WO2023142537A1 - 一种电源电路及其应用 - Google Patents

一种电源电路及其应用 Download PDF

Info

Publication number
WO2023142537A1
WO2023142537A1 PCT/CN2022/125428 CN2022125428W WO2023142537A1 WO 2023142537 A1 WO2023142537 A1 WO 2023142537A1 CN 2022125428 W CN2022125428 W CN 2022125428W WO 2023142537 A1 WO2023142537 A1 WO 2023142537A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
power supply
current
voltage
bridge rectifier
Prior art date
Application number
PCT/CN2022/125428
Other languages
English (en)
French (fr)
Inventor
张逸兴
Original Assignee
张逸兴
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 张逸兴 filed Critical 张逸兴
Publication of WO2023142537A1 publication Critical patent/WO2023142537A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • H02M7/068Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode mounted on a transformer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the invention relates to the technical field of power supplies, in particular to a power supply circuit and its application.
  • the power grid provides alternating current to thousands of households, while the electrical facilities such as lighting, television, electroacoustics, and computers that we generally use require direct current.
  • all electric drive equipment that requires speed regulation such as elevators, electric vehicles, high-speed rail, precision machine tools, etc.
  • all equipment that requires precise control also need DC power, and it is necessary to convert AC power into DC power at the equipment end. to use.
  • the equipment end converts AC power into DC power, usually through rectification and capacitor filtering.
  • the rectified pulsating DC voltage can only become a stable DC voltage after filtering.
  • the use of capacitor filtering makes the AC side current a pulse current, and a large number of high-order harmonics appear, which need to be eliminated by power factor correction to meet the regulations on high-order harmonics in relevant standards (national standard GB 17625.1-2012/IEC 61000-3-2:2009: Electromagnetic Compatibility Limits Harmonic Current Emission Limits (Equipment Each Phase Input Current ⁇ 16A)).
  • the national standard is a mandatory standard, and all products that do not meet the mandatory standard are prohibited from being produced, sold and imported. Therefore, whether any product of electrical equipment needs to eliminate high-order harmonics through power factor correction is a problem that must be considered.
  • the present invention provides a kind of power supply circuit and its application, utilizes the electromagnetic induction relationship between the conductive winding coils on the magnetic core to generate a multiphase AC power supply from a given AC power supply, and through the multiphase bridge Type rectification circuit, without capacitor filter, directly as a DC voltage source with small ripple factor, output DC voltage and current, thus fundamentally eliminating the high-order harmonics caused by capacitor filter; at the same time, multi-phase bridge rectification
  • the current input by the circuit from the power grid will be a sine wave or a step wave very close to a sine wave, so that the high-order harmonics generated on the AC side can be minimized without power factor correction.
  • the present invention provides a kind of power supply circuit, utilizes the electromagnetic induction relationship between the conductive winding coils on the permeable core to generate an n-phase AC power supply from a given AC power supply, and through an n-phase bridge rectifier circuit, Without capacitor filtering, it can be directly used as a DC voltage source with a small ripple factor to output DC voltage and current; where n ⁇ 5 is an odd number;
  • the n-phase AC power supply refers to a group of n sine wave voltage sources with equal amplitudes and an initial phase interval of 360°/n in a balanced distribution;
  • the n-phase bridge rectifier circuit is composed of n groups of two rectifier diodes connected in series, the cathode of one diode is connected to the anode of the other diode in the two series connected rectifier diodes, and each connection point is respectively connected to the At the n-phase output terminal of the n-phase AC power supply, the other cathodes of all the n groups of two series-connected rectifier diodes are connected together as the output positive pole of the n-phase bridge rectifier circuit, and all the n-groups of the two series-connected rectifier diodes The other anode is connected as the output negative pole of the n-phase bridge rectifier circuit.
  • n ⁇ 7 is an odd number.
  • the above-mentioned aspect and any possible implementation method further provide an implementation method, using a 3m-phase AC power induced on the stator winding by the rotating magnetic field generated by the stator winding of a three-phase AC motor, through a 3m-phase bridge rectification
  • an implementation manner is further provided, wherein m ⁇ 5 is an odd number.
  • the above aspect and any possible implementation method further provide an implementation method, using an n-phase AC power source induced by the rotating magnetic field on the stator winding when the single-phase AC asynchronous motor is running, through an n-phase bridge rectifier circuit Output DC voltage and current.
  • n ⁇ 7 is an odd number.
  • the n-phase AC power supply is a 3h-phase AC power supply, which is composed of 3h groups of different windings of the secondary winding of the three-phase AC transformer Composition, the 3h AC voltage sources output by it output DC voltage and current through the 3h phase bridge rectifier circuit; where h ⁇ 3 is an odd number.
  • an implementation manner is further provided, where h ⁇ 5 is an odd number.
  • an implementation mode in which 3h groups of different winding combinations of the secondary winding of the three-phase AC transformer adopt a star connection mode, specifically: 3h winding combinations One end is connected together, and the other end is used as the output end of the 3h-phase AC power supply, and the DC voltage and current are output through the 3h-phase bridge rectifier circuit.
  • an implementation mode is further provided.
  • the 3h groups of different winding combinations of the secondary winding of the three-phase AC transformer are connected in a polygonal manner, specifically: 3h winding combinations in turn End to end, and the tail of the last group is connected to the prime of the first group to form a closed loop, and 3h connection points are obtained, and the 3h connection points are used as the output end of the 3h phase AC power supply, and are output through the 3h phase bridge rectifier circuit DC voltage and current.
  • the present invention provides an application of the power supply circuit as described above.
  • the power supply circuit is applied at the product end, and is connected to the AC input terminal as all or part of the product power supply.
  • the rectifier circuit of the present invention can rectify multi-phase alternating current, and can obtain a stable direct current voltage without subsequent filtering;
  • the rectifier circuit of the present invention saves the filtering step, fundamentally eliminates a large number of high-order harmonics caused by filtering, and thus does not need to be removed by electrical equipment Considering the problem of high-order harmonic removal, the power factor correction step is omitted, and the design and production cost of electrical equipment are simplified;
  • the rectifier circuit of the present invention can be applied at the power supply end or the middle end of the power supply path, thereby providing the possibility for the power grid to supply power to every household in the form of direct current, and also for the user's
  • the connection between DC equipment and power supply is convenient.
  • Fig. 1 is a multi-phase bridge rectification block diagram provided by an embodiment of the present invention, and the secondary winding combination of n three-phase AC transformers adopts a star connection method;
  • Fig. 2 is the voltage waveform diagram of the 9-phase AC power supply provided by one embodiment of the present invention.
  • Fig. 3 is an output DC voltage waveform diagram after rectification by a 9-phase bridge rectifier circuit provided by an embodiment of the present invention
  • Fig. 4 is when the 9-phase AC power supply that is produced by the combination of the secondary windings of the 3-phase transformer provided by an embodiment of the present invention is connected to the 9-phase bridge rectifier circuit, the ladder wave magnetic potential of the primary side and the secondary side on the iron core of the three-phase transformer Correspondence diagram of W ⁇ I.
  • Fig. 5 is a multi-phase bridge rectifier device for obtaining a 9-phase AC power supply through a polygonal connection between secondary winding combinations of a three-phase AC transformer provided by an embodiment of the present invention
  • Fig. 6 is the relationship between the outer angle of a regular polygon (regular 9-gon) and the central angle of a circumscribed circle provided by one embodiment of the present invention, corresponding to both the polygon connection and the star connection combined by the secondary winding of the same three-phase AC transformer The case of the respective 9-phase AC power supply can be obtained.
  • a 9-phase bridge rectifier circuit in which 9-phase AC power is generated by the secondary winding of a 3-phase transformer is given below as an example, and a specific implementation manner is discussed.
  • N1:N2:N3:N4:N5 Sin90°:Sin50°:Sin10°:Sin30°:Sin70°.
  • Transformer secondary winding combination 1 A-phase N1 turns, B-phase-N4 turns, C-phase-N4 turns;
  • Transformer secondary winding combination 2 A-phase N2 turns, B-phase N3 turns, C-phase-N5 turns;
  • Transformer secondary winding combination 3 A-phase N3 turns, B-phase N2 turns, C-phase-N5 turns;
  • Transformer secondary winding combination 4 A phase - N4 turns, B phase N1 turns, C phase - N4 turns;
  • Transformer secondary winding combination 5 Phase A-N5 turns, Phase B N2 turns, Phase C N3 turns;
  • Transformer secondary winding combination 6 Phase A-N5 turns, Phase B N3 turns, Phase C N2 turns;
  • Transformer secondary winding combination 7 A phase - N4 turns, B phase - N4 turns, C phase N1 turns;
  • Transformer secondary winding combination 8 A-phase N3 turns, B-phase-N5 turns, C-phase N2 turns;
  • Transformer secondary winding combination 9 A-phase N2 turns, B-phase-N5 turns, C-phase N3 turns.
  • FIG. 1 shows the situation where n winding combinations are connected in star connection.
  • the N-phase AC power supply is input to the N-phase rectifier bridge formed by 2N rectifier diodes in the present invention, without a filter capacitor, a pulsating DC voltage with a very small ripple factor can be obtained, as shown in Figure 3, It can be seen that the ripple factor in Fig. 4 is significantly reduced compared with that of the traditional three-phase rectifier.
  • the 9-phase AC power can be obtained from the combination of the secondary windings of the three-phase AC transformer.
  • n-phase AC power supply a set of n sine wave voltage sources with equal amplitude, initial phase intervals of 360°/n, and balanced distribution;
  • N-phase AC power required by a multi-phase bridge rectification can be obtained by using the secondary winding of the three-phase AC transformer.
  • the secondary winding of the three-phase transformer can be composed of 9 groups of windings (3 windings in each group) to form a 9-phase AC power supply.
  • N1:N2:N3:N4:N5 Sin90°:Sin50°:Sin10°:Sin30°:Sin70° .
  • the current flowing out of the DC positive pole flows out of the phase with the highest AC power supply voltage, and its three windings induce the instantaneous value of the three-phase voltage of the secondary side at this time in proportion, and the sum of these three voltages is exactly at the highest value.
  • the voltage value of the AC power supply for this phase The situation at the DC negative output terminal is exactly the same, the current flowing from the DC negative pole flows into the most negative phase of the AC power supply voltage. Its three windings also induce the instantaneous value of the secondary three-phase voltage at this time in proportion, and the sum of these three voltages is just the voltage value of the most negative phase AC power supply.
  • the two groups (3 in each group) of winding combinations all flow the same current, but the number of turns of the three windings (including positive and negative polarity) is different, and corresponding to the sequential conduction of the 9 winding combinations, the current flows
  • the number of turns and polarity of the three windings are also changed in turn, so that the product of the number of turns of the conducting winding and the DC current will generate three stepped magnetic potentials close to sine waves on the three iron cores of the transformer.
  • Figure 4 roughly shows the corresponding relationship between the step wave magnetic potential W ⁇ I of the primary side and the secondary side of the iron core of the three-phase transformer (taking the phase whose initial phase is 0 as an example). The figure shows that the current flowing out of the phase with the highest AC power supply voltage is generated on the secondary winding of the transformer. The generated magnetic potential W vice ⁇ I input and the magnetic potential W primary ⁇ I primary of the current induced on the primary winding of the transformer.
  • W original ⁇ I original W sub ⁇ I out +W sub ⁇ I in .
  • the 9 groups of different combinations of the secondary windings of the three-phase AC transformer can be connected in star form or in polygonal form. Since the outer angle of a regular polygon is equal to the central angle of the inscribed circle corresponding to each side, no matter whether the star connection method or the polygon connection method is adopted, 9 different combinations of the secondary windings of the same three-phase AC transformer can be used.
  • the respective 9-phase AC voltage power supplies can be obtained, but the voltage amplitudes of the two are different.
  • the ratio of the voltage amplitudes of the two methods is:
  • n-phase AC power supply (where n is an odd number of ⁇ 5) on the stator winding, and output DC voltage and current through the n-phase bridge rectifier circuit. This situation occurs when there is only a single-phase AC power supply and no three-phase AC power supply, and it is necessary to generate an n-phase AC power supply from a single-phase AC power supply.
  • An alternating magnetic field with a fixed direction generated by the stator coil of a single-phase AC asynchronous motor can be decomposed into two rotating magnetic fields with equal magnitude and opposite direction.
  • the magnetic field generated by the induction current of the rotor coil will be able to offset the counter-rotating magnetic field, and finally synthesize a rotating magnetic field with the stator coil.
  • This rotating magnetic field successively cuts the coils evenly distributed in the stator core slots, so as to obtain an n-phase (where n is an odd number ⁇ 5) AC power supply we need.
  • Figure 5 shows the situation where nine winding combinations are connected in a polygonal connection.
  • the turn ratio of the 3 windings inside the 9 winding combination is the same as the star connection, but the turns should be compressed according to (2 ⁇ Sin20°:1).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Inverter Devices (AREA)

Abstract

本发明公开了一种电源电路及其应用,利用导磁铁芯上的导电绕组线圈之间的电磁感应关系,由给定的交流电源产生一个多相交流电源,并通过多相桥式整流电路,无需电容滤波,就直接作为纹波因数很小的直流电压源,输出直流电压和电流,从而从根本上消除了因电容滤波而导致的高次谐波;同时多相桥式整流电路从电网输入的电流将是正弦波或者是非常接近正弦波的阶梯波,从而无需功率因数校正就把交流侧产生的高次谐波减小到最小程度。

Description

一种电源电路及其应用 技术领域
本发明涉及电源技术领域,尤其涉及一种电源电路及其应用。
背景技术
目前电网向千家万户提供的都是交流电,而我们普遍使用的照明、电视、电声、电脑等用电设施,需要的都是直流电。另外所有需要调速的电力驱动设备(如电梯、电动汽车、高铁、精密机床等),以及所有需要精密调控的设备,需要的也都是直流电,都是要在设备端先把交流电变成直流电才能使用。
设备端将交流电变为直流电,一般都要经过整流和电容滤波。整流得到的脉动直流电压只有在滤波后才能成为稳定的直流电压。而采用电容滤波又使得交流侧电流为脉冲电流,出现大量高次谐波,需要再通过功率因数校正来消除,以达到相关标准中关于高次谐波的规定(国家标准GB 17625.1-2012/IEC 61000-3-2:2009:电磁兼容限值谐波电流发射限值(设备每相输入电流≤16A))。该国家标准为强制性标准,凡不符合强制性标准的产品,一律禁止生产、销售和进口。因此,任何用电设备的产品,是否需要通过功率因数校正消除高次谐波,都是必须考虑的问题。
但是功率因数校正是一个非常复杂的事情,它将极大地增加直流电源的成本,特别是大功率功率因数校正更是这样。
发明内容
有鉴于此,本发明提供了一种电源电路及其应用,利用导磁铁芯上的导电绕组线圈之间的电磁感应关系,由给定的交流电源产生一个多相交流电源,并通过多相桥式整流电路,无需电容滤波,就直接作为纹波因数很小的直流电压源,输出直流电压和电流,从而从根本上消除了因电容滤波而导致的高次谐波;同时多相桥式整流电路从电网输入的电流将是正弦波或者是非常接近正弦波的阶梯波,从而无需功率因数校正就把交流侧产生的高次谐波减小到最小程度。
一方面,本发明提供一种电源电路,利用导磁铁芯上的的导电绕组线圈之间的电磁感应关系,由给定的交流电源产生一个n相交流电源,并通过n相桥式整流电路,无需电容滤波,就直接作为纹波因数很小的直流电压源,输出直流电压和电流;其中n≧5的奇数;
所述n相交流电源是指一组幅值相等,初相位依次间隔360°/n,均衡分布的n个正弦波电压源;
所述n相桥式整流电路由n组两个串联的整流二极管组成,所述两个串联的整流二极管都是一个二极管的阴极接另一个二极管的阳极,每个所述连接点分别接所述n相交流电源的n相输出端,所有所述n组两个串联的整流二极管的另一个阴极连接起来作为n相桥式整流电路的输出正极,所有所述n组两个串联的整流二极管的另一个阳极连接起来作为n相桥式整流电路的输出负极。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,其中n≧7的奇数。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,利用三相交流电机定子绕组产生的旋转磁场在定子绕组上感应出来的一个3m相交流电源,通过3m相桥式整流电路输出直流电压和电流;其中m≧3的奇数,3m=n。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,其中m≧5的奇数。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,利用单相交流异步电动机运行时旋转磁场在定子绕组上感应出来的一个n相交流电源,通过n相桥式整流电路输出直流电压和电流。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,其中n≧7的奇数。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述n相交流电源是一个3h相交流电源,它由三相交流变压器的副边绕组的3h组不同的绕组组合组成,其输出的3h个交流电压源通过3h相桥式整流电路输出直流电压和电流;其中h≧3的奇数。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,h≧5的奇数。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述三相交流变压器的副边绕组的3h组不同的绕组组合采用星形连接方式,具体为:3h个绕组组合的一端接在一起,而另一端作为3h相交流电源的输出端,通过3h相桥式整流电路输出直流电压和电流。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述三相交流变压器的副边绕组的3h组不同的绕组组合采用多边形连接方式,具体为:3h个绕组组合依次首尾相接,并且最后一组的尾与第一组的首相接,形成一个闭环,得到3h个连接点,3h个连接点作为3h相交流电源的输出端,并通过3h相桥式整流电路输出直流电压和电流。
另一方面本发明提供一种如上任一所述的电源电路的应用,所述电源电路应用在产 品端,作为产品电源的全部或一部分与交流电输入端连接。
与现有技术相比,上述技术方案中的一个技术方案具有如下优点或有益效果:本发明的整流电路可以针对多相交流电进行整流,无需后续滤波即可得到稳定的直流电压;
上述技术方案中的另一个技术方案具有如下优点或有益效果:本发明的整流电路省去了滤波步骤,从根本上消除了因滤波带来的大量高次谐波,从而无需用电设备再去考虑高次谐波去除问题,省略了功率因数校正步骤,简化了用电设备的设计和生产成本;
上述技术方案中的另一个技术方案具有如下优点或有益效果:本发明的整流电路可以应用在供电端或供电路径的中间端,从而为电网以直流电的形式为家家户户供电提供可能,也为用户的直流电设备与电源的衔接提供便利。
附图说明
为了更清楚地说明本发明的技术方案,下面将对所需要使用的附图作简单的介绍。显而易见,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本发明一个实施例提供的多相桥式整流结构框图,n个三相交流变压器的副边绕组组合之间采用星形接法;
图2是本发明一个实施例提供的9相交流电源的电压波形图;
图3是本发明一个实施例提供的9相桥式整流电路整流后的输出直流电压波形图;
图4是本发明一个实施例提供的由3相变压器副边绕组的组合产生的9相交流电源接9相桥式整流电路时,三相变压器的铁芯上原边和副边的阶梯波磁势W·I的对应关系图。
图5是本发明一个实施例提供的三相交流变压器的副边绕组组合之间采用多边形接法得到9相交流电源的多相桥式整流装置;
图6是本发明一个实施例提供的正多边形(正9边形)外角与外接圆圆心角的关系,对应由相同的三相交流变压器的副边绕组组合的多边形接法和星形接法都可以得到各自的9相交流电源的情况。
具体实施方式
下面给出一个由3相变压器副边绕组产生9相交流电源的9相桥式整流电路作为实施例,讨论一个具体的实施方式。
9相桥式整流电路的框图如图1所示,其中n=9。
其中三相交流变压器的全部副边绕组的匝数有5种,相互之间匝数比为: N1:N2:N3:N4:N5=Sin90°:Sin50°:Sin10°:Sin30°:Sin70°。
这5种匝数加上正负极性,三个一组,串联起来,组成这所有需要的9种变压器副边绕组的组合,它们是:
变压器副边绕组组合1:A相N1匝,B相-N4匝,C相-N4匝;
变压器副边绕组组合2:A相N2匝,B相N3匝,C相-N5匝;
变压器副边绕组组合3:A相N3匝,B相N2匝,C相-N5匝;
变压器副边绕组组合4:A相-N4匝,B相N1匝,C相-N4匝;
变压器副边绕组组合5:A相-N5匝,B相N2匝,C相N3匝;
变压器副边绕组组合6:A相-N5匝,B相N3匝,C相N2匝;
变压器副边绕组组合7:A相-N4匝,B相-N4匝,C相N1匝;
变压器副边绕组组合8:A相N3匝,B相-N5匝,C相N2匝;
变压器副边绕组组合9:A相N2匝,B相-N5匝,C相N3匝。
图1给出的是n个绕组组合按星形接法连接的情况。将该N相交流电源输入到本发明用2N个整流二极管组成的N相整流桥上,在没有滤波电容的情况下,将能得到一个波纹因数很小的脉动直流电压,如图3所示,可以看出,图4的波纹因数相较于传统三相整流的波纹因数有明显的减小。
我们知道,一个连续可导函数的极值处的变化率为0。具体到正弦函数,它的最大值和最小值处的值都很小变化,绝对值都接近1。譬如:
Sin80°=Sin100°=0.98481。
以9相桥式整流电路为例,因为Sin80°=Sin100°=0.984819,这时输出直流脉动电压将在极值与极值的0.984819之间变化,其纹波因数将小于1%。这样小的纹波因数,根本就没有滤波的必要了。同样的,如果取n=15,因为Sin84°=0.99452,纹波因数将小于0.3%,更加没有滤波的必要。
这个9相交流电源,可以从三相交流变压器的副边绕组的组合上获取。
由于
Figure PCTCN2022125428-appb-000001
Figure PCTCN2022125428-appb-000002
因为
Figure PCTCN2022125428-appb-000003
所以
Figure PCTCN2022125428-appb-000004
Figure PCTCN2022125428-appb-000005
则表示,用三相变压器副边的3个分属3相、匝数按一定比例的绕组上的电压累加,可以得到一个任意初相位
Figure PCTCN2022125428-appb-000006
的正弦量。
Figure PCTCN2022125428-appb-000007
(其中N为大于5的整数,n=0,1,2,……N-1),则得到N个正弦量
Figure PCTCN2022125428-appb-000008
Figure PCTCN2022125428-appb-000009
(其中n=0,1,2,…N-1)。
这就是我们所说的n相交流电源:一组振幅相等,初相位依次间隔360°/n,均衡分布的n个正弦波电压源;
从而得到结论:用三相交流变压器的副边绕组,可以得到一个多相桥式整流所需要的N相交流电源。
特别是,在N=3·3=9时,三相变压器的副边绕组可以由9组绕组(每组3个绕组)组成一个9相交流电源。
这里的三相交流变压器的全部副边绕组的匝数有5种,相互之间匝数比为:N1:N2:N3:N4:N5=Sin90°:Sin50°:Sin10°:Sin30°:Sin70°。
依靠这个匝数比以及绕组极性的正负,我们一方面能保证由9组绕组(每组3个绕组)组成一个9相交流电源,同时保证在输出直流电流时在变压器三个原边绕组上感应出三个逼近相位差120°的正弦波的阶梯波电流。
我们从整流桥侧看多相交流电源:
直流正极流出的电流由交流电源电压最高的一相流出,它的三个绕组上按比例感应出此时副边三相电压的瞬时值,而且这三个电压相加正好是处在最高值的该相交流电源的电压值。直流负极输出端的情况也完全相仿,由直流负极流入的电流流入交流电源电压最负的一相。它 的三个绕组上也是按比例感应出此时副边三相电压的瞬时值,而且这三个电压相加正好是处在最负的该相交流电源的电压值。此时这两组(每组3个)绕组组合都流过同一个电流,但是三个绕组的匝数(包括极性正负)不同,而且对应9个绕组组合的先后导通,流过电流的三个绕组的匝数和极性也依次变换,使得导通的绕组的绕组匝数与直流电流的乘积将在变压器三个铁芯上产生三个逼近正弦波的阶梯磁势来。
图4大致表示三相变压器的铁芯上原边和副边的阶梯波磁势W·I的对应关系(以初相位为0的那一相为例)。图中示出了由交流电源电压最高的一相流出的电流在变压器副边绕组上产生的磁势W ·I 、由交流电源电压最负的一相流入的电流在变压器副边绕组上产生的磁势W ·I 以及变压器原边绕组上感应产生的电流的磁势W ·I
三者的关系是:W ·I =W ·I +W ·I
所述三相交流变压器的副边绕组的9组不同组合可以采用星形连接方式,也可以采用多边形连接方式。由于正多边形的外角等于每条边对应的内接圆的圆心角,所以不管是采用星形连接方式,还是采用多边形连接方式,由相同的三相交流变压器的副边绕组的9组不同组合都可以得到各自的9相交流电压电源,但是两者的电压的幅值不同,两种方式方式电压幅值的比值为:
多边形连接方式电压幅值:星形连接方式电压幅值=1:2·Sin20°。
除此之外,也可以利用三相交流电动机定子绕组产生的旋转磁场在定子绕组上感应出来一个3h相(其中h为≧3的奇数)交流电源,并通过3h相桥式整流电路输出直流电压和电流。
三相交流电动机接通三相交流电源时,其定子绕组将在铁芯上产生一个旋转磁场。这个旋转磁场先后切割均匀分布在定子铁芯槽中的线圈,就能得到一个我们需要的3h相(其中h为≧3的奇数)交流电源。
还可以利用单相交流异步电动机运行时旋转磁场在定子绕组上感应出来一个n相交流电源(其中n为≧5的奇数),通过n相桥式整流电路输出直流电压和电流。这种情况出现在只有单相交流电源,没有三相交流电源,需要由单相交流电源来生成一个n相交流电源的时候。
单相交流异步电动机定子线圈产生的一个方向固定的交变磁场,可以分解为大小相等,方向相反的两个旋转磁场。单相异步电动机运转时,转子线圈感应电流生成的磁场将能够抵消那个反向旋转的磁场,最后与定子线圈合成出一个旋转磁场。这个旋转磁场先后切割均匀分布在定子铁芯槽中的线圈,就能得到一个我们需要的n相(其中n为≧5的奇数)交流 电源。
图5是9个绕组组合按多边形接法连接的情况。9个绕组组合内部3个绕组的匝数比与星形接法相同,但是匝数应该按(2·Sin20°:1)进行压缩。
应当明确,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。

Claims (10)

  1. 一种电源电路,其特征在于:利用导磁铁芯上的导电绕组线圈之间的电磁感应关系,由给定的交流电源产生一个n相交流电源,并通过n相桥式整流电路后直接作为纹波因数很小的直流电压源,输出直流电压和电流;其中n为≧5的奇数;
    所述n相交流电源是指一组幅值相等,初相位依次间隔360O/n,均衡分布的n个正弦波电压源;
    所述n相桥式整流电路由n组两个串联的整流二极管组成,所述两个串联的整流二极管都是一个二极管的阴极接另一个二极管的阳极,每个连接点分别接所述n相交流电源的n相输出端,所有所述n组两个串联的整流二极管的另一个阴极连接起来作为n相桥式整流电路的输出正极,所有所述n组两个串联的整流二极管的另一个阳极连接起来作为n相桥式整流电路的输出负极。
  2. 根据权利要求1所述的电源电路,其中n为≧7的奇数。
  3. 根据权利要求1所述的电源电路,其特征在于:利用三相交流电机定子绕组产生的旋转磁场在定子绕组上感应出来的一个3m相交流电源,通过3m相桥式整流电路输出直流电压和电流;其中m为≧3的奇数,3m=n。
  4. 根据权利要求3所述的电源电路,其中m为≧5的奇数。
  5. 根据权利要求1所述的电源电路,其特征在于:利用单相交流异步电动机运行时旋转磁场在定子绕组上感应出来的一个n相交流电源,通过n相桥式整流电路输出直流电压和电流。
  6. 根据权利要求5所述的电源电路,其中n为≧7的奇数。
  7. 根据权利要求1所述的电源电路,其特征在于:所述n相交流电源是一个3h相交流电源,它由三相交流变压器的副边绕组的3h组不同的绕组组合组成,其输出的3h个交流电压源通过3h相桥式整流电路输出直流电压和电流;其中h为≧3的奇数。
  8. 根据权利要求7所述的电源电路,其特征在于:所述三相交流变压器的副边绕组的3h组不同的绕组组合采用星形连接方式,具体为:3h个绕组组合的一端接在一起,而另一端作为3h相交流电源的输出端,通过3h相桥式整流电路输出直流电压和电流。
  9. 根据权利要求7所述的电源电路,其特征在于:所述三相交流变压器的副边绕组的3h组不同的绕组组合采用多边形连接方式,具体为:3h个绕组组合依次首尾相接,并且最后一组的尾与第一组的首相接,形成一个闭环,得到3h个连接点,3h个连接点作为3h相交流电源的输出端,并通过3h相桥式整流电路输出直流电压和电流。
  10. 一种如权利要求1-9任一所述的电源电路的应用,其特征在于,所述电源电路应用在产品端,作为产品电源的全部或一部分与交流电输入端连接。
PCT/CN2022/125428 2022-01-26 2022-10-14 一种电源电路及其应用 WO2023142537A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210095101.6A CN114553026A (zh) 2022-01-26 2022-01-26 一种电源电路及其应用
CN202210095101.6 2022-01-26
CN202211242958.2 2022-10-11
CN202211242958.2A CN115528928A (zh) 2022-01-26 2022-10-11 一种电源电路及其应用

Publications (1)

Publication Number Publication Date
WO2023142537A1 true WO2023142537A1 (zh) 2023-08-03

Family

ID=81674467

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2022/125429 WO2023142538A1 (zh) 2022-01-26 2022-10-14 一种逆变装置及其应用
PCT/CN2022/125428 WO2023142537A1 (zh) 2022-01-26 2022-10-14 一种电源电路及其应用

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125429 WO2023142538A1 (zh) 2022-01-26 2022-10-14 一种逆变装置及其应用

Country Status (2)

Country Link
CN (3) CN114553026A (zh)
WO (2) WO2023142538A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114553026A (zh) * 2022-01-26 2022-05-27 张逸兴 一种电源电路及其应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2684454Y (zh) * 2004-03-25 2005-03-09 南京航空航天大学 低输入电压大功率三相400Hz逆变器
JP2005204451A (ja) * 2004-01-16 2005-07-28 Sony Corp スイッチング電源回路
CN101013858A (zh) * 2006-12-14 2007-08-08 上海交通大学 级联多重化矩阵整流器
CN201063547Y (zh) * 2007-06-14 2008-05-21 北京中纺锐力机电有限公司 开关磁阻电动机调速系统的功率整流电源
CN101873067A (zh) * 2010-06-18 2010-10-27 华南理工大学 高频变压器三角-星型联结的高增益直流变换器
CN102412747A (zh) * 2010-09-25 2012-04-11 中国江南航天工业集团林泉电机厂 一种直流电转换为交流电的方法及装置
CN103269170A (zh) * 2013-04-28 2013-08-28 华中科技大学 一种斩波式等离子弧切割的电源电路
CN114553026A (zh) * 2022-01-26 2022-05-27 张逸兴 一种电源电路及其应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1117663A (zh) * 1994-08-09 1996-02-28 王东奎 一种变流变频的方法和装置
CN1787345B (zh) * 2005-11-11 2011-03-30 李荟敏 无刷直流电机及其换流与控制方法
JP2013021825A (ja) * 2011-07-12 2013-01-31 Japan Radio Co Ltd 電源装置
CN107947619A (zh) * 2017-12-14 2018-04-20 北京交通大学 适用于多相系统具有共模电压抑制能力的两电平载波移相pwm调制方法
CN111786580B (zh) * 2020-07-23 2022-07-19 哈尔滨工业大学(威海) 一种使用直流侧电压谐波注入法的串联型40脉波整流器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005204451A (ja) * 2004-01-16 2005-07-28 Sony Corp スイッチング電源回路
CN2684454Y (zh) * 2004-03-25 2005-03-09 南京航空航天大学 低输入电压大功率三相400Hz逆变器
CN101013858A (zh) * 2006-12-14 2007-08-08 上海交通大学 级联多重化矩阵整流器
CN201063547Y (zh) * 2007-06-14 2008-05-21 北京中纺锐力机电有限公司 开关磁阻电动机调速系统的功率整流电源
CN101873067A (zh) * 2010-06-18 2010-10-27 华南理工大学 高频变压器三角-星型联结的高增益直流变换器
CN102412747A (zh) * 2010-09-25 2012-04-11 中国江南航天工业集团林泉电机厂 一种直流电转换为交流电的方法及装置
CN103269170A (zh) * 2013-04-28 2013-08-28 华中科技大学 一种斩波式等离子弧切割的电源电路
CN114553026A (zh) * 2022-01-26 2022-05-27 张逸兴 一种电源电路及其应用

Also Published As

Publication number Publication date
WO2023142538A1 (zh) 2023-08-03
CN115395804A (zh) 2022-11-25
CN115528928A (zh) 2022-12-27
CN114553026A (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
CN101331671A (zh) 高频调制/解调多相整流装置
WO2023142537A1 (zh) 一种电源电路及其应用
CN108631614A (zh) 使用直流侧电压注入法的串联型24脉波整流器
CN215815555U (zh) 多相自耦变压器及整流器系统
Abdollahi et al. Application of pulse doubling in star-connected autotransformer based 12-pulse AC-DC converter for power quality improvement
Abdollahi Study of delta/polygon-connected transformer-based 36-pulse ac-dc converter for power quality improvement
Abdollahi et al. Application of pulse doubling in hexagon-connected transformer-based 20-pulse AC-DC converter for power quality improvement
Abdollahi T-connected autotransformer based 36-pulse AC-DC converter for power quality improvement
Abdollahi et al. Fork-connected autotransformer based 30-pulse ac-dc converter for power quality improvement
RU180741U1 (ru) Полупроводниковый выпрямитель
JP3696855B2 (ja) 整流装置
Abdollahi Induction motor drive based on direct torque controlled used multi-pulse AC-DC rectifier
Roginskaya et al. Installed power of transformers for equivalent multiphase rectification circuits
Singh et al. Zigzag autotransformer based full-wave ac-dc converters
CN201075802Y (zh) 自励发电机多相励磁装置
RU2709455C1 (ru) 12-пульсный преобразователь
CN105281584A (zh) 节能型全功率系列整流直流电源装置
RU152236U1 (ru) Бесконтактная система генерирования постоянного тока
CN101083418B (zh) 自励发电机多相励磁装置
CN113315115B (zh) 一种多相风力发电系统直流并网结构及其控制方法
Prakash et al. Harmonic Mitigation in 12-Pulse Bridge Rectifier Using DC Current Imposition Technique
Mytsyk et al. Issue of Structural-Parametric Optimization of Fed-Converted Generators
RU122213U1 (ru) Автотрансформаторно-выпрямительное устройство
RU2280311C1 (ru) Трехфазное трансформаторно-выпрямительное устройство с двухканальным преобразованием (варианты)
CN201536340U (zh) 自励发电机多相励磁装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22923337

Country of ref document: EP

Kind code of ref document: A1