描控制件120和处理器150以外,还包括电放大模块140,光电转换组件130的输出端通过电放大模块140与处理器150的输入端电连接,电放大模块140将第一电信号放大为第二电信号,处理器150可直接或间接根据发射信号和/或第二电信号目标物体500的距离、目标物体500的反射率和目标物体500的轮廓中的至少一个。
形式三、若输出信号为第二电信号,那么如图4所示,探头组件200包括光接收组件210、光扫描组件220、光电转换组件130和电放大模块140。在此情况下,主体组件100包括光发射组件110、扫描控制件120和处理器150,探头组件200的电放大模块140与主体组件100的处理器150的输入端电连接,处理器150可直接或间接根据发射信号和/或第二电信号目标物体500的距离、目标物体500的反射率和目标物体500的轮廓中的至少一个。此外,当处理器150基于飞行时间法来确定目标物体500的距离时,主体组件100还包括比较器和时长确定模块,探头组件200的电放大模块140依次与主体组件100的比较器、时长确定模块和处理器150电连接。
形式四、若输出信号为比较器的输出端信号,那么探头组件200包括光接收组件210、光扫描组件220、光电转换组件130、电放大模块140和比较器。在此情况下,主体组件100包括光发射组件110、扫描控制件120、时长确定模块和处理器150,探头组件200的比较器 的输出端依次与主体组件100的时长确定模块和处理器150电连接,处理器150根据发射信号和/或比较器的输出端信号目标物体500的距离、目标物体500的反射率和目标物体500的轮廓中的至少一个。
形式五、若输出信号为时长确定模块的输出端信号,那么探头组件200包括光接收组件210、光扫描组件220、光电转换组件130、电放大模块140、比较器和时长确定模块。在此情况下,主体组件100包括光发射组件110、扫描控制件120和处理器150,探头组件200的时长确定模块与主体组件100的处理器150的输入端电连接,处理器150根据发射信号和/或第二电信号目标物体500的距离、目标物体500的反射率和目标物体500的轮廓中的至少一个。
另外,考虑到若目标物体500距离探头组件200较远,那么探头组件200射出的发射光照射到目标物体500再由目标物体500反射至探头组件200的时长则较长。同理,若目标物体500距离探头组件200较近,那么探头组件200射出的发射光照射到目标物体500再由目标物体500反射至探头组件200的时长则较短。可见,时长可以表征目标物体500的远近,也就是说,若探头组件200自发射光发出的发射起始时刻起在第一预设时长外接收到反射光,则说明目标物体500距离较远,因此,为了扩大激光系统的探测范围,如图8所示,光接收组件210包括至少一个透镜组,透镜组包括多个沿反射光的光路依次设置的接收透镜211,多个接收透镜211沿反射光的光路方向依次间隔设置,至少两个接收透镜211之间的间距可调;透镜组的焦距自发射光发出的发射起始时刻起在第一预设时长内逐渐增大,也就是说,透镜组的成像位置不变而成像面积随时间减小,以使透镜组的视角同步减小。由此激光系统便能够在第一预设时长内以较大的探测视场角运行,进而探测更大的场景,之后再以较小的探测视场角运行,进而探测更远的距离。其中,第一预设时长大于发射光的脉冲时间宽度。需要说明的是,透镜组的焦距可通过调节相邻两个接收透镜211之间的间距来实现。
在一些实施例中,为了实现发射光和/或反射光的偏转,光扫描组件220包括MEMS振镜221、旋转棱镜、旋转楔镜、光学相控阵列、 光电偏转器件和液晶扫描件中的至少一个;其中,所述液晶扫描件包括液晶空间光调制器、液晶超晶面、液晶线控阵、透视式一维液晶阵列、透射式二维液晶阵列或液晶显示模组。
其中,光扫描组件220的扫描维度可以但不限于是一维或二维。
以一维扫描为例,扫描控制信号包括第一模拟电压信号;光扫描组件220根据第一模拟电压信号在本帧扫描时长内沿着第一扫描方向转动,以将多组发射光依次偏转方向后射向目标物体500,和/或将发射光经目标物体500反射的反射光偏转方向后照射至光接收组件210。例如,以发射光为例,当第一扫描方向为水平方向时,各组发射光经光扫描组件220偏转后射向不同的方向,在本帧扫描时长内多组发射光依次经过光扫描组件220偏转方向后射向目标物体500的轨迹可围设形成一个水平的扇形面。需要说明的是,第一扫描方向可以但不限于是为竖直方向、水平方向或倾斜方向;其中,倾斜方向介于竖直方向与水平方向之间。
当然,光扫描组件220除了可以沿第一扫描方向转动以外,还可以沿其他方向转动。例如,扫描控制信号包括第二模拟电压信号;光扫描组件220根据第二模拟电压信号在本帧扫描时长内沿着第二扫描方向转动,以将多组发射光依次偏转方向后射向目标物体500,和/或将发射光经目标物体500反射的反射光偏转方向后照射至光接收组件210。例如,以发射光为例,当第二扫描方向为竖直方向时,各组发射光经光扫描组件偏转后射向不同的方向,在本帧扫描时长内多组发射光依次经过光扫描组件偏转方向后射向目标物体500的轨迹可围设形成一个竖直的扇形面。需要说明的是,第一扫描方向与第二扫描方向不同向,第二扫描方向可以但不限于是为竖直方向、水平方向或倾斜方向;其中,倾斜方向介于竖直方向与水平方向之间。
以二维扫描为例,扫描控制信号包括第一模拟电压信号和第二模拟电压信号,第一模拟电压信号控制光扫描组件220的时间段和第二模拟电压信号控制光扫描组件220的时间段相同,也就是说,第一模拟电压信号和第二模拟电压信号同时控制光扫描组件220,光扫描组件220根据第一模拟电压信号和第二模拟电压信号在本帧扫描时长内 同时沿着第一扫描方向和第二扫描方向转动,以将多组发射光依次偏转方向后射向目标物体500,和/或将发射光经目标物体500反射的反射光偏转方向后照射至光接收组件210。以第一扫描方向为水平方向,第二扫描方向为竖直方向为例,在本帧扫描时长内光扫描组件绕某一竖直轴在水平方向自转,与此同时,光扫描组件220整体又会绕某一水平轴在竖直方向转动。以目标物体500反射的某一组反射光为例,当光扫描组件220同时沿水平方向转动α角、沿竖直方向转动β角时,该反射光射经光扫描组件220反射后偏转(α,β)。由于光扫描组件220每次转动的角度不同,因此各组反射光经光扫描组件220偏转后射向不同的方向,在本帧扫描时长内多组反射光依次经光扫描组件220偏转方向后射向光接收组件210的轨迹可围设形成一个类似圆锥体图形,也就是说,以第一扫描方向为x轴,第二扫描方向为y轴建立坐标系,经光扫描组件220偏转后射向光接收组件210的每组反射光在xy平面的投影沿x轴和y轴均具有分量。
其中,第一模拟电压信号和/或第二模拟电压信号的波形参数包括频率、幅值和相位中的至少一个。
如图8所示,在光扫描组件220包括MEMS振镜221的情况下,MEMS振镜221被配置为根据第一模拟电压信号在本帧扫描时长内沿第一扫描方向转动和/或根据第二模拟电压信号沿着第二扫描方向转动。
进一步地,光扫描组件220还包括旋转镜224,旋转镜224位于MEMS振镜221射向目标物体500的发射光的光路上,旋转镜224被配置为根据扫描控制信号沿第三扫描方向转动,以将经过MEMS振镜221反射的发射光反射至目标物体500。其中,第三扫描方向与第一扫描方向或第二扫描方向既可以同向,也可以不同向。这样设置的好处在于,由于MEMS振镜221的扫描频率很快,而旋转镜224的扫描频率较慢,并且旋转镜224的成本远低于MEMS振镜221的成本,因此通过依次利用MEMS振镜221和旋转镜224偏转发射光便能够以较低的成本扩大光接收组件210的接收视场角。例如,当MEMS振镜221的扫描方向为竖直方向,旋转镜224的扫描方向为水平方向时,MEMS 振镜221将多组发射光快速依次偏转方向后射向旋转镜224,多组发射光依次经旋转镜224反射后便以很大的水平扫描角度射向目标物体500,也就是说,多组发射光经旋转镜224偏转方向后射向目标物体500的轨迹在水平面围设形成一个圆心角很大的扇形面。由此,光扫描组件220则可实现垂直高频扫描+水平广角扫描。其中,旋转镜224可以但不限于是旋转棱镜或旋转楔镜。
再结合图5至图7所示,为了进一步减小探头组件200的体积,光扫描组件220还包括光导222和光准直镜223,光导222的进光口通过柔性线缆300与主体组件100连接,光导222的出光口临近并朝向光准直镜223的进光口,光准直镜223的出光口朝向MEMS振镜221的反射面。其中,光导222可以固定在用于承载MEMS振镜221的支撑件700上,光导222的进光口通过光纤熔接的方式与柔性线缆300的光纤320连接。由于光导222的出光口朝向光准直镜223的进光口,而光准直镜223的出光口朝向MEMS振镜221的反射面,因此主体组件100射出的多组发射光依次通过光纤320传导至光导222的出光口后通过光准直镜223直接射向MEMS振镜221的反射面。如图3所示,光准直镜223的出光口射出的发射光的光路位于MEMS振镜221的反射面与特定锥面600之间,且光准直镜223的出光口射出的发射光的光路与特定锥面600的母线的夹角小于预设角度;其中,特定锥面600的中心轴垂直于MEMS振镜221的反射面,且特定锥面600的顶点位于MEMS振镜221的反射面,特定锥面600的母线与MEMS振镜221的反射面之间的夹角γ为锐角,该锐角的大小可以但不限于是15°~75°。其中,预设角度可以但不限于是0°~45°。
如图6和图7所示,光准直镜223的出光口与MEMS振镜221的反射面的中心之间的间距d小于预设距离,例如预设距离可以但不限于是0.1cm、1cm、2cm或5cm。或者,在MEMS振镜221的反射面呈圆形的情况下,,预设距离可以但不限于是MEMS振镜221的反射面的半径的0.1倍、1倍、2倍或5倍。
此外,为了进一步减小探头组件200的体积、降低成本,MEMS振镜221、光导222和光准直镜223均设置于同一个芯片。
如图2所示,为了扩大该激光系统的探测范围,该探头组件200还包括驱动件230,驱动件230与主体组件100电连接,光扫描组件220设置于驱动件230,驱动件230用于根据扫描控制信号驱动光扫描组件220摆动或转动。当然,光接收组件210也可以设置在驱动件230上,在此情况下,驱动件230能够驱动光接收组件210和光扫描组件220相对目标物体500同步摆动或转动。需要说明的是,上文中“转动”一般表示光扫描组件220既可以相对目标物体500沿水平方向偏转一定角度,也可以相对目标物体500沿竖直方向偏转一定角度,当然也可以沿空间任意方向偏转一定角度。“摆动”一般表示光扫描组件220沿一定方向往复转动。其中,驱动件230可以但不限于包括万向轴和驱动电机,光扫描组件220设置于万向轴,驱动电机驱动万向轴转动。
在一些实施例中,如图9所示,光电转换组件130包括呈阵列分布的多个光电转换单元131,光电转换单元131将第一光信号转换为第一电信号;其中,多个光电转换单元131中处于运行状态下的光电转换单元131的数量自发射光发出的发射起始时刻起在第一预设时长内逐渐减小;其中,处于运行状态下的光电转换单元131彼此相邻,第一预设时长大于发射光的脉冲时间宽度。作为示例,光电转换单元131可以但不限于是雪崩光电二极管(Avalanche Photo Diode,简称APD)或单光子雪崩二极管(Single Photon Avalanche Diode,简称SPAD)。例如,如图9所示,光电转换组件130包括呈矩形阵列分布的6×9个光电转换单元131,其中黑色的光电转换单元131表示该光电转换单元131正在处于运行状态,也即该光电转换单元131为有效光电转换单元,而白色的光电转换单元131表示该光电转换单元131处于停机状态,也即该光电转换单元131为无效光电转换单元。由于目标物体500位于目标场景400内,光电转换单元131具有一定面积,因此每个光电转换单元131通过接收透镜211在目标场景400对应一定的接收面积也即视场角,而光电转换组件130的视场角η是由处于运行状态下的光电转换单元131也即有效光电转换单元对应的接收面积决定的。本公开实施例通过自发射光发出的发射起始时刻起在第一预 设时长内调节处于运行状态下的光电转换单元131的数量,就可改变激光系统的探测视场角,以使激光系统能够在第一预设时长内以较大的探测视场角运行,进而探测更大的场景,之后再以较小的探测视场角运行,进而探测更远的距离。
考虑到现有技术中为了提高某一方向的分辨率,激光系统沿该方向具有多个发射视场,同时也需要对应匹配与发射视场相同数量的接收视场。而为了能够精确的同步匹配发射视场与接收视场,激光系统需要设置复杂的控制系统来精准控制光扫描组件,因此,为了避免精确匹配发射视场与接收视场,进而简化光扫描组件220的控制方法,本公开实施例中,自对应发射光发出的发射起始时刻起在预设接收时长内光发射组件110的发射视场位于对应光电转换组件130的接收视场中,且接收视场的面积不小于发射视场的面积的两倍;发射视场为每组发射光在目标场景400的投射区域,接收视场为光电转换组件130能够接收到的所有光束在目标场景400内对应的区域。在此情况下,光电转换组件130包括多个沿接收视场的长度方向和宽度方向依次设置的光电转换单元131,也就是说,多个光电转换单元131呈二维阵列分布,多个光电转换单元131中处于运行状态下的光电转换单元131将所有第一光信号转换为对应的第一电信号。
光扫描组件220还被配置为将目标物体500反射的反射光偏转方向时生成当前扫描角度信号并发送至主体组件100的处理器150。例如,在光扫描组件220包括旋转镜224的情况下,旋转镜224上设置有码盘。码盘实时检测旋转镜224当前的扫描角度,并将检测结果即当前扫描角度信号发送给主体组件100的处理器150。又如,在光扫描组件220包括MEMS振镜221的情况下,MEMS振镜221上设置有扭矩检测器。扭矩检测器实时检测MEMS振镜221的扭矩,并将MEMS振镜221的扭矩转换为当前扫描角度信号后发送给主体组件100的处理器150。主体组件100的处理器150被配置为根据扫描控制信号、当前扫描角度信号、输出信号以及光电转换组件130上输出第一电信号的位置中的至少一个确定发射光照射至目标物体500的照射角度。例如,在光电转换组件130包括多个光电转换单元131的情况下,“光 电转换组件130上输出第一电信号的位置”一般指代的是输出第一电信号的光电转换单元131所在的位置。
为了扩大该激光系统的应用领域,使其能够应用于AR、VR和元宇宙领域,多组发射光包括至少一组第一发射光和至少一组第二发射光,第一发射光的发射时刻早于第二发射光的发射时刻,第一发射光经对应的目标物体500反射后的反射光被转换为输出信号,第二发射光为可见光,也就是说,第一发射光用于测量距离、反射率或轮廓中的至少一个,第二发射光用于投影图像。光扫描组件220被配置为将第一发射光照射至多个目标物体500后,根据目标物体500的距离、照射角度、目标物体500的反射率和目标物体500的轮廓中的至少一个,将第二发射光按照预设效果投影于上述多个目标物体500中的其中一个目标物体500的表面。由于第二发射光是根据目标物体500的距离、照射角度、目标物体500的反射率和目标物体500的轮廓中的至少一个投影在目标物体500表面的,因此第二发射光在目标物体500表面的成像可以再现真实图像。
例如,目标物体500的表面为球面时,光发射组件110通过探头组件200先发射至少一组第一发射光至目标物体500表面,然后再射出至少一组第二发射光。处理器150根据与第一发射光对应的发射信号和/或输出信号确定目标物体500的距离、目标物体500的反射率和目标物体500的轮廓中的至少一个,与此同时,处理器150还根据扫描控制信号、当前扫描角度信号、输出信号以及光电转换组件上输出第一电信号的位置中的至少一个确定发射光照射至目标物体500的照射角度。之后,光扫描组件220根据处理器150基于第一发射光确定的目标物体500的距离、照射角度、目标物体500的反射率和目标物体500的轮廓中的至少一个,将第二发射光例如昆虫图像投影在目标物体500的表面。由于,第二发射光是根据目标物体500的距离、照射角度、目标物体500的反射率和目标物体500的轮廓中的至少一个投影在目标物体500的表面的,因此昆虫的图像并未被目标物体500的曲面扭曲,而是按照一定的曲率覆盖在目标物体500的曲面,使得目标物体500真实还原了昆虫。其中,第二发射光可以但不限于包括 红光、蓝光和绿光中的至少一种。
又如,目标物体500为汽车挡风玻璃或AR眼镜时,光扫描组件220先将第一发射光投影在汽车挡风玻璃或AR眼镜上,然后再根据目标物体500的距离、照射角度、目标物体500的反射率和目标物体500的轮廓中的至少一个,将预设的虚拟AR图像也即第二发射光投影在汽车挡风玻璃或AR眼镜上,以使用户能够看到增强后的现实世界和虚拟世界的景象。
当然,光扫描组件220也可以直接将第一发射光和第二发射光分别投影在两个不同的目标物体500的表面,在此情况下该激光系统相当于一个普通的投影设备。
在一些实施例中,主体组件100还包括显示部件和/或提示部件;其中,显示部件用于显示目标物体500的距离、照射角度、目标物体500的反射率和目标物体500的轮廓中的至少一个;提示部件用于根据目标物体500的距离、照射角度、目标物体500的反射率和目标物体500的轮廓中的至少一个输出提示信号。其中,提示部件可以但不限于是麦克风或震动器。
在一些实施例中,光发射组件110包括多个发光单元,多个发光单元中至少两个发光单元生成的发射光相对光扫描组件的夹角不同。作为示例,发光单元可以但不限于包括点光源、线光源和面光源中的任意一个。在一些实施例中,发射光或反射光的光特性包括光强、AM调制函数即调幅调制函数、FM调制函数即调频调制函数、光波型、光偏振性、光波长、光波长分布、光斑形状和光脉冲时间宽度中的至少一个。
在发射光为长脉冲光束的情况下,为了使发射光在远处更聚焦,光发射组件110射出的每组发射光的发散角自对应的发射起始时刻起在第二预设时长内逐渐减小;其中,第二预设时长小于发射光的脉冲时间宽度。
在一些实施例中,目标物体500位于目标场景内,探头组件200射出的每组发射光在目标场景的投射范围与目标场景的范围之比小于预设比例;其中,预设比例为1:10,1:100,1:1000,1:10000或1:100000。
如图10所示,本公开实施例还提供了一种激光测量方法,该测距方法基于上述激光系统实现,该测距方法包括:
S1、通过主体组件100生成扫描控制信号和发射信号,并通过主体组件100根据发射信号射出多组发射光;其中,发射信号包括表示每组发射光的发射起始时刻的时刻信息;
S2、通过探头组件200根据扫描控制信号将多组发射光依次照射至目标场景内的至少一个目标物体500,并将至少一个目标物体500反射的至少一组反射光转换为输出信号;其中,输出信号的类型为光信号或电信号;
S3、通过主体组件100根据发射信号和/或输出信号确定目标物体500的距离、目标物体500的反射率和目标物体500的轮廓中的至少一个。
如图11所示,在探头组件200包括光接收组件210和光扫描组件220的情况下,步骤S2包括:
S2.1、通过光扫描组件220根据扫描控制信号将发射光偏转方向后照射至至少一个目标物体500,和/或将至少一个目标物体500反射的至少一组反射光偏转方向后照射至接收方向;
S2.2、通过光接收组件210接收经目标物体500反射的反射光并将反射光转换为第一光信号。
进一步地,扫描控制信号包括第一模拟电压信号和/或第二模拟电压信号。步骤S2.1包括:通过光扫描组件220根据第一模拟电压信号在本帧扫描时长内沿着第一扫描方向扫描和/或在本帧扫描时长内沿着第二扫描方向扫描,以将多组发射光依次偏转方向后射向目标物体500;
和/或,通过光扫描组件220根据第一模拟电压信号在本帧扫描时长内沿着第一扫描方向扫描和/或在本帧扫描时长内沿着第二扫描方向扫描,以将发射光经目标物体500反射的反射光偏转方向后照射至接收方向。
其中,第一模拟电压信号控制光扫描组件220的时间段和第二模 拟电压信号控制光扫描组件220的时间段相同,且第一扫描方向与第二扫描方向不同向。例如,第一扫描方向垂直于第二扫描方向。
在一些实施例中,步骤S1中,通过主体组件100根据发射信号射出多组发射光包括:通过主体组件100射出自发射起始时刻起在第二预设时长内发射角逐渐减小的发射光;其中,第二预设时长大于发射光的脉冲时间宽度。
在一些实施例中,在主体组件100或探头组件200包括光电转换组件130的情况下,该激光测量方法还包括:通过光电转换组件130将第一光信号转换为第一电信号。在光电转换组件130的输出端连接电放大模块140的情况下,该测距方法还可以包括:通过电放大模块140将第一电信号放大为第二电信号。
在一些实施例中,该激光测量方法还包括:通过光扫描组件220将目标物体500反射的反射光偏转方向后生成当前扫描角度信号;通过主体组件100根据扫描控制信号、当前扫描角度信号、光电转换组件130上输出第一光信号的位置以及输出信号中的至少一个确定发射光照射至目标物体500的照射角度。
步骤S1中通过主体组件100射出多组发射光包括:通过主体组件100射出至少一组第一发射光和至少一组第二发射光;其中,第一发射光的发射时刻早于第二发射光的发射时刻,第一发射光经对应的目标物体反射后的反射光被转换为输出信号,第二发射光为可见光。在此基础上,激光测量方法还包括:通过光扫描组件220将第一发射光照射至多个目标物体500后,根据距离、照射角度、反射率和轮廓中的至少一个,将第二发射光按照预设效果投影于多个目标物体500中的其中一个目标物体500的表面;或者,通过光扫描组件220将第一发射光和第二发射光分别照射至两个不同的目标物体500。前者可使该激光系统应用于AR、VR和元宇宙领域,后者可使该激光系统能够具备普通投影设备的投影功能。
在一些实施例中,主体组件100还包括显示部件和/或提示部件。其中,提示部件可以但不限于是麦克风或震动器。该激光测量方法还包括通过显示部件显示距离、反射率和轮廓中的至少一个;和/或通过 提示部件根据距离、反射率和轮廓中的至少一个输出提示信号。
以上描述仅为本公开的实施方式以及对所运用技术原理的说明。本领域技术人员应当理解,本公开中所涉及的保护范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离技术构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本公开中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (39)

  1. 一种激光系统,其特征在于,包括:
    主体组件,生成扫描控制信号和发射信号,并根据所述发射信号射出多组发射光;其中,所述发射信号包括表示每组所述发射光的发射起始时刻的时刻信息;以及
    至少一个探头组件,与所述主体组件分体设置,并与所述主体组件光电连接;
    其中,所述探头组件被配置为根据所述扫描控制信号将多组所述发射光依次照射至目标场景内的至少一个目标物体,并将至少一个所述目标物体反射的至少一组反射光转换为输出信号;其中,所述输出信号的类型为光信号或电信号;
    所述主体组件被配置为根据所述发射信号和/或所述输出信号确定所述目标物体的距离、所述目标物体的反射率和所述目标物体的轮廓中的至少一个。
  2. 根据权利要求1所述的激光系统,其中,所述探头组件包括光接收组件和光扫描组件;
    其中,所述光扫描组件根据所述扫描控制信号将所述主体组件射出的所述发射光偏转方向后照射至至少一个所述目标物体,和/或将至少一个所述目标物体反射的至少一组所述反射光偏转方向后照射至所述光接收组件;所述光接收组件将所述反射光转换为第一光信号。
  3. 根据权利要求2所述的激光系统,其中,所述光接收组件包括至少一个透镜组,所述透镜组包括多个沿所述反射光的光路依次设置的接收透镜,至少两个所述接收透镜之间的间距可调;
    其中,所述透镜组的焦距自所述发射起始时刻起在第一预设时长内逐渐增大,以使所述透镜组的视角同步减小;其中,所述第一预设时长大于所述发射光的脉冲时间宽度。
  4. 根据权利要求2所述的激光系统,其中,所述光扫描组件包括MEMS振镜、旋转棱镜、旋转楔镜、光学相控阵列、光电偏转器件和液晶扫描件中的至少一个;其中,所述液晶扫描件包括液晶空间光调制器、液晶超晶面、液晶线控阵、透视式一维液晶阵列、透射式二维液晶阵列或液晶显示模组。
  5. 根据权利要求2所述的激光系统,其中,所述扫描控制信号包括第一模拟电压信号和/或第二模拟电压信号;所述光扫描组件根据所述扫描控制信号在本帧扫描时长内将多组所述发射光依次偏转方向后射向至少一个所述目标物体,和/或将所述发射光经至少一个所述目标物体反射的至少一组所述反射光偏转方向后照射至所述光接收组件;
    其中,所述第一模拟电压信号用于控制所述光扫描组件在所述本帧扫描时长内沿着第一扫描方向转动;所述第二模拟电压信号用于控制所述光扫描组件在所述本帧扫描时长内沿着第二扫描方向转动;所述第一模拟电压信号控制所述光扫描组件的时间段和所述第二模拟电压信号控制所述光扫描组件的时间段相同,且所述第一扫描方向与所述第二扫描方向不同向。
  6. 根据权利要求5所述的激光系统,其中,所述第一扫描方向和/或所述第二扫描方向为水平方向、竖直方向或倾斜方向;其中,所述倾斜方向介于所述竖直方向与所述水平方向之间。
  7. 根据权利要求5所述的激光系统,其中,所述第一模拟电压信号和/或所述第二模拟电压信号的波形参数包括频率、幅值和相位中的至少一个。
  8. 根据权利要求5所述的激光系统,其中,所述光扫描组件包括MEMS振镜,所述MEMS振镜被配置为根据所述第一模拟电压信号在本帧扫描时长内沿所述第一扫描方向转动和/或根据所述第二模拟电压信号沿着所述第二扫描方向转动。
  9. 根据权利要求8所述的激光系统,其中,所述光扫描组件还包括旋转镜,所述旋转镜位于所述MEMS振镜射向所述目标物体的发射光的光路上,所述旋转镜被配置为根据所述扫描控制信号沿第三扫描方向转动,以将经过所述MEMS振镜反射的所述发射光反射至所述目标物体。
  10. 根据权利要求8所述的激光系统,其中,所述光扫描组件还包括光导和光准直镜,所述光导的进光口通过线缆与所述主体组件连接,所述光导的出光口临近并朝向所述光准直镜的进光口设置,所述光准直镜的出光口朝向所述MEMS振镜的反射面。
  11. 根据权利要求10所述的激光系统,其中,所述光准直镜的出光口与所述MEMS振镜的反射面的中心之间的间距小于预设距离;其中,所述预设距离为0.1cm、1cm、2cm或5cm。
  12. 根据权利要求10所述的激光系统,其中,从所述光准直镜的出光口射出的所述发射光的光路位于所述MEMS振镜的反射面与特定锥面之间,且所述发射光的光路与所述特定锥面的母线的夹角小于预设角度;
    其中,所述特定锥面的中心轴垂直于所述MEMS振镜的反射面,且所述特定锥面的顶点位于所述MEMS振镜的反射面,所述特定锥面的母线与所述MEMS振镜的反射面之间的夹角为锐角;其中,所述锐角为15°~75°。
  13. 根据权利要求10所述的激光系统,其中,所述探头组件还包括芯片,所述MEMS振镜、所述光导和所述光准直镜均设置于所述芯片。
  14. 根据权利要求2所述的激光系统,其中,所探头组件还包括 驱动件,所述驱动件与所述主体组件电连接,所述光扫描组件设置于所述驱动件,所述驱动件用于根据所述扫描控制信号驱动所述光扫描组件摆动或转动。
  15. 根据权利要求2至14任一项所述的激光系统,其中,所述主体组件或所述探头组件包括:
    光电转换组件,将所述第一光信号转换为第一电信号。
  16. 根据权利要求15所述的激光系统,其中,所述光扫描组件还被配置为将所述目标物体反射的反射光偏转方向的同时生成当前扫描角度信号;所述主体组件还被配置为根据所述扫描控制信号、所述当前扫描角度信号、所述输出信号以及所述光电转换组件上输出所述第一电信号的位置中的至少一个确定所述发射光照射至所述目标物体的照射角度。
  17. 根据权利要求16所述的激光系统,其中,多组所述发射光包括至少一组第一发射光和至少一组第二发射光,所述第一发射光的发射时刻早于所述第二发射光的发射时刻,所述第一发射光经对应的所述目标物体反射后的反射光被转换为所述输出信号,所述第二发射光为可见光;
    其中,所述光扫描组件将所述第一发射光照射至多个所述目标物体后,根据所述距离、所述照射角度、所述反射率和所述轮廓中的至少一个将所述第二发射光按照预设效果投影于多个所述目标物体中的其中一个所述目标物体的表面;或者,
    所述光扫描组件将所述第一发射光和所述第二发射光分别照射至两个不同的所述目标物体。
  18. 根据权利要求17所述的激光系统,其中,所述第二发射光包括红光、蓝光和绿光中的至少一种。
  19. 根据权利要求15所述的激光系统,其中,所述主体组件包括:
    光发射组件,生成所述发射信号并根据所述发射信号射出多组所述发射光;
    扫描控制件,生成所述扫描控制信号;
    处理器,根据所述发射信号和/或所述输出信号确定所述距离、所述反射率和所述轮廓中的至少一个。
  20. 根据权利要求19所述的激光系统,其中,
    所述光电转换组件的输出端与所述处理器电连接;或者,
    所述光电转换组件的输出端通过电放大模块与所述处理器电连接,所述电放大模块用于将所述第一电信号放大为第二电信号。
  21. 根据权利要求20所述的激光系统,其中,所述电放大模块包括多级依次电连接的放大器,相邻两级所述放大器中上一级所述放大器输出的电信号的强度小于下一级所述放大器输出的电信号的强度。
  22. 根据权利要求21所述的激光系统,其中,至少其中一级所述放大器的输出端连接有至少比较器,所述比较器的输入端接入比较输入,所述比较器的所述比较输入与所述放大器一一对应;所述比较器用于将所述比较输入的电压值与对应所述放大器输出的电信号进行比较,以确定触发起始时刻、触发结束时刻和脉冲宽度;其中,所述触发起始时刻和所述触发结束时刻分别为所述放大器输出的电信号的强度高于所述比较输入的电压值的起始时刻和终止时刻,所述脉冲宽度为所述触发结束时刻与所述触发起始时刻的差值;每个所述比较器的输出端连接有时长确定模块,所述时长确定模块用于根据所述发射起始时刻与对应的所述触发起始时刻确定光飞行时长;所述处理器根据所述光飞行时长、所述脉冲宽度、所述第二电信号的强度和光速中的至少一个确定所述距离、所述反射率和所述轮廓中的至少一个。
  23. 根据权利要求22所述的激光系统,其中,所述第一光信号、 所述第一电信号、所述第二电信号、所述比较器的输出端信号和所述时长确定模块的输出端信号中的任意一个作为所述输出信号。
  24. 根据权利要求19所述的激光系统,其中,自对应所述发射光发出的发射起始时刻起在预设接收时长内所述光发射组件的发射视场位于对应所述光电转换组件的接收视场中,且所述接收视场的面积不小于所述发射视场的面积的两倍;所述发射视场为每组所述发射光在所述目标场景的投射区域,所述接收视场为所述光电转换组件能够接收到的所有光束在所述目标场景内对应的区域。
  25. 根据权利要求24所述的激光系统,其中,所述光电转换组件包括多个分别沿所述接收视场的长度方向和宽度方向依次设置的光电转换单元,多个所述光电转换单元中处于运行状态下的所述光电转换单元将所有所述第一光信号转换为对应的第一电信号。
  26. 根据权利要求19所述的激光系统,其中,所述光发射组件射出的每组所述发射光的发散角自对应的所述发射起始时刻起在第二预设时长内逐渐减小;其中,第二预设时长小于所述发射光的脉冲时间宽度。
  27. 根据权利要求19所述的激光系统,其中,所述主体组件还包括:
    显示部件,显示所述距离、所述反射率和所述轮廓中的至少一个;和/或
    提示部件,根据所述距离、所述反射率和所述轮廓中的至少一个输出提示信号。
  28. 根据权利要求1至14任一项所述的激光系统,其中,所述目标物体位于目标场景内,所述探头组件射出的每组所述发射光在所述目标场景的投射范围与所述目标场景的范围之比小于预设比例;其中, 所述预设比例为1:10,1:100,1:1000,1:10000或1:100000。
  29. 根据权利要求1至14任一项所述的激光系统,其中,所述探头组件的数量为多个,多个所述探头组件分别将对应的所述发射光照射至不同目标场景内的目标物体。
  30. 根据权利要求1至14任一项所述的激光系统,其中,所述探头组件通过柔性线缆与所述主体组件光电连接。
  31. 一种基于如权利要求1至30任一项所述的激光系统的激光测量方法,其特征在于,包括:
    通过所述主体组件生成扫描控制信号和发射信号并根据所述发射信号射出多组发射光;其中,所述发射信号包括表示每组所述发射光的发射起始时刻的时刻信息;
    通过所述探头组件根据所述扫描控制信号将多组所述发射光依次照射至目标场景内的至少一个目标物体,并将至少一个所述目标物体反射的至少一组反射光转换为输出信号;其中,所述输出信号的类型为光信号或电信号;
    通过所述主体组件根据所述发射信号和/或所述输出信号确定所述目标物体的距离、所述目标物体的反射率和所述目标物体的轮廓中的至少一个。
  32. 根据权利要求31所述的激光测量方法,其特征在于,所述探头组件包括光接收组件和光扫描组件;
    根据所述扫描控制信号将所述发射光照射至目标场景内至少一个目标物体,并将至少一个所述目标物体反射的至少一组反射光转换为输出信号包括:
    通过所述光扫描组件根据所述扫描控制信号将所述主体组件射出的所述发射光偏转方向后照射至至少一个所述目标物体,和/或将至少一个所述目标物体反射的至少一组所述反射光偏转方向后照射至接收 方向;
    通过所述光接收组件将所述反射光转换为第一光信号。
  33. 根据权利要求32所述的激光测量方法,其特征在于,所述扫描控制信号包括第一模拟电压信号和/或第二模拟电压信号;
    通过所述光扫描组件根据所述扫描控制信号将所述主体组件射出的所述发射光偏转方向后照射至至少一个所述目标物体,和/或将至少一个所述目标物体反射的至少一组所述反射光偏转方向后照射至接收方向包括:
    通过所述光扫描组件根据所述第一模拟电压信号在本帧扫描时长内沿着第一扫描方向扫描和/或沿着第二扫描方向扫描,以将多组所述发射光依次偏转方向后射向至少一个所述目标物体和/或将所述发射光经至少一个所述目标物体反射的至少一组所述反射光偏转方向后照射至所述接收方向;
    其中,所述第一模拟电压信号控制所述光扫描组件的时间段和所述第二模拟电压信号控制所述光扫描组件的时间段相同,且所述第一扫描方向与所述第二扫描方向不同向。
  34. 根据权利要求32所述的激光测量方法,其特征在于,所述主体组件或所述探头组件包括光电转换组件;
    所述激光测量方法还包括:通过所述光电转换组件将所述第一光信号转换为第一电信号。
  35. 根据权利要求34所述的激光测量方法,其特征在于,所述激光测量方法还包括:
    通过所述光扫描组件将所述目标物体反射的反射光偏转方向的同时生成当前扫描角度信号;
    通过所述主体组件根据所述扫描控制信号、所述当前扫描角度信号、所述输出信号以及所述光电转换组件上输出所述第一电信号的位置中的至少一个确定所述发射光照射至所述目标物体的照射角度。
  36. 根据权利要求35所述的激光测量方法,其特征在于,通过所述主体组件射出多组发射光包括:通过所述主体组件射出至少一组第一发射光和至少一组第二发射光;其中,所述第一发射光的发射时刻早于所述第二发射光的发射时刻,所述第一发射光经对应的所述目标物体反射后的反射光被转换为所述输出信号,所述第二发射光为可见光;
    所述激光测量方法还包括:
    通过所述光扫描组件将所述第一发射光照射至多个所述目标物体后,根据所述距离、所述照射角度、所述反射率和所述轮廓中的至少一个,将所述第二发射光按照预设效果投影于多个所述目标物体中的其中一个所述目标物体的表面;或者,
    通过所述光扫描组件将所述第一发射光和所述第二发射光分别照射至两个不同的所述目标物体。
  37. 根据权利要求31所述的激光测量方法,其特征在于,通过所述主体组件根据所述发射信号射出多组发射光包括:
    通过所述主体组件射出自发射起始时刻起在第二预设时长内发射角逐渐减小的发射光;
    其中,第二预设时长小于所述发射光的脉冲时间宽度。
  38. 根据权利要求31所述的激光测量方法,其特征在于,所述主体组件还包括显示部件和/或提示部件;
    所述激光测量方法还包括:
    通过所述显示部件显示所述距离、所述反射率和所述轮廓中的至少一个;和/或
    通过所述提示部件根据所述距离、所述反射率和所述轮廓中的至少一个输出提示信号。
  39. 根据权利要求31所述的激光测量方法,其特征在于,所述探 头组件的数量为多个,多个所述探头组件分别将对应的所述发射光照射至不同目标场景内的所述目标物体。
PCT/CN2023/073759 2022-01-30 2023-01-30 激光系统及激光测量方法 WO2023143592A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210116241.7A CN116559900A (zh) 2022-01-30 2022-01-30 激光系统及激光测量方法
CN202210116241.7 2022-01-30

Publications (1)

Publication Number Publication Date
WO2023143592A1 true WO2023143592A1 (zh) 2023-08-03

Family

ID=87470743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/073759 WO2023143592A1 (zh) 2022-01-30 2023-01-30 激光系统及激光测量方法

Country Status (2)

Country Link
CN (1) CN116559900A (zh)
WO (1) WO2023143592A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103823221A (zh) * 2013-12-31 2014-05-28 西南技术物理研究所 脉冲激光相干测风雷达
CN107703510A (zh) * 2017-06-15 2018-02-16 深圳市速腾聚创科技有限公司 激光雷达及激光雷达控制方法
CN107843901A (zh) * 2017-10-26 2018-03-27 清华大学 激光测距系统及方法
CN208000376U (zh) * 2018-03-01 2018-10-23 深圳市镭神智能系统有限公司 一种车载激光雷达
CN109828258A (zh) * 2019-02-14 2019-05-31 昂纳信息技术(深圳)有限公司 一种收发装置及激光雷达
CN112269190A (zh) * 2020-09-22 2021-01-26 山西大学 一种分体式自动变焦360度旋转光楔扫描激光测风雷达
CN113138291A (zh) * 2021-03-09 2021-07-20 绵阳镭创激光科技有限公司 一种煤矿用激光测风雷达系统及测风方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7117092B2 (ja) * 2017-09-25 2022-08-12 株式会社トプコン レーザ測定方法及びレーザ測定装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103823221A (zh) * 2013-12-31 2014-05-28 西南技术物理研究所 脉冲激光相干测风雷达
CN107703510A (zh) * 2017-06-15 2018-02-16 深圳市速腾聚创科技有限公司 激光雷达及激光雷达控制方法
CN107843901A (zh) * 2017-10-26 2018-03-27 清华大学 激光测距系统及方法
CN208000376U (zh) * 2018-03-01 2018-10-23 深圳市镭神智能系统有限公司 一种车载激光雷达
CN109828258A (zh) * 2019-02-14 2019-05-31 昂纳信息技术(深圳)有限公司 一种收发装置及激光雷达
CN112269190A (zh) * 2020-09-22 2021-01-26 山西大学 一种分体式自动变焦360度旋转光楔扫描激光测风雷达
CN113138291A (zh) * 2021-03-09 2021-07-20 绵阳镭创激光科技有限公司 一种煤矿用激光测风雷达系统及测风方法

Also Published As

Publication number Publication date
CN116559900A (zh) 2023-08-08

Similar Documents

Publication Publication Date Title
US11988773B2 (en) 2-dimensional steering system for lidar systems
CN107272014B (zh) 一种固态的二维扫描激光雷达及其扫描方法
CN108205124B (zh) 一种基于微机电振镜的光学装置和激光雷达系统
CN108490420A (zh) 一种微镜扫描光学系统
US10955531B2 (en) Focal region optical elements for high-performance optical scanners
CN208705471U (zh) 一种微镜扫描光学系统和激光雷达
JP2007279017A (ja) レーダ装置
CN115151837A (zh) 具有虚拟保护壳体的眼睛安全扫描lidar
KR20200102900A (ko) 라이다 장치
CN111766588A (zh) 全景激光雷达
WO2023143592A1 (zh) 激光系统及激光测量方法
CN112147639A (zh) 一种mems一维激光雷达和数码相机测绘装置及方法
CN210123470U (zh) 一种激光扫描雷达
CN209803333U (zh) 三维激光雷达装置及系统
CN109870699A (zh) 一种激光雷达
CN210347935U (zh) 激光雷达
WO2023143593A1 (zh) 激光系统及激光测量方法
US20210239805A1 (en) Laser radar device
WO2023143594A1 (zh) 光扫描组件、激光系统和激光测量方法
CN116338670A (zh) 雷达系统及雷达测距方法
CN113447947A (zh) 生成场景数据的装置及方法
KR102628751B1 (ko) 변형 거울을 이용하는 라이다 장치 및 이의 운용 방법
US11914076B2 (en) Solid state pulse steering in LiDAR systems
WO2022006718A1 (zh) Tof测量系统
US20230243932A1 (en) Optical waveguide device used in laser detection and ranging system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23746469

Country of ref document: EP

Kind code of ref document: A1