WO2023143433A1 - 脉诊的脉搏波量测装置及其使用方法 - Google Patents

脉诊的脉搏波量测装置及其使用方法 Download PDF

Info

Publication number
WO2023143433A1
WO2023143433A1 PCT/CN2023/073313 CN2023073313W WO2023143433A1 WO 2023143433 A1 WO2023143433 A1 WO 2023143433A1 CN 2023073313 W CN2023073313 W CN 2023073313W WO 2023143433 A1 WO2023143433 A1 WO 2023143433A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse
displacement
sensing module
pulse wave
module
Prior art date
Application number
PCT/CN2023/073313
Other languages
English (en)
French (fr)
Inventor
石明正
Original Assignee
石明正
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石明正 filed Critical 石明正
Publication of WO2023143433A1 publication Critical patent/WO2023143433A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4854Diagnosis based on concepts of traditional oriental medicine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/0255Recording instruments specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • A61B5/02422Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation within occluders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • A61B5/02427Details of sensor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6824Arm or wrist
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7225Details of analog processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation

Definitions

  • This specification is about a physiological characteristic measurement system and its use method, especially about a pulse wave measurement device and its use method.
  • the pressure film sensor After the operator has roughly judged the location of the pulse taking, the pressure film sensor is aimed at one of the positions on the human limb, and then the airbag is matched with the pressure of the airbag to adjust the depth of the airbag pressing down on the wrist.
  • the pressure film sensor measures the dynamic pressure generated by the pulse of the human body and the static pressure of the depression depth, which is used as a reference for the pulse signal and the depression depth signal.
  • one object of the present invention is to provide a pulse wave measuring device and a method for using the same.
  • the above-mentioned pulse wave measurement device is adapted to the wrist of the subject.
  • the pulse wave measurement device is in contact with the test area of the subject's wrist, and the test area includes the position of the subject's artery, so as to detect the relevant physiological characteristic information of the pulse wave of the subject's artery, For example pulse characteristic wave.
  • FIG. 1 is a schematic diagram showing the functional block structure of a pulse wave measuring device for pulse diagnosis according to an embodiment of the present invention.
  • FIG. 2 is a flow chart illustrating a first stage of a pulse wave measurement method using the pulse wave measurement device shown in FIG. 1 according to an embodiment of the present invention.
  • FIG. 3 is a flow chart illustrating a second stage of a pulse wave measurement method using the pulse wave measurement device shown in FIG. 1 according to an embodiment of the present invention.
  • FIG. 4 is a flow chart showing the third stage of the pulse wave measuring method using the pulse wave measuring device shown in FIG. 1 according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing the tissues of various parts of the wrist and a schematic diagram of the system when using linear displacement measurement.
  • FIG. 6 is a schematic diagram showing the pulse wave at the Cunguan Chi pulse position measured by the linear laser displacement meter in the case of parallel blood vessels according to an embodiment of the present invention.
  • Fig. 7 is a schematic diagram showing the waveform of the pulse taking operation process and pulse characteristics obtained according to an embodiment of the present invention.
  • FIG. 8 is a flowchart showing a method of using the pulse wave measurement device shown in FIG. 1 according to an embodiment of the present invention, wherein the pulse wave measurement device 100 does not have a scanning position control module 400, and the displacement sensing module 300 is a point-type photoelectric displacement sensor.
  • FIG. 9A-9B are flowcharts illustrating a method of using the pulse wave measurement device shown in FIG. 1 according to another embodiment of the present invention, wherein the pulse wave measurement device 100 does not have a scanning position control module 400, and the displacement sense
  • the measuring module 300 is a linear or surface photoelectric displacement sensor.
  • the XY plane is substantially parallel to the skin surface of the subject, wherein the X axis is substantially parallel to the direction of blood vessels of the subject, and the Y axis is substantially perpendicular to the direction of blood vessels of the subject. Therefore, the Z axis is a direction substantially perpendicular to the skin surface of the subject.
  • the definitions of the X-axis, Y-axis and Z-axis mentioned in the following description are the same as this.
  • Pulse wave measuring device for pulse diagnosis
  • FIG. 1 is a schematic diagram of a functional block structure of a pulse wave measurement device for pulse diagnosis according to an embodiment of the present invention.
  • the pulse wave measuring device 100 includes an airbag 200 , a pressure control module 230 , a displacement sensing module 300 , a scanning position control module 400 and a calculator 500 .
  • the scanning position control module 400 is an optional component, that is, a component that can be omitted.
  • the airbag 200 has at least a transparent window 210 and a contact portion 220 .
  • the main body material of the airbag 200 can be made of any available polymer material, such as (but not limited to) polymethyl methacrylate (PMMA), cellulose acetate (CA), nylon- 66 polyamide resin (PA-66), nylon-6 polyamide resin (PA-6), polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polyphthalylene (PPO), polycarbonate (PC), ethylene-vinyl acetate copolymer (EVA), low-density polyethylene (LDPE), high-density polyethylene (HDPE), polypropylene (PP), polyvinyl chloride (PVC), Polyacetal (POM) or Polyurethane (PU).
  • PMMA polymethyl methacrylate
  • CA cellulose acetate
  • PA-66 nylon- 66 polyamide resin
  • PA-6 nylon-6 polyamide resin
  • PBT polybutylene terephthalate
  • PET
  • the above-mentioned transparent window 210 is used to align the displacement sensing module 300, so it can be made of a high-hardness transparent material, such as but not limited to glass, quartz, polystyrene (polystyrene, PS) or acrylonitrile-butadiene-benzene Ethylene copolymer (Acrylonitrile Butadiene Styrene, ABS).
  • the surface of the transparent window 210 can also be coated with an anti-reflection film to increase light penetration, reduce reflected light clutter and increase abrasion resistance.
  • the above-mentioned contact part 220 is used to contact the skin of the test subject's test area 600, so it can be made of a soft (hardness range from 20C to 72D on the Shore hardness scale) and elastic polymer material to facilitate a close fit The skin of the test subject's test area 600 .
  • thermoplastic elastomers thermoplastic elastomers
  • TPE thermoplastic elastomers
  • available thermoplastic elastomers can be TPU (thermoplastic polyurethane), TPO (polyethylene elastomer), TPV (dynamically vulcanized polyolefin elastomer) , TPS/TPR (polystyrene elastomer), TPEE (polyether ester elastomer), TPA (polyamide elastomer).
  • TPU thermoplastic polyurethane
  • TPO polyethylene elastomer
  • TPV dynamically vulcanized polyolefin elastomer
  • TPS/TPR polystyrene elastomer
  • TPEE polyether ester elastomer
  • TPA polyamide elastomer
  • the pressure control module 230 controls the internal pressure of the airbag 200 by inflating or depressurizing the inside of the airbag 200 .
  • the pressure control module 230 may include, for example, a pressure sensor, a pump, a gas pipeline, and a gas valve.
  • the pressure sensor can sense the internal pressure of the airbag 200, and the two ends of the gas pipeline are respectively connected with the pump and the airbag 200, and an appropriate gas valve is installed at an appropriate position in the gas pipeline.
  • the operation of the motor in the pump (forward and reverse) and the matching of the air valve can be used to control the flow of gas into the airbag 200 or outflow from the airbag 200, thereby controlling the internal pressure of the airbag 200 to control the impact of the airbag 200 on the Z-axis. Depression depth under the skin of the tester's area 600 to be tested. Therefore, the function of the airbag is to adjust the pressing position and allow the laser sensor to pass through to obtain reflected light.
  • the displacement sensing module 300 is used to measure the distance between the displacement sensing module 300 and the skin of the subject's area 600 to be measured (when the contact portion 220 of the airbag 200 is made of a transparent material).
  • the distance in the Z-axis direction is to measure the distance in the Z-axis direction from the displacement sensing module 300 to the contact portion 220 of the airbag 200 (when the contact portion 220 of the airbag 200 is made of opaque material).
  • the displacement sensing module 300 can be any available displacement sensor, and its measurement resolution can be at least 100 microns, such as 100 microns, 90 microns, 80 microns, 70 microns, 60 microns, 50 microns, 40 microns, 30 microns, Displacement sensor with 20 micron, 10 micron or 1 micron resolution.
  • the aforementioned displacement sensor may be, for example, a photoelectric displacement sensor that uses various light sources to measure distance.
  • the photoelectric displacement sensor mentioned above can be, for example, a laser displacement meter (Laser Displacement Meter), a fiber-optic displacement meter (Fiber-Optic Sensors), a three-dimensional scanning displacement meter (3dimension scanner, 3D scanner; such as binocular depth CCD plus a programmable structured light system) , time of flight (Time of Flight, abbreviated as TOF) device or ranging device of laser interferometer.
  • the displacement sensing module 300 may be a point type, a line type or an area type displacement sensor.
  • the displacement sensing module 300 is a photoelectric displacement sensor, since the displacement sensing module 300 is adjacent to the transparent window 210 of the airbag 200, the light emitted by the light source of the displacement sensing module 300 can pass through the airbag 200 transparent window 210.
  • the contact portion 220 of the airbag 200 is made of a transparent material
  • the light emitted by the light source of the displacement sensing module 300 will directly hit the skin of the subject's area 600 to be measured, and then reflect back to the displacement sensing
  • the receiver of the module 300 allows the displacement sensing module 300 to measure the distance between the displacement sensing module 300 and the skin of the subject to be measured 600 .
  • the receiver of the measuring module 300 allows the displacement sensing module 300 to measure the distance between the displacement sensing module 300 and the contact portion 220 of the airbag 200 . Therefore, when the inner surface of the contact portion 220 facing the airbag is smooth enough or coated with a layer of reflective film, the degree of scattering after light reflection can be effectively reduced, so that the receiver of the displacement sensing module 300 can receive the signal-to-noise ratio (S/ N ratio) better signal makes the distance measurement of the displacement sensing module 300 more accurate.
  • S/ N ratio signal-to-noise ratio
  • the displacement sensing module 300 may further include a filter. Since the original displacement signal obtained through the displacement sensing module 300 contains the pulse beat AC The displacement value of the signal, through the filter, can filter out the pulse-beating AC signal, and the remaining stable DC signal is the displacement value representing the depth on the Z-axis. If the displacement sensing module 300 does not include a filter, that is, the AC signal of pulse beating is also included, then the measured value obtained is a dynamic pulse signal.
  • the so-called displacement signal refers to the first position when the airbag 200 is not pressurized (or lightly pressed) and touches the subject's area 600 to be tested, and the airbag 200 is pressurized (or heavily pressed). When it touches the test area 600 of the subject, it is the second position, and the difference obtained by subtracting the second position from the first position is the displacement signal. Please refer to the relevant description of the pulse wave measurement method described later.
  • the scanning position control module 400 is used to control the displacement sensing module 300 to move to the area to be measured 600 of the subject, and to control the displacement sensing module 300 to perform ranging scanning within the range of the area to be measured 600 .
  • the scanning position control module 400 can be used to control the displacement sensing module 300 to move to the body surface above the radial artery of the subject to be measured. After the area 600, the measurement of the above-mentioned "pulse measurement distance" changing with time is performed, and the scanning distance measurement can be performed in the area 600 to be measured.
  • the scanning position control module 400 is an optional component, that is, a component that can be omitted.
  • the user can move the displacement sensing module 300 to the area to be measured 600 of the subject, and let the displacement sensing module 300 scan the area to be measured 600 of the subject for distance measurement.
  • the displacement sensing module 300 can be a photoelectric displacement sensor with a detection area of a point type, a line type, or an area type.
  • the above-mentioned scanning position control module 400 may include an X-Y dual-axis position controller (X-Y dual-axis moving platform or cylindrical coordinate moving mechanism), and the displacement sensing module 300 that can be matched may be a point-type photoelectric displacement sensor, Ranging scanning is performed on the area to be measured 600 of the subject.
  • X-Y dual-axis position controller X-Y dual-axis moving platform or cylindrical coordinate moving mechanism
  • the displacement sensing module 300 that can be matched may be a point-type photoelectric displacement sensor, Ranging scanning is performed on the area to be measured 600 of the subject.
  • the above-mentioned calculator 500 is connected to the above-mentioned pressure control module 230, displacement sensing module 300 and scanning position control module 400 respectively, so as to transmit control signals to the above-mentioned pressure control module 230, displacement sensing module 300 and scanning position control module 400 respectively, Or receive the signals from the above-mentioned pressure control module 230, displacement sensing module 300 and scanning position control module 400 interest.
  • the above-mentioned calculator 500 can be any available machine with computing capability, such as various types of computers, microprocessors or mobile computing devices.
  • the calculator 500 includes an operation module 510 , an operation module 540 , a power module 550 , a display module 570 and a memory module 580 .
  • the above computing module 510 may include a computing module 5100 and an analyzing module 530 .
  • the operation module 5100 is responsible for providing control instructions for the pressure control module 230 , the displacement sensing module 300 and the scanning position control module 400 .
  • the analysis module 530 is responsible for calculating and analyzing the information transmitted from the pressure control module 230 , the displacement sensing module 300 and the scanning position control module 400 .
  • the above-mentioned operation module 540 provides a user interface, allowing the user to issue manipulation instructions through the operation module 540 to control the operation of the pressure control module 230 , the displacement sensing module 300 and the scanning position control module 400 .
  • the above-mentioned power module 550 is used to supply the power required by the calculator 500 .
  • the power module 550 can be an AC power source (for example, the power supplied by a power plant can be obtained through a general power socket) or a DC power source (for example, various dry batteries or rechargeable storage batteries).
  • the above-mentioned display module 560 is used to display the user interface of the operation module 5100, the information transmitted to the analysis module 530 by the pressure control module 230, the displacement sensing module 300 and the scanning position control module 400, and the analysis results of these information by the analysis module 530.
  • the above communication module 570 is used to communicate with the pressure control module 230, the displacement sensing module 300, the scanning position control module 400 and some external databases.
  • the aforementioned external database can be, for example (but not limited to), a pulse condition comparison database, a Chinese herbal medicine database or a combination thereof.
  • the above-mentioned memory module 580 can be any available volatile or non-volatile data storage device to store any data generated during the measurement process of the displacement sensing module 300 .
  • the cooperation between the airbag 200 and the pressure control module 230 can provide the depression depth of the airbag 200 on the Z-axis, so that the displacement sensing module 300 can find the pulse wave measurement position with the best signal-to-noise ratio on the Z-axis .
  • the scanning position sensing module 400 allows the displacement sensing module 300 to find the pulse wave measurement position with the best signal-to-noise ratio on the XY plane.
  • the above-mentioned pulse wave measurement device can easily find the pulse wave measurement position with the best signal-to-noise ratio of the blood vessel radial displacement pulse wave in the area 600 to be measured of the subject, improve the original pulse wave displacement signal strength, and then It is measured with a high-precision and high-linearity displacement sensor, which can provide more detailed information about the pulse wave of the subject required for pulse diagnosis in traditional Chinese medicine.
  • the measurement method of pulse wave taking the pulse of traditional Chinese medicine as an example
  • FIG. 1 is a flow chart showing the first stage of the pulse wave measurement method using the pulse wave measurement device shown in FIG. 1 according to an embodiment of the present invention
  • FIG. 3 It is a flow chart showing the second stage of the pulse wave measurement method using the pulse wave measurement device shown in FIG. 1 according to an embodiment of the present invention
  • FIG. 4 is a flow chart according to one embodiment of the present invention A flow chart of the third stage of the pulse wave measurement method using the pulse wave measurement device shown in FIG. 1 .
  • the pulse wave measurement method using the pulse wave measurement device 100 shown in FIG. 1 can be mainly divided into three stages.
  • the first stage is to confirm the position of the Cunguan Chi pulse on the wrist of the subject.
  • the second stage is to confirm the position of the Cunguan Chi pulse on the subject's wrist, and pressurize the Cunguan Chi pulse taking position respectively to calculate the pulse taking depth of the Cunguan Chi pulse taking position.
  • the third stage is to measure the pulse wave, so as to obtain the waveform and wave volume of the Cunguan Chi pulse wave respectively. The measurement methods of the three stages will be described separately below.
  • the first stage Confirm the position of the Cun Guan Chi pulse on the subject's wrist
  • step S602 in order to confirm the position and size of the scanning area of the test area 600 of the subject, two conditions of the airbag 200 under light pressure and heavy pressure are provided in the test area 600 .
  • the execution sequence, the initial pressure setting value, the ending pressure setting value, the starting position of the scanning area and the ending position of the scanning area are determined.
  • the initial pressure setting value refers to the pressure value when the airbag 200 presses the skin lightly
  • the end pressure setting value refers to the pressure value when the airbag 200 presses the skin heavily
  • the end pressure setting value refers to the pressure value when the airbag 200 presses the hand bone.
  • the pressure value is almost constant after the depth.
  • the start position and end position of the scan area are the start position and end position of the scan position recorded by the scan position control module 400 .
  • step S202 according to the pulse diagnosis program in the computing module 510 , the execution sequence, initial pressure setting value, end pressure setting value, starting position of the scanning area and ending position of the scanning area are determined.
  • the initial pressure setting is Refers to the pressure value when the airbag 200 lightly presses the skin
  • the end pressure setting value refers to the pressure value when the airbag 200 presses the skin heavily
  • the end pressure setting value is the pressure at which the airbag 200 presses to the depth of the hand bone is almost constant
  • the start position of the scan area and the end position of the scan area are the start position and end position of the multi-point scan position recorded by the scan position control module 400 .
  • the pressure control module 230 receives a measurement instruction, that is, an instruction to measure the pulse condition.
  • the pressure control module 230 opens the air valve of the airbag 200 by issuing a pressure control instruction, so that air enters the airbag 200 to gradually increase the pressure of the airbag 200. pressure to the initial pressure setting.
  • an analog-to-digital converter can be used to transmit the pressure (initial pressure setting value) applied to the subject's skin by the airbag 200 back to the pressure control module 230 .
  • step S208 after the control module 520 sends out the displacement sensing command, it requests the displacement sensing module 300 to start scanning the scanning area of the wrist according to the set values of the scanning area start position and the scanning area end position.
  • step S208 when the scanning position control module 400 moves the displacement sensing module 300, simultaneously or sequentially, the displacement sensing module 300 reads the value of the obtained displacement signal until the displacement sensing module 300 completes the scanning area start The scan job with the set value of the position and the end position of the scan area.
  • the scanning position control module 400 and the displacement sensing module 300 respectively transmit the coordinates of each measurement point in the scanning area and the measured depth (called initial scanning area coordinates) to the memory module 580 of the calculator 500 .
  • step S210 it is determined whether the scan area start position of the subject and the scan area end position are scanned. If the scanning of the wrist scanning area has not been completed, return to step S208, and let the displacement sensing module 300 continue to scan between the start position of the scanning area and the end position of the scanning area until all scanning areas are completed. If the scanning is completed, go to step S212.
  • step S212 the pressure control module 230 requests the pressure in the airbag 200 to reach the end pressure set value (heavy pressure) through the pressure control command.
  • the location of the artery Similarly, when heavy pressure is applied, the readings of the displacement signals of all scanning areas of the wrist are obtained through the displacement sensing module 300, that is, the coordinates of each measurement point in the scanning area and the measured depth are the maximum of the scanning area. depth range.
  • step S214 by the pressure control module 230 under the situation of light pressure (initial pressure setting value) and heavy pressure (termination pressure setting value), the displacement sensing module 300 will The displacement amount of the coordinate depth of the initial scanning area of the same point is subtracted from the displacement amount of the coordinate depth of the end scanning area to obtain the change amount of the measured distance from the skin to the displacement sensing module 300 measured at the same point coordinates.
  • FIG. 5 is a schematic diagram of the tissues of various parts of the wrist and a schematic diagram of the system when linear displacement measurement is used.
  • step S216 due to the hard tissue near the radial artery (that is, the carpal bone 502 and the flexor carpi flexor tendon 504 in FIG. 5 ) during the two squeezes of the balloon 200, the change in depth is the smallest, and the soft tissue ( That is to say, the portion of radial artery 506 and its vicinity in 5) has the largest change in the two depths. Based on this, the relative position of the carpal bone, hand bone and flexor carpi flexor tendon can be judged from the position of the area with small depth change, and the relative position of the radial artery can be determined from the area with large depth change.
  • step S2128 after the above steps are completed, the control module 520 can display the waveform of FIG. 7 on the display module 560 through the display module 560.
  • FIG. 7 shows the pulse-taking operation obtained according to an embodiment of the present invention. Schematic diagram of the waveform of the process and pulse characteristics.
  • the second stage pressurize the pulse taking position of Cunguanchi respectively to calculate the pulse taking depth of the pulse taking place of Cunguanchi
  • step S302 the pressure control module 230 makes the pressure in the airbag 200 reach the pressure of the initial pressure setting value at the measurement point at the position of Cun Guan Chi.
  • step S304 the pressure control module 230 controls the air valve to open the airbag 200 Gas, gradually increase the pressure to the end pressure setting value. Then, under the pressure that can stabilize the airbag 200, adjust the precise amount of downforce to obtain a stable pulse-taking depth, so that the displacement sensing module 300 has enough time to capture the pulse signal, and capture the pulse signal with the highest signal-to-noise ratio , which is beneficial to the identification and processing of subsequent signals.
  • the pressure control module 230 returns the pressure reading to the memory module 580 of the calculator 500 , or stores it in an external data storage device of the calculator 500 through the communication module 570 . It is worth noting that the initial displacement value is zero when it touches the skin, and the reading is negative when it continues to press down (after applying heavy pressure), and the relative distance is used as the calculation ratio between different people basis.
  • step S306 the scanning position control module 400 of the displacement sensing module 300 scans the position of the subject's inch-off ruler, and the displacement sensing module 300 calculates the reading value of the displacement signal from no pressure to heavy pressure conditions, And convert the Cartesian coordinates and cylindrical coordinate positions, so that the position coordinates of different points in the scanning area can be combined with the results of depth measurement.
  • the reading value of the displacement signal is mixed with the displacement value of the depth and the displacement value of the pulse beating at the same time. Therefore, the displacement value of the depth can be obtained by obtaining a stable DC signal through the filter. If the pulse beating AC signal is not filtered out, the measured value is a dynamic pulse signal, and the depth value of the maximum amplitude in the pulse beating signal is calculated.
  • step S308 through the operation of the pulse diagnosis program, the pulse taking depth at the position of Cun Guan Chi is obtained.
  • the depth of the position where the pulse beats with the largest amplitude is the pulse-taking depth.
  • the pulse wave volume is measured to obtain the pulse waveform and wave volume of Cunguanchi respectively
  • step S402 the pressure control module 230 controls the depression depth of the airbag 200 according to the pulse-taking depth at the Cunguan-chi position of the subject as the initially set pulse-taking depth at Cunguan-chi.
  • step S404 it is judged whether the depression depth of the airbag 200 has reached the pulse-taking depth, wherein the pressure in the airbag 200 can be adjusted by the pressure control module 230 to obtain an accurate pulse-taking depth. If not, return to step S402 , and the pressure control module 230 continues to control the pressure of the airbag 200 . If yes, then in step S406, when the pressure control module 230 detects that the airbag 200 has reached the pulse-taking depth, the displacement sensing module 300 takes the position coordinates of the subject's inch-off-foot as the initially set inch-off-foot position coordinates. Pulse coordinates, to capture the pulse for a period of time (for example, 1 minute) The pulse wave data is stored in the calculator 500.
  • step S408 according to the pulse wave data obtained in step S406, the analyzing module 530 calculates the results such as pulse frequency, pulse wave type and pulse wave potential, and stores them in the calculator 500 or the external data storage of the calculator 500. device.
  • step S410 the analysis module 530 reads the pulse wave measurement result data, and then calculates the three positions of inch C, close G, and chi Ch shown in FIG. 6, and the pulse taking depth and pulse taking depth shown in FIG. Depth Scale.
  • Fig. 7 is a schematic diagram showing the waveform of the pulse taking operation process and pulse characteristics obtained according to an embodiment of the present invention.
  • pulse characteristics such as pulse rate, pulse wave type or/and pulse wave potential, are obtained through the pulse wave measurement result data.
  • the depth at which the displacement sensing module 300 touches the skin of the area to be measured 600 is D1
  • the depth at which the pulse beating signal begins to appear is D2
  • the depth at which the pulse beating signal is maximum is D3
  • the signal is D4
  • the depth at which the pressure reading value of the end pressure storage part is reached is D5.
  • the overall depth is D5 minus D1 (D5-D1).
  • the ratio of the depth at which the pulse signal begins to appear is (D1-D2)/(D5-D1)
  • the ratio of the depth at which the pulse signal begins to disappear is (D1-D4)/(D5-D1)
  • the ratio of the signal to appear is (D2 -D4)/(D5-D1)
  • the depth ratio of the point with the maximum pulse amplitude is (D1-D3)/(D5-D1).
  • a digital filtering procedure can be performed first to filter out the low-frequency noise caused by breathing. Then, set the lower limit value for calculating the peak. Finally, the number of pulse beats within a period of time (for example, 1 minute) is calculated by the analysis module 530 , that is, the result shown in FIG. 7 , and stored in the calculator 500 or its external data storage device.
  • the low-frequency noise caused by respiration is also filtered out first, and then the Fourier transform (FFT) spectrum operation is performed to decompose the waveform originally extracted from the time domain into different
  • FFT Fourier transform
  • step S412 the above-mentioned steps are repeated to measure the pulse condition characteristics of the other wrist of the subject and store it in the subject data storage database.
  • step S414 after the measurement of the two hands is completed, the control module 520 can pass the display module 560, on the display module 560
  • the pulse wave of the subject is displayed, such as the waveform shown in FIG. 7 , but the present invention is not limited thereto.
  • Pulse wave measurement method 1 remove the scanning position control module and use a point-type photoelectric displacement sensor
  • the displacement sensing module 300 can be a point-type photoelectric displacement sensor when the scanning position control module 400 in the system structure diagram is removed. In this case, the displacement sensing module 300 can be manually operated to move to the area to be measured 600 of the subject for measurement.
  • FIG. 8 is a flowchart illustrating a method of using the pulse wave measurement device shown in FIG. 1 according to an embodiment of the present invention, wherein the pulse wave measurement device 100 does not have a scanning position
  • the control module 400 and the displacement sensing module 300 are point-type, line-type or surface-type photoelectric displacement sensors.
  • the radial artery of the wrist of the subject is taken as the region 600 to be measured as an example for illustration.
  • step S802 the measurer touches the wrist of the subject, and marks the place with the largest amplitude on the radial artery of the wrist as the subject's area to be measured 600.
  • step S804 the point-type photoelectric displacement sensor is placed on the area to be measured 600 at the radial artery of the wrist of the subject for measurement.
  • step S806 the pressure control module 230 regulates the internal pressure of the airbag 200, presses the skin of the subject to be tested in the Z-axis direction up and down, and adjusts to the initial pressure setting value ( light pressure). And, in step S808, record the blood vessel radial displacement pulse wave at the aligned position.
  • step S810 proceeds to step S810, and check whether the end pressure set value is reached.
  • step S807 the pressure control module 230 continues to increase the pressure to regulate the depth of pressing down the airbag 200 in the Z-axis direction.
  • step S808 the displacement changes of the skin at the test area 600 of the subject due to the radial pulse waves of blood vessels are continuously recorded.
  • step S812 according to the recorded variation curve of the skin displacement of the subject to be measured at the area 600 over time (this variation curve will be recorded later as referred to as recording the pulse wave for short), and the pulse wave can be calculated accordingly.
  • step S814 adjust the downward pressure of the airbag 200 on the Z axis Depth to the pulse taking depth.
  • step S816 it is compared whether the airbag 200 is pressed down to the pulse taking depth. If not, return to step S814, and adjust the airbag 200 pushed down by the Z-axis to the pulse taking depth. If yes, enter step S818, extract pulse wave waveform recorded for a period of time (for example, 1 minute), and calculate pulse wave waveform features.
  • Pulse wave measurement method 2 use a point-type photoelectric displacement sensor and use a linear or surface-type photoelectric displacement sensor
  • step S904B the subject’s wrist is placed at the measurement position, and the laser light emitted by the point photoelectric displacement sensor is aligned with the positions of the three marks, and the detection position of the area photoelectric displacement sensor, because the detection area is large can be obtained by calculation.
  • FIG. 9A-9B is a flowchart illustrating a method of using the pulse wave measurement device shown in FIG. 1 according to another embodiment of the present invention, wherein the pulse wave measurement device
  • the displacement sensing module 300 of 100 is a linear and area photoelectric displacement sensor
  • the scanning position control module 400 has a Y-axis position controller.
  • the radial artery of the wrist of the subject is taken as the region to be measured 600 for illustration.
  • step S902 the measurer touches the wrist of the subject, and marks the point on the wrist where the amplitude is the largest, as the area 600 to be tested of the subject.
  • step S904 the subject's wrist is placed at the measurement position, and the linear laser beam emitted by the linear photoelectric displacement sensor is aimed at the marked position, and the illuminated area of the linear laser beam is parallel to the X-axis.
  • step S906 the pressure control module 230 regulates the internal pressure of the airbag 200, presses the skin of the subject to be tested in the Z-axis direction up and down, and adjusts it to the initial pressure setting value ( light pressure).
  • step S908 the pulse wave of the radial displacement of blood vessels at each position of the wrist along the area illuminated by the linear laser light is recorded.
  • step S911 it is checked whether the end pressure setting value is reached.
  • step S909 record the amplitude of the pulse wave at each position of the wrist, then go to step S910, adjust the airbag 200 pressed down by the Z axis to increase the pressure, and then repeat step S908.
  • step S912 open the air valve of the airbag 200, and release the pressure of the airbag 200. Then enter step S914, compare the X-axis coordinate position where the maximum amplitude occurs and the corresponding pressure, that is, obtain the maximum amplitude position of the Cunguanchi pulse of the subject.
  • step S914 enters into steps S916-S922 in FIG. 9B.
  • step S924 After repeating the above steps S906 to S912 at the Cunguan ruler position of the subject's wrist, enter step S924 to calculate the pulse acquisition depth and depth ratio of the pulse wave.
  • step S926 adjust the airbag 200 depressed by the Z-axis to the pulse taking depth
  • the other wrist of the subject also needs to repeat the above steps to obtain the pulse wave characteristics.

Abstract

提供一种脉诊的脉搏波量测装置,其包含气囊、压力控制模块、位移感测模块、扫描位置控制模块以及计算器。上述压力控制模块、位移感测模块、扫描位置控制模块分别与计算器通讯连接,而压力控制模块的帮浦则透过气体管路与气阀和气囊连接。也提供上述脉搏波量测装置的使用方法。

Description

脉诊的脉搏波量测装置及其使用方法
相关申请的交叉引用
本申请要求于2022年01月28日提交的申请号为63/304,367,名称为“脉诊的脉搏波量测装置及其使用方法”的美国临时专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本说明书系有关于一种生理特征量测系统及其使用方法,特别是关于一种脉搏波量测装置及其使用方法。
背景技术
目前而言,有许多不同的脉诊装置或仪器用于检测民众的生理状态,而目前技术几乎都是透过压力薄膜传感器。经由操作人员概略的判断取脉位置后,就让压力薄膜传感器对准人的肢体上的其中一个位置,再搭配气囊以及藉由调控气囊的压力的大小,调整气囊下压在手腕的深度后,压力薄膜传感器通过量测人体脉搏跳动所产生的动态压力与下压深度的静态压力,用以作为脉搏讯号与下压深度讯号的参考依据。
然而,由于操作者的操作习惯的不同,下压深度的静态压力和下压的深度并非呈现线型关系,造成生理状态的量测出现误差。因此,有必要开发一种量测系统来量测脉诊的脉搏波,以能够准确地量测到受测者(受测者)所到的各种生理状态信息。
发明内容
为了能够准确地量测到受测者的各种生理状态信息,本发明的其中一个目的在于提供一种脉搏波量测装置及其使用方法。上述脉搏波量测装置适配于受测者的手腕。所述脉搏波量测装置接触于受测者的手腕的待测区,且所述待测区包含受测者的动脉位置,以侦测受测者的动脉之脉搏波的相关生理特征信息,例如脉象特征波。
附图说明
为了进一步理解本发明的技术、手段和效果,可以参考以下详细描述和附图,从而可以彻底和具体地理解本发明的目的、特征和概念。然而,以下详细描述和附图仅用于参考和说明本发明的实现方式,其并非用于限制本发明。
图1系绘示依据本发明一实施例之一种脉诊的脉搏波量测装置之功能方块结构示意图。
图2系绘示根据本发明一实施例之一种使用图1所示脉搏波量测装置来进行脉搏波量测方法之第一阶段的流程图。
图3系绘示根据本发明一实施例之一种使用图1所示脉搏波量测装置来进行脉搏波量测方法之第二阶段的流程图。
图4系绘示根据本发明一实施例之一种使用图1所示脉搏波量测装置来进行脉搏波量测方法之第三阶段的流程图。
图5系绘示手腕处之各部位组织的示意图以及使用线性位移计量测时的系统示意图。
图6系绘示依据本发明一实施例线性雷射位移计在平行血管情形下所量测到寸关尺脉位置之脉搏波的示意图。
图7系绘示依据本发明一实施例所得之取脉操作过程与脉象特征的波形示意图。
图8系绘示依据本发明一实施例之一种使用图1所示脉搏波量测装置之使用方法流程图,其中脉搏波量测装置100不具有扫描位置控制模块400,且位移感测模块300为点型之光电位移传感器。
图9A-9B系绘示依据本发明另一实施例之一种使用图1所示脉搏波量测装置之使用方法流程图,其中脉搏波量测装置100不具有扫描位置控制模块400,位移感测模块300为线型或面型光电位移传感器。
附图标记:
100:脉搏波量测装置
200:气囊
210:透明窗口
220:接触部
230:压力控制模块
300:位移感测模块
400:扫描位置控制模块
500:计算器
502:骨头
504:挠腕屈肌腱
506:挠动脉
510:运算模块
520:控制模块
530:分析模块
540:操作模块
550:电源模块
560:显示模块
570:通讯模块
580:记忆模块
S202-S218、S302-S308、S402-S412、S802-818、S902-S930:步骤。
具体实施方式
定义:XY平面实质上平行于受测者的皮肤表面,其中X轴为实质平行于受测者的血管走向,Y轴为实质垂直于受测者的血管走向。因此,Z轴为实质垂直于受测者皮肤表面的方向。下面叙述中所提及之X轴、Y轴与Z轴的定义皆相同于此。
脉诊的脉搏波量测装置
请参考图1,其系绘示依据本发明一实施例之一种脉诊的脉搏波量测装置之功能方块结构示意图。在图1中,脉搏波量测装置100包含气囊200、压力控制模块230、位移感测模块300、扫描位置控制模块400以及计算器500。其中扫描位置控制模块400为选配的组件,也就是可以省略的组件。
上述气囊200至少具有透明窗口210以及接触部220。气囊200的主体材料可由任何可用之高分子材料来构成,上述高分子材料例如可为(但不限于)聚甲基丙烯酸甲酯(PMMA)、醋酸纤维素(CA)、尼龙- 66聚酰胺树脂(PA-66)、尼龙-6聚酰胺树脂(PA-6)、聚对苯二甲酸丁烯酯(PBT)、聚对苯二甲酸二乙酯(PET)、聚苯二甲苯(PPO)、聚碳酸酯(PC)、乙烯-醋酸乙烯共聚物(EVA)、低密度聚乙烯(LDPE)、高密度聚乙烯(HDPE)、聚丙烯(PP)、聚氯乙烯(PVC)、聚缩醛(POM)或聚胺基甲酸酯(PU)。
上述透明窗口210用于对准位移感测模块300,因此可使用高硬度的透明材料来构成,例如但不限于玻璃、石英、聚苯乙烯(polystyrene,PS)或丙烯腈-丁二烯-苯乙烯共聚物(Acrylonitrile Butadiene Styrene,ABS)。透明窗口210的表面还可以镀上一层抗反射膜,以增加光线的穿透度、减少反射光杂影并增加抗磨性。
上述接触部220用来与受测者之待测区600的皮肤接触,因此可使用柔软(硬度范围可为萧氏硬度20C至72D)且具有弹性的高分子材料来构成,以利于紧密贴合受测者之待测区600的皮肤。上述高分子材料例如可为热塑性弹性体(Thermoplastic elastomers,TPE),可用之热塑性弹性体例如可为TPU(热塑性聚氨酯)、TPO(聚烯系弹性体)、TPV(动态加硫聚烯弹性体)、TPS/TPR(聚苯乙烯系弹性体)、TPEE(聚醚酯弹性体)、TPA(聚酰胺系弹性体)。上述接触部220面向气囊的内表面为光滑的或是可镀上一层反射材料以增强光线的反射,以利光线之均匀反射(而非散射)。
上述压力控制模块230藉由对气囊200的内部进行充气加压或泄气减压的方式来控制气囊200的内部压力。依据一些实施例,压力控制模块230例如可包括压力传感器、帮浦、气体管路与气阀。其中,压力传感器可感测气囊200的内部压力,而气体管路两端分别与帮浦和气囊200相接,在气体管路中适当位置安装适当的气阀。因此,可依赖帮浦中马达的运转(正反转)和气阀的搭配,来控制气体流入气囊200或自气囊200流出,进而控制气囊200的内部压力,以控制气囊200在Z轴上对受测者之待测区600的皮肤之下压深度。因此,气囊的功能为可调整下压位置和让雷射传感器通过取得反射光。
上述位移感测模块300是用来量测位移感测模块300到受测者之待测区600的皮肤(当气囊200的接触部220是由透明材料所构成时)之 在Z轴方向的距离,或是量测位移感测模块300到气囊200之接触部220(当气囊200的接触部220是由不透明材料所构成时)之在Z轴方向的距离。
位移感测模块300可为任何可用之位移传感器,其测量分辨率最低可为100微米,例如可具有100微米、90微米、80微米、70微米、60微米、50微米、40微米、30微米、20微米、10微米或1微米分辨率之位移传感器。上述位移传感器例如可为使用各种光源来进行测距的光电位移传感器。上述光电位移传感器例如可为雷射位移计(Laser Displacement Meter)、光纤位移计(Fiber-Optic Sensors)、三维扫描位移计(3dimension scanner,3D scanner;例如双眼深度CCD加上可程序结构光系统)、飞时测距(Time of Flight,缩写为TOF)装置或雷射干涉仪的测距装置。若依据位移感测模块300之可侦测区域形状来分类,上述位移感测模块300的可为点型、线型或面型的位移传感器。
承上所述,当位移感测模块300为光电位移传感器时,由于位移感测模块300是紧邻气囊200的透明窗口210,所以由位移感测模块300之光源所发出的光线可以穿透气囊200的透明窗口210。
当气囊200的接触部220由透明材料所组成时,由位移感测模块300之光源所发出的光线将会直射到受测者之待测区600的皮肤上,然后再反射回来至位移感测模块300的接收器,让位移感测模块300可以量测位移感测模块300到受测者之待测区600的皮肤之间的距离。
当气囊200的接触部220由不透明材料所组成时,由位移感测模块300之光源所发出的光线将会直射到气囊200的接触部220面向气囊的内表面上,然后再反射回来至位移感测模块300的接收器,让位移感测模块300可以量测位移感测模块300到气囊200的接触部220之间的距离。因此当接触部220面向气囊的内表面足够光滑或镀上一层反射膜时,可有效地减少光线反射后的散射程度,让位移感测模块300的接收器可以接收到讯杂比(S/N ratio)较佳的讯号,使位移感测模块300的测距更为精准。
另外,值得一提的是,位移感测模块300还可以包括一滤波器。由于经由位移感测模块300获得的原始的位移讯号包含有脉搏跳动之交流 讯号的位移数值,通过滤波器,可以滤除脉搏跳动之交流讯号,剩下稳定的直流讯号即为代表Z轴上深度的位移数值。若位移感测模块300不包括滤波器,即也将脉搏跳动的交流讯号也含括进来,则得到的量测数值则为动态的脉搏讯号。此外,所谓的位移讯号是指,以气囊200未加压时(或轻压时)接触到受测者的待测区600时为第一位置,以气囊200加压后(或重压后)接触到受测者的待测区600时为第二位置,而由第一位置减去第二位置获得的差异值即为位移讯号。请参考后述之脉搏波量测方法的相关说明。
上述扫描位置控制模块400是用来控制位移感测模块300移动到受测者之待测区600上,并控制位移感测模块300在待测区600的范围中进行测距扫描。例如要测量受测者之手腕挠动脉之脉搏波动时,因受测者之脉搏跳动状况会随时变动,因而会改变位移感测模块300到受测者之待测区600的皮肤或是位移感测模块300到气囊200的接触部220之间的「脉搏量测距离」,所以扫描位置控制模块400可用来控制位移感测模块300移动到受测者之挠动脉上方之体表处的待测区600后,进行上述「脉搏量测距离」随着时间变化的量测,并且可在待测区600中进行扫描测距。
扫描位置控制模块400为选配的组件,也就是可以省略的组件。当没有扫描位置控制模块400时,用户可自行将位移感测模块300移到受测者之待测区600处,让位移感测模块300对受测者之待测区600进行测距扫描,位移感测模块300可为侦测区域为点型、线型、面型的光电位移传感器。
依据再一些实施例,上述扫描位置控制模块400可包括X-Y双轴位置控制器(X-Y双轴移动平台或圆柱坐标移动机构),可搭配之位移感测模块300可为点型的光电位移传感器,对受测者之待测区600进行测距扫描。
上述计算器500分别讯号连接上述之压力控制模块230、位移感测模块300和扫描位置控制模块400,以分别传送控制讯号给上述压力控制模块230、位移感测模块300和扫描位置控制模块400,或是接收上述压力控制模块230、位移感测模块300和扫描位置控制模块400所传来的信 息。上述计算器500可为任何可用之具有计算能力的机器,如各种类型的计算机、微处理器或行动运算装置等。
依据一些实施例,计算器500包含运算模块510、操作模块540、电源模块550、显示模块570以及记忆模块580。
上述运算模块510可包含运算模块5100与分析模块530。上述运算模块5100负责提供压力控制模块230、位移感测模块300和扫描位置控制模块400的控制指令。上述分析模块530则负责运算分析压力控制模块230、位移感测模块300和扫描位置控制模块400所传过来的信息。
上述操作模块540提供使用界面,让用户透过操作模块540来下达操控指令来操控压力控制模块230、位移感测模块300和扫描位置控制模块400的运作。
上述电源模块550用来供应计算器500所需电力。电源模块550可为交流电源(例如可透过一般电力插座取得发电厂所供应之电力)或直流电源(例如各种干电池或可重复充电之蓄电池)。
上述显示模块560用来显示运算模块5100的使用界面、压力控制模块230、位移感测模块300和扫描位置控制模块400传给分析模块530的信息以及分析模块530对这些信息分析的结果。
上述通讯模块570用来通讯连接压力控制模块230、位移感测模块300和扫描位置控制模块400以及一些外部数据库。上述外部数据库例如可为(但不限于)脉象比对数据库、中草药数据库或其组合。
上述记忆模块580可为任何可用之挥发性或非挥发性的数据储存装置,以储存位移感测模块300量测过程中所产生的任何数据。
由上述可知,气囊200和压力控制模块230的合作,可以提供气囊200在Z轴上的下压深度,让位移感测模块300找到在Z轴上之讯杂比最佳的脉搏波量测位置。而扫描位置感测模块400可以让位移感测模块300在X-Y平面上找到讯杂比最佳的脉搏波量测位置。因此,上述脉搏波量测装置可以在受测者之待测区600中,轻易找到血管径向位移脉搏波之讯杂比最佳的脉搏波量测位置,提高原始脉搏波位移讯号强度,再以高精度和高线形度的位移传感器来量测,而可以提供有关受测者之脉搏波更多的中医脉诊所需的精细信息。
脉搏波的量测方法:以中医把脉为例
为了更加详细的说明脉搏波量测仪器如何获得受测者的脉象特征波,以下说明使用图1所示脉搏波量测装置来进行脉搏波的量测方法。请参阅图1至图4,其中图2系绘示根据本发明一实施例之一种使用图1所示脉搏波量测装置来进行脉搏波量测方法之第一阶段的流程图;图3系绘示根据本发明一实施例之一种使用图1所示脉搏波量测装置来进行脉搏波量测方法之第二阶段的流程图;图4系绘示根据本发明一实施例之一种使用图1所示脉搏波量测装置来进行脉搏波量测方法之第三阶段的流程图。
使用图1所示脉搏波量测装置100来进行脉搏波量测方法,主要可分为三个阶段。第一阶段为确认受测者的手腕的寸关尺脉的位置。第二阶段为确认受测者的手腕的寸关尺脉的位置后,分别对寸关尺取脉位置进行加压,以计算寸关尺脉之取脉位置的取脉深度。第三阶段为对脉搏波进行量测,以分别取得寸关尺脉搏波的波形及波量。以下针对三阶段的量测方法来分别说明之。
第一阶段:确认受测者的手腕的寸关尺脉的位置
在图2中,为确认受测者的待测区600之扫描区域的位置大小,于待测区600提供气囊200在轻压和重压的两种条件。于步骤S602,根据运算模块510中的诊脉程序决定执行顺序、初始压力设定值、终止压力设定值、扫描区域起始位置及扫描区域终止位置。其中,初始压力设定值是指气囊200轻压皮肤时的压力值,终止压力设定值是指气囊200重压皮肤时的压力值,且终止压力设定值为气囊200压至手骨的深度后几乎不变的压力值,另外,扫描区域起始位置和扫描区域终止位置为纪录扫描位置控制模块400之扫描位置的起始位置和终点位置。
如图2所示,首先,为确认受测者的待测区600的扫描区域,于扫描区域提供气囊200在轻压和重压两种条件。于步骤S202,根据运算模块510中的诊脉程序决定执行顺序、初始压力设定值、终止压力设定值、扫描区域起始位置及扫描区域终止位置。其中,初始压力设定值是 指气囊200轻压皮肤时的压力值,终止压力设定值是指气囊200重压皮肤时的压力值,且终止压力设定值压力值为气囊200压至手骨的深度几乎不变的压力值,另外,扫描区域起始位置和扫描区域终止位置为纪录扫描位置控制模块400的多点的扫描位置的起始位置和终点位置。
再于步骤S204,压力控制模块230接收到测量指令,即测量脉象的指令,压力控制模块230透过发出压力控制指令使气囊200的气阀打开,使空气进入气囊200,以逐渐增加气囊200的压力至初始压力设定值。其中,可用模拟数字转换器将气囊200给予受测者皮肤的压力(初始压力设定值)回传至压力控制模块230。
于步骤S208中,控制模块520发出位移感测指令后,请求位移感测模块300开始根据扫描区域起始位置及扫描区域终止位置的设定值,开始扫描手腕部份的扫描区域。
接着,于步骤S208,扫描位置控制模块400移动位移感测模块300时,同时地或先后地,位移感测模块300读取获得的位移讯号的数值,直到位移感测模块300完成扫描区域起始位置及扫描区域终止位置的设定值的扫描作业。由扫描位置控制模块400及位移感测模块300分别将扫描区域内每个量测点的坐标与量测到的深度(称为初始扫描区域坐标),同时传送至计算器500的记忆模块580中。
于步骤S210中,判断受测者的扫描区域起始位置扫描区域终止位置是否扫描完成。若还未完成手腕扫描面积的扫描,则回到步骤S208中,让位移感测模块300继续进行扫描区域起始位置及扫描区域终止位置之间的扫描作业,直到所有扫描区域完成。若已完成扫描,则进入步骤S212中。
在步骤S212中,压力控制模块230透过压力控制指令请求气囊200内的压力达到终止压力设定值(重压),此步骤是为了扫描手腕的挠动脉区域,以先判别腕骨的位置与挠动脉的位置。相似地,于重压时,透过位移感测模块300获得手腕的所有扫描区域的位移讯号的读值,即扫描区域内每个量测点的坐标与量测到的深度,为扫描的最大深度范围。
然后,再于步骤S214中,藉由压力控制模块230以轻压(初始压力设定值)和重压(终止压力设定值)的情形下,由位移感测模块300将 同一点坐标的初始扫描区域坐标深度的位移量减去终止扫描区域坐标深度的位移量,获得同一点坐标所量测皮肤到位移感测模块300之量测距离的改变量。
请同时参考图5,图5系绘示手腕处之各部位组织的示意图以及使用线性位移计量测时的系统示意图。
于步骤S216,由于在挠动脉附近的硬组织部份(亦即图5中之腕骨502和挠腕屈肌腱504)在两次气囊200的挤压中,深度的改变量最小,并且在软组织(亦即5中之挠动脉506及其附近区域)的部份,两次深度的改变量最大。由此深度改变量小的区域分布的位置判别腕骨、手骨和挠腕屈肌腱的相对位置,由深度改变量大的区域,则相对为挠动脉的分布区域。再由挠骨和挠腕屈肌腱包围的位置内,再找出腕骨和挠腕屈肌腱包围的位置内脉搏跳动的区域,此为挠动脉的位置。
接着,沿着挠动脉的位置找出,腕骨位置前挠动脉的位置上脉搏跳动的最大点,其坐标即为「寸」的坐标位置。最后,由腕骨后和挠腕屈肌腱包围的位置内脉搏跳动的血管区域,找出脉搏跳动最大的前后两点,靠近腕骨的坐标点为「关」的位置坐标和离腕骨较远的位制作标点为「尺」的位置坐标。对应图5,可以得到如图6所示之线性雷射位移计在平行血管情形下所量测到寸关尺脉位置之脉搏波的示意图。
最后,于步骤S218,在完成上述步骤后,控制模块520即可以通过显示模块560,在显示模块560上显示出图7的波形,图7系绘示依据本发明一实施例所得之取脉操作过程与脉象特征的波形示意图。
第二阶段:分别对寸关尺取脉位置进行加压,以计算寸关尺取脉位置的取脉深度
透过第一阶段找到受测者手腕的寸关尺位置后,需确认受测者在何种取脉深度下,可以量测到最清楚的脉搏跳动讯号。
在图3中,与第一阶段类似,于步骤S302中,压力控制模块230在寸关尺位置的量测点下,让气囊200内的压力达到初始压力设定值的压力。
接着,步骤S304,压力控制模块230控制气阀,将气囊200进行打 气,渐渐加压至终止压力设定值。然后,在可以稳定气囊200的压力下,调控精准的下压力量以取得稳定的取脉深度,让位移感测模块300有足够的时间撷取脉搏讯号,并撷取讯噪比最高的脉搏讯号,利于后面讯号的判别与处理。接着,压力控制模块230将压力的读值回传到计算器500的记忆模块580中,或通过通讯模块570储存在计算器500的外部数据储存装置中。值得注意的是,初始的位移值是以接触到皮肤时的读值为零,继续往下压(施予重压后)时的读值为负值,以相对距离作为不同人之间计算比例的依据。
再于步骤S306中,由位移感测模块300的扫描位置控制模块400扫描受测者寸关尺位置,并由位移感测模块300计算从没有压力直到重压条件下的位移讯号的读值,并换算直角坐标与圆柱坐标位置,使扫描区域内不同点的位置坐标可以结合量测深度的结果。其中,位移讯号的读值同时混合了深度的位移数值与脉搏跳动的位移数值,因此,可以透过滤波器,取得稳定的直流讯号而得到深度的位移数值。若不将脉搏跳动的交流讯号滤除,此量测的数值则为动态的脉搏讯号,计算出脉搏跳动讯号中最大振幅的深度值。
接着,于步骤S308,透过诊脉程序的运算,获得寸关尺位置上取脉深度。当脉搏跳动振幅最大时之位置的深度,即为取脉深度。
第三阶段,进行脉搏波量进行量测,以分别取得寸关尺脉搏波形及波量
在图4中,于步骤S402中,压力控制模块230根据受测者的寸关尺位置上取脉深度控制气囊200下压深度,作为初始设定的寸关尺取脉深度。
接着,于步骤S404中,判断气囊200下压深度是否已达取脉深度,其中气囊200内压力大小可由压力控制模块230来调整,取得精确的取脉深度。若否,则回到步骤S402中,由压力控制模块230继续控制气囊200加压。若是,则于步骤S406中,当压力控制模块230侦测到气囊200已达到取脉深度后,由位移感测模块300根据受测者的寸关尺位置坐标作为初始设定的寸关尺取脉坐标,撷取一段时间(例如1分钟)的脉 搏波数据,并储存到计算器500中。
接着,步骤S408中,根据步骤S406所得到的脉搏波数据,分析模块530计算出脉搏次数、脉搏波型态和脉搏波势等结果,并储存于计算器500中或计算器500的外部数据储存装置中。
之后,步骤S410中,分析模块530读取脉搏波量测结果数据,再计算得到图6所示之寸C、关G、尺Ch三个位置,和图7所示的取脉深度和取脉深度比例。
图7系绘示依据本发明一实施例所得之取脉操作过程与脉象特征的波形示意图。在图7中,透过脉搏波量测结果数据获得脉象特征,例如脉搏次数、脉搏波型态或/和脉搏波势等。
进一步地在图7中,在位移感测模块300接触到待测区600之皮肤的深度为D1,开始出现脉搏跳动讯号的深度为D2,脉搏跳动讯号最大的深度为D3,脉搏讯号开始消失的讯号为D4,到达终止压力储存部压力读值的深度为D5。此时,全部深度为D5减去D1(D5-D1)。并且,开始出现脉搏跳动讯号的深度比例为(D1-D2)/(D5-D1),脉搏讯号开始消失的深度比例为(D1-D4)/(D5-D1),讯号出现的比例为(D2-D4)/(D5-D1),取脉振幅最大点的的深度比例为(D1-D3)/(D5-D1)。
在计算脉搏次数的结果时,可以先进行一次数字滤波程序,先滤除呼吸造成的低频噪声。然后,设定计算波峰的下限值。最后,由分析模块530计算出在一段时间(例如1分钟)内脉搏跳动的次数,即如图7的结果,并储存至计算器500或其外部数据储存装置。
在计算脉搏波型态时,同样先滤除呼吸造成的低频噪声,然后进行傅立叶变换(Fourier transform,缩写为FFT)频谱运算,将原先自时域(time domain)撷取的波形,分解为不同频率波的组成的量化分析结果,最后,将此脉搏波频谱分析的结果,储存至计算器500或其外部数据储存装置。
另外,于步骤S412,会再重复上述的步骤测量受测者另外一手腕的脉象特征,并储存于受测者数据储存数据库。并于步骤S414,在完成两手的测量后,控制模块520即可以通过显示模块560,在显示模块560上 显示出受测者的脉搏波,例如为图7所示的波形,本发明并不以此为限制。
脉搏波量测方法一:移除扫描位置控制模块并使用点型光电位移传感器
以下针对在移除系统结构图中扫描位置控制模块400的情形下,位移感测模块300可为点型光电位移传感器。在此情况下,可手动来操作位移感测模块300移至受测者之待测区600上来进行量测。
请同时参考图1和图8,图8系绘示依据本发明一实施例之一种使用图1所示脉搏波量测装置之使用方法流程图,其中脉搏波量测装置100不具有扫描位置控制模块400,且位移感测模块300为点型、线型或面型之光电位移传感器。下面以受测者手腕之桡动脉作为待测区600为例说明。
进入前述第一阶段的量测,在图8中,于步骤S802,量测者触摸受测者的手腕,并于手腕挠动脉上振幅最大处做上记号,做为受测者的待测区600。于步骤S804,将点型光电位移传感器放置到受测者的手腕挠动脉处的待测区600上,进行量测。
接着,进入第二阶段的量测,于步骤S806,压力控制模块230调控气囊200的内部压力,在Z轴方向上下压受测者待测区600处的皮肤,调整至初始压力设定值(轻压)。并且,于步骤S808,纪录对准位置的血管径向位移脉搏波。
进入步骤S810,比对是否达到终止压力设定值。
若否,则进入步骤S807,压力控制模块230持续增加压力,调控在Z轴方向下压气囊200的深度。再于步骤S808中,持续纪录受测者待测区600处的皮肤因血管径向脉搏波之故而产生的位移变化。
若是,则进入步骤S812,根据所纪录的受测者待测区600处的皮肤位移随着时间推移的变化曲线(后面将记录此变化曲线简称为记录脉搏波),并可据以计算脉搏波的取脉深度及相对于受测者手腕厚度之取脉深度比例。
进入第三阶段,接着进入步骤S814,调整气囊200在Z轴上的下压 深度至取脉深度。于步骤S816,比对是否气囊200下压到取脉深度。若否,则回到步骤S814,调整Z轴下压的气囊200直至取脉深度。若是,则进入步骤S818中,撷取纪录一段时间(例如1分钟)的脉搏波之波形,并计算脉搏波之波形特征。
脉搏波量测方法二:搭配点型光电位移传感器并使用线型或面型的光电位移传感器
线型光电位移传感器和面型光电位移传感器搭配压力控制模块230施加Z轴方向的下压位移其操作流程,其两种操作过程几乎相同。唯一不同处是,线型光电位移传感器需要量测者触摸受测者的手腕,并于手腕上振幅最大的寸关尺位置做上记号。于步骤S904B,将受测者的手腕放置测量位置,并将点性光电位移传感器射出的雷射光线对准三个记号的位置,而面型光电位移传感器的侦测位置,因为侦测面积大可由计算获得。
请同时参考图1和图9A-9B,图9A-9B系绘示依据本发明另一实施例之一种使用图1所示脉搏波量测装置之使用方法流程图,其中脉搏波量测装置100之位移感测模块300为线型和面型光电位移传感器,且扫描位置控制模块400具有Y轴位置控制器。下面以受测者手腕之桡动脉作为待测区600来进行举例说明。
在图9A中,于步骤S902,量测者触摸受测者的手腕,并于手腕上振幅最大处做上记号,做为受测者的待测区600。于步骤S904,将受测者的手腕放置测量位置,并将线型光电位移传感器射出的线形雷射光线对准做记号的位置,线形雷射光线照亮区域与X轴平行。
开始前述的第一阶段的侦测,于步骤S906,压力控制模块230调控气囊200的内部压力,在Z轴方向上下压受测者待测区600处的皮肤,调整至初始压力设定值(轻压)。于步骤S908,纪录沿着线形雷射光线照亮区域之手腕各位置的血管径向位移之脉搏波。
于于步骤S911,比对是否达到终止压力设定值。
若否,则进入步骤S909,纪录手腕各位置的脉搏波的振幅,再进入步骤S910,调整Z轴下压的气囊200以增加压力后,再重复步骤S908。
若是,则进入步骤S912,打开气囊200的气阀,使气囊200泄压。再进入步骤S914中,比对最大振幅出现的X轴坐标位置与对应压力,即获得受测者的寸关尺脉搏振幅最大位置。
接着,进入第二阶段,基于步骤S914所得到之受测者的寸关尺脉搏振幅最大位置,进入图9B中的步骤S916~S922。于受测者的手腕之寸关尺位置重复上述步骤S906~步骤S912后,进入步骤S924,计算脉搏波的取脉深度及深度比例。
进一步地,进入第三阶段,于步骤S926,调整Z轴下压的气囊200至取脉深度,并于步骤S928中,比对是否到取脉深度。若否,则回到步骤S926,调整Z轴下压的气囊200至取脉深度。若是,则进入步骤S930,撷取一段时间(例如1分钟)的脉搏波及计算脉搏波特征。
并且,值得一提的是,受测者的另一手腕也需重复上述步骤获得脉搏波特征。

Claims (6)

  1. 一种脉诊的脉搏波量测装置,包含:
    一气囊,具有一透明窗口与一接触部,其中所述接触部用来与一受测者之一待测区的皮肤接触,所述待测区下具有至少一动脉血管,所述动脉血管的走向定义为X轴方向;
    一压力控制模块,用来控制所述气囊的内部压力;
    一位移感测模块,用来量测所述受测者之所述待测区的皮肤至所述位移感测模块的距离,所述位移感测模块的测量分辨率为50微米以下;以及
    一计算器,分别通讯连接所述压力控制模块与所述位移感测模块,并用以分别传送控制讯号给所述压力控制模块和所述位移感测模块,并接受所述压力控制模块和所述位移感测模块传送过来的信息并进行运算。
  2. 如权利要求1所述的脉搏波量测装置,其中所述压力控制模块包含:
    一压力传感器,用来感测所述气囊的内部压力;以及
    一帮浦,用来增加或减少所述气囊的内部压力。
  3. 如权利要求1所述的脉搏波量测装置,其中所述位移感测模块包含一光电位移传感器。
  4. 如权利要求3所述的脉搏波量测装置,其中所述光电位移传感器包含雷射位移计、光纤位移计、三维扫描位移计、飞时测距装置或雷射干涉仪的测距装置。
  5. 如权利要求1所述的脉搏波量测装置,其中所述位移感测模块还包含一滤波器,用以滤除脉搏跳动之交流讯号。
  6. 如权利要求1所述的脉搏波量测装置,还包含一扫描位置控制模块,通讯连接所述计算器并用来控制所述位移感测模块在所述待测区中的位置,让所述位移感测模块在所述待测区中进行测距扫描。
PCT/CN2023/073313 2022-01-28 2023-01-20 脉诊的脉搏波量测装置及其使用方法 WO2023143433A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202263304367P 2022-01-28 2022-01-28
US63/304,367 2022-01-28

Publications (1)

Publication Number Publication Date
WO2023143433A1 true WO2023143433A1 (zh) 2023-08-03

Family

ID=87470827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/073313 WO2023143433A1 (zh) 2022-01-28 2023-01-20 脉诊的脉搏波量测装置及其使用方法

Country Status (3)

Country Link
US (1) US20230248253A1 (zh)
TW (1) TW202348196A (zh)
WO (1) WO2023143433A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004173751A (ja) * 2002-11-25 2004-06-24 Honda Motor Co Ltd 光計測装置
TWI556794B (zh) * 2015-06-12 2016-11-11 羅錦興 用於脈診的陣列感測模組及脈診儀
CN107468222A (zh) * 2017-09-15 2017-12-15 王庆亚 高精度快响应动态三维脉搏检测仪
CN210170032U (zh) * 2018-11-09 2020-03-24 丁肇玺 脉搏感测装置
CN112641433A (zh) * 2020-12-21 2021-04-13 上海连尚网络科技有限公司 一种利用诊脉设备测量脉搏信息的方法与设备
TW202116252A (zh) * 2019-10-30 2021-05-01 友達光電股份有限公司 檢測裝置
CN113303771A (zh) * 2021-07-30 2021-08-27 天津慧医谷科技有限公司 脉搏采集点的确定方法、装置和电子设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004173751A (ja) * 2002-11-25 2004-06-24 Honda Motor Co Ltd 光計測装置
TWI556794B (zh) * 2015-06-12 2016-11-11 羅錦興 用於脈診的陣列感測模組及脈診儀
CN107468222A (zh) * 2017-09-15 2017-12-15 王庆亚 高精度快响应动态三维脉搏检测仪
CN210170032U (zh) * 2018-11-09 2020-03-24 丁肇玺 脉搏感测装置
TW202116252A (zh) * 2019-10-30 2021-05-01 友達光電股份有限公司 檢測裝置
CN112641433A (zh) * 2020-12-21 2021-04-13 上海连尚网络科技有限公司 一种利用诊脉设备测量脉搏信息的方法与设备
CN113303771A (zh) * 2021-07-30 2021-08-27 天津慧医谷科技有限公司 脉搏采集点的确定方法、装置和电子设备

Also Published As

Publication number Publication date
US20230248253A1 (en) 2023-08-10
TW202348196A (zh) 2023-12-16

Similar Documents

Publication Publication Date Title
US5886775A (en) Noncontact digitizing imaging system
US6524250B1 (en) Fat layer thickness mapping system to guide liposuction surgery
US8257269B2 (en) Apparatus for analysing pulse using array of pressure sensors
Ohmi et al. In vitro simultaneous measurement of refractive index and thickness of biological tissue by the low coherence interferometry
US20050075549A1 (en) Optical biological information measuring apparatus, optical biological information measuring method, biological information decision apparatus, program and recording medium
US10228297B2 (en) Device and a method for evaluating a mechanical property of a material
JPS62142538A (ja) 眼科用デイジタル超音波計測器
US20110319791A1 (en) Systems and Methods for Measuring Mechanical Properties of Deformable Materials
US5459329A (en) Video based 3D tactile reconstruction input device having a deformable membrane
WO2023143433A1 (zh) 脉诊的脉搏波量测装置及其使用方法
CN103549937A (zh) 组织肿胀测量仪及其控制方法
WO2005058154A1 (en) Method for monitoring of analytes in biological samples using low coherence interferometry
CN101773383B (zh) 桡动脉位置检测方法
CN104490364B (zh) 一种用于检测前列腺柔韧度的光纤手指及检测方法
US20040193054A1 (en) Hand-held ophthalmic device
JP5435417B2 (ja) 眼圧測定装置
US20220361751A1 (en) Wearable device and method for remote optical monitoring of intraocular pressure
Bartolini et al. Toward clinical elastography of dermal tissues: A medical device to probe skin’s elasticity through suction, with subsurface imaging via optical coherence tomography
Li et al. An optical fibre dynamic instrumented palpation sensor for the characterisation of biological tissue
CN108871984A (zh) 基于载荷和变形场测量的压痕实验装置及方法
JP5234545B2 (ja) 物質の硬さ分布表示システム及び物質の硬さ分布表示方法
JP3816400B2 (ja) 循環動態測定装置
US7124636B2 (en) Non-contact measurement of material property
JP5065798B2 (ja) 眼科用超音波測定装置及びプログラム
CN220713885U (zh) 一种具有距离检测功能的皮肤检测操作机器人系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23746312

Country of ref document: EP

Kind code of ref document: A1