WO2023140409A1 - Composition for treating canine hip dysplasia using prime editor - Google Patents

Composition for treating canine hip dysplasia using prime editor Download PDF

Info

Publication number
WO2023140409A1
WO2023140409A1 PCT/KR2022/001180 KR2022001180W WO2023140409A1 WO 2023140409 A1 WO2023140409 A1 WO 2023140409A1 KR 2022001180 W KR2022001180 W KR 2022001180W WO 2023140409 A1 WO2023140409 A1 WO 2023140409A1
Authority
WO
WIPO (PCT)
Prior art keywords
recombinant vector
hip dysplasia
gene
dogs
seq
Prior art date
Application number
PCT/KR2022/001180
Other languages
French (fr)
Korean (ko)
Inventor
김민규
박강선
김동언
지국빈
이지혜
김은영
박연배
길태영
Original Assignee
주식회사 엠케이바이오텍
충남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엠케이바이오텍, 충남대학교산학협력단 filed Critical 주식회사 엠케이바이오텍
Publication of WO2023140409A1 publication Critical patent/WO2023140409A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses

Definitions

  • the present invention relates to a method for treating canine hip dysplasia using prime editing technology, and uses a recombinant vector containing a guide RNA, a primer binding site, and a reverse transcriptase polymerase template gene to correct a gene involved in canine hip dysplasia efficiently and with high accuracy compared to the existing CRISPR/Cas9 system.
  • Hip dysplasia has very similar clinical manifestations and pathogenesis in both humans and dogs.
  • Hip dysplasia is a musculoskeletal disease caused by an incomplete connection between the femoral head and the acetabulum. It is accompanied by severe pain and is a common disease in medium-large dogs such as retrievers. It is known that individuals with hip dysplasia cause osteoarthritis, lameness, reduced mobility, and the like. The causes of hip dysplasia include both genetic and environmental influences. To reduce the prevalence of genetically induced hip dysplasia, breeding strategies can be used according to well-established selection plans, and these strategies have been used to produce healthy individuals in all species. However, research on treating the disease by directly regulating the gene that causes hip dysplasia in dogs has not yet been attempted.
  • Prime editing has been developed and validated in mice and plants. Unlike the method using CRISPR/Cas9-HDR (homology-directed repair), prime editing does not induce double-strand breaks and does not require oligo DNA.
  • Prime editing is designed to generate nickase in double strands using CRISPR/Cas9 (H840A) and edit DNA at the nickase-generating site using reverse transcriptase (Moloney murine leukemia virus: M-MLV).
  • M-MLV reverse transcriptase
  • Prime editing allows low off-target efficiency and precise transitions, insertions, and removals. Because of this low off-target efficiency, prime editing has great potential for correcting pathogenic alleles.
  • Prime editing was originally developed in human cells, but has recently been used to develop plant strains, and mice and fruit flies have been used as human disease models.
  • One aspect provides a recombinant vector comprising a guide RNA represented by SEQ ID NO: 1, a primer binding site represented by SEQ ID NO: 3, and a reverse transcription polymerase template represented by SEQ ID NO: 4.
  • Another aspect provides a composition for treating or preventing canine hip dysplasia comprising the recombinant vector.
  • Another aspect provides a method for treating or preventing hip dysplasia in dogs, comprising introducing the recombinant vector into a subject.
  • One aspect provides a recombinant vector comprising a guide RNA represented by SEQ ID NO: 1, a primer binding site represented by SEQ ID NO: 3, and a reverse transcription polymerase template represented by SEQ ID NO: 4.
  • the recombinant vector is for treating or preventing canine hip dysplasia, and may be for targeting a gene involved in canine hip dysplasia.
  • the recombinant vector may be defined as a gene cassette or may be a genome editing vector.
  • the recombinant vector of the present invention includes not only gRNA, but also a scaffold RT template and a primer binding site, so that each component is operably linked so as to form a set. Therefore, targeting with gRNA can be the same as the previous Cas9, but overall it can perform more stable and accurate gene editing function compared to conventional CRISPR/Cas9.
  • the term "vector” refers to a genetic construct comprising a nucleotide sequence of a gene operably linked to a suitable regulatory sequence so as to express a gene of interest in a suitable host, and the regulatory sequence may include a promoter capable of initiating transcription, an arbitrary operator sequence for regulating such transcription, and a sequence regulating the termination of transcription and translation.
  • the term "recombinant vector" when the coding gene of the target polypeptide to be expressed is operably linked, can be used as an expression vector of the target polypeptide capable of expressing the target polypeptide with high efficiency in an appropriate host cell, and the recombinant vector can be expressed in the host cell.
  • the host cell may preferably be a eukaryotic cell, and depending on the type of host cell, expression control sequences such as promoters, terminators, enhancers, etc., sequences for membrane targeting or secretion, etc. may be appropriately selected and combined in various ways depending on the purpose.
  • the vector may be an expression vector or a genome editing vector, and may be, for example, a non-viral vector or a viral vector.
  • the non-viral vector is preferably plasmid DNA
  • the viral vector may be a lentivirus, retrovirus, adenovirus, herpes virus or avipox virus vector, but is not limited thereto.
  • the expression vector preferably further includes a gene encoding a selectable marker such as a fluorescent protein to facilitate selection of transformed cells.
  • markers conferring selectable phenotypes such as drug resistance, auxotrophy, resistance to cytotoxic agents or expression of surface proteins, for example, fluorescent proteins, puromycin, neomycin, hygromycin, histidinol dehydrogenase (hisD) and guanine phosphoribosyltransferase (Gpt).
  • the fluorescent protein may be, for example, green fluorescent protein (GFP), yellow fluorescent protein (YFP), red fluorescent protein (RFP), orange fluorescent protein (OFP), cyan fluorescent protein (CFP), blue fluorescent protein (BFP), or far-red fluorescent protein, but is not limited thereto.
  • the recombinant vector may further include a PAM gene represented by the polynucleotide sequence of SEQ ID NO: 2.
  • the PAM gene may be specifically located between the guide RNA and the primer binding site.
  • the guide RNA, PAM gene, primer binding site, and reverse transcription polymerase template are operably linked.
  • guide RNA, PAM gene, primer binding site, and reverse transcription polymerase template may be defined as prime editor RNA, and the recombinant vector may further include components of CRISPR/Cas9 and RNA polymerase to serve as genetic scissors.
  • Cas9 protein and RNA polymerase can be commonly known.
  • the virus may be a lentivirus, a retrovirus, an adenovirus, a herpes virus, or an avipox virus, but is not limited thereto.
  • Another aspect provides a composition for treating hip dysplasia comprising the recombinant vector.
  • Another aspect provides a composition for breeding management of dogs comprising the recombinant vector.
  • the breeding management of the dog may mean obtaining a second-generation individual whose hip dysplasia is corrected from an individual who is likely to have hip dysplasia or has hip dysplasia.
  • prevention means reversing, alleviating, or inhibiting, delaying, or preventing the symptoms of hip dysplasia, and the “treatment” may refer to the act of treating in the sense of "treatment method”.
  • the term "pharmaceutically acceptable carrier” refers to a carrier or diluent that does not stimulate organisms and does not inhibit the biological activity and properties of the administered compound.
  • acceptable pharmaceutical carriers are sterile and biocompatible, and saline, sterile water, Ringer's solution, buffered saline, albumin injection solution, dextrose solution, maltodextrin solution, glycerol, ethanol, and one or more of these components may be mixed and used, and other conventional additives such as antioxidants, buffers, and bacteriostatic agents may be added as necessary.
  • diluents such as aqueous solutions, suspensions, and emulsions, pills, capsules, granules, or tablets.
  • Another aspect provides a method of treating canine hip dysplasia comprising introducing the recombinant vector into the subject.
  • Another aspect provides a dog breeding management method comprising introducing the recombinant vector into an individual.
  • the breeding management method may be for correcting a hip dysplasia inducing gene in a dog determined to have hip dysplasia.
  • the subject may be a dog (Canis lupus familiaris).
  • the dogs may be more specifically Labrador retrievers.
  • the expression vector containing the recombinant vector may be introduced into cells together with delivery reagents including G-fectin, Mirus TrasIT-TKO lipophilic reagent, lipofectin, lipofectamine, cellfectin, cationic phospholipid nanoparticles, cationic polymers, cationic micelles, cationic emulsions or liposomes, or by conjugating biocompatible polymers such as polyethylene glycol to increase intracellular uptake, using a virus
  • delivery reagents including G-fectin, Mirus TrasIT-TKO lipophilic reagent, lipofectin, lipofectamine, cellfectin, cationic phospholipid nanoparticles, cationic polymers, cationic micelles, cationic emulsions or liposomes, or by conjugating biocompatible polymers such as polyethylene glycol to increase intracellular uptake, using a virus
  • delivery reagents including G-fectin, Mirus TrasIT-TKO lipophilic reagent, lip
  • the step of injecting the recombinant vector into the organism may be more specifically, a method of introducing the recombinant vector into somatic cells to obtain knocked-in somatic cells, and then obtaining cloned embryos of somatic cells; a method of directly injecting a recombinant vector into a fertilized egg; A method of making fertilized eggs through nuclear transfer in which a recombinant vector is injected into somatic cells of the subject and the nucleus of the somatic cells into which the recombinant vector is injected is injected into an egg, but is not limited thereto.
  • the genetic construct of the present invention canine hip dysplasia can be effectively and successfully treated.
  • the genetic construct of the present invention is applied with prime editing technology, and has the advantage of being simple and highly efficient compared to CRISPR/Cas9-HDR without the need for cell division or introduction of oligo DNA.
  • Figure 1 shows the genetic construct of the virus for the treatment of hip dysplasia.
  • peg RNA contains CRISPR/Cas9 guide RNA, RNA polymerase RT template, and RNA binding site.
  • Figure 2 shows the genetic structure of peg RNA in detail.
  • [AGG] is the PAM sequence
  • the left side of the PAM sequence is the gRNA
  • the right side is the RT template and primer binding site
  • the red base is the mutation site.
  • Figure 3 shows the results of analyzing the nucleotide sequence of cells corrected using the genetic construct of the present invention.
  • Figure 4 shows the results of analyzing the nucleotide sequence of cells corrected using the genetic construct of the present invention.
  • Figure 5 confirms the image and GFP expression of an individual delivered after correcting using the genetic construct of the present invention.
  • FIG. 7 is a sequencing result showing that SNPs causing hip dysplasia were corrected in the genomic DNA of an individual delivered after correction using the genetic construct of the present invention.
  • FIG. 8 is an X-ray image of a hip joint of a cell donor dog and a cloned dog. Specifically, FIG. 8A is the hip joint of an 18-month-old cell donor dog, FIG. 8B is the hip joint of a 38-month-old cell donor dog, FIG. 8C is the hip joint of cloned dog #1 at 11 months, and FIG. 8D is an X-ray image of the hip joint of cloned dog #2 at 11 months.
  • the present invention relates to a recombinant vector comprising a guide RNA represented by SEQ ID NO: 1, a primer binding site represented by SEQ ID NO: 3, and a reverse transcription polymerase template represented by SEQ ID NO: 4.
  • the guide RNA for prime editing and the vector construct containing it were designed as follows.
  • SNPs single nucleotide polymorphisms
  • the SNP selected as a target has the feature of point mutation of T to C at the BISF2S23030416 locus.
  • the pegRNA used for Lyme editing was designed to start with a 13 nt primer binding site and a 14 nt RT template (Bioneer, Inc) (Fig. 2).
  • a lentivirus-derived vector was used (addgene #135955), and it was designed to include CRISPR/Cas9, RNA polymerase, and pegRNA, and include a GFP gene to confirm the insertion with fluorescence (FIG. 1).
  • a virus containing the gene cassette as described above was prepared by a company (Lugen SCI, Inc).
  • Fibroblasts were obtained from the ear of an 18-month-old dog suffering from hip dysplasia to confirm hip dysplasia correction in a cell line. Then, the cells were cultured in a culture medium containing DMEM-Glutamax, 15% FBS and 1% penicillin/streptomycin. After infecting the cultured fibroblasts by treating the virus at 100 MOI in a 12-well plate, the presence or absence of infection was confirmed by GFP and sequencing analysis. As a result, it was confirmed that the prime editing was working as the cell lines treated with the virus showed a heterogeneous type with C and T, whereas the cells without treatment had the C sequence (Figs. 3 and 4).
  • somatic cell nuclear transfer SCNT
  • embryo transfer methods were used.
  • a Labrador retriever was selected as a dog breed, matured oocytes of an individual with hip dysplasia having first polarity were obtained, metaphase chromosomes were removed, and the somatic cells of Example 2 were transferred to the perivitelline space of the extracted oocytes. Then, each donor cell-cytoplasmic bond was fused with two direct current pulses (24-26V for 15 ⁇ sec) in an electro-cell fusion device. The fused SCNT embryos were cultured in 10 ⁇ M calcium ion channel (Sigma) to induce chemical activation, washed and then incubated in synthetic oviduct fluid medium (mSOF) containing 1.9 mM 6-dimethylaminopurine (6-DMAP).
  • mSOF synthetic oviduct fluid medium
  • a cell donor dog (dog name: Miwoo) with hip dysplasia disease was diagnosed with hip dysplasia at 18 months, and an individual that maintained the findings of hip dysplasia even after 38 months was used.
  • X-rays were taken at 11 months of age for two cloned dogs produced through gene editing technology and somatic cell nuclear transfer technology in the same manner as in Test Example 1 above.
  • FIG. 8 The results are shown in FIG. 8 .
  • Figure 8A shows the hip joint of an 18-month-old cell donor dog
  • Figure 8B shows the hip joint of a 38-month-old cell donor dog.
  • Fig. 8C shows the hip joint of cloned dog #1 at 11 months old
  • Fig. 8D shows the hip joint of cloned dog #2 at 11 months old.
  • the present invention relates to a method for treating canine hip dysplasia using prime editing technology, and uses a recombinant vector containing a guide RNA, a primer binding site, and a reverse transcriptase polymerase template gene to correct a gene involved in canine hip dysplasia efficiently and with high accuracy compared to the existing CRISPR/Cas9 system.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Immunology (AREA)
  • Rheumatology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mycology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention relates to a method for treating canine hip dysplasia using a prime editing technique. Using the recombinant vector of the present invention, genes associated with canine hip dysplasia can be compared to an existing CRISPR/Cas9 system to make highly accurate and effective corrections, and thus the present invention can be used to treat canine hip dysplasia or to manage breeding of canines.

Description

프라임 편집을 이용한 개의 고관절 이형성증 치료용 조성물Composition for treating hip dysplasia in dogs using prime editing
본 발명은 프라임 편집 기술을 이용하여 개의 고관절 이형성증을 치료하는 방법에 관한 것으로, 가이드RNA, 프라이머 결합부위 및 역전사 중합효소 템플릿 유전자를 포함하는 재조합 벡터를 이용하여 개의 고관절 이형성증에 관여하는 유전자를 기존의 CRISPR/Cas9 시스템과 비교하여 효율적이고 정확도 높게 교정할 수 있다.The present invention relates to a method for treating canine hip dysplasia using prime editing technology, and uses a recombinant vector containing a guide RNA, a primer binding site, and a reverse transcriptase polymerase template gene to correct a gene involved in canine hip dysplasia efficiently and with high accuracy compared to the existing CRISPR/Cas9 system.
고관절 이형성증(Hip dysplasia)은 인간과 개 모두에서 임상적 발현과 병인이 매우 유사하다. 고관절 이형성증은 대퇴골두(femoral head)와 비구(acetabulum)의 불완전한 연결로 인한 근골격계 질환으로 심한 통증을 동반하고, 리트리버와 같은 중대형 견에서 흔히 볼 수 있는 질환이다. 고관절 이형성증을 갖는 개체는 골관절염, 절음발이, 운동성 저하 등을 유발하는 것으로 알려져 있다. 고관절 이형성증의 발병 원인은 유전적인 영향과 환경적인 영향을 모두 포함한다. 유전적으로 인한 고관절 이형성증의 유병율을 줄이기 위해 철저하게 수립된 선별 계획에 따라 육종 전략을 사용할 수 있고, 이러한 전략은 모든 종에서 건강한 개체를 생산하기 위해 사용되고 있다. 그러나 개에서 고관절 이형성증의 원인이 되는 유전자를 직접 조절하여 질병을 치료하는 연구는 아직 시도된 바 없다.Hip dysplasia has very similar clinical manifestations and pathogenesis in both humans and dogs. Hip dysplasia is a musculoskeletal disease caused by an incomplete connection between the femoral head and the acetabulum. It is accompanied by severe pain and is a common disease in medium-large dogs such as retrievers. It is known that individuals with hip dysplasia cause osteoarthritis, lameness, reduced mobility, and the like. The causes of hip dysplasia include both genetic and environmental influences. To reduce the prevalence of genetically induced hip dysplasia, breeding strategies can be used according to well-established selection plans, and these strategies have been used to produce healthy individuals in all species. However, research on treating the disease by directly regulating the gene that causes hip dysplasia in dogs has not yet been attempted.
최근 프라임 편집(prime editor; PE)으로 알려진 정밀 게놈 편집 기술이 개발되어 쥐와 식물에서 검증되고 있다. 프라임 편집은 CRISPR/Cas9-HDR (homology-directed repair)를 사용하는 방법과 달리 양가닥절단(double-strand break)를 유도하지 않고, 올리고 DNA를 필요로 하지 않는다. 프라임 편집은 CRISPR/Cas9 (H840A)를 이용하여 이중 가닥에서 니카아제(nickase)를 생성하고 역전사 효소(Moloney murine leukemia virus: M-MLV)를 이용하여 니카아제-생성부위의 DNA을 편집하도록 설계된다. 프라임 편집을 이용하면 낮은 오프-타겟(off-target) 효율성과 정확한 전환, 삽입, 및 제거가 가능하다. 이러한 낮은 오프-타겟 효율 때문에 프라임 편집은 병원성 대립 유전자를 교정하는데 잠재력이 매우 크다. 프라임 편집은 원래 인간 세포에서 개발되었지만, 최근에는 식물 품종을 개발하는데 사용되고 있고, 마우스와 초파리가 인간 질병 모델로 이용되고 있다.Recently, a precision genome editing technique known as prime editor (PE) has been developed and validated in mice and plants. Unlike the method using CRISPR/Cas9-HDR (homology-directed repair), prime editing does not induce double-strand breaks and does not require oligo DNA. Prime editing is designed to generate nickase in double strands using CRISPR/Cas9 (H840A) and edit DNA at the nickase-generating site using reverse transcriptase (Moloney murine leukemia virus: M-MLV). Prime editing allows low off-target efficiency and precise transitions, insertions, and removals. Because of this low off-target efficiency, prime editing has great potential for correcting pathogenic alleles. Prime editing was originally developed in human cells, but has recently been used to develop plant strains, and mice and fruit flies have been used as human disease models.
그러나 개의 고관절 이형성증을 치료하기 위해 프라임 편집을 사용한 예는 보고된 바 없다.However, no reports have been made of the use of prime editing to treat hip dysplasia in dogs.
일 양상은 서열번호 1로 표시되는 가이드RNA(guide RNA), 서열번호 3으로 표시되는 프라이머 결합 부위, 및 서열번호 4로 표시되는 역전사 중합효소 탬플릿을 포함하는 재조합 벡터를 제공한다.One aspect provides a recombinant vector comprising a guide RNA represented by SEQ ID NO: 1, a primer binding site represented by SEQ ID NO: 3, and a reverse transcription polymerase template represented by SEQ ID NO: 4.
다른 양상은 상기 재조합 벡터를 포함하는 개의 고관절 이형성증 치료 또는 예방용 조성물을 제공한다.Another aspect provides a composition for treating or preventing canine hip dysplasia comprising the recombinant vector.
또 다른 양상은 상기 재조합 벡터를 개체에 도입하는 단계를 포함하는, 개의 고관절 이형성증을 치료 또는 예방하는 방법을 제공한다.Another aspect provides a method for treating or preventing hip dysplasia in dogs, comprising introducing the recombinant vector into a subject.
일 양상은 서열번호 1로 표시되는 가이드RNA(guide RNA), 서열번호 3으로 표시되는 프라이머 결합 부위, 및 서열번호 4로 표시되는 역전사 중합효소 탬플릿을 포함하는 재조합 벡터를 제공한다.One aspect provides a recombinant vector comprising a guide RNA represented by SEQ ID NO: 1, a primer binding site represented by SEQ ID NO: 3, and a reverse transcription polymerase template represented by SEQ ID NO: 4.
상기 재조합 벡터는 개의 고관절 이형성증을 치료 또는 예방하기 위한 것으로서, 개의 고관절 이형성증에 관여하는 유전자를 타겟팅하기 위한 것일 수 있다.The recombinant vector is for treating or preventing canine hip dysplasia, and may be for targeting a gene involved in canine hip dysplasia.
상기 재조합 벡터는 유전자 카세트로 정의될 수도 있고, 유전체 편집 벡터일 수 있다. The recombinant vector may be defined as a gene cassette or may be a genome editing vector.
본 발명의 재조합 벡터는 도 2에 도시된 바와 같이, gRNA뿐만 아니라 역전사 중합효소 탬플릿(scaffold RT template) 및 프라이머 결합 부위(primer binding site)를 포함하여 각 구성이 작동 가능하도록 긴밀히 연결되어 하나의 세트를 이룬다. 따라서 gRNA로 타겟하는 것은 이전 Cas9과 동일 할 수 있지만 전체적으로 기존의 CRISPR/Cas9과 비교하여 보다 안정적이고 정확한 유전자 편집 기능을 수행할 수 있다. As shown in FIG. 2, the recombinant vector of the present invention includes not only gRNA, but also a scaffold RT template and a primer binding site, so that each component is operably linked so as to form a set. Therefore, targeting with gRNA can be the same as the previous Cas9, but overall it can perform more stable and accurate gene editing function compared to conventional CRISPR/Cas9.
본 명세서에서 사용된 용어, "벡터"는 적합한 숙주 내에서 목적 유전자를 발현시킬 수 있도록 적합한 조절 서열에 작동 가능하게 연결된 유전자의 염기서열을 포함하는 유전자 작제물을 의미하는 것으로, 상기 조절 서열은 전사를 개시할 수 있는 프로모터, 그러한 전사를 조절하기 위한 임의의 오퍼레이터 서열, 및 전사 및 해독의 종결을 조절하는 서열을 포함할 수 있다.As used herein, the term "vector" refers to a genetic construct comprising a nucleotide sequence of a gene operably linked to a suitable regulatory sequence so as to express a gene of interest in a suitable host, and the regulatory sequence may include a promoter capable of initiating transcription, an arbitrary operator sequence for regulating such transcription, and a sequence regulating the termination of transcription and translation.
본 명세서에서 사용된 용어, "재조합 벡터"는, 발현시키고자 하는 목적 폴리펩타이드의 암호화 유전자가 작동가능하게 연결될 경우, 적절한 숙주 세포에서 상기 목적 폴리펩타이드를 높은 효율로 발현시킬 수 있는 목적 폴리펩타이드의 발현 벡터로 사용될 수 있으며, 상기 재조합 벡터는 숙주 세포에서 발현 가능할 수 있다. 숙주 세포는 바람직하게는 진핵세포일 수 있으며, 숙주세포의 종류에 따라 프로모터(promoter), 종결자(terminator), 인핸서(enhancer) 등과 같은 발현 조절 서열, 막 표적화 또는 분비를 위한 서열 등을 적절히 선택하고 목적에 따라 다양하게 조합할 수 있다.As used herein, the term "recombinant vector", when the coding gene of the target polypeptide to be expressed is operably linked, can be used as an expression vector of the target polypeptide capable of expressing the target polypeptide with high efficiency in an appropriate host cell, and the recombinant vector can be expressed in the host cell. The host cell may preferably be a eukaryotic cell, and depending on the type of host cell, expression control sequences such as promoters, terminators, enhancers, etc., sequences for membrane targeting or secretion, etc. may be appropriately selected and combined in various ways depending on the purpose.
상기 벡터는 발현 벡터 또는 유전체 편집 벡터일 수 있고, 예를 들어, 비바이러스성 벡터 또는 바이러스성 벡터일 수 있다. 비바이러스성 벡터로는 플라스미드 DNA인 것이 바람직하며, 바이러스성 벡터로는 렌티바이러스(lentivirus), 레트로바이러스(retrovirus), 아데노바이러스(adenovirus), 허피스바이러스(herpes virus) 또는 아비폭스바이러스(avipox virus) 벡터 등을 사용할 수 있으나, 이에 제한되는 것은 아니다. 상기 발현 벡터는, 형질 전환된 세포의 선별을 용이하게 하기 위하여 형광단백질과 같은 선별 마커를 코딩하는 유전자를 추가로 포함하는 것이 바람직하다. 예를 들어, 약물 내성, 영양 요구성, 세포 독성제에 대한 내성 또는 표면 단백질의 발현과 같은 선택가능 표현형을 부여하는 마커들, 예를 들어 형광 단백질, 퓨로마이신, 네오마이신, 하이그로마이신, 히스티디놀 디하이드로게나제(hisD) 및 구아닌 포스포리보실트랜스퍼라제(Gpt) 등을 예시할 수 있다. 상기 형광 단백질은 예를 들어, 녹색형광단백질(green fluorescent protein, GFP), 황색형광단백질(yellow fluorescent protein, YFP), 적색형광단백질(red fluorescent protein, RFP), 주황형광단백질(orange fluorescent protein, OFP), 청록색형광단백질(cyan fluorescent protein, CFP), 청색형광단백질(blue fluorescent protein, BFP) 또는 원적색형광단백질(far-red fluorescent protein)일 수 있으나 이에 제한되지 않는다.The vector may be an expression vector or a genome editing vector, and may be, for example, a non-viral vector or a viral vector. The non-viral vector is preferably plasmid DNA, and the viral vector may be a lentivirus, retrovirus, adenovirus, herpes virus or avipox virus vector, but is not limited thereto. The expression vector preferably further includes a gene encoding a selectable marker such as a fluorescent protein to facilitate selection of transformed cells. For example, markers conferring selectable phenotypes such as drug resistance, auxotrophy, resistance to cytotoxic agents or expression of surface proteins, for example, fluorescent proteins, puromycin, neomycin, hygromycin, histidinol dehydrogenase (hisD) and guanine phosphoribosyltransferase (Gpt). The fluorescent protein may be, for example, green fluorescent protein (GFP), yellow fluorescent protein (YFP), red fluorescent protein (RFP), orange fluorescent protein (OFP), cyan fluorescent protein (CFP), blue fluorescent protein (BFP), or far-red fluorescent protein, but is not limited thereto.
상기 재조합 벡터는 서열번호 2의 폴리뉴클레오티드 서열로 표시되는 PAM 유전자를 더 포함할 수 있다. 상기 PAM 유전자는 구체적으로 상기 가이드RNA와 프라이머 결합 부위 사이에 위치하는 것일 수 있다. 상기 가이드RNA, PAM 유전자, 프라이머 결합 부위, 및 역전사 중합효소 템플릿은 작동가능하도록 연결되어 있다.The recombinant vector may further include a PAM gene represented by the polynucleotide sequence of SEQ ID NO: 2. The PAM gene may be specifically located between the guide RNA and the primer binding site. The guide RNA, PAM gene, primer binding site, and reverse transcription polymerase template are operably linked.
상기 재조합 벡터에서 가이드RNA, PAM 유전자, 프라이머 결합 부위, 및 역전사 중합효소 템플릿은 프라임 편집 RNA (prime editor RNA)로 정의될 수 있고, 상기 재조합 벡터는 유전자 가위로서 역할 할 수 있도록 CRISPR/Cas9 및 RNA 폴리머라아제의 구성을 더 포함할 수 있다. Cas9 단백질과 RNA 폴리머라아제는 통상적으로 알려진 것을 이용할 수 있다. In the recombinant vector, guide RNA, PAM gene, primer binding site, and reverse transcription polymerase template may be defined as prime editor RNA, and the recombinant vector may further include components of CRISPR/Cas9 and RNA polymerase to serve as genetic scissors. Cas9 protein and RNA polymerase can be commonly known.
다른 양상은 상기 재조합 벡터가 도입된 재조합 바이러스를 제공한다. 상기 바이러스는 렌티바이러스(lentivirus), 레트로바이러스(retrovirus), 아데노바이러스(adenovirus), 허피스바이러스(herpes virus) 또는 아비폭스바이러스(avipox virus)일 수 있으나 이에 제한되지 않는다.Another aspect provides a recombinant virus into which the recombinant vector is introduced. The virus may be a lentivirus, a retrovirus, an adenovirus, a herpes virus, or an avipox virus, but is not limited thereto.
또 다른 양상은 상기 재조합 벡터를 포함하는 고관절 이형성증 치료용 조성물을 제공한다.Another aspect provides a composition for treating hip dysplasia comprising the recombinant vector.
또 다른 양상은 상기 재조합 벡터를 포함하는 개의 육종 관리용 조성물을 제공한다. 상기 개의 육종 관리는 고관절 이형성증을 가질 우려가 있거나 고관절 이형성증을 갖는 개체로부터 고관절 이형성증이 교정된 2세대 개체를 얻기 위한 것을 의미할 수 있다.Another aspect provides a composition for breeding management of dogs comprising the recombinant vector. The breeding management of the dog may mean obtaining a second-generation individual whose hip dysplasia is corrected from an individual who is likely to have hip dysplasia or has hip dysplasia.
본 발명에서 사용되는 용어 "예방", "개선", "치료"란 고관절 이형성증 증상을 역전시키거나, 완화시키거나, 그 진행을 억제하거나, 지연시키거나, 또는 예방하는 것을 의미하며, 상기 "치료"란 "치료방법"의 의미에서 치료하는 행위를 말하는 것일 수 있다.As used herein, the terms "prevention", "improvement", and "treatment" mean reversing, alleviating, or inhibiting, delaying, or preventing the symptoms of hip dysplasia, and the "treatment" may refer to the act of treating in the sense of "treatment method".
본 발명에서 용어, "약학적으로 허용 가능한 담체"란 생물체를 자극하지 않고 투여 화합물의 생물학적 활성 및 특성을 저해하지 않는 담체 또는 희석제를 말한다. 액상 용액으로 제제화되는 조성물에 있어서 허용되는 약제학적 담체로는, 멸균 및 생체에 적합한 것으로서, 식염수, 멸균수, 링거액, 완충 식염수, 알부민 주사용액, 덱스트로즈 용액, 말토 덱스트린 용액, 글리세롤, 에탄올 및 이들 성분 중 1 성분 이상을 혼합하여 사용할 수 있으며, 필요에 따라 항산화제, 완충액, 정균제 등 다른 통상의 첨가제를 첨가할 수 있다. 또한 희석제, 분산제, 계면활성제, 결합제 및 윤활제를 부가적으로 첨가하여 수용액, 현탁액, 유탁액 등과 같은 주사용 제형, 환약, 캡슐, 과립 또는 정제로 제제화할 수 있다.As used herein, the term "pharmaceutically acceptable carrier" refers to a carrier or diluent that does not stimulate organisms and does not inhibit the biological activity and properties of the administered compound. In the composition formulated as a liquid solution, acceptable pharmaceutical carriers are sterile and biocompatible, and saline, sterile water, Ringer's solution, buffered saline, albumin injection solution, dextrose solution, maltodextrin solution, glycerol, ethanol, and one or more of these components may be mixed and used, and other conventional additives such as antioxidants, buffers, and bacteriostatic agents may be added as necessary. In addition, diluents, dispersants, surfactants, binders, and lubricants may be additionally added to prepare formulations for injections such as aqueous solutions, suspensions, and emulsions, pills, capsules, granules, or tablets.
또 다른 양상은 개체에 상기 재조합 벡터를 도입하는 단계를 포함하는 개의 고관절 이형성증을 치료하는 방법을 제공한다.Another aspect provides a method of treating canine hip dysplasia comprising introducing the recombinant vector into the subject.
또 다른 양상은 개체에 상기 재조합 벡터를 도입하는 단계를 포함하는 개의 육종 관리 방법을 제공한다. 상기 육종 관리 방법은 구체적으로, 고관절 이형성증을 갖는 것으로 판별된 개의 고관절 이형성증 유발 유전자를 교정하기 위한 것일 수 있다.Another aspect provides a dog breeding management method comprising introducing the recombinant vector into an individual. Specifically, the breeding management method may be for correcting a hip dysplasia inducing gene in a dog determined to have hip dysplasia.
상기 개체는 개(Canis lupus familiaris)일 수 있다. 상기 개는 보다 구체적으로 래브라도 레트리버(Labrador retrievers)일 수 있다.The subject may be a dog (Canis lupus familiaris). The dogs may be more specifically Labrador retrievers.
상기 개체에 재조합 벡터를 주입하는 단계는, 상기 재조합 벡터를 포함하는 발현 벡터를 G-fectin, Mirus TrasIT-TKO 지질친화성 시약, 리포펙틴, 리포펙타민, 셀펙틴(cellfectin), 양이온성 인지질 나노입자, 양이온성 고분자, 양이온성 미셀, 양이온성 에멀젼 또는 리포좀을 포함하는 전달시약과 함께 세포 내로 도입되거나, 폴리에틸렌글리콜과 같은 생체적합성 고분자를 접합하여 세포 내 흡수를 증가시킬 수 있고, 바이러스를 이용하여 개체나 세포를 직접 감염시키거나, 전기-세포 융합 장치를 이용하거나, 이온토포레시스를 이용할 수 있으나, 이에 제한되지 않는다. Injecting the recombinant vector into the subject, the expression vector containing the recombinant vector may be introduced into cells together with delivery reagents including G-fectin, Mirus TrasIT-TKO lipophilic reagent, lipofectin, lipofectamine, cellfectin, cationic phospholipid nanoparticles, cationic polymers, cationic micelles, cationic emulsions or liposomes, or by conjugating biocompatible polymers such as polyethylene glycol to increase intracellular uptake, using a virus A subject or cell may be directly infected, an electro-cell fusion device may be used, or iontophoresis may be used, but is not limited thereto.
상기 개체에 재조합 벡터를 주입하는 단계는 보다 구체적으로, 재조합 벡터를 체세포에 도입하여 넉-인(knock-in)된 체세포를 확보한 후, 체세포 복제 수정란을 얻는 방법; 재조합 벡터를 직접 수정란에 주입하는 방법; 상기 개체의 체세포에 재조합 벡터를 주입하고 상기 재조합 벡터가 주입된 체세포의 핵을 난자에 주입하는 핵치환을 통해 수정란을 만드는 방법 등이 있으나 이에 제한되지 않는다.The step of injecting the recombinant vector into the organism may be more specifically, a method of introducing the recombinant vector into somatic cells to obtain knocked-in somatic cells, and then obtaining cloned embryos of somatic cells; a method of directly injecting a recombinant vector into a fertilized egg; A method of making fertilized eggs through nuclear transfer in which a recombinant vector is injected into somatic cells of the subject and the nucleus of the somatic cells into which the recombinant vector is injected is injected into an egg, but is not limited thereto.
본 발명의 유전자 구조체를 이용하여 효율적이고 성공적으로 개의 고관절 이형성증을 치료할 수다. 본 발명의 유전자 구조체는 프라임 편집 기술을 적용한 것으로서, 세포 분열이나 올리고 DNA를 도입할 필요 없이 CRISPR/Cas9-HDR에 비해 간단하고 효율성이 높은 장점을 갖는다.Using the genetic construct of the present invention, canine hip dysplasia can be effectively and successfully treated. The genetic construct of the present invention is applied with prime editing technology, and has the advantage of being simple and highly efficient compared to CRISPR/Cas9-HDR without the need for cell division or introduction of oligo DNA.
도 1은 고관절 이형성증 치료를 위한 바이러스의 유전자 구조체를 보여준다. 여기서 peg RNA는 CRISPR/Cas9 가이드 RNA, RNA 중합 효소 RT 템플릿 및 RNA 결합 부위를 포함한다.Figure 1 shows the genetic construct of the virus for the treatment of hip dysplasia. Here, peg RNA contains CRISPR/Cas9 guide RNA, RNA polymerase RT template, and RNA binding site.
도 2는 peg RNA의 유전자 구조를 상세하게 보여준다. 여기서 [AGG]는 PAM 서열이고, PAM 서열을 기준으로 왼쪽은 gRNA, 오른쪽은 RT 템플릿과 프라이머 결합 부위이고, 붉은색 염기가 돌연변이 위치이다.Figure 2 shows the genetic structure of peg RNA in detail. Here, [AGG] is the PAM sequence, the left side of the PAM sequence is the gRNA, the right side is the RT template and primer binding site, and the red base is the mutation site.
도 3은 본 발명의 유전자 구조체를 이용하여 교정된 세포의 염기서열을 분석한 결과를 보여준다.Figure 3 shows the results of analyzing the nucleotide sequence of cells corrected using the genetic construct of the present invention.
도 4는 본 발명의 유전자 구조체를 이용하여 교정된 세포의 염기서열을 분석한 결과를 보여준다.Figure 4 shows the results of analyzing the nucleotide sequence of cells corrected using the genetic construct of the present invention.
도 5는 본 발명의 유전자 구조체를 이용하여 교정된 후 분만된 개체의 이미지와 GFP 발현을 확인한 것이다.Figure 5 confirms the image and GFP expression of an individual delivered after correcting using the genetic construct of the present invention.
도 6은 본 발명의 유전자 구조체를 이용하여 교정된 후 분만된 개체의 게놈 DNA로부터 교정된 유전자의 존재를 확인한 것이다.6 confirms the presence of the corrected gene from the genomic DNA of an individual calibrated after correction using the genetic construct of the present invention.
도 7은 본 발명의 유전자 구조체를 이용하여 교정된 후 분만된 개체의 게놈 DNA에서 고관절 이형성증의 원인이 되는 SNP가 교정된 것을 보여주는 염기서열 분석 결과이다.7 is a sequencing result showing that SNPs causing hip dysplasia were corrected in the genomic DNA of an individual delivered after correction using the genetic construct of the present invention.
도 8은 세포공여견 및 복제견의 고관절 엑스레이 촬영 이미지이다. 구체적으로, 도 8A는 18 개월된 세포공여견의 고관절이고, 도 8B는 38 개월된 세포공여견의 고관절이고, 도 8C는 복제견 1번의 11개월 째 고관절이고, 및 도 8D는 복제견 2번의 11개월 째 고관절의 엑스레이 이미지이다.8 is an X-ray image of a hip joint of a cell donor dog and a cloned dog. Specifically, FIG. 8A is the hip joint of an 18-month-old cell donor dog, FIG. 8B is the hip joint of a 38-month-old cell donor dog, FIG. 8C is the hip joint of cloned dog #1 at 11 months, and FIG. 8D is an X-ray image of the hip joint of cloned dog #2 at 11 months.
본 발명은 서열번호 1로 표시되는 가이드RNA(guide RNA), 서열번호 3으로 표시되는 프라이머 결합 부위, 및 서열번호 4로 표시되는 역전사 중합효소 탬플릿을 포함하는 재조합 벡터에 관한 것이다.The present invention relates to a recombinant vector comprising a guide RNA represented by SEQ ID NO: 1, a primer binding site represented by SEQ ID NO: 3, and a reverse transcription polymerase template represented by SEQ ID NO: 4.
이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail by examples. However, the following examples are only to illustrate the present invention, and the content of the present invention is not limited to the following examples.
[실시예 1] 프라임 편집용 유전자 카세트 및 이를 포함하는 바이러스의 제조[Example 1] Preparation of a gene cassette for prime editing and a virus containing the same
프라임 편집용 가이드 RNA와 이를 포함하는 벡터 구조물은 하기와 같이 설계하였다.The guide RNA for prime editing and the vector construct containing it were designed as follows.
먼저, 고관절 이형성증을 유발하는 유전자 돌연변이를 분석하여 25 개의 SNP(single nucleotide polymorphism)를 도출하였고, 그 중 통계적으로 가장 높은 고관절 이형성증을 유발하는 것으로 평가된 하나의 SNP를 표적으로 선별하였다. 표적으로 선별된 SNP는 BISF2S23030416 locus에 T가 C로 point mutation된 특징을 갖는 것이다. 라임 편집에 사용된 pegRNA는 13 nt의 프라이머 결합 부위(primer binding site)와 14nt의 RT 템플릿(reverse transcriptase template) (Bioneer, Inc)으로 시작하도록 설계하였다 (도 2). 벡터는 렌티 바이러스 유래의 것을 이용하였고(addgene #135955), CRISPR/Cas9, RNA 폴리머라아제 및 pegRNA를 포함하고, GFP 유전자를 포함하여 형광으로 삽입 여부를 확인할 수 있도록 설계되었다 (도 1). 상기와 같은 유전자 카세트를 포함하는 바이러스를 업체(Lugen SCI, Inc)를 통해 제조하였다.First, 25 single nucleotide polymorphisms (SNPs) were derived by analyzing gene mutations inducing hip dysplasia, and among them, one SNP that was statistically evaluated to cause hip dysplasia was selected as a target. The SNP selected as a target has the feature of point mutation of T to C at the BISF2S23030416 locus. The pegRNA used for Lyme editing was designed to start with a 13 nt primer binding site and a 14 nt RT template (Bioneer, Inc) (Fig. 2). A lentivirus-derived vector was used (addgene #135955), and it was designed to include CRISPR/Cas9, RNA polymerase, and pegRNA, and include a GFP gene to confirm the insertion with fluorescence (FIG. 1). A virus containing the gene cassette as described above was prepared by a company (Lugen SCI, Inc).
유전자gene 서열order
gRNAgRNAs GAG GGG AAC ACA CGC AGG AC (서열번호 1)GAG GGG AAC ACA CGC AGG AC (SEQ ID NO: 1)
PAMPAM AGG (서열번호 2)AGG (SEQ ID NO: 2)
13 nt의 프라이머 결합 부위(primer binding site)13 nt primer binding site CTG CGT GTG TTC C (서열번호 3)CTG CGT GTG TTC C (SEQ ID NO: 3)
14nt의 RT 템플릿(reverse transcriptase template)14nt RT template (reverse transcriptase template) ACT CTG CTC CTG TC (서열번호 4)ACT CTG CTC CTG TC (SEQ ID NO: 4)
[실시예 2] 고관절 이형성증 교정의 확인[Example 2] Confirmation of hip dysplasia correction
고관절 이형성증 교정을 세포주에서 확인하기 위해 18 개월의 고관절 이형성증을 앓는 개의 귀로부터 섬유아세포를 획득하였다. 그런 다음, 상기 세포를 DMEM-Glutamax, 15 % FBS 및 1 % 페니실린/스트렙토미신을 포함하는 배양 배지에서 배양하였다. 배양된 섬유아세포에 12 개의 웰 플레이트에서 100 MOI로 바이러스를 처리하여 감염시킨 후, GFP 및 시퀀싱 분석으로 감염 여부를 확인하였다. 그 결과, 아무 것도 처리하지 않은 세포는 C 서열을 갖는 반면, 바이러스 처리된 세포주는 C와 T가 있는 이종 유형을 나타내어 프라임 편집이 작동되고 있음을 확인하였다 (도 3 및 4). Fibroblasts were obtained from the ear of an 18-month-old dog suffering from hip dysplasia to confirm hip dysplasia correction in a cell line. Then, the cells were cultured in a culture medium containing DMEM-Glutamax, 15% FBS and 1% penicillin/streptomycin. After infecting the cultured fibroblasts by treating the virus at 100 MOI in a 12-well plate, the presence or absence of infection was confirmed by GFP and sequencing analysis. As a result, it was confirmed that the prime editing was working as the cell lines treated with the virus showed a heterogeneous type with C and T, whereas the cells without treatment had the C sequence (Figs. 3 and 4).
[시험예 1] 개의 고관절 이형성증 치료 효과 확인[Test Example 1] Confirmation of the treatment effect of hip dysplasia in dogs
본 발명의 유전자 구조체를 이용하여 개의 고관절 이형성증 치료하기 위해 체세포 핵 이식(somatic cell nuclear transfer, SCNT) 및 배아 이식 방법을 이용하였다. To treat hip dysplasia in dogs using the genetic construct of the present invention, somatic cell nuclear transfer (SCNT) and embryo transfer methods were used.
구체적으로, 견종으로 래브라도 레트리버로 선정하고, 첫 번째 극성체를 갖는 고관절 이형성증 개체의 생체 내 성숙된 난모세포를 획득하여 중기 염색체를 제거하고, 상기 적출된 난모세포의 주변 공간(perivitelline space)으로 상기 실시예 2의 체세포를 옮긴 후, 전기-세포 융합 장치에서 2 개의 직류 펄스 (15μsec 동안 24-26V)로 각 기증자 세포-세포질 결합을 융합하였다. 융합된 SCNT 배아를 10μM 칼슘 이온 통로 (Sigma)에서 배양하여 화학적 활성화를 유도하고, 세척한 다음 1.9mM 6-디메틸아미노퓨린(6-DMAP)을 함유하는 합성 난관 유체 배지 (mSOF)에서 인큐베이션 하였다. 그런 다음, SCNT 배아를 대리모의 난관으로 외과적으로 옮기고, 배아 이식 후 30 일 째 되는 날에 초음파 검사로 착상을 확인 하였다. 대리모로부터 두 마리의 강아지를 제왕절개로 분만하여 얻었다. 모든 시험은 "반려동물연구센터 공동연구 프로그램 (프로젝트 번호 PJ01398702)"의 지원으로 수행되었고, 실험 절차 및 방법은 충남 대학교 동물 복지 윤리 공단 (CNU-2019012A-CNU-174)의 승인을 받았다. 이 시험에서는 2 세에서 6 세 사이의 암컷 잡종 개를 난모세포를 제공받고 배아를 이식하는데 사용하였다. 40일 후 656g (C>T dog#1) 및 585g(C>T dog#2)의 어린 개체를 수득하였다. 개들은 실내에 사육되었고 하루에 한 번 물을 자유롭게 먹도록 하였으며, 모든 방법과 시험법은 관련 지침 및 규정에 따라 수행되었다.Specifically, a Labrador retriever was selected as a dog breed, matured oocytes of an individual with hip dysplasia having first polarity were obtained, metaphase chromosomes were removed, and the somatic cells of Example 2 were transferred to the perivitelline space of the extracted oocytes. Then, each donor cell-cytoplasmic bond was fused with two direct current pulses (24-26V for 15 μsec) in an electro-cell fusion device. The fused SCNT embryos were cultured in 10 μM calcium ion channel (Sigma) to induce chemical activation, washed and then incubated in synthetic oviduct fluid medium (mSOF) containing 1.9 mM 6-dimethylaminopurine (6-DMAP). Then, the SCNT embryos were surgically transferred to the fallopian tubes of surrogate mothers, and implantation was confirmed by ultrasound on the 30th day after embryo transfer. Two puppies were obtained by caesarean section from a surrogate mother. All tests were performed with the support of the "Companion Animal Research Center Joint Research Program (Project No. PJ01398702)", and the experimental procedures and methods were approved by the Animal Welfare Ethics Corporation of Chungnam National University (CNU-2019012A-CNU-174). In this study, female mongrel dogs between the ages of 2 and 6 were provided with oocytes and used for embryo transfer. After 40 days, young individuals weighing 656 g (C>T dog#1) and 585 g (C>T dog#2) were obtained. Dogs were housed indoors and allowed to drink water ad libitum once a day, and all methods and tests were performed in accordance with relevant guidelines and regulations.
상기 수득된 개체로부터 형질 감염된 개의 게놈 DNA에 삽입된 유전자를 확인하기 위해 CMV 프로모터와 CRISPR/Cas9 사이의 유전자를 PCR로 증폭하여 기증자 세포와 비교하였다 (도 5 및 도 6). 또한 염기서열 분석하여 돌연변이가 성공적으로 일어났는지 확인하였다 (도 7). PCR에 사용된 프라이머 서열은 하기와 같다.In order to confirm the gene inserted into the genomic DNA of the transfected dog from the obtained individual, the gene between the CMV promoter and CRISPR/Cas9 was amplified by PCR and compared with donor cells (FIGS. 5 and 6). In addition, it was confirmed by sequencing that the mutation occurred successfully (FIG. 7). Primer sequences used for PCR are as follows.
유전자gene 서열order
CMV 프로모터와 CRISPR/Cas9 사이의 유전자 확인 ForwardGene identification between the CMV promoter and CRISPR/Cas9 Forward 5'-catcgctattaccatggtgat-3'5'-catcgctattaccatggtgat-3'
CMV 프로모터와 CRISPR/Cas9 사이의 유전자 확인 ReverseReverse genetic identification between the CMV promoter and CRISPR/Cas9 5'-ctcttgcagatagcagatcc-3'5'-ctcttgcagatagcagatcc-3'
그 결과, 수득된 두 개체에서 모두 본 발명의 유전자 구체에 의해 고관절 이형성증의 원인이 되는 염기서열이 교정된 것을 확인하였다.As a result, it was confirmed that the nucleotide sequence causing hip dysplasia was corrected by the gene sphere of the present invention in both of the obtained individuals.
[시험예 2] 고관절 엑스레이 이미지 비교 확인[Test Example 2] Hip joint X-ray image comparison confirmation
고관절 이형성증 질병을 가진 세포공여견(견명: 미우)은 18개월 시점에 고관절이형성증 판정을 받았으며, 38개월이 지난 시점에도 고관절 이형성증에 대한 소견을 소견을 유지 중인 개체를 이용하였다.A cell donor dog (dog name: Miwoo) with hip dysplasia disease was diagnosed with hip dysplasia at 18 months, and an individual that maintained the findings of hip dysplasia even after 38 months was used.
상기 시험예 1과 같은 방식으로 유전자 교정기술과 체세포 핵이식기술을 통해 생산한 복제견 2두에 대해 11개월 시점에 엑스레이 촬영을 하였다.X-rays were taken at 11 months of age for two cloned dogs produced through gene editing technology and somatic cell nuclear transfer technology in the same manner as in Test Example 1 above.
그 결과를, 도 8에 나타내었다. 도 8A는 18 개월된 세포공여견의 고관절이고, 도 8B는 38 개월된 세포공여견의 고관절로서, 관골구 이형성증으로 구의 깊이가 얕아져 대퇴골두가 이탈하여 고관절이형성증 질병이 발병한 것이 확인되었고, 38 개월 째에도 대퇴골두가 이탈된 상태로 고관절이형성증 질병 유지 중임을 확인하였다. 유전자 교정 후의 복제견으로서, 도 8C는 복제견 1번의 11개월 째 고관절이고, 및 도 8D는 복제견 2번의 11개월 째 고관절인데, 두 개체 모두 관절구 내 대퇴골두가 정상적으로 위치한 상태임이 확인되었다.The results are shown in FIG. 8 . Figure 8A shows the hip joint of an 18-month-old cell donor dog, and Figure 8B shows the hip joint of a 38-month-old cell donor dog. As cloned dogs after gene correction, Fig. 8C shows the hip joint of cloned dog #1 at 11 months old, and Fig. 8D shows the hip joint of cloned dog #2 at 11 months old.
따라서, 본 발명을 이용한 유전자 교정으로 모든 개체가 고관절 형성에 정상적인 소견을 보였고, 세포공여견의 질병 판정 시점인 18개월령에 재촬영을 통해 질병 증상이 치유 또는 완화 되었는지 판단하였을 때에도 고관절 형성에 정상적인 소견을 보였다. Therefore, by gene correction using the present invention, all individuals showed normal findings in hip joint formation, and even when it was determined whether the disease symptoms were cured or alleviated through re-photographing at the age of 18 months, which is the time point for determining the disease of the cell donor dog, normal findings were shown in hip joint formation.
본 발명은 프라임 편집 기술을 이용하여 개의 고관절 이형성증을 치료하는 방법에 관한 것으로, 가이드RNA, 프라이머 결합부위 및 역전사 중합효소 템플릿 유전자를 포함하는 재조합 벡터를 이용하여 개의 고관절 이형성증에 관여하는 유전자를 기존의 CRISPR/Cas9 시스템과 비교하여 효율적이고 정확도 높게 교정할 수 있다.The present invention relates to a method for treating canine hip dysplasia using prime editing technology, and uses a recombinant vector containing a guide RNA, a primer binding site, and a reverse transcriptase polymerase template gene to correct a gene involved in canine hip dysplasia efficiently and with high accuracy compared to the existing CRISPR/Cas9 system.
SEQUENCE LISTINGSEQUENCE LISTING
<110> MK bioteck<110> MK biotek
<120> Composition for treating alleviated hip dysplasia of dog using <120> Composition for treating alleviated hip dysplasia of dog using
prime editors prime editors
<130> WP20211220<130> WP20211220
<160> 4 <160> 4
<170> PatentIn version 3.2<170> PatentIn version 3.2
<210> 1<210> 1
<211> 20<211> 20
<212> DNA<212> DNA
<213> Artificial<213> artificial
<220><220>
<223> gRNA<223> gRNA
<400> 1<400> 1
gaggggaaca cacgcaggac 20gaggggaaca cacgcaggac 20
<210> 2<210> 2
<211> 3<211> 3
<212> DNA<212> DNA
<213> Artificial<213> artificial
<220><220>
<223> PAM<223> PAM
<400> 2<400> 2
agg 3 agg 3
<210> 3<210> 3
<211> 13<211> 13
<212> DNA<212> DNA
<213> Artificial<213> artificial
<220><220>
<223> primer binding site<223> primer binding site
<400> 3<400> 3
ctgcgtgtgt tcc 13ctgcgtgtgt tcc 13
<210> 4<210> 4
<211> 14<211> 14
<212> DNA<212> DNA
<213> Artificial<213> artificial
<220><220>
<223> reverse transcriptase template<223> reverse transcriptase template
<400> 4 <400> 4
actctgctcc tgtc 14actctgctcc tgtc 14

Claims (10)

  1. 서열번호 1로 표시되는 가이드RNA(guide RNA), 서열번호 3으로 표시되는 프라이머 결합 부위, 및 서열번호 4로 표시되는 역전사 중합효소 탬플릿을 포함하는 재조합 벡터.A recombinant vector comprising a guide RNA represented by SEQ ID NO: 1, a primer binding site represented by SEQ ID NO: 3, and a reverse transcription polymerase template represented by SEQ ID NO: 4.
  2. 청구항 1에 있어서, 상기 재조합 벡터는 개의 고관절 이형성증을 치료 또는 예방하기 위한 것인 재조합 벡터.The recombinant vector according to claim 1, wherein the recombinant vector is for treating or preventing hip dysplasia in dogs.
  3. 청구항 1에 있어서, 상기 재조합 벡터는 개의 고관절 이형성증에 관여하는 유전자를 타겟팅하기 위한 것인 재조합 벡터The recombinant vector according to claim 1, wherein the recombinant vector is for targeting a gene involved in canine hip dysplasia.
  4. 청구항 1에 있어서, 상기 재조합 벡터는 서열번호 2로 표시되는 PAM 유전자를 더 포함하는 것인 재조합 벡터.The recombinant vector according to claim 1, wherein the recombinant vector further comprises a PAM gene represented by SEQ ID NO: 2.
  5. 청구항 1에 있어서, 상기 재조합 벡터는 Cas9 단백질을 코딩하는 유전자 및 RNA 폴리머라아제를 코딩하는 유전자를 더 포함하는 것인 재조합 벡터.The recombinant vector according to claim 1, wherein the recombinant vector further comprises a Cas9 protein-encoding gene and an RNA polymerase-encoding gene.
  6. 청구항 1에 있어서, 상기 재조합벡터는 형광단백질을 코딩하는 유전자를 더 포함하는 것인 재조합 벡터.The recombinant vector according to claim 1, wherein the recombinant vector further comprises a gene encoding a fluorescent protein.
  7. 청구항 1의 재조합 벡터가 도입된 재조합 바이러스.A recombinant virus into which the recombinant vector of claim 1 is introduced.
  8. 청구항 1의 재조합 벡터를 포함하는 개의 고관절 이형성증 치료 또는 예방용 조성물.A composition for treating or preventing hip dysplasia in dogs, comprising the recombinant vector of claim 1.
  9. 청구항 1의 재조합 벡터를 포함하는 개의 육종 관리용 조성물.A composition for breeding management of dogs comprising the recombinant vector of claim 1.
  10. 청구항 1의 재조합 벡터를 개체에 도입하는 단계를 포함하는, 개의 고관절 이형성증을 치료 또는 예방하는 방법.A method for treating or preventing hip dysplasia in dogs, comprising introducing the recombinant vector of claim 1 into a subject.
PCT/KR2022/001180 2022-01-20 2022-01-24 Composition for treating canine hip dysplasia using prime editor WO2023140409A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0008306 2022-01-20
KR20220008306 2022-01-20

Publications (1)

Publication Number Publication Date
WO2023140409A1 true WO2023140409A1 (en) 2023-07-27

Family

ID=87348439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/001180 WO2023140409A1 (en) 2022-01-20 2022-01-24 Composition for treating canine hip dysplasia using prime editor

Country Status (1)

Country Link
WO (1) WO2023140409A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120043793A (en) * 2010-10-27 2012-05-07 대한민국(농촌진흥청장) Snp for diagnosing hip dysplasia in dog and uses thereof
KR102124770B1 (en) * 2018-12-12 2020-06-19 대한민국 Composition for early predicting or diagnosing hip dysplasia in dog

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120043793A (en) * 2010-10-27 2012-05-07 대한민국(농촌진흥청장) Snp for diagnosing hip dysplasia in dog and uses thereof
KR102124770B1 (en) * 2018-12-12 2020-06-19 대한민국 Composition for early predicting or diagnosing hip dysplasia in dog

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHOI BONG-HWAN, SEULGI KWON , JAE-GYU YOO , SEUNG HWAN LEE: "Genome-wide Association Study using the Canine SNP20 Beadchip for Canine Hip Dysplasia in Labrador Retriever", JOURNAL OF ANIMAL BREEDING AND GENOMICS, vol. 3, no. 1, 1 March 2019 (2019-03-01), pages 7 - 15, XP093079326, ISSN: 1226-5543, DOI: 10.12972/jabng.20190002 *
KIM, LEE-KYUNG: "Development of single nucleotide polymorphism (SNP) markers for the diagnosis of hip dysplasia in Labrador retriever", THESIS, 1 August 2013 (2013-08-01), KR, pages 1 - 33, XP009547755 *
MIKKOLA LEA, HOLOPAINEN SAILA, PESSA-MORIKAWA TIINA, LAPPALAINEN ANU K., HYTÖNEN MARJO K., LOHI HANNES, IIVANAINEN ANTTI: "Genetic dissection of canine hip dysplasia phenotypes and osteoarthritis reveals three novel loci", BMC GENOMICS, vol. 20, no. 1, 1 December 2019 (2019-12-01), pages 1 - 13, XP093079329, DOI: 10.1186/s12864-019-6422-6 *
YAN JUN; CIRINCIONE ANN; ADAMSON BRITT: "Prime Editing: Precision Genome Editing by Reverse Transcription", MOLECULAR CELL, vol. 77, no. 2, 16 January 2020 (2020-01-16), AMSTERDAM, NL, pages 210 - 212, XP086007503, ISSN: 1097-2765, DOI: 10.1016/j.molcel.2019.12.016 *

Similar Documents

Publication Publication Date Title
CN106535630B (en) Multiple gene editing
WO2018177351A1 (en) Method for preparing non-chimeric gene knockout animal based on crispr/cas9 technology
WO2018110805A1 (en) Animal model of diabetes with ins gene knockout or diabetic complications and manufacturing method thereof
US20180051298A1 (en) Efficient non-meiotic allele introgression
EP0506945B1 (en) Method of gene transfer using retrotransposons
CN111278972B (en) Non-integrated DNA vectors for cytogenetic modification
US6027722A (en) Vectors for gene transfer
US8921332B2 (en) Chromosomal modification involving the induction of double-stranded DNA cleavage and homologous recombination at the cleavage site
US7960525B2 (en) Gene repair involving in vivo excision of targeting DNA
US6287863B1 (en) Method of transferring a DNA sequence to a cell in vitro
CN106459951A (en) Targeted genome editing in zygotes of domestic large animals
WO2023140409A1 (en) Composition for treating canine hip dysplasia using prime editor
KR102472344B1 (en) Composition for treating alleviated hip dysplasia of dog using prime editors
Allen et al. Using phiC31 integrase to make transgenic Xenopus laevis embryos
EP3954765A1 (en) Artificial recombinant chromosome and use thereof
US6936465B1 (en) Plasmid vector comprising a retroviral integrase gene and an integrase recognition region
KR101105248B1 (en) Method For Producing Cloned Transgenic Canidae
WO2023085505A1 (en) Parkinson&#39;s disease-inducing vector and method for constructing canine model using same
WO2022114815A1 (en) Composition for prime editing comprising trans-splicing adeno-associated virus vector
HUT77343A (en) Transgenic organisms and their uses
US20030110524A1 (en) Transgenic organisms and their uses
CN115838719B (en) Compound capable of specifically promoting activity of adenine base editor, chemical regulation method and application thereof
US11530424B1 (en) Efficient CRISPR/HDR-mediated knock-in system and method of use
WO2020091301A1 (en) Inflammation-forming transgenic animal model through selective overexpression of lipocalin-2 and method for manufacturing same
WO2022231402A1 (en) Composition for preparing avian cell for production of antiviral vaccine and composition for preparing virus-resistant avian cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22922271

Country of ref document: EP

Kind code of ref document: A1