WO2023142112A1 - 显示面板及显示装置 - Google Patents

显示面板及显示装置 Download PDF

Info

Publication number
WO2023142112A1
WO2023142112A1 PCT/CN2022/075181 CN2022075181W WO2023142112A1 WO 2023142112 A1 WO2023142112 A1 WO 2023142112A1 CN 2022075181 W CN2022075181 W CN 2022075181W WO 2023142112 A1 WO2023142112 A1 WO 2023142112A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
substrate
display
display panel
unit
Prior art date
Application number
PCT/CN2022/075181
Other languages
English (en)
French (fr)
Inventor
薛金祥
孙中元
刘文祺
倪静凯
安澈
袁广才
王路
刘芳
李晓虎
康亮亮
焦志强
王鹏
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2022/075181 priority Critical patent/WO2023142112A1/zh
Priority to CN202280000123.8A priority patent/CN116982424A/zh
Publication of WO2023142112A1 publication Critical patent/WO2023142112A1/zh

Links

Images

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a display panel and a display device.
  • the substrates, circuit layers, especially inorganic layers and other film structures in the display device have certain bending properties, but the amount of stretchability is extremely limited. During the process, it is often prone to broken or irreversible deformation.
  • the purpose of the present disclosure is to provide a display panel.
  • the display panel of the present disclosure can not only satisfy the stress release requirement during the stretching process, but also ensure the display quality of the display panel.
  • a display panel including:
  • a plurality of display units are arranged on one side of the substrate, and each display unit includes at least one sub-pixel;
  • a plurality of elastic stretching units are arranged on one side of the substrate, the elastic stretching units are connected between two adjacent display units, and between the plurality of elastic stretching units and the plurality of display units forming multiple hollow areas;
  • the sum of the areas of the plurality of hollow areas is a
  • the sum of the areas of the plurality of display units is b
  • the sum of the areas of the plurality of elastic stretching units is c
  • the elastic stretching unit includes a plurality of stretching signal lines and at least two conductive layers insulated from each other;
  • the multiple stretched signal lines are distributed in at least two conductive layers.
  • the stretched signal lines distributed in the conductive layers of different layers are arranged in a dislocation manner.
  • the orthographic projections of the stretched signal lines distributed in the conductive layers of different layers on the substrate do not overlap.
  • the elastic stretching unit includes:
  • a first insulating layer disposed on one side of the substrate
  • a second insulating layer disposed on a side of the first conductive layer away from the substrate, the second insulating layer covering the surface of the first conductive layer;
  • stretching signal lines including first stretching signal lines and second stretching signal lines
  • the first stretching signal lines are distributed in the first conductive layer
  • the second stretching signal lines are distributed in the In the second conductive layer, the orthographic projections of the first stretched signal line and the second stretched signal line on the substrate do not overlap.
  • the elastic stretching unit includes a plurality of sub-stretching units distributed at intervals, and each of the sub-stretching units includes at least one stretching signal line and at least one conductive layer , the stretched signal lines are distributed in the conductive layer, and each layer of the conductive layer includes at most one stretched signal line.
  • the sub-stretching unit includes a layer of the conductive layer, and the conductive layer includes a stretching signal line;
  • the sub-stretching unit also includes:
  • a first insulating layer disposed between the substrate and the conductive layer
  • the second insulating layer is arranged on the side of the conductive layer away from the substrate.
  • the display unit includes:
  • a driving circuit layer disposed on one side of the substrate
  • a light-emitting layer disposed on a side of the driving circuit layer away from the substrate, the light-emitting layer includes a pixel-defining structure and at least one light-emitting device;
  • the pixel defining structure defines at least one sub-pixel area, and each of the sub-pixel areas is distributed with one light-emitting device.
  • the light-emitting device includes a first electrode layer, a light-emitting functional layer, and a second electrode layer that are sequentially stacked along a direction away from the substrate;
  • the driving circuit layer includes:
  • a first gate insulating layer disposed on a side of the active layer away from the substrate, the first gate insulating layer covers the active layer;
  • the first gate metal layer is provided on the side of the first gate insulating layer away from the substrate, and the first gate metal layer includes the first plate of the capacitor and the gate of the transistor;
  • a second gate insulating layer disposed on a side of the first gate metal layer away from the substrate, the second gate insulating layer covering the first gate metal layer;
  • the second gate metal layer is disposed on the side of the first gate insulating layer away from the substrate and is disposed opposite to the first plate, the second gate metal layer includes the second pole of the capacitor plate;
  • an interlayer dielectric layer disposed on a side of the second gate metal layer away from the substrate, the interlayer dielectric layer covering the second gate metal layer;
  • the first source and drain layer is arranged on the side of the interlayer dielectric layer away from the substrate, the first source and drain layer includes the source and drain of the transistor, and the source and drain are connected to the the active layer;
  • the first source-drain layer further includes a plurality of signal lines, the signal lines include voltage signal lines, and the voltage signal lines are connected to the second electrode layer.
  • the elastic stretching unit when the elastic stretching unit includes at least two conductive layers insulated from each other, the thickness of the insulating layer between the adjacent two conductive layers increases from the elastic The stretching unit is gradually thinned in the extending direction of the display unit;
  • the plurality of stretched signal lines in the elastic stretching unit are extended to the inside of the display unit to form a plurality of the signal lines in the display unit;
  • the plurality of signal lines located in the display unit are arranged in a tiled manner at intervals in a direction parallel to the plane where the substrate is located.
  • the light-emitting device includes a first electrode layer, a light-emitting functional layer, and a second electrode layer that are sequentially stacked along a direction away from the substrate;
  • the display panel also includes:
  • an encapsulation layer disposed on a side of the light-emitting layer away from the substrate
  • first connection conductor layer located on a side of the packaging layer away from the substrate, the first connection conductor layer is connected to the second electrode layer;
  • the cover plate is arranged on the side of the first connection conductor layer away from the substrate, the cover plate is provided with a second connection conductor layer, and the second connection conductor layer is located on the side of the cover plate close to the substrate , the second connection conductor layer is connected to the first connection conductor layer, and the second connection conductor layer is used for transmitting voltage signals.
  • the display panel further includes conductive balls, and the second connection conductor layer is connected to the first connection conductor layer through the conductive balls.
  • all the light emitting devices in each display unit form a light emitting device group
  • the pixel-defining structures include:
  • the first limiting structure is arranged on the periphery of the light emitting device group
  • the orthographic projection of the bottom end of the first defined structure on the substrate is located within the orthographic projection of the middle or top end of the first defined structure on the substrate .
  • the pixel defining structure further includes:
  • the second limiting structure is arranged between two adjacent light-emitting devices in each of the display units;
  • the height of the first limiting structure is greater than the height of the second limiting structure.
  • the cross section of the first limiting structure in a direction perpendicular to the plane where the substrate is located, is an inverted trapezoid.
  • all the light emitting devices in each display unit form a light emitting device group
  • the pixel-defining structures include:
  • the first limiting structure is arranged on the periphery of the light-emitting device group, the first limiting structure includes a first limiting part and a second limiting part connected to each other, and the first limiting part is connected to the second limiting part close to One side of the substrate, the orthographic projection of the first limiting portion on the substrate is located within the orthographic projection of the second limiting portion on the substrate, and the orthographic projection of the first limiting portion on the substrate The area of the orthographic projection is smaller than the area of the orthographic projection of the second limiting portion on the substrate.
  • At least a partial area of the elastic stretching unit is a curved structure.
  • two adjacent display units are arranged along a first direction
  • the elastic stretching unit includes a first connection part, a second connection part and a third connection part which are smoothly connected in sequence;
  • the first connecting portion and the third connecting portion extend along the first direction
  • the first connection part has a first connection end
  • the third connection part has a second connection end
  • the first connection end is connected to one of the two adjacent display units, so
  • the second connection end is connected to the other display unit of the two adjacent display units, and the first connection end and the second connection end are located at the center point connecting the two adjacent display units. both sides of the line;
  • the extending direction of the second connecting portion is not perpendicular to the line connecting the center points of two adjacent display units.
  • the second connecting portion is linear, and the angle between the extension direction of the second connecting portion and the line connecting the center points of two adjacent display units is is ⁇ , 45° ⁇ 90°.
  • the plurality of display units include:
  • a plurality of second display units are respectively connected to the first display unit through the elastic stretching unit, and the second display unit is arranged at intervals from the first display unit;
  • the edge of the first display unit is linear, and the edge of the second display unit is curved.
  • the elastic stretching unit has a first connection end and a second connection end, and the first connection end is connected to the adjacent first display unit and the second connection end.
  • the first display unit in the display unit is connected
  • the second connection terminal is connected to the adjacent first display unit and the second display unit in the second display unit
  • the first connection end and the second connection end are located on both sides of the line connecting the center points of the adjacent first display unit and the second display unit;
  • At least a partial area of the elastic stretching unit is a curved structure extending along the bending direction of the edge of the second display unit.
  • the hollow area is set at the center of the four display units distributed in a square shape
  • the hollow area is windmill-shaped.
  • two adjacent display units are arranged along a first direction
  • the elastic stretching unit includes a third connecting portion, a fourth connecting portion and a fifth connecting portion that are sequentially and smoothly connected; the third connecting portion and the fifth connecting portion extend along the first direction; the The third connection part has a third connection end, the fifth connection part has a fourth connection end, and the third connection end is connected to one of the two adjacent display units.
  • the four connection ends are connected to the other display unit of the two adjacent display units, and the third connection end and the fourth connection end are located on the line connecting the center points of the two adjacent display units. ;
  • the fourth connecting portion is a curved structure.
  • the substrate includes a first portion and a plurality of spaced apart second portions embedded in the first portion;
  • the rigidity of the second portion is greater than the rigidity of the first portion
  • An orthographic projection of the display unit on the substrate is at least partially located within the second portion.
  • the first part is provided with a plurality of first grooves distributed at intervals, and the first grooves are opened on the side of the substrate close to the display unit, and the number of The two second portions are distributed in each of the first grooves in a one-to-one correspondence.
  • the second part is provided with a plurality of through-holes distributed through the substrate at intervals, and the plurality of second parts are distributed in each of the through-holes in a one-to-one correspondence.
  • the first portion is provided with a plurality of second grooves distributed at intervals.
  • the substrate includes:
  • a pressure-sensitive adhesive layer is arranged on one side of the bottom film layer
  • a flexible material layer located on the side of the pressure-sensitive adhesive layer away from the bottom film layer, the flexible material layer includes a first flexible unit and a second flexible unit arranged at intervals;
  • the orthographic projection of the display unit on the substrate is located in the first flexible unit, and the orthographic projection of the elastic stretching unit on the substrate at least partially overlaps with the second flexible unit.
  • a display device comprising the display panel as described in the first aspect.
  • the elastic stretching unit is connected between two adjacent display units, and multiple hollow areas are formed between the multiple elastic stretching units and the multiple display units.
  • the stress can be released through the hollowed-out area, thereby avoiding the breakage of each layer structure of the display panel, thus improving the overall stretching rate and service life of the display panel.
  • the area of the hollowed out area accounts for the total area of the three. Within this range, the hollowed out area can not only meet the stress release requirement during the stretching process, but also ensure the display quality of the display panel.
  • FIG. 1 is a schematic diagram of a planar structure of a display panel in an exemplary embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a plane structure of a display panel in another exemplary embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a plane structure of a display panel in another exemplary embodiment of the present disclosure.
  • Fig. 4 is A-A direction sectional view in Fig. 1;
  • Fig. 5 is an enlarged view of part D in Fig. 4;
  • Fig. 6 is a B-B direction sectional view in Fig. 2;
  • FIG. 7 is a schematic diagram of the film layer structure of the elastic stretching unit in an exemplary embodiment of the present disclosure.
  • Fig. 8 is a schematic diagram of the film layer structure of the elastic stretching unit in another exemplary embodiment of the present disclosure.
  • Fig. 9 is a schematic diagram of the film layer structure of the elastic stretching unit in another exemplary embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of a substrate structure in an exemplary embodiment of the present disclosure.
  • Fig. 11 is a schematic diagram of a substrate structure in another exemplary embodiment of the present disclosure.
  • Fig. 12 is a schematic diagram of a substrate structure in another exemplary embodiment of the present disclosure.
  • Fig. 13 is a schematic diagram of the film layer structure of the display panel in an exemplary embodiment of the present disclosure
  • Fig. 14 is a schematic diagram of the film layer structure of the display panel in another exemplary embodiment of the present disclosure.
  • Fig. 15 is a schematic diagram of the film layer structure of the display panel in another exemplary embodiment of the present disclosure.
  • Fig. 16 is a schematic diagram of a stretched signal line and a distribution structure of signal lines in an exemplary embodiment of the present disclosure
  • Fig. 17 is a schematic diagram of a first defined structure in an exemplary embodiment of the present disclosure.
  • Fig. 18 is a schematic diagram of the first defined structure in another exemplary embodiment of the present disclosure.
  • Fig. 19 is a schematic structural diagram of a display unit and an elastic stretching unit in an exemplary embodiment of the present disclosure
  • Fig. 20 is a schematic structural diagram of a display unit and an elastic stretching unit in another exemplary embodiment of the present disclosure
  • Fig. 21 is a schematic structural diagram of a display unit and an elastic stretching unit in another exemplary embodiment of the present disclosure
  • Fig. 22 is a schematic structural diagram of a display unit and an elastic stretching unit in another exemplary embodiment of the present disclosure.
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • Example embodiments may, however, be embodied in many forms and should not be construed as limited to examples set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of example embodiments to those skilled in the art.
  • the described features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. In the following description, numerous specific details are provided in order to give a thorough understanding of embodiments of the present disclosure.
  • a structure When a structure is "on" another structure, it may mean that a structure is integrally formed on another structure, or that a structure is “directly” placed on another structure, or that a structure is “indirectly” placed on another structure through another structure. other structures.
  • An embodiment of the present disclosure provides a display panel, including: a substrate 001, a plurality of display units 01 disposed on one side of the substrate 001, and each display unit 01 includes at least one sub-pixel; a plurality of elastic stretching units 02, configured On one side of the substrate 001, the elastic stretching unit 02 is connected between two adjacent display units 01, and a plurality of hollow areas 03 are formed between the plurality of elastic stretching units 02 and the plurality of display units 01; among them, a plurality of The sum of the areas of the hollow area 03 is a, the sum of the areas of the multiple display units 01 is b, and the sum of the areas of the multiple elastic stretching units 02 is c; 15% ⁇ a/(a+b+c) ⁇ 100 % ⁇ 30%.
  • the elastic stretching unit 02 is connected between two adjacent display units 01 , and multiple hollow areas 03 are formed between the multiple elastic stretching units 02 and the multiple display units 01 .
  • the stress can be released through the hollow area 03, so as to avoid the breakage of each layer structure of the display panel, thus improving the overall stretching rate and service life of the display panel.
  • the area of the hollowed out region 03 accounts for 15%-30% of the total area of the three. Within this range, the hollowed out region 03 can not only meet the stress release requirement during the stretching process, but also ensure the display quality of the display panel.
  • a display panel is provided in this embodiment, and the display panel includes a substrate 001 , a plurality of display units 01 and a plurality of elastic stretching units 02 .
  • the display unit 01 and the elastic stretching unit 02 are arranged on one side of the substrate 001 , the display unit 01 is used for displaying a picture, and the elastic stretching unit 02 is connected between two adjacent display units 01 .
  • the substrate 001 can be a single-layer or multi-layer laminated structure, or a plate-like structure formed by splicing various shapes.
  • the material of the substrate 001 may contain one or more.
  • the thickness of the substrate 001 may be 5-200 ⁇ m.
  • the substrate 001 is a flexible substrate with a multi-layer laminated structure.
  • the substrate 001 may include a bottom film layer 012 (Bottom Film), a pressure-sensitive adhesive layer 013 and a flexible material layer 014.
  • the bottom film layer 012 and the pressure-sensitive adhesive layer 013 corresponding to the display unit 01 and the elastic stretching unit 02 may be of an integral structure
  • the flexible material layer 014 may be of an integral or separate structure.
  • the flexible material layer 014 is an integral film layer.
  • the flexible material layer 014 is a split structure.
  • the flexible material layer 014 includes a first flexible unit 14 a and a second flexible unit 14 b arranged at intervals.
  • the orthographic projection of the display unit 01 on the substrate 001 is located inside the first flexible unit 14a, and the orthographic projection of the elastic stretching unit 02 on the substrate 001 at least partially overlaps with the second flexible unit 14b. That is, the display unit 01 is disposed on one side of the first flexible unit 14a.
  • a partial area of the elastic stretching unit 02 may be disposed on one side of the second flexible unit 14b, and a partial area may be disposed on one side of the second flexible unit 14b.
  • the elastic stretching units 02 may also be all disposed on one side of the second flexible unit 14b.
  • dividing the flexible material layer 014 of the substrate 001 helps to increase the elongation rate of the substrate 001 during stretching. On the one hand, it can prevent the substrate 001 from breaking during stretching. It can also avoid peeling between the various film layers of the substrate 001 .
  • the material of the bottom film layer 012 can be selected from materials with high elasticity such as dimethyl siloxane, polyimide, and polyethylene terephthalate.
  • the pressure-sensitive adhesive layer 013 can be made of acrylic, silicon or other adhesive materials.
  • the flexible material layer 014 can be made of polyimide, polyethylene terephthalate, metal and other flexible materials.
  • the substrate 001 may be a plate-shaped structure formed by connecting structures of different shapes.
  • the substrate 001 includes a first part 010 and a plurality of second parts 011 embedded in the main body at intervals, the rigidity of the second part 011 is greater than that of the first part 010, and the display unit 01
  • the orthographic projection on the substrate 001 is located at least partially within the second portion 011 .
  • all orthographic projections of the display unit 01 on the substrate 001 are located in the second portion 011 . That is, the display unit 01 is located above the second portion 011 of the substrate 001 .
  • FIGS. 10 to 12 only schematically illustrate the structure of the substrate 001 , and the display patterns of the display unit 01 and the elastic stretching unit 02 in the figures do not constitute a limitation of the present application.
  • the substrate 001 when the display panel is stretched, the substrate 001 will be deformed with the external force, and each film layer in the display unit 01 will be deformed with the deformation of the substrate 001 .
  • the substrate 001 includes a first part 010 and a second part 011.
  • the rigidity of the second part 011 is greater than that of the first part 010. Therefore, the deformation generated by the second part 011 is small, and each film in the display unit 01 located above it
  • the layer structure is less prone to peeling during the stretching process, which helps to improve the reliability of the display unit 01 .
  • the rigidity of the second part 011 is greater than that of the first part 010 , which can be realized by adjusting the material selection of the second part 011 and the first part 010 .
  • the elastic modulus of the material of the second part 011 may be smaller than the elastic modulus of the material of the first part 010 .
  • the material of the second part 011 may include polyimide (Polyimide, PI), and the material of the first part 010 may include polydimethylsiloxane (Polydimethylsiloxane, PMDS).
  • the second part 011 can have various shapes.
  • the cross section of the second part 011 can be a geometric polygon, a curved edge, or an irregular closed shape, etc. limited. In practical applications, it can be set according to the shape and size of the display unit 01 .
  • the first part 010 is provided with a plurality of first grooves 10 a distributed at intervals, and the first grooves 10 a are opened on the side of the substrate 001 close to the display unit 01 , that is, the first grooves
  • the slot 10 a opens toward the display unit 01 .
  • a plurality of second portions 011 are distributed in each first groove 10a in a one-to-one correspondence, that is, the second portions 011 correspond to the first grooves 10a one-to-one.
  • the first part 010 wraps the second part 011 therein.
  • the shape and size of the first groove 10a can be set according to the shape of the second part 011, so that the second part 011 can be properly embedded in the first groove 10a.
  • the connection between the second part 011 and the first part 010 can be done through pressure-sensitive adhesive or the like.
  • the second part 011 is provided with a plurality of through-holes 10 b distributed at intervals and penetrating the substrate 001 , and the through-holes 10 b can have various shapes.
  • the cross-section of the through hole 10 b may be polygonal or curved, or an irregular closed shape, which is not limited in this disclosure.
  • a plurality of second portions 011 are distributed in each of the through holes 10b in one-to-one correspondence, that is, the second portions 011 correspond to the through holes 10b in one-to-one correspondence.
  • the shape and size of the through hole 10b can be set according to the shape of the second part 011, so that the second part 011 can be properly embedded in the through hole 10b. Further, the connection between the second part 011 and the first part 010 can be done through pressure-sensitive adhesive or the like.
  • the first part 010 is further provided with a plurality of second grooves 10c distributed at intervals.
  • the distribution positions of the second grooves 10c in the first part 010 are not limited, they may be distributed around the second part 011 , and may also be randomly distributed in other positions of the first part 010 at intervals.
  • the second grooves 10c may be distributed at positions with larger deformation during stretching.
  • the second groove 10c is opened on a side surface of the substrate 001 close to the display unit 01 .
  • the number and size of the second grooves 10c can be set according to actual conditions.
  • the width of the second groove 10c is 1-10 ⁇ m, and in a direction perpendicular to the plane of the substrate 001, the depth of the second groove 10c is 2-20 ⁇ m.
  • the second groove 10c can largely reduce the deformation of the second portion 011 when stretched, further improving the reliability of the display unit 01 .
  • the display panel includes a plurality of display units 01 and a plurality of elastic stretching units 02 .
  • Each display unit 01 includes at least one sub-pixel, specifically, may include one, two or more sub-images for realizing a display function.
  • the display unit 01 may include an organic light-emitting diode (Organic Light-Emitting Diode, OLED), an inorganic light-emitting diode (Light-Emitting Diode, LED) or a quantum dot light-emitting diode (Quantum dot Light-Emitting Diode, QLED) wait.
  • OLED Organic Light-Emitting Diode
  • LED Light-Emitting Diode
  • QLED quantum dot light-emitting Diode
  • a plurality of display units 01 and a plurality of elastic stretching units 02 are disposed on one side of the substrate 001 .
  • the elastic stretching unit 02 is connected between two adjacent display units 01 , and multiple hollow areas 03 are formed between the multiple elastic stretching units 02 and the multiple display units 01 .
  • the stress can be released through the hollow area 03, so as to avoid the breakage of each layer structure of the display panel, thus improving the overall stretching rate and service life of the display panel.
  • the sum of the areas of the multiple hollow areas 03 is a
  • the sum of the areas of the multiple display units 01 is b
  • the sum of the areas of the multiple elastic stretching units 02 is c;
  • the hollow area 03 can not only meet the stress release requirement during the stretching process, but also ensure the display quality of the display panel.
  • the ratio can be 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29% % or 30%, but not limited thereto.
  • the stretching force and display quality of the display panel can be further improved by changing the structure of the elastic stretching unit 02 or the display unit 01 .
  • the stretching rate of the display panel is further improved by changing the structure of the elastic stretching unit 02 .
  • FIG. 7 and FIG. 9 are schematic views of the laminated structure of the elastic stretching unit on the substrate 001 .
  • the elastic stretching unit 02 includes a plurality of stretching signal lines 20 , and the driver chip of the display panel can drive each display unit 01 through the stretching signal lines 20 in the elastic stretching unit 02 , so that each display unit 01 can display.
  • Multiple stretching signal lines 20 in the elastic stretching unit 02 can be used to transmit various signals such as power supply voltage signals, light control signals, scanning signals, and reset signals, and one stretching signal line 20 can be used to transmit one or more signals , which is not limited in the present disclosure.
  • the stretching rate of the elastic stretching unit 02 is improved by changing the lamination structure of the elastic stretching unit 02 .
  • the elastic stretching unit 02 includes a plurality of stretching signal lines 20 and at least two mutually insulated conductive layers 21 .
  • the number of conductive layers 21 may be two, three or more.
  • the plurality of stretched signal lines 20 are distributed in at least two layers of conductive layers 21, so as to reduce the space occupied by the plurality of stretched signal lines 20 as a whole in the direction in which the stretched signal lines 20 are arranged, and further reduce the size of the elastic pulling unit in Stretching the width of the signal lines 20 in the arrangement direction increases the stretching rate of the elastic stretching unit 02 .
  • the material of the conductive layer 21 can be conductive metals such as Ti, Al, Mo, Ag, or conductive oxides such as ITO, IZO, ZnO, In 2 O 3 , IGO, AZO, or rubber mixed with conductive particles, etc., which have high ductility. Conductive materials, carbon nanotubes, etc.
  • the stretched signal lines 20 distributed in different conductive layers 21 are arranged in dislocation. That is, the stretched signal lines 20 distributed in one conductive layer 21 and the stretched signal lines 20 distributed in another conductive layer 21 are dislocated. In this way, the parasitic capacitance between the stretched signal lines 20 of different layers can be reduced or eliminated.
  • the orthographic projections of the stretched signal lines 20 distributed in different conductive layers 21 on the substrate 001 do not overlap.
  • the elastic stretching unit 02 may further include a multi-layer insulating layer, and the insulating layer may be located between the conductive layer 21 and the substrate 001, or between the conductive layer 21 and the conductive layer 21, or the conductive layer 21 is far away from One side of substrate 001.
  • the elastic stretching unit 02 may include two layers of conductive layers 21, which are respectively a first conductive layer 211 and a second conductive layer 212, which stretch the signal line 20 may include a first stretched signal line 201 and a second stretched signal line 202 .
  • the elastic stretching unit 02 includes a first insulating layer 22 , a first conductive layer 211 , a second insulating layer 23 and a second conductive layer 212 which are stacked.
  • the first insulating layer 22 is arranged on one side of the substrate 001; the first conductive layer 211 is arranged on the side of the first insulating layer 22 away from the substrate 001; the second insulating layer 23 is arranged on the side of the first conductive layer 211 away from the substrate 001 On one side, the second insulating layer 23 covers the surface of the first conductive layer 211 to ensure the insulating effect; the second conductive layer 212 is disposed on the surface of the second insulating layer 23 away from the substrate 001 .
  • the first stretched signal line 201 is distributed in the first conductive layer 211
  • the second stretched signal line 202 is distributed in the second conductive layer 212
  • the first stretched signal line 201 and the second stretched signal line 202 are on the substrate 001.
  • the orthographic projections on do not overlap.
  • the materials of the first insulating layer 22 and the second insulating layer 23 may include organic materials such as general-purpose polymers such as polymethyl methacrylate and polystyrene, polymer derivatives based on phenol groups, Acrylic-based polymers, p-xylene-based polymers, aryl ether-based polymers, amide-based polymers, fluoride-based polymers, p-xylene-based polymers, vinyl alcohol-based polymers and their mixture.
  • the first insulating layer 22 and the second insulating layer 23 using these materials help to protect the first conductive layer 211 and the second conductive layer 212 from breaking.
  • the elastic stretching unit 02 in this embodiment also includes a third insulating layer 24 and an inorganic protective layer.
  • the third insulating layer 24 is disposed on the side of the second conductive layer 212 away from the substrate 001 , and the third insulating layer 24 covers the surface of the second conductive layer 212 .
  • the material of the third insulating layer 24 can refer to the selection of the first insulating layer 22 and the second insulating layer 23 , and will not be described in detail here.
  • the inorganic protection layer is disposed on a side of the third insulating layer 24 away from the substrate 001 and covers the surface of the third insulating layer 24 .
  • the material of the inorganic protection layer may include silicon oxide, silicon nitride or silicon oxynitride, and the like.
  • the inorganic protective layer can be a single-layer or multi-layer laminated structure, for example, it can include the first inorganic layer 241 and the second inorganic layer 242, or more inorganic layers, which can be adaptively changed according to the manufacturing process of the display panel. It should be noted here that the thickness of the inorganic protective layer is generally thinner than the thickness of the first insulating layer 22, the second insulating layer 23 or the third insulating layer 24, so as to avoid its bending during stretching while showing its protective effect. tear during folding.
  • the stretching rate of the elastic stretching unit 02 can be increased by dividing the stretching display unit 01 into a plurality of sub-stretching units 021 .
  • the elastic stretching unit 02 includes a plurality of sub-stretching units 021 distributed at intervals, each sub-stretching unit 021 includes at least one stretching signal line 20 and at least one layer of conductive layer 21, and the stretching signal line 20 is distributed in the conductive layer 21 , each conductive layer 21 includes at most one stretched signal line 20 , that is, each conductive layer 21 of each sub-stretched unit 021 contains only one stretched signal line 20 .
  • the sub-stretch unit 021 When the sub-stretch unit 021 only includes one conductive layer 21 , the sub-stretch unit 021 also includes only one stretched signal line 20 .
  • the elastic stretching unit 02 is divided into a plurality of sub-stretching units 021 , and each sub-stretching unit 021 is distributed at intervals, which can better release the stress released by the display panel during stretching to a certain extent.
  • the sub-stretching unit 021 may include one, two or more conductive layers 21 . When two or more conductive layers 21 are included, each conductive layer 21 is insulated from each other.
  • the sub-stretch unit 021 includes a conductive layer 21 , and the conductive layer 21 includes a stretched signal line 20 .
  • the sub-stretching unit 021 further includes a first insulating layer 22 and a second insulating layer 23 .
  • the first insulating layer 22 is disposed between the substrate 001 and the conductive layer 21
  • the second insulating layer 23 is disposed on the side of the conductive layer 21 away from the substrate 001 .
  • the materials of the first insulating layer 22 and the second insulating layer 23 include organic materials, which can be selected according to the materials of the insulating layers in the above embodiments, and will not be described in detail here.
  • the sub-stretching unit 021 may further include an inorganic protective layer disposed on a side of the second insulating layer 23 away from the substrate 001 .
  • the material and structure of the inorganic protective layer can refer to the inorganic protective layer in the above-mentioned embodiments.
  • the material of the inorganic protection layer may include silicon oxide, silicon nitride, or silicon oxynitride.
  • the inorganic protective layer may be a single layer or a multi-layer laminated structure, for example, may include a first inorganic layer 241 and a second inorganic layer 242, or more inorganic layers.
  • the film layer structure of the elastic stretching unit 02 can also be other structures, such as only comprising one conductive layer 21, and multiple stretching signal lines 20 can be distributed in the conductive layer 21, for details, please refer to The structure shown in Figure 6 and Figure 8.
  • the elastic stretching unit 02 includes a first insulating layer 22 , a conductive layer 21 , a second insulating layer 23 , a first inorganic layer 241 and a second inorganic layer 242 which are sequentially stacked. .
  • a plurality of signal lines 20 are distributed in the conductive layer 21 .
  • the stretching ratio of the display panel can be improved by changing the structure or shape of the display unit 01 , or the shape of the elastic stretching unit 02 .
  • the display unit 01 is a multi-layer structure, which may include one or more sub-pixels.
  • the film layer structure of the display unit 01 can be various.
  • the structure can be as shown in FIG. 4 to FIG. 6 , or as shown in FIG. 13 to FIG. 15 , which is not limited in the present disclosure.
  • the display unit 01 includes a driving circuit layer 10 and a light emitting layer 11 .
  • the driving circuit layer 10 is disposed on one side of the substrate 001 .
  • the light emitting layer 11 is disposed on the side of the driving circuit layer 10 away from the substrate 001 , and the light emitting layer 11 includes a pixel defining structure 111 and at least one light emitting device 110 .
  • the pixel defining structure 111 defines at least one sub-pixel area, and each sub-pixel area is distributed with a light emitting device 110 .
  • the driving circuit layer 10 includes a driving circuit, and the driving circuit includes a pixel circuit, and the pixel circuit is used to drive the light emitting device 110 of the display panel to emit light.
  • the pixel circuit may be a 7T1C, 7T2C, 6T1C or 6TC pixel circuit, and its structure is not specifically limited here.
  • nTmC indicates that a pixel circuit includes n transistors (indicated by the letter "T") and m capacitors (indicated by the letter "C").
  • the pixel circuits are connected to the light emitting devices 110 in a one-to-one correspondence to drive the light emitting devices 110 to emit light.
  • the light emitting device 110 includes a first electrode layer 1101 , a light emitting functional layer 1102 and a second electrode layer 1103 which are sequentially stacked along a direction away from the substrate 001 .
  • the first electrode layer 1101 is disposed on the side of the driving circuit layer 10 away from the substrate 001 , and the size of the sub-pixel region defined by the pixel defining structure 111 can expose a part of the first electrode layer 1101 .
  • the orthographic projection of the sub-pixel area on the substrate 001 may be polygonal or curved, which is not specifically limited.
  • the first electrode layer 1101 may serve as an anode of the light emitting device 110 .
  • the first electrode layer 1101 can be made of a transparent conductive material, such as ITO (indium tin oxide), IZO (indium zinc oxide) and the like.
  • the first electrode layer 1101 may be a single-layer or multi-layer structure, which is not limited in this disclosure.
  • the light emitting functional layer 1102 is disposed on a side of the first electrode layer 1101 away from the substrate 001 .
  • the luminescent functional layer 1102 is a multilayer structure. Along the direction away from the substrate 001, the luminescent functional layer 1102 includes a hole injection layer, a hole transport layer, a luminescent material layer, and an electron transport layer. Excitons are recombined into excitons, and photons are radiated by the excitons to generate visible light. The specific luminescence principle will not be described in detail here.
  • the luminescent material layer may be an organic luminescent material layer or a quantum dot luminescent material layer.
  • the light-emitting functional layer 1102 may further include an electron injection layer disposed on a side of the electron transport layer away from the substrate 001 .
  • the display unit 01 may include multiple light-emitting devices 110, and each light-emitting device 110 in a single display unit 01 may share the same light-emitting functional layer 1102, or use its own light-emitting functional layer 110, which is not limited in this disclosure.
  • the second electrode layer 1103 is disposed on a side of the light emitting functional layer 1102 away from the substrate 001 .
  • the second electrode layer 1103 may serve as a cathode of the light emitting device 110 .
  • the second electrode layer 1103 may be a single-layer or multi-layer structure, and its material may include one or more of conductive metals, metal oxides and alloys.
  • the thickness of the second electrode layer 1103 may be 100-500 nm, of course, it may also be in other thickness ranges, which is not limited in this disclosure.
  • the display unit 01 may include multiple light emitting devices 110 , and each light emitting device 110 in a single display unit 01 may share the same cathode, that is, share the same second electrode layer 1103 .
  • the second electrode layer 1103 of each light emitting device 110 is integrated, which is a continuous conductive layer covering the light emitting functional layer 1102 and the pixel defining structure 111 of each light emitting device 110, and also That is to say, the orthographic projection of the second electrode layer 1103 on the substrate 001 in a single display unit 01 covers each sub-pixel area and the orthographic projection of the pixel defining structure 111 on the substrate 001 .
  • the second electrode layer 1103 is recessed into the sub-pixel area at the place corresponding to the sub-pixel area, that is, the second electrode layer 1103 is recessed in a direction close to the substrate 001 at the place corresponding to the sub-pixel area.
  • Multiple light emitting devices 110 included in a single display unit 01 may form a light emitting device group 1100 , and the light emitting device groups 1100 of different display units 01 may or may not share the same second electrode layer 1103 .
  • the second electrode layer 1103 between the light emitting device groups 1100 of each display unit 01 is a whole continuous conductive layer 21 .
  • the second electrode layers 1103 between the light emitting device groups 1100 of each display unit 01 are separated from each other.
  • the light emitting layer 11 may further include a first electrode covering layer 112 , the first electrode covering layer 112 covers the surface of the pixel defining structure 111 and the first electrode layer 1101 close to the pixel defining One end of the structure 111, that is, the first electrode covering layer 112 covers the edge region of the first electrode layer 1101 exposed by the pixel defining structure 111, and the first electrode covering layer 112 exposes the middle region of the first electrode layer 1101 exposed by the pixel defining structure 111 .
  • This structural design helps to reduce the influence of the uneven film thickness in the edge region of the light emitting device 110 on the display effect.
  • the driving circuit layer 10 may be composed of a multi-layer film structure. Taking the transistor in the driving circuit as an example of a top-gate thin film transistor, the driving circuit layer 10 includes an active layer 101, a first gate insulating layer 102, a first gate metal layer 103, a second gate insulating layer 104, a second gate metal layer 105, an interlayer dielectric layer 106, and a first source-drain layer 107. It should be noted here that, in the embodiments shown in FIGS. 13 to 15 , the second gate insulating layer 104 and the second gate metal layer 105 are not shown due to different cross-sectional positions.
  • the active layer 101 is arranged on one side of the substrate 001; the first gate insulating layer 102 is arranged on the side of the active layer 101 away from the substrate 001, and the first gate insulating layer 102 covers the active layer 101; the first gate metal layer 103 is arranged On the side of the first gate insulating layer 102 away from the substrate 001, the first gate metal layer 103 includes the first plate of the capacitor C and the gate of the transistor T; the second gate insulating layer 104 is arranged on the side away from the first gate metal layer 103 On one side of the substrate 001, the second gate insulating layer 104 covers the first gate metal layer 103; the second gate metal layer 105 is arranged on the side of the first gate insulating layer 102 away from the substrate 001, and is arranged opposite to the first electrode plate , the second gate metal layer 105 includes the second plate of the capacitor C; the interlayer dielectric layer 106 is arranged on the side of the second gate metal layer 105 away from the substrate 001, and the interlayer
  • the first source-drain layer 107 further includes a plurality of signal lines, the signal lines include a voltage signal line VSS, and the voltage signal line VSS is connected to the second electrode layer 1103 , for transmitting a voltage signal to the second electrode layer 1103 of the light emitting device 110 .
  • the first source-drain layer 107 may also include other signal lines, such as scanning signal lines, light emission control signal lines, data lines, reset signal lines, etc. Do limited.
  • the signal line in the display unit 01 and the stretched signal line 20 in the elastic stretch unit 02 can be connected to form a complete signal line, so as to jointly provide various signals for each sub-pixel in the display unit 01 .
  • the elastic stretching unit 02 when the elastic stretching unit 02 includes at least two conductive layers 21 that are insulated from each other, the insulating layer between two adjacent conductive layers 21 The thickness of the layer gradually decreases from the stretching direction of the elastic stretching unit 02 to the display unit 01; at the connection contact point between the elastic stretching unit 02 and the display unit 01, the insulating layer between two adjacent conductive layers 21 The thickness is reduced to 0. That is, the insulation layer located between two adjacent conductive layers 21 is generally thick in the middle and thin at both ends in the extending direction of the elastic stretching unit 02 .
  • the connection point refers to the area range, not a specific connection point, such as the area range shown in E in FIG. 16 .
  • the multiple stretched signal lines 20 in the elastic stretch unit 02 extend to the inside of the display unit 01 to form multiple signal lines 12 in the display unit 01; the multiple signal lines 12 in the display unit 01 are parallel to the plane where the substrate 001 is located The direction in which the tiles are spaced apart is set. That is, a plurality of signal lines 12 within the display unit 01 may be located on the same layer.
  • the signal wires 12 of different wire shapes are located in different conductive layers in the elastic stretching unit 02 .
  • the number of film layer structures in the display unit 01 can be reduced as much as possible, which helps to reduce the thickness of the display panel to a certain extent.
  • the driving circuit layer 10 further includes a planarization layer 109 located between the first source-drain layer 107 and the light-emitting layer 11 .
  • the material of the planarization layer 109 may include an organic insulating material, and its specific selection may refer to the first insulating layer 22 in the above-mentioned embodiments.
  • the driving circuit layer 10 may further include a first covering layer 1091 disposed on a side of the first source-drain layer 107 away from the substrate 001 .
  • the orthographic projection of the first covering layer 1091 on the substrate 001 is located at the periphery of the orthographic projection of the light emitting device group 1100 on the substrate 001. That is, the first covering layer 1091 is distributed on the edge of the display panel.
  • the first capping layer 1091 may be on the same layer as the planarization layer 109 .
  • the first planarization layer 109 is distributed in the middle area of the display panel, that is, the area where the light emitting device 110 is disposed.
  • the first covering layer 1091 is provided with grooves, and this structure has a certain waterproof and water-blocking effect, which is helpful to prevent external water vapor from entering the light-emitting device 110 and avoid affecting the display effect.
  • the material of the first covering layer 1091 may include an inorganic insulating material layer, and its specific selection may refer to the inorganic protective layer in the above-mentioned embodiments, and details are not repeated here. Certainly, it may also be selected from an organic insulating material layer, which is not limited in the present disclosure.
  • the first electrode covering layer 112 may also cover the surface of the first covering layer 1091 . Similarly, the first electrode covering layer 112 may also be provided with grooves to prevent external water vapor from entering the light emitting device 110 .
  • the driving circuit layer 10 may further include a passivation layer 108 located between the planarization layer 109 and the first source-drain layer 107 .
  • the material of the passivation layer 108 may include an inorganic insulating material layer, and its specific selection may refer to the inorganic protective layer in the above embodiment, and details are not repeated here.
  • the display panel further includes an encapsulation layer 04 , and the encapsulation layer 04 is disposed on a side of the light emitting layer 11 away from the substrate 001 . It can be used to protect the light-emitting layer 11 and prevent water and oxygen from outside from corroding the light-emitting device 110 .
  • the encapsulation can be realized by thin film encapsulation (Thin-Film Encapsulation, TFE).
  • the encapsulation layer 04 can be composed of one or more inorganic layers, and the material can be silicon oxide, nitrogen Single-layer or multi-layer inorganic layers such as silicon oxide and silicon nitride, or dense film layers such as aluminum oxide, aluminum nitride, titanium nitride, and titanium nitride.
  • the present disclosure there may be multiple ways to transmit the voltage signal to the second electrode layer 1103 .
  • other transition layers located on the side of the light-emitting layer 11 away from the substrate 001 can be used to provide voltage signals for the second electrode layer 1103. .
  • the display panel further includes a first connection conductor layer 05 and a cover plate 06 .
  • the first connection conductor layer 05 is disposed on a side of the encapsulation layer 04 away from the substrate 001 , and the first connection conductor layer 05 is connected to the second electrode layer 1103 .
  • the first connecting conductor layer 05 can be a transparent conductive layer, and its material can be selected from mesh conductive metal or transparent conductive material, such as ITO (indium tin oxide), IZO (indium zinc oxide) and the like.
  • the first connecting conductor layer 05 is connected to the second electrode layer 1103 through via holes.
  • the cover plate 06 is disposed on a side of the first connecting conductor layer 05 away from the substrate 001 .
  • the cover plate 06 can be made of a transparent and flexible material, such as polydimethylsiloxane (Polydimethylsiloxane, PMDS).
  • the cover plate 06 is provided with a second connection conductor layer 61, the second connection conductor layer 61 is located on the side of the cover plate 06 close to the substrate 001, the second connection conductor layer 61 is connected to the first connection conductor layer 05, and the second connection conductor layer 61 is used for transmitting voltage signals.
  • the second connecting conductor layer 61 can be connected to an external power source to supply power to the cathode of the light emitting device 110 .
  • the second connecting conductor layer 61 can be a transparent conductive layer, and its material can be selected from mesh conductive metal or transparent conductive material, such as ITO (indium tin oxide), IZO (indium zinc oxide), and the like.
  • the first connection conductor layer 05 located above the encapsulation layer 04 (the side away from the substrate 001 ) is used as a transfer layer, and is connected to the external power supply through the second connection conductor layer 61, so that the light emitting device 110 cathode for power supply.
  • This kind of structural design helps to reduce the frame width of the periphery of the light emitting device group 1100 in the display unit 01, and further helps to improve the display quality of the display panel.
  • this embodiment helps to realize the narrow frame design of the display unit 01, so that the The number of sub-pixels in the display unit 01 , that is, the number of light emitting devices 110 can be increased, thereby helping to improve the display effect of the display panel.
  • the number of sub-pixels of the display panel is fixed, it is also helpful to reduce the area of the display unit 01 , thereby increasing the area of the hollow area 03 and improving the stretching ratio of the display panel.
  • the display panel further includes conductive balls 07 , and the second connection conductor layer 61 is connected to the first connection conductor layer 05 through the conductive balls 07 .
  • the conductive ball 07 has a more excellent conductive effect.
  • the material of the conductive ball 07 can be selected from conductive metal, metal alloy or transparent conductive material.
  • the orthographic projection of the conductive ball 07 on the substrate 001 may be located within the orthographic projection of the pixel defining structure 111 on the substrate 001 . Certainly, when the conductive ball 07 is a transparent structure, the specific position of the conductive ball 07 is not limited.
  • the structure of the second electrode layer 1103 between each display unit 01 can be improved by changing the specific shape of the pixel defining structure 111 .
  • the pixel defining structure 111 includes a first defining structure 1111 disposed on the periphery of the light emitting device group 1100.
  • the first limiting structure 1111 may have various shapes. In some embodiments of the present disclosure, in a direction perpendicular to the plane where the substrate 001 is located, the orthographic projection of the bottom end of the first defining structure 1111 on the substrate 001 is located at the center or the top of the first defining structure 1111 is on the substrate 001. within the projection.
  • the bottom of the first limiting structure 1111 is the end close to the substrate 001
  • the top is the end away from the substrate 001
  • the middle is the part between the bottom and the top.
  • the first limiting structure 1111 is generally wide at the top or middle and narrow at the bottom.
  • the cross section of the first limiting structure 1111 is an inverted trapezoid.
  • the first limiting structure 1111 includes a first limiting part 11a and a second limiting part 11b connected to each other, and the first limiting part 11a is connected to
  • the second limiting portion 11b is close to the side of the substrate, the orthographic projection of the first limiting portion 11a on the substrate 001 is located within the orthographic projection of the second limiting portion 11b on the substrate 001, and the orthographic projection of the first limiting portion 11a on the substrate 001
  • the area of the orthographic projection is smaller than the area of the orthographic projection of the second limiting portion 11 b on the substrate 001 .
  • the cross-section of the second limiting portion 11b may be polygonal or semicurved, such as regular trapezoid, inverted trapezoid, semicircle or semiellipse.
  • the cross section of the first limiting structure 1111 is approximately mushroom-shaped.
  • the pixel defining structure 111 further includes a second defining structure 1112, which is arranged between two adjacent light emitting devices 110 in each display unit 01; In the direction of the plane where the substrate 001 is located, the height of the first limiting structure 1111 is greater than the height of the second limiting structure 1112 .
  • the second electrode layer 1103 when the second electrode layer 1103 is formed, the second electrode layer 1103 is prone to breakage at the first limiting structure 1111, and is less likely to break at the second limiting structure 1112, so that the display units 01
  • the second electrode layer 1103 is separated, and a complete second electrode layer 1103 is formed inside the display unit 01, which facilitates the power supply of the second electrode layer 1103 of the light emitting device 110, and reduces the stretching process of the display panel.
  • the second limiting structure 1112 can have various shapes. For example, in a direction perpendicular to the plane where the substrate 001 is located, a part of the cross section of the second limiting structure 1112 is a regular trapezoid or a semi-curved edge.
  • the display unit 01 further includes a light shielding layer 13 and a buffer layer 14 .
  • the light shielding layer 13 is disposed between the substrate 001 and the driving circuit layer 10
  • the buffer layer 14 is disposed between the light shielding layer 13 and the driving circuit layer 10 .
  • the display unit 01 , the elastic stretching unit 02 and the substrate 001 can be freely combined to form display panels with different film layer structures. As shown in FIGS. 13 to 15 , the structures of the substrates 001 are different, forming display panels with different film layer structures.
  • a plurality of display units 01 are arranged in an array, and two adjacent display units 01 are connected by elastic stretching units 02 .
  • One display unit 01 can be connected with multiple elastic stretching units 02 .
  • an elastic stretching unit 02 may be connected between the surfaces of two adjacent display units 01 that are close to and opposite to each other.
  • the display unit 01 is roughly a quadrangular structure, each side of which can be connected to one elastic stretching unit 02 , that is, the quadrangular display unit 01 can be connected to four elastic stretching units 02 .
  • the other ends of the four elastic stretching units 02 are respectively connected to other display units 01 located around the display unit 01 .
  • the display unit 01 is roughly circular in structure. As shown in FIG. one or more etc. Then the display unit 01 can be connected with three, four, five or more elastic stretching units 02 correspondingly. In this way, each display unit 01 is connected by the elastic stretching unit 02 to form a network structure. A hollow area 03 is formed between the display unit 01 and the elastic stretching unit 02 .
  • At least a partial area of the elastic stretching unit 02 is a curved structure.
  • the curved structure helps to increase the stretch rate of the elastic stretch unit 02.
  • the specific shape of the elastic stretching unit 02 will be illustrated below in combination with different embodiments.
  • two adjacent display units 01 are arranged along the first direction.
  • the first direction can be changed along with the arrangement direction of two adjacent display units 01 .
  • the first direction is the row direction.
  • the first direction is the column direction.
  • the first direction may also be other directions except the row direction and the column direction.
  • the elastic stretching unit 02 includes a first connecting portion 25, a second connecting portion 26 and a third connecting portion 27 which are sequentially and smoothly connected; the first connecting portion 25 and the third connecting portion 27 extend along the first direction; the first connecting portion 25 has a first connection end, and the third connection portion 27 has a second connection end, the first connection end is connected to one of the display units 01 in two adjacent display units 01, and the second connection end is connected to two adjacent display units Another display unit 01 in 01 is connected, and the first connection end and the second connection end are located on both sides of the line O connecting the center points of two adjacent display units 01 .
  • the elastic stretching unit 02 is respectively connected to two adjacent display units 01 through a first connection end and a second connection end.
  • the extending direction of the second connecting portion 26 is not perpendicular to the line O connecting the center points of two adjacent display units 01 .
  • the angle ⁇ between the extension direction of the second connecting portion 26 and the line connecting the center points of two adjacent display units 01 may be an acute angle.
  • the length of the second connecting portion 26 in its extending direction is relatively long, which helps to increase the stretching rate of the elastic stretching unit 02 .
  • the second connecting portion 26 may be straight or curved, which is not limited in this disclosure.
  • the second connecting portion 26 is linear, and the angle between the extension direction of the second connecting portion 26 and the line connecting the center points of two adjacent display units 01 is ⁇ , 45° ⁇ 90°.
  • the elastic stretching unit 02 may be a centrally symmetrical structure.
  • the symmetrical central point of the elastic connection unit is located on the line adjacent to the central points of the two display units 01 .
  • the shape of the display unit 01 is not limited.
  • the display unit 01 is a quadrilateral, such as a square, a rectangle, a rhombus, and the like.
  • the multiple display units 01 include multiple first display units 01a and multiple second display units 01b.
  • a plurality of second display units 01b are respectively connected to the first display unit 01a through elastic stretching units 02, and the second display units 01b are arranged at intervals from the first display unit 01a.
  • the edge of the first display unit 01a is linear, and the edge of the second display unit 01b is curved.
  • the first display unit 01a is polygonal, such as a quadrangle, and the second display unit 01b is roughly circular.
  • the elastic stretching unit 02 has a first connection end and a second connection end, the first connection end is connected to the first display unit 01a of the adjacent first display unit 01a and the second display unit 01b, The second connection end is connected to the second display unit 01b in the adjacent first display unit 01a and the second display unit 01b, and the first connection end and the second connection end are located in the adjacent first display unit 01a and the second display unit 01b.
  • the center point of unit 01b connects both sides of line O.
  • At least a partial area of the elastic stretching unit 02 is a curved structure extending along the bending direction of the edge of the second display unit 01b. That is, a partial area of the elastic stretching unit 02 is a curved structure, and the curved extension direction of the curved structure is substantially the same as the curved direction of the edge of the second display unit 01b.
  • two adjacent display units 01 are arranged along the first direction.
  • the first direction can be changed according to the arrangement direction of two adjacent display units 01 .
  • the first direction is the row direction.
  • the first direction is the column direction.
  • the first direction may also be other directions except the row direction and the column direction.
  • the elastic stretching unit 02 includes a third connecting portion 27, a fourth connecting portion 28 and a fifth connecting portion 29 which are sequentially and smoothly connected; the third connecting portion 27 and the fifth connecting portion 29 extend along the first direction; the third connecting portion 27 has a third connection end, the fifth connection portion 29 has a fourth connection end, the third connection end is connected to one of the display units 01 in two adjacent display units 01, and the fourth connection end is connected to two adjacent display units Another display unit 01 in 01 is connected, and the third connection end and the fourth connection end are located on the line connecting the center points of two adjacent display units 01 .
  • the fourth connecting portion 28 is a curved structure.
  • the elastic stretching units 02 of different shapes can be configured as a structure including a plurality of sub-stretching units 021 , as shown in FIG. 22 .
  • the drawings of the present disclosure only exemplarily show a schematic diagram of the shape of the elastic stretching unit 02 including the sub-stretching unit 021, and the elastic stretching unit 02 including the sub-stretching unit 021 can also be in other shapes, The specifics are not limited.
  • the hollow area 03 is set at the center of the four display units 01 distributed in a square shape.
  • the hollow area 03 is in the shape of a pinwheel.
  • the center point of the hollow area 03 coincides with the center points of the four display units 01 distributed in a square shape.

Abstract

本公开提供了一种显示面板及显示装置,属于显示技术领域。该显示面板包括基板(001),多个显示单元(01),设于基板(001)的一侧,每个显示单元(01)包含至少一个子像素;多个弹性拉伸单元(02),设于基板(001)的一侧,弹性拉伸单元(02)连接于相邻两个显示单元(01)之间,多个弹性拉伸单元(02)和多个显示单元之间(01)形成多个镂空区域(03);其中,多个镂空区域(03)的面积之和为a,多个显示单元(01)的面积之和为b,多个弹性拉伸单元(02)的面积之和为c;15%≤a/(a+b+c)×100%≤30%。本公开显示面板不仅可满足在拉伸过程中应力的释放需求,也可以保证显示面板的显示质量。 (图1)

Description

显示面板及显示装置 技术领域
本公开涉及显示技术领域,尤其涉及一种显示面板及显示装置。
背景技术
随着显示技术的发展,对显示产品的弯曲要求越来越高。目前在弯折显示产品中,显示器件内的各衬底、电路层尤其是无机层等膜层结构,其具有一定的弯折性,但可拉伸量都是及其有限的,在拉伸过程中,往往容易发生破碎或者不可逆的变形。
所述背景技术部分公开的上述信息仅用于加强对本公开的背景的理解,因此它可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本公开的目的在于提供一种显示面板,本公开显示面板不仅可满足在拉伸过程中应力的释放需求,也可以保证显示面板的显示质量。
为实现上述发明目的,本公开采用如下技术方案:
根据本公开的第一个方面,提供一种一种显示面板,其中,包括:
基板,
多个显示单元,设于基板的一侧,每个显示单元包含至少一个子像素;
多个弹性拉伸单元,设于基板的一侧,所述弹性拉伸单元连接于相邻两个所述显示单元之间,多个所述弹性拉伸单元和多个所述显示单元之间形成多个镂空区域;
其中,多个所述镂空区域的面积之和为a,多个所述显示单元的面积之和为b,多个弹性拉伸单元的面积之和为c;
15%≤a/(a+b+c)×100%≤30%。
在本公开的一种示例性实施例中,所述弹性拉伸单元包括多条拉伸信号线和至少两层相互绝缘的导电层;
其中,多条所述拉伸信号线至少分布在两层所述导电层中。
在本公开的一种示例性实施例中,在平行于所述基板所在平面的方向上,分布在不同层所述导电层中的所述拉伸信号线错位排布。
在本公开的一种示例性实施例中,分布在不同层所述导电层中的所述拉伸信号线在所述基板上的正投影不重叠。
在本公开的一种示例性实施例中,所述弹性拉伸单元包括:
第一绝缘层,设于所述基板的一侧;
第一导电层,设于所述第一绝缘层远离所述基板的一侧;
第二绝缘层,设于所述第一导电层远离所述基板的一侧,所述第二绝缘层覆盖所述第一导电层的表面;
第二导电层,设于所述第二绝缘层远离所述基板的一侧;
拉伸信号线,包括第一拉伸信号线和第二拉伸信号线,所述第一拉伸信号线分布在所述第一导电层中,所述第二拉伸信号线分布在所述第二导电层中,所述第一拉伸信号线和所述第二拉伸信号线在所述基板上的正投影不重叠。
在本公开的一种示例性实施例中,所述弹性拉伸单元包括多个间隔分布的子拉伸单元,每个所述子拉伸单元包括至少一条拉伸信号线和至少一层导电层,所述拉伸信号线分布在所述导电层中,每层所述导电层至多包括一条拉伸信号线。
在本公开的一种示例性实施例中,所述子拉伸单元包括一层所述导电层,所述导电层包括一条拉伸信号线;
所述子拉伸单元还包括:
第一绝缘层,设于所述基板和所述导电层之间;
第二绝缘层,设于所述导电层远离所述基板的一侧。
在本公开的一种示例性实施例中,所述显示单元包括:
驱动电路层,设于所述基板的一侧;
发光层,设于所述驱动电路层远离所述基板的一侧,所述发光层包括像素限定结构和至少一个发光器件;
所述像素限定结构限定出至少一个子像素区,每个所述子像素区分布有一个所述发光器件。
在本公开的一种示例性实施例中,所述发光器件包括沿远离所述基板方向依次层叠设置的第一电极层、发光功能层和第二电极层;
所述驱动电路层包括:
有源层,设于所述基板的一侧;
第一栅绝缘层,设于所述有源层远离所述基板的一侧,所述第一栅绝缘层覆盖所述有源层;
第一栅金属层,设于所述第一栅绝缘层远离所述基板的一侧,所述第一栅金属层包括电容的第一极板和晶体管的栅极;
第二栅绝缘层,设于所述第一栅金属层远离所述基板的一侧,所述第二栅绝缘层覆盖所述第一栅金属层;
第二栅金属层,设于所述第一栅绝缘层远离所述基板的一侧,且与所述第一极板正对设置,所述第二栅金属层包括所述电容的第二极板;
层间介质层,设于所述第二栅金属层远离所述基板的一侧,所述层间介质层覆盖所述第二栅金属层;
第一源漏层,设于所述层间介质层远离所述基板的一侧,所述第一源漏层包括所述晶体管的源极和漏极,所述源极和漏极连接于所述有源层;
其中,所述第一源漏层还包括多条信号线,所述信号线包括电压信号线,所述电压信号线与所述第二电极层连接。
在本公开的一种示例性实施例中,当所述弹性拉伸单元包括至少两层相互绝缘的导电层时,位于相邻两层所述导电层之间的绝缘层的厚度从所述弹性拉伸单元至所述显示单元的延伸方向上逐渐减薄;
所述弹性拉伸单元内的多条所述拉伸信号线延伸至所述显示单元内部形成所述显示单元内的多条所述信号线;
位于所述显示单元内的多条所述信号线在平行于所述基板所在平面的方向上间隔平铺设置。
在本公开的一种示例性实施例中,所述发光器件包括沿远离所述基板方向依次层叠设置的第一电极层、发光功能层和第二电极层;
所述显示面板还包括:
封装层,设于所述发光层远离所述基板的一侧;
第一连接导体层,设于所述封装层远离所述基板的一侧,所述第一连接导体层与所述第二电极层连接;
盖板,设于所述第一连接导体层远离所述基板的一侧,所述盖板设有第二连接导体层,所述第二连接导体层位于所述盖板靠近所述基板的一面,所述第二连接导体层和所述第一连接导体层连接,所述第二连接导体层用于传输电压信号。
在本公开的一种示例性实施例中,所述显示面板还包括导电球,所述第二连接导体层和所述第一连接导体层之间通过所述导电球连接。
在本公开的一种示例性实施例中,每个显示单元内的所有所述发光器件组成一个发光器件组;
所述像素限定结构包括:
第一限定结构,设于所述发光器件组的外围;
在垂直于所述基板所在平面的方向上,所述第一限定结构的底端在所述基板上的正投影位于所述第一限定结构的中部或顶端在所述基板上的正投影之内。
在本公开的一种示例性实施例中,所述像素限定结构还包括:
第二限定结构,设于每个所述显示单元内的相邻两个所述发光器件之间;
在垂直于所述基板所在平面的方向上,所述第一限定结构的高度大于所述第二限定结构的高度。
在本公开的一种示例性实施例中,在垂直于所述基板所在平面的方向上,所述第一限定结构的截面为倒梯形。
在本公开的一种示例性实施例中,每个显示单元内的所有所述发光器件组成一个发光器件组;
所述像素限定结构包括:
第一限定结构,设于所述发光器件组的外围,所述第一限定结构包括相互连接的第一限定部和第二限定部,所述第一限定部连接于所述第二限定部靠近所述基板的一侧,所述第一限定部在所述基板上的正投影位于所述第二限定部在所述基板上的正投影之内,且所述第一限定部在基板上的正投影的面积小于所述第二限定部在基板上的正投影的面积。
在本公开的一种示例性实施例中,所述弹性拉伸单元的至少部分区域为弯曲结构。
在本公开的一种示例性实施例中,相邻两个所述显示单元沿第一方向排列;
所述弹性拉伸单元包括依次顺滑连接的第一连接部、第二连接部和第三连接部;
所述第一连接部和所述第三连接部沿所述第一方向延伸;
所述第一连接部具有第一连接端,所述第三连接部具有第二连接端,所述第一连接端与相邻两个所述显示单元中的其中一个所述显示单元连接,所述第二连接端与相邻两个所述显示单元中的另一个所述显示单元连接,所述第一连接端和所述第二连接端位于相邻两个所述显示单元的中心点连线的两侧;
所述第二连接部的延伸方向与相邻两个所述显示单元的中心点连线不垂直。
在本公开的一种示例性实施例中,所述第二连接部为直线形,所述第二连接部的延伸方向与相邻两个所述显示单元的中心点连线之间的夹角为α,45°≤α<90°。
在本公开的一种示例性实施例中,多个所述显示单元包括:
多个第一显示单元;
多个第二显示单元,分别通过所述弹性拉伸单元与所述第一显示单元连接,所述第二显示单元与所述第一显示单元间隔排布;
其中,所述第一显示单元的边缘呈直线型,所述第二显示单元的边缘呈曲线形。
在本公开的一种示例性实施例中,所述弹性拉伸单元具有第一连接端和第二连接端,所述第一连接端与相邻的所述第一显示单元和所述第二显示单元中的所述第一显示单元连接,所述第二连接端与相邻的所述第一显示单元和所述第二显示单元中的所述第二显示单元连接,所述第一连接端和所述第二连接端位于相邻的所述第一显示单元和所述第二显示单元的中心点连线的两侧;
所述弹性拉伸单元的至少部分区域为沿所述第二显示单元边缘的弯 曲方向延伸的弯曲结构。
在本公开的一种示例性实施例中,所述镂空区域设置在呈田字形分布的四个所述显示单元的中心;
所述镂空区域为风车形。
在本公开的一种示例性实施例中,相邻两个所述显示单元沿第一方向排列;
所述弹性拉伸单元包括依次顺滑连接的第三连接部、第四连接部和第五连接部;所述第三连接部和所述第五连接部沿所述第一方向延伸;所述第三连接部具有第三连接端,所述第五连接部具有第四连接端,所述第三连接端与相邻两个所述显示单元中的其中一个所述显示单元连接,所述第四连接端与相邻两个所述显示单元中的另一个所述显示单元连接,所述第三连接端和所述第四连接端位于相邻两个所述显示单元的中心点连线上;
第四连接部为弯曲结构。
在本公开的一种示例性实施例中,所述基板包括第一部和嵌设于所述第一部内的多个间隔分布的第二部;
所述第二部的刚性大于所述第一部的刚性;
所述显示单元在所述基板上的正投影至少部分位于所述第二部内。
在本公开的一种示例性实施例中,所述第一部设有多个间隔分布的第一凹槽,所述第一凹槽开口于所述基板靠近所述显示单元的一侧,多个所述第二部一一对应地分布在各所述第一凹槽内。
在本公开的一种示例性实施例中,所述第二部设有多个间隔分布的贯穿所述基板的通孔,多个所述第二部一一对应地分布在各所述通孔内。
在本公开的一种示例性实施例中,所述第一部设置有多个间隔分布的第二凹槽。
在本公开的一种示例性实施例中,所述基板包括:
底膜层;
压敏胶层,设于所述底膜层的一侧;
柔性材料层,设于所述压敏胶层远离所述底膜层的一侧,所述柔性材料层包括间隔设置的第一柔性单元和第二柔性单元;
所述显示单元在所述基板上的正投影位于所述第一柔性单元内,所述弹性拉伸单元在所述基板上的正投影与所述第二柔性单元至少部分重叠。
根据本公开第二个方面,提供一种显示装置,包括如第一方面所述的显示面板。
本公开提供的显示面板,弹性拉伸单元连接于相邻两个显示单元之间,多个弹性拉伸单元和多个显示单元之间形成多个镂空区域。在显示面板拉伸过程中,可通过镂空区域释放应力,从而避免显示面板的各层结构发生断裂,如此,提高显示面板整体的拉伸率和使用寿命。镂空区域的面积占三者总面积的,在该范围内,镂空区域不仅可满足在拉伸过程中应力的释放需求,也可以保证显示面板的显示质量。
附图说明
通过参照附图详细描述其示例实施方式,本公开的上述和其它特征及优点将变得更加明显。
图1是本公开示例性实施例中显示面板平面结构示意图;
图2是本公开另一示例性实施例中显示面板平面结构示意图;
图3是本公开又一示例性实施例中显示面板平面结构示意图;
图4是图1中A-A方向截面图;
图5是图4中D部分放大图;
图6是图2中B-B方向截面图;
图7是本公开示例性实施例中弹性拉伸单元膜层结构示意图;
图8是本公开另一示例性实施例中弹性拉伸单元膜层结构示意图;
图9是本公开又一示例性实施例中弹性拉伸单元膜层结构示意图;
图10是本公开示例性实施例中基板结构示意图;
图11是本公开另一示例性实施例中基板结构示意图;
图12是本公开又一示例性实施例中基板结构示意图;
图13是本公开示例性实施例中显示面板膜层结构示意图;
图14是本公开另一示例性实施例中显示面板膜层结构示意图;
图15是本公开又一示例性实施例中显示面板膜层结构示意图;
图16是本公开示例性实施例中拉伸信号线和信号线分布结构示意图;
图17是本公开示例性实施例中第一限定结构示意图;
图18是本公开另一示例性实施例中第一限定结构示意图;
图19是本公开示例性实施例中显示单元、弹性拉伸单元结构示意图;
图20是本公开另一示例性实施例中显示单元、弹性拉伸单元结构示意图;
图21是本公开又一示例性实施例中显示单元、弹性拉伸单元结构示意图;
图22是本公开又一示例性实施例中显示单元、弹性拉伸单元结构示意图。
图中主要元件附图标记说明如下:
001-基板;010-第一部;10a-第一凹槽;10b-通孔;10c-第二凹槽;011-第二部;012-底膜层;013-压敏胶层;014-柔性材料层;14a-第一柔性单元;14b-第二柔性单元;01-显示单元;01a-第一显示单元;01b-第二显示单元;10-驱动电路层;101-有源层;102-第一栅绝缘层;103-第一栅金属层;104-第二栅绝缘层;105-第二栅金属层;106-层间介质层;107-第一源漏层;108-钝化层;109-平坦化层;1091-第一覆盖层;11-发光层;110-发光器件;1100-发光器件组;1101-第一电极层;1102-发光功能层;1103-第二电极层;111-像素限定结构;1111-第一限定结构;11a-第一限定部;11b-第二限定部;1112-第二限定结构;112-第一电极覆盖层;12-信号线;13-遮光层;14-缓冲层;02-弹性拉伸单元;021-子拉伸单元;20-拉伸信号线;201-第一拉伸信号线;202-第二拉伸信号线;21-导电层;211-第一导电层;212-第二导电层;22-第一绝缘层;23-第二绝缘层;24-第三绝缘层;241-第一无机层;242-第二无机层;25-第一连接部;26-第二连接部;27-第三连接部;28-第四连接部;29-第五连接部;291-第六连接部;03-镂空区域;04-封装层;05-第一连接导体层;06-盖板;61-第二连接导体层;07-导电球。
具体实施方式
现在将参考附图更全面地描述示例实施例。然而,示例实施例能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施例使得本公开将更加全面和完整,并将示例实施例的构思全面地传达给本领域的技术人员。所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。在下面的描述中,提供许多具体细节从而给出对本公开的实施例的充分理解。
在图中,为了清晰,可能夸大了区域和层的厚度。在图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。
所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。在下面的描述中,提供许多具体细节从而给出对本公开的实施例的充分理解。然而,本领域技术人员将意识到,可以实践本公开的技术方案而没有所述特定细节中的一个或更多,或者可以采用其它的方法、组元、材料等。在其它情况下,不详细示出或描述公知结构、材料或者操作以避免模糊本公开的主要技术创意。
当某结构在其它结构“上”时,有可能是指某结构一体形成于其它结构上,或指某结构“直接”设置在其它结构上,或指某结构通过另一结构“间接”设置在其它结构上。
用语“一个”、“一”、“所述”用以表示存在一个或多个要素/组成部分/等;用语“包括”和“具有”用以表示开放式的包括在内的意思并且是指除了列出的要素/组成部分/等之外还可存在另外的要素/组成部分/等。用语“第一”和“第二”等仅作为标记使用,不是对其对象的数量限制。
本公开实施方式中提供一种显示面板,包括:基板001,多个显示单元01,设于基板001的一侧,每个显示单元01包含至少一个子像素;多个弹性拉伸单元02,设于基板001的一侧,弹性拉伸单元02连接于相邻两个显示单元01之间,多个弹性拉伸单元02和多个显示单元01之间形成多个镂空区域03;其中,多个镂空区域03的面积之和为a,多个显示单元01的面积之和为b,多个弹性拉伸单元02的面积之和为c;15%≤a/(a+b+c)×100%≤30%。
本公开提供的显示面板,弹性拉伸单元02连接于相邻两个显示单元01之间,多个弹性拉伸单元02和多个显示单元01之间形成多个镂空区 域03。在显示面板拉伸过程中,可通过镂空区域03释放应力,从而避免显示面板的各层结构发生断裂,如此,提高显示面板整体的拉伸率和使用寿命。镂空区域03的面积占三者总面积的15%-30%,在该范围内,镂空区域03不仅可满足在拉伸过程中应力的释放需求,也可以保证显示面板的显示质量。
下面结合附图对本公开实施方式提供的显示面板的各部件进行详细说明:
如图1至图4所示,本实施方式中提供一种显示面板,该显示面板包括基板001、多个显示单元01和多个弹性拉伸单元02。显示单元01和弹性拉伸单元02设于基板001的一侧,显示单元01用于显示画面,弹性拉伸单元02连接于相邻两个显示单元01之间。
基板001可以是单层或多层层叠结构,也可以是多种形状拼接形成的板状结构。基板001的材料可以包含一种或多种。基板001的厚度可以为5-200μm。
如图4和图6所示,其中,图4为图1中A-A方向的截面示意图;图6为图2中B-B方向的截面示意图。在本公开一些实施例中,基板001为多层层叠结构的柔性基板。基板001可以包括底膜层012(Bottom Film)、压敏胶层013和柔性材料层014。其中,显示单元01和弹性拉伸单元02对应的底膜层012和压敏胶层013可以为一体结构,柔性材料层014可以为一体或分体结构。如,在一实施例中,柔性材料层014为一体式膜层。而在另一实施例中,柔性材料层014为分体式结构。
继续如图4和图6所示,柔性材料层014包括间隔设置的第一柔性单元14a和第二柔性单元14b。显示单元01在基板001上的正投影位于第一柔性单元14a内,弹性拉伸单元02在基板001上的正投影与第二柔性单元14b至少部分重叠。也即,显示单元01设置在第一柔性单元14a的一侧。弹性拉伸单元02部分区域可设于第二柔性单元14b的一侧,部分区域可设于第二柔性单元14b的一侧。当然,弹性拉伸单元02也可全部设于第二柔性单元14b的一侧。在此类实施例中,将基板001的柔性材料层014进行分割,有助于提升基板001在拉伸时的拉伸率,一方面可避免基板001的拉伸过程中发生断裂,另一方面也可避免基板001各 个膜层之间发生剥离。
底膜层012的材料可选用二甲基硅氧烷、聚酰亚胺、聚对苯二甲酸乙二酯等具有高弹性的材料。压敏胶层013可选用亚克力系、硅系等胶材。柔性材料层014可选用聚酰亚胺、聚对苯二甲酸乙二酯、金属等柔性材料。
如图10至图12所示,在本公开另一些实施例中,基板001可以是不同形状结构连接而成的板状结构。例如,在一实施例中,基板001包括第一部010和嵌设于主体内的多个间隔分布的第二部011,第二部011的刚性大于第一部010的刚性,显示单元01在基板001上的正投影至少部分位于第二部011内。优选地,显示单元01在基板001上的正投影全部位于第二部011内。也即,显示单元01位于基板001的第二部011的上方。在此需说明的是,图10至图12仅是示意性说明基板001的结构,图中对显示单元01和弹性拉伸单元02的显示图案并不构成本申请的限制。
在实际应用中,当拉伸显示面板时,基板001会随着外界作用力而产生形变,显示单元01内的各个膜层会随着基板001形变而形变。基板001包括第一部010和第二部011,第二部011的刚性大于第一部010的刚性,因此,第二部011产生的形变较小,位于其上方的显示单元01中的各个膜层结构在拉伸过程中不容易发生剥离(peeling),有助于提高显示单元01的信赖性。
第二部011的刚性大于第一部010的刚性,具体可通过调整第二部011和第一部010的材料选择予以实现。举例而言,第二部011的材料的弹性模量可小于第一部010材料的弹性模量。如,第二部011的材料可包括聚酰亚胺(Polyimide,PI),第一部010的材料可以包括聚二甲基硅氧烷(Polydimethylsiloxane,PMDS)。
进一步地,第二部011的形状可以为多种,在平行于基板001所在平面上,第二部011的截面可以呈几何多边形或曲边形,或不规则闭合形状等,具体本公开不做限定。在实际应用中,可根据显示单元01的形状及大小进行设定。
第二部011在第一部010内的具体分布方式可以有多种。
如图10所示,在一实施例中,第一部010设置有多个间隔分布的第一凹槽10a,第一凹槽10a开口于基板001靠近显示单元01的一侧,即第一凹槽10a的开口朝向显示单元01。多个第二部011一一对应地分布在各第一凹槽10a内,即,第二部011和第一凹槽10a一一对应。在该实施例中,第一部010将第二部011包裹于其内。第一凹槽10a的形状大小可根据第二部011的形状进行设定,使得第二部011可恰好地嵌在第一凹槽10a内。进一步地,第二部011和第一部010之间可通过压敏胶等进行连接。
如图11所示,在另一实施例中,第二部011设置有多个间隔分布的贯穿基板001的通孔10b,该通孔10b的形状可以有多种。在平行于基板001所在平面上,通孔10b的截面可以是多边形或曲边形,或不规则闭合形状,具体本公开不做限定。多个第二部011一一对应地分布在各通孔10b内,即,第二部011和通孔10b一一对应。通孔10b的形状大小可根据第二部011的形状进行设定,使得第二部011可恰好地嵌在通孔10b内。进一步地,第二部011和第一部010之间可通过压敏胶等进行连接。
此外,还可通过其他方式进一步改善基板001在拉伸时的性能。如图11所示,在本公开一些实施例中,第一部010上还设有多个间隔分布第二凹槽10c。第二凹槽10c在第一部010内的分布位置不受限制,其可以分布于第二部011的周围,也可随意地间隔分布在第一部010的其他位置处。较佳地,第二凹槽10c可分布在拉伸过程中形变较大的位置处。在一具体实施例中,第二凹槽10c开口于基板001靠近显示单元01的一侧表面。第二凹槽10c的数量和大小可根据实际情况进行设定。在平行于基板001所在平面上,第二凹槽10c的宽度为1-10μm,在垂直于基板001所在平面的方向上,第二凹槽10c的深度为2-20μm。在该实施例中,第二凹槽10c可以在较大程度上降低拉伸时第二部011的形变,进一步提高显示单元01的信赖性。
如图1至图3所示,显示面板包括多个显示单元01和多个弹性拉伸单元02。每个显示单元01至少包括一个子像素,具体可以包含一个、两个或多个子像,用于实现显示功能。在一些实施例中,显示单元01 可包括有机发光二极管(Organic Light-Emitting Diode,OLED)、无机发光二极管(Light-Emitting Diode,LED)或量子点发光二极管(Quantum dot Light-Emitting Diode,QLED)等。
多个显示单元01、多个弹性拉伸单元02设于基板001的一侧。弹性拉伸单元02连接于相邻两个显示单元01之间,多个弹性拉伸单元02和多个显示单元01之间形成多个镂空区域03。在显示面板拉伸过程中,可通过镂空区域03释放应力,从而避免显示面板的各层结构发生断裂,如此,提高显示面板整体的拉伸率和使用寿命。
在本公开中,多个镂空区域03的面积之和为a,多个显示单元01的面积之和为b,多个弹性拉伸单元02的面积之和为c;
15%≤a/(a+b+c)×100%≤30%。
在此范围内,镂空区域03不仅可满足在拉伸过程中应力的释放需求,也可以保证显示面板的显示质量。具体地,该比值可以为15%、16%、17%、18%、19%、20%、21%、22%、23%、24%、25%、26%、27%、28%、29%或30%,但不限于此。
在本公开中,可通过改变弹性拉伸单元02或显示单元01的结构,进一步提升显示面板的拉伸力和显示质量。
在本公开一些实施例中,通过改变弹性拉伸单元02的结构来进一步提升显示面板的拉伸率。
如图4、图6、图7、图9所示,其中,图7、图9是弹性拉伸单元在基板001上的层叠结构示意图。弹性拉伸单元02包括多条拉伸信号线20,显示面板的驱动芯片可以通过弹性拉伸单元02中的拉伸信号线20驱动各个显示单元01,以使各个显示单元01实现显示。弹性拉伸单元02中的多条拉伸信号线20可用于传输电源电压信号、发光控制信号、扫描信号、复位信号等多种信号,一条拉伸信号线20可用于传输一种或多种信号,具体本公开不做限定。
如图4和图7所示,在本公开一些实施例中,通过改变弹性拉伸单元02的层叠结构来提神弹性拉伸单元02的拉伸率。弹性拉伸单元02包括多条拉伸信号线20和至少两层相互绝缘的导电层21。具体地,导电层21的数量可以为两层、三层或更多层。多条拉伸信号线20至少分 布在两层导电层21中,以减少多条拉伸信号线20整体在拉伸信号线20排布方向上的占用空间,并进一步减小弹性拉神单元在拉伸信号线20排布方向上的宽度,提升弹性拉伸单元02的拉伸率。导电层21的材料可以为Ti、Al、Mo、Ag等导电金属或者ITO、IZO、ZnO、In 2O 3、IGO、AZO等导电氧化物;或混有导电颗粒的橡胶等具有高延展性的导电材料,碳纳米管等。
进一步地,在平行于基板001所在平面的方向上,分布在不同层导电层21中的拉伸信号线20错位排布。即,分布在一层导电层21中的拉伸信号线20与分布在另一层导电层21中的拉伸信号线20错位排布。如此,可减少或消除不同层拉伸信号线20之间的寄生电容。优选地,分布在不同导电层21中的拉伸信号线20在基板001上的正投影不重叠。
在本公开一些实施例中,弹性拉伸单元02还可以包括多层绝缘层,绝缘层可位于导电层21和基板001之间,或导电层21和导电层21之间,或导电层21远离基板001的一侧。
举例而言,如图4和图7所示,在一实施例中,弹性拉伸单元02可包括两层导电层21,分别为第一导电层211和第二导电层212,拉伸信号线20可以包括第一拉伸信号线201和第二拉伸信号线202。在该实施例中,弹性拉伸单元02包括层叠设置的第一绝缘层22、第一导电层211、第二绝缘层23和第二导电层212。其中,第一绝缘层22设于基板001的一侧;第一导电层211设于第一绝缘层22远离基板001的一侧;第二绝缘层23设于第一导电层211远离基板001的一侧,第二绝缘层23覆盖第一导电层211的表面,以保证绝缘效果;第二导电层212设于第二绝缘层23远离基板001的一侧表面。第一拉伸信号线201分布在第一导电层211中,第二拉伸信号线202分布在第二导电层212中,第一拉伸信号线201和第二拉伸信号线202在基板001上的正投影不重叠。
在该实施例中,第一绝缘层22和第二绝缘层23的材料可以包括有机材料,如聚甲基丙烯酸甲酯和聚苯乙烯的通用聚合物、基于苯酚基团的聚合物衍生物,基于亚克力的聚合物、基于对二甲苯的聚合物、基于芳醚的聚合物、基于酰胺的聚合物、基于氟化物的聚合物、基于对二甲苯的聚合物、基于乙烯醇的聚合物和他们的混合物。采用这些材料的第 一绝缘层22和第二绝缘层23有助于保护第一导电层211和第二导电层212不断裂。
进一步地,该实施例中的弹性拉伸单元02还包括第三绝缘层24和无机保护层。其中,第三绝缘层24设于第二导电层212远离基板001的一侧,第三绝缘层24覆盖第二导电层212的表面。第三绝缘层24的材料可以参照第一绝缘层22和第二绝缘层23的选择情况,在此不详细赘述。无机保护层设于第三绝缘层24远离基板001的一侧,并覆盖第三绝缘层24的表面。无机保护层的材料可以包括氧化硅、氮化硅或氮氧化硅等。无机保护层可以是单层或多层层叠结构,如可以包括第一无机层241和第二无机层242,或更多层无机层,具体可根据显示面板的制作工艺做适应性的改变。在此需说明的是,无机保护层的厚度一般较第一绝缘层22、第二绝缘层23或第三绝缘层24的厚度薄,以在体现其保护作用的同时,避免其在拉伸弯折过程中撕裂。
如图9所示,在本公开另一些实施例中,可通过将拉伸显示单元01划分为多个子拉伸单元021,以此来提高弹性拉伸单元02的拉伸率。弹性拉伸单元02包括多个间隔分布的子拉伸单元021,每个子拉伸单元021包括至少一条拉伸信号线20和至少一层导电层21,拉伸信号线20分布在导电层21中,每层导电层21至多包括一条拉伸信号线20,即每个子拉伸单元021的每层导电层21中只包含一条拉伸信号线20。当子拉伸单元021只包含一层导电层21时,该子拉伸单元021也就只包含一条拉伸信号线20。在该实施例中,将弹性拉伸单元02分割为多个子拉伸单元021,每个子拉伸单元021间隔分布,在一定程度上可更好地释放显示面板在拉伸时释放的应力。
子拉伸单元021可包括一层、两层或更多层导电层21。当包含两层或多层导电层21时,各导电层21之间相互绝缘。在一具体实施例中,子拉伸单元021包括一层导电层21,该层导电层21包含一条拉伸信号线20。在该实施例中,子拉伸单元021还包括第一绝缘层22和第二绝缘层23。其中,第一绝缘层22设于基板001和导电层21之间,第二绝缘层23设于导电层21远离基板001的一侧。第一绝缘层22和第二绝缘层23的材料包括有机材料,具体选择可上述实施例中各个绝缘层的材料 选择,在此不详细赘述。
在一些实施例中,子拉伸单元021还可以包括无机保护层,设于第二绝缘层23远离基板001的一侧。同理该无机保护层的材料及结构可参照上述实施例中的无机保护层。如,该无机保护层的材料可以包括氧化硅、氮化硅或氮氧化硅等。无机保护层可以是单层或多层层叠结构,如可以包括第一无机层241和第二无机层242,或更多层无机层。
当然,在本公开中,弹性拉伸单元02的膜层结构也可为其他结构,如只包含一层导电层21,且该导电层21中可分布多条拉伸信号线20,具体可参照图6、图8所示的结构。在图6、图8所示实施例中,弹性拉伸单元02包括的依次层叠设置的第一绝缘层22、导电层21、第二绝缘层23、第一无机层241和第二无机层242。导电层21中分布有多条信号线20。在此情况下,可通过改变显示单元01的结构或形状,或弹性拉伸单元02的形状等方式去提升显示面板的拉伸率。
在本公开一些实施例中,显示单元01为多层结构,可以包括一个或多个子像素。显示单元01的膜层结构可以为多种,举例而言,其结构可以如图4至图6所示,也可如图13至图15所示,具体本公开不做限定。
如图4至图6所示,其中,图5为图4中D部分的放大图,或图13至图15所示,显示单元01包括驱动电路层10和发光层11。驱动电路层10设于基板001的一侧。发光层11设于驱动电路层10远离基板001的一侧,发光层11包括像素限定结构111和至少一个发光器件110。像素限定结构111限定出至少一个子像素区,每个子像素区分布有一个发光器件110。
驱动电路层10包括驱动电路,驱动电路包括像素电路,像素电路用于驱动显示面板的发光器件110发光。像素电路可以是7T1C、7T2C、6T1C或6TC等像素电路,在此不对其结构做特殊限定。其中,nTmC表示一个像素电路包括n个晶体管(用字母“T”表示)和m个电容(用字母“C”表示)。像素电路与发光器件110一一对应连接,以驱动发光器件110发光。
在本公开一些实施例中,发光器件110包括沿远离基板001方向依次层叠设置的第一电极层1101、发光功能层1102和第二电极层1103。
第一电极层1101设于驱动电路层10远离基板001的一侧,像素限定结构111界定的子像素区的大小可暴露出第一电极层1101的部分区域。子像素区在基板001上的正投影可以为多边形或曲边形,具体不做限定。第一电极层1101可作为发光器件110的阳极。第一电极层1101可由透明导电材料构成,如ITO(氧化铟锡)、IZO(氧化铟锌)等。第一电极层1101可以是单层或多层结构,具体本公开不做限定。
发光功能层1102设于第一电极层1101远离基板001的一侧。发光功能层1102为多层结构,沿远离基板001方向上,发光功能层1102包括空穴注入层、空穴传输层、发光材料层、电子传输层,可通过使空穴和电子在发光材料层复合成激子,由激子辐射光子,从而产生可见光,具体发光原理在此不再详述。发光材料层可以是有机发光材料层或量子点发光材料层。在一些实施例中,发光功能层1102还可以包括电子注入层,设于电子传输层远离基板001的一侧。显示单元01可包含多个发光器件110,单个显示单元01内的各发光器件110可共用同一发光功能层1102,也可分别使用各自的发光功能层110,具体本公开不做限定。
第二电极层1103设于发光功能层1102远离基板001的一侧。第二电极层1103可作为发光器件110的阴极。第二电极层1103可以是单层或多层结构,其材料可包括导电的金属、金属氧化物以及合金中的一种或多种。第二电极层1103的厚度可以为100-500nm,当然也可以为其他厚度范围,具体本公开不做限定。
显示单元01可包含多个发光器件110,单个显示单元01内的各发光器件110可共用同一阴极,即共用同一第二电极层1103。如图5所示,,在单个显示单元01内各个发光器件110的第二电极层1103为一整体,其为覆盖各发光器件110的发光功能层1102和像素限定结构111的连续导电层,也就是说,单个显示单元01内第二电极层1103在基板001的正投影覆盖各个子像素区以及像素限定结构111在基板001上的正投影。同时,第二电极层1103在对应于子像素区的地方凹陷至子像素区内,即在子像素区对应的地方向靠近基板001的方向凹陷。
单个显示单元01所包含的多个发光器件110可组成发光器件组1100,不同显示单元01的发光器件组1100之间可共用同一第二电极层1103, 也可以不共用同一第二电极层1103。举例而言,在一实施例中,各显示单元01的发光器件组1100之间的第二电极层1103为一整体连续的导电层21。在另一实施例中,各显示单元01的发光器件组1100之间的第二电极层1103相互分割断开。
如图5所示,在本公开一些实施例中,发光层11还可以包括第一电极覆盖层112,第一电极覆盖层112覆盖于像素限定结构111的表面和第一电极层1101靠近像素限定结构111的一端,即第一电极覆盖层112覆盖第一电极层1101被像素限定结构111暴露的边缘区域,且第一电极覆盖层112暴露第一电极层1101被像素限定结构111暴露的中间区域。该种结构设计有助于降低发光器件110的边缘区域的膜厚不均匀对显示效果造成的影响。
如图4、图6、图13至图15所示,在本公开一些实施例中,驱动电路层10可由多层膜结构构成。以驱动电路中的晶体管为顶栅型薄膜晶体管为例,驱动电路层10包括有源层101、第一栅绝缘层102、第一栅金属层103、第二栅绝缘层104、第二栅金属层105、层间介质层106和第一源漏层107。在此需说明的是,在图13至图15所示的实施例中,由于截面位置不同,未显示出第二栅绝缘层104和第二栅金属层105。
有源层101设于基板001的一侧;第一栅绝缘层102设于有源层101远离基板001的一侧,第一栅绝缘层102覆盖有源层101;第一栅金属层103设于第一栅绝缘层102远离基板001的一侧,第一栅金属层103包括电容C的第一极板和晶体管T的栅极;第二栅绝缘层104设于第一栅金属层103远离基板001的一侧,第二栅绝缘层104覆盖第一栅金属层103;第二栅金属层105设于第一栅绝缘层102远离基板001的一侧,且与第一极板正对设置,第二栅金属层105包括电容C的第二极板;层间介质层106设于第二栅金属层105远离基板001的一侧,层间介质层106覆盖第二栅金属层105;第一源漏层107设于层间介质层106远离基板001的一侧,第一源漏层107包括晶体管的源极和漏极,源极和漏极连接于有源层101。
如图4、图6所示,在本公开一些实施例中,第一源漏层107还包括多条信号线,信号线包括电压信号线VSS,该电压信号线VSS与第二 电极层1103连接,用于向发光器件110的第二电极层1103传输电压信号。在此需说明的是,第一源漏层107除包含电压信号线VSS外,也可以包括其他多种信号线,如扫描信号线、发光控制信号线、数据线、复位信号线等,具体可不做限定。显示单元01内的信号线与弹性拉伸单元02内的拉伸信号线20可连接为一条完整的信号线,以共同为显示单元01内的各个子像素提供多种信号。
如图1、图4和图16所示,在本公开一些实施例中,当弹性拉伸单元02包括至少两层相互绝缘的导电层21时,位于相邻两层导电层21之间的绝缘层的厚度从弹性拉伸单元02至显示单元01的延伸方向上逐渐减薄;在弹性拉伸单元02和显示单元01的连接接触点处,位于相邻两层导电层21之间的绝缘层的厚度减为0。即,位于相邻两层导电层21之间的绝缘层在弹性拉伸单元02的延伸方向上大致呈中间厚两端薄的结构。即,在弹性拉伸单元02靠近显示单元01的区域,相邻两层导电层21之间的绝缘层的厚度较薄,且越靠近显示单元01的区域,其厚度越薄。具体图示可参照图4中右侧边第二绝缘层23的厚度变化方式。在弹性拉伸单元02与显示单元01的连接处,厚度为0。在此需说明的是,此连接处是指区域范围,不是特定的连接点,如可以如图16中的E所示的区域范围。弹性拉伸单元02内的多条拉伸信号线20延伸至显示单元01内部形成显示单元01内的多条信号线12;位于显示单元01内的多条信号线12在平行于基板001所在平面的方向上间隔平铺设置。即,在显示单元01内的多条信号线12可位于同一层。在图16所示的结构中,不同线形的信号线12在弹性拉伸单元02内位于不同的导电层。在该实施例中,可尽量减少显示单元01内的膜层结构数量,在一定程度上有助于降低显示面板的厚度。
如图4、图6、图13至图15所示,在本公开一些实施例中,驱动电路层10还包括平坦化层109,位于第一源漏层107和发光层11之间。平坦化层109的材料可以包括有机绝缘材料,其具体选择可参照上述实施例中的第一绝缘层22。
此外,如图4和图6所示,驱动电路层10还可以包括第一覆盖层1091,设于第一源漏层107远离基板001的一侧。第一覆盖层1091在基 板001上的正投影位于发光器件组1100在基板001上的正投影的外围。即,第一覆盖层1091分布于显示面板的边缘。第一覆盖层1091可以与平坦化层109位于同一层。第一平坦化层109分布于显示面板的中间区域,即设有发光器件110的区域。第一覆盖层1091设有凹槽,该种结构具有一定的防水阻水效果,有助于防止外界水汽进入发光器件110,避免显示效果受影响。第一覆盖层1091的材料可包括无机绝缘材料层,其具体选择可参照上述实施例中的无机保护层,具体不在此赘述。当然,也可以选自有机绝缘材料层,具体本公开不做限定。第一电极覆盖层112也可覆盖第一覆盖层1091的表面。同样地,第一电极覆盖层112也可设置凹槽,以防止外界水汽进入发光器件110。
如图13至图15所示,在本公开一些实施例中,驱动电路层10还可以包括钝化层108,位于平坦化层109和第一源漏层107之间。钝化层108的材料可包括无机绝缘材料层,其具体选择可参照上述实施例中的无机保护层,具体不在此赘述。
如图4、图6、图13至图15所示,在一些实施例中,显示面板还包括封装层04,封装层04设于发光层11远离基板001的一侧。其可用于保护发光层11,阻隔外界的水、氧对发光器件110造成侵蚀。在本公开的一些实施方式中,可采用薄膜封装(Thin-Film Encapsulation,TFE)的方式实现封装,具体而言,封装层04可由一层或者多层无机层组成,材料可以为氧化硅、氮氧化硅、氮化硅等单层或者多层无机层,或者铝氧化物,铝氮化物,钛氮化物,钛氮化物等致密膜层。
本公开中,向第二电极层1103传输电压信号的方式可以有多种。除图4和图6所示的方式外,在本公开一些实施例,可通过其他位于发光层11远离基板001一侧的转接层等进行转接,进而为第二电极层1103提供电压信号。
如图13至图15所示,在一些实施例中,显示面板还包括第一连接导体层05和盖板06。
第一连接导体层05设于封装层04远离基板001的一侧,第一连接导体层05与第二电极层1103连接。具体地,第一连接导体层05可以为透明导电层,其材料可选自网格导电金属或透明导电材料,如ITO(氧 化铟锡)、IZO(氧化铟锌)等。第一连接导体层05通过过孔与第二电极层1103连接。
盖板06设于第一连接导体层05远离基板001的一侧。盖板06可采用透明柔性材料,如聚二甲基硅氧烷(Polydimethylsiloxane,PMDS)。盖板06设有第二连接导体层61,第二连接导体层61位于盖板06靠近基板001的一面,第二连接导体层61和第一连接导体层05连接,第二连接导体层61用于传输电压信号。第二连接导体层61可连接至外界的电源,以为发光器件110的阴极供电。第二连接导体层61可以为透明导电层,其材料可选自网格导电金属或透明导电材料,如ITO(氧化铟锡)、IZO(氧化铟锌)等。
在该实施例中,通过位于封装层04上方(远离基板001的一侧)的第一连接导体层05作为转接层,并通过第二连接导体层61与外界电源连接,从而为发光器件110的阴极进行供电。该种结构设计有助于减小显示单元01中发光器件组1100外围的边框宽度,进而有利于提高显示面板的显示质量。举例而言,在显示面板的多个镂空区域03的面积之和所占显示面板总面积比值固定的情况下,该实施例有助于实现显示单元01的窄边框设计,从而在相对程度上即可增加显示单元01内子像素的个数,即发光器件110的数量,进而有助于提高显示面板的显示效果。当然,在显示面板子像素个数固定的情况下,也有助于减小显示单元01的面积,进而增大镂空区域03的面积,提高显示面板的拉伸率。
在本公开一些实施例中,显示面板还包括导电球07,第二连接导体层61和第一连接导体层05之间通过导电球07连接。导电球07具有更为优良的导电效果。导电球07的材料可选用导电金属、金属合金或透明导电材料等。导电球07在基板001上的正投影可位于像素限定结构111在基板001上的正投影之内。当然,当导电球07为透明结构时,导电球07的具体位置不受限制。
在本公开一些实施例中,可通过改变像素限定结构111的具体形状,来改善各个显示单元01之间的第二电极层1103的结构。
如图13至图15所示,在一些实施例中,每个显示单元01内的所有发光器件组成一个发光器件组1100。像素限定结构111包括第一限定结 构1111,设于发光器件组1100的外围。
第一限定结构1111的形状可以有多种。在本公开一些实施例中,在垂直于基板001所在平面的方向上,第一限定结构1111的底端在基板001上的正投影位于第一限定结构1111的中部或顶端在基板001上的正投影之内。第一限定结构1111的底端,即靠近基板001的一端,顶端即远离基板001的一端,中部即位于底端和顶端之间的部分。在该实施例中,第一限定结构1111大致为顶端或中部宽,低端窄的结构,该种结构在形成第二电极层1103时,第二电极层1103容易在第一限定结构1111处发生断裂,从而将各显示单元01之间的第二电极层1103分隔开来,以降低显示面板在拉伸过程中膜层结构断裂的可能性。举例而言,在垂直于基板001所在平面的方向上,第一限定结构1111的截面为倒梯形。
如图17、图18所示,在另一些实施例中,沿远离基板001方向,第一限定结构1111包括相互连接的第一限定部11a和第二限定部11b,第一限定部11a连接于第二限定部11b靠近基板的一侧,第一限定部11a在基板001上的正投影位于第二限定部11b在基板001上的正投影之内,且第一限定部11a在基板001上的正投影的面积小于第二限定部11b在基板001上的正投影的面积。其中,在垂直于基板001所在平面的方向上,第二限定部11b的截面可以为多边形或半曲边形,如可以为正梯形、倒梯形、半圆形或半椭圆形等。在一具体实施例中,在垂直于基板001所在平面的方向上,第一限定结构1111的截面大致为蘑菇形。
如图13至图15所示,在本公开一些实施例中,像素限定结构111还包括第二限定结构1112,设于每个显示单元01内的相邻两个发光器件110之间;在垂直于基板001所在平面的方向上,第一限定结构1111的高度大于第二限定结构1112的高度。该种结构设计,在形成第二电极层1103时,第二电极层1103在第一限定结构1111处易发生断裂,在第二限定结构1112处不易发生断裂,从而将各显示单元01之间的第二电极层1103分隔开来,而在显示单元01内部则形成完整的第二电极层1103,在方便为发光器件110第二电极层1103供电的同时,降低显示面板在拉伸过程中膜层结构断裂的可能性。第二限定结构1112的形状可以为多种,举例而言,在垂直于基板001所在平面的方向上,第二限定结构1112的 部分截面为正梯形或半曲边形等。
如图4、图6和图13至图15所示,在本公开一些实施例中,显示单元01还包括遮光层13和缓冲层14。遮光层13设于基板001和驱动电路层10之间,缓冲层14设于遮光层13和驱动电路层10之间。
本公开中,显示单元01、弹性拉伸单元02和基板001之间可自由组合,形成不同膜层结构的显示面板。如图13至图15所示,基板001的结构各不相同,形成不同膜层结构的显示面板。
如图1至图3所示,在本公开中,多个显示单元01阵列排列,相邻两个显示单元01之间通过弹性拉伸单元02连接。一个显示单元01可连接多个弹性拉伸单元02。例如,相邻两个显示单元01的彼此相互靠近且相对的面之间可连接一个弹性拉伸单元02。如图1和图3所示,显示单元01大致为四边形结构,其每一条边可连接一个弹性拉伸单元02,即,呈四边形结构的显示单元01可连接四个弹性拉伸单元02。而这四个弹性拉伸单元02的另一端则分别连接于位于该显示单元01周围的其他显示单元01。又如,显示单元01大致为圆形结构,如图2所示,部分显示单元01大致为圆形,该显示单元01的周围可分布多个其他显示单元01,如三个、四个、五个或更多个等。则该显示单元01可对应连接三个、四个、五个或更多个弹性拉伸单元02。如此,各个显示单元01之间通过弹性拉伸单元02连接形成网状结构。显示单元01和弹性拉伸单元02之间形成镂空区域03。
在本公开一些实施例中,弹性拉伸单元02的至少部分区域为弯曲结构。弯曲结构有助于提升弹性拉伸单元02的拉伸率。
下面将结合不同实施例,举例说明弹性拉伸单元02的具体形状。
如图1和图19所示,在本公开一些实施例中,相邻两个显示单元01沿第一方向排列。在此需说明的是,第一方向可随着相邻两个显示单元01的排列方向予以改变。举例而言,当相邻两个显示单元01沿行方向排列时,则第一方向即为行方向。当相邻两个显示单元01沿列方向排列时,则第一方向即为列方向。此外,第一方向也可以为除行方向和列方向的其他方向。
弹性拉伸单元02包括依次顺滑连接的第一连接部25、第二连接部 26和第三连接部27;第一连接部25和第三连接部27沿第一方向延伸;第一连接部25具有第一连接端,第三连接部27具有第二连接端,第一连接端与相邻两个显示单元01中的其中一个显示单元01连接,第二连接端与相邻两个显示单元01中的另一个显示单元01连接,第一连接端和第二连接端位于相邻两个显示单元01的中心点连线O的两侧。弹性拉伸单元02通过第一连接端和第二连接端分别与相邻的两个显示单元01连接。
第二连接部26的延伸方向与相邻两个显示单元01的中心点连线O不垂直。第二连接部26的延伸方向与相邻两个显示单元01的中心点连线之间的夹角α,可以为锐角。在此情况下,第二连接部26在其延伸方向上的长度相对较长,有助于提升弹性拉伸单元02的拉伸率。第二连接部26可以为直线型或曲线形,具体本公开不做限定。举例而言,第二连接部26为直线形,第二连接部26的延伸方向与相邻两个显示单元01的中心点连线之间的夹角为α,45°≤α<90°。
进一步地,弹性拉伸单元02可以为中心对称结构。弹性连接单元的对称中心点位于邻两个显示单元01的中心点的连线上。
在此类实施例中,显示单元01的形状可不做限定。在一具体实施例中,显示单元01为四边形,如正方形、长方形、菱形等。
如图2、图20所示,在本公开另一些实施例中,多个显示单元01包括多个第一显示单元01a和多个第二显示单元01b。多个第二显示单元01b分别通过弹性拉伸单元02与第一显示单元01a连接,第二显示单元01b与第一显示单元01a间隔排布。其中,第一显示单元01a的边缘呈直线型,第二显示单元01b的边缘呈曲线形。举例而言,第一显示单元01a为多边形,如四边形,第二显示单元01b大致为圆形。
在该实施例中,弹性拉伸单元02具有第一连接端和第二连接端,第一连接端与相邻的第一显示单元01a和第二显示单元01b中的第一显示单元01a连接,第二连接端与相邻的第一显示单元01a和第二显示单元01b中的第二显示单元01b连接,第一连接端和第二连接端位于相邻的第一显示单元01a和第二显示单元01b的中心点连线O的两侧。弹性拉伸单元02的至少部分区域为沿第二显示单元01b边缘的弯曲方向延伸的 弯曲结构。即,弹性拉伸单元02的部分区域为弯曲结构,该弯曲结构的弯曲延伸方向大致与第二显示单元01b的边缘的弯曲方向相同。
如图3、图21所示,在本公开另一些实施例中,相邻两个显示单元01沿第一方向排列。同理,第一方向可随着相邻两个显示单元01的排列方向予以改变。举例而言,当相邻两个显示单元01沿行方向排列时,则第一方向即为行方向。当相邻两个显示单元01沿列方向排列时,则第一方向即为列方向。此外,第一方向也可以为除行方向和列方向的其他方向。
弹性拉伸单元02包括依次顺滑连接的第三连接部27、第四连接部28和第五连接部29;第三连接部27和第五连接部29沿第一方向延伸;第三连接部27具有第三连接端,第五连接部29具有第四连接端,第三连接端与相邻两个显示单元01中的其中一个显示单元01连接,第四连接端与相邻两个显示单元01中的另一个显示单元01连接,第三连接端和第四连接端位于相邻两个显示单元01的中心点连线上。第四连接部28为弯曲结构。
在上述任一实施例中,不同形状的弹性拉伸单元02均可以设置为包含有多个子拉伸单元021的结构,具体可如图22所示。在此需说明的是,本公开附图这个仅示例性示出弹性拉伸单元02包含子拉伸单元021的形状示意图,包含子拉伸单元021的弹性拉伸单元02也可以为其他形状,具体可不做限定。
如图1至图3所示,在本公开一些实施例中,镂空区域03设置在呈田字形分布的四个显示单元01的中心。在图1和图2所示的实施例中,镂空区域03为风车形。该镂空区域03的中心点与田字形分布的四个显示单元01的中心点重合。
本公开,上述任意实施例中的方案可自由组合,不仅仅限于附图中所示的实施例。
应可理解的是,本公开不将其应用限制到本说明书提出的部件的详细结构和布置方式。本公开能够具有其他实施方式,并且能够以多种方式实现并且执行。前述变形形式和修改形式落在本公开的范围内。应可理解的是,本说明书公开和限定的本公开延伸到文中和/或附图中提到或 明显的两个或两个以上单独特征的所有可替代组合。所有这些不同的组合构成本公开的多个可替代方面。本说明书的实施方式说明了已知用于实现本公开的最佳方式,并且将使本领域技术人员能够利用本公开。

Claims (29)

  1. 一种显示面板,包括:
    基板,
    多个显示单元,设于基板的一侧,每个显示单元包含至少一个子像素;
    多个弹性拉伸单元,设于基板的一侧,所述弹性拉伸单元连接于相邻两个所述显示单元之间,多个所述弹性拉伸单元和多个所述显示单元之间形成多个镂空区域;
    其中,多个所述镂空区域的面积之和为a,多个所述显示单元的面积之和为b,多个弹性拉伸单元的面积之和为c;
    15%≤a/(a+b+c)×100%≤30%。
  2. 根据权利要求1所述的显示面板,其中,所述弹性拉伸单元包括多条拉伸信号线和至少两层相互绝缘的导电层;
    其中,多条所述拉伸信号线至少分布在两层所述导电层中。
  3. 根据权利要求2所述的显示面板,其中,在平行于所述基板所在平面的方向上,分布在不同层所述导电层中的所述拉伸信号线错位排布。
  4. 根据权利要求3所述的显示面板,其中,分布在不同层所述导电层中的所述拉伸信号线在所述基板上的正投影不重叠。
  5. 根据权利要求1所述的显示面板,其中,所述弹性拉伸单元包括:
    第一绝缘层,设于所述基板的一侧;
    第一导电层,设于所述第一绝缘层远离所述基板的一侧;
    第二绝缘层,设于所述第一导电层远离所述基板的一侧,所述第二绝缘层覆盖所述第一导电层的表面;
    第二导电层,设于所述第二绝缘层远离所述基板的一侧;
    拉伸信号线,包括第一拉伸信号线和第二拉伸信号线,所述第一拉伸信号线分布在所述第一导电层中,所述第二拉伸信号线分布在所述第二导电层中,所述第一拉伸信号线和所述第二拉伸信号线在所述基板上的正投影不重叠。
  6. 根据权利要求1所述的显示面板,其中,所述弹性拉伸单元包括多个间隔分布的子拉伸单元,每个所述子拉伸单元包括至少一条拉伸信 号线和至少一层导电层,所述拉伸信号线分布在所述导电层中,每层所述导电层至多包括一条拉伸信号线。
  7. 根据权利要求6所述的显示面板,其中,所述子拉伸单元包括一层所述导电层,所述导电层包括一条拉伸信号线;
    所述子拉伸单元还包括:
    第一绝缘层,设于所述基板和所述导电层之间;
    第二绝缘层,设于所述导电层远离所述基板的一侧。
  8. 根据权利要求1-7任一项所述的显示面板,其中,所述显示单元包括:
    驱动电路层,设于所述基板的一侧;
    发光层,设于所述驱动电路层远离所述基板的一侧,所述发光层包括像素限定结构和至少一个发光器件;
    所述像素限定结构限定出至少一个子像素区,每个所述子像素区分布有一个所述发光器件。
  9. 根据权利要求8所述的显示面板,其中,所述发光器件包括沿远离所述基板方向依次层叠设置的第一电极层、发光功能层和第二电极层;
    所述驱动电路层包括:
    有源层,设于所述基板的一侧;
    第一栅绝缘层,设于所述有源层远离所述基板的一侧,所述第一栅绝缘层覆盖所述有源层;
    第一栅金属层,设于所述第一栅绝缘层远离所述基板的一侧,所述第一栅金属层包括电容的第一极板和晶体管的栅极;
    第二栅绝缘层,设于所述第一栅金属层远离所述基板的一侧,所述第二栅绝缘层覆盖所述第一栅金属层;
    第二栅金属层,设于所述第一栅绝缘层远离所述基板的一侧,且与所述第一极板正对设置,所述第二栅金属层包括所述电容的第二极板;
    层间介质层,设于所述第二栅金属层远离所述基板的一侧,所述层间介质层覆盖所述第二栅金属层;
    第一源漏层,设于所述层间介质层远离所述基板的一侧,所述第一源漏层包括所述晶体管的源极和漏极,所述源极和漏极连接于所述有源 层;
    其中,所述第一源漏层还包括多条信号线,所述信号线包括电压信号线,所述电压信号线与所述第二电极层连接。
  10. 根据权利要求9所述的显示面板,其中,当所述弹性拉伸单元包括至少两层相互绝缘的导电层时,位于相邻两层所述导电层之间的绝缘层的厚度从所述弹性拉伸单元至所述显示单元的延伸方向上逐渐减薄;
    所述弹性拉伸单元内的多条所述拉伸信号线延伸至所述显示单元内部形成所述显示单元内的多条所述信号线;
    位于所述显示单元内的多条所述信号线在平行于所述基板所在平面的方向上间隔平铺设置。
  11. 根据权利要求8所述的显示面板,其中,所述发光器件包括沿远离所述基板方向依次层叠设置的第一电极层、发光功能层和第二电极层;
    所述显示面板还包括:
    封装层,设于所述发光层远离所述基板的一侧;
    第一连接导体层,设于所述封装层远离所述基板的一侧,所述第一连接导体层与所述第二电极层连接;
    盖板,设于所述第一连接导体层远离所述基板的一侧,所述盖板设有第二连接导体层,所述第二连接导体层位于所述盖板靠近所述基板的一面,所述第二连接导体层和所述第一连接导体层连接,所述第二连接导体层用于传输电压信号。
  12. 根据权利要求11所述的显示面板,其中,所述显示面板还包括导电球,所述第二连接导体层和所述第一连接导体层之间通过所述导电球连接。
  13. 根据权利要求8所述的显示面板,其中,每个显示单元内的所有所述发光器件组成一个发光器件组;
    所述像素限定结构包括:
    第一限定结构,设于所述发光器件组的外围;
    在垂直于所述基板所在平面的方向上,所述第一限定结构的底端在所述基板上的正投影位于所述第一限定结构的中部或顶端在所述基板上 的正投影之内。
  14. 根据权利要求13所述的显示面板,其中,所述像素限定结构还包括:
    第二限定结构,设于每个所述显示单元内的相邻两个所述发光器件之间;
    在垂直于所述基板所在平面的方向上,所述第一限定结构的高度大于所述第二限定结构的高度。
  15. 根据权利要求13所述的显示面板,其中,在垂直于所述基板所在平面的方向上,所述第一限定结构的截面为倒梯形。
  16. 根据权利要求8所述的显示面板,其中,每个显示单元内的所有所述发光器件组成一个发光器件组;
    所述像素限定结构包括:
    第一限定结构,设于所述发光器件组的外围,所述第一限定结构包括相互连接的第一限定部和第二限定部,所述第一限定部连接于所述第二限定部靠近所述基板的一侧,所述第一限定部在所述基板上的正投影位于所述第二限定部在所述基板上的正投影之内,且所述第一限定部在基板上的正投影的面积小于所述第二限定部在基板上的正投影的面积。
  17. 根据权利要求1所述的显示面板,其中,所述弹性拉伸单元的至少部分区域为弯曲结构。
  18. 根据权利要求17所述的显示面板,其中,相邻两个所述显示单元沿第一方向排列;
    所述弹性拉伸单元包括依次顺滑连接的第一连接部、第二连接部和第三连接部;
    所述第一连接部和所述第三连接部沿所述第一方向延伸;
    所述第一连接部具有第一连接端,所述第三连接部具有第二连接端,所述第一连接端与相邻两个所述显示单元中的其中一个所述显示单元连接,所述第二连接端与相邻两个所述显示单元中的另一个所述显示单元连接,所述第一连接端和所述第二连接端位于相邻两个所述显示单元的中心点连线的两侧;
    所述第二连接部的延伸方向与相邻两个所述显示单元的中心点连线 不垂直。
  19. 根据权利要求18所述的显示面板,其中,所述第二连接部为直线形,所述第二连接部的延伸方向与相邻两个所述显示单元的中心点连线之间的夹角为α,45°≤α<90°。
  20. 根据权利要求17所述的显示面板,其中,多个所述显示单元包括:
    多个第一显示单元;
    多个第二显示单元,分别通过所述弹性拉伸单元与所述第一显示单元连接,所述第二显示单元与所述第一显示单元间隔排布;
    其中,所述第一显示单元的边缘呈直线型,所述第二显示单元的边缘呈曲线形。
  21. 根据权利要求20所述的显示面板,其中,所述弹性拉伸单元具有第一连接端和第二连接端,所述第一连接端与相邻的所述第一显示单元和所述第二显示单元中的所述第一显示单元连接,所述第二连接端与相邻的所述第一显示单元和所述第二显示单元中的所述第二显示单元连接,所述第一连接端和所述第二连接端位于相邻的所述第一显示单元和所述第二显示单元的中心点连线的两侧;
    所述弹性拉伸单元的至少部分区域为沿所述第二显示单元边缘的弯曲方向延伸的弯曲结构。
  22. 根据权利要求17所述的显示面板,其中,所述镂空区域设置在呈田字形分布的四个所述显示单元的中心;
    所述镂空区域为风车形。
  23. 根据权利要求17所述显示面板,其中,相邻两个所述显示单元沿第一方向排列;
    所述弹性拉伸单元包括依次顺滑连接的第三连接部、第四连接部和第五连接部;所述第三连接部和所述第五连接部沿所述第一方向延伸;所述第三连接部具有第三连接端,所述第五连接部具有第四连接端,所述第三连接端与相邻两个所述显示单元中的其中一个所述显示单元连接,所述第四连接端与相邻两个所述显示单元中的另一个所述显示单元连接,所述第三连接端和所述第四连接端位于相邻两个所述显示单元的中心点 连线上;
    第四连接部为弯曲结构。
  24. 根据权利要求1所述的显示面板,其中,所述基板包括第一部和嵌设于所述第一部内的多个间隔分布的第二部;
    所述第二部的刚性大于所述第一部的刚性;
    所述显示单元在所述基板上的正投影至少部分位于所述第二部内。
  25. 根据权利要求24所述的显示面板,其中,所述第一部设有多个间隔分布的第一凹槽,所述第一凹槽开口于所述基板靠近所述显示单元的一侧,多个所述第二部一一对应地分布在各所述第一凹槽内。
  26. 根据权利要求24所述的显示面板,其中,所述第二部设有多个间隔分布的贯穿所述基板的通孔,多个所述第二部一一对应地分布在各所述通孔内。
  27. 根据权利要求24所述的显示面板,其中,所述第一部设置有多个间隔分布的第二凹槽。
  28. 根据权利要求1所述的显示面板,其中,所述基板包括:
    底膜层;
    压敏胶层,设于所述底膜层的一侧;
    柔性材料层,设于所述压敏胶层远离所述底膜层的一侧,所述柔性材料层包括间隔设置的第一柔性单元和第二柔性单元;
    所述显示单元在所述基板上的正投影位于所述第一柔性单元内,所述弹性拉伸单元在所述基板上的正投影与所述第二柔性单元至少部分重叠。
  29. 一种显示装置,包括如权利要求1-28任一项所述的显示面板。
PCT/CN2022/075181 2022-01-30 2022-01-30 显示面板及显示装置 WO2023142112A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/075181 WO2023142112A1 (zh) 2022-01-30 2022-01-30 显示面板及显示装置
CN202280000123.8A CN116982424A (zh) 2022-01-30 2022-01-30 显示面板及显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/075181 WO2023142112A1 (zh) 2022-01-30 2022-01-30 显示面板及显示装置

Publications (1)

Publication Number Publication Date
WO2023142112A1 true WO2023142112A1 (zh) 2023-08-03

Family

ID=87470222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/075181 WO2023142112A1 (zh) 2022-01-30 2022-01-30 显示面板及显示装置

Country Status (2)

Country Link
CN (1) CN116982424A (zh)
WO (1) WO2023142112A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109841660A (zh) * 2019-02-14 2019-06-04 京东方科技集团股份有限公司 一种显示面板和显示装置
CN110444575A (zh) * 2019-08-14 2019-11-12 京东方科技集团股份有限公司 可拉伸显示背板、可拉伸显示装置
CN111653593A (zh) * 2020-06-12 2020-09-11 京东方科技集团股份有限公司 一种显示面板及其制作方法、显示装置
CN113031809A (zh) * 2021-02-20 2021-06-25 厦门天马微电子有限公司 一种显示面板及显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109841660A (zh) * 2019-02-14 2019-06-04 京东方科技集团股份有限公司 一种显示面板和显示装置
CN110444575A (zh) * 2019-08-14 2019-11-12 京东方科技集团股份有限公司 可拉伸显示背板、可拉伸显示装置
CN111653593A (zh) * 2020-06-12 2020-09-11 京东方科技集团股份有限公司 一种显示面板及其制作方法、显示装置
CN113031809A (zh) * 2021-02-20 2021-06-25 厦门天马微电子有限公司 一种显示面板及显示装置

Also Published As

Publication number Publication date
CN116982424A (zh) 2023-10-31

Similar Documents

Publication Publication Date Title
US11380860B2 (en) Foldable light-emitting device having trapezoid spacer
CN107731866B (zh) 可拉伸显示装置
KR102530672B1 (ko) 스트레쳐블 표시 장치
KR20200035932A (ko) 표시 장치
KR102598831B1 (ko) 스트레처블 표시장치
KR20200078176A (ko) 스트레쳐블 표시장치
US20200343463A1 (en) Stretchable display device
KR20210124564A (ko) 표시 장치
KR20210011835A (ko) 스트레쳐블 표시 장치
KR20210079850A (ko) 스트레쳐블 표시 장치
WO2023142112A1 (zh) 显示面板及显示装置
US20230051536A1 (en) Display substrate and display apparatus
US20220254813A1 (en) Display device and method of fabricating the same
US20230261143A1 (en) Display device
US20210366888A1 (en) Display device
CN115918295A (zh) 可拉伸显示设备
KR20210132271A (ko) 표시 장치
US20220020734A1 (en) Display device and method of fabricating the same
US20230261142A1 (en) Display device
KR20210001910A (ko) 스트레쳐블 표시 장치 및 스트레쳐블 표시 장치의 제조 방법
KR20220057103A (ko) 표시 장치
KR20230156192A (ko) 표시 장치 및 이의 제조 방법
KR20220049895A (ko) 스트레쳐블 표시 장치
CN115088077A (zh) 显示基板和显示装置
KR20220057124A (ko) 표시 장치