RU2280311C1 - Трехфазное трансформаторно-выпрямительное устройство с двухканальным преобразованием (варианты) - Google Patents

Трехфазное трансформаторно-выпрямительное устройство с двухканальным преобразованием (варианты) Download PDF

Info

Publication number
RU2280311C1
RU2280311C1 RU2004134706/09A RU2004134706A RU2280311C1 RU 2280311 C1 RU2280311 C1 RU 2280311C1 RU 2004134706/09 A RU2004134706/09 A RU 2004134706/09A RU 2004134706 A RU2004134706 A RU 2004134706A RU 2280311 C1 RU2280311 C1 RU 2280311C1
Authority
RU
Russia
Prior art keywords
phase
windings
transformer
circuits
reactor
Prior art date
Application number
RU2004134706/09A
Other languages
English (en)
Other versions
RU2004134706A (ru
Inventor
хин Сергей Федорович Кон (RU)
Сергей Федорович Коняхин
Владимир Викторович Михеев (RU)
Владимир Викторович Михеев
Геннадий Сергеевич Мыцык (RU)
Геннадий Сергеевич Мыцык
Виталий Александрович Цишевский (RU)
Виталий Александрович Цишевский
Original Assignee
Открытое Акционерное Общество "Агрегатное Конструкторское Бюро "Якорь"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое Акционерное Общество "Агрегатное Конструкторское Бюро "Якорь" filed Critical Открытое Акционерное Общество "Агрегатное Конструкторское Бюро "Якорь"
Priority to RU2004134706/09A priority Critical patent/RU2280311C1/ru
Publication of RU2004134706A publication Critical patent/RU2004134706A/ru
Application granted granted Critical
Publication of RU2280311C1 publication Critical patent/RU2280311C1/ru

Links

Images

Landscapes

  • Rectifiers (AREA)

Abstract

Изобретение относится к электротехнике, в частности силовой преобразовательной технике, и может быть использовано в качестве выпрямителя, имеющего улучшенную электромагнитную совместимость с нагрузкой и сетью за счет максимального использования потенциальных возможностей двухканального преобразования энергетического потока. Устройство содержит два соединенных параллельно по выходу трехфазных выпрямительных моста (4, 5) входы которых присоединены соответственно к цепям трехфазных вторичных обмоток (3) трансформаторного узла (1). В цепи вторичных обмоток (3) (по первому варианту) или первичных обмоток (по второму варианту), соединенные по схемам «треугольник» - «звезда» пофазно последовательно включены первые (6) и вторые (7) обмотки трехфазного уравнительного реактора. Направление намотки первых (6) и вторых (7) обмоток уравнительного реактора относительно соединенных с ними трехфазных обмоток выбрано встречным и соответственно согласным либо согласным и соответственно встречным. Введение уравнительного реактора, отношение числа витков обмоток которого такое же, что и отношение числа витков фазных обмоток, соединенных по схемам различной топологии (от 1,6 до 1,8) исключает разбаланс токов в каналах и компенсирует амплитудную несимметрию напряжений между вторичными трансформаторными обмотками каналов выпрямления. Технический результат - снижение уровня пульсаций выходного напряжения и улучшение массогабаритных и показателей. 2 н. и 6 з.п. ф-лы, 5 ил.

Description

Изобретение относится к области электротехники, в частности к силовой преобразовательной технике, и может быть использовано при проектировании выпрямителей, обладающих улучшенной электромагнитной совместимостью с нагрузкой и сетью.
Известно трехфазное трансформаторно-выпрямительное устройство с двухканальным преобразованием (1), содержащее два соединенных параллельно по выходу трехфазных выпрямительных моста и трансформаторный узел в виде двух трехфазных трансформаторов, первичная и вторичная трехфазные обмотки у одного из которых выполнены по схемам одной топологии, например «звезда-звезда», а первичная и вторичная трехфазные обмотки у другого - по схемам различной топологии: «треугольник»-«звезда» соответственно. Вторичные трехфазные обмотки каждого из трансформаторов подключены к входам одного из двух трехфазных выпрямительных мостов и выполняются одинаковыми по числу витков (1). Уравнительный реактор, включенный в выходные цепи выпрямителей, обеспечивает одновременную параллельную работу двух мостов с временем проводимости каждого вентиля мостов 120 эл. градусов, что обеспечивает снижение в
Figure 00000002
действующего значения тока в обмотках трансформаторов и, как следствие, снижение их установленной (габаритной) мощности в сравнении с вариантом, когда уравнительный реактор отсутствует.
Недостатком этого решения является несимметричная токовая загрузка каналов (т.е. выпрямительных мостов с их трансформаторами), обусловленная практической невозможностью точного выполнения принципиально необходимой разницы в
Figure 00000003
между коэффициентами трансформации трансформаторов, а также практически имеющейся разницей во внутренних сопротивлениях каналов из-за различных сопротивлений вторичных обмоток. Возникающая при этом амплитудная несимметрия во входных напряжениях мостов в единицы или даже доли % трансформируется в более значительный разбаланс токов в каналах, который может достигать нескольких десятков % или даже нескольких раз. При этом возрастают также и пульсации выпрямленного напряжения, а в его спектре появляются гармоники более низкой частоты, что означает существенное снижение качества выпрямленного напряжения. Исключить эти негативные факторы можно за счет увеличения установленной мощности трансформаторов и выпрямительных мостов, а также введения выходного сглаживающего фильтра, что неизбежно приведет к ухудшению массогабаритных показателей устройства.
Наиболее близким к изобретению устройством является трехфазное трансформаторно-выпрямительное устройство с двухканальным преобразованием, содержащее соединенные параллельно по выходу два выпрямительных моста, входы каждого из которых присоединены к вторичным трехфазным обмоткам трансформатора, первые из которых соединены по схеме «треугольник», а вторые - по схеме «звезда», причем отношение чисел витков первых вторичных обмоток ко вторым должно быть равным
Figure 00000003
. В выходной цепи устройства также установлен двухобмоточный уравнительный реактор (2).
Вышеуказанные недостатки устройства (1) имеют место и в известном устройстве (2), причем проявляются они еще в большей мере при работе трансформатора на повышенной частоте, например 400 Гц с первичным напряжением 115/200 В при формировании выпрямленного напряжения низкого уровня, например порядка 30 В. В этом случае вторичные обмотки трансформатора характеризуются малым числом витков (значениями порядка 10-20), а необходимое условие соблюдения требуемого отношения
Figure 00000003
между числами их витков здесь выполняется еще хуже: даже небольшая амплитудная несимметрия менее 1% приводит к разбалансу токов в каналах до нескольких десятков % и к существенному увеличению пульсаций выпрямленного напряжения. Такой характер процессов, в конечном счете, ухудшает массогабаритные показатели устройства.
Положительным результатом, которого можно достичь при использовании обоих вариантов данного изобретения, является улучшение массогабаритных показателей устройства за счет устранения разбаланса токов в каналах и улучшения качества выпрямленного напряжения.
Положительный результат по первому варианту исполнения устройства достигается тем, что в трехфазном трансформаторно-выпрямительном устройстве с двухканальным преобразованием, содержащем два трехфазных выпрямительных моста, параллельно соединенные выходные цепи которых предназначены для подключения нагрузки, входные выводы трехфазных выпрямительных мостов подсоединены к цепям входящих в состав трансформаторного узла трехфазных вторичных обмоток, соединенных по схемам «треугольник» и «звезда» соответственно, цепи трехфазных первичных обмоток трансформаторного узла подключены к соответствующим выводам трехфазной сети, а также уравнительный реактор (2), уравнительный реактор выполнен трехфазным и имеет по две обмотки в каждой из фаз, соответствующие первые обмотки уравнительного реактора включены последовательно в соответствующие им по фазе цепи трехфазных вторичных обмоток, соединенных по схеме «треугольник», а соответствующие вторые обмотки уравнительного реактора включены последовательно в соответствующие им по фазе цепи трехфазных вторичных обмоток, соединенных по схеме «звезда», причем направление намотки первых и вторых обмоток уравнительного реактора относительно соединенных с ними трехфазных вторичных обмоток выбрано согласным и соответственно встречным либо встречным и соответственно согласным, при этом отношение числа витков трехфазных вторичных обмоток, соединенных по схеме «треугольник» к числу витков трехфазных вторичных обмоток, соединенных по схеме «звезда», так же как и отношение числа витков каждой из первых обмоток к числу витков каждой из вторых обмоток уравнительного реактора, выбрано в диапазоне от 1,6 до 1,8. Трансформаторный узел может быть выполнен в виде одного трансформатора либо двух трансформаторов, цепи трехфазных первичных и вторичных обмоток которых являются соответствующими цепями трансформаторного узла, причем соединение цепей трехфазных первичных обмоток обоих трансформаторов выполнено по схемам одной топологии.
Положительный результат по второму варианту выполнения устройства достигается тем, что в трехфазном трансформаторно-выпрямительном устройстве с двухканальным преобразованием, содержащем два трехфазных выпрямительных моста, параллельно соединенные выходные цепи которых предназначены для подключения нагрузки, а их входные выводы подключены к соответствующим цепям трехфазных вторичных обмоток, входящих в состав трансформаторного узла, цепи трехфазных первичных обмоток которого присоединены к соответствующим выводам трехфазной сети, а также уравнительный реактор (2), трансформаторный узел выполнен в виде двух трансформаторов, цепи трехфазных первичных и вторичных обмоток которых являются упомянутыми аналогичными цепями трансформаторного узла, при этом цепи трехфазных вторичных обмоток обоих трансформаторов соединены по схемам одной топологии, при этом уравнительный реактор выполнен трехфазным и содержит в каждой из фаз по две обмотки, соответствующие первые из которых включены последовательно в соответствующие им по фазе цепи трехфазных первичных обмоток первого трансформатора, соединенных по схеме «треугольник», а вторые обмотки уравнительного реактора включены последовательно в соответствующие им по фазе цепи первичных трехфазных обмоток второго трансформатора, соединенных по схеме «звезда», причем направление намотки первых и вторых обмоток уравнительного реактора относительно соединенных с ними трехфазных первичных обмоток выбрано согласным и соответственно встречным либо встречным и соответственно согласным, при этом отношение числа витков каждой из трехфазных первичных обмоток первого трансформатора к числу витков каждой из трехфазных первичных обмоток второго трансформатора, так же, как и отношение числа витков каждой из первых обмоток к числу витков каждой из вторых обмоток уравнительного реактора выбрано в диапазоне от 1,6 до 1,8.
В обоих вариантах исполнения устройства первые и вторые обмотки уравнительного реактора могут быть размещены пофазно на соответствующих трех отдельных магнитопроводах либо на кернах трехстержневого магнитопровода.
На Фиг.1 и Фиг.2 представлены электрические схемы устройства по первому варианту исполнения с одним трансформатором и двумя трансформаторами соответственно.
На Фиг.3 изображена электрическая схема устройства по второму варианту исполнения.
На Фиг.4 и Фиг.5 приведены временные диаграммы, поясняющие работу устройства.
Трехфазное трансформаторно-выпрямительное устройство с двухканальным преобразованием (Фиг.1, 2, 3) содержит трансформаторный узел 1, входящие в его состав цепи трехфазных первичных обмоток 2 подключены к выводам трехфазной сети, а цепи трехфазных вторичных обмоток 3 - к входам соответствующих трехфазных выпрямительных мостов 4, 5, выходные цепи которых, служащие для подключения нагрузки, присоединены параллельно друг другу. В каждую из фаз цепей трехфазных обмоток трансформаторного узла 1 включены первые 6 и вторые 7 обмотки трехфазного уравнительного реактора.
По первому варианту выполнения устройства трансформаторный узел 1 выполнен в виде одного трансформатора (Фиг.1) и двух трансформаторов (Фиг.2). Цепи трехфазных вторичных обмоток 3, соответствующие выпрямительным мостам 4, 5, соединены по схемам с различной топологией: «звезда»-«треугольник» либо «треугольник»-«звезда». Первые обмотки 6 уравнительного реактора включены последовательно в соответствующие им по фазе цепи трехфазных вторичных обмоток трансформаторного узла 1, соединенных по схеме «треугольник». Вторые обмотки 7 уравнительного реактора включены последовательно в соответствующие им по фазе цепи трехфазных вторичных обмоток 3 трансформаторного узла 1, соединенные по схеме «звезда». При выполнении трансформаторного узла в виде двух трансформаторов (Фиг.2) соединение цепей их трехфазных первичных обмоток 2 выполнено по идентичным по топологии схемам.
По второму варианту выполнения устройства (Фиг.3) трансформаторный узел 1 выполнен в виде двух трехфазных трансформаторов, цепи трехфазных вторичных обмоток 3 которых соединены по идентичным по топологии схемам, а цепи первичных обмоток 2 - по различным. Первые из обмоток 6 уравнительного реактора включены последовательно в соответствующие им по фазе цепи трехфазных первичных обмоток 2 первого трансформатора, соединенные по схеме «треугольник» а вторые обмотки 7 - последовательно в цепи первичных обмоток второго трансформатора, соединенные по схеме «звезда». Направление намотки первых 6 и вторых 7 обмоток уравнительного реактора относительно соединенных с ними трехфазных вторичных 3 (по первому варианту) и первичных 2 (по второму варианту) обмоток выбрано встречным и соответственно согласным либо согласным и соответственно встречным. Отношение чисел витков трехфазных вторичных 3 (для первого варианта) и первичных (для второго варианта) обмоток трансформаторного узла, соединенных по схеме «треугольник» к числу витков аналогичных цепей, соединенных по схеме «звезда», так же, как и отношение чисел витков каждой из первых обмоток к числу витков каждой из вторых обмоток в каждой из фаз уравнительного реактора выбрано в диапазоне от 1,6 до 1,8. В обоих вариантах исполнения обмотки 6, 7 каждой из фаз уравнительного реактора, могут располагаться на отдельных (однофазных) магнитопроводах или на кернах трехстержневого (трехфазного) магнитопровода.
Работа устройства
Преобразование энергетического потока с использованием двух выпрямительных мостов характеризует техническое решение как выпрямительное устройство с двухканальным преобразованием, каждый канал которого образован системой «трансформатор - выпрямительный мост» и проектируется на половинную мощность нагрузки. Отличительной положительной особенностью такого устройства является особый режим работы выпрямительных мостов 4, 5, обеспечиваемый уравнительным реактором. Мосты работают не только в традиционном двухвентильном, но и в трехвентильном режимах. Это означает, что в любой момент времени в проводящем состоянии в каждом из мостов находятся или два, или три вентиля. Состояния эти одинаковы по длительности и чередуются, причем, если в первом мосте 4 двухвентильный режим, то во втором мосте 5 - трехвентильный. Длительность проводящего состояния каждого из вентилей в каждом из мостов 4, 5 в сравнении с прототипом увеличена с 2π/3 до 5π/6. Результатом этого является уменьшение среднего значения тока через вентили на 5,7%. Форма токов во вторичных обмотках трансформаторного узла 1 при этом так же улучшена: их коэффициент гармоник снижен в 2 раза. В результате чего действующее значение тока во вторичной трехфазной обмотке, соединенной по схеме «звезда», уменьшен на 7,7%, что привело к снижению ее габаритной мощности. Благодаря введению обмоток 6, 7 трехфазного уравнительного реактора во вторичные обмотки 3 (Фиг.1) происходит:
- во-первых, сведение двух различных форм токов в обмотках 3 каналов к одной форме с меньшими отклонениями от синусоидальной формы и, как следствие, снижение в одной из обмоток действующего значения тока. По сути, здесь реализуется функция фильтрации, откуда и происходит используемое в последнее время более адекватное название уравнительного реактора - «трансфильтр» или фильтр-трансформатор (см., например, Мыцык Г.С. Основы структурно-алгоритмического синтеза источников вторичного электропитания. М.: МЭИ, - 1989. - 109 с.);
- во-вторых, выравнивание фазных токов в каналах (с учетом проектно заложенной в эти токи разницы в
Figure 00000003
раз). Причиной разбаланса токов в каналах является практическая невозможность точного выполнения требуемой разницы в
Figure 00000003
раз между числами витков трехфазных обмоток 3 в каналах, а также естественная разница в активных сопротивлениях каналов, в результате чего и возникает амплитудная несимметрия напряжений на входе двух мостов и, как следствие, указанный разбаланс токов;
- в-третьих, значительное снижение уровня пульсаций выпрямленного напряжения, что позволяет отказаться от установки выходного сглаживающего фильтра, который ухудшает массогабаритные показатели устройства (Фиг.4, Фиг.5).
Использование уравнительного реактора на вторичной стороне трансформаторного узла (по первому варианту) предпочтительнее для тех случаев применения, когда требуется выпрямление сетевого напряжения с существенным повышением его уровня, например, применительно к промышленной сети выше 600 В. При необходимости понижения выпрямленного напряжения, например, для авиационных сетей до напряжения порядка 30 В реактор целесообразно устанавливать на первичной стороне (по второму варианту). Это объясняется тем, что осуществлять намотку катушек более тонким проводом технологичнее и, кроме того, в этом случае более точно выполняется требуемое соотношение между числами витков в каналах.
В данном изобретении осуществляется одновременная в любой момент времени работа мостов. Благодаря этому происходит точное равномерное деление токов в каналах, и на этапе проектирования нет необходимости предусматривать переразмеривание установленной мощности элементов.
На Фиг.4 и 5 приведены осциллограммы работы устройства. Для обоих вариантов процессы качественно идентичные.
На Фиг.4а показаны: фазное - 8 и линейное - 9 напряжения, а также фазный (он же линейный) ток 10, протекающий через одну из обмоток 3 и обмотку 6 в первом канале, выполненном на базе мостового выпрямителя 4 и соответствующих обмоток трансформаторного узла.
На Фиг.4б приведены: фазное (оно же линейное) напряжение - 11, а также фазный - 12 и линейный - 13 токи, протекающие через обмотки 3 и 7 во втором канале, выполненном на базе мостового выпрямителя 5 и соответствующих обмоток трансформаторного узла. Токи имеют одинаковую форму.
На Фиг.4в представлены: ток в нагрузке - 14 и ток - 15 на выходе выпрямительного моста 4 первого канала. Особенностью тока 15 является то, что он промодулирован частотой, равной частоте пульсаций выпрямленного тока 14.
На Фиг.4г показаны: ток в нагрузке - 14 и ток - 16 на выходе выпрямительного моста 5 второго канала. Здесь ток 16 также промодулирован той же частотой, но в противофазе с током 15.
На Фиг.5 представлены: фазное - 17 и линейное - 18 напряжения в первом канале до уравнительного реактора; линейное напряжение - 19 после уравнительного реактора (на входе моста 4) и разность напряжений 19 и 18, которая «оседает» на двух обмотках 6 уравнительного реактора.
Таким образом, введение уравнительного реактора во входные цепи выпрямительных мостов обеспечивает идеальную компенсацию амплитудной несимметрии напряжений между цепями трехфазных вторичных обмоток обоих каналов. В результате чего даже при отклонениях коэффициента трансформации в пределах от 1,6 до 1,8 полностью устраняется разбаланс токов в каналах. Кроме того, уменьшение уровня пульсаций и улучшение формы токов во вторичных обмотках трансформаторного узла позволило исключить выходной сглаживающий фильтр и минимизировать сечение обмоток трансформатора.
Данное решение может быть использовано в случаях, когда при выпрямлении трехфазного напряжения переменного тока требуется улучшенная электромагнитная совместимость выпрямителя с нагрузкой и сетью.
Источники информации
1. Полупроводниковые выпрямители, под ред. Ковалева Ф.И. и Мостковой Г.П. - М.: Энергия, с.480, 1967 г.
2. Розанов Ю.К. Основы силовой преобразовательной техники - М.: Энергия, с.392, 1979 г.

Claims (8)

1. Трехфазное трансформаторно-выпрямительное устройство с двухканальным преобразованием, содержащее два трехфазных выпрямительных моста, параллельно соединенные выходные цепи которых предназначены для подключения нагрузки, входные выводы трехфазных выпрямительных мостов подсоединены к цепям входящих в состав трансформаторного узла трехфазных вторичных обмоток, соединенных по схемам «треугольник» и «звезда» соответственно, при этом цепи трехфазных первичных обмоток трансформаторного узла подключены к соответствующим выводам трехфазной сети, а также уравнительный реактор, отличающийся тем, что уравнительный реактор выполнен трехфазным и имеет по две обмотки в каждой из фаз, соответствующие первые обмотки уравнительного реактора включены последовательно в соответствующие им по фазе цепи трехфазных вторичных обмоток, соединенных по схеме «треугольник», а соответствующие вторые обмотки уравнительного реактора включены последовательно в соответствующие им по фазе цепи трехфазных вторичных обмоток, соединенных по схеме «звезда», причем направление намотки первых и вторых обмоток уравнительного реактора относительно соединенных с ними трехфазных вторичных обмоток выбрано согласным и соответственно встречным либо встречным и соответственно согласным, при этом отношение числа витков трехфазных вторичных обмоток, соединенных по схеме «треугольник», к числу витков трехфазных вторичных обмоток, соединенных по схеме «звезда», так же, как и отношение числа витков каждой из первых обмоток к числу витков каждой из вторых обмоток уравнительного реактора, выбрано в диапазоне от 1,6 до 1,8.
2. Трехфазное трансформаторно-выпрямительное устройство с двухканальным преобразованием по п.1, отличающееся тем, что трансформаторный узел выполнен в виде одного трансформатора.
3. Трехфазное трансформаторно-выпрямительное устройство с двухканальным преобразованием по п.1, отличающееся тем, что трансформаторный узел выполнен в виде двух трансформаторов, цепи трехфазных первичных и вторичных обмоток которых являются соответствующими цепями трансформаторного узла, причем соединение цепей трехфазных первичных обмоток обоих трансформаторов выполнено по схемам одной топологии.
4. Трехфазное трансформаторно-выпрямительное устройство с двухканальным преобразованием по п.1, отличающееся тем, что первые и вторые обмотки уравнительного реактора размещены пофазно на соответствующих трех отдельных магнитопроводах.
5. Трехфазное трансформаторно-выпрямительное устройство с двухканальным преобразованием по п.1, отличающееся тем, что первые и вторые обмотки уравнительного реактора размещены пофазно на соответствующих кернах трехстержневого магнитопровода.
6. Трехфазное трансформаторно-выпрямительное устройство с двухканальным преобразованием, содержащее два трехфазных выпрямительных моста, выходные цепи которых, предназначенные для подключения нагрузки, соединены между собой параллельно, а их входные выводы подключены к соответствующим цепям трехфазных вторичных обмоток, входящих в состав трансформаторного узла, цепи трехфазных первичных обмоток которого присоединены к соответствующим выводам трехфазной сети, а также уравнительный реактор, отличающееся тем, что трансформаторный узел выполнен в виде двух трансформаторов, цепи трехфазных первичных и вторичных обмоток которых являются упомянутыми аналогичными цепями трансформаторного узла, цепи трехфазных вторичных обмоток обоих трансформаторов соединены по схемам одной топологии, а уравнительный реактор выполнен трехфазным и содержит в каждой из фаз по две обмотки, соответствующие первые из которых включены последовательно в соответствующие им по фазе цепи трехфазных первичных обмоток первого трансформатора, соединенных по схеме «треугольник», а вторые обмотки уравнительного реактора включены последовательно в соответствующие им по фазе цепи первичных трехфазных обмоток второго трансформатора, соединенных по схеме «звезда», причем направление намотки первых и вторых обмоток уравнительного реактора относительно соединенных с ними трехфазных первичных обмоток соответствующих трансформаторов выбрано согласным и соответственно встречным либо встречным и соответственно согласным, при этом отношение числа витков каждого из трехфазных первичных обмоток первого трансформатора к числу витков каждой из трехфазных первичных обмоток второго трансформатора, так же, как и отношение числа витков каждой из первых обмоток к числу витков каждой из вторых обмоток уравнительного реактора выбрано в диапазоне от 1,6 до 1,8.
7. Трехфазное трансформаторно-выпрямительное устройство с двухканальным преобразованием по п.6 отличающееся тем, что первые и вторые обмотки уравнительного реактора размещены пофазно на соответствующих трех отдельных магнитопроводах.
8. Трехфазное трансформаторно-выпрямительное устройство с двухканальным преобразованием по п.6, отличающееся тем, что первые и вторые обмотки уравнительного реактора размещены пофазно на соответствующих кернах трехстержневого магнитопровода.
RU2004134706/09A 2004-11-30 2004-11-30 Трехфазное трансформаторно-выпрямительное устройство с двухканальным преобразованием (варианты) RU2280311C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2004134706/09A RU2280311C1 (ru) 2004-11-30 2004-11-30 Трехфазное трансформаторно-выпрямительное устройство с двухканальным преобразованием (варианты)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2004134706/09A RU2280311C1 (ru) 2004-11-30 2004-11-30 Трехфазное трансформаторно-выпрямительное устройство с двухканальным преобразованием (варианты)

Publications (2)

Publication Number Publication Date
RU2004134706A RU2004134706A (ru) 2006-05-10
RU2280311C1 true RU2280311C1 (ru) 2006-07-20

Family

ID=36656732

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2004134706/09A RU2280311C1 (ru) 2004-11-30 2004-11-30 Трехфазное трансформаторно-выпрямительное устройство с двухканальным преобразованием (варианты)

Country Status (1)

Country Link
RU (1) RU2280311C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2569668C1 (ru) * 2014-09-11 2015-11-27 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет" МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Система генерирования постоянного тока
RU215572U1 (ru) * 2022-10-17 2022-12-19 Акционерное общество "Аэроприбор-Восход" Устройство преобразования трехфазного переменного напряжения в постоянное

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Полупроводниковые выпрямители. /Под ред. КОВАЛЕВА Ф.И. - М.: Энергия, 1967, с.480. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2569668C1 (ru) * 2014-09-11 2015-11-27 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет" МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Система генерирования постоянного тока
RU215572U1 (ru) * 2022-10-17 2022-12-19 Акционерное общество "Аэроприбор-Восход" Устройство преобразования трехфазного переменного напряжения в постоянное

Also Published As

Publication number Publication date
RU2004134706A (ru) 2006-05-10

Similar Documents

Publication Publication Date Title
JP6181132B2 (ja) 電力変換装置
Abdollahi et al. Inclusive design and implementation of novel 40-pulse AC–DC converter for retrofit applications and harmonic mitigation
Kalpana et al. Autoconnected-transformer-based 20-pulse AC–DC converter for telecommunication power supply
EA029591B1 (ru) Автотрансформаторная система, уменьшающая коэффициент гармоник
EP3651343A1 (en) Power conversion apparatus having scott transformer
Abdollahi A simple harmonic reduction method in 20-pulse AC–DC converter
Skibinski et al. Cost effective multi-pulse transformer solutions for harmonic mitigation in AC drives
RU2365019C1 (ru) Устройство для межфазного распределения тока
Xiao-Qiang et al. Thirty-six pulse rectifier scheme based on zigzag auto-connected transformer
Chivite-Zabalza et al. A passive 36-pulse AC–DC converter with inherent load balancing using combined harmonic voltage and current injection
JP2015527042A (ja) 不平衡な二相dcグリッドのための整流器回路及び方法
Singh et al. Power quality improvements in isolated twelve-pulse AC-DC converters using delta/double-polygon transformer
RU2280311C1 (ru) Трехфазное трансформаторно-выпрямительное устройство с двухканальным преобразованием (варианты)
CN110518785A (zh) 一种使用直流侧混合谐波注入法的大功率整流器
KR20240121889A (ko) 전원 회로 및 그 용도
RU2280312C1 (ru) Трехфазное трансформаторно-выпрямительное устройство с двухканальным преобразованием
RU44211U1 (ru) Трехфазное трансформаторно-выпрямительное устройство с двухканальным преобразованием (варианты)
JP3696855B2 (ja) 整流装置
Chivite-Zabalza et al. A simple, passive 24-pulse ac-dc converter with inherent load balancing using harmonic voltage injection
RU2488213C1 (ru) Многопульсное выпрямительное устройство и автотрансформатор
Sankala et al. Modular double-cascade converter
Oguchi Autotransformer-based 18-pulse rectifiers without using dc-side interphase transformers: Classification and comparison
RU2290741C2 (ru) Устройство для выпрямления трехфазного напряжения с трехканальным преобразованием энергетического потока (варианты)
RU2709455C1 (ru) 12-пульсный преобразователь
Prakash et al. Harmonic Mitigation in 12-Pulse Bridge Rectifier Using DC Current Imposition Technique

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20151201