WO2023142901A1 - 云服务平台、3d打印终端、3d打印系统及自动生产方法 - Google Patents

云服务平台、3d打印终端、3d打印系统及自动生产方法 Download PDF

Info

Publication number
WO2023142901A1
WO2023142901A1 PCT/CN2022/144324 CN2022144324W WO2023142901A1 WO 2023142901 A1 WO2023142901 A1 WO 2023142901A1 CN 2022144324 W CN2022144324 W CN 2022144324W WO 2023142901 A1 WO2023142901 A1 WO 2023142901A1
Authority
WO
WIPO (PCT)
Prior art keywords
printing
data
cloud service
terminal
platform
Prior art date
Application number
PCT/CN2022/144324
Other languages
English (en)
French (fr)
Inventor
万欣
梁宇浩
Original Assignee
广州黑格智造信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州黑格智造信息科技有限公司 filed Critical 广州黑格智造信息科技有限公司
Publication of WO2023142901A1 publication Critical patent/WO2023142901A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/35Cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/379Handling of additively manufactured objects, e.g. using robots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Definitions

  • the invention belongs to the technical field of 3D printing, and specifically relates to a cloud service platform, a 3D printing terminal, a 3D printing system and an automatic production method.
  • 3D printing also known as additive manufacturing, is one of the rapid prototyping technologies. It is a technology that uses metal, plastic, resin and other materials to construct objects by layer-by-layer molding. 3D printing can be widely used in jewelry, footwear, industrial design, architecture, engineering and construction, automotive, aerospace, dental and medical industries, education and other fields. With the rapid development of 3D technology and the continuous expansion of the 3D printing market, the self-service and popularization of 3D printing applications has become particularly important.
  • the existing 3D printers are mainly used by enterprises. For individuals, the price of 3D printing equipment is relatively high. If the number of personal use is limited, the cost performance of 3D printers will be relatively low.
  • a printing service in the industry that is, individuals can entrust the owner of the printing device to help print for a fee, but this not only requires full negotiation between the individual consumer and the device owner, but also the delivery process of the printed product is also very cumbersome.
  • the agency printing service has limitations; therefore, a convenient and quick printing service is needed to realize self-service printing operation, thereby realizing the rapid popularization of 3D printers.
  • the purpose of the present invention is to overcome the existing technical defects, provide a cloud service platform, a 3D printing terminal, a 3D printing system and an automatic production method, which can process the 3D model that needs to be printed into specifications that meet user needs and 3D printer printing, and realize 3D printers share printing self-service functions to improve printer utilization.
  • the present invention provides a cloud service platform, which is configured to communicate with terminal equipment and 3D printing terminals respectively, including:
  • the cloud service center is configured to communicate with the terminal device and the 3D printing terminal to receive the first print data of the 3D model to be printed, and is configured to receive user confirmation information, so that after receiving the user confirmation Send the second printing data to the 3D printing terminal after information, so that the 3D printing terminal performs printing according to the second printing data; wherein, the second printing data is associated with the first printing data, and the The second print data satisfies a preset specification;
  • An online payment module configured to generate pricing information and/or receive payment information according to the task amount of the second printing data
  • the user confirmation information is associated with the pricing information and/or received payment information.
  • a 3D printing terminal is also provided, which is configured to communicate with the terminal device and the cloud service platform respectively, including:
  • a shell the shell is provided with a pick-up port
  • the 3D printer is arranged in the housing, and the 3D printer is configured to print a 3D model;
  • a post-processing mechanism configured to post-process the printed 3D model, the post-processing at least including cleaning
  • a conveying mechanism the conveying mechanism is arranged in the housing, and is configured to convey the printed 3D model to the post-processing mechanism and the object retrieval port;
  • the human-computer interaction module is configured to communicate with the terminal device and the cloud service platform respectively, and is configured to receive printing data, and control the 3D printer to print according to the printing data.
  • an integrated self-service 3D printing system including the cloud service platform as described in the first aspect above and at least one 3D printing terminal as described in the second aspect above.
  • an automatic production method for printing using the integrated self-service 3D printing system as described in the third aspect including:
  • the cloud service platform processes the first printing data to form second printing data meeting preset specifications, generates corresponding order information, and sends the second printing data to the 3D printing terminal;
  • the user After confirming according to the order information, the user sends confirmation information to the cloud service platform and/or the 3D printing terminal, and then the 3D printing terminal performs self-service printing according to the second printing data.
  • the invention provides a cloud service platform, a 3D printing terminal, a 3D printing system and an automatic production method.
  • the cloud service platform realizes data input, reading, identification, conversion, revision, optimization, output, etc., and the 3D model that needs to be printed Processing to meet user needs and 3D printer printing specifications; realize 3D object printing, post-processing, packaging, etc. through 3D printing terminals, and complete the printing of 3D models in the full cycle; realize nearby printing and automatic arrangement through 3D printing systems and automatic production methods Production, etc., thus forming a 3D printer shared printing platform network, realizing the self-service function of 3D printer shared printing and improving the utilization rate of printers. The whole process is convenient and fast, which meets the needs of the current sharing economy development.
  • Fig. 1 is a schematic diagram of a pre-processing flow required when the cloud service platform is used in embodiment 2;
  • Fig. 2 is another schematic diagram of the pre-processing flow required when the cloud service platform is used in embodiment 2;
  • Fig. 3 is the schematic diagram that does not need the pre-processing flow when using the cloud service platform in embodiment 1;
  • Fig. 4 is a schematic diagram of the 3D printing terminal in embodiment 3 after the shell is removed;
  • FIG. 5 is a schematic diagram of the 3D printing terminal in Embodiment 3 after removing the shell and the 3D printer;
  • Fig. 6 is the schematic diagram of 3D printer in embodiment 3.
  • Fig. 7 is the front view of shell in embodiment 3.
  • Fig. 8 is a schematic diagram of a 3D printing terminal in a specific embodiment
  • Fig. 9 is a schematic diagram of a 3D printing terminal using a conveyor belt in a specific embodiment
  • Fig. 10 is a schematic diagram of the vertical arrangement of the automatic packaging mechanism in the 3D printing terminal of a specific embodiment
  • Fig. 11 is a functional block diagram of the integrated self-service 3D printing system in a specific embodiment
  • Fig. 12 is a functional block diagram of an integrated self-service 3D printing system in another embodiment
  • Fig. 13 is a functional block diagram of automatic production scheduling of the integrated self-service 3D printing system in Embodiment 4.
  • this embodiment provides a cloud service platform, which is configured to communicate with terminal devices and 3D printing terminals respectively, including:
  • the cloud service center composed of at least one cloud server or IOT Internet of Things is set to communicate with the terminal device and the 3D printing terminal to receive the first printing data of the 3D model to be printed, and is set to receive user confirmation information to After receiving the user confirmation information, send the second printing data to the 3D printing terminal, so that the 3D printing terminal performs printing according to the second printing data; wherein, the second printing data is associated with the first printing data, and the second printing data satisfies the predetermined Set a specification, the preset specification is the printing specification of the 3D printing terminal;
  • An online payment module configured to generate pricing information and/or receive user payment information according to the task amount of the second printing data
  • the user confirmation information is associated with pricing information and/or receiving payment information.
  • the online payment module After receiving the confirmation information from the user, the second printing data is sent to the 3D printing terminal for printing.
  • the online payment module can be connected to the third-party payment platform network to realize online payment;
  • the pricing of the printing task is related to one or more of the following variables: slice layer number, resin consumption, Printing time, value-added service fees, etc.; further, when the resin consumption is less than the preset threshold, the pricing is associated with the number of layers and/or printing time; when the resin consumption is greater than the preset threshold, the pricing is related to the resin consumption Association; in other embodiments, value-added service fees are also included, and value-added services include: fast printing service, color printing service, use of special resin, format enlargement, size compensation, multi-pixel precision printing, adaptive layer thickness printing, etc.;
  • the terminal device is a device used by the user, such as a mobile terminal, mobile memory, computer, tablet computer, notebook computer, and smart wearable device. , so that users can complete online information confirmation and payment;
  • the 3D printing terminal is a printing device including a 3D printer.
  • the terminal device is a mobile memory
  • the mobile memory can be a USB flash drive or a hard disk.
  • the cloud service platform and/or the 3D printing terminal has an application program interface to match with the mobile memory so as to receive the first printing data.
  • the transmission methods of the first printing data of the 3D model include U disk/hard disk copy, QQ/WeChat file transmission, on-site scanning QR code transmission through the mobile terminal, direct transmission through APP or small program or webpage terminal , Bluetooth transmission, NFC transmission, network transmission, etc.
  • this embodiment provides a cloud service platform, which is set to communicate with terminal equipment and 3D printing terminals respectively, including:
  • the cloud service center composed of at least one cloud server or IOT Internet of Things is set to communicate with the terminal device and the 3D printing terminal to receive the first printing data of the 3D model to be printed, and is set to receive user confirmation information to After receiving the user confirmation information, send the second printing data to the 3D printing terminal, so that the 3D printing terminal performs printing according to the second printing data; wherein, the second printing data is associated with the first printing data, and the second printing data satisfies the predetermined Set a specification, the preset specification is the printing specification of the 3D printing terminal;
  • the pre-processing module is configured to pre-process the first print data to obtain the second print data; the pre-processing module can be set in the cloud server of the cloud service center, or it can be set independently;
  • An online payment module configured to generate pricing information and/or receive user payment information according to the task amount of the second printing data
  • the user confirmation information is associated with pricing information and/or received payment information, that is, the user confirmed information includes pricing information and received payment information.
  • the first print data uploaded by the user may be data that has not been sliced, or sliced data that has been sliced but does not meet the printing specifications of the 3D printing terminal; therefore, before the pre-processing module performs pre-processing , the cloud service center needs to judge whether the first print data meets the preset specifications required for printing; if not, use the pre-processing module to pre-process the first print data to obtain the second print data.
  • the cloud service center determines whether the first printing data meets the preset specifications , the cloud service center first obtains the application type of the 3D model to be printed, and matches the preprocessing process associated with the application type according to the application type of the 3D model to be printed.
  • the preprocessing process includes confirming the printer type, printing light source, and printing method One or more of printing color, printing material, printing layer thickness, printing format and printing accuracy.
  • pre-processing also includes slicing, typesetting, repairing, marking, cutting, hollowing out, adding support, adding base plate, One or more of reinforcing rods, adding fixtures, adding lattices, adding drainage holes, filling grids, size compensation, and grayscale processing to meet and complete various pre-processing requirements and expand its scope of application; for example Statement:
  • the application type that obtains a certain printed product is type A, and the associated preprocessing process of type A includes hollowing processing (also known as hollowing out), automatic typesetting, support, and slicing, and the pre-processing module will call the hollowing process according to the process Algorithm, typesetting algorithm, support adding algorithm and slicing algorithm; the application type can be selected by the user, or the 3D printing system artificial intelligence can recognize the shape of the 3D model and determine the application type of the printed product.
  • the online payment module, the terminal device, and the first print data transmission method in this embodiment are consistent with those in Embodiment 1.
  • the online payment module, the terminal device, and the first print data transmission method in this embodiment are consistent with those in Embodiment 1.
  • this embodiment provides an integrated self-service 3D printing system, which is configured to provide users with self-service printing services.
  • the integrated self-service 3D printing system includes the cloud service platform as in Embodiment 1 and at least one 3D printing terminal.
  • the 3D printing terminal includes a casing 1 and a printing area, a post-processing mechanism, and a conveying mechanism arranged in the casing 1.
  • the post-processing mechanism and the conveying mechanism are arranged on the support frame 9, and a pick-up port 10 is provided on the front side of the casing 1.
  • there is at least one 3D printer configured to print a 3D model in the printing area.
  • a printer is used as an example; the post-processing mechanism is set to post-process the printed 3D model, and the conveying mechanism is set to print the 3D model.
  • the 3D model is sent to the post-processing mechanism and the pick-up port;
  • the 3D printing terminal also includes a human-computer interaction module 11 configured to control the 3D printer, the post-processing mechanism and the delivery mechanism, the human-computer interaction module includes a touch screen, and the human-computer interaction
  • the modules are electrically or communicatively connected with the payment module and the cloud service center respectively.
  • the payment module is set so that the user pays for using the self-service printing service.
  • the payment module includes an online payment module on the cloud service platform and an offline payment module on the 3D printing terminal. There are multiple offline payment modules and The 3D printing terminals are adapted one by one.
  • the offline payment module 13 is arranged on the casing 1.
  • the offline payment module 13 includes a bank card socket 131, a code scanning area 133, a coin inlet 134, a banknote inlet 135, a coin refund port 136 and setting
  • the camera 12 for face scanning payment in other words, offline payment methods include swiping bank cards, scanning payment QR codes, scanning faces, coins, banknotes.
  • the online payment module is configured to support users to use online payment methods. For example, the online payment module can be connected to a third-party payment platform network to realize online payment.
  • the cloud service center is configured to receive printing data of the 3D model to be printed, and the printing data is 3D model data or slice data.
  • the printing data can be uploaded to the cloud service center by the user through the human-computer interaction module of the 3D printing terminal, or uploaded to the cloud service center by the user through the exclusive client software or application program on the terminal device, or can be stored in the cloud service center. Pre-stored print data.
  • the cloud service center communicates with each 3D printing terminal, and after receiving the user's printing data, the cloud service center will selectively distribute the printing data to designated devices.
  • the communication mode between the cloud service center and each 3D printing terminal is selected from one or both of wired network connection and wireless network connection
  • wireless network connection includes but not limited to Bluetooth (Bluetooth), wireless local area network (WLAN), cellular Internet of Things (3G, 4G, 5G, 6G), ZigBee, Ultra Wideband (UWB).
  • the 3D printer can be selected from at least one of SLA printer, FDM printer, DLP printer, SLM printer, MJP printer, polyjet printer, 3DP or SLS printer.
  • the post-processing mechanism will be specifically set according to the type of 3D printer. Post-processing methods include but are not limited to cleaning, dust removal, curing, polishing, dipping, sintering, cutting, grinding, spraying, heat treatment, and desupporting; in this embodiment, the 3D printer It is preferably a down-projection photocuring printer, and the post-processing mechanism corresponds to a cleaning mechanism and a curing machine.
  • the post-processing mechanism can select one of the cleaning mechanism, curing mechanism, cutting mechanism, grinding mechanism, polishing mechanism, spraying mechanism, heat treatment mechanism, and support mechanism corresponding to the corresponding printer. one or more.
  • the post-processing mechanism includes a cleaning mechanism 2 and a curing mechanism 3, the cleaning mechanism 2 is set to clean the printed 3D model, and the curing mechanism 3 is set to the 3D model after secondary curing and cleaning; in practical applications, the cleaning
  • the form of the mechanism is not limited, and the cleaning method includes but is not limited to one or more of the following methods: centrifugal drying, spraying or splashing cleaning fluid, immersion cleaning, etc.
  • the cleaning mechanism is preferably A cleaning machine capable of submerging and cleaning the 3D model. The cleaning machine is filled with a cleaning solution configured to clean the 3D model; the curing mechanism is preferably a UV curing machine, and the UV curing machine is equipped with a secondary cleaning device for the 3D model.
  • Curing with UV curing lamps 31 are well known to those skilled in the art, the specific form of the curing mechanism needs to refer to the type of printing material.
  • these resins may include thermal curing systems in addition to the material components of the photocuring system.
  • the material component of the material component and the material component of the moisture curing system are also known to those skilled in the art.
  • the curing mechanism is the equipment containing the curing lamp; for the material component of the light curing system and the heat curing system For the resin of the material component, the curing mechanism is also provided with at least a heating element; for the resin containing the material component of the light curing system and the material component of the moisture curing system, the curing mechanism is also provided with at least a humidifier.
  • an ultrasonic device in order to improve the cleaning effect, can be installed in the cleaning machine to realize ultrasonic cleaning;
  • the fluid drive element can be a stirring element arranged in the cleaning machine (the stirring element can rotate a stirring rod or a stirring blade, and the driving mode is preferably a magnetic drive or a motor drive), and the fluid drive element can also be a circulation pump.
  • the circulation pump can circulate the liquid in the washing machine.
  • the cleaning mechanism when the cleaning mechanism adopts centrifugal spin-drying and spray cleaning, the cleaning mechanism includes a housing 21 with a cleaning space formed inside, located in the housing 21 and A rotating platform 22 arranged to place and drive the object to rotate, a cleaning liquid storage container 23 configured to store the cleaning liquid, and a spray device 24 communicated with the cleaning liquid storage container 23 and arranged to spray the cleaning liquid to the object, the spray device 24 is fixed on the housing 21; in the way of centrifugal drying, the rotating platform can drive the printed 3D model to rotate quickly, and the residual resin on the surface of the printed part can be thrown off through centrifugal action, and then combined with the spray mode, it can be used first
  • the spray cleaning of the cleaning liquid reduces the viscosity of the residual resin on the surface of the printed part, making it easier to throw off the residual resin; in addition, a UV curing lamp 31 can also be set in the housing, and the printed part after cleaning can be treated twice by using the UV curing lamp 31.
  • the rotation of the printed parts is driven by the rotating platform, so that the irradiation effect of the UV curing lamp on the printed parts is more uniform, so that the post-processing mechanism is an integrated device integrating cleaning and post-curing functions, which can make the 3D printing terminal more compact. save space.
  • the post-processing mechanism also includes an air-drying or drying mechanism (not shown in Figure 8), the air-drying/drying step is located between the cleaning and post-curing steps, and the air-drying/drying is mainly set to Remove the cleaning fluid from the surface of the print.
  • the 3D printing terminal also includes a waste liquid storage container 25 configured to store photosensitive resin waste liquid and cleaning waste liquid, and a cleaning container 25 configured to add cleaning liquid to the cleaning mechanism.
  • Liquid storage container 23 the waste liquid storage container communicates with the cleaning mechanism 2, and is mainly set to store the waste solution that has been used and cannot be set to clean the printed parts again, and the waste solution is a mixed liquid of cleaning liquid and resin; further , the cleaning mechanism is also provided with a filtering device (not shown in Figure 10), which is set to filter the used secondary cleaning liquid, so that the secondary cleaning liquid can reach the standard for cleaning printed parts, and realize the circulation use.
  • the light-curing 3D printer includes a machine table 41, a material tray 42 with a light-transmitting bottom, a forming platform 43, a Z-axis drive mechanism 44, and a light source 45;
  • the material tray 42 is located on On the machine table 41, it is set to store the photosensitive resin used for printing;
  • the forming platform is set above the material tray 41, and is set to cooperate with the material tray to form a 3D model;
  • the Z-axis drive mechanism 44 is set on the machine table 41 and is set to drive the molding
  • the platform 43 moves up and down, so that the forming platform is away from or close to the material tray;
  • the Z-axis driving mechanism 44 includes a Z-axis screw 441 that is installed on the machine table through a support 440 and is vertically arranged, and a first drive that drives the Z-axis screw 441 to rotate.
  • the light source can be selected from DLP projection light source, LCD projection light source, LCOS projection light source, SXRD projection light source, One or more of micro led light sources and laser light sources; the principle of the light-curing printer is: first, the forming platform moves, and the forming space is defined between the forming platform and the bottom of the tray, and the forming space is filled with photosensitive resin. The printed image is projected on the bottom of the tray, and the bottom of the tray is transparent, so the resin can be irradiated by light. Under the irradiation of light, the photosensitive resin reacts (such as polymerization reaction), and the liquid photosensitive resin becomes a cured sheet.
  • the principle of the light-curing printer is: first, the forming platform moves, and the forming space is defined between the forming platform and the bottom of the tray, and the forming space is filled with photosensitive resin. The printed image is projected on the bottom of the tray, and the bottom of the tray is transparent, so the resin can be irradiated by light. Under the
  • the shape or outline will be the same as the projected print image; then the build platform rises, and the build space is redefined between the current cured sheet and the bottom of the tray, and then the next image layer is printed, and the cured sheet corresponding to each image layer Stacking layer by layer, a three-dimensional solid print (that is, a 3D model) is finally obtained. After the print is post-processed by a post-processing mechanism, the final printed product can be obtained.
  • the photocuring 3D printer also includes a liquid addition mechanism for adding photosensitive resin to the material tray 42; specifically, the liquid addition mechanism includes at least one storage container 46 configured to store photosensitive resin and configured to
  • the delivery pipe 47 that communicates with the storage container 46 and the tray 42, the storage container 46 can be fixed on the shell or the machine platform, and the delivery pipe 47 is provided with a liquid addition control unit 48, which can be a pump, switch or valve etc.
  • a liquid addition control unit 48 which can be a pump, switch or valve etc.
  • One of the automatic replenishment methods is to set a sensor (not shown in Fig. 4-6) that can sense the liquid level in the tray, so that the resin in the tray can be kept within the preset volume range or at the preset level.
  • the liquid addition control unit can confirm the amount of resin used according to the printed data, and control the amount of resin flowing from the storage container into the tray, so that the tray The resin meets the printing requirements; it should be noted that the number of storage containers is at least 1. If there are at least 2 storage containers, users can choose different resin materials according to their needs to achieve the purpose of mixed printing.
  • the 3D printing terminal also includes a separation device arranged in the casing 1 and configured to separate the forming platform 43 from the 3D model.
  • the human-computer interaction module can control the separating device, and the separating device includes a 43
  • the spatula 51 arranged in parallel and the Y-axis drive mechanism 52 arranged to drive the spatula 51 to move back and forth, and the length of the spatula is greater than or equal to the length of the forming platform 43, ensures that the model on the forming platform is completely cut off.
  • the spatula moves parallel to the molding surface at the lower end of the molding platform to shovel the printed parts off the molding platform to achieve the purpose of separation;
  • the Y-axis driving mechanism 52 includes two guide rails 521 respectively arranged on both sides of the material tray.
  • the slide block on the top is threaded, and is set to drive the slide block to move back and forth along the Y axis, and the two ends of the shovel span across the slide blocks on the two guide rails.
  • the separation device does not use a spatula
  • the separation device includes a number of densely arranged bosses, and a number of through holes are densely distributed on the forming surface of the forming platform, and the bosses can be connected with the through holes one by one. Corresponding cooperation.
  • the bosses are inserted into the through holes to push out the printed parts on the forming platform, and then push out the printed parts on the forming surface.
  • a detachable structural design is adopted between the forming platform 43 and the Z-axis driving mechanism 44, so that the forming platform can be used as a disposable product, and the forming platform can be an injection molded part, a straw parts or metal parts, after each printing, a new forming platform needs to be replaced to improve the flatness and cleanliness of the bottom surface of the forming platform during each printing, and improve the quality of the printed parts.
  • the electromagnet Not shown in Fig.
  • the 3D printing terminal also includes a storage platform 53 located in the shell 1, on which several forming platforms 43 stacked together are stored, and the printed parts are printed on the last forming platform and After separation, the forming platform on the storage platform 53 is transferred to the locking platform by the conveying mechanism and locked.
  • the housing is also provided with an entrance (not shown) for putting into the forming platform, and the forming platform can also be put into the machine by using the pick-up port, and then put into the machine through the transmission mechanism.
  • the imported forming platform is transferred to the locking table and locked, so that the user can put the forming platform provided by himself or placed outside the machine into the machine for printing;
  • the placed forming platform 43 is provided with readable identification information 431 (the identification information includes but not limited to two-dimensional codes, character codes, digital codes, barcodes, special patterns, NFC tags, RFID tags, electronic chips), before printing, the user can Pre-enter the print data to be printed into the identification information 431 of the forming platform;
  • the 3D printing terminal is also provided with a reader 54 configured to read the identification information, and the reader 54 is located on the locking table 443 and is connected with
  • the human-computer interaction module or the cloud service center is connected by communication, and the print data is obtained by reading the identification information through the reader 54, and the print
  • the conveying mechanism can be selected from one or more of a mechanical arm, a conveyor belt, a conveying guide rail, a slideway or a chute, and the conveying direction of the printed piece is not limited to the horizontal plane, and can also include a vertical direction (as shown in Figure 10, At this time, the conveying mechanism also moves back and forth in the vertical direction to realize the transfer of the printed parts); as shown in Figure 4 and Figure 5, it is preferably a mechanical arm 60 in this embodiment, and the end of the mechanical arm 60 is provided with a clamping Or the pick-up end 61 that accommodates the object, the pick-up end can be a pneumatic gripper, or a container with accommodating space, so as to transfer the transfer printing parts or the forming platform by clamping or containing.
  • the conveying mechanism is a conveyor belt 62
  • one end of the conveyor belt is located at the front side of the 3D printer, the other end communicates with the pick-up port, the blade 51 is located above the conveyor belt 62, and the cleaning mechanism 2 and curing mechanism 3 are sequentially arranged on the conveyor belt 62 to form a tunnel-like cleaning and curing structure, that is, the conveyor belt passes through the tunnel cavity with shower heads and intensive UV lamps in turn, and the cleaning and post-processing is completed after passing through.
  • the photocuring printer also includes a horizontal movement mechanism (not shown) that is arranged to drive the Z-axis drive mechanism 44 to move towards the direction of the conveyor belt, so that the printed parts After moving forward, it is located above the conveyor belt. This is to use the separation effect of the blade 51 to make the printed parts fall on the conveyor belt, and then through the transmission of the conveyor belt, the printed parts pass through the cleaning mechanism 2 and the curing mechanism 3 in order to complete cleaning and post-curing. After the operation, it is sent to the pick-up port for the user to take out.
  • the 3D printing terminal also includes an object temporary storage area 71 arranged in the casing 1, which is set to place the printed parts or printed products to be picked up, and the object temporary storage area 71 is connected with the chute 72
  • the fetch port 10 is connected.
  • the identity check can be through the camera to scan the face for recognition or by placing the ID card in the ID card verification area for identity check or through the scan code area for the only user
  • the two-dimensional code can be used for identification, or by identifying the pick-up code, and the pick-up code is sent to the user's terminal device through the cloud service center.
  • an automatic packaging mechanism 101 configured as a packaging object is provided at the pick-up port 10, which is configured to package the printed parts or printed products (which may also include a forming platform)
  • the express box/express box 102 that can be set for mailing or delivery, when packing is required, the user needs to put the express box/express box into the pick-up port first, and use automatic packing after the printed matter is sent into the express box/express box Mechanism 101 performs encapsulation.
  • the 3D printing terminal also includes a transparent observation window 14 disposed on the front side of the housing 1 , which is configured to observe the internal structure of the printing system and the printed objects inside.
  • the integrated self-service 3D printing system also includes client software or application programs carried on user terminal equipment, and users can interact with Cloud service center interaction
  • the terminal device can be a mobile phone, computer, tablet computer, laptop or smart wearable device, etc.
  • the terminal device is installed with the exclusive client software and APP used in conjunction with the integrated self-service 3D printing system Or other corresponding applications (such as WeChat applets, etc.).
  • the 3D printing terminal also includes a 3D scanner 15 disposed in the casing 1, the 3D scanner 15 is connected to the human-computer interaction module in communication, and a 3D scanning window for placing objects is provided on the front side of the casing 14.
  • the 3D scanner 15 is set to scan the 3D object and obtain the corresponding 3D model data, the scanned 3D model data can be transmitted to the human-computer interaction module; in addition, the scanned 3D model data can also be transmitted to the user through the cloud service center
  • the setting of the 3D scanner is convenient for the user to obtain the 3D model data.
  • the print data transmitted by the user may be 3D model data or slice data. If the user transmits pre-processed slice data, the cloud service center can directly send the slice data to the human-computer interaction module. The module sends the sliced data to the printer, and the printer forms a 3D model; if the user transmits the 3D model data without preprocessing, the 3D model data needs to be preprocessed and output as sliced data.
  • the integrated self-service 3D printing system also includes a pre-processing module configured to pre-process the 3D model data
  • the pre-processing module can be built into the human-computer interaction module, or It can be set in the cloud service center for human-computer interaction modules or terminal equipment to call.
  • the pre-processing operations that can be completed by the pre-processing module include at least slicing operations.
  • the pre-processing module performs slicing processing on the three-dimensional model data according to the preset slice layer thickness to form slicing data, and output it as a printable file format that can be recognized by the printer (can be is a custom format or a common format); the final slice data will be transmitted to the 3D printer, and the 3D printer will print layer by layer according to the shape information in the slice data (that is, the projection image).
  • the printing data transmitted by the user can be one of the following formats: Stl, SLC, CLI, prt, iges, CAD and other formats.
  • the source of printing data can be the content library in the network, or it can be the 3D model data synthesized after 3D scanning generates the mesh, or it can be the 3D model data designed and generated by the user directly in the 3D modeling software.
  • the user may have already performed pre-processing operations, and the user can directly skip the steps of the pre-processing module and directly perform the subsequent printing steps; of course, the user may also Further pre-processing can be performed on the slice data, such as modifying the slice data, including: performing secondary slices, adding slice layers, merging slice layers, deleting slice layers, and performing image processing on slice layer images.
  • Add patterns, delete patterns in the slice layer, etc., and obtain other printing parameters based on the slice data including: setting the print parameters (at least including light source exposure control parameters, Z-axis motion control parameters, etc.) of each slice layer, That is to say, the pre-processing module can also obtain the printing parameters of each slice layer according to the slice data, and the user can use the terminal equipment or the human-computer interaction module to set the printing parameters.
  • the cloud service center can also obtain the application type of the 3D model, and then match the preprocessing process associated with the current application type.
  • the preprocessing process includes selecting the printer type, printing light source, printing method, printing One or more of color, printing material, printing layer thickness, printing format, and printing accuracy; the application type can be selected by the user, or the 3D printing system artificial intelligence can recognize the shape of the 3D model to determine the application type of the printed product.
  • the user when using the self-service printing service, the user will generate a printing task through the human-computer interaction module or the client software or application program of the terminal device, and the printing task includes printing data.
  • the payment module can set the price according to the printing task, and generate the payment confirmation information associated with the printing task after the user pays.
  • the self-service printing service can adopt the service mode of prepayment, that is, the payment module sends the payment confirmation information to the cloud service center after the user pays, and the cloud service center will send the printing job to the corresponding 3D service center only after receiving the payment confirmation information. print terminal.
  • the self-service printing service can also adopt the service mode of post-payment.
  • the cloud service center now sends the printing task to the 3D printing terminal.
  • the computer interaction module sends payment confirmation information, and the 3D printing terminal confirms receipt of the payment confirmation information before the user can pick up the printed product at the pick-up port.
  • the pricing of the printing task is associated with one or more of the following variables: slice layer number, resin consumption, printing time, value-added service fee, etc.; in one embodiment, when the resin consumption is less than the preset threshold, The pricing is associated with the number of layers and/or printing time; when the resin consumption is greater than the preset threshold, the pricing is associated with the resin consumption; in other embodiments, it also includes value-added service fees, and the value-added services include: fast printing service, Color printing services, use of special resins, format enlargement, size compensation, multi-pixel precision printing, adaptive layer thickness printing, etc.
  • the color printing service refers to: the printing system is equipped with resins of at least two colors, resins of different colors can be obtained by mixing the resins, or resins of different colors can be directly configured.
  • the printing system is equipped with at least two types of resins, and the mechanical properties of the resins may be different; similarly, the printed parts can meet the mechanical properties required by the user by mixing resins or directly configuring resins.
  • Method 1 the printer is equipped with at least two light sources, so that the printing formats of each light source are spliced together to obtain a larger printing format;
  • Method 2 the printer is equipped with at least two light sources of different printing formats, and the user presses The type of light source needs to be selected;
  • method 3 the printer is equipped with a light source moving mechanism, which can drive the light source to move, so that the light source can be exposed at different positions, thereby increasing the printing format of single-layer printing;
  • Size compensation There will be excessive exposure during the printing process, which will lead to a large print size. At the same time, the cured resin will also shrink in size. By preprocessing the size of the 3D model or slice layer image , Compensate with the above-mentioned oversize or shrinkage phenomenon.
  • Multi-pixel precision printing method 1, the printer is equipped with at least two light sources with different pixel precision.
  • Method 2 through the light source shaking technology (such as XPR pixel displacement technology), make the light source shake or not shake, and realize printing with various pixel precision.
  • the light source shaking technology such as XPR pixel displacement technology
  • Adaptive layer thickness printing adopt different printing layer thickness according to different areas on the 3D model, while ensuring printing speed and printing accuracy.
  • the transmission of printing data can also include on-site transmission, and the user can transmit the printing data to the 3D printing terminal on site through U disk, hard disk copy, Bluetooth transmission, etc.; as shown in Figure 4 , the machine is provided with an interface 55 for transmitting 3D model data or other printing task data, the interface includes but not limited to a USB interface or a network interface.
  • the integrated self-service 3D printing system also includes a control module configured to control the work of the 3D printer, the post-processing mechanism and the conveying mechanism.
  • the machine-machine interaction module controls the work of each mechanism (as shown in Figure 11), and it can also be independently installed inside the self-service vending and printing equipment.
  • the human-computer interaction module, 3D printer, post-processing mechanism and conveying mechanism are respectively electrically connected to the control module. (As shown in Figure 12), so that after receiving and processing the three-dimensional model data or slice data in the human-computer interaction module, the control module is used to control the work of the 3D printer, the post-processing mechanism and the conveying mechanism according to the corresponding data.
  • this embodiment provides an automatic production method using the integrated self-service 3D printing system as in Embodiment 3, including the following steps:
  • the user can send the prepared first print data to the cloud service center on the cloud service platform through the human-computer interaction module or the client software or application program on the terminal device, and the cloud service center will receive the first print data of the 3D model to be printed.
  • a print data if the transmitted first print data is print data that does not meet the preset specifications, the subsequent steps need to be pre-processed.
  • the user can perform pre-processing on the first print data through the terminal device or the human-computer interaction module, and the pre-processing operation is specifically performed through the pre-processing module.
  • the pre-processing module can be set on the cloud service center, which has at least one set of pre-processing operation algorithms for calling.
  • the pre-processing module can be built in the human-computer interaction module of the 3D printing terminal, and the pre-processing module can complete
  • the pre-processing steps include at least slicing operations, and other pre-processing steps include but are not limited to: slicing, typesetting, repairing, marking, cutting, hollowing out, adding supports, adding bottom plates, reinforcing rods, adding fixtures, adding crystal lattices, and adding drainage holes , grid filling, size compensation and grayscale processing, etc.
  • pre-processing For sliced data, although pre-processing is not required, if the user has demand or does not meet the preset specifications, size compensation and grayscale processing can also be performed on at least one slice layer in the sliced data; in short, pre-processing is performed on the first print data. After processing, the second print data conforming to the preset specification will be obtained.
  • the online payment module After obtaining the second print data, the online payment module generates pricing information according to the task volume of the second print data, selects the corresponding printing service, the cloud service center will generate order information including pricing information and issue a print task order, and then the cloud service center Send the order information to the terminal device or 3D printing terminal; after the user pays according to the order information on the terminal device or 3D printing terminal, the payment module will output payment confirmation information, and the payment confirmation information will be sent to the 3D printing terminal and/or In the cloud service center, according to the different service models, the sending objects and functions of the payment confirmation information are also different.
  • the payment confirmation information will be sent to the cloud service center as a precondition for the printing task, or the payment confirmation information will be sent to the 3D printing terminal As a pre-condition for printing; for post-payment (whether it is full payment or final payment), the payment confirmation information will be sent to the 3D printing terminal as a pre-condition for the user to pick up the package.
  • the user can choose the 3D printing terminal to perform the printing operation.
  • the client software or application program on the terminal device can obtain the location information of the terminal device to confirm the user's location.
  • the cloud service center screens all 3D printing terminals within a preset distance (such as 500m, 1km, 2km) from the user's location, outputs a list of candidate devices, and sends the list of candidate devices to the client software or application .
  • the 3D printing terminals in the candidate equipment list can be sorted according to the working status of the equipment, such as the queue time of printing tasks, which is convenient for users to choose.
  • the user selects one of the 3D printing terminals as the specified terminal, and the client software or application program sends the user selected instruction to the cloud service center, and the cloud service center will follow the user selected instruction , sending the print task including the second print data to a specified (ie, selected by the user) 3D printing terminal.
  • the human-computer interaction module sends the second printing data to the 3D printer.
  • the printer prints out the 3D model
  • the 3D model is sent to the post-processing mechanism by the conveying mechanism for post-processing, and then the post-processing operation
  • the final 3D model will be sent to the pick-up port by the conveying mechanism as a printed product, and the user will finally get the printed product from the pick-up port.
  • steps (4) and (5) are also included between steps (4) and (5):
  • the printing data After the printing data is sent to the 3D printing terminal, the printing data will enter the task queuing sequence of the 3D printing terminal, and the 3D printing terminal will sequentially print the printing tasks in the sequence according to the task queuing sequence.
  • the user interface of the client software or the application program displays in real time the time to be completed and/or the printing status of the second print data, and the time to be completed includes the printing time of the second print data on the current 3D printing terminal and the second print data
  • the queuing time in the task queuing sequence; displaying the time to be completed can facilitate the user to arrange the pick-up time reasonably, and avoid the user waiting too long beside the 3D printing terminal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Robotics (AREA)

Abstract

本发明公开了云服务平台、3D打印终端、3D打印系统及自动生产方法,云服务平台包括云服务中心和线上支付模块;云服务中心设置为分别与终端设备和3D打印终端通讯连接,以接收待打印的第一打印数据和接收用户确认信息,以在接收到用户确认信息后向3D打印终端发送第二打印数据,以使得3D打印终端根据第二打印数据进行打印;其中,第二打印数据与第一打印数据关联,且第二打印数据满足预设规格;线上支付模块设置为根据打印数据的任务量生成定价信息和/或接收付款信息;用户确认信息与定价信息和/或接收付款信息关联。本发明将需要打印的3D模型处理成符合用户需求和3D打印机打印的规格,实现了3D打印机共享打印自助服务功能、提高打印机的使用率。

Description

云服务平台、3D打印终端、3D打印系统及自动生产方法
本申请要求于2022年01月28日提交中国专利局、申请号为202210107262.2、申请名称“一种云服务平台、3D打印终端、3D打印系统及自动生产方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于3D打印技术领域,具体涉及云服务平台、3D打印终端、3D打印系统及自动生产方法。
背景技术
3D打印又称增材制造,是快速成型技术之一,是一种使用金属、塑料、树脂等材料,通过逐层成型的方式来构造物体的技术。3D打印可广泛应用于珠宝、鞋类、工业设计、建筑、工程和施工、汽车,航空航天、牙科和医疗产业、教育等领域。随着3D技术快速发展,3D打印市场规模不断的扩大,3D打印应用的自助化和普及变得尤为重要。
然而,现有的3D打印机主要由企业进行使用,对于个人而言,3D打印设备价格较高,若个人使用次数有限,则3D打印机的性价比会比较低。尽管目前行业内出现了代打服务,即个人可委托打印设备的拥有者进行有偿地帮忙打印,然而这不仅需要个人消费者与设备拥有者充分协商,而且打印成品交付过程也十分的繁琐,这种代打服务具有局限性;因此,需要一种方便快捷的打印服务,以实现自助打印操作,从而实现3D打印机的快速普及。
发明内容
本发明目的在于为克服现有的技术缺陷,提供云服务平台、3D打印终端、3D打印系统及自动生产方法,可将需要打印的3D模型处理成符合用户需求和3D打印机打印的规格,实现了3D打印机共享打印自助服务功能、提高打印机 的使用率。
根据本发明的第一方面,为了解决上述技术问题,本发明提供了一种云服务平台,设置为分别与终端设备和3D打印终端通讯连接,包括:
云服务中心,设置为分别与所述终端设备和所述3D打印终端通讯连接,以接收待打印的3D模型的第一打印数据,并设置为接收用户确认信息,以在接收到所述用户确认信息后向所述3D打印终端发送第二打印数据,以使得所述3D打印终端根据所述第二打印数据进行打印;其中,所述第二打印数据与所述第一打印数据关联,且所述第二打印数据满足预设规格;
线上支付模块,设置为根据所述第二打印数据的任务量生成定价信息和/或接收付款信息;
其中,所述用户确认信息与所述定价信息和/或接收付款信息关联。
根据本发明的第二方面,还提供了一种3D打印终端,设置为分别与终端设备和云服务平台通讯连接,包括:
外壳,所述外壳上设有取物口;
至少一台3D打印机,所述3D打印机设于所述外壳内,所述3D打印机设置为打印3D模型;
后处理机构,设置为对已打印完成的所述3D模型进行后处理,所述后处理至少包括清洁处理;
输送机构,所述输送机构设于所述外壳内,设置为将已打印完成的所述3D模型传送至所述后处理机构和取物口处;
人机交互模块,设置为分别与所述终端设备和所述云服务平台通讯连接,设置为接收打印数据,并按所述打印数据控制所述3D打印机进行打印。
根据本发明的第三方面,还提供了一种集成式自助3D打印系统,包括如上述第一方面所述的云服务平台以及至少一台如上述第二方面所述的3D打印终端。
根据本发明的第四方面,还提供了一种采用如第三方面所述的集成式自助3D打印系统进行打印的自动生产方法,包括:
向云服务平台发送待打印的3D模型的第一打印数据,
所述云服务平台对所述第一打印数据进行处理以形成满足预设规格的第二打印数据,并生成相应的订单信息和将所述第二打印数据发送至所述3D打印终端;
用户根据所述订单信息进行确认后,向所述云服务平台和/或3D打印终端发送确认信息,而后所述3D打印终端根据所述第二打印数据进行自助打印。
本发明具有以下有益效果:
本发明提供一种云服务平台、3D打印终端、3D打印系统及自动生产方法,通过云服务平台实现数据的输入、读取、识别、转换、修订、优化、输出等,将需要打印的3D模型处理成符合用户需求和3D打印机打印的规格;通过3D打印终端实现三维物件打印、后处理、打包等,完成全周期的3D模型的打印;通过3D打印系统及自动生产方法实现就近打印、自动排产等,从而形成3D打印机共享打印平台网络,实现了3D打印机共享打印自助服务功能、提高打印机的使用率,整个过程方便快捷,符合当前共享经济发展的需要。
本发明附加的方面和优点将在下面的描述中部分给出,这些将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,并不构成对本发明的不当限定,在附图中:
图1为实施例2中云服务平台使用时需要前处理流程的一种示意图;
图2为实施例2中云服务平台使用时需要前处理流程的另一种示意图;
图3为实施例1中云服务平台使用时无需前处理流程的示意图;
图4为实施例3中3D打印终端去除外壳后的示意图;
图5为实施例3中3D打印终端去除外壳和3D打印机后的示意图;
图6为实施例3中3D打印机的示意图;
图7为实施例3中外壳的前视图;
图8为一具体实施例中3D打印终端的示意图;
图9为一具体实施例的3D打印终端采用传送带的示意图;
图10为一具体实施例的3D打印终端中设置自动打包机构的纵向排布示意图;
图11为一具体实施例中集成式自助3D打印系统的原理框图;
图12为另一实施例中集成式自助3D打印系统的原理框图;
图13为实施例4中集成式自助3D打印系统自动排产的原理框图。
具体实施方式
为了更充分的理解本发明的技术内容,下面将结合附图以及具体实施例对本发明作进一步介绍和说明。
实施例1
如图3所示,本实施例提供一种云服务平台,设置为分别与终端设备和3D打印终端通讯连接,包括:
由至少一个云服务器或IOT物联网组成的云服务中心,设置为分别与终端设备和3D打印终端通讯连接,以接收待打印的3D模型的第一打印数据,并设置为接收用户确认信息,以在接收到用户确认信息后向3D打印终端发送第二打印数据,以使得3D打印终端根据第二打印数据进行打印;其中,第二打印数据与第一打印数据关联,且第二打印数据满足预设规格,该预设规格为3D打印终端的打印规格;
线上支付模块,设置为根据第二打印数据的任务量生成定价信息和/或接收用户付款信息;
其中,用户确认信息与定价信息和/或接收付款信息关联。
具体而言,云服务平台的云服务中心接收到终端设备发送的3D打印模型 的第一打印数据(即原始数据)后,若该第一打印数据符合预设规格,则此时第一打印数据即为第二打印数据,线上支付模块根据第二打印数据的任务量生成定价信息,并反馈给用户,用户接收后进行确认或者付款以生成用户确认信息并发送给云服务中心;云服务中心收到用户确认信息后将第二打印数据发送给3D打印终端进行打印。
需要说明的是,线上支付模块可与第三方支付平台网络连接,从而实现线上支付;打印任务量的定价与以下变量中的一种或多种关联:切片层层数、树脂消耗量、打印时间、增值服务费等;进一步地,当树脂消耗量小于预设阈值的时候,定价与计层数和/或打印时间关联;当树脂消耗量大于预设阈值的时候,定价与树脂消耗量关联;在其它实施例中,还包括增值服务费,增值服务包括:快速打印服务、彩色打印服务、特殊树脂使用、幅面增大、尺寸补偿、多像素精度打印、自适应层厚打印等;
需要说明的是,终端设备为供用户使用的设备,如移动终端、移动存储器、电脑、平板电脑、笔记本电脑和智能穿戴设备等,设置为用户向云服务中心上传第一打印数据和接受定价信息,以便于用户完成线上信息确认和付款;3D打印终端为包括3D打印机的打印设备。当终端设备为移动存储器,该移动存储器可以是U盘、硬盘,此时云服务平台和/或3D打印终端有应用程序接口,与移动存储器匹配,以便接收第一打印数据。
需要说明的是,3D模型的第一打印数据传输的方式包括U盘/硬盘拷贝,QQ/微信文件传输,现场扫描二维码通过手机端传输,通过APP或者小程序或者网页端直接下发传输,蓝牙传输,NFC传输、网络传输等。
实施例2
如图1、图2所示,本实施例提供一种云服务平台,设置为分别与终端设备和3D打印终端通讯连接,包括:
由至少一个云服务器或IOT物联网组成的云服务中心,设置为分别与终端设备和3D打印终端通讯连接,以接收待打印的3D模型的第一打印数据, 并设置为接收用户确认信息,以在接收到用户确认信息后向3D打印终端发送第二打印数据,以使得3D打印终端根据第二打印数据进行打印;其中,第二打印数据与第一打印数据关联,且第二打印数据满足预设规格,该预设规格为3D打印终端的打印规格;
前处理模块,设置为对第一打印数据进行前处理以得到第二打印数据;该前处理模块可设于云服务中心的云服务器内,也可以是独立设置;
线上支付模块,设置为根据第二打印数据的任务量生成定价信息和/或接收用户付款信息;
其中,用户确认信息与定价信息和/或接收付款信息关联,即该用户确认信息包括定价信息和接收付款信息。
需要说明的是,用户上传的第一打印数据有可能为未经过切片处理的数据,也有可能为经过切片处理但不满足3D打印终端打印规格的切片数据;因此,在前处理模块进行前处理前,云服务中心需要判断第一打印数据是否满足打印所需的预设规格;若不符合,则采用前处理模块对第一打印数据进行前处理,以得到第二打印数据。
需要说明的是,针对3D模型的不同应用类型所需要的打印流程均不一样;因此,在判断第一打印数据是否满足预设规格前,云服务中心判断第一打印数据是否满足预设规格前,云服务中心先获取待打印的3D模型的应用类型,根据待打印的3D模型的应用类型匹配与该应用类型所关联的预处理流程,该预处理流程包括确认打印机类型、打印光源、打印方式、打印颜色、打印材料、打印层厚、打印幅面、打印精度中的一种或多种。
需要说明的是,针对上传的不同规格的打印数据,所需的前处理步骤和种类也不一样,因此前处理还包括切片、排版、修复、打标、切割、镂空、加支撑、加底板、加强杆、加治具、加晶格、加排液孔、填充网格、尺寸补偿和灰度处理中的一种或多种,以适应并完成各种前处理需求,扩大其适用范围;举例而言:获取到某个打印成品的应用类型为A类型,A类型的关联预 处理流程包括空心处理(又名镂空)、自动排版、加支撑、切片,则前处理模块会根据流程调取空心处理算法、排版算法、支撑添加算法和切片算法;应用类型可由用户自行选定,或者3D打印系统人工智能识别三维模型形状,判断打印成品的应用类型。
需要说明的是,本实施例中的线上支付模块、终端设备、第一打印数据传输的方式与实施例1中的一致,具体参见实施例1说明,在此不再赘述。
实施例3
如图1-图7所示,本实施例提供一种集成式自助3D打印系统,设置为给用户提供自助打印服务,该集成式自助3D打印系统包括如实施例1的云服务平台和至少一台3D打印终端。
其中,3D打印终端包括外壳1以及设于外壳1内的打印区、后处理机构、输送机构,后处理机构和输送机构设在支撑架9上,在外壳1的前侧设有取物口10,在打印区内设有至少一台设置为打印3D模型的3D打印机,本实施例中以一台打印机为例;而后处理机构设置为对打印好的3D模型进行后处理,输送机构设置为将3D模型传送至后处理机构和取物口处;3D打印终端还包括设置为控制3D打印机、后处理机构和输送机构的人机交互模块11,该人机交互模块包括触摸屏,且该人机交互模块分别与支付模块和云服务中心电连接或通讯连接。
本实施例中,支付模块设置为用户支付使用自助打印服务的费用,支付模块包括云服务平台上的线上支付模块和3D打印终端上的线下支付模块,线下支付模块为多个且与3D打印终端一一对应适配,线下支付模块13设于外壳1上,线下支付模块13包括银行卡插口131、扫码区133、硬币入口134、纸币入口135、退币口136和设置为扫脸支付的摄像头12,换言之,线下支付方式包括刷银行卡、扫付款二维码、扫脸、硬币、纸币。线上支付模块设置为支持用户使用线上支付的方式,举例而言,线上支付模块可与第三方支付平台网络连接,从而实现线上支付。
云服务中心设置为接收待打印的3D模型的打印数据,打印数据为三维模型数据或切片数据。打印数据可以是用户通过3D打印终端的人机交互模块上传至云服务中心,也可以是用户通过终端设备上的专属客户端软件或专属应用程序上传至云服务中心,还可以是云服务中心中预存储的打印数据。云服务中心与各3D打印终端通讯连接,云服务中心在接收到用户的打印数据后,会将打印数据选择性地分发到指定设备。
具体地,云服务中心与各3D打印终端的通信方式选自有线网络连接和无线网络连接的一种和两者,无线网络连接包括但不限于蓝牙(Bluetooth)、无线局域网络(WLAN)、蜂巢式网络(3G、4G、5G、6G)、ZigBee、超宽带(UWB)。
本申请中3D打印机可选自SLA打印机、FDM打印机、DLP打印机、SLM打印机、MJP打印机、polyjet打印机、3DP或SLS打印机中的至少一种。后处理机构会根据3D打印机的类型来具体设置,后处理方式包括但不限于清洗、除尘、固化、抛光、浸渍、烧结、切割、打磨、喷涂、热处理、去支撑;本实施例中,3D打印机优选为下投影式的光固化打印机,后处理机构对应为清洁机构和固化机。
在一些具体的其它实施例中,针对不同的打印机,后处理机构可选择与相应打印机对应的清洁机构、固化机构、切割机构、打磨机构、抛光机构、喷涂机构、热处理机构、去支撑机构中的一种或多种。
本实施例中,后处理机构包括清洁机构2和固化机构3,清洁机构2设置为清洗打印好的3D模型,固化机构3设置为二次固化清洗后的3D模型;在实际的应用中,清洁机构的形式是不限的,清洗的方式包括但不限于以下方式中的一种或多种:离心甩干、喷淋或溅射清洗液、浸没清洗等,在本实施例中清洁机构优选为可对3D模型实现浸没清洗的清洗机,在该清洗机内盛装有设置为清洗3D模型的清洗液;而固化机构优选为采用UV固化机,在UV固化机内设有对3D模型进行二次固化的UV固化灯31。当然,本领域技术人员 所熟知的,固化机构的具体形式需要参考打印材料的类型,例如,对于含有多重固化体系的树脂,这些树脂除了包括光固化体系的材料组分,还可能包括热固化体系的材料组分、湿固化体系的材料组分,对于仅含有光固化体系的材料组分的树脂,固化机构为包含有固化灯的设备;对于含有光固化体系的材料组分和热固化体系的材料组分的树脂,固化机构还至少设有加热元件;对于含有光固化体系的材料组分和湿固化体系的材料组分的树脂,固化机构还至少设有加湿器。
在一些具体的其它实施例中,为了提高清洗效果,一方面可在清洗机内设置超声波装置以实现超声波清洗;另一方面可在清洗机内设置流体驱动元件,使清洗液流动,形成涡流,该流体驱动元件既可以是设置在清洗机内的搅动元件(该搅动元件可转动的搅动棒或搅动叶片,驱动方式优选为磁力驱动或电机驱动),该流体驱动元件也可以是循环泵,利用循环泵可使清洗机内的液体循环流动。
在一些具体的其它实施例中,如图8所示,当清洁机构采用离心甩干和喷淋清洗的方式时,该清洁机构包括内部形成有清洗空间的壳体21、位于壳体21内并设置为放置和驱动物件转动的旋转平台22、设置为储存清洗液的清洗液储存容器23以及与清洗液储存容器23连通并设置为向物件喷淋清洗液的喷淋装置24,该喷淋装置24固定于壳体21上;在离心甩干的方式中,旋转平台可以驱动打印好的3D模型快速转动,通过离心作用使打印件表面的残余树脂甩去,再配合喷淋模式,可以先用清洗液的喷淋清洗降低打印件表面残余树脂的粘度,使得残余树脂更加容易甩离;另外,还可以在壳体内设置UV固化灯31,利用UV固化灯31对清洗后的打印件进行二次固化,通过旋转平台驱动打印件转动,使UV固化灯对打印件的照射效果更加均匀,以使后处理机构为集成有清洗功能和后固化功能的一体式设备,可使3D打印终端更加紧凑,节省空间。
在一些具体的其它实施例中,后处理机构还包括风干或烘干机构(图8 中未示出),风干/烘干的步骤位于清洗和后固化步骤之间,风干/烘干主要设置为去除打印件表面的清洗液。
在一些具体的其它实施例中,如图10所示,该3D打印终端还包括设置为储存光敏树脂废液和清洗废液的废液储存容器25以及设置为向清洁机构内添加清洗液的清洗液储存容器23,该废液储存容器与清洁机构2连通,主要设置为储存已经使用过的且不能再次设置为清洗打印件的废弃溶液,该废弃溶液为清洗液与树脂的混合液体;进一步的,该清洁机构上还设有过滤装置(图10中未示出),该过滤装置设置为对使用过的二次清洗液进行过滤,使得二次清洗液达到可清洗打印件的标准,实现循环利用。
在本实施例中,如图4-图6所示,光固化3D打印机包括机台41、底部透光的料盘42、成型平台43、Z轴驱动机构44以及光源45;料盘42设于机台41上,设置为存放打印用的光敏树脂;成型平台设于料盘41的上方,设置为与料盘配合成型3D模型;Z轴驱动机构44设于机台41上并设置为驱动成型平台43上下移动,使成型平台远离或靠近料盘;Z轴驱动机构44包括通过支架440转动设于机台上并竖直设置的Z轴丝杠441、驱动Z轴丝杠441转动的第一电机442以及与Z轴丝杠螺纹连接的锁紧台443,成型平台43固定于锁紧台443上,第一电机442与人机交互模块电连接;光源45设于料盘42的下方,根据需打印的三维模型数据向料盘42底部投影打印图像,使料盘42内的光敏树脂在成型平台上固化,另外光源可选自DLP投影光源、LCD投影光源、LCOS投影光源、SXRD投影光源、micro led光源、激光光源中的一种或多种;光固化打印机的原理是:首先,成型平台移动,成型平台与料盘底部之间限定出成型空间,成型空间之中充满光敏树脂,光源向料盘底部投影打印图像,料盘底部透光,所以树脂可被光照射,树脂在光照射下,光敏树脂发生反应(如聚合反应),液态的光敏树脂变为固化片材,固化片材的形状或轮廓会与投影的打印图像相同;然后成型平台上升,当前固化片材和料盘底部之间重新限定出成型空间,接着进行下一个图像层的打印操作,各图像 层对应的固化片材逐层堆叠,最终得到三维实体的打印件(即3D模型),打印件再经过后处理机构进行后处理后,可得到最终的打印成品。
如图4-图6所示,该光固化3D打印机还包括向料盘42内添加光敏树脂的加液机构;具体的,加液机构包括至少一个设置为储存光敏树脂的储存容器46以及设置为连通储存容器46和料盘42的输送管47,储存容器46可固定于外壳或机台上,且输送管47上设有加液控制单元48,该加液控制单元可以是泵、开关或阀门等,其中一种自动补液方式是在料盘内设置可感应液面高度的传感器(图4-6中未示出),使料盘中的树脂保持在预设的容积范围内或保持在预设的液面高度范围内,另外一种自动补液方式,加液控制单元可根据如打印数据来确认树脂使用量,并控制从储存容器流入到料盘中的树脂的量,从而使料盘中的树脂满足打印需求;需要说明的是储存容器的数量为至少1个,若储存容器为至少2个时,用户可根据需求选择合适的不同树脂材料,实现混料打印的目的。
如图4-图6所示,该3D打印终端还包括设于外壳1内并设置为分离成型平台43和3D模型的分离装置,人机交互模块可控制分离装置,该分离装置包括与成型平台43平行设置的铲刀51以及设置为驱动铲刀51前后移动的Y轴驱动机构52,且铲刀的长度大于或等于成型平台43的长度,确保成型平台上的模型被整个切下。打印完成后,铲刀平行于成型平台下端的成型表面移动,将打印件从成型平台上铲下,实现分离的目的;Y轴驱动机构52包括两个分设于料盘两侧的导轨521、设于导轨521上的滑块522,、转动设于一导轨521上并沿Y轴延伸的Y轴丝杆523以及驱动Y轴丝杆转动的第二电机524,Y轴丝杆523与同一导轨521上的滑块螺纹连接,设置为驱动滑块沿Y轴前后移动,铲刀的两端横跨设于两导轨上的滑块上。
在一些具体的其它实施案例中,该分离装置不采用铲刀的方式,分离装置包括若干密集排列的凸柱,成型平台的成型表面上密集分布有若干通孔,凸柱可与通孔一一对应配合。需要分离成型平台和3D模型时,凸柱插入通孔 中向外顶成型平台上的打印件,进而将成型表面上的打印件顶出。
在一些具体的其它实施案例中,如图8所示,成型平台43与Z轴驱动机构44之间采用可分离结构设计,使成型平台作为一次性的产品使用,成型平台可以为注塑件、秸秆件或金属件,每次打印后需要更换新的成型平台,提高每次打印时成型平台底面的平整度和干净度,提高打印件的品质,优选的,通过在锁紧台上设置电磁铁(图8中未示出),使成型平台和锁紧台之间形成磁性连接的可拆卸结构,即电磁铁通电时两者吸附固定在一起,断电时消磁即实现分离的目的;也还可以采用其它分离结构,如卡扣、插合、夹持或卡合等方式;从而在3D模型打印好后,成型平台及其上的3D模型可一起被输送机构传送至清洁机构、固化机构和取物口处;进一步的,该3D打印终端还包括设于外壳1内的存放平台53,存放平台53上存放有若干个堆叠在一起的成型平台43,在上一个成型平台打印好了打印件并分别后,通过输送机构将存放平台53上成型平台传送至锁紧台处并进行锁定。
在一些具体的其它实施例中,外壳上还设有设置为放入成型平台的入口(图中未示出),也可利用取物口将成型平台放入机器内,再通过传送机构将放入的成型平台传送至锁紧台处并进行锁定,从而用户可将自备的或机器外部放置的成型平台放入机器内进行打印;进一步的,如图8所示,在放入的成型平台43上设有可读取的标识信息431(该标识信息包括但不限于二维码、字符码、数字码、条形码、特制图案、NFC标签、RFID标签、电子芯片),在打印前,用户可将需打印的打印数据预先录入到成型平台的标识信息431中;3D打印终端中还设有设置为读取标识信息的读取器54,该读取器54设于锁紧台443上并与人机交互模块或云服务中心通信连接,通过读取器54读取标识信息而获取到打印数据,并将打印数据传输给人机交互模块或云服务中心,而后人机交互模块根据获取的打印数据控制光固化3D打印机打印出3D模型,这样用户就无需再进行过多的手动操作。
输送机构可选自机械臂、传送带、传送导轨、滑道或滑槽中的一种或多 种,打印件的传送方向也不局限于水平面,还可包括竖直方向(如图10所示,这时输送机构也是在竖直方向上来回移动实现打印件的转移);如图4和图5所示,本实施例中优选为机械臂60,在机械臂60的末端设有设置为夹持或容纳物件的拾取端61,该拾取端可以为气动夹爪,也可以为具有容置空间的容器,从而利用夹持或盛装的方式传送转移打印件或成型平台。
在一些具体的其它实施例中,如图7所示,输送机构为传送带62,传送带的一端位于3D打印机的前侧,另一端与取物口连通,铲刀51位于传送带62的上方,清洁机构2和固化机构3依次设于传送带62上,形成隧道式的清洗和固化结构,即传送带走过去,中途依次经过有喷淋头和密集UV灯的隧道腔体,走过后就完成了清洗和后固化;另外为了实现传送带传送打印件的目的,光固化打印机中还包括设置为驱动Z轴驱动机构44朝传送带方向移动的水平移动机构(图7中未示出),以使打印好的打印件向前移动后位于传送带的上方,这是利用铲刀51的分离作用使打印件掉落在传送带上,再通过传送带的传送使打印件依次经过清洁机构2和固化机构3,完成清洗和后固化的操作后传送进入取物口,供用户取出。
如图4和图5所示,该3D打印终端还包括设于外壳1内的物件暂存区71,设置为摆放待取的打印件或打印成品,物件暂存区71通过滑槽72与取物口10连通。
在拿取打印件或打印成品前,用户需要进行身份核对,身份核对可以是通过摄像头拍摄进行扫脸识别或通过将身份证放置到身份证验证区进行身份核对或通过扫码区对唯一的用户二维码进行身份识别,也可以是通过识别取件码的方式,取件码通过云服务中心被发送至用户的终端设备。
在一些具体的其它实施案例中,如图10所示,取物口10处设有设置为打包物件的自动打包机构101,其设置为将打印件或打印成品(也可包括成型平台)打包封装至可设置为邮寄或运送的快递盒/快递箱102中,在需要打包时,用户需先将快递盒/快递箱放入取物口内,在打印件传送进入快递盒/快 递箱后利用自动打包机构101进行封装。如图7所示,该3D打印终端还包括设于外壳1前侧的透明观察窗口14,设置为观察打印系统内部构造及设置为观察内部的物件打印。
在一些具体的其它实施案例中,如图11所示,集成式自助3D打印系统还包括搭载在用户终端设备上的客户端软件或应用程序,用户可通过自己的终端设备或人机交互模块与云服务中心交互,具体的,该终端设备可以是手机、电脑、平板电脑、笔记本电脑或智能穿戴设备等,终端设备上安装有与该集成式自助3D打印系统配合使用的专属客户端软件、APP或其它相应的应用程序(如微信小程序等)。
如图7所示,该3D打印终端还包括设于外壳1内的三维扫描仪15,该三维扫描仪15与人机交互模块通讯连接,在外壳的前侧设有放入物品的三维扫描窗口14,三维扫描仪15设置为扫描三维实物并获得相应的三维模型数据,扫描得到的三维模型数据可传输至人机交互模块;此外,扫描得到的三维模型数据也可通过云服务中心传输至用户终端设备的客户端软件或应用程序的用户界面上;三维扫描仪的设置方便用户获得三维模型数据。
本实施例中,用户传输的打印数据可以是三维模型数据或切片数据,若用户传输的是经过前处理的切片数据,则云服务中心可直接将切片数据发送至人机交互模块,人机交互模块将切片数据发送至打印机,打印机成型3D模型;若用户传输的是未经前处理的三维模型数据,则需要对三维模型数据进行前处理,将其输出为切片数据。
在一些具体的实施案例中,如图11所示,集成式自助3D打印系统还包括设置为对三维模型数据进行前处理的前处理模块,该前处理模块可内置于人机交互模块内,也可设置于云服务中心中以供人机交互模块或终端设备调用。前处理模块可完成的前处理操作至少包括切片操作,前处理模块根据预设的切片层厚度对三维模型数据进行切片处理,形成切片数据,并输出为可被打印机识别的可打印文件格式(可以是自定义格式或通用格式);最终切 片数据将被传输至3D打印机,3D打印机根据切片数据中的形状信息(即投影图像)逐层进行打印。
用户传输的打印数据可以是以下格式文件中的一种:Stl、SLC、CLI、prt、iges、CAD等格式的文件。打印数据来源可以是网络中的内容库,也可以是3D扫描生成面片后合成三维模型数据,也可以是用户直接在三维建模软件内设计并生成的三维模型数据。
在一些具体的其它实施案例中,对于已处理好的切片数据,用户可能已经自行进行了前处理操作,用户可以直接跳过步骤前处理模块的步骤,直接进行后续的打印步骤;当然,用户也可对切片数据进行进一步的前处理,例如对切片数据进行修改,包括:进行二次切片,增加切片层,合并切片层,删减切片层,对切片层图像进行图像处理,在切片层图像中增加图案,在切片层中删减图案等,又例如依据切片数据得到其他打印参数,包括:对每个切片层的打印参数(至少包括光源曝光控制参数、Z轴运动控制参数等)进行设置,即前处理模块还可依据切片数据得到每一切片层的打印参数,用户利用终端设备或人机交互模块对打印参数进行设置。
在一些具体的其它实施案例中,云服务中心还可获取3D模型的应用类型,然后依此匹配当前应用类型所关联的预处理流程,预处理流程包括选择打印机类型、打印光源、打印方式、打印颜色、打印材料、打印层厚、打印幅面、打印精度中的一种或多种;应用类型可由用户自行选定,或者3D打印系统人工智能识别三维模型形状,判断打印成品的应用类型。
通过大量的实践操作发现,同一应用类型的3D模型的打印操作流程具有相似性,对于用户而言,重复对一类3D模型进行相同的打印操作是相当不便的,为此,通过对各应用类型设置对应的预处理流程,让用户减少打印机的操作设置,改善用户体验。
本实施例中,用户在使用自助打印服务时,会通过人机交互模块或终端设备的客户端软件或应用程序生成打印任务,打印任务包含打印数据。支付 模块可根据打印任务进行定价,并在用户付款后生成和打印任务关联的付款确认信息。
一方面,自助打印服务可采用预付款的服务模式,即支付模块在用户付款后向云服务中心发送付款确认信息,云服务中心确认收到付款确认信息后才会将打印任务发送至相应的3D打印终端。另一方面,自助打印服务还可采用后支付的服务模式,云服务中心现将打印任务发送至3D打印终端,制作完成打印成品后,且用户付款后,支付模块会向3D打印终端上的人机交互模块发送付款确认信息,3D打印终端确认收到付款确认信息后,用户才能在取件口拿取打印成品。
打印任务的定价与以下变量中的一种或多种关联:切片层层数、树脂消耗量、打印时间、增值服务费等;一种实施例中,当树脂消耗量小于预设阈值的时候,定价与计层数和/或打印时间关联;当树脂消耗量大于预设阈值的时候,定价与树脂消耗量关联;在其他实施例中,还包括增值服务费,增值服务包括:快速打印服务、彩色打印服务、特殊树脂使用、幅面增大、尺寸补偿、多像素精度打印、自适应层厚打印等。
一种实施例中,彩色打印服务是指:打印系统中配备至少两种颜色的树脂,可通过树脂混合得到不同颜色的树脂,也可以直接配置不同颜色的树脂。
特殊树脂使用:打印系统中配备至少两种类型的树脂,树脂之间可能力学性能的不同;同样地,可通过树脂混合或直接配置树脂的方式使得打印件能达到用户所需的力学性能要求。
幅面增大:方式1,打印机中配置有至少两种光源,使各光源的打印幅面拼接在一起,得到较大的打印幅面;方式2,打印机中配置至少两种不同打印幅面的光源,用户按需选择光源类型;方式3,打印机配置有光源移动机构,其可驱动光源移动,使光源在不同位置曝光,从而使得单层打印的打印幅面增大;
尺寸补偿:打印过程中会存在过渡曝光的现象,这会导致打印尺寸偏大 的情况,同时,固化后的树脂还会存在尺寸收缩的现象,通过对三维模型或切片层图像的尺寸进行预处理,随上述尺寸偏大或尺寸收缩现象进行补偿。
多像素精度打印:方式1,打印机中配置有至少两种不同像素精度的光源。方式2,通过光源抖动技术(如XPR像素位移技术),使得光源抖动或不抖动,实现多种像素精度的打印。
自适应层厚打印:根据三维模型上不同区域采取不同的打印层厚,同时保证了打印速度和打印精度。
在一些具体的其它实施例中,打印数据的传输也可包括现场传输的方式,用户可通过U盘、硬盘拷贝、蓝牙传输等方式,现场将打印数据传输至3D打印终端;如图4所示,机台上设有传输三维模型数据或其它打印任务数据的接口55,该接口包括但不限于USB接口或网络接口。
在一些具体的其它实施例中,该集成式自助3D打印系统还包括设置为控制3D打印机、后处理机构和输送机构工作的控制模块,该控制模块可以集成于人机交互模块中,从而利用人机交互模块来控制各机构的工作(如图11所示),也可以是独立设置在自助售卖打印设备内部的,人机交互模块、3D打印机、后处理机构和输送机构分别与控制模块电连接(如图12所示),从而在人机交互模块中完成三维模型数据或切片数据的接收并处理后,再利用控制模块根据相应的数据来控制3D打印机、后处理机构和输送机构的工作。
实施例4
如图13所示,本实施例提供了一种采用如实施例3的集成式自助3D打印系统的自动生产方法,包括如下步骤:
(1)接收用户数据,如下:
用户可以通过人机交互模块或终端设备上的客户端软件或应用程序,将准备好的第一打印数据发送至云服务平台上的云服务中心,云服务中心会接收待打印的3D模型的第一打印数据,若传输来的第一打印数据为不符合预设规格的打印数据,则后续步骤需要进行前处理。
(2)前处理操作,如下:
用户可通过终端设备或人机交互模块对第一打印数据进行前处理,前处理操作具体是通过前处理模块进行的。前处理模块可以是设置在云服务中心上,其具有至少一套前处理操作算法以供调用,此外,前处理模块可以是内置于3D打印终端的人机交互模块中,前处理模块可完成的前处理步骤至少包括切片操作,其它前处理步骤包括但不限于:切片、排版、修复、打标、切割、镂空、加支撑、加底板、加强杆、加治具、加晶格、加排液孔、填充网格、尺寸补偿和灰度处理等。对于切片数据,虽然可不进行前处理,但若用户有需求或不符合预设规格,也可对切片数据中至少一个切片层进行尺寸补偿和灰度处理等;总之,对第一打印数据进行前处理后,会得到符合预设规格的第二打印数据。
(3)用户支付,如下:
得到第二打印数据后,线上支付模块根据第二打印数据的任务量生成定价信息,选择对应打印服务,云服务中心会生成包括定价信息的订单信息并下发打印任务订单,然后云服务中心将订单信息发送至终端设备或3D打印终端上;用户在终端设备或3D打印终端上根据订单信息进行支付后,支付模块会输出付款确认信息,付款确认信息会被发送至3D打印终端和/或云服务中心,根据服务模式的不同,付款确认信息的发送对象及作用也不同。对于预付的情况(不管是全款、订金还是信用免押支付),付款确认信息会被发送至云服务中心作为打印任务下发的前置条件,又或者付款确认信息会被发送至3D打印终端作为打印开始的前置条件;对于后支付的情况(不管是全款还是尾款),付款确认信息会被发送至3D打印终端作为用户取件的前置条件。
(4)就近排产,如下:
用户可选择执行打印操作的3D打印终端。具体地,终端设备上的客户端软件或应用程序可获取终端设备的定位信息,确认用户位置。云服务中心根据定位信息,筛选距离用户地点在预设距离(例如500m、1km、2km)内的所 有3D打印终端,输出备选设备列表,并将备选设备列表发送至客户端软件或应用程序。备选设备列表中的3D打印终端可根据设备工作状态进行排序,例如打印任务队列排队时长,这样可方便用户选择。客户端软件或应用程序收到备选设备列表后,用户选定其中一个3D打印终端作为指定终端,客户端软件或应用程序向云服务中心发送用户选定指令,云服务中心根据用户选定指令,将包含有第二打印数据的打印任务发送至指定(即用户选定)的3D打印终端。
(5)打印生产,如下:
3D打印终端收到打印任务后,人机交互模块将第二打印数据发送至3D打印机,打印机打印出3D模型后,3D模型被输送机构传送至后处理机构中进行后处理,接着经过后处理操作后的3D模型会作为打印成品被输送机构传送取物口,用户最终从取物口取得打印成品。
在一些具体的实施例中,在步骤(4)和(5)之间还包括以下步骤:
(41)显示待完成时长/打印状态,如下:
打印数据被发送至3D打印终端后,打印数据会进入3D打印终端的任务排队序列,3D打印终端根据任务排队序列,依次对序列中的打印任务进行打印操作。期间,客户端软件或应用程序的用户界面实时显示该第二打印数据的待完成时长和/或打印状态,待完成时长包括第二打印数据在当前3D打印终端的打印时长和该第二打印数据在任务排队序列中的排队时长;显示待完成时长可方便用户合理安排取件时间,避免用户在3D打印终端旁等待太长时间。
以上对本发明实施例所提供的技术方案进行了详细介绍,本文中应用了具体个例对本发明实施例的原理以及实施方式进行了阐述,以上实施例的说明只设置为帮助理解本发明实施例的原理;同时,对于本领域的一般技术人员,依据本发明实施例,在具体实施方式以及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (29)

  1. 一种云服务平台,设置为分别与终端设备和3D打印终端通讯连接,包括:
    云服务中心,设置为分别与所述终端设备和所述3D打印终端通讯连接,以接收待打印的3D模型的第一打印数据,并设置为接收用户确认信息,以在接收到所述用户确认信息后向所述3D打印终端发送第二打印数据,以使得所述3D打印终端根据所述第二打印数据进行打印;其中,所述第二打印数据与所述第一打印数据关联,且所述第二打印数据满足预设规格;
    线上支付模块,设置为根据所述第二打印数据的任务量生成定价信息和/或接收付款信息;
    其中,所述用户确认信息与所述定价信息和/或接收付款信息关联。
  2. 如权利要求1所述的云服务平台,其中,还包括前处理模块,在所述第一打印数据不满足所述预设规格时,所述前处理模块对所述第一打印数据进行前处理以得到所述第二打印数据。
  3. 如权利要求2所述的云服务平台,其中,所述前处理还包括切片、排版、修复、打标、切割、镂空、加支撑、加底板、加强杆、加治具、加晶格、加排液孔、填充网格、尺寸补偿和灰度处理中的一种或多种。
  4. 如权利要求1所述的云服务平台,其中,在所述第一打印数据满足所述预设规格时,所述第一打印数据与所述第二打印数据相同。
  5. 如权利要求1所述的云服务平台,其中,所述云服务中心在接收到所述第一打印数据后,获取所述待打印的3D模型的应用类型,根据所述待打印的3D模型的应用类型匹配与所述应用类型关联的预处理方式,所述预处理方式包括确认打印机类型、打印光源、打印颜色、打印材料、打印层厚、打印幅面、打印精度中的一种或多种。
  6. 一种3D打印终端,设置为分别与终端设备和云服务平台通讯连接,包括:
    外壳,所述外壳上设有取物口;
    至少一台3D打印机,所述3D打印机设于所述外壳内,所述3D打印机设置为打印3D模型;
    后处理机构,设置为对已打印完成的所述3D模型进行后处理,所述后处理至少包括清洁处理;
    输送机构,所述输送机构设于所述外壳内,设置为将已打印完成的所述3D模型传送至所述后处理机构和取物口处;
    人机交互模块,设置为分别与所述终端设备和所述云服务平台通讯连接,设置为接收打印数据,并按所述打印数据控制所述3D打印机进行打印。
  7. 如权利要求6所述的3D打印终端,其中,所述后处理机构包括清洁机构、固化机构、切割机构、打磨机构、抛光机构、喷涂机构、热处理机构、去支撑机构中的一种或多种。
  8. 如权利要求6所述的3D打印终端,其中,所述3D打印机为光固化3D打印机,包括:
    料盘,存放打印用的光敏树脂;
    成型平台,设置为成型3D模型;
    Z轴驱动机构,所述Z轴驱动机构设置为驱动所述成型平台或料盘上下移动;
    光源,所述光源根据需打印的所述打印数据向所述料盘投影打印图像,使料盘内的光敏树脂在成型平台上固化;
    其中,所述后处理机构包括清洁机构和/或固化机构。
  9. 如权利要求8所述的3D打印终端,其中,所述光固化3D打印机还包括向所述料盘内添加光敏树脂的加液机构。
  10. 如权利要求9所述的3D打印终端,其中,所述加液机构包括至少一个设置为储存光敏树脂的储存容器以及设置为连通储存容器和料盘的输 送管,且所述输送管上设有控制光敏树脂添加量的加液控制单元。
  11. 如权利要求8所述的3D打印终端,其中,所述3D打印终端还包括设于所述外壳内并设置为分离成型平台和3D模型的分离装置。
  12. 如权利要求11所述的3D打印终端,其中,所述分离装置包括铲刀以及设置为驱动所述铲刀或成型平台移动的Y轴驱动机构。
  13. 如权利要求8所述的3D打印终端,其中,所述3D打印终端还包括设于所述外壳内的存放平台,所述存放平台上放置有若干个堆叠在一起的成型平台,通过所述输送机构将所述存放平台上的所述成型平台传送至所述Z轴驱动机构处。
  14. 如权利要求13所述的3D打印终端,其中,所述成型平台上设有可读取的标识信息,所述打印数据在打印前被预先录入或关联到所述成型平台的标识信息中;
    所述光固化3D打印机中还设有设置为读取所述标识信息的读取器,所述光固化3D打印机通过所述读取器读取的标识信息而获取所述打印数据。
  15. 如权利要求13或14所述的3D打印终端,其中,在3D模型打印好后,所述成型平台及其上的所述3D模型一起被所述输送机构传送至清洁机构、固化机构和取物口处。
  16. 如权利要求8所述的3D打印终端,其中,所述清洁机构包括设置为储存清洗液的清洗液储存容器以及与所述清洗液储存容器连通并设置为向物件喷淋清洗液的喷淋装置。
  17. 如权利要求16所述的3D打印终端,其中,所述清洁机构还包括设置为放置并驱动物件转动的旋转平台。
  18. 如权利要求16所述的3D打印终端,其中,还包括设置为储存光敏树脂废液和清洗废液的废液储存容器。
  19. 如权利要求6所述的3D打印终端,其中,所述输送机构为机械臂, 所述机械臂的末端设有设置为夹持或容纳物件的拾取端。
  20. 如权利要求6所述的3D打印终端,其中,还包括设于所述外壳内的物件暂存区。
  21. 如权利要求6所述的3D打印终端,其中,所述取物口处设有设置为打包物件的自动打包机构。
  22. 如权利要求6所述的3D打印终端,其中,还包括三维扫描仪,所述三维扫描仪设置为扫描三维实物并获得相应的三维模型数据。
  23. 如权利要求6所述的3D打印终端,其中,还包括控制模块,所述控制模块设置为分别与所述人机交互模块和所述云服务平台通讯连接,且所述控制模块设置为控制所述3D打印机、后处理机构和输送机构的工作。
  24. 如权利要求6所述的3D打印终端,其中,还包括线下支付模块,所述线下支付模块包括银行卡插口、扫码区、硬币入口、纸币入口、退币口和设置为扫脸支付的摄像头中的一种或多种。
  25. 一种集成式自助3D打印系统,包括如权利要求1-5任一项所述的云服务平台以及至少一台如权利要求6-24任一项所述的3D打印终端。
  26. 如权利要求25所述的集成式自助3D打印系统,其中,还包括搭载在用户的终端设备上的客户端软件或应用程序,所述客户端软件或应用程序设置为分别与所述云服务平台和人机交互模块通讯连接。
  27. 一种采用如权利要求26所述的集成式自助3D打印系统进行打印的自动生产方法,包括以下步骤:
    向云服务平台发送待打印的3D模型的第一打印数据,
    所述云服务平台对所述第一打印数据进行处理以形成满足预设规格的第二打印数据,并生成相应的订单信息和将所述第二打印数据发送至所述3D打印终端;
    用户根据所述订单信息进行确认后,向所述云服务平台和/或所述3D打 印终端发送确认信息,而后所述3D打印终端根据所述第二打印数据进行自助打印。
  28. 如权利要求27所述的自动生产方法,其中,将所述第二打印数据发送至所述3D打印终端的步骤,进一步包括:
    通过所述客户端软件或应用程序获取所述终端设备的定位信息;
    所述云服务平台根据所述终端设备的所述定位信息,筛选距离用户地点在预设距离内的所有3D打印终端,输出备选终端列表至所述客户端软件或应用程序中以供用户选择;
    所述云服务平台接收用户选定指令,将处理好的所述第二打印数据发送至用户选定的所述3D打印终端。
  29. 如权利要求27或28所述的自动生产方法,其中,将所述第二打印数据发送至所述3D打印终端的步骤,进一步包括:
    所述第二打印数据被发送至所述3D打印终端后,进入所述3D打印终端的任务排队序列;
    所述3D打印终端根据所述任务排队序列进行打印操作;
    所述客户端软件或应用程序的用户界面实时显示该第二打印数据的待完成时长和/或打印状态,所述待完成时长包括该第二打印数据在指定所述3D打印终端的打印时长和该第二打印数据在任务排队序列中的排队时长。
PCT/CN2022/144324 2022-01-28 2022-12-30 云服务平台、3d打印终端、3d打印系统及自动生产方法 WO2023142901A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210107262.2A CN114986909B (zh) 2022-01-28 2022-01-28 一种云服务平台、3d打印终端、3d打印系统及自动生产方法
CN202210107262.2 2022-01-28

Publications (1)

Publication Number Publication Date
WO2023142901A1 true WO2023142901A1 (zh) 2023-08-03

Family

ID=83023799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/144324 WO2023142901A1 (zh) 2022-01-28 2022-12-30 云服务平台、3d打印终端、3d打印系统及自动生产方法

Country Status (2)

Country Link
CN (1) CN114986909B (zh)
WO (1) WO2023142901A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114986909B (zh) * 2022-01-28 2024-05-31 广州黑格智造信息科技有限公司 一种云服务平台、3d打印终端、3d打印系统及自动生产方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105549919A (zh) * 2015-12-02 2016-05-04 中江中通机电科技有限公司 一种云服务并具有支付功能的3d趣味diy打印方法
CN107901421A (zh) * 2017-11-13 2018-04-13 南京中高知识产权股份有限公司 自助3d打印共享平台及其工作方法
CN107901420A (zh) * 2017-11-13 2018-04-13 南京中高知识产权股份有限公司 共享3d打印平台及3d共享打印方法
CN109712341A (zh) * 2019-01-08 2019-05-03 钟一瀚 3d打印机售货方法及系统
CN211640995U (zh) * 2019-11-21 2020-10-09 二十三运动科技(深圳)有限公司 一种用于3d打印鞋垫的自助式打印装置
US20210042074A1 (en) * 2019-08-08 2021-02-11 Canon Kabushiki Kaisha Method for providing cloud print service and server
CN114986909A (zh) * 2022-01-28 2022-09-02 广州黑格智造信息科技有限公司 一种云服务平台、3d打印终端、3d打印系统及自动生产方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207240885U (zh) * 2017-07-06 2018-04-17 杭州铭展网络科技有限公司 一种3d打印机自助打印共享系统
CN110321083A (zh) * 2018-03-29 2019-10-11 汕头市夸克智能科技有限公司 一种智能3d打印服务系统
CN110271187A (zh) * 2019-07-26 2019-09-24 西安增材制造国家研究院有限公司 一种基于便携式dlp打印机的控制系统及可见光树脂打印方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105549919A (zh) * 2015-12-02 2016-05-04 中江中通机电科技有限公司 一种云服务并具有支付功能的3d趣味diy打印方法
CN107901421A (zh) * 2017-11-13 2018-04-13 南京中高知识产权股份有限公司 自助3d打印共享平台及其工作方法
CN107901420A (zh) * 2017-11-13 2018-04-13 南京中高知识产权股份有限公司 共享3d打印平台及3d共享打印方法
CN109712341A (zh) * 2019-01-08 2019-05-03 钟一瀚 3d打印机售货方法及系统
US20210042074A1 (en) * 2019-08-08 2021-02-11 Canon Kabushiki Kaisha Method for providing cloud print service and server
CN211640995U (zh) * 2019-11-21 2020-10-09 二十三运动科技(深圳)有限公司 一种用于3d打印鞋垫的自助式打印装置
CN114986909A (zh) * 2022-01-28 2022-09-02 广州黑格智造信息科技有限公司 一种云服务平台、3d打印终端、3d打印系统及自动生产方法

Also Published As

Publication number Publication date
CN114986909B (zh) 2024-05-31
CN114986909A (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
WO2023142901A1 (zh) 云服务平台、3d打印终端、3d打印系统及自动生产方法
US6376148B1 (en) Layer manufacturing using electrostatic imaging and lamination
CN105216319B (zh) 3d立体投影式光固化3d打印机
CN105209240B (zh) 使用螺旋堆积的3d打印
CN105711088B (zh) 一种光固化3d打印机
CN101918199B (zh) 用于制作三维物体的方法和自由制造系统
CN107139456B (zh) 三维物体数据的分层方法、3d打印方法及设备
US20060239588A1 (en) Edge smoothness with low resolution projected images for use in solid imaging
CN112677487B (zh) 3d打印的控制方法、控制系统及3d打印设备
CN107150439A (zh) 数据处理方法、3d打印方法及设备
CN105666885A (zh) 基于dlp的可分区光固化3d打印成型方法、系统及设备
CN109153174A (zh) 三维打印设备及对应方法
KR101956077B1 (ko) 3d 프린팅 시스템 및 그의 오류 검사 및 제어방법
US20170028622A1 (en) Method and system for generating images and objects via display-as-print
TW201936367A (zh) 自動化添加物製造裝置及方法
CN211518504U (zh) 一种双液晶屏和双料槽的光固化3d打印机
CN108381910B (zh) 基于掩膜图像灰度调节的变速连续液面制造方法和装置
CN205601188U (zh) 基于dlp的光固化3d打印设备
CN107901420A (zh) 共享3d打印平台及3d共享打印方法
CN112912232A (zh) 热映射
CN206913680U (zh) 一种基于点阵式显示屏的光固化3d打印机
CN207587087U (zh) 3d打印产品自动售卖机
CN105216318B (zh) 3d立体复印机
CN113103587B (zh) 3d打印的控制方法、控制系统及3d打印设备
CN114474732A (zh) 数据处理方法、系统、3d打印方法、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22923686

Country of ref document: EP

Kind code of ref document: A1