WO2023142531A1 - 电芯模组及电池系统 - Google Patents

电芯模组及电池系统 Download PDF

Info

Publication number
WO2023142531A1
WO2023142531A1 PCT/CN2022/124938 CN2022124938W WO2023142531A1 WO 2023142531 A1 WO2023142531 A1 WO 2023142531A1 CN 2022124938 W CN2022124938 W CN 2022124938W WO 2023142531 A1 WO2023142531 A1 WO 2023142531A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
frame
battery cell
module according
battery
Prior art date
Application number
PCT/CN2022/124938
Other languages
English (en)
French (fr)
Inventor
邱文聪
李凡
陈智伟
陈朝海
Original Assignee
湖北亿纬动力有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖北亿纬动力有限公司 filed Critical 湖北亿纬动力有限公司
Priority to EP22826587.2A priority Critical patent/EP4243173A1/en
Publication of WO2023142531A1 publication Critical patent/WO2023142531A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • H01M50/264Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks for cells or batteries, e.g. straps, tie rods or peripheral frames
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of batteries, for example, to a battery module and a battery system.
  • a liquid cooling plate is arranged between two adjacent rows of cells in each group to pass through the liquid cooling plate.
  • the distance between two adjacent rows of battery cells is equal, and the distance is sufficient to install the liquid cooling plate, resulting in a large distance between the battery group and the group, making the arrangement of the battery module not compact , the overall size is relatively large, which increases the production cost of the cell module.
  • the present application provides a battery cell module and a battery system, which can solve the problems of uncompact structure and high cost of the battery cell module.
  • the present application provides a cell module, including: a cell fixing frame; multiple rows of cell groups, all cell groups are arranged on the cell fixing frame, and each row of cell groups includes multiple cells, the distance between each row of cell groups except the first row and the last row of cell groups (10) and a row of cell groups on the adjacent side is the first distance H, and the distance between the row of cell groups on the adjacent side
  • the interval between a row of cell groups on the side is the second interval h, and the first interval H is greater than the second interval h; the liquid cooling plate is arranged on the two rows of cell groups separated by the first interval H between, used to adjust the temperature of multiple battery cells close to the liquid cold plate.
  • the cell fixing frame includes a plurality of frame groups arranged along the second direction Y, each frame group includes two adjacent frame bodies arranged along the second direction Y, along the Two adjacent frames in the second direction Y are detachably connected, and each frame is provided with a plurality of mounting parts arranged along the first direction X, and each mounting part is used to install a battery cell, and the second direction Y is set at an included angle with the first direction X.
  • the center line of the plurality of mounting parts parallel to the first direction X is the first center line b
  • the center line of each frame body parallel to the first direction X is the second center line b.
  • Centerline a; the first centerline b and the second centerline a are spaced apart; the two first centerlines b of the mounting parts respectively provided on the two frame bodies of each frame group are respectively located at the The two sides of the two second centerlines a of the two frames mentioned above.
  • the center line of the plurality of mounting parts parallel to the first direction X is the first center line b
  • the center line of each frame body parallel to the first direction X is the second center line b.
  • each mounting portion is a mounting groove, and the end of each battery cell is fixed in the mounting groove.
  • each frame body includes a plurality of splicing seats arranged along the first direction X, two adjacent splicing seats are detachably connected, and each splicing seat is provided with a mounting portion.
  • each of the splicing seats is provided with a locking portion, and the two adjacent splicing seats are locked by the locking portion.
  • each of the splicing seats is a regular prism structure, and a side wall on each side of each of the splicing seats is provided with a clamping portion, and two adjacent frames pass through the clamping portion Card access.
  • each splicing seat is a regular hexagonal prism structure.
  • the liquid cooling plate is a corrugated plate, so that the liquid cooling plate can cool each battery cell on both sides of the liquid cooling plate.
  • each splicing seat includes: a bottom plate, the bottom plate is a regular polygonal plate; a plurality of side plates, each side edge of the bottom plate is connected to a side plate, the bottom plate and the multiple Two side plates surround the installation groove, the end of each cell is arranged in the installation groove, and each side plate is provided with the clamping portion.
  • the number of side plates provided on each splicing seat is an even number and the two side plates that are oppositely arranged, the locking part on the first side plate is a locking block, and the second one The clamping portion on the side plate is a clamping slot.
  • the liquid cooling plate is communicated with a connecting pipe.
  • the number of the cell fixing frames is set to two, and the two ends of each cell are respectively connected to the two cell fixing frames in one-to-one correspondence.
  • the two ends of each cell include a top end and a bottom end, and the cell fixing frame connected to the top end of each cell is provided with a first The through hole, the electrode post at the top of each cell protrudes from the first through hole to be connected with the current bus.
  • the cell fixing frame connecting the top of each cell is made of insulating material and supports the busbar.
  • a flange is provided around the first through hole on the cell fixing frame connected to the top of each cell, and the flange is used to support the busbar.
  • the flange is provided with a positioning post for fixing the flow collector.
  • the two ends of each cell include a top end and a bottom end, and the cell fixing frame connecting the bottom end of each cell is provided with a corresponding to the bottom end of each cell A pressure relief cavity communicated with the installation groove, and a pressure relief hole communicated with the pressure relief cavity is also provided on the cell fixing frame connected to the bottom end of each cell.
  • the present application provides a battery system, including the above-mentioned battery module.
  • the distance between each row of cell groups and the cell groups on one side is the first distance
  • the distance between each row of cell groups and the cell groups on the other side is the second distance
  • the first distance is If it is larger than the second distance, the liquid cold plate is installed between the two rows of battery cells separated by the first distance, and the distance between the two rows of battery cells without the liquid cold plate can be saved on the basis of controlling the temperature of the battery cells. In order to make the structure of the cell module more compact and the overall size smaller.
  • the battery system provided by this application adopts the above-mentioned battery cell module, and the overall size is small, which is beneficial to reduce the cost.
  • FIG. 1 is a schematic structural diagram of a cell module provided in Embodiment 1 of the present application.
  • Fig. 2 is a schematic structural view of the cell module provided in Embodiment 1 of the present application when it is not assembled;
  • Fig. 3 is a schematic diagram 1 of the principle when a plurality of batteries in the battery module provided in Embodiment 1 of the present application are fixed on the battery fixing frame;
  • Fig. 4 is a schematic diagram 2 of the principle when a plurality of batteries in the battery module provided in Embodiment 1 of the present application are fixed on the battery fixing frame;
  • Fig. 5 is a schematic diagram 3 of the principle when a plurality of batteries in the battery module provided in Embodiment 1 of the present application are fixed on the battery fixing frame;
  • Fig. 6 is a schematic structural view of a plurality of batteries in the battery module provided in Embodiment 1 of the present application when they are fixed on the battery fixing frame;
  • Fig. 7 is a schematic structural view of the liquid-cooled plate provided in Embodiment 1 of the present application.
  • Fig. 8 is a partial structural schematic diagram of the cell module provided in Embodiment 2 of the present application.
  • Fig. 9 is a top view of two batteries provided in Embodiment 2 of the present application after they are detachably connected through end caps;
  • Fig. 10 is a schematic structural view of the unassembled battery cell, end cap and base provided in Embodiment 2 of the present application;
  • Fig. 11 is a partial enlarged view of place A in Fig. 8;
  • Fig. 12 is a schematic structural diagram of two batteries provided in Embodiment 3 of the present application after they are detachably connected through end caps and bases;
  • Fig. 13 is a schematic structural view of the base provided in Embodiment 4 of the present application.
  • Fig. 14 is a top view of the base provided in Embodiment 4 of the present application.
  • connection should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integrated ; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be the internal communication of two components or the interaction relationship between two components.
  • connection can be a fixed connection, a detachable connection, or an integrated ; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be the internal communication of two components or the interaction relationship between two components.
  • a first feature being "on” or “under” a second feature may include direct contact between the first and second features, and may also include the first and second features Not in direct contact but through another characteristic contact between them.
  • “above”, “above” and “above” the first feature on the second feature include that the first feature is directly above and obliquely above the second feature, or simply means that the first feature is horizontally higher than the second feature.
  • “Below”, “beneath” and “under” the first feature to the second feature include that the first feature is directly below and obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.
  • this embodiment provides a battery system, including a battery cell module.
  • the cell module includes a cell fixing frame 20 , a plurality of cells 1 and a liquid cooling plate 3 .
  • a plurality of battery cells 1 are arranged on the battery cell fixing frame 20 to form multiple rows of battery cell groups 10 .
  • Multiple rows of cell groups 10 form a group in pairs, and a liquid cooling plate 3 is arranged between the two rows of cell groups 10 in the same group, and the liquid cooling plate 3 contacts and conducts heat with two adjacent rows of cell groups 1 to adjust
  • the temperature of battery cell 1 can avoid safety accidents caused by abnormal temperature of battery cell 1.
  • the cell module further includes a foam adhesive layer 6 and a structural adhesive layer 7 .
  • the foam adhesive layer 6 and the structural adhesive layer 7 are sheathed outside the cell 1 to fill the gap between adjacent cells 1 so that the position of the cell 1 is more stable.
  • the foam rubber layer 6 and the structural rubber layer 7 can play a buffering role, reduce the impact of vibration and impact on the battery cell 1 and the battery cell fixing frame 20, and help improve the stability of the battery cell module structure.
  • the thickness of the foamed adhesive layer 6 and the structural adhesive layer 7 is 5-30mm, such as 10mm, 15mm, 20mm or 25mm, so as to better fix the cell 1 and buffer.
  • the cell module also includes a module upper cover 4 and an integrated assembly 5 .
  • the integrated assembly 5 is arranged on the upper body of the cell fixing frame 20 , and the module upper cover 4 is arranged on the integrated assembly 5 .
  • the integrated assembly 5 includes a busbar 51 for connecting multiple cells 1 in series/parallel; the upper cover 4 of the module acts as an insulation to prevent the integrated assembly 5 from short-circuiting in contact with external metals.
  • the distance between each row of cell group 10 and a row of cell group 10 on the adjacent side is the first distance H
  • the distance between the row of cell groups 10 adjacent to the other side is the second distance h
  • the first distance H is greater than the second distance h.
  • the liquid cooling plate 3 is disposed between two rows of battery core groups 10 with a first distance H between them.
  • the distance between two adjacent rows of cell groups 10 provided with the liquid cooling plate 3 can be relatively large, so as to meet the installation requirements of the liquid cooling plate 3, and at the same time reduce the relative The distance between the two adjacent rows of cell groups 10 avoids the waste of space between the adjacent two rows of cell groups 10 without the liquid cooling plate 3, so that the adjacent two rows of cell groups 10 without the liquid cooling plate 3 More compact, it is beneficial to reduce the overall size of the battery module to save space.
  • the cell groups 10 can be arranged in even rows, so that multiple cell groups 10 are arranged in groups of two, and a liquid cooling plate 3 is arranged between the two rows of cell groups 10 in each group, so as to Each row of cell groups 10 has a liquid cooling plate 3 that exchanges heat with it, so as to ensure that the temperature of each cell 1 can be controlled.
  • the cell fixing frame 20 includes a plurality of frame groups 206 arranged along the second direction Y, and each frame group 206 includes two frame bodies 201 arranged along the second direction Y, Each frame body 201 is provided with a plurality of mounting parts 205 arranged along the first direction X, and each mounting part 205 is used for mounting one battery cell 1 , that is, one frame body 201 is used for mounting a row of battery cell groups 10 . Every two adjacent frame bodies 201 along the second direction Y can be detachably connected to form the entire cell fixing frame 20 .
  • each frame body 201 is parallel to the first center line b.
  • the centerline of one direction X is the second centerline a, then the first centerline b and the second centerline a are arranged at intervals, and in the same frame group 206, two frame bodies 201 correspond to two first centerlines b They are respectively located on both sides of the two second centerlines a of the two frame bodies 201 .
  • the battery cells 1 mounted on each mounting portion 205 of the frame body 201 are eccentrically arranged relative to the second centerline a, thereby increasing the size of the same frame group.
  • the distance between two rows of cell groups 10 in 206 is to provide installation space for liquid cooling plate 3, and reduce the distance between adjacent two rows of cell groups 10 in adjacent frame groups 206 and reduce the distance between adjacent frame groups 206 is the distance between two adjacent rows of battery packs 10 .
  • a plurality of rack bodies 201 are defined as the first rack body, the second rack body to the sixth rack body along the opposite direction of the second direction Y, wherein the first rack body and the second rack body form a
  • the first centerline b of the mounting portion 205 on the first frame is offset by the first distance along the second direction Y relative to the second centerline a of the first frame, that is, on the first frame, the first centerline b and the second
  • the two centerlines a are arranged along the direction opposite to the second direction Y.
  • the first centerline b of the mounting portion 205 on the second frame is offset by the first distance from the second centerline a of the second frame in the opposite direction of the second direction Y, that is, on the second frame, the first center The line b and the second centerline a are aligned along the second direction Y.
  • the structure of the third frame is the same as that of the first frame
  • the structure of the fourth frame is the same as that of the second frame
  • the structure of the fifth frame is the same as that of the first frame
  • the structure of the sixth frame is the same as that of the second frame.
  • the frame structure is the same.
  • the first distances of the offsets are equal.
  • the first center line b of each mounting portion 205 on the first frame body 201 is in line with the first center line b of the first frame body 201.
  • the second centerlines a of the bodies 201 are arranged at intervals, and the first centerline b of each mounting portion 205 on the second frame body 201 coincides with the second centerline a of the second frame body 201 .
  • Such an arrangement can also make the distance between each row of cell groups 10 in the cell module and the cell groups 10 on both sides thereof be different.
  • a plurality of rack bodies 201 are defined as the first rack body, the second rack body to the sixth rack body along the opposite direction of the second direction Y, wherein the first rack body and the second rack body form a
  • the first centerline b of the mounting portion 205 on the first frame is offset by the first distance along the second direction Y relative to the second centerline a of the first frame, that is, the first centerline b of the mounting portion 205 on the first frame
  • a centerline b is offset by a first distance relative to a second centerline a of the first frame in a direction away from the second frame.
  • the first centerline b of the mounting part 205 on the second frame coincides with the second centerline a of the second frame to increase the distance between the battery cell 1 on the first frame and the battery cell 1 on the second frame .
  • the structure of the third frame is the same as that of the first frame
  • the structure of the fourth frame is the same as that of the second frame
  • the structure of the fifth frame is the same as that of the first frame
  • the structure of the sixth frame is the same. Same structure as the second frame body.
  • each mounting part 205 is a mounting groove 32, and the end of the battery cell 1 is fixed in the mounting groove 32, and the side wall of the mounting groove 32 can limit the extension direction of the battery cell 1, thereby improving the frame body 201 to Fixed effect of cell 1.
  • the installation groove 32 In order to improve the positioning effect of the installation groove 32 on the battery cell 1 , the installation groove 32 needs to have a certain matching depth with the battery cell 1 .
  • the depth of the installation groove 32 in the axial direction of the battery cell 1 is 5-20mm, such as 8mm, 10mm, 15mm or 18mm.
  • the end of the battery cell 1 is glued and fixed in the installation groove 32 to simplify the fixing structure of the battery cell 1 and the installation part 205 . Therefore, on the basis of satisfying the fixing of the battery cell 1 and the installation part 205 , the structure of the battery cell 1 can not be damaged, and the size of the battery cell module after fixing can be made small.
  • each frame body 201 includes a plurality of splicing seats 202 arranged along the first direction X, and every two adjacent splicing seats 202 are detachably connected, and each splicing seat 202 is provided with a mounting part 205 for Each battery cell 1 is correspondingly provided with a splicing seat 202 , so as to further facilitate the assembly of the battery cell module and help improve the assembly accuracy of the battery cell module.
  • a clamping portion 26 is provided on the splicing base 202 , and two adjacent splicing bases 202 are clamped through the clamping portion 26 .
  • the splicing seat 202 is a regular prism structure, and each side wall of the splicing seat 202 is provided with a clamping portion 26, so that each splicing seat 202 can be spliced with a plurality of splicing seats 202, and then the adjacent frame body 201
  • the clamping part 26 is used to simplify the structure of the cell fixing frame 20 .
  • the splicing seat 202 is a regular hexagonal prism, so that the spliced structure of multiple splicing seats 202 is more compact.
  • the cells 1 are cylindrical, combined with the splicing seat 202 of the regular hexagonal prism, so that the cells 1 between two adjacent rows of cell groups 10 are staggered.
  • the liquid cooling plate 3 is a corrugated plate.
  • the corrugated plate is alternately provided with concave parts and protruding parts, the concave part is an arc-shaped structure matching the shape of the outer wall of the battery cell 1, and the corrugated plate is concavely formed on the first side A depression is formed, and a protrusion is formed on the second side.
  • the liquid cooling plates 3 are connected with connecting pipes 31 , and the connecting pipes 31 can communicate with adjacent liquid cooling plates 3 , or connect the liquid cooling plates 3 with other pipelines.
  • This embodiment provides a battery system. On the basis of the first embodiment, as shown in FIG.
  • Each edge of each side is connected with a side plate 22, the bottom plate 21 and a plurality of side plates 22 enclose a mounting groove 32, the end of each cell 1 is set in the mounting groove 32, and each side plate is provided with a card Connection part 26.
  • the two ends of the battery cell 1 include a top end and a bottom end, and the splicing seat 202 on each frame body 201 of the battery cell fixing frame 20 connected to the top end of the battery cell 1 is an end cover 203, which is connected to the bottom end of the battery cell 1.
  • the splicing seat 202 on each frame body 201 of the connected cell fixing frame 20 is a base 204 .
  • the cell module in this embodiment does not need positioning tools during assembly, and each cell 1 is provided with an end cap 203 and a base 204 correspondingly, making it more convenient to group multiple cells 1 .
  • the adjacent end caps 203 are detachably connected, and the adjacent bases 204 are detachably connected, which is conducive to improving the relative position accuracy between the battery cells 1 and the battery cells 1, thereby improving the assembly accuracy of the battery cell module.
  • the number of assembled cells 1 can be adaptively adjusted according to the capacity of the cell module and the size and shape of the box, and the grouping method is more flexible. After multiple battery cells 1 are grouped, multiple end caps 203 are connected to form an upper battery cell fixing frame, and multiple bases 204 are connected to form a lower battery cell fixing frame, which is beneficial to improving the structural strength and reliability of the battery cell module.
  • the end cover 203 includes an end cover bottom plate 21 and a plurality of side plates 22
  • the base 204 includes a base bottom plate 24 and a plurality of side plates 22 .
  • the end cover base plate 21 of the end cover 203 is a polygonal plate, and each side of the end cover base plate 21 is connected with a side plate 22, and the end cover base plate 21
  • a mounting groove 32 is surrounded by a plurality of side plates 22 , and each side plate 22 is provided with a locking portion 26 .
  • the area of the end cap bottom plate 21 is polygonal and smaller than the area of the end cap bottom plate 21 being circular, thereby saving space and processing end caps.
  • the material required for the cover 203 is beneficial to reduce the cost.
  • the bottom plate 21 of the end caps is a rectangular plate or a regular hexagonal plate.
  • the rectangular plate and the regular hexagonal plate can make the splicing of multiple cells 1 more compact, and the spliced area shape is a standard shape, which is convenient for planning the installation position of the cell module in the battery system and is conducive to improving space utilization.
  • the engaging portion 26 on the first side plate 22 is a locking block 221
  • the second side plate 22 The locking portion 26 on the top is a locking slot 222 .
  • the clamping block 221 can be clamped in the clamping slot 222 to realize the fixing of two adjacent end covers 203 .
  • the shape and size of the clamping block 221 and the clamping groove 222 are adapted, so that when the clamping block 221 is clamped in the clamping groove 222, the outer contours of the two facing side plates 22 overlap to reduce the splicing gap and make the splicing more compact .
  • the locking slot 222 runs through both ends of the side plate 22 along the axial direction of the battery cell 1 , so that the locking slot 222 is a through slot.
  • Such arrangement enables the locking block 221 to move in both forward and reverse directions along the axial direction of the end cover 203 so as to engage with or disengage from the locking groove 222 , making the installation more convenient.
  • the card slot 222 can also be compatible with the size error of the card block 221 and the card slot 222 .
  • the axial end surface of the adjacent end cover 203 can be flushed or the electric The axial end faces of the cores 1 are flush to ensure the relative positional accuracy of the grouped multiple battery cores 1 .
  • the width of the locking slot 222 gradually increases toward the inside of the installation slot 32 along the radial direction of the cell 1, and the shape of the locking block 221 matches the shape of the locking slot 222 so that the locking block 221 and the locking slot 222 fit together.
  • the inner wall of the locking slot 222 can prevent the locking block 221 from slipping out of the locking slot 222 along the radial direction of the cell 1 , which is beneficial to improve the locking effect between the locking block 221 and the locking slot 222 .
  • the locking groove 222 is a trapezoidal groove, and the section shape of the locking block 221 along the radial direction of the battery core 1 is trapezoidal.
  • a locking block 221 is provided on the first side plate 22
  • a locking slot 222 is provided on the second side plate 22 .
  • the end cover 203 is a regular hexagonal prism structure, the three adjacent side plates 22 of the end cover 203 are provided with locking blocks 221 , and the three adjacent side plates 22 are provided with locking slots 222 .
  • the side of the side plate 22 facing the battery cell 1 is an arc-shaped surface that matches the outer wall of the battery cell 1, that is, the installation Groove 32 is a cylindrical groove.
  • the side of the side plate 22 facing away from the cell 1 is flat to reduce processing difficulty and improve the processing accuracy of the block 221 and the slot 222 .
  • the outer surface of the side plate 22 is flat, which is also beneficial to improve the clamping accuracy of the two opposite side plates 22 , and makes the structure of the two adjacent end covers 203 more compact after being connected.
  • the side of the side plate 22 facing away from the cell 1 is a plane, and the side facing the cell 1 is an arc surface, so that the thickness of the side plate 22 is uneven.
  • the connection position of the two side plates 22 has a large thickness, and the middle position of the side plates 22 has a small thickness.
  • the distance between the side plate 22 and the axis of the cell 1 is designed to be as small as possible, resulting in a thinner middle part of the side plate 22, so that the middle part of the side plate 22 is not easy to Processing, and poor strength, easy to deform or break.
  • a notch 225 is provided in the middle of the side plate 22 in this embodiment.
  • the opening of the gap 225 on the end cover 203 faces the base 204 , and the opening of the gap 225 on the base 204 faces the end cover 203 .
  • the thinner part of the side plate 22 can be removed, and the thicker and stronger part of the side plate 22 can be reserved, thereby reducing the processing difficulty of the end cover 203, improving the strength of the end cover 203, and saving The material is improved, which is beneficial to reduce the cost.
  • the gap 225 extends to the bottom plate 21 of the end cover, so that each side plate 22 includes two extension arms arranged at intervals, and the extension arms in two adjacent side plates 22 are connected and located at the corners of the bottom plate 21 of the end cover. place.
  • the shape, structure and connection relationship of the base plate 24 and the plurality of side plates 22 of the base 204 can refer to the description of the structure of the end cover 203 above, which will not be repeated in this embodiment.
  • the adjacent end caps 203 are spliced to form a glue injection hole 224, which is used to inject the glue between the adjacent battery cells 1.
  • the gap is filled with glue.
  • the end cap 203 is a regular hexagonal prism, and three adjacent end caps 203 are spliced to form a glue injection hole 224 .
  • the glue injection hole 224 is along the axis of the battery cell 1 to the extended through hole.
  • an arc groove 223 is provided at the junction of two adjacent side plates 22 in the end cover 203 , and the central angle of the arc groove 223 is 120°.
  • a first through hole 211 is provided on the bottom plate 21 of the end cover 203, and an electrode column 11 is provided at the end of the cell 1 that cooperates with the end cover 203, and the electrode column 11 passes through
  • the first through hole 211 extends out of the end cap 203 so as to be connected to the busbar 51 , so that multiple battery cells 1 can be connected in series or in parallel through the busbar 51 .
  • the end cover bottom plate 21 in the end cover 203 is provided with a first through hole 211, and the first through hole 211 cooperates with the electrode column 11, if the glue overflows and covers the outer wall of the end cover bottom plate 21 or the electrode column 11 during the bonding process, the It will affect the conduction effect between the electrode column 11 and the bus member 51, and then it is necessary to add a glue removal process after the bonding process, which not only increases the processing procedure and cost, but also easily damages the battery cell 1 during the glue removal process.
  • the end cover 203 is bonded and fixed to the battery cell 1 through a plurality of side plates 22 .
  • the distance between the glue application position and the end cover bottom plate 21 can be increased to avoid overflowing glue covering the end cover bottom plate 21 or the electrode column 11;
  • the opening of 32 and the gap 225 carry out glue sizing operation, which is more convenient to operate.
  • the bonding area between the multiple side plates 22 in the end cover 203 and the battery cell 1 is 50% of the contact area between the multiple side plates 22 in the end cover 203 and the battery cell 1 -80%, such as 55%, 60%, 65%, 70% or 75%.
  • the installation groove 32 and the battery cell 1 are in clearance fit to facilitate the assembly of the battery cell 1 and the end cover 203 .
  • the fitting gap between the installation groove 32 and the battery cell 1 is 1-2mm, such as 1.2mm, 1.4mm, 1.6mm or 1.8mm.
  • the busbar 51 needs to be insulated from the casing of the cell 1 .
  • this embodiment provides a battery system.
  • the end cap 203 is made of insulating material, which can insulate the busbar 51 from the shell of the cell 1 and avoid The process of insulating the busbar 51 is conducive to improving the reliability of the battery module and reducing the cost of the battery module.
  • the end cap 203 can be made of plastic material, which is low in cost and light in weight.
  • the end cap 203 is integrally formed by injection molding to simplify the processing steps.
  • the busbar 51 in this embodiment does not need to be insulated, which is beneficial to reduce the processing cost.
  • the end cap 203 made of insulating material separates the busbar 51 from the shell of the battery cell 1 , and the insulation effect between the busbar 51 and the shell of the battery cell 1 is good.
  • a flange 23 is provided around the first through hole 211 on the bottom plate 21 of the end cover.
  • the flange 23 is used to support the busbar 51, which can further increase the distance between the busbar 51 and the shell of the cell 1, so that the busbar 51 The insulation effect with the shell of the cell 1 is better.
  • the flange 23 is provided with a positioning post 231 that cooperates with the flow collector 51 , and the flow collector 51 is provided with a positioning hole.
  • the positioning column 231 extends into the positioning hole, so as to limit the position of the collector 51 through the cooperation of the positioning column 231 and the positioning hole, improve the positioning effect of the collector 51, and avoid the displacement of the collector 51 due to external force.
  • the connection between the positioning post 231 and the positioning hole can be clamping or riveting when the electrode post 11 is separated from or in contact with the shell of the battery cell 1 .
  • the battery cell 1 will generate heat during operation. If the temperature of the battery cell 1 is too high and thermal runaway occurs, high-pressure gas will be generated in it. If the gas cannot be discharged quickly, the cell 1 may explode as the gas pressure increases.
  • this embodiment provides a battery system, which is improved on the basis of the second or third embodiment.
  • the base plate 24 of the base 204 is different in structure from the end cover base plate 21.
  • the base 204 includes a pressure relief chamber 25 connected to the installation groove 32.
  • the bottom end of the cell 1 is arranged in the base 204 and
  • the pressure relief cavity 25 is provided with a pressure relief hole 244 in contact with the bottom plate 24 of the base.
  • the explosion-proof valve at the bottom of the battery cell 1 explodes, so that the gas and jets generated inside the battery cell 1 will enter the pressure relief chamber 25 from the installation groove 32 and be discharged through the pressure relief hole 244 , to achieve the purpose of no fire or explosion when the battery cell 1 is thermally out of control, thereby ensuring the safety of the battery module and greatly reducing the impact on other battery cells 1 .
  • the pressure relief chamber 25 In order to ensure the pressure relief effect of the pressure relief chamber 25 and enable the explosion-proof valve at the bottom of the cell 1 to be effectively opened, the pressure relief chamber 25 needs to have a certain space.
  • the height of the pressure relief chamber 25 is 5-20mm , such as 10mm, 12mm, 15mm or 18mm. When the height of the pressure relief cavity 25 is within this range, the pressure relief effect is good.
  • the base bottom plate 24 is a double-layer structure, and a pressure relief chamber 25 is constructed therein.
  • the base bottom plate 24 is provided with a second through hole 2411 communicating with the pressure relief chamber 25.
  • the second through hole 2411 connects the installation groove 32 to the pressure relief chamber 25. connected.
  • the explosion-proof valve at the bottom of the battery cell 1 is opposite to the second through hole 2411.
  • the second through hole 2411 provides a blasting space for the explosion-proof valve. The gas and ejecta generated inside the cell 1 enter the pressure relief chamber 25 through the second through hole 2411 , and then are discharged through the pressure relief hole 244 .
  • the pressure relief hole 244 is provided on the side of the base bottom plate 24, so that the gas is discharged along the radial direction of the battery cell 1, so as to prevent the gas from flowing upward and contacting the battery cell 1, which is beneficial to improve the safety performance of the battery cell module.
  • a plurality of glue sizing grooves 2412 are arranged in the installation groove 32, and the plurality of glue sizing grooves 2412 are used to accommodate the glue, so as to ensure that there is enough glue for bonding the battery cell 1 and the base 204.
  • the base 204 improves the firmness of bonding.
  • a plurality of gluing grooves 2412 are arranged on the groove bottom surface of the installation groove 32, compared with applying glue on the side wall of the installation groove 32, it can prevent the glue from flowing around under the action of gravity, so as to Avoid glue adhering to the base 204 and other positions of the battery cell 1 .
  • a plurality of gluing grooves 2412 are arranged close to the side wall of the installation groove 32 , that is, a plurality of gluing grooves 2412 are arranged on the edge of the bottom plate 24 of the base, so as to prevent the glue from blocking the second through hole 2411 and affect the pressure relief.
  • gluing grooves 2412 there are multiple gluing grooves 2412 arranged at intervals along the circumference of the bottom plate 24 of the base.
  • the battery cell 1 and the base 204 have multiple bonding positions, and the multiple bonding positions are close to the radial edge of the battery cell 1, which is beneficial to improve the firmness of fixing.
  • the base plate 24 includes an upper plate 241 , a lower plate 242 and a plurality of reinforcing blocks 243 .
  • the upper plate 241 and the lower plate 242 are spaced apart from each other to form the pressure relief cavity 25 , and the second through hole 2411 is opened in the upper plate 241 and the lower plate 242 to pass through the bottom plate 24 of the base.
  • a plurality of reinforcing blocks 243 are disposed between the upper plate 241 and the lower plate 242 and connected to the upper plate 241 and the lower plate 242 respectively, so that the bottom plate 24 of the base is formed as a whole.
  • the upper plate 241 supports the bottom end of the cell 1 , and a plurality of sizing grooves 2412 are arranged on the upper plate 241 , so that the cell 1 and the upper plate 241 are bonded and fixed.
  • the pressure relief cavity 25 includes a cylindrical cavity located below the second through hole 2411 and a cavity between two adjacent reinforcing blocks 243 .
  • the plurality of reinforcing blocks 243 are respectively located under the plurality of sizing grooves 2412, and the plurality of sizing grooves 2412 extend downwards one by one at most In each reinforcement block 243, to ensure that the multiple sizing grooves 2412 have sufficient depth.
  • arranging a plurality of reinforcing blocks 243 under the plurality of gluing grooves 2412 is also beneficial to improving the strength of the base bottom plate 24 to ensure that the base bottom plate 24 has sufficient ability to support the battery cell 1 .
  • a plurality of reinforcement blocks 243 are arranged at intervals along the circumference of the second through hole 2411 , and a pressure relief hole 244 is formed between two adjacent reinforcement blocks 243 so that the pressure relief chamber 25 is connected to the outside.
  • the bonding area of the base bottom plate 24 and the battery cell 1 is 50%-80% of the contact area between the base bottom plate 24 and the battery cell 1, such as 55%, 60%, 65%. , 70% or 75%.
  • the installation groove 32 is fitted with the battery cell 1 to facilitate the assembly of the battery cell 1 and the base 204 .
  • the fitting gap between the installation groove 32 and the battery cell 1 is 1-2mm, such as 1.2mm, 1.4mm, 1.5mm, 1.7mm or 1.9mm.
  • the plurality of gluing grooves 2412 respectively extend to the plurality of side plates 22, so that after the battery cell 1 is placed in the installation groove 32, the battery cell 1 can squeeze excess glue to the plurality of side plates 22 to increase the battery life.
  • the bonding area between the core 1 and the base 204 is used to improve the bonding effect.
  • each gluing groove 2412 gradually increases toward the outside of the installation groove 32 along the radial direction of the second through hole 2411 .
  • This setting makes the glue near the second through hole 2411 less, and the glue near the multiple side plates 22 is more, so as to avoid blocking the second through hole 2411 after the glue overflows.
  • the above setting can increase the amount of gluing, so as to improve the bonding and fixing effect.
  • end cover 203 and the base 204 are integrally formed to facilitate processing and reduce costs.

Abstract

本申请公开了一种电芯模组及电池系统。该电芯模组包括电芯固定架、液冷板和多排电芯组,所有电芯组均设置于所述电芯固定架上,每排电芯组包括多个电芯,除第一排和最后一排电芯组之外的每排电芯组与相邻一侧的一排电芯组的间距为第一间距H,与相邻另一侧的一排电芯组之间的间隔为第二间距h,所述第一间距H大于所述第二间距h;液冷板设置于间距为所述第一间距H的两排电芯组之间,用于调节靠近所述液冷板的多个电芯的温度。利用间隔第一间距的两排电芯组之间安装液冷板,能够在控制电芯温度的基础上,节省未设置液冷板的两排电芯组之间的距离,以使电芯模组的结构更紧凑,整体尺寸小。电池系统采用上述电芯模组,整体尺寸小,有利于降低成本。

Description

电芯模组及电池系统
本申请要求在2022年01月29日提交中国专利局、申请号为202220245037.0的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及电池技术领域,例如涉及一种电芯模组及电池系统。
背景技术
新能源汽车,例如以锂电池为动力的新能源汽车,正在飞速发展。锂电池中圆柱形电芯在动力系统中应用广泛,由于其单体容量小,会导致单串电池数量较多。
常见的圆柱形电芯模组中,多个电芯呈矩阵排布后,每两排电芯为一组,每组相邻两排电芯之间设置有液冷板,以通过液冷板与电芯的热交换,控制电芯的温度,避免电芯因为温度异常而引发安全事故。
相关技术的电芯模组中,相邻两排电芯之间的距离相等,且间距足够安装液冷板,导致电芯组与组之间间距较大,使得电芯模组的排列不紧凑,整体尺寸较大,增大了电芯模组的制作成本。
发明内容
本申请提供一种电芯模组及电池系统,能够解决电芯模组的结构不紧凑、成本高的问题。
第一方面,本申请提供了一种电芯模组,包括:电芯固定架;多排电芯组,所有电芯组均设置于所述电芯固定架上,每排电芯组包括多个电芯,除第一排和最后一排电芯组(10)之外的每排电芯组与相邻一侧的一排电芯组的间距为第一间距H,与相邻另一侧的一排电芯组之间的间隔为第二间距h,所述第一间距H大于所述第二间距h;液冷板,设置于间隔所述第一间距H的两排电芯组之间,用于调节靠近所述液冷板的多个电芯的温度。
在一实施例中,所述电芯固定架包括沿第二方向Y排列的多个架组,每个架组包括沿所述第二方向Y排列的相邻的两个架体,沿所述第二方向Y相邻的两个架体可拆卸连接,每个架体上设置有沿第一方向X排列的多个安装部,每个安装部用于安装一个电芯,所述第二方向Y与所述第一方向X呈夹角设置。
在一实施例中,所述多个安装部平行于所述第一方向X的中心线为第一中 心线b,所述每个架体平行于所述第一方向X的中心线为第二中心线a;所述第一中心线b与所述第二中心线a间隔设置;每个架组的所述两个架体上分别设置的安装部的两条第一中心线b分别位于所述两个架体的两条第二中心线a的两侧。
在一实施例中,所述多个安装部平行于所述第一方向X的中心线为第一中心线b,所述每个架体平行于所述第一方向X的中心线为第二中心线a;每个架组的所述两个架体中,第一个架体上设置的安装部的第一中心线b与所述第一个架体的第二中心线a间隔设置,第二个架体上设置的安装部的第一中心线b与所述第二个架体的第二中心线a重合。
在一实施例中,每个安装部均为安装槽,每个电芯的端部均固定于所述安装槽内。
在一实施例中,所述每个架体包括沿所述第一方向X排列的多个拼接座,相邻两个拼接座可拆装连接,每个拼接座上均设置有一个安装部。
在一实施例中,所述每个拼接座上设置有卡接部,所述相邻两个拼接座通过所述卡接部卡接。
在一实施例中,所述每个拼接座为正棱柱体结构,所述每个拼接座的每侧的侧壁均设置有一个卡接部,相邻两个架体通过所述卡接部卡接。
在一实施例中,所述每个拼接座为正六棱柱体结构。
在一实施例中,所述液冷板为波浪形板,以使所述液冷板能对所述液冷板两侧的每一个电芯进行冷却。
在一实施例中,所述每个拼接座包括:底板,所述底板为正多边形板;多个侧板,所述底板的每侧边缘均连接有一个侧板,所述底板和所述多个侧板围成所述安装槽,每个电芯的端部设置于所述安装槽内,每个侧板上设置有所述卡接部。
在一实施例中,所述每个拼接座上设置的侧板的数量为偶数且相对设置的两个侧板中,第一个侧板上的所述卡接部为卡块,第二个侧板上的所述卡接部为卡槽。
在一实施例中,所述液冷板连通有连接管。
在一实施例中,所述电芯固定架的数量设置有两个,所述每个电芯的两个端部分别与两个电芯固定架一一对应连接。
在一实施例中,所述每个电芯的两个端部包括顶端和底端,连接所述每个电芯的顶端的电芯固定架上对应所述每个电芯均设置有第一通孔,所述每个电 芯的顶端的电极柱由所述第一通孔伸出以与汇流件连接。
在一实施例中,连接所述每个电芯的顶端的所述电芯固定架由绝缘材料制成并支撑所述汇流件。
在一实施例中,连接所述每个电芯的顶端的所述电芯固定架上环绕所述第一通孔设有凸缘,所述凸缘用于支撑所述汇流件。
在一实施例中,所述凸缘上设置有固定所述汇流件的定位柱。
在一实施例中,所述每个电芯的两个端部包括顶端和底端,连接所述每个电芯的底端的电芯固定架对应所述每个电芯的底端均设置有与安装槽相连通的泄压腔,连接所述每个电芯的底端的所述电芯固定架上还设置有与所述泄压腔连通的泄压孔。
第二方面,本申请提供了一种电池系统,包括上述的电芯模组。
本申请的有益效果:
本申请的电芯模组中,每排电芯组与其一侧的电芯组之间的间距为第一间距,与另一侧的电芯组之间的间距为第二间距,第一间距大于第二间距,利用间隔第一间距的两排电芯组之间安装液冷板,能够在控制电芯温度的基础上,节省未设置液冷板的两排电芯组之间的距离,以使电芯模组的结构更紧凑,整体尺寸小。
本申请提供的电池系统采用上述电芯模组,整体尺寸小,有利于降低成本。
附图说明
图1是本申请实施例一提供的电芯模组的结构示意图;
图2是本申请实施例一提供的电芯模组未装配时的结构示意图;
图3是本申请实施例一提供的电芯模组中多个电芯固定于电芯固定架上时的原理示意图一;
图4是本申请实施例一提供的电芯模组中多个电芯固定于电芯固定架上时的原理示意图二;
图5是本申请实施例一提供的电芯模组中多个电芯固定于电芯固定架上时的原理示意图三;
图6是本申请实施例一提供的电芯模组中多个电芯固定于电芯固定架上时的结构示意图;
图7是本申请实施例一提供的液冷板的结构示意图;
图8是本申请实施例二提供的电芯模组的部分结构示意图;
图9是本申请实施例二提供的两个电芯通过端盖可拆卸连接后的俯视图;
图10是本申请提供实施例二提供的电芯、端盖和底座未装配时的结构示意图;
图11是图8中A处的局部放大图;
图12是本申请实施例三提供的两个电芯通过端盖和底座可拆装连接后的结构示意图;
图13是本申请实施例四提供的底座的结构示意图;
图14是本申请实施例四提供的底座的俯视图。
图中:
1、电芯;10、电芯组;11、电极柱;20、电芯固定架;201、架体;202、拼接座;203、端盖;204、底座;205、安装部;206、架组;21、端盖底板;211、第一通孔;22、侧板;221、卡块;222、卡槽;223、凹槽;224、注胶孔;225、豁口;23、凸缘;231、定位柱;24、底座底板;241、上层板;2411、第二通孔;2412、施胶槽;242、下层板;243、加强块;244、泄压孔;3、液冷板;25、泄压腔;26、卡接部;31、连接管;32、安装槽;4、模组上盖;5、集成组件;51、汇流件;6、发泡胶层;7、结构胶层。
具体实施方式
在本申请的描述中,除非另有明确的规定和限定,术语“相连”、“连接”、“固定”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据情况理解上述术语在本申请中的含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本实施例的描述中,术语“上”、“下”、“左”、“右”等方位或位 置关系为基于附图所示的方位或位置关系,仅是为了便于描述和简化操作,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅仅用于在描述上加以区分,并没有特殊的含义。
实施例一
如图1和图2所示,本实施例提供了一种电池系统,包括电芯模组。电芯模组包括电芯固定架20、多个电芯1和液冷板3。多个电芯1设置于电芯固定架20上,并形成多排电芯组10。多排电芯组10两两形成一组,同组的两排电芯组10之间设置有液冷板3,液冷板3与相邻的两排电芯1接触并传热,以调节电芯1的温度,避免电芯1温度异常导致安全事故。
可选地,电芯模组还包括发泡胶层6和结构胶层7。发泡胶层6和结构胶层7套设于电芯1外,用于填充相邻电芯1之间的间隙,以使电芯1的位置更稳定。发泡胶层6和结构胶层7可以起到缓冲作用,减小振动冲击对电芯1和电芯固定架20的影响,有利于提高电芯模组结构的稳定性。
可选地,发泡胶层6和结构胶层7的厚度为5-30mm,例如10mm、15mm、20mm或25mm,以更好地起到固定电芯1以及缓冲作用。
电芯模组还包括模组上盖4和集成组件5。集成组件5设置于电芯固定架20的上架体上,模组上盖4设置于集成组件5上。集成组件5包括汇流件51,用于将多个电芯1串/并联导通;模组上盖4起到绝缘作用,避免集成组件5与外界金属接触发生短路。
如图3所示,本实施例中的多排电芯组10中,除了第一排和最后一排之外,每排电芯组10与相邻一侧的一排电芯组10的间距为第一间距H,与相邻另一侧的一排电芯组10之间的间隔为第二间距h,第一间距H大于第二间距h。液冷板3设置于间距为第一间距H的两排电芯组10之间。通过上述设置,能够使设置有液冷板3的相邻两排电芯组10之间的距离相对较大,以满足液冷板3的安装需要,同时减小未设置液冷板3的相邻两排电芯组10之间的距离,避免未设置液冷板3的相邻两排电芯组10之间的空间浪费,使未设置液冷板3的相邻两排电芯组10更紧凑,有利于减小电芯模组的整体尺寸以节省空间。
可以理解的是,电芯组10可选设置为偶数排,以使多个电芯组10两两成组设置,每组的两排电芯组10之间均设置有液冷板3,以使每排电芯组10均有与之换热的液冷板3,以保证每个电芯1的温度均能够得到控制。
如图4所示,在本实施例中,电芯固定架20包括沿第二方向Y排列的多个架组206,每个架组206包括沿第二方向Y排列的两个架体201,每个架体201 上均设置有沿第一方向X排列的多个安装部205,每个安装部205用于安装一个电芯1,即一个架体201用于安装一排电芯组10。沿第二方向Y每相邻的两个架体201均可拆装连接,以形成整个电芯固定架20。通过多个架体201拼接成电芯固定架20,可以保证每排电芯1与架体201安装后,再将多个安装有电芯1的架体201可拆卸连接成电芯固定架20,有利于简化电芯模组的装配;且电芯模组装配时,保证每个架体201与其上的多个电芯1定位准确,即可确保相邻两排电芯组10之间的间距,有利于提高定位精度。
为了使相邻两排电芯组10之间的间距满足上述设置,示例性地,定义安装部205平行于第一方向X的中心线为第一中心线b,每个架体201平行于第一方向X的中心线为第二中心线a,则第一中心线b与第二中心线a间隔设置,且同一个架组206中,两个架体201对应地两个第一中心线b分别位于两个架体201的两个第二中心线a的两侧。通过上述第一中心线b与第二中心线a间隔设置,使安装于架体201的每个安装部205上的电芯1相对第二中心线a是偏心设置的,从而增大同一架组206中两排电芯组10之间的距离,以为液冷板3提供安装空间,且减小相邻架组206中相邻两排电芯组10之间的距离且减小相邻架组206中相邻两排电芯组10之间的距离。
结合图4所示,定义多个架体201沿第二方向Y的反方向分别为第一架体、第二架体至第六架体,其中,第一架体和第二架体组成一个架组206,第三架体和第四架体组成一个架组206,第五架体和第六架体组成一个架组206。第一架体上安装部205的第一中心线b相对第一架体的第二中心线a沿第二方向Y偏移第一距离,即第一架体上,第一中心线b和第二中心线a沿第二方向Y的反方向排列。第二架体上的安装部205的第一中心线b相对第二架体的第二中心线a沿第二方向Y的反方向偏移第一距离,即第二架体上,第一中心线b和第二中心线a沿第二方向Y排列。第三架体的结构与第一架体相同,第四架体的结构与第二架体的结构相同,第五架体的结构与第一架体相同,第六架体的结构与第二架体的结构相同。在一实施例中,上述偏移的第一距离相等。
在一实施例中,如图5所示,每个架组206的两个架体201中,第一个架体201上的每个安装部205的第一中心线b与该第一个架体201的第二中心线a间隔设置,第二个架体201上的每个安装部205的第一中心线b与该第二个架体201的第二中心线a重合。该种设置,同样可以使电芯模组中每排电芯组10与其两侧的电芯组10的间距不同。
结合图5所示,定义多个架体201沿第二方向Y的反方向分别为第一架体、第二架体至第六架体,其中,第一架体和第二架体组成一个架组206,第三架体和第四架体组成一个架组206,第五架体和第六架体组成一个架组206。第一架 体上的安装部205的第一中心线b相对第一架体的第二中心线a沿第二方向Y偏移第一距离,即第一架体上的安装部205的的第一中心线b相对第一架体的第二中心线a向背离第二架体的方向偏移第一距离。第二架体上的安装部205的第一中心线b与第二架体的第二中心线a重合,以增大第一架体上电芯1和第二架体上电芯1的距离。第三架体的结构与第一架体相同,第四架体的结构与第二架体的结构相同,依次类推,第五架体的结构与第一架体相同,第六架体的结构与第二架体的结构相同。
本实施例中,每个安装部205均为安装槽32,电芯1的端部固定在安装槽32内,安装槽32的侧壁能够限制电芯1的延伸方向,从而提高架体201对电芯1的固定效果。
为提高安装槽32对电芯1的定位效果,安装槽32需要与电芯1具有一定的配合深度。可选地,安装槽32在电芯1的轴向方向上的深度为5-20mm,例如8mm、10mm、15mm或18mm。
可选地,电芯1的端部粘接固定于安装槽32内,以简化电芯1与安装部205的固定结构。从而,在满足电芯1与安装部205固定的基础上,能够不损坏电芯1的结构,且使得固定后电芯模组的尺寸小。
可选地,每个架体201包括沿第一方向X排列的多个拼接座202,每相邻两个拼接座202可拆卸连接,每个拼接座202上均设置有一个安装部205,以使每个电芯1均对应设置有一个拼接座202,从而进一步方便电芯模组组装,有利于提高电芯模组的组装精度。
为方便相邻的拼接座202卡接,拼接座202上设置有卡接部26,相邻两个拼接座202通过卡接部26卡接。
拼接座202为正棱柱状结构,拼接座202的每个侧壁均设置有卡接部26,以使每个拼接座202能与多个拼接座202进行拼接,进而使相邻的架体201通过卡接部26卡接,以简化电芯固定架20的结构。如图6所示,拼接座202为正六棱柱,使得多个拼接座202拼接后的结构更紧凑。
本实施例中,电芯1为圆柱型,结合正六棱柱型的拼接座202,使得相邻两排电芯组10之间的电芯1错开设置。为使液冷板3能分别与相邻的两排电芯组10接触,液冷板3为波浪形板。如图7所示,波浪形板上交替设置有凹陷部和凸出部,凹陷部为与电芯1的外侧壁的形状相适配的弧形结构,波浪形板于第一侧内凹形成凹陷部,并在第二侧形成凸出部。液冷板3置于两排电芯组10之间后,凹陷部与电芯1的外侧壁抵接,凸出部位于同一排相邻的两个电芯1之间的孔隙。
液冷板3连接有连接管31,连接管31能够将相邻的液冷板3连通,或将液冷板3与其他管道连通。
本实施例中,电芯固定架20设置有两个,沿电芯1的轴向的电芯1的两端分别固定在两个电芯固定架20上,以使电芯1的两端均受约束力,提高电芯1的固定效果。
实施例二
本实施例提供了一种电池系统,在实施例一的基础上,如图8所示,每个拼接座202包括底板21和多个侧板22,其中,底板21为正多边形板,底板21的每侧边缘均连接有一个侧板22,底板21与多个侧板22围成安装槽32,每个电芯1的端部设置于安装槽32内,且每个侧板上设置有卡接部26。
电芯1的两个端部包括顶端和底端,与电芯1的顶端连接的电芯固定架20的每个架体201上的拼接座202为端盖203,与电芯1的底端连接的电芯固定架20的每个架体201上的拼接座202为底座204。
本实施例中的电芯模组在组装过程中不需要使用定位工装,每个电芯1均对应设置有一个端盖203和一个底座204,使得多个电芯1成组更方便。本实施例中,相邻的端盖203可拆卸连接,相邻的底座204可拆卸连接,有利于提高电芯1与电芯1之间的相对位置精度,从而提高电芯模组的组装精度且可根据电芯模组的容量大小、箱体的大小形状去适应性的调整电芯1组装的数量,成组方式更加的灵活。多个电芯1成组后,多个端盖203连接成上电芯固定架,多个底座204连接成下电芯固定架,有利于提高电芯模组的结构强度和可靠性。
端盖203包括端盖底板21和多个侧板22,底座204包括底座底板24和多个侧板22。以下以端盖203为例,如图9和图10所示,端盖203的端盖底板21为多边形板,端盖底板21的每个侧边均连接有一个侧板22,端盖底板21和多个侧板22围成安装槽32,每个侧板22上设置有卡接部26。可以理解的是,在端盖203沿电芯1的径向尺寸不变的基础上,端盖底板21为多边形时的面积小于端盖底板21为圆形的面积,从而能够节省空间以及加工端盖203所需材料,有利于降低成本。
为使多个端盖203拼接更方便,端盖底板21为矩形板或正六边形板。矩形板和正六边形板能够使得多个电芯1的拼接更加紧凑,拼接成的区域形状为标准形状,方便在电池系统中规划电芯模组的安装位置,且有利于提高空间利用率。
本实施例中,如图9所示,相邻两个端盖203相对的两个侧板22中,第一个侧板22上的卡接部26为卡块221,第二个侧板22上的卡接部26为卡槽222。 卡块221能卡接于卡槽222内,以实现相邻两个端盖203的固定。卡块221与卡槽222的形状和大小相适配,使得卡块221卡接于卡槽222内时,正对的两个侧板22的外轮廓重合,以减小拼接缝隙,拼接更紧凑。
可选地,卡槽222沿电芯1的轴向贯穿侧板22的两端,使得卡槽222为通槽。这样设置使得卡块221能够沿端盖203的轴向正反两方向移动,以与卡槽222卡接或脱离,安装更方便。
此外,通过将卡槽222设置为通槽,还可以兼容卡块221和卡槽222的尺寸误差。例如当卡块221沿电芯1轴向尺寸大于卡槽222时,可以通过调整卡块221沿轴向与卡槽222的配合位置,使得相邻端盖203的轴向端面平齐或使电芯1的轴向端面平齐,保证成组后的多个电芯1的相对位置精度。
本实施例中,卡槽222的宽度沿电芯1径向向安装槽32内部逐渐增大,卡块221的形状与卡槽222的形状相适配,以使卡块221与卡槽222配合后,卡槽222的内壁能阻止卡块221沿电芯1径向向外脱出卡槽222,有利于提高卡块221和卡槽222的卡接效果。
示例性地,卡槽222为梯形槽,卡块221沿电芯1径向的截面形状为梯形。
端盖203中相对的两个侧板22中,第一个侧板22上设置有卡块221,第二个侧板22上设置有卡槽222。该种结构使得多个端盖203的结构相同,即电芯模组中仅需制作一种型号的端盖203即可,有利于降低加工成本,且方便拼接。
本实施例中,端盖203为正六棱柱体结构,端盖203中相邻的三个侧板22上设置有卡块221,另外相邻的三个侧板22上设置有卡槽222。
因电芯1为圆柱型,为了提高安装槽32对电芯1的固定和定位效果,侧板22朝向电芯1的侧面为与电芯1的外侧壁相适配的弧形面,即安装槽32为圆柱槽。为了方便在侧板22上加工卡块221和卡槽222,侧板22背离电芯1的侧面为平面,以降低加工难度,有利于提高卡块221和卡槽222的加工精度。且侧板22的外侧面为平面还有利于提高相对的两个侧板22的卡接精度,使相邻两个端盖203连接后结构更紧凑。
侧板22背离电芯1的侧面为平面,朝向电芯1的侧面为弧形面,使得侧板22的厚度不均匀。两个侧板22的连接位置处厚度大,侧板22中间位置厚度小。为减小电芯模组拼接后的尺寸以及加工成本,侧板22与电芯1轴线之间的距离设计的尽量小,导致侧板22的中部厚度较薄,从而使侧板22的中部不易加工,且强度较差,容易变形或断裂。
为解决上述问题,如图10所示,本实施例中侧板22的中部设置有豁口225。端盖203上豁口225的开口朝向底座204,底座204上的豁口225开口朝向端盖 203。通过设置豁口225,能够去除侧板22厚度较薄部分,保留侧板22中厚度较厚且强度较好的部分,从而降低了端盖203的加工难度,提高了端盖203的强度,且节省了材料,有利于降低成本。
本实施例中,豁口225延伸至端盖底板21处,使得每个侧板22包括两个间隔设置的延伸臂,相邻两个侧板22中的延伸臂连接且位于端盖底板21的拐角处。
可以理解的是,底座204的底座底板24和多个侧板22的形状、结构以及连接关系可以参考上述对端盖203的结构的描述,本实施例不再赘述。
为方便发泡胶层6和结构胶层7成型,如图11所示,相邻的端盖203拼接后围成注胶孔224,注胶孔224用于向相邻的电芯1之间的间隙通入胶。
结合图8和图11所示,本实施例中,端盖203为正六棱柱型,相邻的三个端盖203拼接后形成有注胶孔224,注胶孔224为沿电芯1的轴向延伸的通孔。为了方便围成注胶孔224,端盖203中相邻两个侧板22的连接处设置有圆弧凹槽223,圆弧凹槽223的圆心角为120°。
可选地,结合图8-图10所示,端盖203的端盖底板21上设置有第一通孔211,电芯1与端盖203配合的一端设置有电极柱11,电极柱11通过第一通孔211伸出端盖203外,以便与汇流件51连接,从而使多个电芯1能够通过汇流件51实现串联或并联。
因端盖203中端盖底板21上设置有第一通孔211,且第一通孔211与电极柱11配合,若粘接过程中胶溢出覆盖端盖底板21的外壁或电极柱11,将会影响电极柱11与汇流件51的导通效果,进而需要在粘结工序后增加除胶工序,不仅增加了加工工序和成本,而且在除胶过程中容易损坏电芯1。
为避免出现上述问题,本实施例中端盖203通过多个侧板22与电芯1粘接固定。一方面能够增加施胶位置与端盖底板21之间的距离,避免溢胶覆盖端盖底板21或电极柱11;另一方面,施胶位置设置在多个侧板22上,能够利用安装槽32的开口和豁口225进行施胶操作,操作更方便。
为提高端盖203与电芯1的固定效果,端盖203中多个侧板22与电芯1的粘接面积为端盖203中多个侧板22与电芯1的接触面积的50%-80%,例如55%、60%、65%、70%或75%。
为了方便电芯1的一端伸入安装槽32内,安装槽32与电芯1间隙配合,方便电芯1与端盖203装配。
为保证多个侧板22与电芯1之间有一定的接触压力进而提高粘接效果,可选地,安装槽32与电芯1的配合间隙为1-2mm,例如1.2mm、1.4mm、1.6mm 或1.8mm。
实施例三
为了保证电芯模组能够正常工作,汇流件51需要与电芯1的外壳绝缘。如图12所示,本实施例提供了一种电池系统,在实施例二的基础上,将端盖203用绝缘材料制成,能够使得汇流件51与电芯1的外壳绝缘,且避免了对汇流件51做绝缘处理的过程,有利于提高电芯模组的可靠性并降低电芯模组的成本。
可选地,端盖203可以采用塑胶材料,成本低,质量轻。可选地,端盖203通过注塑工艺一体成型,以简化加工步骤。
本实施例中的汇流件51不需要进行绝缘处理,有利于降低加工成本。通过绝缘材料制成的端盖203隔开汇流件51和电芯1的外壳,汇流件51与电芯1的外壳的绝缘效果好。
端盖底板21上环绕第一通孔211设置有凸缘23,凸缘23用于支撑汇流件51,能够进一步增大汇流件51与电芯1的外壳之间的距离,从而使汇流件51与电芯1的外壳的绝缘效果更好。
可选地,凸缘23上设置有与汇流件51配合的定位柱231,汇流件51上设置有定位孔。当安装汇流件51时,定位柱231伸入定位孔内,以通过定位柱231和定位孔的配合限制汇流件51的位置,提高汇流件51的定位效果,避免汇流件51因外力移位而与电极柱11脱离或与电芯1的外壳接触,定位柱231与定位孔之间的连接可以为卡接也可以为铆接。
实施例四
电芯1在工作过程中会产生热量,若电芯1温度过高发生热失控,其内将产生高压气体。若气体无法迅速排出,随着气体压力的增大,电芯1存在爆炸的风险。
为保证电芯模组使用安全,本实施例提供了一种电池系统,其在实施例二或实施例三的基础上进行改进。结合图13和图14所示,底座204的底座底板24与端盖底板21结构不同,底座204包括与安装槽32相连通的泄压腔25,电芯1的底端设置于底座204内并与底座底板24抵接,泄压腔25设有泄压孔244。
当电芯1发生热失控时,电芯1底部的防爆阀爆开,使得电芯1内部产生的气体及喷射物将会由安装槽32进入泄压腔25内,并通过泄压孔244排出,达到在电芯1热失控下不起火、不爆炸的目的,从而保证电芯模组的使用安全,且大大降低对其他电芯1的影响。
为了保证泄压腔25的泄压效果,且能够使得电芯1底部的防爆阀能够有效 的打开,泄压腔25需要具有一定的空间,可选地,泄压腔25的高度为5-20mm,例如10mm、12mm、15mm或18mm。泄压腔25的高度在该范围内时泄压效果好。
底座底板24为双层结构,其内构造有泄压腔25,底座底板24上设置有与泄压腔25连通的第二通孔2411,第二通孔2411将安装槽32与泄压腔25连通。电芯1放置在底座204形成的安装槽32内时,电芯1底部的防爆阀与第二通孔2411相对,当电芯1热失控时,第二通孔2411为防爆阀提供爆破空间,电芯1内部产生的气体及喷射物通过第二通孔2411进入泄压腔25内,再由泄压孔244排出。
可选地,泄压孔244设置在底座底板24的侧面,以使气体沿电芯1的径向排出,避免气体向上流动与电芯1接触,有利于提高电芯模组的安全性能。
为提高电芯1与底座204的固定效果,安装槽32内设置有多个施胶槽2412,多个施胶槽2412用于容纳胶,以便保证有足够的胶用于粘接电芯1与底座204,提高粘接的牢固程度。
可选地,为了方便施胶,多个施胶槽2412设置于安装槽32的槽底面,相比将胶施加在安装槽32的侧壁上,能够避免胶在重力作用下向四周流动,以避免底座204以及电芯1其他位置附着胶。
多个施胶槽2412靠近安装槽32的侧壁设置,即多个施胶槽2412设置于底座底板24的边缘,以避免胶堵塞第二通孔2411,影响泄压。
本实施例中,施胶槽2412设置有多个,并沿底座底板24的周向间隔排布。通过设置多个施胶槽2412,使电芯1与底座204具有多个粘接位置,且多个粘接位置靠近电芯1的径向边缘,有利于提高固定的牢固程度。
底座底板24包括上层板241、下层板242和多个加强块243。上层板241和下层板242相对间隔设置以形成泄压腔25,第二通孔2411开设于上层板241和下层板242,以贯通底座底板24。多个加强块243设置于上层板241和下层板242之间,并分别与上层板241和下层板242连接,以使底座底板24形成一个整体。电芯1与底座204固定时,上层板241支撑电芯1的底端端面,多个施胶槽2412设置于上层板241上,使得电芯1与上层板241粘接固定。本实施例中,泄压腔25包括位于第二通孔2411下方的圆柱形空腔以及相邻两个加强块243之间的空腔。
为保证多个施胶槽2412具有一定的深度,以容纳更多的胶,多个加强块243分别位于多个施胶槽2412的下方,多个施胶槽2412一一对应的向下延伸至多个加强块243内,以保证多个施胶槽2412具有足够的深度。
此外,将多个加强块243分别设置在多个施胶槽2412的下方,还有利于提高底座底板24的强度,以保证底座底板24有足够支撑电芯1的能力。
本实施例中,多个加强块243沿第二通孔2411的周向间隔设置,相邻两个加强块243之间形成泄压孔244,以便泄压腔25与外部导通。
为提高底座204与电芯1的固定效果,底座底板24与电芯1的粘接面积为底座底板24与电芯1的接触面积的50%-80%,例如55%、60%、65%、70%或75%。
为了方便电芯1的底端伸入底座204形成的安装槽32内,安装槽32与电芯1间隙配合,方便电芯1与底座204装配。
为保证多个侧板22与电芯1之间有一定的接触压力进而提高粘接效果,可选地,安装槽32与电芯1的配合间隙为1-2mm,例如1.2mm、1.4mm、1.5mm、1.7mm或1.9mm。
可选地,多个施胶槽2412分别延伸至多个侧板22处,使得电芯1置于安装槽32内后,电芯1能够向多个侧板22处挤压多余的胶,增加电芯1与底座204的粘接面积,以提高粘接效果。
可选地,每个施胶槽2412的宽度沿第二通孔2411的径向向安装槽32外侧逐渐增大。这样设置使得靠近第二通孔2411位置处的胶少,靠近多个侧板22位置处的胶多,以避免胶溢出后堵塞第二通孔2411。相比多个施胶槽2412宽度不变的情况,上述设置能够增加施胶量,以提高粘接固定效果。
本实施例中,端盖203和底座204均为一体成型结构,以方便加工,降低成本。

Claims (20)

  1. 一种电芯模组,包括:
    电芯固定架(20);
    多排电芯组(10),所有电芯组(10)均设置于所述电芯固定架(20)上,每排电芯组(10)包括多个电芯(1),除第一排和最后一排电芯组(10)之外的每排电芯组(10)与相邻一侧的一排电芯组(10)的间距为第一间距H,与相邻另一侧的一排电芯组(10)之间的间隔为第二间距h,所述第一间距H大于所述第二间距h;
    液冷板(3),设置于间隔所述第一间距H的两排电芯组(10)之间,用于调节靠近所述液冷板(3)的多个电芯(1)的温度。
  2. 根据权利要求1所述的电芯模组,其中,所述电芯固定架(20)包括沿第二方向Y排列的多个架组(206),每个架组(206)包括沿所述第二方向Y排列的相邻的两个架体(201),沿所述第二方向Y排列的相邻的两个架体(201)可拆卸连接,每个架体(201)上设置有沿第一方向X排列的多个安装部(205),每个安装部(205)用于安装一个电芯(1),所述第二方向Y与所述第一方向X呈夹角设置。
  3. 根据权利要求2所述的电芯模组,其中,所述多个安装部(205)平行于所述第一方向X的中心线为第一中心线b,所述每个架体(201)平行于所述第一方向X的中心线为第二中心线a;
    所述第一中心线b与所述第二中心线a间隔设置;
    每个架组(206)的所述两个架体(201)上分别设置的安装部(205)的两条第一中心线b分别位于所述两个架体(201)的两条第二中心线a的两侧。
  4. 根据权利要求2所述的电芯模组,其中,所述多个安装部(205)平行于所述第一方向X的中心线为第一中心线b,所述每个架体(201)平行于所述第一方向X的中心线为第二中心线a;
    每个架组(206)的所述两个架体(201)中,第一个架体(201)上设置的安装部(205)的第一中心线b与所述第一个架体(201)的第二中心线a间隔设置,第二个架体(201)上设置的安装部(205)的第一中心线b与所述第二个架体(201)的第二中心线a重合。
  5. 根据权利要求2所述的电芯模组,其中,每个安装部(205)均为安装槽(32),每个电芯(1)的端部均固定于所述安装槽(32)内。
  6. 根据权利要求2所述的电芯模组,其中,所述每个架体(201)包括沿所述第一方向X排列的多个拼接座(202),相邻两个拼接座(202)可拆装连 接,每个拼接座(202)上均设置有一个安装部(205)。
  7. 根据权利要求6所述的电芯模组,其中,所述每个拼接座(202)上设置有卡接部(26),所述相邻两个拼接座(202)通过所述卡接部(26)卡接。
  8. 根据权利要求7所述的电芯模组,其中,所述每个拼接座(202)为正棱柱体结构,所述每个拼接座(202)的每侧的侧壁均设置有一个卡接部(26),相邻两个架体(201)通过所述卡接部(26)卡接。
  9. 根据权利要求8所述的电芯模组,其中,所述每个拼接座(202)为正六棱柱体结构。
  10. 根据权利要求9所述的电芯模组,其中,所述液冷板(3)为波浪形板,以使所述液冷板(3)能对所述液冷板(3)两侧的每一个电芯(1)进行冷却。
  11. 根据权利要求8所述的电芯模组,其中,所述每个拼接座(202)包括:
    底板(21,24),所述底板(21,24)为正多边形板;
    多个侧板(22),所述底板(21,24)的每侧边缘均连接有一个侧板(22),所述底板(21,24)和所述多个侧板(22)围成所述安装槽(32),每个电芯(1)的端部设置于所述安装槽(32)内,每个侧板(22)上设置有所述卡接部(26)。
  12. 根据权利要求11所述的电芯模组,其中,所述每个拼接座(202)上设置的侧板(22)的数量为偶数且相对设置的两个侧板(22)中,第一个侧板(22)上的所述卡接部(26)为卡块(221),第二个侧板(22)上的所述卡接部(26)为卡槽(222)。
  13. 根据权利要求1-12中任一项所述的电芯模组,其中,所述液冷板(3)连通有连接管(31)。
  14. 根据权利要求1-12中任一项所述的电芯模组,其中,所述电芯固定架(20)的数量设置有两个,所述每个电芯(1)的两个端部分别与两个电芯固定架(20)一一对应连接。
  15. 根据权利要求1-12中任一项所述的电芯模组,其中,所述每个电芯(1)的两个端部包括顶端和底端,连接所述每个电芯(1)的顶端的电芯固定架(20)上对应所述每个电芯(1)均设置有第一通孔(211),所述每个电芯(1)的顶端的电极柱(11)由所述第一通孔(211)伸出以与汇流件(51)连接。
  16. 根据权利要求15所述的电芯模组,其中,连接所述每个电芯(1)的顶端的所述电芯固定架(20)由绝缘材料制成并支撑所述汇流件(51)。
  17. 根据权利要求16所述的电芯模组,其中,连接所述每个电芯(1)的 顶端的所述电芯固定架(20)上环绕所述第一通孔(211)设有凸缘(23),所述凸缘(23)用于支撑所述汇流件(51)。
  18. 根据权利要求17所述的电芯模组,其中,所述凸缘(23)上设置有固定所述汇流件(51)的定位柱(231)。
  19. 根据权利要求1-12中任一项所述的电芯模组,其中,所述每个电芯(1)的两个端部包括顶端和底端,连接所述每个电芯(1)的底端的电芯固定架(20)对应所述每个电芯(1)的底端均设置有与安装槽(32)相连通的泄压腔(25),连接所述每个电芯(1)的底端的所述电芯固定架(20)上还设置有与所述泄压腔(25)连通的泄压孔(244)。
  20. 一种电池系统,包括如权利要求1-19中任一项所述的电芯模组。
PCT/CN2022/124938 2022-01-29 2022-10-12 电芯模组及电池系统 WO2023142531A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22826587.2A EP4243173A1 (en) 2022-01-29 2022-10-12 Battery cell module and battery system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202220245037.0U CN217158421U (zh) 2022-01-29 2022-01-29 一种电芯模组及电池系统
CN202220245037.0 2022-01-29

Publications (1)

Publication Number Publication Date
WO2023142531A1 true WO2023142531A1 (zh) 2023-08-03

Family

ID=82690715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/124938 WO2023142531A1 (zh) 2022-01-29 2022-10-12 电芯模组及电池系统

Country Status (3)

Country Link
EP (1) EP4243173A1 (zh)
CN (1) CN217158421U (zh)
WO (1) WO2023142531A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN217158418U (zh) * 2022-01-29 2022-08-09 湖北亿纬动力有限公司 一种电芯模组及电池系统
CN217158421U (zh) * 2022-01-29 2022-08-09 湖北亿纬动力有限公司 一种电芯模组及电池系统
CN217158386U (zh) * 2022-01-29 2022-08-09 湖北亿纬动力有限公司 一种电芯模组及电池系统
US20240120591A1 (en) * 2022-01-29 2024-04-11 Eve Power Co., Ltd. Battery cell module and battery system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205882033U (zh) * 2016-08-12 2017-01-11 华霆(合肥)动力技术有限公司 一种电池支撑板及电池模组
CN107546405A (zh) * 2016-09-07 2018-01-05 昶洧新能源汽车发展有限公司 电池系统组装过程和电池系统组件
CN108923101A (zh) * 2018-05-18 2018-11-30 中山大学 一种新型相变热管理动力电池模组
CN111092179A (zh) * 2019-12-25 2020-05-01 华霆(合肥)动力技术有限公司 电池模组和电源装置
CN210744033U (zh) * 2019-11-11 2020-06-12 江西远东电池有限公司 一种可内嵌蛇形管的电池塑胶支架
CN111373599A (zh) * 2017-09-05 2020-07-03 米巴电动汽车有限公司 蓄电池
CN113937411A (zh) * 2021-09-30 2022-01-14 蜂巢能源科技有限公司 圆柱电池模组
CN217158421U (zh) * 2022-01-29 2022-08-09 湖北亿纬动力有限公司 一种电芯模组及电池系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205882033U (zh) * 2016-08-12 2017-01-11 华霆(合肥)动力技术有限公司 一种电池支撑板及电池模组
CN107546405A (zh) * 2016-09-07 2018-01-05 昶洧新能源汽车发展有限公司 电池系统组装过程和电池系统组件
CN111373599A (zh) * 2017-09-05 2020-07-03 米巴电动汽车有限公司 蓄电池
CN108923101A (zh) * 2018-05-18 2018-11-30 中山大学 一种新型相变热管理动力电池模组
CN210744033U (zh) * 2019-11-11 2020-06-12 江西远东电池有限公司 一种可内嵌蛇形管的电池塑胶支架
CN111092179A (zh) * 2019-12-25 2020-05-01 华霆(合肥)动力技术有限公司 电池模组和电源装置
CN113937411A (zh) * 2021-09-30 2022-01-14 蜂巢能源科技有限公司 圆柱电池模组
CN217158421U (zh) * 2022-01-29 2022-08-09 湖北亿纬动力有限公司 一种电芯模组及电池系统

Also Published As

Publication number Publication date
CN217158421U (zh) 2022-08-09
EP4243173A1 (en) 2023-09-13

Similar Documents

Publication Publication Date Title
WO2023142531A1 (zh) 电芯模组及电池系统
EP4087000A1 (en) Battery, battery module, battery pack, and automobile
WO2021098440A1 (zh) 一种电池包和电动车
WO2020143175A1 (zh) 电池包、车辆和储能装置
WO2020259139A1 (zh) 电池包和电池包的制造方法及车辆
EP3790070B1 (en) Battery pack, method for manufacturing same, and vehicle
WO2023142529A1 (zh) 电芯模组及电池系统
WO2023072224A1 (zh) 圆柱电芯模组
CN114464941A (zh) 一种电芯模组及电池系统
CN111952497B (zh) 有利于电池单体回收梯次利用的电池成组结构
WO2023151305A1 (zh) 一种电芯模组、动力电池及电动车辆
WO2023142533A1 (zh) 电芯模组及电池系统
CN217158420U (zh) 一种电芯模组及电池系统
WO2023142541A1 (zh) 电芯模组及电池系统
CN216085018U (zh) 一种电池包及电动汽车
CN114976458A (zh) 一种电池包
US20230411798A1 (en) Ccs, battery module structure and battery
WO2024031418A1 (zh) 电池、用电装置以及电池的成型方法
WO2024037655A1 (zh) 电池模组上盖结构、电池模组及电池包
CN217788692U (zh) 一种电池包
WO2023240875A1 (zh) Ccs组件、电池模组结构及电池
CN219873775U (zh) 一种电池装置
CN220628008U (zh) 电芯、电池包和车辆
CN216250879U (zh) 一种带有液冷组件的电池结构
CN219350504U (zh) 电池装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18013924

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022826587

Country of ref document: EP

Effective date: 20221228

WWE Wipo information: entry into national phase

Ref document number: 23765137.7

Country of ref document: EP