WO2023140249A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2023140249A1
WO2023140249A1 PCT/JP2023/001177 JP2023001177W WO2023140249A1 WO 2023140249 A1 WO2023140249 A1 WO 2023140249A1 JP 2023001177 W JP2023001177 W JP 2023001177W WO 2023140249 A1 WO2023140249 A1 WO 2023140249A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
refrigerant
heat exchanger
variable throttle
compressor
Prior art date
Application number
PCT/JP2023/001177
Other languages
French (fr)
Japanese (ja)
Inventor
達博 鈴木
康太 萩原
良寛 後藤
幸男 上村
拓郎 古越
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2023140249A1 publication Critical patent/WO2023140249A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/04Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for reversible pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/33Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant
    • F25B41/335Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant via diaphragms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat

Definitions

  • the present disclosure relates to a refrigeration cycle device.
  • the refrigeration cycle apparatus described in Patent Document 1 includes a four-way valve provided midway along a pipe connecting a compressor and an indoor heat exchanger and midway along a pipe connecting a compressor and an outdoor heat exchanger.
  • this refrigeration cycle device can perform cooling operation and heating operation by switching the flow of the refrigerant with the four-way valve.
  • cooling operation the refrigerant discharged from the compressor flows through the four-way valve, the outdoor heat exchanger, the first throttle valve, the receiver, the second throttle valve, the indoor heat exchanger, the four-way valve, and the compressor in that order.
  • heating operation the refrigerant discharged from the compressor flows through the 4-way valve, the indoor heat exchanger, the second throttle valve, the receiver, the first throttle valve, the outdoor heat exchanger, the 4-way valve, and the compressor in that order.
  • the refrigeration cycle apparatus of Patent Document 1 has two throttle valves and a receiver installed between the outdoor heat exchanger and the indoor heat exchanger, and on the other hand, has a configuration in which no accumulator is installed on the suction port side of the compressor.
  • Patent Document 1 describes that a temperature sensor is provided in the middle of each heat exchanger and that a temperature sensor is provided only on the discharge side of the compressor.
  • Patent Document 1 when a temperature sensor is provided in the middle of each heat exchanger as in Patent Document 1, or when a temperature sensor is provided only on the discharge side of the compressor, it is difficult to operate the throttle valve so as to improve the cooling capacity, heating capacity, and coefficient of performance (hereinafter referred to as "COP"). That is, Patent Document 1 does not describe a throttle valve operation method for improving the cooling capacity, the heating capacity, and the COP during the cooling operation and the heating operation, and the configuration necessary for executing the operation method. Note that COP is an abbreviation for Coefficient Of Performance.
  • An object of the present disclosure is to provide a refrigeration cycle device that is capable of simplifying the configuration, reducing the size, and improving the cooling capacity, heating capacity, and COP.
  • a refrigeration cycle device includes a compressor, an outdoor heat exchanger, an indoor heat exchanger, a receiver, a first variable throttle, a second variable throttle, a first temperature/pressure sensor, and a second temperature/pressure sensor.
  • the compressor has a first opening and a second opening for sucking and discharging refrigerant, and is capable of performing a heating operation in which the refrigerant sucked through the first opening is compressed and discharged through the second opening, and a cooling operation in which the refrigerant sucked through the second opening is compressed and discharged through the first opening.
  • the outdoor heat exchanger is provided on the side of the first opening of the compressor, and performs heat exchange between the air discharged to the outside of the room and the refrigerant.
  • the indoor heat exchanger is provided on the second opening side of the compressor, and performs heat exchange between the air blown into the room and the refrigerant.
  • a receiver is a reservoir provided between the outdoor heat exchanger and the indoor heat exchanger.
  • the first variable throttle is provided between the outdoor heat exchanger and the receiver and adjusts the flow rate of refrigerant.
  • a second variable throttle is provided between the indoor heat exchanger and the receiver to adjust the flow rate of the refrigerant.
  • a first temperature-pressure sensor is provided between the first opening of the compressor and the outdoor heat exchanger and detects at least one of the temperature and pressure of the refrigerant.
  • a second temperature-pressure sensor is provided between the second opening of the compressor and the indoor heat exchanger and detects at least one of the temperature and pressure of the refrigerant.
  • the refrigeration cycle apparatus is configured such that, during heating operation, the valve opening of the first variable throttle is controlled according to the temperature and pressure detected by the first temperature and pressure sensor so that the refrigerant sucked into the first opening of the compressor becomes a gas refrigerant having a predetermined degree of superheat, and the valve opening of the second variable throttle is controlled according to the temperature and pressure detected by the second temperature and pressure sensor so that the refrigerant flowing out of the indoor heat exchanger becomes a liquid refrigerant having a predetermined degree of subcooling.
  • the refrigeration cycle apparatus is configured such that, during cooling operation, the valve opening degree of the second variable throttle is controlled according to the temperature and pressure detected by the second temperature and pressure sensor so that the refrigerant sucked into the second opening of the compressor becomes a gas refrigerant having a predetermined degree of superheat, and the valve opening degree of the first variable throttle is controlled according to the temperature and pressure detected by the first temperature and pressure sensor so that the refrigerant flowing out from the outdoor heat exchanger becomes a liquid refrigerant having a predetermined degree of subcooling.
  • the refrigerating cycle apparatus uses two temperature/pressure sensors to control the opening of two variable throttles in both heating operation and cooling operation. Specifically, while adjusting the degree of superheat of the refrigerant sucked into the compressor and the degree of superheat of the refrigerant discharged from the compressor, it is possible to adjust the degree of subcooling of the refrigerant flowing out of the heat exchanger that functions as a condenser among the indoor heat exchanger and the outdoor heat exchanger. Therefore, this refrigeration cycle apparatus can simplify the configuration by reducing the number of parts, such as one receiver, two temperature pressure sensors, and two variable throttles, and can reduce the size.
  • this refrigeration cycle apparatus uses a so-called dual-rotation compressor capable of performing both heating operation and cooling operation, so compared to a configuration in which a compressor and a four-way valve are combined as in Patent Document 1, the number of parts can be reduced and the size can be reduced.
  • the predetermined degree of superheating and the predetermined degree of supercooling are appropriately set according to various requirements for the refrigeration cycle device, such as a scene in which priority is given to cooling capacity or heating capacity, a scene in which COP is given priority, or a scene in which both cooling capacity or heating capacity and COP are given priority.
  • a refrigeration cycle device includes a compressor, an outdoor heat exchanger, an indoor heat exchanger, a receiver, a first variable throttle, a second variable throttle, a flow path switching valve, a first temperature/pressure sensor, a second temperature/pressure sensor, and an electronic control device.
  • the compressor sucks refrigerant through the first opening, compresses it, and discharges it through the second opening.
  • the outdoor heat exchanger exchanges heat between the air discharged outdoors and the refrigerant.
  • the indoor heat exchanger exchanges heat between the air blown indoors and the refrigerant.
  • a receiver is a reservoir provided between the outdoor heat exchanger and the indoor heat exchanger.
  • the first variable throttle is provided between the outdoor heat exchanger and the receiver and adjusts the flow rate of refrigerant.
  • a second variable throttle is provided between the indoor heat exchanger and the receiver to adjust the flow rate of the refrigerant.
  • the flow path switching valve is provided in the middle of the flow path that connects the compressor and the indoor heat exchanger and in the middle of the flow path that connects the compressor and the outdoor heat exchanger, and switches between the heating operation and the cooling operation. In the heating operation operation, the refrigerant discharged from the second opening of the compressor flows through the flow path switching valve, the indoor heat exchanger, the second variable throttle, the receiver, the first variable throttle, the outdoor heat exchanger, and the flow path switching valve in this order, and is sucked into the first opening of the compressor.
  • the refrigerant discharged from the second opening of the compressor flows through the flow switching valve, the outdoor heat exchanger, the first variable throttle, the receiver, the second variable throttle, the indoor heat exchanger, and the flow switching valve in that order, and is drawn into the first opening of the compressor.
  • the first temperature-pressure sensor is provided between the first opening of the compressor and the flow path switching valve or between the flow path switching valve and the outdoor heat exchanger, and detects at least one of the temperature and pressure of the refrigerant.
  • the second temperature-pressure sensor is provided between the second opening of the compressor and the flow path switching valve or between the flow path switching valve and the indoor heat exchanger, and detects at least one of the temperature and pressure of the refrigerant.
  • the electronic control device controls the valve opening of the first variable throttle according to the temperature and pressure detected by the sensor downstream of the outdoor heat exchanger among the first and second temperature and pressure sensors so that the refrigerant drawn into the first opening of the compressor becomes gas refrigerant with a predetermined degree of superheat, and the temperature and pressure detected by the first temperature and pressure sensor and the second temperature and pressure sensor downstream of the indoor heat exchanger so that the refrigerant flowing out of the indoor heat exchanger becomes liquid refrigerant with a predetermined degree of supercooling.
  • the valve opening degree of the second variable throttle is controlled according to the pressure.
  • the electronic control unit controls the valve opening degree of the second variable throttle according to the temperature and pressure detected by the sensor downstream of the indoor heat exchanger among the first temperature-pressure sensor and the second temperature-pressure sensor so that the refrigerant sucked into the first opening of the compressor becomes a gas refrigerant with a predetermined degree of superheat during the cooling operation, and the sensor upstream of the outdoor heat exchanger among the first temperature-pressure sensor and the second temperature-pressure sensor so that the refrigerant flowing out of the outdoor heat exchanger becomes liquid refrigerant with a predetermined degree of supercooling.
  • the valve opening degree of the first variable throttle is controlled according to the detected temperature and pressure.
  • the refrigeration cycle device can achieve the same effects as the refrigeration cycle device according to one aspect of the present disclosure, except that the channel switching valve is provided.
  • FIG. 1 is a circuit diagram of a refrigeration cycle apparatus according to a first embodiment
  • FIG. FIG. 4 is a Mollier diagram showing the behavior of refrigerant during heating operation.
  • FIG. 3 is a Mollier diagram showing the behavior of a refrigerant during cooling operation.
  • 4 is a flow chart of control processing executed by an electronic control device included in the refrigeration cycle apparatus;
  • FIG. 4 is a Mollier diagram showing the behavior of the refrigerant under control of the lower stage throttle and the upper stage throttle.
  • 1 is a plan view of a refrigeration cycle apparatus according to a first embodiment
  • FIG. FIG. 7 is a front view of the refrigeration cycle apparatus viewed from the VII direction of FIG. 6
  • FIG. 8 is a side view of the refrigeration cycle apparatus viewed from the VIII direction of FIGS.
  • FIG. 6 and 7 1 is a schematic configuration diagram of a refrigeration cycle apparatus according to a first embodiment, showing the flow of refrigerant during heating operation;
  • FIG. 1 is a schematic configuration diagram of a refrigeration cycle apparatus according to a first embodiment, showing the flow of refrigerant during cooling operation;
  • FIG. It is a schematic block diagram of the refrigerating-cycle apparatus which concerns on 2nd Embodiment. It is sectional drawing of the 1st mechanical expansion valve and the 1st temperature-sensing part with which the refrigerating-cycle apparatus which concerns on 2nd Embodiment is provided. It is sectional drawing of the 2nd mechanical expansion valve and the 2nd temperature-sensing part with which the refrigerating-cycle apparatus which concerns on 2nd Embodiment is provided.
  • FIG. 12 is a diagram showing the flow of refrigerant during cooling operation in the circuit diagram of the refrigeration cycle apparatus according to the sixth embodiment.
  • FIG. 12 is a diagram showing the flow of refrigerant during heating operation in the circuit diagram of the refrigeration cycle apparatus according to the sixth embodiment.
  • the refrigeration cycle apparatus of the present embodiment is installed in, for example, a compact car or compact mobility vehicle (hereinafter referred to as "vehicle or the like"), and is applied to a heat pump system that performs air conditioning including cooling and heating in the vehicle interior.
  • vehicle or the like a compact car or compact mobility vehicle
  • the refrigeration cycle device includes a compressor 10, an outdoor heat exchanger 13, an indoor heat exchanger 23, a receiver 30, a first variable throttle 14, a second variable throttle 24, a first temperature/pressure sensor 12, a second temperature/pressure sensor 22, an electronic control unit 40, and the like.
  • the electronic control unit 40 is hereinafter referred to as "ECU”.
  • ECU is an abbreviation for Electronic Control Unit.
  • the compressor 10, the outdoor heat exchanger 13, the indoor heat exchanger 23, the receiver 30, the first variable throttle 14, the second variable throttle 24, etc. are connected by refrigerant passages or pipes (hereinafter referred to as "piping etc.") to form a vapor compression refrigeration cycle.
  • refrigerant passages or pipes hereinafter referred to as "piping etc."
  • refrigerant that circulates in the refrigeration cycle device for example, an HFC-based refrigerant (eg, R134a) or an HFO-based refrigerant (eg, R1234yf) is used.
  • a natural refrigerant for example, carbon dioxide
  • the refrigerant for example, carbon dioxide
  • the compressor 10 has a first opening 11 and a second opening 21 for sucking and discharging refrigerant.
  • the compressor 10 can perform an operation of compressing the refrigerant sucked from the first opening 11 and discharging it from the second opening 21 (hereinafter referred to as "heating operation") and an operation of compressing the refrigerant sucked from the second opening 21 and discharging it from the first opening 11 (hereinafter referred to as "cooling operation").
  • the compressor 10 is a so-called bi-rotating compressor.
  • the direction of refrigerant flow when the compressor 10 performs the heating operation is indicated by a dashed arrow
  • the direction of refrigerant flow when the compressor 10 performs the cooling operation is indicated by a solid arrow. That is, in FIG. 1, the refrigerant circulates counterclockwise during heating operation, and circulates clockwise during cooling operation.
  • the compressor 10 As a specific configuration of the compressor 10, for example, it is possible to use a rolling piston type electric compressor as described in Japanese Patent Application No. 2021-86462 filed by the same applicant as the present disclosure. Note that the type of the compressor 10 is not limited thereto, and any type, such as a rotary vane electric compressor, may be used as long as the direction of sucking and discharging the refrigerant can be switched between the first opening 11 and the second opening 21 .
  • the outdoor heat exchanger 13 is connected to the first opening 11 side of the compressor 10 via piping or the like.
  • the outdoor heat exchanger 13 is a heat exchanger that exchanges heat between the refrigerant flowing in the tubes of the outdoor heat exchanger 13 and the air discharged to the outside (hereinafter referred to as "outdoor discharged air").
  • the outdoor exhaust air is supplied from outside the vehicle to the outdoor heat exchanger 13 by driving the outdoor fan 15 and is discharged outside the vehicle after passing through the outdoor heat exchanger 13 .
  • the low-pressure refrigerant flowing through the tubes of the outdoor heat exchanger 13 absorbs heat from the outdoor exhaust air passing through the outdoor heat exchanger 13 and evaporates.
  • the outdoor heat exchanger 13 functions as an evaporator that evaporates the low-pressure refrigerant by exchanging heat with the air discharged to the outside.
  • the high-pressure refrigerant flowing through the tubes of the outdoor heat exchanger 13 releases heat to the outdoor exhaust air passing through the outdoor heat exchanger 13 and condenses. Therefore, during the cooling operation, the outdoor heat exchanger 13 functions as a condenser that condenses the high-pressure refrigerant by exchanging heat with the outdoor exhaust air.
  • the indoor heat exchanger 23 is connected to the second opening 21 side of the compressor 10 via piping or the like.
  • the indoor heat exchanger 23 is a heat exchanger that exchanges heat between the refrigerant flowing through the tubes of the indoor heat exchanger 23 and the air blown into the room (hereinafter referred to as "indoor blown air").
  • the indoor blowing air is supplied to the indoor heat exchanger 23 from inside or outside the vehicle by the driving of the indoor fan 25, and is blown out into the vehicle after passing through the indoor heat exchanger 23.
  • the high-pressure refrigerant flowing through the tubes of the indoor heat exchanger 23 radiates heat to the indoor blown air passing through the indoor heat exchanger 23 and condenses.
  • the indoor heat exchanger 23 functions as a condenser that exchanges heat between the high-pressure refrigerant and the air blown into the room to condense the refrigerant.
  • the low-pressure refrigerant flowing through the tubes of the indoor heat exchanger 23 absorbs heat from the indoor blown air passing through the indoor heat exchanger 23 and evaporates. Therefore, during the cooling operation, the indoor heat exchanger 23 functions as an evaporator that evaporates the low-pressure refrigerant by exchanging heat with the air blown into the room.
  • a ventilation passage in which the indoor heat exchanger 23 is provided is provided with a blowout temperature sensor 26 that detects the blowout temperature of the air blown into the vehicle interior after passing through the indoor heat exchanger 23 .
  • the blowout temperature of the air detected by the blowout temperature sensor 26 is transmitted to the ECU.
  • the receiver 30 is a liquid storage unit that stores surplus refrigerant in order to cope with load fluctuations in the refrigeration cycle.
  • the receiver 30 separates and stores gas refrigerant and liquid refrigerant.
  • the receiver 30 is provided between the outdoor heat exchanger 13 and the indoor heat exchanger 23, and is connected to the outdoor heat exchanger 13 and the indoor heat exchanger 23 via pipes or the like.
  • the pipes and the like are connected to a lower part of the receiver 30 in the gravitational direction where the liquid refrigerant is stored.
  • the first variable throttle 14 is an electronic expansion valve provided between the outdoor heat exchanger 13 and the receiver 30, and is configured such that the degree of valve opening is controlled by the control of the ECU.
  • the first variable throttle 14 decompresses and expands the refrigerant supplied from the receiver 30 to the outdoor heat exchanger 13, supplies the refrigerant to the outdoor heat exchanger 13 as a low-temperature, low-pressure gas-liquid two-phase state, and adjusts the flow rate of the refrigerant.
  • the first variable throttle 14 adjusts the flow rate of high-pressure refrigerant flowing from the outdoor heat exchanger 13 into the receiver 30 .
  • the second variable throttle 24 is an electronic expansion valve provided between the indoor heat exchanger 23 and the receiver 30, and is configured such that the degree of opening of the valve is controlled by the control of the ECU. During heating operation, the second variable throttle 24 adjusts the flow rate of high-pressure refrigerant flowing from the indoor heat exchanger 23 to the receiver 30 . On the other hand, during cooling operation, the second variable throttle 24 decompresses and expands the refrigerant supplied from the receiver 30 to the indoor heat exchanger 23, and supplies it to the indoor heat exchanger 23 as a low-temperature, low-pressure gas-liquid two-phase state, and adjusts the flow rate of the refrigerant.
  • the first temperature-pressure sensor 12 is a sensor that is provided between the first opening 11 of the compressor 10 and the outdoor heat exchanger 13 and detects at least one of the temperature and pressure of the refrigerant flowing therethrough. The temperature and pressure of the refrigerant detected by the first temperature/pressure sensor 12 are transmitted to the ECU.
  • the second temperature/pressure sensor 22 is provided between the second opening 21 of the compressor 10 and the indoor heat exchanger 23 and detects at least one of the temperature and pressure of the refrigerant flowing therethrough. The temperature and pressure of the refrigerant detected by the second temperature/pressure sensor 22 are also transmitted to the ECU. Note that the refrigeration cycle apparatus of the first embodiment includes only the first temperature/pressure sensor 12 and the second temperature/pressure sensor 22 as functional units that detect at least one of the temperature and pressure of the refrigerant.
  • the ECU has a processor that performs control processing and arithmetic processing, a microcomputer with a memory that stores programs and data, and its peripheral circuits.
  • a processor is composed of a CPU and an MPU.
  • the memory includes various non-transitional physical storage media such as ROM, RAM, and non-volatile rewritable memory.
  • the processor executes a program stored in the memory to sense and control the valve opening degrees of the first variable throttle 14 and the second variable throttle 24, the rotation speed and refrigerant discharge direction of the compressor 10, the rotation speed of the outdoor fan 15 and the indoor fan 25, the amount of electricity, and the like.
  • the ECU controls the valve opening of the first variable throttle 14 based on the temperature and pressure of the refrigerant detected by the first temperature/pressure sensor 12, and controls the valve opening of the second variable throttle 24 based on the temperature and pressure of the refrigerant detected by the second temperature/pressure sensor 22.
  • a method of controlling the first variable aperture 14 and the second variable aperture 24 by this ECU will be described later.
  • information from sensors such as an intake air temperature sensor, an intake humidity sensor, a vehicle interior temperature sensor, an outside air temperature sensor, and a solar radiation sensor is input to the ECU as needed. Further, the ECU is connected to a servomotor for controlling a door that switches the flow of air flowing through the indoor heat exchanger 23 as required.
  • FIG. 2 is a Mollier diagram showing an example of the behavior of the refrigerant when the refrigeration cycle device performs heating operation.
  • the positions of A1 to A4 vary depending on various conditions such as the rotation speed of the compressor 10, the opening degrees of the first variable throttle 14 and the second variable throttle 24, the rotation speeds of the outdoor fan 15 and the indoor fan 25, the outside air temperature, and the vehicle interior temperature.
  • Line SL indicates the saturated liquid line
  • point CP indicates the critical point
  • line SV indicates the saturated vapor line.
  • A1 indicates the state of the refrigerant that flows out from the outdoor heat exchanger 13 that functions as an evaporator during heating operation and that is sucked into the first opening 11 of the compressor 10 .
  • A2 indicates the state of the refrigerant discharged from the second opening 21 of the compressor 10 and flowing into the indoor heat exchanger 23 functioning as a condenser during heating operation.
  • A3 indicates the state of the refrigerant flowing out of the indoor heat exchanger 23 functioning as its condenser and flowing into the second variable throttle 24 .
  • A4 indicates the state of the refrigerant that flows out from the first variable throttle 14 and flows into the outdoor heat exchanger 13 that functions as an evaporator.
  • the first temperature/pressure sensor 12 detects the temperature and pressure of the refrigerant sucked into the compressor 10, indicated by A1.
  • the second temperature/pressure sensor 22 detects the temperature and pressure of the refrigerant discharged from the compressor 10, indicated by A2.
  • the first variable throttle 14 is the downstream side throttle with respect to the receiver 30
  • the second variable throttle 24 is the upstream side throttle with respect to the receiver 30 .
  • the diaphragm on the downstream side with respect to the receiver 30 will be referred to as the "lower stage diaphragm”
  • the diaphragm on the upstream side with respect to the receiver 30 will be referred to as the "upper stage diaphragm”.
  • FIG. 3 is a Mollier diagram showing an example of the behavior of the refrigerant when the refrigeration cycle device performs cooling operation.
  • the positions of B1 to B4 also change depending on various conditions such as the rotation speed of the compressor 10, the opening degrees of the first variable throttle 14 and the second variable throttle 24, the rotation speeds of the outdoor fan 15 and the indoor fan 25, the outside air temperature, and the vehicle interior temperature.
  • B1 indicates the state of the refrigerant that flows out from the indoor heat exchanger 23 that functions as an evaporator during cooling operation and is sucked into the second opening 21 of the compressor 10 .
  • B2 indicates the state of the refrigerant discharged from the first opening 11 of the compressor 10 and flowing into the outdoor heat exchanger 13 functioning as a condenser during cooling operation.
  • B3 indicates the state of the refrigerant that flows out from the outdoor heat exchanger 13 functioning as its condenser and flows into the first variable throttle 14 .
  • B4 indicates the state of the refrigerant that flows out from the second variable throttle 24 and flows into the indoor heat exchanger 23 that functions as an evaporator.
  • the second temperature/pressure sensor 22 detects the temperature and pressure of the refrigerant sucked into the compressor 10, indicated by B1
  • the first temperature/pressure sensor 12 detects the temperature and pressure of the refrigerant discharged from the compressor 10, indicated by B2.
  • the second variable throttle 24 becomes the lower stage throttle
  • the first variable throttle 14 becomes the upper stage throttle.
  • first temperature/pressure sensor 12, outdoor heat exchanger 13, first variable throttle 14 will be referred to as the first set
  • second temperature/pressure sensor 22, indoor heat exchanger 23, second variable throttle 24 will be referred to as the second set.
  • first set and the second set switch between the high pressure side and the low pressure side with the receiver 30 and the compressor 10 as the axes in the refrigerant behavior on the Mollier diagram. Therefore, this refrigeration cycle apparatus can be controlled by the same logic when switching between the heating operation and the cooling operation, so that the control capacity of the ECU can be reduced, and the control circuit can be miniaturized.
  • the refrigeration cycle apparatus of this embodiment includes only the first temperature/pressure sensor 12 and the second temperature/pressure sensor 22 as functional units that detect at least one of the temperature and pressure of the refrigerant.
  • This refrigeration cycle apparatus can control the opening degrees of the two variable throttles 14, 24 using a small number of two temperature pressure sensors 12, 22 in both the heating operation and the cooling operation.
  • the ability to control with a minimum sensor configuration is based on the following idea, and is effective in reducing the size of the system.
  • the direction of refrigerant flow is reversed, so even if only the temperature and pressure of the refrigerant sucked into the compressor 10 are to be detected, temperature and pressure sensors are required on the suction and discharge sides of the compressor 10, respectively.
  • the temperature-pressure sensor that detects the temperature and pressure of the refrigerant sucked into the compressor 10 during cooling operation detects the temperature and pressure of the refrigerant that is discharged from the compressor 10 (hereinafter referred to as "discharged refrigerant") during heating operation.
  • the ECU controls the first variable throttle 14 and the second variable throttle 24 using the two temperature/pressure sensors 12 and 22 .
  • This control process starts when the refrigeration cycle device starts operating.
  • the ECU determines the operation mode targeted by the refrigeration cycle apparatus according to the user's operation or the output of various sensors mounted on the vehicle (ie, temperature conditions, etc.).
  • the operation modes include a mode for maximizing COP for the purpose of reducing power consumption, a mode for maximizing heating performance or cooling performance, and a mode for securing a heating blowout temperature especially when outside air is low.
  • the heating performance may be referred to as heating capacity
  • the cooling performance may be referred to as cooling capacity.
  • step S20 the ECU sets a target degree of supercooling of the liquid refrigerant at the condenser outlet (hereinafter referred to as "target condenser outlet SC" or " TSC ") according to the operation mode determined in step S10.
  • SC is an abbreviation for subcool or supercooling.
  • the condenser is the indoor heat exchanger 23 during heating operation and the outdoor heat exchanger 13 during cooling operation.
  • step S30 the ECU controls the valve opening of the upper throttle.
  • the upper throttle is the second variable throttle 24 during heating operation, and the first variable throttle 14 during cooling operation.
  • the opening of the upper throttle is fully opened. That is, at the start of control, the upper stage throttle is in a state where it does not function as a throttle, and after the valve opening degree of the lower stage throttle is once set, the valve opening degree of the upper stage throttle is set.
  • the lower throttle is the first variable throttle 14 during heating operation, and the second variable throttle 24 during cooling operation.
  • step S40 to S90 the ECU feedback-controls the valve opening of the lower throttle.
  • step S40 the ECU sets a target degree of superheat of the gas refrigerant sucked into the compressor 10 (hereinafter referred to as “target suction SH” or “T SH ").
  • SH is an abbreviation for superheat.
  • step S50 the ECU controls the valve opening of the lower throttle.
  • the valve opening degree of the lower throttle is set to a preset opening degree.
  • step S60 the ECU acquires the temperature and pressure of the refrigerant sucked into the compressor 10 based on the information transmitted from the first temperature-pressure sensor 12 and the second temperature-pressure sensor 22 located on the suction side of the compressor 10.
  • the sensor arranged on the suction side of the compressor 10 is referred to as the "suction-side sensor".
  • the suction side sensor is the first temperature/pressure sensor 12 during heating operation, and the second temperature/pressure sensor 22 during cooling operation.
  • step S70 the ECU calculates the degree of superheat of the refrigerant sucked into the compressor 10 (hereinafter referred to as "suction SH" or " T1 ”) from the information acquired in step S60.
  • step S80 the ECU determines whether or not the difference between the target suction SH (T SH ) and the suction SH (T 1 ) is within the error range regarding the degree of superheat of the refrigerant sucked into the compressor 10 .
  • the error related to the degree of superheat of the refrigerant sucked into the compressor 10 is referred to as "SH error reference value”. If the absolute value of the difference between the target inhalation SH (T SH ) and the inhalation SH (T 1 ) is greater than or equal to the SH error reference value, the process proceeds to step S90.
  • step S90 the ECU calculates the control amount related to the opening degree of the lower throttle, and returns the process to step S50.
  • step S50 the ECU controls the valve opening of the lower throttle. In this manner, the ECU feedback-controls the valve opening of the lower throttle.
  • step S80 if the absolute value of the difference between the target inhalation SH (T SH ) and the inhalation SH (T 1 ) is smaller than the SH error reference value in step S80, the process proceeds to step S100.
  • step S100 to S150 and S30 the ECU feedback-controls the valve opening of the upper throttle.
  • step S100 the ECU acquires the temperature and pressure of the refrigerant discharged from the compressor 10 based on the information transmitted from the first temperature-pressure sensor 12 and the second temperature-pressure sensor 22 located on the discharge side of the compressor 10.
  • the sensor arranged on the discharge side of the compressor 10 is called the "discharge-side sensor".
  • the discharge side sensor is the second temperature/pressure sensor 22 during heating operation, and the first temperature/pressure sensor 12 during cooling operation.
  • step S110 the ECU calculates the degree of superheat of the refrigerant discharged from the compressor 10 (hereinafter referred to as "discharge SH" or " T3 ”) from the information obtained in step S100.
  • the ECU obtains information on the flow rate of the air supplied to the condenser, the temperature of the intake air, and the flow rate of the refrigerant discharged from the compressor 10.
  • the ECU calculates the amount of air supplied to the condenser from, for example, the number of rotations of the motor that drives the fan that blows air to the condenser (that is, the indoor fan 25 during heating operation and the outdoor fan 15 during cooling operation).
  • the ECU acquires the intake air temperature supplied to the condenser from, for example, vehicle interior temperature information obtained from a vehicle interior temperature sensor (not shown) or outside air temperature information obtained from an outside air temperature sensor (not shown).
  • the ECU calculates the flow rate of the refrigerant discharged from the compressor 10 from the temperature and pressure of the refrigerant obtained from the suction side sensor and the rotation speed of the compressor 10, for example.
  • step S130 the ECU calculates the degree of subcooling of the liquid refrigerant at the condenser outlet (hereinafter referred to as "condenser outlet SC" or " T2 ”) based on the information acquired in steps S110 and S120.
  • step S140 the ECU determines whether the difference between the target condenser outlet SC (T SC ) set in step S20 and the condenser outlet SC (T 2 ) calculated in step S130 is within the error range regarding the degree of supercooling of the refrigerant at the condenser outlet.
  • the error regarding the degree of subcooling of the refrigerant at the outlet of the condenser is referred to as "SC error reference value”. If the absolute value of the difference between the target condenser outlet SC (T SC ) and the condenser outlet SC (T 2 ) is greater than or equal to the SC error reference value, the process proceeds to step S150.
  • step S150 the ECU calculates the control amount related to the opening degree of the upper throttle, and returns the process to step S30.
  • step S30 the ECU controls the valve opening of the upper throttle.
  • steps S40 to S90 the valve opening degree of the lower throttle is controlled again. In this manner, the ECU feedback-controls the valve opening of the upper throttle and the valve opening of the lower throttle.
  • step S140 if it is determined in step S140 that the absolute value of the difference between the target condenser outlet SC (T SC ) and the condenser outlet SC (T 2 ) is smaller than the SC error reference value, the ECU once terminates the process, and starts the above control process again after a predetermined control time has elapsed.
  • the SH amount of the refrigerant sucked into the compressor 10 and the SC amount of the refrigerant at the outlet of the condenser are described as the controlled variables as they are, but correlated variables and physical property values may be used instead.
  • the specific enthalpy may be calculated from the temperature and pressure and used for control.
  • the cooling capacity or heating capacity can be increased and the cycle COP can be maximized.
  • the above control method is based on the following concept. That is, in the refrigeration cycle apparatus, when the lower throttle is considered as the main throttle valve in a predetermined operating state, the valve opening degree of this lower throttle is controlled according to the SH of the refrigerant sucked into the compressor 10 . At this time, if the upper stage throttle is fully open, the refrigerant at the outlet of the condenser becomes a saturated liquid state by the receiver 30 . On the other hand, the SC can be removed by the condenser by narrowing the upper stage throttle from the fully open state (that is, reducing the valve opening degree).
  • the enthalpy of the refrigerant at the outlet of the condenser (that is, the enthalpy of the refrigerant at the inlet of the evaporator) can be lowered, so the performance of the heat pump cycle (that is, cooling capacity or heating capacity) is improved.
  • the upper stage throttle acts in the direction of increasing the SC at the outlet of the condenser, but at the same time, the pressure of the high-pressure refrigerant rises and the compression power of the compressor 10 increases. Therefore, when maximizing the cycle COP, there is an optimum value, and by performing control as a variable throttle, the cooling capacity or heating capacity can be increased and the cycle COP can be maximized.
  • FIG. 5 is a Mollier diagram showing an example of the behavior of the refrigerant according to the control method described above.
  • C1 to C4 show the behavior of the refrigerant when the valve opening of the lower throttle is controlled so that the suction SH of the refrigerant sucked into the compressor 10 (that is, C1 in FIG. 5) becomes the target suction SH with the upper throttle fully open.
  • D1 to D5 show the behavior of the refrigerant when the valve opening degree of the lower throttle is controlled so that the suction SH of the refrigerant sucked into the compressor 10 (that is, D1 in FIG. 5) becomes the target suction SH, and the upper throttle is controlled to be throttled from the fully open state.
  • the condenser By narrowing the upper throttle (that is, reducing the valve opening degree), the condenser can be made to take the SC, so the enthalpy of the refrigerant at the condenser outlet indicated by D3 in FIG. 5 and the enthalpy of the refrigerant at the evaporator inlet indicated by D5 can be lowered. This improves the cooling capacity and heating capacity.
  • D4 indicates the state of the refrigerant in the receiver 30 (that is, saturated liquid).
  • Equation 1 the cooling capacity is represented by Equation 1 below.
  • Qer is the cooling capacity
  • Gr is the refrigerant flow rate
  • ⁇ ie is the amount of change in refrigerant enthalpy in the evaporator.
  • Equation 2 The heating capacity is represented by Equation 2 below.
  • Qhe Gr ⁇ ic (Formula 2)
  • Qhe is the heating capacity
  • Gr is the refrigerant flow rate
  • ⁇ ic is the amount of change in enthalpy of the refrigerant in the condenser.
  • Equation 3 The COP during cooling is expressed by Equation 3 below, and the COP during heating is expressed by Equation 4 below.
  • COP during cooling Qer/L (Formula 3)
  • COP during heating Qhe/L (Formula 4)
  • L is the power of the compressor 10.
  • the cooling capacity and the heating capacity are improved by controlling the opening degree of the upper throttle, increasing the SC of the refrigerant at the condenser outlet, and lowering the enthalpy of the refrigerant at the condenser outlet (that is, the enthalpy of the refrigerant at the evaporator inlet).
  • the COP of the cycle can be improved by controlling the valve opening of the lower stage throttle to suppress an increase in the degree of superheat of the refrigerant sucked into the compressor 10, and controlling the valve opening of the upper stage throttle to suppress the pressure rise of the high-pressure refrigerant discharged from the compressor 10.
  • FIG. 6 to 8 an example of a ventilation passage 80 for flowing air to the outdoor heat exchanger 13 and the indoor heat exchanger 23 is shown by a broken line, and in FIG. 8, the direction of the wind flowing through the ventilation passage 80 is indicated by arrows AF1 and AF2.
  • FIGS. 7 and 8 the direction in which the refrigeration cycle device is mounted on a vehicle or the like is indicated by a double-headed arrow in the direction of gravity. 9 indicate the flow of the refrigerant during heating operation, and the arrows drawn along the pipes etc. in FIG. 10 indicate the flow of refrigerant during cooling operation.
  • the refrigeration cycle apparatus of the present embodiment has a compressor 10 and a receiver 30 integrally configured.
  • the first temperature/pressure sensor 12 and the first variable throttle 14 are configured integrally.
  • the second temperature pressure sensor 22 and the second variable throttle 24 are integrally constructed.
  • the outdoor heat exchanger 13 and the indoor heat exchanger 23 are constructed integrally.
  • the phrase “a plurality of members are integrally configured” means that the plurality of members are accommodated in the same housing, or that some or all of the plurality of members are connected directly or via a spacer or the like.
  • the integral configuration of the compressor 10 and the receiver 30 is referred to as a "compressor/receiver structure 300".
  • the first temperature/pressure sensor 12 and the first variable throttle 14 are integrally constructed as a "first throttle valve structure 100”
  • the second temperature/pressure sensor 22 and the second variable throttle 24 are integrally constructed as a "second throttle valve structure 200”.
  • the first throttle valve structure 100 and the second throttle valve structure 200 have the same configuration. By adopting a system configuration using two identical parts in this way, the number of new parts can be reduced, and the cost can be reduced.
  • first throttle valve structure 100, the second throttle valve structure 200, and the comp receiver structure 300 are arranged adjacent to each other. As a result, it is possible to simplify the configuration of the piping connecting the first throttle valve structure 100 and the second throttle valve structure 200 and the compressor receiver structure 300 .
  • the outdoor heat exchanger 13 is arranged below the indoor heat exchanger 23 in the direction of gravity. Condensed water obtained by condensing water vapor in the air passing through the indoor heat exchanger 23 is supplied to the outer wall surface of the tubes or fins of the outdoor heat exchanger 13 by gravity. Therefore, during the cooling operation, the condensed water generated in the indoor heat exchanger 23 cools the tubes or fins of the outdoor heat exchanger 13, thereby enhancing the heat radiation effect of the outdoor heat exchanger 13 and improving the cooling performance.
  • the refrigeration cycle apparatus of the first embodiment described above has the following effects.
  • the valve opening degree of the first variable throttle 14 is controlled according to the temperature and pressure detected by the first temperature and pressure sensor 12 so that the refrigerant sucked into the first opening 11 of the compressor 10 becomes a gas refrigerant having a predetermined degree of superheat during the heating operation.
  • the valve opening degree of the second variable throttle 24 is controlled according to the temperature and pressure detected by the second temperature and pressure sensor 22 so that the refrigerant flowing out of the indoor heat exchanger 23 becomes liquid refrigerant with a predetermined degree of supercooling.
  • valve opening degree of the second variable throttle 24 is controlled according to the temperature and pressure detected by the second temperature and pressure sensor 22 so that the refrigerant sucked into the second opening 21 of the compressor 10 becomes a gas refrigerant with a predetermined degree of superheat during cooling operation.
  • valve opening of the first variable throttle 14 is controlled according to the temperature and pressure detected by the first temperature and pressure sensor 12 so that the refrigerant flowing out of the outdoor heat exchanger 13 becomes liquid refrigerant with a predetermined degree of supercooling.
  • this refrigeration cycle apparatus uses two temperature pressure sensors 12, 22 to adjust the opening of two variable throttles 14, 24 in both heating operation and cooling operation. Specifically, while adjusting the intake SH of the refrigerant sucked into the compressor 10 and the discharge SH of the refrigerant discharged from the compressor 10, it is possible to adjust the condenser outlet SC of the refrigerant flowing out of the heat exchanger functioning as a condenser among the indoor heat exchanger 23 and the outdoor heat exchanger 13. Therefore, this refrigeration cycle apparatus can simplify the configuration by reducing the number of parts such as one receiver 30, two temperature pressure sensors 12, 22, and two variable throttles 14, 24, and can be downsized. In addition, the cooling capacity and the heating capacity can be improved, and the COP can be improved.
  • this refrigeration cycle apparatus uses a bi-rotating compressor that can perform both heating operation and cooling operation, thereby reducing the number of parts and downsizing compared to a configuration in which a compressor and a four-way valve are combined as in Patent Document 1 described above.
  • both the first variable throttle 14 and the second variable throttle 24 are electronic expansion valves. Then, the ECU controls the valve opening degree of the first variable throttle 14 according to the temperature and pressure detected by the first temperature/pressure sensor 12, and controls the valve opening degree of the second variable throttle 24 according to the temperature and pressure detected by the second temperature/pressure sensor 22.
  • the refrigerating cycle device has a structure in which the first set and the second set are arranged symmetrically with respect to the axis of the compressor 10 and the receiver 30 in terms of the behavior of the refrigerant represented on the Mollier diagram. Therefore, this refrigeration cycle apparatus can be controlled by the same logic when switching between the cooling operation and the heating operation, so that the control capacity of the ECU can be reduced and the control circuit can be downsized.
  • this refrigeration cycle apparatus can perform operations corresponding to various demands of the refrigeration cycle apparatus.
  • operations corresponding to various requests for the refrigeration cycle apparatus include a scene in which priority is given to cooling capacity or heating capacity, a scene in which priority is given to COP, or a scene in which both cooling capacity or heating capacity and COP are given priority.
  • the ECU calculates the degree of subcooling of the refrigerant flowing out of the indoor heat exchanger 23 based on various information during the heating operation.
  • Various information at this time includes the temperature and pressure detected by the second temperature and pressure sensor 22, the refrigerant flow rate discharged from the compressor 10, the air flow rate supplied to the indoor heat exchanger 23, and the intake air temperature.
  • the ECU controls the valve opening degree of the second variable throttle 24 so that the refrigerant flowing out of the indoor heat exchanger 23 becomes liquid refrigerant with a predetermined target degree of supercooling.
  • the ECU calculates the degree of supercooling of the refrigerant flowing out of the outdoor heat exchanger 13 based on various information during the cooling operation.
  • Various information at this time includes the temperature and pressure detected by the first temperature and pressure sensor 12, the refrigerant flow rate discharged from the compressor 10, the air flow rate supplied to the outdoor heat exchanger 13, and the intake air temperature. Then, the ECU controls the valve opening degree of the first variable throttle 14 so that the refrigerant flowing out of the outdoor heat exchanger 13 becomes liquid refrigerant with a predetermined target degree of supercooling. According to this, the ECU can control the opening degrees of the two variable throttles 14, 24 using a small number of temperature pressure sensors 12, 22 in both the heating operation and the cooling operation.
  • the ECU controls the valve opening of the first variable throttle 14 while increasing the valve opening of the second variable throttle 24, and then controls the valve opening of the first variable throttle 14 while controlling the valve opening of the second variable throttle 24. Further, at the start of cooling operation, the ECU controls the valve opening degree of the second variable throttle 24 with the valve opening degree of the first variable throttle 14 increased, and then controls the valve opening degree of the second variable throttle 24 while controlling the valve opening degree of the first variable throttle 14.
  • the ECU adjusts the degree of superheat of the refrigerant sucked into the compressor 10 by controlling the valve opening of the first variable throttle 14, and then controls the valve opening of the second variable throttle 24 to adjust the degree of subcooling of the refrigerant flowing out from the indoor heat exchanger 23 functioning as a condenser. Therefore, by controlling the second variable throttle 24, the ECU can increase the degree of supercooling of the refrigerant flowing out of the indoor heat exchanger 23 to increase the heating capacity. In addition, the ECU prevents liquid refrigerant from being sucked into the compressor 10 by controlling the first variable throttle 14 and prevents the refrigerant sucked into the compressor 10 from becoming too superheated.
  • the ECU also controls the second variable throttle 24 to suppress the pressure rise of the high-pressure refrigerant discharged from the compressor 10 . Thereby, the COP of the cycle can be improved. Further, when the cooling operation is started, the ECU adjusts the degree of superheat of the refrigerant sucked into the compressor 10 by controlling the opening degree of the second variable throttle 24, and then controls the opening degree of the first variable throttle 14 to adjust the degree of subcooling of the refrigerant flowing out from the outdoor heat exchanger 13 functioning as a condenser. Therefore, by controlling the first variable throttle 14, the ECU can increase the degree of subcooling of the refrigerant flowing out of the outdoor heat exchanger 13 to increase the cooling capacity.
  • the ECU prevents the liquid refrigerant from being sucked into the compressor 10 by controlling the second variable throttle 24 and prevents the refrigerant sucked into the compressor 10 from becoming too superheated. Further, the ECU controls the pressure increase of the high-pressure refrigerant discharged from the compressor 10 by controlling the first variable throttle 14 . Thereby, the COP of the cycle can be improved. Therefore, this refrigeration cycle device can perform operations corresponding to various requests to the refrigeration cycle device, such as a scene in which priority is given to cooling capacity or heating capacity, a scene in which COP is given priority, or a scene in which both cooling capacity or heating capacity and COP are given priority.
  • this refrigerating cycle apparatus can adjust the opening degrees of the two variable throttles 14, 24 using a small number of two temperature pressure sensors 12, 22 in both the heating operation and the cooling operation.
  • a plurality of members integrally configured means that the plurality of members are accommodated in the same housing, or that some or all of the plurality of members are connected directly or via a spacer or the like.
  • the first temperature/pressure sensor 12 and the first variable throttle 14 are integrated into the first throttle valve structure 100, and the second temperature/pressure sensor 22 and the second variable throttle 24 are also integrated into the second throttle valve structure 200. According to this, by using two units in which the temperature pressure sensor and the variable throttle are integrated, the configuration of the refrigeration cycle apparatus can be simplified and the size thereof can be reduced.
  • the first throttle valve structure 100 and the second throttle valve structure 200 have the same configuration, and the system configuration using two of the same structure can reduce the number of new parts, thereby reducing the cost.
  • the outdoor heat exchanger 13 is arranged below the indoor heat exchanger 23 in the direction of gravity. Condensed water obtained by condensing water vapor in the air passing through the indoor heat exchanger 23 is supplied to the outer wall surface of the tubes or fins of the outdoor heat exchanger 13 by gravity. According to this, the tubes or fins of the outdoor heat exchanger 13 are cooled by the condensed water obtained by condensing the water vapor in the air passing through the indoor heat exchanger 23 during the cooling operation, so that the heat dissipation effect of the outdoor heat exchanger 13 can be enhanced and the cooling performance can be improved.
  • the second embodiment differs from the first embodiment in the configuration of the temperature pressure sensor and the variable throttle, and is otherwise the same as the first embodiment. Therefore, only the differences from the first embodiment will be described.
  • the first temperature/pressure sensor 12 and the first variable throttle 14 are integrated to constitute the first throttle valve structure 100.
  • the second temperature/pressure sensor 22 and the second variable throttle 24 are integrated to form a second throttle valve structure 200 .
  • FIG. 12 shows a specific example of the first throttle valve structure 100
  • FIG. 13 shows a specific example of the second throttle valve structure 200.
  • both the first variable throttle 14 and the second variable throttle 24 are mechanical expansion valves.
  • the temperature and pressure sensors 12, 22 are temperature sensing parts that control the operation of the mechanical expansion valves.
  • the first variable throttle 14 is called “first mechanical expansion valve 140", and the first temperature pressure sensor 12 is called “first temperature sensing part 120".
  • the first mechanical expansion valve 140 is configured such that the degree of valve opening is mechanically controlled according to the temperature and pressure detected by the first temperature sensing portion 120 .
  • the second variable throttle 24 is called “second mechanical expansion valve 240”, and the second temperature pressure sensor 22 is called “second temperature sensing part 220”.
  • the second mechanical expansion valve 240 is configured such that the degree of valve opening is mechanically controlled according to the temperature and pressure detected by the second temperature sensing portion 220 .
  • the configuration of the first throttle valve structure 100 will be described with reference to FIG. 12 .
  • the first throttle valve structure 100 is provided with a first mechanical expansion valve 140 and a first temperature sensing section 120 in a body section 50 as a housing.
  • the body portion 50 is formed with a temperature sensing portion side refrigerant passage 51 provided on the first temperature sensing portion 120 side and a valve portion side refrigerant passage 52 provided on the first mechanical expansion valve 140 side.
  • One end 511 of the temperature sensing part side refrigerant passage 51 communicates with the first opening 11 of the compressor 10
  • the other end 512 of the temperature sensing part side refrigerant passage 51 communicates with the outdoor heat exchanger 13 .
  • a first temperature sensing portion 120 is provided in the middle of the temperature sensing portion side refrigerant passage 51 .
  • valve-side refrigerant passage 52 communicates with the receiver 30
  • the other end 522 of the valve-side refrigerant passage 52 communicates with the outdoor heat exchanger 13
  • a first valve seat 141 , a first valve body 142 , and the like, which constitute the first mechanical expansion valve 140 are provided in a valve chamber 520 provided in the middle of the valve section side refrigerant passage 52 .
  • the first temperature sensing section 120 includes a diaphragm 121, a cover 122, an operating member 125, an operating rod 126, and the like. Diaphragm 121 and cover 122 form an enclosed space 123 in which a temperature-sensitive medium is enclosed. As the temperature-sensitive medium, for example, the same refrigerant as in the refrigeration cycle is sealed in a gas-liquid mixture state. An introduction space 124 is formed on the side of the diaphragm 121 opposite to the sealed space 123 , into which the refrigerant is introduced from the temperature-sensing-side refrigerant passage 51 through a hole 127 .
  • An actuating member 125 is arranged in the introduction space 124 and an actuating rod 126 is fixed to the actuating member 125 .
  • the actuating rod 126 has one end fixed to the actuating member 125 , a central portion inserted through the hole 53 provided in the body portion 50 , and the other end abutting against the first valve body 142 constituting the first mechanical expansion valve 140 .
  • the pressure of the temperature-sensitive medium in the enclosed space 123 changes due to heat transfer from the coolant in the introduction space 124 . Therefore, the diaphragm 121 is displaced according to the differential pressure between the temperature-sensitive medium in the enclosure space 123 and the coolant in the introduction space 124 .
  • the operating member 125 and operating rod 126 are displaced together with the diaphragm 121 to operate the first valve body 142 .
  • the first mechanical expansion valve 140 includes a first valve seat 141, a first valve body 142, a spring 143 and the like.
  • the first valve seat 141 , the first valve body 142 , and the spring 143 are provided in a valve chamber 520 provided in the middle of the valve section side refrigerant passage 52 .
  • the first valve seat 141 is formed on part of the inner wall surface of the valve chamber 520 .
  • the first valve body 142 is provided in a passage on the side of the receiver 30 with respect to the first valve seat 141 and can be seated on and separated from the first valve seat 141 .
  • a spring 143 biases the first valve body 142 toward the first valve seat 141 .
  • the biasing force of spring 143 can be adjusted by adjusting screw 144 .
  • the actuating rod 126 of the first temperature sensing part 120 moves the first valve body 142 against the biasing force of the spring 143 , and the first valve body 142 is separated from the first valve seat 141 .
  • the first mechanical expansion valve 140 is mechanically controlled in valve opening according to the temperature and pressure detected by the first temperature sensing section 120 .
  • the configuration of the second throttle valve structure 200 is substantially the same as the configuration of the first throttle valve structure 100 described above.
  • a second mechanical expansion valve 240 and a second temperature sensing section 220 are provided in a body section 60 as a housing.
  • the body portion 60 is formed with a temperature sensing portion side refrigerant passage 61 provided on the second temperature sensing portion 220 side and a valve portion side refrigerant passage 62 provided on the second mechanical expansion valve 240 side.
  • One end 611 of the temperature sensing part side refrigerant passage 61 communicates with the second opening 21 of the compressor 10
  • the other end 612 of the temperature sensing part side refrigerant passage 61 communicates with the indoor heat exchanger 23 .
  • a second temperature sensing portion 220 is provided in the middle of the temperature sensing portion side refrigerant passage 61 .
  • valve-side refrigerant passage 62 communicates with the receiver 30
  • the other end 622 of the valve-side refrigerant passage 62 communicates with the indoor heat exchanger 23 .
  • a second valve seat 241 , a second valve body 242 , and the like, which constitute a second mechanical expansion valve 240 are provided in a valve chamber 620 provided in the middle of the valve section side refrigerant passage 62 .
  • the second temperature sensing section 220 includes a diaphragm 221, a cover 222, an operating member 225, an operating rod 226, and the like. Diaphragm 221 and cover 222 form an enclosed space 223 in which a temperature-sensitive medium is enclosed. As the temperature-sensitive medium, for example, the same refrigerant as in the refrigeration cycle is sealed in a gas-liquid mixture state. On the opposite side of the diaphragm 221 to the sealed space 223 , an introduction space 224 is formed into which the refrigerant is introduced from the temperature sensing section side refrigerant passage 61 through a hole 227 .
  • An actuating member 225 is arranged in the introduction space 224 and an actuating rod 226 is fixed to the actuating member 225 .
  • the actuating rod 226 has one end fixed to the actuating member 225 , a central portion inserted through a hole 63 provided in the body portion 60 , and the other end abutting a second valve body 242 that constitutes the second mechanical expansion valve 240 .
  • the pressure of the temperature-sensitive medium in the enclosed space 223 changes due to heat transfer from the coolant in the introduction space 224 . Therefore, the diaphragm 221 is displaced according to the differential pressure between the temperature-sensitive medium in the enclosure space 223 and the coolant in the introduction space 224 .
  • the operating member 225 and the operating rod 226 are displaced together with the diaphragm 221 to operate the second valve body 242 .
  • the second mechanical expansion valve 240 includes a second valve seat 241, a second valve body 242, a spring 243 and the like.
  • the second valve seat 241 , the second valve body 242 and the spring 243 are provided in a valve chamber 620 provided in the middle of the valve section side refrigerant passage 62 .
  • the second valve seat 241 is formed on part of the inner wall surface of the valve chamber 620 .
  • the second valve body 242 is provided in the passage on the side of the receiver 30 with respect to the second valve seat 241 and can be seated on and separated from the second valve seat 241 .
  • a spring 243 biases the second valve body 242 toward the second valve seat 241 side.
  • the biasing force of spring 243 can be adjusted by adjusting screw 244 .
  • the actuating rod 226 of the second temperature sensing part 220 moves the second valve body 242 against the biasing force of the spring 243 , and the second valve body 242 is separated from the second valve seat 241 .
  • the opening degree of the second mechanical expansion valve 240 is mechanically controlled according to the temperature and pressure detected by the second temperature sensing section 220 .
  • the first throttle valve structure 100 and the second throttle valve structure 200 have substantially the same configuration.
  • the first throttle valve structure 100 becomes the lower stage throttle
  • the second throttle valve structure 200 becomes the upper stage throttle.
  • the first throttle valve structure 100 serves as an upper throttle
  • the second throttle valve structure 200 serves as a lower throttle.
  • the characteristics of the temperature-sensitive medium enclosed in the enclosed spaces 123, 223 of the temperature-sensitive portions 120, 220 and the biasing forces of the springs 143, 243 of the mechanical expansion valves are appropriately adjusted.
  • the operation of the first throttle valve structure 100 and the second throttle valve structure 200 allows the refrigerant at the condenser outlet to have a desired condenser outlet SC and the refrigerant sucked into the compressor 10 to have a desired intake SH.
  • the pressure difference between the high-pressure refrigerant discharged from the compressor 10 and the refrigerant downstream of the upper throttle may become excessive. Therefore, if the valve seat of the mechanical expansion valve forming the upper throttle is arranged on the receiver 30 side with respect to the valve body, the upper throttle may be closed unintentionally due to the pressure difference.
  • both the first mechanical expansion valve 140 and the second mechanical expansion valve 240 have the valve bodies 142 and 242 arranged on the receiver 30 side with respect to the valve seats 141 and 241 .
  • the first variable throttle 14 is the first mechanical expansion valve 140
  • the first temperature/pressure sensor 12 is the first temperature sensing section 120 that controls the operation of the first mechanical expansion valve 140.
  • the second variable throttle 24 is a second mechanical expansion valve 240
  • the second temperature/pressure sensor 22 is a second temperature sensing section 220 that controls the operation of the second mechanical expansion valve 240 .
  • the configuration in which the first valve body 142 is arranged on the receiver 30 side with respect to the first valve seat 141 described in the second embodiment may be applied to the first variable throttle 14 (that is, the electronic expansion valve) described in the first embodiment.
  • the arrangement of disposing the second valve body 242 on the receiver 30 side with respect to the second valve seat 241 described in the second embodiment may be applied to the second variable throttle 24 (that is, the electronic expansion valve) described in the first embodiment.
  • the compressor 10 included in the refrigeration cycle apparatus of the third embodiment has a plurality of compression mechanism units 101 and 102 that compress refrigerant.
  • the plurality of compression mechanisms 101 and 102 are rotationally driven by an electric motor 103 .
  • the electric motor 103 is rotatable in both forward and reverse directions.
  • Compressor 10 is therefore an electric, bi-rotating compressor.
  • As the compression mechanisms 101 and 102 various types such as a rotary vane type and a rolling piston type can be used.
  • One of the plurality of compression mechanism units 101 and 102 of the compressor 10 is called a first compression mechanism unit 101 and the other compression mechanism unit is called a second compression mechanism unit 102 .
  • the rotation phases of the first compression mechanism portion 101 and the second compression mechanism portion 102 are out of phase by 180°. It should be noted that the phase shift of 180 degrees of rotation may be substantially 180 degrees, and includes manufacturing tolerances and the like.
  • the first compression mechanism section 101 and the second compression mechanism section 102 are connected in parallel by a refrigerant passage or the like inside the compressor 10 .
  • the compressor 10 can perform heating operation and cooling operation by switching between forward rotation and reverse rotation.
  • dashed arrows indicate the direction of refrigerant flow when compressor 10 performs the heating operation
  • solid arrows indicate the direction of refrigerant flow when compressor 10 performs the cooling operation.
  • FIG. 15 is a Mollier diagram showing an example of the behavior of the refrigerant when the refrigeration cycle apparatus of the third embodiment performs cooling operation.
  • the positions of E1 to E4 vary depending on various conditions such as the number of rotations of the compressor 10, the opening degrees of the first variable throttle 14 and the second variable throttle 24, the number of rotations of the outdoor fan 15 and the indoor fan 25, the outside air temperature, and the vehicle interior temperature.
  • E1 indicates the state of the refrigerant that flows out from the indoor heat exchanger 23 that functions as an evaporator during cooling operation and is sucked into the first compression mechanism section 101 and the second compression mechanism section 102 of the compressor 10 .
  • E2 indicates the state of refrigerant discharged from the first compression mechanism portion 101 and the second compression mechanism portion 102 of the compressor 10 and flowing into the outdoor heat exchanger 13 functioning as a condenser during cooling operation.
  • E3 indicates the state of the refrigerant that flows out from the outdoor heat exchanger 13 functioning as its condenser and flows into the first variable throttle 14 .
  • E4 indicates the state of the refrigerant that flows out from the second variable throttle 24 and flows into the indoor heat exchanger 23 that functions as an evaporator.
  • the behavior of the refrigerant in the refrigeration cycle device of the third embodiment is substantially the same as that described in the first embodiment.
  • the behavior of the refrigerant when the refrigeration cycle apparatus of the third embodiment performs the heating operation also changes between the first set and the second set on the high pressure side and the low pressure side with the receiver 30 and the compressor 10 as the axes, so illustration is omitted. Therefore, the refrigerating cycle device of the third embodiment can also achieve the same effects as the refrigerating cycle device of the first embodiment.
  • the compressor 10 has a plurality of compression mechanism units 101 and 102 for compressing the refrigerant.
  • the rotation phases of the first compression mechanism portion 101 and the second compression mechanism portion 102 are shifted by 180°.
  • the phase shift of 180 degrees of rotation may be substantially 180 degrees, and includes manufacturing tolerances and the like. According to this, the vibration and noise of the compressor 10 can be reduced.
  • 4th Embodiment also changes the structure of the compressor 10 with respect to 1st Embodiment etc., and since it is the same as that of 1st Embodiment etc. about others, only a different part from 1st Embodiment etc. is demonstrated.
  • the compressor 10 included in the refrigeration cycle apparatus of the fourth embodiment is also a dual rotary compressor having a first compression mechanism section 101 and a second compression mechanism section 102, like the third embodiment. Therefore, this refrigeration cycle apparatus can also perform heating operation and cooling operation by switching the forward rotation and reverse rotation of the compressor 10 .
  • the direction of refrigerant flow when the compressor 10 performs the heating operation is indicated by the dashed arrow
  • the direction of the refrigerant flow when the compressor 10 performs the cooling operation is indicated by the solid arrow.
  • the first compression mechanism section 101 and the second compression mechanism section 102 are connected in series by a refrigerant passage or the like inside the compressor 10 .
  • the compressor 10 is configured such that refrigerant sucked, compressed, and discharged by the first compression mechanism portion 101 is sucked, compressed, and discharged by the second compression mechanism portion 102 in the cooling operation.
  • the compressor 10 is configured such that the refrigerant sucked, compressed, and discharged to the second compression mechanism portion 102 is sucked, compressed, and discharged to the first compression mechanism portion 101 during the heating operation.
  • the compressor 10 and the receiver 30 are integrally configured as a "compressor/receiver structure 300". Therefore, the configuration of the piping connecting the compressor 10 and the receiver 30 can be simplified, and the size can be reduced.
  • FIG. 17 is a Mollier diagram showing an example of the behavior of the refrigerant when the refrigeration cycle apparatus of the fourth embodiment performs cooling operation.
  • the positions of F1 to F7 vary depending on various conditions such as the rotation speed of the compressor 10, the valve opening degrees of the first variable throttle 14 and the second variable throttle 24, the rotation speeds of the outdoor fan 15 and the indoor fan 25, the outside air temperature, and the vehicle interior temperature.
  • F1 indicates the state of the refrigerant that flows out from the indoor heat exchanger 23 that functions as an evaporator during cooling operation and is drawn into the first compression mechanism section 101 of the compressor 10 .
  • F2 indicates the state of the refrigerant discharged from the first compression mechanism section 101 .
  • F3 indicates the state of refrigerant sucked into the second compression mechanism portion 102 .
  • the gas refrigerant in the receiver 30 is supplied to the intermediate stages 104 and 105 of the first compression mechanism section 101 and the second compression mechanism section 102, so the specific enthalpy is lower than in F2.
  • F4 indicates the state of the refrigerant discharged from the second compression mechanism section 102 and flowing into the outdoor heat exchanger 13 functioning as a condenser during cooling operation.
  • F5 indicates the state of the refrigerant flowing out of the outdoor heat exchanger 13 functioning as its condenser and flowing into the first variable throttle 14 .
  • F6 indicates the state of the refrigerant in the receiver 30;
  • F7 indicates the state of the refrigerant that flows out from the second variable throttle 24 and flows into the indoor heat exchanger 23 that functions as an evaporator.
  • the refrigeration cycle apparatus of the fourth embodiment described above by supplying the gas refrigerant of the receiver 30 to the intermediate stages 104 and 105 of the two-stage compression compressor 10, it is possible to lower the specific enthalpy of the refrigerant compressed by the compression mechanism section on the high pressure side among the plurality of compression mechanism sections. Therefore, by reducing the power of the compressor 10 and lowering the specific enthalpy of the refrigerant discharged from the compressor 10, the cooling performance and the heating performance can be improved, and the COP can be improved.
  • the compressor 10 and the receiver 30 by integrally configuring the compressor 10 and the receiver 30, it is possible to omit the piping or the like connecting the compressor 10 and the receiver 30 or to shorten the piping or the like. Therefore, it is possible to simplify the configuration of the refrigeration cycle apparatus and reduce its size.
  • the fifth embodiment is different from the first embodiment, etc. in the configuration of the temperature pressure sensor, and is otherwise the same as the first embodiment, so only the parts different from the first embodiment, etc. will be described.
  • the refrigeration cycle apparatus of the fifth embodiment includes a third temperature/pressure sensor 17 and a fourth temperature/pressure sensor 27 in addition to the first temperature/pressure sensor 12 and the second temperature/pressure sensor 22 described in the first embodiment.
  • the third temperature/pressure sensor 17 is a sensor that is provided between the outdoor heat exchanger 13 and the first variable throttle 14 and detects at least one of the temperature and pressure of the refrigerant flowing therethrough.
  • a fourth temperature/pressure sensor 27 is provided between the indoor heat exchanger 23 and the second variable throttle 24 and detects at least one of the temperature and pressure of the refrigerant flowing therethrough.
  • the temperature and pressure of the refrigerant detected by the third temperature/pressure sensor 17 and the fourth temperature/pressure sensor 27 are respectively transmitted to the ECU.
  • the ECU can directly detect the degree of supercooling of the refrigerant flowing out of the condenser in both the heating operation and the cooling operation by the output from the third temperature/pressure sensor 17 and the fourth temperature/pressure sensor 27 .
  • the ECU controls the valve opening of the second variable throttle 24 according to the temperature and pressure detected by the fourth temperature and pressure sensor 27 instead of the second temperature and pressure sensor 22 described in the first to fourth embodiments.
  • the ECU controls the opening degree of the first variable throttle 14 according to the temperature and pressure detected by the first temperature/pressure sensor 12 during the heating operation.
  • the ECU controls the valve opening of the first variable throttle 14 according to the temperature and pressure detected by the third temperature and pressure sensor 17 instead of the first temperature and pressure sensor 12 described in the first to fourth embodiments.
  • the ECU controls the valve opening degree of the second variable throttle 24 according to the temperature and pressure detected by the second temperature/pressure sensor 22 during cooling operation.
  • the refrigeration cycle apparatus of the fifth embodiment described above has four temperature/pressure sensors 12, 17, 22, and 27 as functional units that detect at least one of the temperature and pressure of the refrigerant. Thereby, the calculation load of the ECU can be reduced.
  • the compressor 10 only performs the operation of sucking the refrigerant through the first opening 11, compressing it, and discharging it through the second opening 21.
  • the flow path switching valve 70 is a four-way valve provided midway along the flow path that connects the compressor 10 and the indoor heat exchanger 23 and over the middle of the flow path that connects the compressor 10 and the outdoor heat exchanger 13 .
  • the passage switching valve 70 is driven and controlled by the ECU.
  • the ECU drives and controls the flow path switching valve 70 to switch the refrigerant flow between the compressor 10 and the heat exchangers 13 and 23, thereby performing the heating operation and the cooling operation.
  • the refrigerant discharged from the second opening 21 of the compressor 10 flows through the flow path switching valve 70, the indoor heat exchanger 23, the second variable throttle 24, the receiver 30, the first variable throttle 14, the outdoor heat exchanger 13, and the flow path switching valve 70 in this order and is sucked into the first opening 11 of the compressor 10.
  • the refrigerant discharged from the second opening 21 of the compressor 10 flows through the flow path switching valve 70, the outdoor heat exchanger 13, the first variable throttle 14, the receiver 30, the second variable throttle 24, the indoor heat exchanger 23, and the flow path switching valve 70 in this order and is sucked into the first opening 11 of the compressor 10.
  • the first temperature-pressure sensor 12 is provided between the first opening 11 of the compressor 10 and the flow path switching valve 70 .
  • the second temperature/pressure sensor 22 is provided between the second opening 21 of the compressor 10 and the flow path switching valve 70 .
  • the temperature and pressure of the refrigerant detected by the first temperature-pressure sensor 12 and the second temperature-pressure sensor 22 are respectively transmitted to the ECU.
  • the ECU controls the valve opening of the first variable throttle 14 according to the temperature and pressure detected by the first temperature and pressure sensor 12 so that the refrigerant sucked into the first opening 11 of the compressor 10 has a predetermined SH.
  • the ECU controls the valve opening degree of the second variable throttle 24 according to the temperature and pressure detected by the second temperature/pressure sensor 22 so that the refrigerant flowing out of the indoor heat exchanger 23 has a predetermined SC.
  • the ECU controls the valve opening of the second variable throttle 24 according to the temperature and pressure detected by the first temperature and pressure sensor 12 so that the refrigerant sucked into the first opening 11 of the compressor 10 has a predetermined SH.
  • the ECU controls the opening degree of the first variable throttle 14 according to the temperature and pressure detected by the second temperature/pressure sensor 22 so that the refrigerant flowing out of the outdoor heat exchanger 13 has a predetermined SC.
  • the first temperature/pressure sensor 12 may be provided between the flow path switching valve 70 and the outdoor heat exchanger 13 .
  • the second temperature/pressure sensor 22 may be provided between the flow path switching valve 70 and the indoor heat exchanger 23 .
  • the ECU controls the valve opening degree of the first variable throttle 14 according to the temperature and pressure detected by the first temperature and pressure sensor 12 so that the refrigerant sucked into the first opening 11 of the compressor 10 has a predetermined SH.
  • the ECU controls the valve opening degree of the second variable throttle 24 according to the temperature and pressure detected by the second temperature/pressure sensor 22 so that the refrigerant flowing out of the indoor heat exchanger 23 has a predetermined SC.
  • the ECU controls the valve opening degree of the second variable throttle 24 according to the temperature and pressure detected by the second temperature and pressure sensor 22 so that the refrigerant sucked into the first opening 11 of the compressor 10 has a predetermined SH.
  • the ECU controls the opening degree of the first variable throttle 14 according to the temperature and pressure detected by the first temperature/pressure sensor 12 so that the refrigerant flowing out of the outdoor heat exchanger 13 has a predetermined SC.
  • first opening 11 of the compressor 10 and the first temperature/pressure sensor 12 may be integrated, or the second opening 21 and the second temperature/pressure sensor 22 of the compressor may be integrated. As a result, the number of assembling man-hours can be reduced.
  • the first variable throttle 14 configured as an electronic expansion valve and the first temperature/pressure sensor 12 may be integrated into one module.
  • the second variable throttle 24 configured as an electronic expansion valve and the second temperature/pressure sensor 22 may be integrated into one module.
  • the present disclosure is not limited to the above-described embodiments, and can be modified as appropriate. Moreover, the above-described embodiments are not unrelated to each other, and can be appropriately combined unless the combination is clearly impossible. Further, in each of the above-described embodiments, it goes without saying that the elements constituting the embodiment are not necessarily essential unless explicitly stated as essential or clearly considered essential in principle. In addition, in each of the above-described embodiments, when numerical values such as the number, numerical value, amount, range, etc. of the constituent elements of the embodiment are mentioned, they are not limited to the specific numbers, except when explicitly stated as essential or when they are clearly limited to a specific number in principle. In addition, in each of the above-described embodiments, when referring to the shape, positional relationship, etc.
  • the shape, positional relationship, etc. are not limited, except in cases where it is particularly specified and in principle limited to a specific shape, positional relationship, etc.
  • the sensor when it is described that the external environment information of the vehicle (for example, the humidity outside the vehicle) is obtained from a sensor, the sensor can be eliminated and the external environment information can be received from a server or cloud outside the vehicle.
  • the sensor it is also possible to eliminate the sensor, acquire related information related to the external environment information from a server or cloud outside the vehicle, and estimate the external environment information from the acquired related information.
  • the controller and method described in the present disclosure may be implemented by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program.
  • the controls and techniques described in this disclosure may be implemented by a dedicated computer provided by configuring the processor with one or more dedicated hardware logic circuits.
  • the controls and techniques described in this disclosure may be implemented by one or more dedicated computers configured with a processor and memory programmed to perform one or more functions in combination with the processor configured by one or more hardware logic circuits.
  • the computer program may also be stored as computer-executable instructions on a computer-readable non-transitional tangible recording medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

A compressor (10) is capable of heating operation and cooling operation. A receiver (30) is provided between an outdoor heat exchanger (13) and an indoor heat exchanger (23). A first variable throttle (14) is provided between the outdoor heat exchanger (13) and the receiver (30). A second variable throttle (24) is provided between the indoor heat exchanger (23) and the receiver (30). A first temperature pressure sensor (12) is provided between a first opening (11) of the compressor (10) and the outdoor heat exchanger (13). A second temperature pressure sensor (22) is provided between a second opening (21) of the compressor (10) and the indoor heat exchanger (23). During the heating operation and the cooling operation, the valve opening of the first variable throttle (14) is controlled according to the temperature and pressure detected by the first temperature pressure sensor (12), and the valve opening of the second variable throttle (24) is controlled according to the temperature and pressure detected by the second temperature pressure sensor (22).

Description

冷凍サイクル装置refrigeration cycle equipment 関連出願への相互参照Cross-references to related applications
 本出願は、2022年1月24日に出願された日本特許出願番号2022-008846号に基づくもので、ここにその記載内容が参照により組み入れられる。 This application is based on Japanese Patent Application No. 2022-008846 filed on January 24, 2022, the contents of which are incorporated herein by reference.
 本開示は、冷凍サイクル装置に関するものである。 The present disclosure relates to a refrigeration cycle device.
 従来、冷媒の流れを切り替えて冷房運転と暖房運転を実行可能な冷凍サイクル装置が知られている。
 特許文献1に記載の冷凍サイクル装置は、コンプレッサと室内熱交換器とを接続する配管の途中、及びコンプレッサと室外熱交換器とを接続する配管の途中に跨って設けられる4方弁を備えている。これにより、この冷凍サイクル装置は、4方弁により冷媒の流れを切り替えて冷房運転と暖房運転と実行することが可能である。冷房運転では、コンプレッサから吐出された冷媒が4方弁、室外熱交換器、第1の絞り弁、レシーバ、第2の絞り弁、室内熱交換器、4方弁、コンプレッサの順に流れる。一方、暖房運転では、コンプレッサから吐出された冷媒が4方弁、室内熱交換器、第2の絞り弁、レシーバ、第1の絞り弁、室外熱交換器、4方弁、コンプレッサの順に流れる。
Conventionally, a refrigeration cycle device capable of performing cooling operation and heating operation by switching the flow of refrigerant is known.
The refrigeration cycle apparatus described in Patent Document 1 includes a four-way valve provided midway along a pipe connecting a compressor and an indoor heat exchanger and midway along a pipe connecting a compressor and an outdoor heat exchanger. As a result, this refrigeration cycle device can perform cooling operation and heating operation by switching the flow of the refrigerant with the four-way valve. In cooling operation, the refrigerant discharged from the compressor flows through the four-way valve, the outdoor heat exchanger, the first throttle valve, the receiver, the second throttle valve, the indoor heat exchanger, the four-way valve, and the compressor in that order. On the other hand, in heating operation, the refrigerant discharged from the compressor flows through the 4-way valve, the indoor heat exchanger, the second throttle valve, the receiver, the first throttle valve, the outdoor heat exchanger, the 4-way valve, and the compressor in that order.
 特許文献1の冷凍サイクル装置は、室外熱交換器と室内熱交換器との間に2個の絞り弁とレシーバを設置し、その一方でコンプレッサの吸入口側にアキュムレータを設置しない構成とすることで、余剰冷媒を貯める液貯めを1個として体格を小型化している。 The refrigeration cycle apparatus of Patent Document 1 has two throttle valves and a receiver installed between the outdoor heat exchanger and the indoor heat exchanger, and on the other hand, has a configuration in which no accumulator is installed on the suction port side of the compressor.
 なお、特許文献1には、各熱交換器の途中に温度センサを設けることや、コンプレッサの吐出側のみに温度センサを設けることが記載されている。 Note that Patent Document 1 describes that a temperature sensor is provided in the middle of each heat exchanger and that a temperature sensor is provided only on the discharge side of the compressor.
特開2001-174091号公報Japanese Patent Application Laid-Open No. 2001-174091
 しかしながら、特許文献1のように各熱交換器の途中に温度センサを設けた場合、或いは、コンプレッサの吐出側のみに温度センサを設けた場合、冷房能力、暖房能力、成績係数(以下「COP」という)を向上するように絞り弁を作動させることは困難である。すなわち、特許文献1には、冷房運転時および暖房運転時において、冷房能力、暖房能力、COPを向上するための絞り弁の作動方法、および、その作動方法を実行するために必要な構成については記載されていない。なお、COPは、Coefficient Of Performanceの略である。 However, when a temperature sensor is provided in the middle of each heat exchanger as in Patent Document 1, or when a temperature sensor is provided only on the discharge side of the compressor, it is difficult to operate the throttle valve so as to improve the cooling capacity, heating capacity, and coefficient of performance (hereinafter referred to as "COP"). That is, Patent Document 1 does not describe a throttle valve operation method for improving the cooling capacity, the heating capacity, and the COP during the cooling operation and the heating operation, and the configuration necessary for executing the operation method. Note that COP is an abbreviation for Coefficient Of Performance.
 本開示は、構成を簡素化し体格を小型化すると共に、冷房能力、暖房能力、COPを向上することの可能な冷凍サイクル装置を提供することを目的とする。 An object of the present disclosure is to provide a refrigeration cycle device that is capable of simplifying the configuration, reducing the size, and improving the cooling capacity, heating capacity, and COP.
 本開示の1つの観点によれば、冷凍サイクル装置は、コンプレッサ、室外熱交換器、室内熱交換器、レシーバ、第1可変絞り、第2可変絞り、第1温度圧力センサ、第2温度圧力センサを備えている。
 コンプレッサは、冷媒を吸入および吐出する第1開口と第2開口を有し、第1開口から吸入した冷媒を圧縮して第2開口から吐出する暖房運転動作と、第2開口から吸入した冷媒を圧縮して第1開口から吐出する冷房運転動作とを実行可能である。
 室外熱交換器は、コンプレッサの第1開口側に設けられ、室外に排出される空気と冷媒との熱交換を行う。室内熱交換器は、コンプレッサの第2開口側に設けられ、室内に吹き出される空気と冷媒との熱交換を行う。
 レシーバは、室外熱交換器と室内熱交換器との間に設けられる貯液部である。
 第1可変絞りは、室外熱交換器とレシーバとの間に設けられ、冷媒の流量を調整する。第2可変絞りは、室内熱交換器とレシーバとの間に設けられ、冷媒の流量を調整する。
 第1温度圧力センサは、コンプレッサの第1開口と室外熱交換器との間に設けられ、冷媒の温度および圧力の少なくとも一方を検出する。第2温度圧力センサは、コンプレッサの第2開口と室内熱交換器との間に設けられ、冷媒の温度および圧力の少なくとも一方を検出する。
 そして、この冷凍サイクル装置は、暖房運転動作時に、コンプレッサの第1開口に吸入される冷媒が所定の過熱度のガス冷媒となるよう、第1温度圧力センサで検出される温度および圧力に応じて第1可変絞りの弁開度が制御され、室内熱交換器から流出する冷媒が所定の過冷却度の液冷媒となるよう、第2温度圧力センサで検出される温度および圧力に応じて、第2可変絞りの弁開度が制御されるように構成されている。
 また、この冷凍サイクル装置は、冷房運転動作時に、コンプレッサの第2開口に吸入される冷媒が所定の過熱度のガス冷媒となるよう、第2温度圧力センサで検出される温度および圧力に応じて第2可変絞りの弁開度が制御され、室外熱交換器から流出する冷媒が所定の過冷却度の液冷媒となるよう、第1温度圧力センサで検出される温度および圧力に応じて、第1可変絞りの弁開度が制御されるように構成されている。
According to one aspect of the present disclosure, a refrigeration cycle device includes a compressor, an outdoor heat exchanger, an indoor heat exchanger, a receiver, a first variable throttle, a second variable throttle, a first temperature/pressure sensor, and a second temperature/pressure sensor.
The compressor has a first opening and a second opening for sucking and discharging refrigerant, and is capable of performing a heating operation in which the refrigerant sucked through the first opening is compressed and discharged through the second opening, and a cooling operation in which the refrigerant sucked through the second opening is compressed and discharged through the first opening.
The outdoor heat exchanger is provided on the side of the first opening of the compressor, and performs heat exchange between the air discharged to the outside of the room and the refrigerant. The indoor heat exchanger is provided on the second opening side of the compressor, and performs heat exchange between the air blown into the room and the refrigerant.
A receiver is a reservoir provided between the outdoor heat exchanger and the indoor heat exchanger.
The first variable throttle is provided between the outdoor heat exchanger and the receiver and adjusts the flow rate of refrigerant. A second variable throttle is provided between the indoor heat exchanger and the receiver to adjust the flow rate of the refrigerant.
A first temperature-pressure sensor is provided between the first opening of the compressor and the outdoor heat exchanger and detects at least one of the temperature and pressure of the refrigerant. A second temperature-pressure sensor is provided between the second opening of the compressor and the indoor heat exchanger and detects at least one of the temperature and pressure of the refrigerant.
The refrigeration cycle apparatus is configured such that, during heating operation, the valve opening of the first variable throttle is controlled according to the temperature and pressure detected by the first temperature and pressure sensor so that the refrigerant sucked into the first opening of the compressor becomes a gas refrigerant having a predetermined degree of superheat, and the valve opening of the second variable throttle is controlled according to the temperature and pressure detected by the second temperature and pressure sensor so that the refrigerant flowing out of the indoor heat exchanger becomes a liquid refrigerant having a predetermined degree of subcooling.
Further, the refrigeration cycle apparatus is configured such that, during cooling operation, the valve opening degree of the second variable throttle is controlled according to the temperature and pressure detected by the second temperature and pressure sensor so that the refrigerant sucked into the second opening of the compressor becomes a gas refrigerant having a predetermined degree of superheat, and the valve opening degree of the first variable throttle is controlled according to the temperature and pressure detected by the first temperature and pressure sensor so that the refrigerant flowing out from the outdoor heat exchanger becomes a liquid refrigerant having a predetermined degree of subcooling.
 これによれば、この冷凍サイクル装置は、暖房運転および冷房運転の両方において、2個の温度圧力センサを用いて、2個の可変絞りの開度をする。具体的には、コンプレッサに吸入される冷媒の過熱度とコンプレッサから吐出される冷媒の過熱度を調整しつつ、さらに、室内熱交換器および室外熱交換器のうち凝縮器として機能する熱交換器から流出する冷媒の過冷却度を調整することが可能である。したがって、この冷凍サイクル装置は、1個のレシーバ、2個の温度圧力センサ、2個の可変絞りというように部品点数を少なくすることで構成を簡素化し、体格を小型化でき、それに加えて、冷房能力及び暖房能力を向上することや、COPを向上することができる。
 さらに、この冷凍サイクル装置は、暖房運転動作と冷房運転動作の両方を実行可能ないわゆる両回転コンプレッサを用いることにより、特許文献1のようなコンプレッサと4方弁とを組み合わせた構成に比べて、部品点数を低減し、体格を小型化することができる。
According to this, the refrigerating cycle apparatus uses two temperature/pressure sensors to control the opening of two variable throttles in both heating operation and cooling operation. Specifically, while adjusting the degree of superheat of the refrigerant sucked into the compressor and the degree of superheat of the refrigerant discharged from the compressor, it is possible to adjust the degree of subcooling of the refrigerant flowing out of the heat exchanger that functions as a condenser among the indoor heat exchanger and the outdoor heat exchanger. Therefore, this refrigeration cycle apparatus can simplify the configuration by reducing the number of parts, such as one receiver, two temperature pressure sensors, and two variable throttles, and can reduce the size.
Furthermore, this refrigeration cycle apparatus uses a so-called dual-rotation compressor capable of performing both heating operation and cooling operation, so compared to a configuration in which a compressor and a four-way valve are combined as in Patent Document 1, the number of parts can be reduced and the size can be reduced.
 なお、所定の過熱度および所定の過冷却度は、冷房能力又は暖房能力を優先するシーン、COPを優先するシーン、或いは、冷房能力または暖房能力とCOPとの両方を優先するシーンなど、冷凍サイクル装置に対する種々の要求に応じて適宜設定されるものである。 The predetermined degree of superheating and the predetermined degree of supercooling are appropriately set according to various requirements for the refrigeration cycle device, such as a scene in which priority is given to cooling capacity or heating capacity, a scene in which COP is given priority, or a scene in which both cooling capacity or heating capacity and COP are given priority.
 また、本開示の別の観点によれば、冷凍サイクル装置は、コンプレッサ、室外熱交換器、室内熱交換器、レシーバ、第1可変絞り、第2可変絞り、流路切替弁、第1温度圧力センサ、第2温度圧力センサ、電子制御装置を備えている。
 コンプレッサは、冷媒を第1開口から吸入し圧縮し第2開口から吐出する。室外熱交換器は、室外に排出される空気と冷媒との熱交換を行う。室内熱交換器は、室内に吹き出される空気と冷媒との熱交換を行う。レシーバは、室外熱交換器と室内熱交換器との間に設けられる貯液部である。第1可変絞りは、室外熱交換器とレシーバとの間に設けられ、冷媒の流量を調整する。第2可変絞りは、室内熱交換器とレシーバとの間に設けられ、冷媒の流量を調整する。
 流路切替弁は、コンプレッサと室内熱交換器とを接続する流路の途中、及び、コンプレッサと室外熱交換器とを接続する流路の途中に跨って設けられ、暖房運転動作と冷房運転動作とを切り替える。暖房運転動作では、コンプレッサの第2開口から吐出された冷媒が流路切替弁、室内熱交換器、第2可変絞り、レシーバ、第1可変絞り、室外熱交換器、流路切替弁の順に流れてコンプレッサの第1開口に吸入される。冷房運転動作では、コンプレッサの第2開口から吐出された冷媒が流路切替弁、室外熱交換器、第1可変絞り、レシーバ、第2可変絞り、室内熱交換器、流路切替弁の順に流れてコンプレッサの第1開口に吸入される。
 第1温度圧力センサは、コンプレッサの第1開口と流路切替弁との間、または、流路切替弁と室外熱交換器と間に設けられ、冷媒の温度および圧力の少なくとも一方を検出する。第2温度圧力センサは、コンプレッサの第2開口と流路切替弁との間、または、流路切替弁と室内熱交換器との間に設けられ、冷媒の温度および圧力の少なくとも一方を検出する。
 電子制御装置は、暖房運転動作時に、コンプレッサの第1開口に吸入される冷媒が所定の過熱度のガス冷媒となるよう、第1温度圧力センサと第2温度圧力センサのうち室外熱交換器の下流側のセンサで検出される温度および圧力に応じて第1可変絞りの弁開度を制御し、室内熱交換器から流出する冷媒が所定の過冷却度の液冷媒となるよう、第1温度圧力センサと第2温度圧力センサのうち室内熱交換器の下流側のセンサで検出される温度および圧力に応じて、第2可変絞りの弁開度を制御する。
 また、電子制御装置は、冷房運転動作時に、コンプレッサの第1開口に吸入される冷媒が所定の過熱度のガス冷媒となるよう、第1温度圧力センサと第2温度圧力センサのうち室内熱交換器の下流側のセンサで検出される温度および圧力に応じて第2可変絞りの弁開度を制御し、室外熱交換器から流出する冷媒が所定の過冷却度の液冷媒となるよう、第1温度圧力センサと第2温度圧力センサのうち室外熱交換器の上流側のセンサで検出される温度および圧力に応じて、第1可変絞りの弁開度を制御する。
According to another aspect of the present disclosure, a refrigeration cycle device includes a compressor, an outdoor heat exchanger, an indoor heat exchanger, a receiver, a first variable throttle, a second variable throttle, a flow path switching valve, a first temperature/pressure sensor, a second temperature/pressure sensor, and an electronic control device.
The compressor sucks refrigerant through the first opening, compresses it, and discharges it through the second opening. The outdoor heat exchanger exchanges heat between the air discharged outdoors and the refrigerant. The indoor heat exchanger exchanges heat between the air blown indoors and the refrigerant. A receiver is a reservoir provided between the outdoor heat exchanger and the indoor heat exchanger. The first variable throttle is provided between the outdoor heat exchanger and the receiver and adjusts the flow rate of refrigerant. A second variable throttle is provided between the indoor heat exchanger and the receiver to adjust the flow rate of the refrigerant.
The flow path switching valve is provided in the middle of the flow path that connects the compressor and the indoor heat exchanger and in the middle of the flow path that connects the compressor and the outdoor heat exchanger, and switches between the heating operation and the cooling operation. In the heating operation operation, the refrigerant discharged from the second opening of the compressor flows through the flow path switching valve, the indoor heat exchanger, the second variable throttle, the receiver, the first variable throttle, the outdoor heat exchanger, and the flow path switching valve in this order, and is sucked into the first opening of the compressor. In the cooling operation, the refrigerant discharged from the second opening of the compressor flows through the flow switching valve, the outdoor heat exchanger, the first variable throttle, the receiver, the second variable throttle, the indoor heat exchanger, and the flow switching valve in that order, and is drawn into the first opening of the compressor.
The first temperature-pressure sensor is provided between the first opening of the compressor and the flow path switching valve or between the flow path switching valve and the outdoor heat exchanger, and detects at least one of the temperature and pressure of the refrigerant. The second temperature-pressure sensor is provided between the second opening of the compressor and the flow path switching valve or between the flow path switching valve and the indoor heat exchanger, and detects at least one of the temperature and pressure of the refrigerant.
During the heating operation, the electronic control device controls the valve opening of the first variable throttle according to the temperature and pressure detected by the sensor downstream of the outdoor heat exchanger among the first and second temperature and pressure sensors so that the refrigerant drawn into the first opening of the compressor becomes gas refrigerant with a predetermined degree of superheat, and the temperature and pressure detected by the first temperature and pressure sensor and the second temperature and pressure sensor downstream of the indoor heat exchanger so that the refrigerant flowing out of the indoor heat exchanger becomes liquid refrigerant with a predetermined degree of supercooling. The valve opening degree of the second variable throttle is controlled according to the pressure.
Further, the electronic control unit controls the valve opening degree of the second variable throttle according to the temperature and pressure detected by the sensor downstream of the indoor heat exchanger among the first temperature-pressure sensor and the second temperature-pressure sensor so that the refrigerant sucked into the first opening of the compressor becomes a gas refrigerant with a predetermined degree of superheat during the cooling operation, and the sensor upstream of the outdoor heat exchanger among the first temperature-pressure sensor and the second temperature-pressure sensor so that the refrigerant flowing out of the outdoor heat exchanger becomes liquid refrigerant with a predetermined degree of supercooling. The valve opening degree of the first variable throttle is controlled according to the detected temperature and pressure.
 これによれば、本開示の別の観点による冷凍サイクル装置は、流路切替弁を備えたことを除き、本開示の1つの観点による冷凍サイクル装置と同様の効果を奏することができる。 According to this, the refrigeration cycle device according to another aspect of the present disclosure can achieve the same effects as the refrigeration cycle device according to one aspect of the present disclosure, except that the channel switching valve is provided.
 なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。 It should be noted that the reference numerals in parentheses attached to each component etc. indicate an example of the correspondence relationship between the component etc. and the specific component etc. described in the embodiment described later.
第1実施形態に係る冷凍サイクル装置の回路図である。1 is a circuit diagram of a refrigeration cycle apparatus according to a first embodiment; FIG. 暖房運転時の冷媒の挙動をモリエル線図上に示した図である。FIG. 4 is a Mollier diagram showing the behavior of refrigerant during heating operation. 冷房運転時の冷媒の挙動をモリエル線図上に示した図である。FIG. 3 is a Mollier diagram showing the behavior of a refrigerant during cooling operation. 冷凍サイクル装置が備える電子制御装置が実行する制御処理のフローチャートである。4 is a flow chart of control processing executed by an electronic control device included in the refrigeration cycle apparatus; 下段絞りおよび上段絞りの制御による冷媒の挙動をモリエル線図上に示した図である。FIG. 4 is a Mollier diagram showing the behavior of the refrigerant under control of the lower stage throttle and the upper stage throttle. 第1実施形態に係る冷凍サイクル装置の平面図である。1 is a plan view of a refrigeration cycle apparatus according to a first embodiment; FIG. 図6のVII方向から視た冷凍サイクル装置の正面図である。FIG. 7 is a front view of the refrigeration cycle apparatus viewed from the VII direction of FIG. 6; 図6及び図7のVIII方向から視た冷凍サイクル装置の側面図である。FIG. 8 is a side view of the refrigeration cycle apparatus viewed from the VIII direction of FIGS. 6 and 7; 第1実施形態に係る冷凍サイクル装置の概略構成図であり、暖房運転時の冷媒の流れを示す図である。1 is a schematic configuration diagram of a refrigeration cycle apparatus according to a first embodiment, showing the flow of refrigerant during heating operation; FIG. 第1実施形態に係る冷凍サイクル装置の概略構成図であり、冷房運転時の冷媒の流れを示す図である。1 is a schematic configuration diagram of a refrigeration cycle apparatus according to a first embodiment, showing the flow of refrigerant during cooling operation; FIG. 第2実施形態に係る冷凍サイクル装置の概略構成図である。It is a schematic block diagram of the refrigerating-cycle apparatus which concerns on 2nd Embodiment. 第2実施形態に係る冷凍サイクル装置が備える第1機械式膨張弁と第1感温部の断面図である。It is sectional drawing of the 1st mechanical expansion valve and the 1st temperature-sensing part with which the refrigerating-cycle apparatus which concerns on 2nd Embodiment is provided. 第2実施形態に係る冷凍サイクル装置が備える第2機械式膨張弁と第2感温部の断面図である。It is sectional drawing of the 2nd mechanical expansion valve and the 2nd temperature-sensing part with which the refrigerating-cycle apparatus which concerns on 2nd Embodiment is provided. 第3実施形態に係る冷凍サイクル装置の回路図である。It is a circuit diagram of a refrigerating cycle device according to a third embodiment. 第3実施形態に係る冷凍サイクル装置の冷媒の挙動をモリエル線図上に示した図である。It is the figure which showed the behavior of the refrigerant|coolant of the refrigerating-cycle apparatus which concerns on 3rd Embodiment on the Mollier diagram. 第4実施形態に係る冷凍サイクル装置の回路図である。It is a circuit diagram of a refrigeration cycle device according to a fourth embodiment. 第4実施形態に係る冷凍サイクル装置の冷媒の挙動をモリエル線図上に示した図である。It is the figure which showed the behavior of the refrigerant|coolant of the refrigerating-cycle apparatus which concerns on 4th Embodiment on the Mollier diagram. 第5実施形態に係る冷凍サイクル装置の回路図である。It is a circuit diagram of a refrigerating cycle apparatus concerning a 5th embodiment. 第6実施形態に係る冷凍サイクル装置の回路図において、冷房運転時の冷媒の流れを示す図である。FIG. 12 is a diagram showing the flow of refrigerant during cooling operation in the circuit diagram of the refrigeration cycle apparatus according to the sixth embodiment. 第6実施形態に係る冷凍サイクル装置の回路図において、暖房運転時の冷媒の流れを示す図である。FIG. 12 is a diagram showing the flow of refrigerant during heating operation in the circuit diagram of the refrigeration cycle apparatus according to the sixth embodiment.
 以下、本開示の実施形態について図面を参照しつつ説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付し、その説明を省略する。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In addition, in each of the following embodiments, the same or equivalent portions are denoted by the same reference numerals, and description thereof will be omitted.
 (第1実施形態)
 第1実施形態について図面を参照しつつ説明する。本実施形態の冷凍サイクル装置は、例えば小型車または小型モビリティなど(以下「車両等」という)に搭載され、その車室内の冷房および暖房を含む空調を行うヒートポンプシステムに適用されるものである。
(First embodiment)
A first embodiment will be described with reference to the drawings. The refrigeration cycle apparatus of the present embodiment is installed in, for example, a compact car or compact mobility vehicle (hereinafter referred to as "vehicle or the like"), and is applied to a heat pump system that performs air conditioning including cooling and heating in the vehicle interior.
 図1に示すように、冷凍サイクル装置は、コンプレッサ10、室外熱交換器13、室内熱交換器23、レシーバ30、第1可変絞り14、第2可変絞り24、第1温度圧力センサ12、第2温度圧力センサ22、および、電子制御装置40などを備えている。以下、電子制御装置40を「ECU」という。ECUは、Electronic Control Unitの略である。 As shown in FIG. 1, the refrigeration cycle device includes a compressor 10, an outdoor heat exchanger 13, an indoor heat exchanger 23, a receiver 30, a first variable throttle 14, a second variable throttle 24, a first temperature/pressure sensor 12, a second temperature/pressure sensor 22, an electronic control unit 40, and the like. The electronic control unit 40 is hereinafter referred to as "ECU". ECU is an abbreviation for Electronic Control Unit.
 コンプレッサ10、室外熱交換器13、室内熱交換器23、レシーバ30、第1可変絞り14および第2可変絞り24などは、冷媒通路または配管(以下、「配管等」という)によって接続され、蒸気圧縮式冷凍サイクルを構成している。冷凍サイクル装置を循環する冷媒として、例えばHFC系冷媒(例えば、R134a)またはHFO系冷媒(例えば、R1234yf)等が用いられる。なお、冷媒として、自然冷媒(例えば、二酸化炭素)等を用いてもよい。 The compressor 10, the outdoor heat exchanger 13, the indoor heat exchanger 23, the receiver 30, the first variable throttle 14, the second variable throttle 24, etc. are connected by refrigerant passages or pipes (hereinafter referred to as "piping etc.") to form a vapor compression refrigeration cycle. As the refrigerant that circulates in the refrigeration cycle device, for example, an HFC-based refrigerant (eg, R134a) or an HFO-based refrigerant (eg, R1234yf) is used. A natural refrigerant (for example, carbon dioxide) or the like may be used as the refrigerant.
 コンプレッサ10は、冷媒を吸入および吐出する第1開口11と第2開口21を有している。コンプレッサ10は、第1開口11から吸入した冷媒を圧縮して第2開口21から吐出する動作(以下、「暖房運転動作」という)と、第2開口21から吸入した冷媒を圧縮して第1開口11から吐出する動作(以下、「冷房運転動作」という)とを実行可能である。コンプレッサ10は、いわゆる両回転コンプレッサである。図1では、コンプレッサ10が暖房運転動作を実行する際に冷媒の流れる方向を破線矢印で示し、コンプレッサ10が冷房運転動作を実行する際に冷媒の流れる方向を実線矢印で示している。即ち、図1において、冷媒は、暖房運転時に反時計回りに循環し、冷房運転時に時計回りに循環する。 The compressor 10 has a first opening 11 and a second opening 21 for sucking and discharging refrigerant. The compressor 10 can perform an operation of compressing the refrigerant sucked from the first opening 11 and discharging it from the second opening 21 (hereinafter referred to as "heating operation") and an operation of compressing the refrigerant sucked from the second opening 21 and discharging it from the first opening 11 (hereinafter referred to as "cooling operation"). The compressor 10 is a so-called bi-rotating compressor. In FIG. 1 , the direction of refrigerant flow when the compressor 10 performs the heating operation is indicated by a dashed arrow, and the direction of refrigerant flow when the compressor 10 performs the cooling operation is indicated by a solid arrow. That is, in FIG. 1, the refrigerant circulates counterclockwise during heating operation, and circulates clockwise during cooling operation.
 コンプレッサ10の具体的な構成として、例えば、本開示と同一の出願人による特願2021-86462に記載されているようなローリングピストン型の電動圧縮機を用いることが可能である。なお、コンプレッサ10の形式は、それに限らず、例えばロータリベーン型の電動圧縮機など、第1開口11と第2開口21において冷媒を吸入し吐出する方向を切り替え可能なものであればよい。 As a specific configuration of the compressor 10, for example, it is possible to use a rolling piston type electric compressor as described in Japanese Patent Application No. 2021-86462 filed by the same applicant as the present disclosure. Note that the type of the compressor 10 is not limited thereto, and any type, such as a rotary vane electric compressor, may be used as long as the direction of sucking and discharging the refrigerant can be switched between the first opening 11 and the second opening 21 .
 室外熱交換器13は、コンプレッサ10の第1開口11側に配管等を介して接続されている。室外熱交換器13は、その室外熱交換器13の有するチューブ内を流れる冷媒と、室外に排出される空気(以下、「室外排出空気」という)との熱交換を行う熱交換器である。室外排出空気は、室外ファン15の駆動により、車室外から室外熱交換器13に供給され、その室外熱交換器13を通過した後に車室外に排出される。暖房運転時において、室外熱交換器13のチューブ内を流れる低圧冷媒は、室外熱交換器13を通過する室外排出空気から吸熱して蒸発する。そのため、暖房運転時において、室外熱交換器13は、低圧冷媒を室外排出空気との熱交換により蒸発させる蒸発器として機能する。一方、冷房運転時において、室外熱交換器13のチューブ内を流れる高圧冷媒は、室外熱交換器13を通過する室外排出空気に放熱して凝縮する。そのため、冷房運転時において、室外熱交換器13は、高圧冷媒を室外排出空気との熱交換により凝縮させる凝縮器として機能する。 The outdoor heat exchanger 13 is connected to the first opening 11 side of the compressor 10 via piping or the like. The outdoor heat exchanger 13 is a heat exchanger that exchanges heat between the refrigerant flowing in the tubes of the outdoor heat exchanger 13 and the air discharged to the outside (hereinafter referred to as "outdoor discharged air"). The outdoor exhaust air is supplied from outside the vehicle to the outdoor heat exchanger 13 by driving the outdoor fan 15 and is discharged outside the vehicle after passing through the outdoor heat exchanger 13 . During heating operation, the low-pressure refrigerant flowing through the tubes of the outdoor heat exchanger 13 absorbs heat from the outdoor exhaust air passing through the outdoor heat exchanger 13 and evaporates. Therefore, during the heating operation, the outdoor heat exchanger 13 functions as an evaporator that evaporates the low-pressure refrigerant by exchanging heat with the air discharged to the outside. On the other hand, during cooling operation, the high-pressure refrigerant flowing through the tubes of the outdoor heat exchanger 13 releases heat to the outdoor exhaust air passing through the outdoor heat exchanger 13 and condenses. Therefore, during the cooling operation, the outdoor heat exchanger 13 functions as a condenser that condenses the high-pressure refrigerant by exchanging heat with the outdoor exhaust air.
 室内熱交換器23は、コンプレッサ10の第2開口21側に配管等を介して接続されている。室内熱交換器23は、その室内熱交換器23の有するチューブ内を流れる冷媒と、室内に吹き出される空気(以下、「室内吹出空気」という)との熱交換を行う熱交換器である。室内吹出空気は、室内ファン25の駆動により、車室内または車室外から室内熱交換器23に供給され、その室内熱交換器23を通過した後に車室内に吹き出される。暖房運転時において、室内熱交換器23のチューブ内を流れる高圧冷媒は、室内熱交換器23を通過する室内吹出空気に放熱して凝縮する。そのため、暖房運転時において、室内熱交換器23は、高圧冷媒を室内吹出空気と熱交換させて凝縮させる凝縮器として機能する。一方、冷房運転時において、室内熱交換器23のチューブ内を流れる低圧冷媒は、室内熱交換器23を通過する室内吹出空気から吸熱して蒸発する。そのため、冷房運転時において、室内熱交換器23は、低圧冷媒を室内吹出空気と熱交換させて蒸発させる蒸発器として機能する。 The indoor heat exchanger 23 is connected to the second opening 21 side of the compressor 10 via piping or the like. The indoor heat exchanger 23 is a heat exchanger that exchanges heat between the refrigerant flowing through the tubes of the indoor heat exchanger 23 and the air blown into the room (hereinafter referred to as "indoor blown air"). The indoor blowing air is supplied to the indoor heat exchanger 23 from inside or outside the vehicle by the driving of the indoor fan 25, and is blown out into the vehicle after passing through the indoor heat exchanger 23. During heating operation, the high-pressure refrigerant flowing through the tubes of the indoor heat exchanger 23 radiates heat to the indoor blown air passing through the indoor heat exchanger 23 and condenses. Therefore, during the heating operation, the indoor heat exchanger 23 functions as a condenser that exchanges heat between the high-pressure refrigerant and the air blown into the room to condense the refrigerant. On the other hand, during the cooling operation, the low-pressure refrigerant flowing through the tubes of the indoor heat exchanger 23 absorbs heat from the indoor blown air passing through the indoor heat exchanger 23 and evaporates. Therefore, during the cooling operation, the indoor heat exchanger 23 functions as an evaporator that evaporates the low-pressure refrigerant by exchanging heat with the air blown into the room.
 室内熱交換器23が設けられる通風路には、室内熱交換器23を通過した後に車室内へ吹出される空気の吹出し温度を検出する吹出温度センサ26が設けられている。吹出温度センサ26が検出した空気の吹出し温度は、ECUに伝送される。 A ventilation passage in which the indoor heat exchanger 23 is provided is provided with a blowout temperature sensor 26 that detects the blowout temperature of the air blown into the vehicle interior after passing through the indoor heat exchanger 23 . The blowout temperature of the air detected by the blowout temperature sensor 26 is transmitted to the ECU.
 レシーバ30は、冷凍サイクルの負荷変動に対応するために余剰冷媒を貯留する貯液部である。レシーバ30は、ガス冷媒と液冷媒とを分離して貯留している。レシーバ30は、室外熱交換器13と室内熱交換器23との間に設けられており、室外熱交換器13と室内熱交換器23にそれぞれ配管等を介して接続されている。配管等は、レシーバ30のうち液冷媒が貯留される重力方向下側の部位に接続されている。 The receiver 30 is a liquid storage unit that stores surplus refrigerant in order to cope with load fluctuations in the refrigeration cycle. The receiver 30 separates and stores gas refrigerant and liquid refrigerant. The receiver 30 is provided between the outdoor heat exchanger 13 and the indoor heat exchanger 23, and is connected to the outdoor heat exchanger 13 and the indoor heat exchanger 23 via pipes or the like. The pipes and the like are connected to a lower part of the receiver 30 in the gravitational direction where the liquid refrigerant is stored.
 第1可変絞り14は、室外熱交換器13とレシーバ30との間に設けられた電子膨張弁であり、ECUの制御により弁開度が制御されるように構成されている。暖房運転時において、第1可変絞り14は、レシーバ30から室外熱交換器13へ供給される冷媒を減圧・膨張させ、低温低圧の気液二相状態として室外熱交換器13に供給すると共に、その冷媒流量を調整する。一方、冷房運転時において、第1可変絞り14は、室外熱交換器13からレシーバ30に流入する高圧冷媒の流量を調整する。 The first variable throttle 14 is an electronic expansion valve provided between the outdoor heat exchanger 13 and the receiver 30, and is configured such that the degree of valve opening is controlled by the control of the ECU. During heating operation, the first variable throttle 14 decompresses and expands the refrigerant supplied from the receiver 30 to the outdoor heat exchanger 13, supplies the refrigerant to the outdoor heat exchanger 13 as a low-temperature, low-pressure gas-liquid two-phase state, and adjusts the flow rate of the refrigerant. On the other hand, during cooling operation, the first variable throttle 14 adjusts the flow rate of high-pressure refrigerant flowing from the outdoor heat exchanger 13 into the receiver 30 .
 第2可変絞り24は、室内熱交換器23とレシーバ30との間に設けられた電子膨張弁であり、ECUの制御により弁開度が制御されるように構成されている。暖房運転時において、第2可変絞り24は、室内熱交換器23からレシーバ30に流入する高圧冷媒の流量を調整する。一方、冷房運転時において、第2可変絞り24は、レシーバ30から室内熱交換器23へ供給される冷媒を減圧・膨張させ、低温低圧の気液二相状態として室内熱交換器23に供給すると共に、その冷媒流量を調整する。 The second variable throttle 24 is an electronic expansion valve provided between the indoor heat exchanger 23 and the receiver 30, and is configured such that the degree of opening of the valve is controlled by the control of the ECU. During heating operation, the second variable throttle 24 adjusts the flow rate of high-pressure refrigerant flowing from the indoor heat exchanger 23 to the receiver 30 . On the other hand, during cooling operation, the second variable throttle 24 decompresses and expands the refrigerant supplied from the receiver 30 to the indoor heat exchanger 23, and supplies it to the indoor heat exchanger 23 as a low-temperature, low-pressure gas-liquid two-phase state, and adjusts the flow rate of the refrigerant.
 第1温度圧力センサ12は、コンプレッサ10の第1開口11と室外熱交換器13との間に設けられ、そこを流れる冷媒の温度および圧力の少なくとも一方を検出するセンサである。第1温度圧力センサ12が検出した冷媒の温度および圧力は、ECUに伝送される。第2温度圧力センサ22は、コンプレッサ10の第2開口21と室内熱交換器23との間に設けられ、そこを流れる冷媒の温度および圧力の少なくとも一方を検出するセンサである。第2温度圧力センサ22が検出した冷媒の温度および圧力も、ECUに伝送される。なお、第1実施形態の冷凍サイクル装置は、冷媒の温度および圧力の少なくとも一方を検出する機能部として、第1温度圧力センサ12および第2温度圧力センサ22のみを備えている。 The first temperature-pressure sensor 12 is a sensor that is provided between the first opening 11 of the compressor 10 and the outdoor heat exchanger 13 and detects at least one of the temperature and pressure of the refrigerant flowing therethrough. The temperature and pressure of the refrigerant detected by the first temperature/pressure sensor 12 are transmitted to the ECU. The second temperature/pressure sensor 22 is provided between the second opening 21 of the compressor 10 and the indoor heat exchanger 23 and detects at least one of the temperature and pressure of the refrigerant flowing therethrough. The temperature and pressure of the refrigerant detected by the second temperature/pressure sensor 22 are also transmitted to the ECU. Note that the refrigeration cycle apparatus of the first embodiment includes only the first temperature/pressure sensor 12 and the second temperature/pressure sensor 22 as functional units that detect at least one of the temperature and pressure of the refrigerant.
 ECUは、制御処理や演算処理を行うプロセッサ、プログラムやデータ等を記憶するメモリーを備えるマイクロコンピュータとその周辺回路を有している。プロセッサは、CPUやMPUにより構成されている。メモリーは、ROM、RAM、不揮発性リライタブルメモリ等の各種の非遷移的実体的記憶媒体を備えている。ECUは、プロセッサがメモリーに記憶されたプログラムを実行することで、第1可変絞り14及び第2可変絞り24の弁開度、コンプレッサ10の回転数及び冷媒の吐出方向、室外ファン15及び室内ファン25の回転数又は通電量などをセンシングし制御する。 The ECU has a processor that performs control processing and arithmetic processing, a microcomputer with a memory that stores programs and data, and its peripheral circuits. A processor is composed of a CPU and an MPU. The memory includes various non-transitional physical storage media such as ROM, RAM, and non-volatile rewritable memory. In the ECU, the processor executes a program stored in the memory to sense and control the valve opening degrees of the first variable throttle 14 and the second variable throttle 24, the rotation speed and refrigerant discharge direction of the compressor 10, the rotation speed of the outdoor fan 15 and the indoor fan 25, the amount of electricity, and the like.
 特に、本実施形態の冷凍サイクル装置では、ECUは、第1温度圧力センサ12が検出した冷媒の温度及び圧力に基づき、第1可変絞り14の弁開度を制御し、第2温度圧力センサ22が検出した冷媒の温度及び圧力に基づき、第2可変絞り24の弁開度を制御する。このECUによる第1可変絞り14と第2可変絞り24の制御方法については後述する。 In particular, in the refrigeration cycle apparatus of this embodiment, the ECU controls the valve opening of the first variable throttle 14 based on the temperature and pressure of the refrigerant detected by the first temperature/pressure sensor 12, and controls the valve opening of the second variable throttle 24 based on the temperature and pressure of the refrigerant detected by the second temperature/pressure sensor 22. A method of controlling the first variable aperture 14 and the second variable aperture 24 by this ECU will be described later.
 なお、図示は省略するが、ECUには、吸込空気温度センサ、吸込湿度センサ、車室内温度センサ、外気温度センサ、日射センサなどのセンサ類からの情報が必要に応じて入力されるようになっている。また、ECUは、室内熱交換器23に流れる風流れを切り替えるドアを制御するサーボモータが必要に応じて接続されている。 Although not shown, information from sensors such as an intake air temperature sensor, an intake humidity sensor, a vehicle interior temperature sensor, an outside air temperature sensor, and a solar radiation sensor is input to the ECU as needed. Further, the ECU is connected to a servomotor for controlling a door that switches the flow of air flowing through the indoor heat exchanger 23 as required.
 次に、本実施形態の冷凍サイクル装置が暖房運転と冷房運転を実行する際の冷媒の挙動について説明する。 Next, the behavior of the refrigerant when the refrigeration cycle apparatus of this embodiment performs heating operation and cooling operation will be described.
 図2は、冷凍サイクル装置が暖房運転を実行する際の冷媒の挙動の一例をモリエル線図上に示したものである。なお、A1~A4の位置は、コンプレッサ10の回転数、第1可変絞り14および第2可変絞り24の弁開度、室外ファン15および室内ファン25の回転数、外気温度、車室内温度など、種々の条件により変わるものである。線SLは飽和液線を示し、点CPは臨界点を示し、線SVは飽和蒸気線を示している。 FIG. 2 is a Mollier diagram showing an example of the behavior of the refrigerant when the refrigeration cycle device performs heating operation. The positions of A1 to A4 vary depending on various conditions such as the rotation speed of the compressor 10, the opening degrees of the first variable throttle 14 and the second variable throttle 24, the rotation speeds of the outdoor fan 15 and the indoor fan 25, the outside air temperature, and the vehicle interior temperature. Line SL indicates the saturated liquid line, point CP indicates the critical point, and line SV indicates the saturated vapor line.
 図2において、A1は、暖房運転時に蒸発器として機能する室外熱交換器13から流出し、コンプレッサ10の第1開口11に吸入される冷媒の状態を示している。A2は、コンプレッサ10の第2開口21から吐出され、暖房運転時に凝縮器として機能する室内熱交換器23に流入する冷媒の状態を示している。A3は、その凝縮器として機能する室内熱交換器23から流出し、第2可変絞り24に流入する冷媒の状態を示している。A4は、第1可変絞り14から流出し、蒸発器として機能する室外熱交換器13に流入する冷媒の状態を示している。 In FIG. 2, A1 indicates the state of the refrigerant that flows out from the outdoor heat exchanger 13 that functions as an evaporator during heating operation and that is sucked into the first opening 11 of the compressor 10 . A2 indicates the state of the refrigerant discharged from the second opening 21 of the compressor 10 and flowing into the indoor heat exchanger 23 functioning as a condenser during heating operation. A3 indicates the state of the refrigerant flowing out of the indoor heat exchanger 23 functioning as its condenser and flowing into the second variable throttle 24 . A4 indicates the state of the refrigerant that flows out from the first variable throttle 14 and flows into the outdoor heat exchanger 13 that functions as an evaporator.
 暖房運転時において、第1温度圧力センサ12は、A1で示した、コンプレッサ10に吸入される冷媒の温度・圧力を検出する。第2温度圧力センサ22は、A2で示した、コンプレッサ10から吐出される冷媒の温度・圧力を検出する。暖房運転時では、第1可変絞り14がレシーバ30に対して下流側の絞りとなり、第2可変絞り24がレシーバ30に対して上流側の絞りとなる。以下の説明では、レシーバ30に対して下流側の絞りを「下段絞り」といい、レシーバ30に対して上流側の絞りを「上段絞り」という。 During heating operation, the first temperature/pressure sensor 12 detects the temperature and pressure of the refrigerant sucked into the compressor 10, indicated by A1. The second temperature/pressure sensor 22 detects the temperature and pressure of the refrigerant discharged from the compressor 10, indicated by A2. During heating operation, the first variable throttle 14 is the downstream side throttle with respect to the receiver 30 , and the second variable throttle 24 is the upstream side throttle with respect to the receiver 30 . In the following description, the diaphragm on the downstream side with respect to the receiver 30 will be referred to as the "lower stage diaphragm", and the diaphragm on the upstream side with respect to the receiver 30 will be referred to as the "upper stage diaphragm".
 図3は、冷凍サイクル装置が冷房運転を実行する際の冷媒の挙動の一例を、モリエル線図上に示したものである。なお、B1~B4の位置も、コンプレッサ10の回転数、第1可変絞り14および第2可変絞り24の弁開度、室外ファン15および室内ファン25の回転数、外気温度、車室内温度など、種々の条件により変わるものである。 FIG. 3 is a Mollier diagram showing an example of the behavior of the refrigerant when the refrigeration cycle device performs cooling operation. The positions of B1 to B4 also change depending on various conditions such as the rotation speed of the compressor 10, the opening degrees of the first variable throttle 14 and the second variable throttle 24, the rotation speeds of the outdoor fan 15 and the indoor fan 25, the outside air temperature, and the vehicle interior temperature.
 図3において、B1は、冷房運転時に蒸発器として機能する室内熱交換器23から流出し、コンプレッサ10の第2開口21に吸入される冷媒の状態を示している。B2は、コンプレッサ10の第1開口11から吐出され、冷房運転時に凝縮器として機能する室外熱交換器13に流入する冷媒の状態を示している。B3は、その凝縮器として機能する室外熱交換器13から流出し、第1可変絞り14に流入する冷媒の状態を示している。B4は、第2可変絞り24から流出し、蒸発器として機能する室内熱交換器23に流入する冷媒の状態を示している。 In FIG. 3, B1 indicates the state of the refrigerant that flows out from the indoor heat exchanger 23 that functions as an evaporator during cooling operation and is sucked into the second opening 21 of the compressor 10 . B2 indicates the state of the refrigerant discharged from the first opening 11 of the compressor 10 and flowing into the outdoor heat exchanger 13 functioning as a condenser during cooling operation. B3 indicates the state of the refrigerant that flows out from the outdoor heat exchanger 13 functioning as its condenser and flows into the first variable throttle 14 . B4 indicates the state of the refrigerant that flows out from the second variable throttle 24 and flows into the indoor heat exchanger 23 that functions as an evaporator.
 冷房運転時において、第2温度圧力センサ22は、B1で示した、コンプレッサ10に吸入される冷媒の温度・圧力を検出し、第1温度圧力センサ12は、B2で示した、コンプレッサ10から吐出される冷媒の温度・圧力を検出する。冷房運転時において、第2可変絞り24が下段絞りとなり、第1可変絞り14が上段絞りとなる。 During cooling operation, the second temperature/pressure sensor 22 detects the temperature and pressure of the refrigerant sucked into the compressor 10, indicated by B1, and the first temperature/pressure sensor 12 detects the temperature and pressure of the refrigerant discharged from the compressor 10, indicated by B2. During cooling operation, the second variable throttle 24 becomes the lower stage throttle, and the first variable throttle 14 becomes the upper stage throttle.
 以下の説明では、冷凍サイクル装置の構成において、「第1温度圧力センサ12、室外熱交換器13、第1可変絞り14」を第1組といい、「第2温度圧力センサ22、室内熱交換器23、第2可変絞り24」を第2組という。図2および図3に示したように、本実施形態の冷凍サイクル装置は、暖房運転と冷房運転が切り替わると、第1組と第2組とが、モリエル線図上の冷媒挙動においてレシーバ30とコンプレッサ10とを軸として高圧側と低圧側で入れ替わる構成である。そのため、この冷凍サイクル装置は、暖房運転と冷房運転とを切り替えたときに、同じロジックで制御可能となるので、ECUの制御容量を削減でき、制御回路を小型化できる。 In the following description, in the configuration of the refrigeration cycle apparatus, "first temperature/pressure sensor 12, outdoor heat exchanger 13, first variable throttle 14" will be referred to as the first set, and "second temperature/pressure sensor 22, indoor heat exchanger 23, second variable throttle 24" will be referred to as the second set. As shown in FIGS. 2 and 3, in the refrigeration cycle apparatus of the present embodiment, when the heating operation and the cooling operation are switched, the first set and the second set switch between the high pressure side and the low pressure side with the receiver 30 and the compressor 10 as the axes in the refrigerant behavior on the Mollier diagram. Therefore, this refrigeration cycle apparatus can be controlled by the same logic when switching between the heating operation and the cooling operation, so that the control capacity of the ECU can be reduced, and the control circuit can be miniaturized.
 さらに、本実施形態の冷凍サイクル装置は、冷媒の温度および圧力の少なくとも一方を検出する機能部として、第1温度圧力センサ12と第2温度圧力センサ22のみを備えている。そして、この冷凍サイクル装置は、暖房運転および冷房運転の両方において、2個という少ない数の温度圧力センサ12、22を用いて、2個の可変絞り14、24の開度を制御できる。このように、最低限のセンサ構成で制御可能としたのは、次のような考え方に基づくものであり、システムの体格の小型化に有効なものである。 Furthermore, the refrigeration cycle apparatus of this embodiment includes only the first temperature/pressure sensor 12 and the second temperature/pressure sensor 22 as functional units that detect at least one of the temperature and pressure of the refrigerant. This refrigeration cycle apparatus can control the opening degrees of the two variable throttles 14, 24 using a small number of two temperature pressure sensors 12, 22 in both the heating operation and the cooling operation. The ability to control with a minimum sensor configuration is based on the following idea, and is effective in reducing the size of the system.
 即ち、両回転コンプレッサを用いたシステムでは冷媒の流れる向きが反転するため、仮に、コンプレッサ10に吸入される冷媒の温度および圧力の検出のみを行う場合でも、コンプレッサ10の吸入側と吐出側にそれぞれ温度圧力センサが必要となる。その2個の温度圧力センサにおいて、冷房運転時にコンプレッサ10に吸入される冷媒の温度・圧力を検出する温度圧力センサは、暖房運転時にはコンプレッサ10から吐出される冷媒(以下、「吐出冷媒」という)の温度・圧力を検出することになる。そのため、その吐出冷媒の温度・圧力を使って、凝縮器から流出する冷媒の過冷却度を大きくするように上段絞りの弁開度の制御ができれば、新たに温度圧力センサを増やす必要がなくなるため、システムの体格を小型化できる。このような考え方から、本実施形態では、ECUが、2個の温度圧力センサ12、22を使って、第1可変絞り14と第2可変絞り24の制御を行うものである。 That is, in a system using a dual-rotation compressor, the direction of refrigerant flow is reversed, so even if only the temperature and pressure of the refrigerant sucked into the compressor 10 are to be detected, temperature and pressure sensors are required on the suction and discharge sides of the compressor 10, respectively. Of the two temperature-pressure sensors, the temperature-pressure sensor that detects the temperature and pressure of the refrigerant sucked into the compressor 10 during cooling operation detects the temperature and pressure of the refrigerant that is discharged from the compressor 10 (hereinafter referred to as "discharged refrigerant") during heating operation. Therefore, if the temperature and pressure of the discharged refrigerant can be used to control the valve opening of the upper throttle so as to increase the degree of subcooling of the refrigerant flowing out of the condenser, there is no need to increase the number of temperature and pressure sensors, and the size of the system can be reduced. Based on this idea, in the present embodiment, the ECU controls the first variable throttle 14 and the second variable throttle 24 using the two temperature/ pressure sensors 12 and 22 .
 続いて、ECUによる第1可変絞り14と第2可変絞り24の制御方法について、図4のフローチャートを参照して説明する。 Next, a method of controlling the first variable aperture 14 and the second variable aperture 24 by the ECU will be described with reference to the flowchart of FIG.
 この制御処理は、冷凍サイクル装置の作動開始と共に開始される。 This control process starts when the refrigeration cycle device starts operating.
 まず、ステップS10でECUは、ユーザの操作、または、車両に搭載された各種センサ類の出力(即ち、温度条件など)に応じて、冷凍サイクル装置が狙いとする動作モードを決定する。動作モードとしては、消費動力を低減させる目的でCOPを最大にするモード、暖房性能または冷房性能を最大化するモード、特に低外気時において暖房の吹出温度を確保するモードなどがある。なお、本明細書において、暖房性能を暖房能力といい、冷房性能を冷房能力ということがある。 First, in step S10, the ECU determines the operation mode targeted by the refrigeration cycle apparatus according to the user's operation or the output of various sensors mounted on the vehicle (ie, temperature conditions, etc.). The operation modes include a mode for maximizing COP for the purpose of reducing power consumption, a mode for maximizing heating performance or cooling performance, and a mode for securing a heating blowout temperature especially when outside air is low. In this specification, the heating performance may be referred to as heating capacity, and the cooling performance may be referred to as cooling capacity.
 次に、ステップS20でECUは、ステップS10で決定した動作モードに応じて、凝縮器出口の液冷媒の目標とする過冷却度(以下、「目標凝縮器出口SC」又は「TSC」という)を設定する。SCは、subcoolまたはsupercoolingの略である。凝縮器とは、暖房運転時では室内熱交換器23であり、冷房運転時では室外熱交換器13である。 Next, in step S20, the ECU sets a target degree of supercooling of the liquid refrigerant at the condenser outlet (hereinafter referred to as "target condenser outlet SC" or " TSC ") according to the operation mode determined in step S10. SC is an abbreviation for subcool or supercooling. The condenser is the indoor heat exchanger 23 during heating operation and the outdoor heat exchanger 13 during cooling operation.
 続いて、ステップS30でECUは、上段絞りの弁開度を制御する。上段絞りは、暖房運転時では第2可変絞り24であり、冷房運転時では第1可変絞り14である。なお、冷凍サイクル装置の作動開始時(即ち、制御開始時)において、上段絞りの弁開度は全開とされる。即ち、制御開始時において上段絞りは絞りとして機能しない状態とされ、下段絞りの弁開度を一旦設定した後に、上段絞りの弁開度が設定される。下段絞りは、暖房運転時では第1可変絞り14であり、冷房運転時では第2可変絞り24である。 Subsequently, in step S30, the ECU controls the valve opening of the upper throttle. The upper throttle is the second variable throttle 24 during heating operation, and the first variable throttle 14 during cooling operation. At the start of operation of the refrigeration cycle device (that is, at the start of control), the opening of the upper throttle is fully opened. That is, at the start of control, the upper stage throttle is in a state where it does not function as a throttle, and after the valve opening degree of the lower stage throttle is once set, the valve opening degree of the upper stage throttle is set. The lower throttle is the first variable throttle 14 during heating operation, and the second variable throttle 24 during cooling operation.
 次に、ステップS40~S90でECUは、下段絞りの弁開度をフィードバック制御する。 Next, in steps S40 to S90, the ECU feedback-controls the valve opening of the lower throttle.
 具体的には、ステップS40でECUは、コンプレッサ10に吸入されるガス冷媒の目標とする過熱度(以下、「目標吸入SH」又は「TSH」という)を設定する。SHは、superheatの略である。 Specifically, in step S40, the ECU sets a target degree of superheat of the gas refrigerant sucked into the compressor 10 (hereinafter referred to as "target suction SH" or "T SH "). SH is an abbreviation for superheat.
 続いて、ステップS50でECUは、下段絞りの弁開度を制御する。なお、制御開始時において、下段絞りの弁開度は予め設定された開度とされる。 Subsequently, in step S50, the ECU controls the valve opening of the lower throttle. At the start of control, the valve opening degree of the lower throttle is set to a preset opening degree.
 次に、ステップS60でECUは、第1温度圧力センサ12と第2温度圧力センサ22のうちコンプレッサ10の吸入側に配置されたセンサから伝送される情報により、コンプレッサ10に吸入される冷媒の温度・圧力を取得する。以下の説明では、第1温度圧力センサ12と第2温度圧力センサ22のうちコンプレッサ10の吸入側に配置されたセンサを「吸入側センサ」という。なお、吸入側センサは、暖房運転時では第1温度圧力センサ12であり、冷房運転時では第2温度圧力センサ22である。 Next, in step S60, the ECU acquires the temperature and pressure of the refrigerant sucked into the compressor 10 based on the information transmitted from the first temperature-pressure sensor 12 and the second temperature-pressure sensor 22 located on the suction side of the compressor 10. In the following description, of the first temperature-pressure sensor 12 and the second temperature-pressure sensor 22, the sensor arranged on the suction side of the compressor 10 is referred to as the "suction-side sensor". The suction side sensor is the first temperature/pressure sensor 12 during heating operation, and the second temperature/pressure sensor 22 during cooling operation.
 そして、ステップS70でECUは、ステップS60で取得した情報から、コンプレッサ10に吸入される冷媒の過熱度(以下、「吸入SH」又は「T」という)を算出する。 Then, in step S70, the ECU calculates the degree of superheat of the refrigerant sucked into the compressor 10 (hereinafter referred to as "suction SH" or " T1 ") from the information acquired in step S60.
 続いて、ステップS80でECUは、目標吸入SH(TSH)と、吸入SH(T)との差が、コンプレッサ10に吸入される冷媒の過熱度に関する誤差の範囲内にあるか否かを判定する。以下の説明では、コンプレッサ10に吸入される冷媒の過熱度に関する誤差を「SH誤差基準値」という。目標吸入SH(TSH)と吸入SH(T)との差の絶対値が、SH誤差基準値以上の場合、処理はステップS90に進む。 Subsequently, in step S80, the ECU determines whether or not the difference between the target suction SH (T SH ) and the suction SH (T 1 ) is within the error range regarding the degree of superheat of the refrigerant sucked into the compressor 10 . In the following description, the error related to the degree of superheat of the refrigerant sucked into the compressor 10 is referred to as "SH error reference value". If the absolute value of the difference between the target inhalation SH (T SH ) and the inhalation SH (T 1 ) is greater than or equal to the SH error reference value, the process proceeds to step S90.
 ステップS90でECUは、下段絞りの弁開度に関する制御量を算出し、処理をステップS50に戻す。ステップS50でECUは、下段絞りの弁開度を制御する。このようにして、ECUは、下段絞りの弁開度をフィードバック制御する。 At step S90, the ECU calculates the control amount related to the opening degree of the lower throttle, and returns the process to step S50. In step S50, the ECU controls the valve opening of the lower throttle. In this manner, the ECU feedback-controls the valve opening of the lower throttle.
 一方、ステップS80における判定で、目標吸入SH(TSH)と吸入SH(T)との差の絶対値が、SH誤差基準値より小さい場合、処理はステップS100に進む。 On the other hand, if the absolute value of the difference between the target inhalation SH (T SH ) and the inhalation SH (T 1 ) is smaller than the SH error reference value in step S80, the process proceeds to step S100.
 ステップS100~S150およびS30でECUは、上段絞りの弁開度をフィードバック制御する。 In steps S100 to S150 and S30, the ECU feedback-controls the valve opening of the upper throttle.
 具体的には、ステップS100でECUは、第1温度圧力センサ12と第2温度圧力センサ22のうちコンプレッサ10の吐出側に配置されたセンサから伝送される情報により、コンプレッサ10から吐出される冷媒の温度・圧力を取得する。以下の説明では、第1温度圧力センサ12と第2温度圧力センサ22のうちコンプレッサ10の吐出側に配置されたセンサを、「吐出側センサ」という。なお、吐出側センサは、暖房運転時では第2温度圧力センサ22であり、冷房運転時では第1温度圧力センサ12である。 Specifically, in step S100, the ECU acquires the temperature and pressure of the refrigerant discharged from the compressor 10 based on the information transmitted from the first temperature-pressure sensor 12 and the second temperature-pressure sensor 22 located on the discharge side of the compressor 10. In the following description, of the first temperature-pressure sensor 12 and the second temperature-pressure sensor 22, the sensor arranged on the discharge side of the compressor 10 is called the "discharge-side sensor". The discharge side sensor is the second temperature/pressure sensor 22 during heating operation, and the first temperature/pressure sensor 12 during cooling operation.
 そして、ステップS110でECUは、ステップS100で取得した情報から、コンプレッサ10から吐出される冷媒の過熱度(以下、「吐出SH」又は「T」という)を算出する。 Then, in step S110, the ECU calculates the degree of superheat of the refrigerant discharged from the compressor 10 (hereinafter referred to as "discharge SH" or " T3 ") from the information obtained in step S100.
 また、ステップS120でECUは、凝縮器に供給される空気の風量および吸込空気温度、コンプレッサ10から吐出される冷媒流量に関する情報を所得する。なお、ECUは、凝縮器に供給される空気の風量を、例えば、凝縮器に送風するファン(即ち、暖房運転時では室内ファン25、冷房運転時では室外ファン15)を駆動するモータの回転数から算出する。また、ECUは、凝縮器に供給される吸込空気温度を、例えば、不図示の車室内温度センサ等から得られる車室内温度情報、または、不図示の外気温度センサ等から得られる外気温度情報から取得する。また、ECUは、コンプレッサ10から吐出される冷媒流量を、例えば、吸込側センサから得られる冷媒の温度・圧力およびコンプレッサ10の回転数から算出する。 In addition, at step S120, the ECU obtains information on the flow rate of the air supplied to the condenser, the temperature of the intake air, and the flow rate of the refrigerant discharged from the compressor 10. The ECU calculates the amount of air supplied to the condenser from, for example, the number of rotations of the motor that drives the fan that blows air to the condenser (that is, the indoor fan 25 during heating operation and the outdoor fan 15 during cooling operation). Further, the ECU acquires the intake air temperature supplied to the condenser from, for example, vehicle interior temperature information obtained from a vehicle interior temperature sensor (not shown) or outside air temperature information obtained from an outside air temperature sensor (not shown). Further, the ECU calculates the flow rate of the refrigerant discharged from the compressor 10 from the temperature and pressure of the refrigerant obtained from the suction side sensor and the rotation speed of the compressor 10, for example.
 そして、ステップS130でECUは、ステップS110およびS120で取得した各情報に基づき、凝縮器出口の液冷媒の過冷却度(以下、「凝縮器出口SC」又は「T」という)を算出する。 Then, in step S130, the ECU calculates the degree of subcooling of the liquid refrigerant at the condenser outlet (hereinafter referred to as "condenser outlet SC" or " T2 ") based on the information acquired in steps S110 and S120.
 続いて、ステップS140でECUは、ステップS20で設定した目標凝縮器出口SC(TSC)と、ステップS130で算出した凝縮器出口SC(T)との差が、凝縮器出口の冷媒の過冷却度に関する誤差の範囲内にあるか否かを判定する。以下の説明では、凝縮器出口の冷媒の過冷却度に関する誤差を「SC誤差基準値」という。目標凝縮器出口SC(TSC)と凝縮器出口SC(T)との差の絶対値が、SC誤差基準値以上の場合、処理はステップS150に進む。 Subsequently, in step S140, the ECU determines whether the difference between the target condenser outlet SC (T SC ) set in step S20 and the condenser outlet SC (T 2 ) calculated in step S130 is within the error range regarding the degree of supercooling of the refrigerant at the condenser outlet. In the following description, the error regarding the degree of subcooling of the refrigerant at the outlet of the condenser is referred to as "SC error reference value". If the absolute value of the difference between the target condenser outlet SC (T SC ) and the condenser outlet SC (T 2 ) is greater than or equal to the SC error reference value, the process proceeds to step S150.
 ステップS150でECUは、上段絞りの弁開度に関する制御量を算出し、処理をステップS30に戻す。ステップS30でECUは、上段絞りの弁開度を制御する。その後、ステップS40~S90で、下段絞りの弁開度が再び制御される。このようにして、ECUは、上段絞りの弁開度と下段絞りの弁開度をフィードバック制御する。 At step S150, the ECU calculates the control amount related to the opening degree of the upper throttle, and returns the process to step S30. In step S30, the ECU controls the valve opening of the upper throttle. After that, in steps S40 to S90, the valve opening degree of the lower throttle is controlled again. In this manner, the ECU feedback-controls the valve opening of the upper throttle and the valve opening of the lower throttle.
 一方、ステップS140における判定で、目標凝縮器出口SC(TSC)と凝縮器出口SC(T)との差の絶対値が、SC誤差基準値より小さい場合、ECUは処理を一旦終了し、所定の制御時間経過後に再び上記の制御処理を開始する。 On the other hand, if it is determined in step S140 that the absolute value of the difference between the target condenser outlet SC (T SC ) and the condenser outlet SC (T 2 ) is smaller than the SC error reference value, the ECU once terminates the process, and starts the above control process again after a predetermined control time has elapsed.
 なお、図4のフローチャートでは、コンプレッサ10に吸入される冷媒のSH量と凝縮器出口の冷媒のSC量を、温度のまま制御量として記載しているが、相関性のある変数や物性値を代用してもよい。例えば、そのSH量、SC量の代わりに温度・圧力から比エンタルピを算出し、それらを用いて制御してもよい。 In the flowchart of FIG. 4, the SH amount of the refrigerant sucked into the compressor 10 and the SC amount of the refrigerant at the outlet of the condenser are described as the controlled variables as they are, but correlated variables and physical property values may be used instead. For example, instead of the SH amount and SC amount, the specific enthalpy may be calculated from the temperature and pressure and used for control.
 上述した制御方法により、コンプレッサ10に吸入される冷媒のSH量の制御を行いながら、凝縮器出口の冷媒のSC量、コンプレッサ10から吐出される冷媒のSH量を最適化することで、冷房能力または暖房能力を高め、かつ、サイクルCOPを最大化できる。 By optimizing the SC amount of the refrigerant at the outlet of the condenser and the SH amount of the refrigerant discharged from the compressor 10 while controlling the SH amount of the refrigerant sucked into the compressor 10 by the control method described above, the cooling capacity or heating capacity can be increased and the cycle COP can be maximized.
 上記の制御方法は、次の考え方に基づくものである。即ち、冷凍サイクル装置において、下段絞りを、所定の運転状態におけるメインの絞り弁として考えたとき、この下段絞りの弁開度は、コンプレッサ10に吸入される冷媒のSHに応じて制御される。このとき、上段絞りが全開の状態だと、凝縮器出口の冷媒は、レシーバ30により飽和液の状態となる。これに対して、上段絞りを全開の状態から絞る(即ち、弁開度を小さくする)ことで、凝縮器にSCを取らせることができる。したがって、凝縮器出口の冷媒のエンタルピ(即ち、蒸発器入口の冷媒のエンタルピ)を下げることができるので、ヒートポンプサイクルとしての性能(即ち、冷房能力または暖房能力)が向上する。ただし、上段絞りは絞るほど、凝縮器出口のSCを増やす方向に作用するが、それと同時に高圧冷媒の圧力が上昇して、コンプレッサ10の圧縮動力が増加する。そのため、サイクルのCOPを最大化する場合は最適値が存在し、可変絞りとして制御を行うことで、冷房能力または暖房能力を高めると共に、サイクルCOPを最大化できる。 The above control method is based on the following concept. That is, in the refrigeration cycle apparatus, when the lower throttle is considered as the main throttle valve in a predetermined operating state, the valve opening degree of this lower throttle is controlled according to the SH of the refrigerant sucked into the compressor 10 . At this time, if the upper stage throttle is fully open, the refrigerant at the outlet of the condenser becomes a saturated liquid state by the receiver 30 . On the other hand, the SC can be removed by the condenser by narrowing the upper stage throttle from the fully open state (that is, reducing the valve opening degree). Therefore, the enthalpy of the refrigerant at the outlet of the condenser (that is, the enthalpy of the refrigerant at the inlet of the evaporator) can be lowered, so the performance of the heat pump cycle (that is, cooling capacity or heating capacity) is improved. However, as the upper stage throttle is narrowed, it acts in the direction of increasing the SC at the outlet of the condenser, but at the same time, the pressure of the high-pressure refrigerant rises and the compression power of the compressor 10 increases. Therefore, when maximizing the cycle COP, there is an optimum value, and by performing control as a variable throttle, the cooling capacity or heating capacity can be increased and the cycle COP can be maximized.
 上述の制御方法による作用効果を、図5を参照しつつ詳細に説明する。図5は、上述の制御方法による冷媒の挙動の一例をモリエル線図上に示した図である。 The effects of the control method described above will be described in detail with reference to FIG. FIG. 5 is a Mollier diagram showing an example of the behavior of the refrigerant according to the control method described above.
 図5において、C1~C4は、上段絞りを全開の状態として、コンプレッサ10に吸入される冷媒の吸入SH(即ち、図5のC1)が目標吸入SHとなるように下段絞りの弁開度を制御したときの冷媒の挙動を示したものである。このとき、図5のC3に示されるように、凝縮器出口の冷媒は、レシーバ30により飽和液の状態(即ち、SC=0)となる。 In FIG. 5, C1 to C4 show the behavior of the refrigerant when the valve opening of the lower throttle is controlled so that the suction SH of the refrigerant sucked into the compressor 10 (that is, C1 in FIG. 5) becomes the target suction SH with the upper throttle fully open. At this time, as indicated by C3 in FIG. 5, the refrigerant at the condenser outlet becomes a saturated liquid state (that is, SC=0) by the receiver 30 .
 これに対し、D1~D5は、コンプレッサ10に吸入される冷媒の吸入SH(即ち、図5のD1)が目標吸入SHとなるように下段絞りの弁開度を制御しつつ、上段絞りを全開の状態から絞る制御を行ったときの冷媒の挙動を示したものである。上段絞りを絞る(即ち、弁開度を小さくする)ことで凝縮器にSCを取らせることができるので、図5のD3に示される凝縮器出口の冷媒のエンタルピ、および、D5に示される蒸発器入口の冷媒のエンタルピを下げることができる。これにより、冷房能力および暖房能力が向上する。なお、D4は、レシーバ30内の冷媒の状態(即ち、飽和液)を示している。 On the other hand, D1 to D5 show the behavior of the refrigerant when the valve opening degree of the lower throttle is controlled so that the suction SH of the refrigerant sucked into the compressor 10 (that is, D1 in FIG. 5) becomes the target suction SH, and the upper throttle is controlled to be throttled from the fully open state. By narrowing the upper throttle (that is, reducing the valve opening degree), the condenser can be made to take the SC, so the enthalpy of the refrigerant at the condenser outlet indicated by D3 in FIG. 5 and the enthalpy of the refrigerant at the evaporator inlet indicated by D5 can be lowered. This improves the cooling capacity and heating capacity. D4 indicates the state of the refrigerant in the receiver 30 (that is, saturated liquid).
 ここで、冷房能力は、次の式1で表される。
 Qer=Gr×Δie ・・・(式1)
 式1において、Qerは冷房能力、Grは冷媒流量、Δieは蒸発器における冷媒のエンタルピの変化量である。
Here, the cooling capacity is represented by Equation 1 below.
Qer=Gr×Δie (Formula 1)
In Equation 1, Qer is the cooling capacity, Gr is the refrigerant flow rate, and Δie is the amount of change in refrigerant enthalpy in the evaporator.
 暖房能力は、次の式2で表される。
 Qhe=Gr×Δic ・・・(式2)
 式2において、Qheは暖房能力、Grは冷媒流量、Δicは凝縮器における冷媒のエンタルピの変化量である。
The heating capacity is represented by Equation 2 below.
Qhe=Gr×Δic (Formula 2)
In Equation 2, Qhe is the heating capacity, Gr is the refrigerant flow rate, and Δic is the amount of change in enthalpy of the refrigerant in the condenser.
 冷房時のCOPは次の式3で表され、暖房時のCOPは次の式4で表される。
 冷房時のCOP=Qer/L ・・・(式3)
 暖房時のCOP=Qhe/L ・・・(式4)
 式3、式4において、Lはコンプレッサ10の動力である。
The COP during cooling is expressed by Equation 3 below, and the COP during heating is expressed by Equation 4 below.
COP during cooling=Qer/L (Formula 3)
COP during heating=Qhe/L (Formula 4)
In Equations 3 and 4, L is the power of the compressor 10.
 上記式1~式4に示されるように、上段絞りの弁開度を制御し、凝縮器出口の冷媒のSCを大きくして、凝縮器出口の冷媒のエンタルピ(即ち、蒸発器入口の冷媒のエンタルピ)を下げることで、冷房能力および暖房能力が向上する。それと同時に、下段絞りの弁開度を制御し、コンプレッサ10に吸入される冷媒の過熱度が増大することを抑えるとともに、上段絞りの弁開度を制御し、コンプレッサ10から吐出される高圧冷媒の圧力の上昇を抑えることで、サイクルのCOPを向上できる。 As shown in the above formulas 1 to 4, the cooling capacity and the heating capacity are improved by controlling the opening degree of the upper throttle, increasing the SC of the refrigerant at the condenser outlet, and lowering the enthalpy of the refrigerant at the condenser outlet (that is, the enthalpy of the refrigerant at the evaporator inlet). At the same time, the COP of the cycle can be improved by controlling the valve opening of the lower stage throttle to suppress an increase in the degree of superheat of the refrigerant sucked into the compressor 10, and controlling the valve opening of the upper stage throttle to suppress the pressure rise of the high-pressure refrigerant discharged from the compressor 10.
 次に、本実施形態の冷凍サイクル装置が備える各構成部材の配置などについて、図6~図10を参照して説明する。なお、図6~図8では、室外熱交換器13と室内熱交換器23に風を流すための通風路80の一例を破線で示し、図8では、通風路80を流れる風の向きを矢印AF1、AF2で示している。また、図7および図8では、冷凍サイクル装置が車両等に搭載される向きとして重力方向の上下方向を両矢印で示している。また、図9において配管等に沿って記載した矢印は、暖房運転時の冷媒の流れを示しており、図10において配管等に沿って記載した矢印は、冷房運転時の冷媒の流れを示している。 Next, the arrangement of each component included in the refrigeration cycle apparatus of this embodiment will be described with reference to FIGS. 6 to 10. FIG. In FIGS. 6 to 8, an example of a ventilation passage 80 for flowing air to the outdoor heat exchanger 13 and the indoor heat exchanger 23 is shown by a broken line, and in FIG. 8, the direction of the wind flowing through the ventilation passage 80 is indicated by arrows AF1 and AF2. In FIGS. 7 and 8, the direction in which the refrigeration cycle device is mounted on a vehicle or the like is indicated by a double-headed arrow in the direction of gravity. 9 indicate the flow of the refrigerant during heating operation, and the arrows drawn along the pipes etc. in FIG. 10 indicate the flow of refrigerant during cooling operation.
 図6~図8に示すように、本実施形態の冷凍サイクル装置は、コンプレッサ10とレシーバ30とが一体に構成されている。また、第1温度圧力センサ12と第1可変絞り14とが一体に構成されている。第2温度圧力センサ22と第2可変絞り24とが一体に構成されている。さらに、室外熱交換器13と室内熱交換器23とが一体に構成されている。なお、本明細書において、複数の部材が一体に構成されているとは、複数の部材が同一の筐体内に収容されているか、或いは、複数の部材同士の一部または全部が直接またはスペーサなどを介して接続されていることをいう。 As shown in FIGS. 6 to 8, the refrigeration cycle apparatus of the present embodiment has a compressor 10 and a receiver 30 integrally configured. Also, the first temperature/pressure sensor 12 and the first variable throttle 14 are configured integrally. The second temperature pressure sensor 22 and the second variable throttle 24 are integrally constructed. Furthermore, the outdoor heat exchanger 13 and the indoor heat exchanger 23 are constructed integrally. In this specification, the phrase “a plurality of members are integrally configured” means that the plurality of members are accommodated in the same housing, or that some or all of the plurality of members are connected directly or via a spacer or the like.
 以下の説明では、コンプレッサ10とレシーバ30とを一体に構成したものを「コンプ・レシーバ構造300」という。また、第1温度圧力センサ12と第1可変絞り14とを一体に構成したものを「第1絞り弁構造100」といい、第2温度圧力センサ22と第2可変絞り24とを一体に構成したものを「第2絞り弁構造200」という。 In the following description, the integral configuration of the compressor 10 and the receiver 30 is referred to as a "compressor/receiver structure 300". Further, the first temperature/pressure sensor 12 and the first variable throttle 14 are integrally constructed as a "first throttle valve structure 100", and the second temperature/pressure sensor 22 and the second variable throttle 24 are integrally constructed as a "second throttle valve structure 200".
 第1絞り弁構造100と第2絞り弁構造200とは、同一の構成である。このように、同じものを2個使用したシステム構成とすることで新規部品が減らせるため、低コストにできる。 The first throttle valve structure 100 and the second throttle valve structure 200 have the same configuration. By adopting a system configuration using two identical parts in this way, the number of new parts can be reduced, and the cost can be reduced.
 また、第1絞り弁構造100および第2絞り弁構造200と、コンプ・レシーバ構造300とは隣接して配置されている。これにより、第1絞り弁構造100および第2絞り弁構造200と、コンプ・レシーバ構造300とを接続する配管等の構成を簡素にできる。 Also, the first throttle valve structure 100, the second throttle valve structure 200, and the comp receiver structure 300 are arranged adjacent to each other. As a result, it is possible to simplify the configuration of the piping connecting the first throttle valve structure 100 and the second throttle valve structure 200 and the compressor receiver structure 300 .
 さらに、室外熱交換器13は室内熱交換器23の重力方向下側に配置されている。そして、室内熱交換器23を通過する空気中の水蒸気が凝縮した凝縮水が、重力により室外熱交換器13の有するチューブまたはフィンの外壁面に供給されるように構成されている。そのため、冷房運転動作時において、室内熱交換器23で生成される凝縮水により、室外熱交換器13の有するチューブまたはフィンを冷却することで、室外熱交換器13の放熱効果を高め、冷房性能を向上することができる。 Furthermore, the outdoor heat exchanger 13 is arranged below the indoor heat exchanger 23 in the direction of gravity. Condensed water obtained by condensing water vapor in the air passing through the indoor heat exchanger 23 is supplied to the outer wall surface of the tubes or fins of the outdoor heat exchanger 13 by gravity. Therefore, during the cooling operation, the condensed water generated in the indoor heat exchanger 23 cools the tubes or fins of the outdoor heat exchanger 13, thereby enhancing the heat radiation effect of the outdoor heat exchanger 13 and improving the cooling performance.
 以上説明した第1実施形態の冷凍サイクル装置は、次の作用効果を奏するものである。
 (1)第1実施形態の冷凍サイクル装置は、暖房運転動作時に、コンプレッサ10の第1開口11に吸入される冷媒が所定の過熱度のガス冷媒となるよう、第1温度圧力センサ12で検出される温度および圧力に応じて第1可変絞り14の弁開度が制御される。それと共に、室内熱交換器23から流出する冷媒が所定の過冷却度の液冷媒となるよう、第2温度圧力センサ22で検出される温度および圧力に応じて、第2可変絞り24の弁開度が制御される。
 また、この冷凍サイクル装置は、冷房運転動作時に、コンプレッサ10の第2開口21に吸入される冷媒が所定の過熱度のガス冷媒となるよう、第2温度圧力センサ22で検出される温度および圧力に応じて第2可変絞り24の弁開度が制御される。それと共に、室外熱交換器13から流出する冷媒が所定の過冷却度の液冷媒となるよう、第1温度圧力センサ12で検出される温度および圧力に応じて、第1可変絞り14の弁開度が制御される。
The refrigeration cycle apparatus of the first embodiment described above has the following effects.
(1) In the refrigeration cycle apparatus of the first embodiment, the valve opening degree of the first variable throttle 14 is controlled according to the temperature and pressure detected by the first temperature and pressure sensor 12 so that the refrigerant sucked into the first opening 11 of the compressor 10 becomes a gas refrigerant having a predetermined degree of superheat during the heating operation. At the same time, the valve opening degree of the second variable throttle 24 is controlled according to the temperature and pressure detected by the second temperature and pressure sensor 22 so that the refrigerant flowing out of the indoor heat exchanger 23 becomes liquid refrigerant with a predetermined degree of supercooling.
Further, in this refrigeration cycle apparatus, the valve opening degree of the second variable throttle 24 is controlled according to the temperature and pressure detected by the second temperature and pressure sensor 22 so that the refrigerant sucked into the second opening 21 of the compressor 10 becomes a gas refrigerant with a predetermined degree of superheat during cooling operation. At the same time, the valve opening of the first variable throttle 14 is controlled according to the temperature and pressure detected by the first temperature and pressure sensor 12 so that the refrigerant flowing out of the outdoor heat exchanger 13 becomes liquid refrigerant with a predetermined degree of supercooling.
 これによれば、この冷凍サイクル装置は、暖房運転および冷房運転の両方において、2個の温度圧力センサ12、22を用いて、2個の可変絞り14、24の開度をする。具体的には、コンプレッサ10に吸入される冷媒の吸入SHとコンプレッサ10から吐出される冷媒の吐出SHを調整しつつ、さらに室内熱交換器23および室外熱交換器13のうち凝縮器として機能する熱交換器から流出する冷媒の凝縮器出口SCを調整可能である。従って、この冷凍サイクル装置は、1個のレシーバ30、2個の温度圧力センサ12、22、2個の可変絞り14、24というように部品点数を少なくすることで構成を簡素化し、体格を小型化でき、加えて、冷房能力及び暖房能力を向上し、COPを向上できる。 According to this, this refrigeration cycle apparatus uses two temperature pressure sensors 12, 22 to adjust the opening of two variable throttles 14, 24 in both heating operation and cooling operation. Specifically, while adjusting the intake SH of the refrigerant sucked into the compressor 10 and the discharge SH of the refrigerant discharged from the compressor 10, it is possible to adjust the condenser outlet SC of the refrigerant flowing out of the heat exchanger functioning as a condenser among the indoor heat exchanger 23 and the outdoor heat exchanger 13. Therefore, this refrigeration cycle apparatus can simplify the configuration by reducing the number of parts such as one receiver 30, two temperature pressure sensors 12, 22, and two variable throttles 14, 24, and can be downsized. In addition, the cooling capacity and the heating capacity can be improved, and the COP can be improved.
 さらに、この冷凍サイクル装置は、暖房運転動作と冷房運転動作の両方を実行可能な両回転コンプレッサを用いることにより、上述した特許文献1のようなコンプレッサと4方弁とを組み合わせた構成に比べて、部品点数を低減し、体格を小型化することができる。 Furthermore, this refrigeration cycle apparatus uses a bi-rotating compressor that can perform both heating operation and cooling operation, thereby reducing the number of parts and downsizing compared to a configuration in which a compressor and a four-way valve are combined as in Patent Document 1 described above.
 (2)第1実施形態では、第1可変絞り14と第2可変絞り24はいずれも電子膨張弁である。そして、ECUは、第1温度圧力センサ12で検出される温度および圧力に応じて、第1可変絞り14の弁開度を制御し、第2温度圧力センサ22で検出される温度および圧力に応じて、第2可変絞り24の弁開度を制御する。
 これによれば、冷凍サイクル装置は、モリエル線図上に表した冷媒挙動において、第1組と第2組とが、コンプレッサ10とレシーバ30の軸を挟んで対称に配置される構成である。そのため、この冷凍サイクル装置は、冷房運転と暖房運転とを切り替えたときに、同じロジックで制御可能となるので、ECUの制御容量を削減でき、制御回路を小型化できる。
 また、この冷凍サイクル装置は、第1可変絞り14と第2可変絞り24に電子膨張弁を用いることで、冷凍サイクル装置に対する種々の要求に対応する運転を実行できる。冷凍サイクル装置に対する種々の要求に対応する運転として、例えば、冷房能力又は暖房能力を優先するシーン、COPを優先するシーン、或いは、冷房能力または暖房能力とCOPとの両方を優先するシーンなどがある。
(2) In the first embodiment, both the first variable throttle 14 and the second variable throttle 24 are electronic expansion valves. Then, the ECU controls the valve opening degree of the first variable throttle 14 according to the temperature and pressure detected by the first temperature/pressure sensor 12, and controls the valve opening degree of the second variable throttle 24 according to the temperature and pressure detected by the second temperature/pressure sensor 22.
According to this, the refrigerating cycle device has a structure in which the first set and the second set are arranged symmetrically with respect to the axis of the compressor 10 and the receiver 30 in terms of the behavior of the refrigerant represented on the Mollier diagram. Therefore, this refrigeration cycle apparatus can be controlled by the same logic when switching between the cooling operation and the heating operation, so that the control capacity of the ECU can be reduced and the control circuit can be downsized.
In addition, by using electronic expansion valves for the first variable throttle 14 and the second variable throttle 24, this refrigeration cycle apparatus can perform operations corresponding to various demands of the refrigeration cycle apparatus. Examples of operations corresponding to various requests for the refrigeration cycle apparatus include a scene in which priority is given to cooling capacity or heating capacity, a scene in which priority is given to COP, or a scene in which both cooling capacity or heating capacity and COP are given priority.
 (3)第1実施形態では、ECUは、暖房運転動作時に、各種情報に基づき、室内熱交換器23から流出する冷媒の過冷却度を演算する。このときの各種情報は、第2温度圧力センサ22で検出される温度および圧力、コンプレッサ10から吐出される冷媒流量、室内熱交換器23に供給される空気の風量および吸込空気温度を含んでいる。そして、ECUは、室内熱交換器23から流出する冷媒が目標とする所定の過冷却度の液冷媒となるよう、第2可変絞り24の弁開度を制御する。
 また、ECUは、冷房運転動作時に、各種情報に基づき、室外熱交換器13から流出する冷媒の過冷却度を演算する。このときの各種情報は、第1温度圧力センサ12で検出される温度および圧力、コンプレッサ10から吐出される冷媒流量、室外熱交換器13に供給される空気の風量および吸込空気温度を含んでいる。そして、ECUは、室外熱交換器13から流出する冷媒が目標とする所定の過冷却度の液冷媒となるよう、第1可変絞り14の弁開度を制御する。
 これによれば、ECUは、暖房運転および冷房運転の両方において、2個という少ない数の温度圧力センサ12、22を用いて、2個の可変絞り14、24の開度を制御することができる。
(3) In the first embodiment, the ECU calculates the degree of subcooling of the refrigerant flowing out of the indoor heat exchanger 23 based on various information during the heating operation. Various information at this time includes the temperature and pressure detected by the second temperature and pressure sensor 22, the refrigerant flow rate discharged from the compressor 10, the air flow rate supplied to the indoor heat exchanger 23, and the intake air temperature. Then, the ECU controls the valve opening degree of the second variable throttle 24 so that the refrigerant flowing out of the indoor heat exchanger 23 becomes liquid refrigerant with a predetermined target degree of supercooling.
Further, the ECU calculates the degree of supercooling of the refrigerant flowing out of the outdoor heat exchanger 13 based on various information during the cooling operation. Various information at this time includes the temperature and pressure detected by the first temperature and pressure sensor 12, the refrigerant flow rate discharged from the compressor 10, the air flow rate supplied to the outdoor heat exchanger 13, and the intake air temperature. Then, the ECU controls the valve opening degree of the first variable throttle 14 so that the refrigerant flowing out of the outdoor heat exchanger 13 becomes liquid refrigerant with a predetermined target degree of supercooling.
According to this, the ECU can control the opening degrees of the two variable throttles 14, 24 using a small number of temperature pressure sensors 12, 22 in both the heating operation and the cooling operation.
 (4)第1実施形態では、ECUは、暖房運転動作の開始時に、第2可変絞り24の弁開度を大きくした状態で第1可変絞り14の弁開度を制御した後、第2可変絞り24の弁開度を制御しつつ第1可変絞り14の弁開度も制御する。また、ECUは、冷房運転動作の開始時に、第1可変絞り14の弁開度を大きくした状態で第2可変絞り24の弁開度を制御した後、第1可変絞り14の弁開度を制御しつつ第2可変絞り24の弁開度も制御する。
 これによれば、ECUは暖房運転開始時に、第1可変絞り14の弁開度の制御によりコンプレッサ10に吸入される冷媒の過熱度を調整した上で、第2可変絞り24の弁開度を制御し、凝縮器として機能する室内熱交換器23から流出する冷媒の過冷却度を調整する。そのため、ECUは、第2可変絞り24の制御により、室内熱交換器23から流出する冷媒の過冷却度を大きくして暖房能力を高めることが可能である。また、ECUは、第1可変絞り14の制御によりコンプレッサ10に液冷媒が吸入されることや、コンプレッサ10に吸入される冷媒の過熱度が高くなりすぎることを防ぐ。また、ECUは、第2可変絞り24の制御により、コンプレッサ10から吐出される高圧冷媒の圧力の上昇を抑える。これにより、サイクルのCOPを向上できる。
 また、ECUは冷房運転開始時に、第2可変絞り24の弁開度の制御によりコンプレッサ10に吸入される冷媒の過熱度を調整した上で、第1可変絞り14の弁開度を制御し、凝縮器として機能する室外熱交換器13から流出する冷媒の過冷却度を調整する。そのため、ECUは、第1可変絞り14の制御により、室外熱交換器13から流出する冷媒の過冷却度を大きくして冷房能力を高めることが可能である。また、ECUは、第2可変絞り24の制御によりコンプレッサ10に液冷媒が吸入されることや、コンプレッサ10に吸入される冷媒の過熱度が高くなりすぎることを防ぐ。また、ECUは、第1可変絞り14の制御により、コンプレッサ10から吐出される高圧冷媒の圧力の上昇を抑える。これにより、サイクルのCOPを向上できる。
 したがって、この冷凍サイクル装置は、冷房能力又は暖房能力を優先するシーン、COPを優先するシーン、或いは、冷房能力または暖房能力とCOPとの両方を優先するシーンなど、冷凍サイクル装置に対する種々の要求に対応する運転を実行できる。
(4) In the first embodiment, at the start of the heating operation, the ECU controls the valve opening of the first variable throttle 14 while increasing the valve opening of the second variable throttle 24, and then controls the valve opening of the first variable throttle 14 while controlling the valve opening of the second variable throttle 24. Further, at the start of cooling operation, the ECU controls the valve opening degree of the second variable throttle 24 with the valve opening degree of the first variable throttle 14 increased, and then controls the valve opening degree of the second variable throttle 24 while controlling the valve opening degree of the first variable throttle 14. - 特許庁
According to this, when the heating operation is started, the ECU adjusts the degree of superheat of the refrigerant sucked into the compressor 10 by controlling the valve opening of the first variable throttle 14, and then controls the valve opening of the second variable throttle 24 to adjust the degree of subcooling of the refrigerant flowing out from the indoor heat exchanger 23 functioning as a condenser. Therefore, by controlling the second variable throttle 24, the ECU can increase the degree of supercooling of the refrigerant flowing out of the indoor heat exchanger 23 to increase the heating capacity. In addition, the ECU prevents liquid refrigerant from being sucked into the compressor 10 by controlling the first variable throttle 14 and prevents the refrigerant sucked into the compressor 10 from becoming too superheated. The ECU also controls the second variable throttle 24 to suppress the pressure rise of the high-pressure refrigerant discharged from the compressor 10 . Thereby, the COP of the cycle can be improved.
Further, when the cooling operation is started, the ECU adjusts the degree of superheat of the refrigerant sucked into the compressor 10 by controlling the opening degree of the second variable throttle 24, and then controls the opening degree of the first variable throttle 14 to adjust the degree of subcooling of the refrigerant flowing out from the outdoor heat exchanger 13 functioning as a condenser. Therefore, by controlling the first variable throttle 14, the ECU can increase the degree of subcooling of the refrigerant flowing out of the outdoor heat exchanger 13 to increase the cooling capacity. In addition, the ECU prevents the liquid refrigerant from being sucked into the compressor 10 by controlling the second variable throttle 24 and prevents the refrigerant sucked into the compressor 10 from becoming too superheated. Further, the ECU controls the pressure increase of the high-pressure refrigerant discharged from the compressor 10 by controlling the first variable throttle 14 . Thereby, the COP of the cycle can be improved.
Therefore, this refrigeration cycle device can perform operations corresponding to various requests to the refrigeration cycle device, such as a scene in which priority is given to cooling capacity or heating capacity, a scene in which COP is given priority, or a scene in which both cooling capacity or heating capacity and COP are given priority.
 (5)第1実施形態では、冷媒の温度および圧力の少なくとも一方を検出する機能部として、第1温度圧力センサ12および第2温度圧力センサ22のみを備えている。
 これによれば、この冷凍サイクル装置は、暖房運転および冷房運転の両方において、2個という少ない数の温度圧力センサ12、22を用いて、2個の可変絞り14、24の開度を調整することができる。
(5) In the first embodiment, only the first temperature/pressure sensor 12 and the second temperature/pressure sensor 22 are provided as functional units that detect at least one of the temperature and pressure of the refrigerant.
According to this, this refrigerating cycle apparatus can adjust the opening degrees of the two variable throttles 14, 24 using a small number of two temperature pressure sensors 12, 22 in both the heating operation and the cooling operation.
 (6)第1実施形態では、コンプレッサ10とレシーバ30とは一体に構成されている。
 これによれば、冷凍サイクル装置の体格を小型化することができる。なお、上述したように、本明細書において、複数の部材が一体に構成されているとは、複数の部材が同一の筐体内に収容されているか、或いは、複数の部材同士の一部または全部が直接またはスペーサなどを介して接続されていることをいう。
(6) In the first embodiment, the compressor 10 and the receiver 30 are integrated.
According to this, the size of the refrigeration cycle apparatus can be reduced. As described above, in this specification, a plurality of members integrally configured means that the plurality of members are accommodated in the same housing, or that some or all of the plurality of members are connected directly or via a spacer or the like.
 (7)第1実施形態では、第1温度圧力センサ12と第1可変絞り14とは一体に構成された第1絞り弁構造100であり、第2温度圧力センサ22と第2可変絞り24も一体に構成された第2絞り弁構造200である。
 これによれば、温度圧力センサと可変絞りとを一体化したものを2個使うことで、冷凍サイクル装置の構成を簡素化し、その体格を小型化することができる。また、第1絞り弁構造100と第2絞り弁構造200とは同一の構成であり、同じものを2個使用したシステム構成とすることで新規部品が減らせるため、低コストにできる。
(7) In the first embodiment, the first temperature/pressure sensor 12 and the first variable throttle 14 are integrated into the first throttle valve structure 100, and the second temperature/pressure sensor 22 and the second variable throttle 24 are also integrated into the second throttle valve structure 200.
According to this, by using two units in which the temperature pressure sensor and the variable throttle are integrated, the configuration of the refrigeration cycle apparatus can be simplified and the size thereof can be reduced. In addition, the first throttle valve structure 100 and the second throttle valve structure 200 have the same configuration, and the system configuration using two of the same structure can reduce the number of new parts, thereby reducing the cost.
 (8)第1実施形態では、室内熱交換器23の重力方向下側に室外熱交換器13が配置されている。そして、室内熱交換器23を通過する空気中の水蒸気が凝縮した凝縮水が重力により室外熱交換器13の有するチューブまたはフィンの外壁面に供給されるように構成されている。
 これによれば、冷房運転動作時において室内熱交換器23を通過する空気中の水蒸気が凝縮した凝縮水により、室外熱交換器13の有するチューブまたはフィンを冷却することで、室外熱交換器13の放熱効果を高め、冷房性能を向上することができる。
(8) In the first embodiment, the outdoor heat exchanger 13 is arranged below the indoor heat exchanger 23 in the direction of gravity. Condensed water obtained by condensing water vapor in the air passing through the indoor heat exchanger 23 is supplied to the outer wall surface of the tubes or fins of the outdoor heat exchanger 13 by gravity.
According to this, the tubes or fins of the outdoor heat exchanger 13 are cooled by the condensed water obtained by condensing the water vapor in the air passing through the indoor heat exchanger 23 during the cooling operation, so that the heat dissipation effect of the outdoor heat exchanger 13 can be enhanced and the cooling performance can be improved.
 (第2実施形態)
 第2実施形態について説明する。第2実施形態は、第1実施形態に対して温度圧力センサと可変絞りの構成を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
(Second embodiment)
A second embodiment will be described. The second embodiment differs from the first embodiment in the configuration of the temperature pressure sensor and the variable throttle, and is otherwise the same as the first embodiment. Therefore, only the differences from the first embodiment will be described.
 図11に示すように、第2実施形態においても、第1温度圧力センサ12と第1可変絞り14とは一体化され、第1絞り弁構造100を構成している。また、第2温度圧力センサ22と第2可変絞り24とは一体化され、第2絞り弁構造200を構成している。図12に、第1絞り弁構造100の具体例を示し、図13に、第2絞り弁構造200の具体例を示す。図12および図13に示すように、第1可変絞り14と第2可変絞り24はいずれも機械式膨張弁である。温度圧力センサ12、22は、その機械式膨張弁の動作を制御する感温部である。 As shown in FIG. 11, also in the second embodiment, the first temperature/pressure sensor 12 and the first variable throttle 14 are integrated to constitute the first throttle valve structure 100. As shown in FIG. Also, the second temperature/pressure sensor 22 and the second variable throttle 24 are integrated to form a second throttle valve structure 200 . FIG. 12 shows a specific example of the first throttle valve structure 100, and FIG. 13 shows a specific example of the second throttle valve structure 200. As shown in FIG. As shown in FIGS. 12 and 13, both the first variable throttle 14 and the second variable throttle 24 are mechanical expansion valves. The temperature and pressure sensors 12, 22 are temperature sensing parts that control the operation of the mechanical expansion valves.
 第2実施形態の説明では、第1可変絞り14を「第1機械式膨張弁140」といい、第1温度圧力センサ12を「第1感温部120」という。第1機械式膨張弁140は、第1感温部120で検出される温度および圧力に応じて、弁開度が機械的に制御される構成となっている。また、第2可変絞り24を「第2機械式膨張弁240」といい、第2温度圧力センサ22を「第2感温部220」という。第2機械式膨張弁240は、第2感温部220で検出される温度および圧力に応じて、弁開度が機械的に制御される構成となっている。 In the description of the second embodiment, the first variable throttle 14 is called "first mechanical expansion valve 140", and the first temperature pressure sensor 12 is called "first temperature sensing part 120". The first mechanical expansion valve 140 is configured such that the degree of valve opening is mechanically controlled according to the temperature and pressure detected by the first temperature sensing portion 120 . Further, the second variable throttle 24 is called "second mechanical expansion valve 240", and the second temperature pressure sensor 22 is called "second temperature sensing part 220". The second mechanical expansion valve 240 is configured such that the degree of valve opening is mechanically controlled according to the temperature and pressure detected by the second temperature sensing portion 220 .
 図12を参照しつつ、第1絞り弁構造100の構成について説明する。
 第1絞り弁構造100は、筐体としてのボデー部50に、第1機械式膨張弁140と第1感温部120とが設けられている。ボデー部50には、第1感温部120側に設けられた感温部側冷媒通路51と、第1機械式膨張弁140側に設けられた弁部側冷媒通路52とが形成されている。感温部側冷媒通路51の一端511はコンプレッサ10の第1開口11に連通し、感温部側冷媒通路51の他端512は室外熱交換器13に連通している。感温部側冷媒通路51の途中に、第1感温部120が設けられている。
The configuration of the first throttle valve structure 100 will be described with reference to FIG. 12 .
The first throttle valve structure 100 is provided with a first mechanical expansion valve 140 and a first temperature sensing section 120 in a body section 50 as a housing. The body portion 50 is formed with a temperature sensing portion side refrigerant passage 51 provided on the first temperature sensing portion 120 side and a valve portion side refrigerant passage 52 provided on the first mechanical expansion valve 140 side. One end 511 of the temperature sensing part side refrigerant passage 51 communicates with the first opening 11 of the compressor 10 , and the other end 512 of the temperature sensing part side refrigerant passage 51 communicates with the outdoor heat exchanger 13 . A first temperature sensing portion 120 is provided in the middle of the temperature sensing portion side refrigerant passage 51 .
 一方、弁部側冷媒通路52の一端521はレシーバ30に連通し、弁部側冷媒通路52の他端522は室外熱交換器13に連通している。弁部側冷媒通路52の途中に設けられた弁室520に、第1機械式膨張弁140を構成する第1弁座141および第1弁体142などが設けられている。 On the other hand, one end 521 of the valve-side refrigerant passage 52 communicates with the receiver 30 , and the other end 522 of the valve-side refrigerant passage 52 communicates with the outdoor heat exchanger 13 . A first valve seat 141 , a first valve body 142 , and the like, which constitute the first mechanical expansion valve 140 , are provided in a valve chamber 520 provided in the middle of the valve section side refrigerant passage 52 .
 第1感温部120は、ダイヤフラム121、カバー122、作動部材125および作動棒126などを備えている。ダイヤフラム121とカバー122により、感温媒体が封入される封入空間123が形成されている。感温媒体として、例えば、冷凍サイクルと同一の冷媒が気液混合状態で封入されている。ダイヤフラム121に対して封入空間123とは反対側に、感温部側冷媒通路51から穴127を通じて冷媒が導入される導入空間124が形成されている。導入空間124に作動部材125が配置されており、その作動部材125に作動棒126が固定されている。作動棒126は、その一端が作動部材125に固定され、中央部がボデー部50に設けられた穴53を挿通し、他端が第1機械式膨張弁140を構成する第1弁体142に当接している。封入空間123の感温媒体は、導入空間124の冷媒からの伝熱により圧力が変化する。そのため、ダイヤフラム121は、封入空間123の感温媒体と導入空間124の冷媒との差圧に応じて変位する。そのダイヤフラム121と共に作動部材125と作動棒126が変位し、第1弁体142を動作させる。 The first temperature sensing section 120 includes a diaphragm 121, a cover 122, an operating member 125, an operating rod 126, and the like. Diaphragm 121 and cover 122 form an enclosed space 123 in which a temperature-sensitive medium is enclosed. As the temperature-sensitive medium, for example, the same refrigerant as in the refrigeration cycle is sealed in a gas-liquid mixture state. An introduction space 124 is formed on the side of the diaphragm 121 opposite to the sealed space 123 , into which the refrigerant is introduced from the temperature-sensing-side refrigerant passage 51 through a hole 127 . An actuating member 125 is arranged in the introduction space 124 and an actuating rod 126 is fixed to the actuating member 125 . The actuating rod 126 has one end fixed to the actuating member 125 , a central portion inserted through the hole 53 provided in the body portion 50 , and the other end abutting against the first valve body 142 constituting the first mechanical expansion valve 140 . The pressure of the temperature-sensitive medium in the enclosed space 123 changes due to heat transfer from the coolant in the introduction space 124 . Therefore, the diaphragm 121 is displaced according to the differential pressure between the temperature-sensitive medium in the enclosure space 123 and the coolant in the introduction space 124 . The operating member 125 and operating rod 126 are displaced together with the diaphragm 121 to operate the first valve body 142 .
 第1機械式膨張弁140は、第1弁座141、第1弁体142、スプリング143などを備えている。第1弁座141、第1弁体142、スプリング143は、弁部側冷媒通路52の途中に設けられた弁室520に設けられている。第1弁座141は、弁室520の内壁面の一部に形成されている。第1弁体142は、第1弁座141に対してレシーバ30側の通路に設けられており、第1弁座141に着座および離座可能である。スプリング143は、第1弁体142を第1弁座141側に付勢している。スプリング143の付勢力は調整ねじ144により調整可能である。第1感温部120の作動棒126がスプリング143の付勢力に抗して第1弁体142を移動させ、第1弁体142が第1弁座141から離座する構成となっている。このように、第1機械式膨張弁140は、第1感温部120で検出される温度および圧力に応じて弁開度が機械的に制御される。 The first mechanical expansion valve 140 includes a first valve seat 141, a first valve body 142, a spring 143 and the like. The first valve seat 141 , the first valve body 142 , and the spring 143 are provided in a valve chamber 520 provided in the middle of the valve section side refrigerant passage 52 . The first valve seat 141 is formed on part of the inner wall surface of the valve chamber 520 . The first valve body 142 is provided in a passage on the side of the receiver 30 with respect to the first valve seat 141 and can be seated on and separated from the first valve seat 141 . A spring 143 biases the first valve body 142 toward the first valve seat 141 . The biasing force of spring 143 can be adjusted by adjusting screw 144 . The actuating rod 126 of the first temperature sensing part 120 moves the first valve body 142 against the biasing force of the spring 143 , and the first valve body 142 is separated from the first valve seat 141 . In this manner, the first mechanical expansion valve 140 is mechanically controlled in valve opening according to the temperature and pressure detected by the first temperature sensing section 120 .
 次に、図13を参照しつつ、第2絞り弁構造200の構成について説明する。第2絞り弁構造200の構成は、上述した第1絞り弁構造100の構成と実質的に同一である。 Next, the configuration of the second throttle valve structure 200 will be described with reference to FIG. The configuration of the second throttle valve structure 200 is substantially the same as the configuration of the first throttle valve structure 100 described above.
 第2絞り弁構造200は、筐体としてのボデー部60に、第2機械式膨張弁240と第2感温部220とが設けられている。ボデー部60には、第2感温部220側に設けられた感温部側冷媒通路61と、第2機械式膨張弁240側に設けられた弁部側冷媒通路62とが形成されている。感温部側冷媒通路61の一端611はコンプレッサ10の第2開口21に連通し、感温部側冷媒通路61の他端612は室内熱交換器23に連通している。感温部側冷媒通路61の途中に、第2感温部220が設けられている。 In the second throttle valve structure 200, a second mechanical expansion valve 240 and a second temperature sensing section 220 are provided in a body section 60 as a housing. The body portion 60 is formed with a temperature sensing portion side refrigerant passage 61 provided on the second temperature sensing portion 220 side and a valve portion side refrigerant passage 62 provided on the second mechanical expansion valve 240 side. One end 611 of the temperature sensing part side refrigerant passage 61 communicates with the second opening 21 of the compressor 10 , and the other end 612 of the temperature sensing part side refrigerant passage 61 communicates with the indoor heat exchanger 23 . A second temperature sensing portion 220 is provided in the middle of the temperature sensing portion side refrigerant passage 61 .
 一方、弁部側冷媒通路62の一端621はレシーバ30に連通し、弁部側冷媒通路62の他端622は室内熱交換器23に連通している。弁部側冷媒通路62の途中に設けられた弁室620に、第2機械式膨張弁240を構成する第2弁座241および第2弁体242などが設けられている。 On the other hand, one end 621 of the valve-side refrigerant passage 62 communicates with the receiver 30 , and the other end 622 of the valve-side refrigerant passage 62 communicates with the indoor heat exchanger 23 . A second valve seat 241 , a second valve body 242 , and the like, which constitute a second mechanical expansion valve 240 , are provided in a valve chamber 620 provided in the middle of the valve section side refrigerant passage 62 .
 第2感温部220は、ダイヤフラム221、カバー222、作動部材225および作動棒226などを備えている。ダイヤフラム221とカバー222により、感温媒体が封入される封入空間223が形成されている。感温媒体として、例えば、冷凍サイクルと同一の冷媒が気液混合状態で封入されている。ダイヤフラム221に対して封入空間223とは反対側に、感温部側冷媒通路61から穴227を通じて冷媒が導入される導入空間224が形成されている。導入空間224に作動部材225が配置されており、その作動部材225に作動棒226が固定されている。作動棒226は、その一端が作動部材225に固定され、中央部がボデー部60に設けられた穴63を挿通し、他端が第2機械式膨張弁240を構成する第2弁体242に当接している。封入空間223の感温媒体は、導入空間224の冷媒からの伝熱により圧力が変化する。そのため、ダイヤフラム221は、封入空間223の感温媒体と導入空間224の冷媒との差圧に応じて変位する。そのダイヤフラム221と共に作動部材225と作動棒226が変位し、第2弁体242を動作させる。 The second temperature sensing section 220 includes a diaphragm 221, a cover 222, an operating member 225, an operating rod 226, and the like. Diaphragm 221 and cover 222 form an enclosed space 223 in which a temperature-sensitive medium is enclosed. As the temperature-sensitive medium, for example, the same refrigerant as in the refrigeration cycle is sealed in a gas-liquid mixture state. On the opposite side of the diaphragm 221 to the sealed space 223 , an introduction space 224 is formed into which the refrigerant is introduced from the temperature sensing section side refrigerant passage 61 through a hole 227 . An actuating member 225 is arranged in the introduction space 224 and an actuating rod 226 is fixed to the actuating member 225 . The actuating rod 226 has one end fixed to the actuating member 225 , a central portion inserted through a hole 63 provided in the body portion 60 , and the other end abutting a second valve body 242 that constitutes the second mechanical expansion valve 240 . The pressure of the temperature-sensitive medium in the enclosed space 223 changes due to heat transfer from the coolant in the introduction space 224 . Therefore, the diaphragm 221 is displaced according to the differential pressure between the temperature-sensitive medium in the enclosure space 223 and the coolant in the introduction space 224 . The operating member 225 and the operating rod 226 are displaced together with the diaphragm 221 to operate the second valve body 242 .
 第2機械式膨張弁240は、第2弁座241、第2弁体242、スプリング243などを備えている。第2弁座241、第2弁体242、スプリング243は、弁部側冷媒通路62の途中に設けられた弁室620に設けられている。第2弁座241は、弁室620の内壁面の一部に形成されている。第2弁体242は、第2弁座241に対してレシーバ30側の通路に設けられており、第2弁座241に着座および離座可能である。スプリング243は、第2弁体242を第2弁座241側に付勢している。スプリング243の付勢力は調整ねじ244により調整可能である。第2感温部220の作動棒226がスプリング243の付勢力に抗して第2弁体242を移動させ、第2弁体242が第2弁座241から離座する構成となっている。このように、第2機械式膨張弁240は、第2感温部220で検出される温度および圧力に応じて弁開度が機械的に制御される。 The second mechanical expansion valve 240 includes a second valve seat 241, a second valve body 242, a spring 243 and the like. The second valve seat 241 , the second valve body 242 and the spring 243 are provided in a valve chamber 620 provided in the middle of the valve section side refrigerant passage 62 . The second valve seat 241 is formed on part of the inner wall surface of the valve chamber 620 . The second valve body 242 is provided in the passage on the side of the receiver 30 with respect to the second valve seat 241 and can be seated on and separated from the second valve seat 241 . A spring 243 biases the second valve body 242 toward the second valve seat 241 side. The biasing force of spring 243 can be adjusted by adjusting screw 244 . The actuating rod 226 of the second temperature sensing part 220 moves the second valve body 242 against the biasing force of the spring 243 , and the second valve body 242 is separated from the second valve seat 241 . In this manner, the opening degree of the second mechanical expansion valve 240 is mechanically controlled according to the temperature and pressure detected by the second temperature sensing section 220 .
 上記のとおり、第1絞り弁構造100と第2絞り弁構造200とは実質的に同一の構成である。暖房運転時では、第1絞り弁構造100が下段絞りとなり、第2絞り弁構造200が上段絞りとなる。一方、冷房運転時では、第1絞り弁構造100が上段絞りとなり、第2絞り弁構造200が下段絞りとなる。第1絞り弁構造100と第2絞り弁構造200は、感温部120、220の封入空間123、223に封入される感温媒体の特性と、機械式膨張弁のスプリング143、243の付勢力とが適切に調整される。これにより、第1絞り弁構造100と第2絞り弁構造200の作動により、凝縮器出口の冷媒において所望の凝縮器出口SCが取れると共に、コンプレッサ10に吸入される冷媒において所望の吸入SHが取れるものとなる。 As described above, the first throttle valve structure 100 and the second throttle valve structure 200 have substantially the same configuration. During heating operation, the first throttle valve structure 100 becomes the lower stage throttle, and the second throttle valve structure 200 becomes the upper stage throttle. On the other hand, during cooling operation, the first throttle valve structure 100 serves as an upper throttle, and the second throttle valve structure 200 serves as a lower throttle. In the first throttle valve structure 100 and the second throttle valve structure 200, the characteristics of the temperature-sensitive medium enclosed in the enclosed spaces 123, 223 of the temperature-sensitive portions 120, 220 and the biasing forces of the springs 143, 243 of the mechanical expansion valves are appropriately adjusted. As a result, the operation of the first throttle valve structure 100 and the second throttle valve structure 200 allows the refrigerant at the condenser outlet to have a desired condenser outlet SC and the refrigerant sucked into the compressor 10 to have a desired intake SH.
 ところで、冷凍サイクル装置を起動した瞬間、或いは、冷媒の流れ方向を反転した瞬間に、コンプレッサ10から吐出される高圧冷媒と、上段絞りよりも下流側の冷媒との圧力差が過大になることがある。そのため、仮に、上段絞りを構成する機械式膨張弁の弁座が弁体に対してレシーバ30側に配置されていると、その上段絞りが圧力差によって意図せず閉弁してしまうことが考えられる。 By the way, the moment the refrigeration cycle device is started or the moment the refrigerant flow direction is reversed, the pressure difference between the high-pressure refrigerant discharged from the compressor 10 and the refrigerant downstream of the upper throttle may become excessive. Therefore, if the valve seat of the mechanical expansion valve forming the upper throttle is arranged on the receiver 30 side with respect to the valve body, the upper throttle may be closed unintentionally due to the pressure difference.
 そこで、第2実施形態では、第1機械式膨張弁140および第2機械式膨張弁240はいずれも、弁座141、241に対してレシーバ30側に弁体142、242が配置されている。これにより、冷凍サイクル装置を起動した瞬間、或いは、冷媒の流れ方向を反転した瞬間に上段絞りが意図せず閉弁してしまうことを防ぐことができる。なお、図示は省略するが、機械式膨張弁140、240を迂回するバイパス流路を設けることによっても上段絞りが意図せず閉弁してしまうことを防ぐことができる。 Therefore, in the second embodiment, both the first mechanical expansion valve 140 and the second mechanical expansion valve 240 have the valve bodies 142 and 242 arranged on the receiver 30 side with respect to the valve seats 141 and 241 . As a result, it is possible to prevent the upper throttle from being unintentionally closed at the moment the refrigeration cycle device is started or at the moment the flow direction of the refrigerant is reversed. Although not shown, it is possible to prevent the upper throttle from unintentionally closing by providing a bypass flow path that bypasses the mechanical expansion valves 140 and 240 .
 以上説明したように、第2実施形態では、第1可変絞り14は第1機械式膨張弁140であり、第1温度圧力センサ12は、第1機械式膨張弁140の動作を制御する第1感温部120である。また、第2可変絞り24は第2機械式膨張弁240であり、第2温度圧力センサ22は、第2機械式膨張弁240の動作を制御する第2感温部220である。
 これによれば、第1可変絞り14と第2可変絞り24に機械式膨張弁を使用することで、第1可変絞り14とECUとの配線、および、第2可変絞り24とECUとの配線が不要となり、構成を簡素にして、低コストにすることができる。
As described above, in the second embodiment, the first variable throttle 14 is the first mechanical expansion valve 140, and the first temperature/pressure sensor 12 is the first temperature sensing section 120 that controls the operation of the first mechanical expansion valve 140. The second variable throttle 24 is a second mechanical expansion valve 240 , and the second temperature/pressure sensor 22 is a second temperature sensing section 220 that controls the operation of the second mechanical expansion valve 240 .
According to this, by using the mechanical expansion valves for the first variable throttle 14 and the second variable throttle 24, the wiring between the first variable throttle 14 and the ECU and the wiring between the second variable throttle 24 and the ECU become unnecessary, so that the configuration can be simplified and the cost can be reduced.
 なお、第2実施形態で説明した第1弁座141に対してレシーバ30側に第1弁体142を配置する構成は、第1実施形態で説明した第1可変絞り14(即ち、電子膨張弁)に適用してもよい。また、第2実施形態で説明した第2弁座241に対してレシーバ30側に第2弁体242を配置する構成は、第1実施形態で説明した第2可変絞り24(即ち、電子膨張弁)に適用してもよい。 The configuration in which the first valve body 142 is arranged on the receiver 30 side with respect to the first valve seat 141 described in the second embodiment may be applied to the first variable throttle 14 (that is, the electronic expansion valve) described in the first embodiment. Also, the arrangement of disposing the second valve body 242 on the receiver 30 side with respect to the second valve seat 241 described in the second embodiment may be applied to the second variable throttle 24 (that is, the electronic expansion valve) described in the first embodiment.
 (第3実施形態)
 第3実施形態について説明する。第3実施形態は、第1実施形態等に対してコンプレッサ10の構成を変更したものであり、その他については第1実施形態等と同様であるため、第1実施形態等と異なる部分についてのみ説明する。
(Third embodiment)
A third embodiment will be described. 3rd Embodiment changes the structure of the compressor 10 with respect to 1st Embodiment etc., and since it is the same as that of 1st Embodiment etc. about others, only a different part from 1st Embodiment etc. is demonstrated.
 図14に示すように、第3実施形態の冷凍サイクル装置が備えるコンプレッサ10は、冷媒を圧縮する複数の圧縮機構部101、102を有している。複数の圧縮機構部101、102は、電動モータ103により回転駆動される。電動モータ103は、正方向および逆方向の両方向に回転可能である。したがって、コンプレッサ10は、電動式の両回転コンプレッサである。圧縮機構部101、102として、例えばロータリベーン型、ローリングピストン型など種々の形式のものを使用することができる。コンプレッサ10が有する複数の圧縮機構部101、102のうち一方の圧縮機構部を第1圧縮機構部101と呼び、他方の圧縮機構部を第2圧縮機構部102と呼ぶ。第1圧縮機構部101と第2圧縮機構部102とは回転の位相が180°ずれている。なお、回転の位相が180°ずれているとは、実質的に180°であればよく、製造公差などを含むものである。 As shown in FIG. 14, the compressor 10 included in the refrigeration cycle apparatus of the third embodiment has a plurality of compression mechanism units 101 and 102 that compress refrigerant. The plurality of compression mechanisms 101 and 102 are rotationally driven by an electric motor 103 . The electric motor 103 is rotatable in both forward and reverse directions. Compressor 10 is therefore an electric, bi-rotating compressor. As the compression mechanisms 101 and 102, various types such as a rotary vane type and a rolling piston type can be used. One of the plurality of compression mechanism units 101 and 102 of the compressor 10 is called a first compression mechanism unit 101 and the other compression mechanism unit is called a second compression mechanism unit 102 . The rotation phases of the first compression mechanism portion 101 and the second compression mechanism portion 102 are out of phase by 180°. It should be noted that the phase shift of 180 degrees of rotation may be substantially 180 degrees, and includes manufacturing tolerances and the like.
 第1圧縮機構部101と第2圧縮機構部102は、コンプレッサ10内の冷媒通路等により並列に接続されている。コンプレッサ10は、正回転と逆回転を切り替えることで、暖房運転動作と冷房運転動作を実行することが可能である。図14では、コンプレッサ10が暖房運転動作を実行する際に冷媒の流れる方向を破線矢印で示し、コンプレッサ10が冷房運転動作を実行する際に冷媒の流れる方向を実線矢印で示している。 The first compression mechanism section 101 and the second compression mechanism section 102 are connected in parallel by a refrigerant passage or the like inside the compressor 10 . The compressor 10 can perform heating operation and cooling operation by switching between forward rotation and reverse rotation. In FIG. 14 , dashed arrows indicate the direction of refrigerant flow when compressor 10 performs the heating operation, and solid arrows indicate the direction of refrigerant flow when compressor 10 performs the cooling operation.
 図15は、第3実施形態の冷凍サイクル装置が冷房運転を実行する際の冷媒の挙動の一例をモリエル線図上に示したものである。なお、E1~E4の位置は、コンプレッサ10の回転数、第1可変絞り14および第2可変絞り24の弁開度、室外ファン15および室内ファン25の回転数、外気温度、車室内温度など、種々の条件により変わるものである。 FIG. 15 is a Mollier diagram showing an example of the behavior of the refrigerant when the refrigeration cycle apparatus of the third embodiment performs cooling operation. The positions of E1 to E4 vary depending on various conditions such as the number of rotations of the compressor 10, the opening degrees of the first variable throttle 14 and the second variable throttle 24, the number of rotations of the outdoor fan 15 and the indoor fan 25, the outside air temperature, and the vehicle interior temperature.
 E1は、冷房運転時に蒸発器として機能する室内熱交換器23から流出し、コンプレッサ10の第1圧縮機構部101と第2圧縮機構部102に吸入される冷媒の状態を示している。E2は、コンプレッサ10の第1圧縮機構部101と第2圧縮機構部102から吐出され、冷房運転時に凝縮器として機能する室外熱交換器13に流入する冷媒の状態を示している。E3は、その凝縮器として機能する室外熱交換器13から流出し、第1可変絞り14に流入する冷媒の状態を示している。E4は、第2可変絞り24から流出し、蒸発器として機能する室内熱交換器23に流入する冷媒の状態を示している。 E1 indicates the state of the refrigerant that flows out from the indoor heat exchanger 23 that functions as an evaporator during cooling operation and is sucked into the first compression mechanism section 101 and the second compression mechanism section 102 of the compressor 10 . E2 indicates the state of refrigerant discharged from the first compression mechanism portion 101 and the second compression mechanism portion 102 of the compressor 10 and flowing into the outdoor heat exchanger 13 functioning as a condenser during cooling operation. E3 indicates the state of the refrigerant that flows out from the outdoor heat exchanger 13 functioning as its condenser and flows into the first variable throttle 14 . E4 indicates the state of the refrigerant that flows out from the second variable throttle 24 and flows into the indoor heat exchanger 23 that functions as an evaporator.
 このように、第3実施形態の冷凍サイクル装置における冷媒の挙動は、第1実施形態で説明したものと実質的に同一である。なお、第3実施形態の冷凍サイクル装置が暖房運転を実行する際の冷媒の挙動も、図15に対し、第1組と第2組とが、レシーバ30とコンプレッサ10とを軸として高圧側と低圧側で入れ替わったものであるので、図示を省略する。したがって、第3実施形態の冷凍サイクル装置も、第1実施形態の冷凍サイクル装置と同様の作用効果を奏することができる。 Thus, the behavior of the refrigerant in the refrigeration cycle device of the third embodiment is substantially the same as that described in the first embodiment. Note that the behavior of the refrigerant when the refrigeration cycle apparatus of the third embodiment performs the heating operation also changes between the first set and the second set on the high pressure side and the low pressure side with the receiver 30 and the compressor 10 as the axes, so illustration is omitted. Therefore, the refrigerating cycle device of the third embodiment can also achieve the same effects as the refrigerating cycle device of the first embodiment.
 さらに、第3実施形態の冷凍サイクル装置では、コンプレッサ10が、冷媒を圧縮する複数の圧縮機構部101、102を有している。そして、複数の圧縮機構部101、102のうち第1圧縮機構部101と第2圧縮機構部102の回転の位相が180°ずれている。なお、上述したように、回転の位相が180°ずれているとは、実質的に180°であればよく、製造公差などを含むものである。
 これによれば、コンプレッサ10の振動や騒音を低減することができる。
Furthermore, in the refrigeration cycle apparatus of the third embodiment, the compressor 10 has a plurality of compression mechanism units 101 and 102 for compressing the refrigerant. Among the plurality of compression mechanism portions 101 and 102, the rotation phases of the first compression mechanism portion 101 and the second compression mechanism portion 102 are shifted by 180°. As described above, the phase shift of 180 degrees of rotation may be substantially 180 degrees, and includes manufacturing tolerances and the like.
According to this, the vibration and noise of the compressor 10 can be reduced.
 (第4実施形態)
 第4実施形態について説明する。第4実施形態も、第1実施形態等に対してコンプレッサ10の構成を変更したものであり、その他については第1実施形態等と同様であるため、第1実施形態等と異なる部分についてのみ説明する。
(Fourth embodiment)
A fourth embodiment will be described. 4th Embodiment also changes the structure of the compressor 10 with respect to 1st Embodiment etc., and since it is the same as that of 1st Embodiment etc. about others, only a different part from 1st Embodiment etc. is demonstrated.
 図16に示すように、第4実施形態の冷凍サイクル装置が備えるコンプレッサ10も、第3実施形態と同様に、第1圧縮機構部101と第2圧縮機構部102を有する両回転コンプレッサである。そのため、この冷凍サイクル装置も、コンプレッサ10の正回転と逆回転を切り替えることで、暖房運転動作と冷房運転動作を実行することが可能である。図16でも、コンプレッサ10が暖房運転動作を実行する際に冷媒の流れる方向を破線矢印で示し、コンプレッサ10が冷房運転動作を実行する際に冷媒の流れる方向を実線矢印で示している。 As shown in FIG. 16, the compressor 10 included in the refrigeration cycle apparatus of the fourth embodiment is also a dual rotary compressor having a first compression mechanism section 101 and a second compression mechanism section 102, like the third embodiment. Therefore, this refrigeration cycle apparatus can also perform heating operation and cooling operation by switching the forward rotation and reverse rotation of the compressor 10 . In FIG. 16 as well, the direction of refrigerant flow when the compressor 10 performs the heating operation is indicated by the dashed arrow, and the direction of the refrigerant flow when the compressor 10 performs the cooling operation is indicated by the solid arrow.
 第4実施形態では、第1圧縮機構部101と第2圧縮機構部102は、コンプレッサ10内の冷媒通路等により直列に接続されている。具体的には、コンプレッサ10は、冷房運転動作において、第1圧縮機構部101に吸入、圧縮、吐出された冷媒が、第2圧縮機構部102に吸入、圧縮、吐出される構成となっている。また、コンプレッサ10は、暖房運転動作において、第2圧縮機構部102に吸入、圧縮、吐出された冷媒が、第1圧縮機構部101に吸入、圧縮、吐出される構成となっている。 In the fourth embodiment, the first compression mechanism section 101 and the second compression mechanism section 102 are connected in series by a refrigerant passage or the like inside the compressor 10 . Specifically, the compressor 10 is configured such that refrigerant sucked, compressed, and discharged by the first compression mechanism portion 101 is sucked, compressed, and discharged by the second compression mechanism portion 102 in the cooling operation. Further, the compressor 10 is configured such that the refrigerant sucked, compressed, and discharged to the second compression mechanism portion 102 is sucked, compressed, and discharged to the first compression mechanism portion 101 during the heating operation.
 第4実施形態では、レシーバ30に貯留される冷媒のうちガス冷媒のみがレシーバ30から第1圧縮機構部101と第2圧縮機構部102の中間段104、105に供給される構成となっている。第4実施形態でも、コンプレッサ10とレシーバ30とは、一体に構成された「コンプ・レシーバ構造300」となっている。そのため、コンプレッサ10とレシーバ30とを接続する配管等の構成を簡素なものとし、体格を小型化できる。 In the fourth embodiment, of the refrigerant stored in the receiver 30, only gas refrigerant is supplied from the receiver 30 to the intermediate stages 104 and 105 of the first compression mechanism section 101 and the second compression mechanism section 102. In the fourth embodiment as well, the compressor 10 and the receiver 30 are integrally configured as a "compressor/receiver structure 300". Therefore, the configuration of the piping connecting the compressor 10 and the receiver 30 can be simplified, and the size can be reduced.
 図17は、第4実施形態の冷凍サイクル装置が冷房運転を実行する際の冷媒の挙動の一例をモリエル線図上に示したものである。なお、F1~F7の位置は、コンプレッサ10の回転数、第1可変絞り14および第2可変絞り24の弁開度、室外ファン15および室内ファン25の回転数、外気温度、車室内温度など、種々の条件により変わるものである。 FIG. 17 is a Mollier diagram showing an example of the behavior of the refrigerant when the refrigeration cycle apparatus of the fourth embodiment performs cooling operation. The positions of F1 to F7 vary depending on various conditions such as the rotation speed of the compressor 10, the valve opening degrees of the first variable throttle 14 and the second variable throttle 24, the rotation speeds of the outdoor fan 15 and the indoor fan 25, the outside air temperature, and the vehicle interior temperature.
 F1は、冷房運転時に蒸発器として機能する室内熱交換器23から流出し、コンプレッサ10の第1圧縮機構部101に吸入される冷媒の状態を示している。F2は、第1圧縮機構部101から吐出される冷媒の状態を示している。F3は、第2圧縮機構部102に吸入される冷媒の状態を示している。このF3では、レシーバ30内のガス冷媒が第1圧縮機構部101と第2圧縮機構部102の中間段104、105に供給されるので、F2に比べて比エンタルピが低下している。 F1 indicates the state of the refrigerant that flows out from the indoor heat exchanger 23 that functions as an evaporator during cooling operation and is drawn into the first compression mechanism section 101 of the compressor 10 . F2 indicates the state of the refrigerant discharged from the first compression mechanism section 101 . F3 indicates the state of refrigerant sucked into the second compression mechanism portion 102 . In F3, the gas refrigerant in the receiver 30 is supplied to the intermediate stages 104 and 105 of the first compression mechanism section 101 and the second compression mechanism section 102, so the specific enthalpy is lower than in F2.
 F4は、第2圧縮機構部102から吐出され、冷房運転時に凝縮器として機能する室外熱交換器13に流入する冷媒の状態を示している。F5は、その凝縮器として機能する室外熱交換器13から流出し、第1可変絞り14に流入する冷媒の状態を示している。F6は、レシーバ30内の冷媒の状態を示している。F7は、第2可変絞り24から流出し、蒸発器として機能する室内熱交換器23に流入する冷媒の状態を示している。 F4 indicates the state of the refrigerant discharged from the second compression mechanism section 102 and flowing into the outdoor heat exchanger 13 functioning as a condenser during cooling operation. F5 indicates the state of the refrigerant flowing out of the outdoor heat exchanger 13 functioning as its condenser and flowing into the first variable throttle 14 . F6 indicates the state of the refrigerant in the receiver 30; F7 indicates the state of the refrigerant that flows out from the second variable throttle 24 and flows into the indoor heat exchanger 23 that functions as an evaporator.
 なお、第4実施形態の冷凍サイクル装置が暖房運転を実行する際の冷媒の挙動も、図17に対し、第1組と第2組とが、レシーバ30とコンプレッサ10とを軸として高圧側と低圧側で入れ替わったものであるので、図示を省略する。 The behavior of the refrigerant when the refrigeration cycle apparatus of the fourth embodiment performs the heating operation is also the same as in FIG. 17, since the first set and the second set are exchanged on the high pressure side and the low pressure side with the receiver 30 and the compressor 10 as the axes, illustration is omitted.
 以上説明した第4実施形態の冷凍サイクル装置は、2段圧縮式のコンプレッサ10の中間段104、105にレシーバ30のガス冷媒を供給することで、複数の圧縮機構部のうち高圧側の圧縮機構部で圧縮される冷媒の比エンタルピを下げることが可能である。そのため、コンプレッサ10の動力を低減すると共に、コンプレッサ10から吐出される冷媒の比エンタルピを下げることで、冷房性能および暖房性能を向上し、COPを向上することができる。 In the refrigeration cycle apparatus of the fourth embodiment described above, by supplying the gas refrigerant of the receiver 30 to the intermediate stages 104 and 105 of the two-stage compression compressor 10, it is possible to lower the specific enthalpy of the refrigerant compressed by the compression mechanism section on the high pressure side among the plurality of compression mechanism sections. Therefore, by reducing the power of the compressor 10 and lowering the specific enthalpy of the refrigerant discharged from the compressor 10, the cooling performance and the heating performance can be improved, and the COP can be improved.
 さらに、第4実施形態では、コンプレッサ10とレシーバ30とを一体に構成することで、コンプレッサ10とレシーバ30とを接続する配管等を省略するか、配管等を短くすることが可能である。したがって、冷凍サイクル装置の構成を簡素化し、その体格を小型化することができる。 Furthermore, in the fourth embodiment, by integrally configuring the compressor 10 and the receiver 30, it is possible to omit the piping or the like connecting the compressor 10 and the receiver 30 or to shorten the piping or the like. Therefore, it is possible to simplify the configuration of the refrigeration cycle apparatus and reduce its size.
 (第5実施形態)
 第5実施形態について説明する。第5実施形態は、第1実施形態等に対して温度圧力センサの構成を変更したものであり、その他については第1実施形態等と同様であるため、第1実施形態等と異なる部分についてのみ説明する。
(Fifth embodiment)
A fifth embodiment will be described. The fifth embodiment is different from the first embodiment, etc. in the configuration of the temperature pressure sensor, and is otherwise the same as the first embodiment, so only the parts different from the first embodiment, etc. will be described.
 図18に示すように、第5実施形態の冷凍サイクル装置は、第1実施形態等で説明した第1温度圧力センサ12と第2温度圧力センサ22に加えて、第3温度圧力センサ17と第4温度圧力センサ27を備えている。第3温度圧力センサ17は、室外熱交換器13と第1可変絞り14との間に設けられ、そこを流れる冷媒の温度および圧力の少なくとも一方を検出するセンサである。また、第4温度圧力センサ27は、室内熱交換器23と第2可変絞り24との間に設けられ、そこを流れる冷媒の温度および圧力の少なくとも一方を検出するセンサである。 As shown in FIG. 18, the refrigeration cycle apparatus of the fifth embodiment includes a third temperature/pressure sensor 17 and a fourth temperature/pressure sensor 27 in addition to the first temperature/pressure sensor 12 and the second temperature/pressure sensor 22 described in the first embodiment. The third temperature/pressure sensor 17 is a sensor that is provided between the outdoor heat exchanger 13 and the first variable throttle 14 and detects at least one of the temperature and pressure of the refrigerant flowing therethrough. A fourth temperature/pressure sensor 27 is provided between the indoor heat exchanger 23 and the second variable throttle 24 and detects at least one of the temperature and pressure of the refrigerant flowing therethrough.
 第3温度圧力センサ17と第4温度圧力センサ27が検出した冷媒の温度および圧力は、それぞれECUに伝送される。ECUは、第3温度圧力センサ17と第4温度圧力センサ27からの出力により、暖房運転および冷房運転の両方において、凝縮器から流出する冷媒の過冷却度を直接検出することが可能である。 The temperature and pressure of the refrigerant detected by the third temperature/pressure sensor 17 and the fourth temperature/pressure sensor 27 are respectively transmitted to the ECU. The ECU can directly detect the degree of supercooling of the refrigerant flowing out of the condenser in both the heating operation and the cooling operation by the output from the third temperature/pressure sensor 17 and the fourth temperature/pressure sensor 27 .
 そのため、ECUは、暖房運転動作時に、第1~第4実施形態で説明した第2温度圧力センサ22に代えて第4温度圧力センサ27で検出される温度および圧力に応じて、第2可変絞り24の弁開度を制御する。それと共に、ECUは、暖房運転動作時に、第1温度圧力センサ12で検出される温度および圧力に応じて第1可変絞り14の弁開度を制御する。 Therefore, during the heating operation, the ECU controls the valve opening of the second variable throttle 24 according to the temperature and pressure detected by the fourth temperature and pressure sensor 27 instead of the second temperature and pressure sensor 22 described in the first to fourth embodiments. At the same time, the ECU controls the opening degree of the first variable throttle 14 according to the temperature and pressure detected by the first temperature/pressure sensor 12 during the heating operation.
 一方、ECUは、冷房運転動作時に、第1~第4実施形態で説明した第1温度圧力センサ12に代えて第3温度圧力センサ17で検出される温度および圧力に応じて、第1可変絞り14の弁開度を制御する。それと共に、ECUは、冷房運転動作時に、第2温度圧力センサ22で検出される温度および圧力に応じて第2可変絞り24の弁開度を制御する。 On the other hand, during the cooling operation, the ECU controls the valve opening of the first variable throttle 14 according to the temperature and pressure detected by the third temperature and pressure sensor 17 instead of the first temperature and pressure sensor 12 described in the first to fourth embodiments. At the same time, the ECU controls the valve opening degree of the second variable throttle 24 according to the temperature and pressure detected by the second temperature/pressure sensor 22 during cooling operation.
 以上説明した第5実施形態の冷凍サイクル装置は、冷媒の温度および圧力の少なくとも一方を検出する機能部として、4個の温度圧力センサ12、17、22、27を備えている。これにより、ECUの演算負荷を低減できる。 The refrigeration cycle apparatus of the fifth embodiment described above has four temperature/ pressure sensors 12, 17, 22, and 27 as functional units that detect at least one of the temperature and pressure of the refrigerant. Thereby, the calculation load of the ECU can be reduced.
 (第6実施形態)
 第6実施形態について説明する。第6実施形態は、第1実施形態等に対してコンプレッサ10の構成を変更し、流路切替弁70を追加したものであり、その他については第1実施形態等と同様であるため、第1実施形態等と異なる部分についてのみ説明する。
(Sixth embodiment)
A sixth embodiment will be described. In the sixth embodiment, the structure of the compressor 10 is changed from the first embodiment and the like, and a flow path switching valve 70 is added. Since the rest is the same as the first embodiment and the like, only the parts different from the first embodiment and the like will be described.
 図19および図20に示すように、第6実施形態の冷凍サイクル装置では、コンプレッサ10は、冷媒を第1開口11から吸入し、圧縮して第2開口21から吐出する動作のみを行うものである。 As shown in FIGS. 19 and 20, in the refrigeration cycle apparatus of the sixth embodiment, the compressor 10 only performs the operation of sucking the refrigerant through the first opening 11, compressing it, and discharging it through the second opening 21.
 流路切替弁70は、コンプレッサ10と室内熱交換器23とを接続する流路の途中、およびコンプレッサ10と室外熱交換器13とを接続する流路の途中に跨って設けられた4方弁である。流路切替弁70は、ECUにより駆動制御される。第6実施形態では、ECUが流路切替弁70を駆動制御し、コンプレッサ10と熱交換器13、23との間の冷媒の流れを切り替えることで、暖房運転と冷房運転を実行することが可能である。 The flow path switching valve 70 is a four-way valve provided midway along the flow path that connects the compressor 10 and the indoor heat exchanger 23 and over the middle of the flow path that connects the compressor 10 and the outdoor heat exchanger 13 . The passage switching valve 70 is driven and controlled by the ECU. In the sixth embodiment, the ECU drives and controls the flow path switching valve 70 to switch the refrigerant flow between the compressor 10 and the heat exchangers 13 and 23, thereby performing the heating operation and the cooling operation.
 図19に示すように、暖房運転では、コンプレッサ10の第2開口21から吐出された冷媒が流路切替弁70、室内熱交換器23、第2可変絞り24、レシーバ30、第1可変絞り14、室外熱交換器13、流路切替弁70の順に流れてコンプレッサ10の第1開口11に吸入される。一方、図20に示すように、冷房運転では、コンプレッサ10の第2開口21から吐出された冷媒が流路切替弁70、室外熱交換器13、第1可変絞り14、レシーバ30、第2可変絞り24、室内熱交換器23、流路切替弁70の順に流れてコンプレッサ10の第1開口11に吸入される。 As shown in FIG. 19, in the heating operation, the refrigerant discharged from the second opening 21 of the compressor 10 flows through the flow path switching valve 70, the indoor heat exchanger 23, the second variable throttle 24, the receiver 30, the first variable throttle 14, the outdoor heat exchanger 13, and the flow path switching valve 70 in this order and is sucked into the first opening 11 of the compressor 10. On the other hand, as shown in FIG. 20, in the cooling operation, the refrigerant discharged from the second opening 21 of the compressor 10 flows through the flow path switching valve 70, the outdoor heat exchanger 13, the first variable throttle 14, the receiver 30, the second variable throttle 24, the indoor heat exchanger 23, and the flow path switching valve 70 in this order and is sucked into the first opening 11 of the compressor 10.
 第1温度圧力センサ12は、コンプレッサ10の第1開口11と流路切替弁70との間に設けられる。第2温度圧力センサ22は、コンプレッサ10の第2開口21と流路切替弁70との間に設けられる。第1温度圧力センサ12と第2温度圧力センサ22が検出した冷媒の温度および圧力は、それぞれECUに伝送される。 The first temperature-pressure sensor 12 is provided between the first opening 11 of the compressor 10 and the flow path switching valve 70 . The second temperature/pressure sensor 22 is provided between the second opening 21 of the compressor 10 and the flow path switching valve 70 . The temperature and pressure of the refrigerant detected by the first temperature-pressure sensor 12 and the second temperature-pressure sensor 22 are respectively transmitted to the ECU.
 図19に示した暖房運転時において、ECUは、コンプレッサ10の第1開口11に吸入される冷媒が所定のSHとなるよう、第1温度圧力センサ12が検出した温度および圧力に応じて第1可変絞り14の弁開度を制御する。それと共に、ECUは、室内熱交換器23から流出する冷媒が所定のSCとなるよう、第2温度圧力センサ22が検出した温度および圧力に応じて、第2可変絞り24の弁開度を制御する。 During the heating operation shown in FIG. 19, the ECU controls the valve opening of the first variable throttle 14 according to the temperature and pressure detected by the first temperature and pressure sensor 12 so that the refrigerant sucked into the first opening 11 of the compressor 10 has a predetermined SH. At the same time, the ECU controls the valve opening degree of the second variable throttle 24 according to the temperature and pressure detected by the second temperature/pressure sensor 22 so that the refrigerant flowing out of the indoor heat exchanger 23 has a predetermined SC.
 一方、図20に示した冷房運転時において、ECUは、コンプレッサ10の第1開口11に吸入される冷媒が所定のSHとなるよう、第1温度圧力センサ12が検出した温度および圧力に応じて第2可変絞り24の弁開度を制御する。それと共に、ECUは、室外熱交換器13から流出する冷媒が所定のSCとなるよう、第2温度圧力センサ22が検出した温度および圧力に応じて、第1可変絞り14の弁開度を制御する。 On the other hand, during the cooling operation shown in FIG. 20, the ECU controls the valve opening of the second variable throttle 24 according to the temperature and pressure detected by the first temperature and pressure sensor 12 so that the refrigerant sucked into the first opening 11 of the compressor 10 has a predetermined SH. At the same time, the ECU controls the opening degree of the first variable throttle 14 according to the temperature and pressure detected by the second temperature/pressure sensor 22 so that the refrigerant flowing out of the outdoor heat exchanger 13 has a predetermined SC.
 以上説明した第6実施形態の構成においても、第1実施形態等と同一の作用効果を奏することが可能である。 With the configuration of the sixth embodiment described above, it is possible to achieve the same effects as those of the first embodiment and the like.
 (第6実施形態の変形例)
 上述した第6実施形態に対する変形例として、図示は省略するが、第1温度圧力センサ12を、流路切替弁70と室外熱交換器13との間に設けてもよい。また、第2温度圧力センサ22を、流路切替弁70と室内熱交換器23との間に設けてもよい。
(Modified example of the sixth embodiment)
As a modification of the sixth embodiment described above, although not shown, the first temperature/pressure sensor 12 may be provided between the flow path switching valve 70 and the outdoor heat exchanger 13 . Also, the second temperature/pressure sensor 22 may be provided between the flow path switching valve 70 and the indoor heat exchanger 23 .
 その場合、暖房運転時において、ECUは、コンプレッサ10の第1開口11に吸入される冷媒が所定のSHとなるよう、第1温度圧力センサ12が検出した温度および圧力に応じて第1可変絞り14の弁開度を制御する。それと共に、ECUは、室内熱交換器23から流出する冷媒が所定のSCとなるよう、第2温度圧力センサ22が検出した温度および圧力に応じて、第2可変絞り24の弁開度を制御する。 In that case, during heating operation, the ECU controls the valve opening degree of the first variable throttle 14 according to the temperature and pressure detected by the first temperature and pressure sensor 12 so that the refrigerant sucked into the first opening 11 of the compressor 10 has a predetermined SH. At the same time, the ECU controls the valve opening degree of the second variable throttle 24 according to the temperature and pressure detected by the second temperature/pressure sensor 22 so that the refrigerant flowing out of the indoor heat exchanger 23 has a predetermined SC.
 一方、冷房運転時において、ECUは、コンプレッサ10の第1開口11に吸入される冷媒が所定のSHとなるよう、第2温度圧力センサ22が検出した温度および圧力に応じて第2可変絞り24の弁開度を制御する。それと共に、ECUは、室外熱交換器13から流出する冷媒が所定のSCとなるよう、第1温度圧力センサ12が検出した温度および圧力に応じて、第1可変絞り14の弁開度を制御する。 On the other hand, during cooling operation, the ECU controls the valve opening degree of the second variable throttle 24 according to the temperature and pressure detected by the second temperature and pressure sensor 22 so that the refrigerant sucked into the first opening 11 of the compressor 10 has a predetermined SH. At the same time, the ECU controls the opening degree of the first variable throttle 14 according to the temperature and pressure detected by the first temperature/pressure sensor 12 so that the refrigerant flowing out of the outdoor heat exchanger 13 has a predetermined SC.
 この第6実施形態の変形例においても、第1実施形態等と同一の作用効果を奏することが可能である。 Also in this modification of the sixth embodiment, it is possible to achieve the same effects as those of the first embodiment and the like.
 (他の実施形態)
 (1)他の実施形態として、コンプレッサ10の第1開口11と第1温度圧力センサ12とを一体化してもよく、コンプレッサの第2開口21と第2温度圧力センサ22とを一体化してもよい。これにより、組付け工数を低減できる。
(Other embodiments)
(1) As another embodiment, the first opening 11 of the compressor 10 and the first temperature/pressure sensor 12 may be integrated, or the second opening 21 and the second temperature/pressure sensor 22 of the compressor may be integrated. As a result, the number of assembling man-hours can be reduced.
 (2)また、他の実施形態として、電子膨張弁として構成された第1可変絞り14と第1温度圧力センサ12とを一体化した1つのモジュールとしてもよい。また、電子膨張弁として構成された第2可変絞り24と第2温度圧力センサ22とを一体化した1つのモジュールとしてもよい。これにより、組付け工数を低減できる。 (2) As another embodiment, the first variable throttle 14 configured as an electronic expansion valve and the first temperature/pressure sensor 12 may be integrated into one module. Alternatively, the second variable throttle 24 configured as an electronic expansion valve and the second temperature/pressure sensor 22 may be integrated into one module. As a result, the number of assembling man-hours can be reduced.
 本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されるものではない。また、上記実施形態において、センサから車両の外部環境情報(例えば車外の湿度)を取得することが記載されている場合、そのセンサを廃し、車両の外部のサーバまたはクラウドからその外部環境情報を受信することも可能である。あるいは、そのセンサを廃し、車両の外部のサーバまたはクラウドからその外部環境情報に関連する関連情報を取得し、取得した関連情報からその外部環境情報を推定することも可能である。 The present disclosure is not limited to the above-described embodiments, and can be modified as appropriate. Moreover, the above-described embodiments are not unrelated to each other, and can be appropriately combined unless the combination is clearly impossible. Further, in each of the above-described embodiments, it goes without saying that the elements constituting the embodiment are not necessarily essential unless explicitly stated as essential or clearly considered essential in principle. In addition, in each of the above-described embodiments, when numerical values such as the number, numerical value, amount, range, etc. of the constituent elements of the embodiment are mentioned, they are not limited to the specific numbers, except when explicitly stated as essential or when they are clearly limited to a specific number in principle. In addition, in each of the above-described embodiments, when referring to the shape, positional relationship, etc. of the constituent elements, the shape, positional relationship, etc. are not limited, except in cases where it is particularly specified and in principle limited to a specific shape, positional relationship, etc. In addition, in the above embodiment, when it is described that the external environment information of the vehicle (for example, the humidity outside the vehicle) is obtained from a sensor, the sensor can be eliminated and the external environment information can be received from a server or cloud outside the vehicle. Alternatively, it is also possible to eliminate the sensor, acquire related information related to the external environment information from a server or cloud outside the vehicle, and estimate the external environment information from the acquired related information.
 本開示に記載の制御部及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリーを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御部及びその手法は、一つ以上の専用ハードウエア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制御部及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリーと一つ以上のハードウエア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。 The controller and method described in the present disclosure may be implemented by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program. Alternatively, the controls and techniques described in this disclosure may be implemented by a dedicated computer provided by configuring the processor with one or more dedicated hardware logic circuits. Alternatively, the controls and techniques described in this disclosure may be implemented by one or more dedicated computers configured with a processor and memory programmed to perform one or more functions in combination with the processor configured by one or more hardware logic circuits. The computer program may also be stored as computer-executable instructions on a computer-readable non-transitional tangible recording medium.

Claims (15)

  1.  冷凍サイクル装置において、
     冷媒を吸入および吐出する第1開口(11)と第2開口(21)を有し、前記第1開口から吸入した冷媒を圧縮して前記第2開口から吐出する暖房運転動作と、前記第2開口から吸入した冷媒を圧縮して前記第1開口から吐出する冷房運転動作とを実行可能なコンプレッサ(10)と、
     前記コンプレッサの前記第1開口側に設けられ、室外に排出される空気と冷媒との熱交換を行う室外熱交換器(13)と、
     前記コンプレッサの前記第2開口側に設けられ、室内に吹き出される空気と冷媒との熱交換を行う室内熱交換器(23)と、
     前記室外熱交換器と前記室内熱交換器との間に設けられる貯液部としてのレシーバ(30)と、
     前記室外熱交換器と前記レシーバとの間に設けられ、冷媒の流量を調整する第1可変絞り(14)と、
     前記室内熱交換器と前記レシーバとの間に設けられ、冷媒の流量を調整する第2可変絞り(24)と、
     前記コンプレッサの前記第1開口と前記室外熱交換器との間に設けられ、冷媒の温度および圧力の少なくとも一方を検出する第1温度圧力センサ(12)と、
     前記コンプレッサの前記第2開口と前記室内熱交換器との間に設けられ、冷媒の温度および圧力の少なくとも一方を検出する第2温度圧力センサ(22)と、を備え、
     暖房運転動作時に、前記コンプレッサの前記第1開口に吸入される冷媒が所定の過熱度のガス冷媒となるよう、前記第1温度圧力センサで検出される温度および圧力に応じて前記第1可変絞りの弁開度が制御され、前記室内熱交換器から流出する冷媒が所定の過冷却度の液冷媒となるよう、前記第2温度圧力センサで検出される温度および圧力に応じて、前記第2可変絞りの弁開度が制御されるように構成されており、
     冷房運転動作時に、前記コンプレッサの前記第2開口に吸入される冷媒が所定の過熱度のガス冷媒となるよう、前記第2温度圧力センサで検出される温度および圧力に応じて前記第2可変絞りの弁開度が制御され、前記室外熱交換器から流出する冷媒が所定の過冷却度の液冷媒となるよう、前記第1温度圧力センサで検出される温度および圧力に応じて、前記第1可変絞りの弁開度が制御されるように構成されている、冷凍サイクル装置。
    In the refrigeration cycle equipment,
    a compressor (10) having a first opening (11) and a second opening (21) for sucking and discharging refrigerant, and capable of performing a heating operation of compressing the refrigerant sucked through the first opening and discharging the refrigerant through the second opening and a cooling operation of compressing the refrigerant sucked through the second opening and discharging the refrigerant through the first opening;
    an outdoor heat exchanger (13) provided on the first opening side of the compressor for performing heat exchange between the air discharged to the outside of the room and the refrigerant;
    an indoor heat exchanger (23) provided on the second opening side of the compressor for performing heat exchange between the air blown into the room and the refrigerant;
    a receiver (30) as a liquid reservoir provided between the outdoor heat exchanger and the indoor heat exchanger;
    A first variable throttle (14) provided between the outdoor heat exchanger and the receiver for adjusting the flow rate of refrigerant;
    a second variable throttle (24) provided between the indoor heat exchanger and the receiver for adjusting the flow rate of refrigerant;
    a first temperature and pressure sensor (12) provided between the first opening of the compressor and the outdoor heat exchanger for detecting at least one of temperature and pressure of refrigerant;
    a second temperature and pressure sensor (22) provided between the second opening of the compressor and the indoor heat exchanger and detecting at least one of the temperature and pressure of the refrigerant;
    During heating operation, the valve opening of the first variable throttle is controlled according to the temperature and pressure detected by the first temperature and pressure sensor so that the refrigerant sucked into the first opening of the compressor becomes a gas refrigerant having a predetermined degree of superheat, and the valve opening of the second variable throttle is controlled according to the temperature and pressure detected by the second temperature and pressure sensor so that the refrigerant flowing out of the indoor heat exchanger becomes a liquid refrigerant having a predetermined degree of subcooling.
    The refrigeration cycle apparatus is configured such that, during a cooling operation, the valve opening degree of the second variable throttle is controlled according to the temperature and pressure detected by the second temperature and pressure sensor so that the refrigerant sucked into the second opening of the compressor becomes a gas refrigerant having a predetermined degree of superheat, and the valve opening degree of the first variable throttle is controlled according to the temperature and pressure detected by the first temperature and pressure sensor so that the refrigerant flowing out from the outdoor heat exchanger becomes a liquid refrigerant having a predetermined degree of supercooling.
  2.  前記第1可変絞りと前記第2可変絞りはいずれも電子膨張弁であり、
     前記第1温度圧力センサで検出される温度および圧力に応じて、前記第1可変絞りの弁開度を制御し、前記第2温度圧力センサで検出される温度および圧力に応じて、前記第2可変絞りの弁開度を制御する電子制御装置(40)をさらに備える、請求項1に記載の冷凍サイクル装置。
    Both the first variable throttle and the second variable throttle are electronic expansion valves,
    2. The refrigeration cycle apparatus according to claim 1, further comprising an electronic control unit (40) that controls the valve opening of said first variable throttle according to the temperature and pressure detected by said first temperature and pressure sensor, and controls the valve opening of said second variable throttle according to the temperature and pressure detected by said second temperature and pressure sensor.
  3.  前記電子制御装置は、
     暖房運転動作時に、前記第2温度圧力センサで検出される温度および圧力、前記コンプレッサから吐出される冷媒流量、前記室内熱交換器に供給される空気の風量および吸込空気温度を含む情報に基づき、前記室内熱交換器から流出する冷媒の過冷却度を演算し、前記室内熱交換器から流出する冷媒が目標とする所定の過冷却度の液冷媒となるよう、前記第2可変絞りの弁開度を制御し、
     冷房運転動作時に、前記第1温度圧力センサで検出される温度および圧力、前記コンプレッサから吐出される冷媒流量、前記室外熱交換器に供給される空気の風量および吸込空気温度を含む情報に基づき、前記室外熱交換器から流出する冷媒の過冷却度を演算し、前記室外熱交換器から流出する冷媒が目標とする所定の過冷却度の液冷媒となるよう、前記第1可変絞りの弁開度を制御する、請求項2に記載の冷凍サイクル装置。
    The electronic control device is
    During heating operation, the degree of subcooling of the refrigerant flowing out of the indoor heat exchanger is calculated based on information including the temperature and pressure detected by the second temperature and pressure sensor, the flow rate of refrigerant discharged from the compressor, the flow rate of air supplied to the indoor heat exchanger, and the intake air temperature, and the valve opening degree of the second variable throttle is controlled so that the refrigerant flowing out of the indoor heat exchanger becomes a liquid refrigerant with a predetermined target degree of supercooling,
    3. The refrigeration cycle apparatus according to claim 2, wherein, during cooling operation, the degree of subcooling of refrigerant flowing out of the outdoor heat exchanger is calculated based on information including the temperature and pressure detected by the first temperature and pressure sensor, the flow rate of refrigerant discharged from the compressor, the flow rate of air supplied to the outdoor heat exchanger, and the intake air temperature, and the valve opening degree of the first variable throttle is controlled so that the refrigerant flowing out of the outdoor heat exchanger becomes liquid refrigerant with a predetermined target degree of supercooling.
  4.  前記電子制御装置は、
     暖房運転動作の開始時に、前記第2可変絞りの弁開度を大きくした状態で前記第1可変絞りの弁開度を制御した後、前記第2可変絞りの弁開度を制御しつつ前記第1可変絞りの弁開度も制御し、
     冷房運転動作の開始時に、前記第1可変絞りの弁開度を大きくした状態で前記第2可変絞りの弁開度を制御した後、前記第1可変絞りの弁開度を制御しつつ前記第2可変絞りの弁開度も制御するように構成されている、請求項2または3に記載の冷凍サイクル装置。
    The electronic control device is
    at the start of the heating operation, after controlling the valve opening of the first variable throttle with the valve opening of the second variable throttle being increased, controlling the valve opening of the first variable throttle while controlling the valve opening of the second variable throttle,
    4. The refrigeration cycle apparatus according to claim 2 or 3, wherein the valve opening of the second variable throttle is controlled while controlling the valve opening of the first variable throttle after controlling the valve opening of the second variable throttle with the valve opening of the first variable throttle being increased at the start of the cooling operation.
  5.  冷媒の温度および圧力の少なくとも一方を検出する機能部として、前記第1温度圧力センサおよび前記第2温度圧力センサのみを備えている、請求項1ないし4のいずれか1つに記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 4, comprising only the first temperature/pressure sensor and the second temperature/pressure sensor as functional units for detecting at least one of the temperature and pressure of refrigerant.
  6.  前記室外熱交換器と前記第1可変絞りとの間に設けられ、冷媒の温度および圧力の少なくとも一方を検出する第3温度圧力センサ(17)と、
     前記室内熱交換器と前記第2可変絞りとの間に設けられ、冷媒の温度および圧力の少なくとも一方を検出する第4温度圧力センサ(27)と、
     暖房運転動作時に、前記第1温度圧力センサで検出される温度および圧力に応じて前記第1可変絞りの弁開度を制御し、前記第2温度圧力センサに代えて前記第4温度圧力センサで検出される温度および圧力に応じて、前記第2可変絞りの弁開度を制御し、
     冷房運転動作時に、前記第2温度圧力センサで検出される温度および圧力に応じて前記第2可変絞りの弁開度を制御し、前記第1温度圧力センサに代えて前記第3温度圧力センサで検出される温度および圧力に応じて、前記第1可変絞りの弁開度を制御する電子制御装置と、をさらに備えている、請求項1に記載の冷凍サイクル装置。
    a third temperature and pressure sensor (17) provided between the outdoor heat exchanger and the first variable throttle for detecting at least one of the temperature and pressure of the refrigerant;
    a fourth temperature and pressure sensor (27) provided between the indoor heat exchanger and the second variable throttle for detecting at least one of the temperature and pressure of the refrigerant;
    during heating operation, controlling the valve opening of the first variable throttle according to the temperature and pressure detected by the first temperature and pressure sensor, controlling the valve opening of the second variable throttle according to the temperature and pressure detected by the fourth temperature and pressure sensor instead of the second temperature and pressure sensor,
    2. The refrigeration cycle apparatus according to claim 1, further comprising an electronic control device that controls the valve opening of said second variable throttle according to the temperature and pressure detected by said second temperature and pressure sensor during cooling operation, and controls the valve opening of said first variable throttle according to the temperature and pressure detected by said third temperature and pressure sensor instead of said first temperature and pressure sensor.
  7.  前記第1可変絞りは、冷媒通路に設けられた第1弁座(141)と、前記第1弁座に着座および離座可能な第1弁体(142)を有しており、
     前記第1弁体は、前記第1弁座に対して前記レシーバ側に配置されており、
     前記第2可変絞りは、冷媒通路に設けられた第2弁座(241)と、前記第2弁座に着座および離座可能な第2弁体(242)を有しており、
     前記第2弁体は、前記第2弁座に対して前記レシーバ側に配置されている、請求項1ないし6のいずれか1つに記載の冷凍サイクル装置。
    The first variable throttle has a first valve seat (141) provided in the refrigerant passage and a first valve body (142) that can be seated on and separated from the first valve seat,
    The first valve body is arranged on the receiver side with respect to the first valve seat,
    The second variable throttle has a second valve seat (241) provided in the refrigerant passage and a second valve body (242) that can be seated on and separated from the second valve seat,
    The refrigeration cycle apparatus according to any one of claims 1 to 6, wherein said second valve body is arranged on said receiver side with respect to said second valve seat.
  8.  前記第1可変絞りは第1機械式膨張弁(140)であり、
     前記第1温度圧力センサは、前記第1機械式膨張弁の動作を制御する第1感温部(120)であり、
     前記第1機械式膨張弁は、前記第1感温部で検出される温度および圧力に応じて、弁開度が機械的に制御される構成となっており、
     前記第2可変絞りは第2機械式膨張弁(240)であり、
     前記第2温度圧力センサは、前記第2機械式膨張弁の動作を制御する第2感温部(220)であり、
     前記第2機械式膨張弁は、前記第2感温部で検出される温度および圧力に応じて、弁開度が機械的に制御される構成となっている、請求項1に記載の冷凍サイクル装置。
    The first variable throttle is a first mechanical expansion valve (140),
    the first temperature and pressure sensor is a first temperature sensing part (120) that controls the operation of the first mechanical expansion valve;
    The opening of the first mechanical expansion valve is mechanically controlled according to the temperature and pressure detected by the first temperature sensing part,
    the second variable throttle is a second mechanical expansion valve (240),
    the second temperature and pressure sensor is a second temperature sensing part (220) that controls the operation of the second mechanical expansion valve;
    2. The refrigeration cycle apparatus according to claim 1, wherein said second mechanical expansion valve is configured such that the valve opening degree is mechanically controlled according to the temperature and pressure detected by said second temperature sensing portion.
  9.  前記コンプレッサと前記レシーバとは一体に構成されている、請求項1ないし8のいずれか1つに記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 8, wherein said compressor and said receiver are integrated.
  10.  前記第1温度圧力センサと前記第1可変絞りとは一体に構成されており、
     前記第2温度圧力センサと前記第2可変絞りとは一体に構成されている、請求項1ないし9のいずれか1つに記載の冷凍サイクル装置。
    the first temperature pressure sensor and the first variable throttle are configured integrally,
    10. The refrigeration cycle apparatus according to any one of claims 1 to 9, wherein said second temperature/pressure sensor and said second variable throttle are integrated.
  11.  前記コンプレッサと前記レシーバとは一体に構成されており、
     前記第1温度圧力センサと前記第1可変絞りとは一体に構成されており、
     前記第2温度圧力センサと前記第2可変絞りとは一体に構成されている、請求項1ないし8のいずれか1つに記載の冷凍サイクル装置。
    The compressor and the receiver are configured integrally,
    the first temperature pressure sensor and the first variable throttle are configured integrally,
    9. The refrigeration cycle apparatus according to any one of claims 1 to 8, wherein said second temperature/pressure sensor and said second variable throttle are integrated.
  12.  前記室外熱交換器は前記室内熱交換器の重力方向下側に配置されており、前記室内熱交換器を通過する空気中の水蒸気が凝縮した凝縮水が前記室外熱交換器の有するチューブまたはフィンの外壁面に供給されるように構成されている、請求項1ないし11のいずれか1つに記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 11, wherein the outdoor heat exchanger is arranged below the indoor heat exchanger in the direction of gravity, and condensed water obtained by condensing water vapor in the air passing through the indoor heat exchanger is supplied to the outer wall surface of the tubes or fins of the outdoor heat exchanger.
  13.  前記コンプレッサは、冷媒を圧縮する複数の圧縮機構部(101、102)を有しており、
     複数の前記圧縮機構部のうち第1圧縮機構部と第2圧縮機構部の回転の位相が180°ずれている、請求項1ないし12のいずれか1つに記載の冷凍サイクル装置。
    The compressor has a plurality of compression mechanism units (101, 102) for compressing refrigerant,
    The refrigeration cycle apparatus according to any one of claims 1 to 12, wherein rotation phases of a first compression mechanism portion and a second compression mechanism portion among the plurality of compression mechanism portions are out of phase by 180°.
  14.  前記コンプレッサは、前記第1圧縮機構部に吸入、圧縮、吐出された冷媒が前記第2圧縮機構部に吸入、圧縮、吐出される暖房運転動作と、前記第2圧縮機構部に吸入、圧縮、吐出された冷媒が前記第1圧縮機構部に吸入、圧縮、吐出される冷房運転動作とを実行可能な構成であり、
     前記レシーバに貯留される冷媒のうちガス冷媒が前記レシーバから前記第1圧縮機構部と前記第2圧縮機構部の中間段(104、105)に供給される構成となっており、
     前記コンプレッサと前記レシーバとは一体に構成されている、請求項13に記載の冷凍サイクル装置。
    The compressor is configured to perform a heating operation in which the refrigerant sucked, compressed, and discharged by the first compression mechanism is sucked, compressed, and discharged by the second compression mechanism, and a cooling operation in which the refrigerant sucked, compressed, and discharged by the second compression mechanism is sucked, compressed, and discharged by the first compression mechanism.
    Among the refrigerants stored in the receiver, gas refrigerant is supplied from the receiver to intermediate stages (104, 105) of the first compression mechanism and the second compression mechanism,
    14. The refrigeration cycle apparatus according to claim 13, wherein said compressor and said receiver are integrated.
  15.  冷凍サイクル装置において、
     冷媒を第1開口(11)から吸入し圧縮し第2開口(21)から吐出するコンプレッサ(10)と、
     室外に排出される空気と冷媒との熱交換を行う室外熱交換器(13)と、
     室内に吹き出される空気と冷媒との熱交換を行う室内熱交換器(23)と、
     前記室外熱交換器と前記室内熱交換器との間に設けられる貯液部としてのレシーバ(30)と、
     前記室外熱交換器と前記レシーバとの間に設けられ、冷媒の流量を調整する第1可変絞り(14)と、
     前記室内熱交換器と前記レシーバとの間に設けられ、冷媒の流量を調整する第2可変絞り(24)と、
     前記コンプレッサと前記室内熱交換器とを接続する流路の途中、及び、前記コンプレッサと前記室外熱交換器とを接続する流路の途中に跨って設けられる流路切替弁(70)であって、前記コンプレッサの前記第2開口から吐出された冷媒が前記流路切替弁、前記室内熱交換器、前記第2可変絞り、前記レシーバ、前記第1可変絞り、前記室外熱交換器、前記流路切替弁の順に流れて前記コンプレッサの前記第1開口に吸入される暖房運転動作と、前記コンプレッサの前記第2開口から吐出された冷媒が前記流路切替弁、前記室外熱交換器、前記第1可変絞り、前記レシーバ、前記第2可変絞り、前記室内熱交換器、前記流路切替弁の順に流れて前記コンプレッサの前記第1開口に吸入される冷房運転動作とを切り替える前記流路切替弁と、
     前記コンプレッサの前記第1開口と前記流路切替弁との間、または、前記流路切替弁と前記室外熱交換器と間に設けられ、冷媒の温度および圧力の少なくとも一方を検出する第1温度圧力センサ(12)と、
     前記コンプレッサの前記第2開口と前記流路切替弁との間、または、前記流路切替弁と前記室内熱交換器との間に設けられ、冷媒の温度および圧力の少なくとも一方を検出する第2温度圧力センサ(22)と、
     暖房運転動作時に、前記コンプレッサの前記第1開口に吸入される冷媒が所定の過熱度のガス冷媒となるよう、前記第1温度圧力センサと前記第2温度圧力センサのうち前記室外熱交換器の下流側のセンサで検出される温度および圧力に応じて前記第1可変絞りの弁開度を制御し、前記室内熱交換器から流出する冷媒が所定の過冷却度の液冷媒となるよう、前記第1温度圧力センサと前記第2温度圧力センサのうち前記室内熱交換器の下流側のセンサで検出される温度および圧力に応じて、前記第2可変絞りの弁開度を制御し、冷房運転動作時に、前記コンプレッサの前記第1開口に吸入される冷媒が所定の過熱度のガス冷媒となるよう、前記第1温度圧力センサと前記第2温度圧力センサのうち前記室内熱交換器の下流側のセンサで検出される温度および圧力に応じて前記第2可変絞りの弁開度を制御し、前記室外熱交換器から流出する冷媒が所定の過冷却度の液冷媒となるよう、前記第1温度圧力センサと前記第2温度圧力センサのうち前記室外熱交換器の上流側のセンサで検出される温度および圧力に応じて、前記第1可変絞りの弁開度を制御する電子制御装置(40)と、を備える冷凍サイクル装置。
    In the refrigeration cycle equipment,
    a compressor (10) for sucking refrigerant from a first opening (11), compressing it, and discharging it from a second opening (21);
    an outdoor heat exchanger (13) for exchanging heat between the air discharged to the outside and the refrigerant;
    an indoor heat exchanger (23) for exchanging heat between the air blown into the room and the refrigerant;
    a receiver (30) as a liquid reservoir provided between the outdoor heat exchanger and the indoor heat exchanger;
    A first variable throttle (14) provided between the outdoor heat exchanger and the receiver for adjusting the flow rate of refrigerant;
    a second variable throttle (24) provided between the indoor heat exchanger and the receiver for adjusting the flow rate of refrigerant;
    A flow path switching valve (70) provided in the middle of the flow path connecting the compressor and the indoor heat exchanger and in the middle of the flow path connecting the compressor and the outdoor heat exchanger, wherein the refrigerant discharged from the second opening of the compressor flows in the order of the flow switching valve, the indoor heat exchanger, the second variable throttle, the receiver, the first variable throttle, the outdoor heat exchanger, and the flow path switching valve, and is sucked into the first heating opening of the compressor. the flow path switching valve for switching between an operation operation and a cooling operation operation in which the refrigerant discharged from the second opening of the compressor flows through the flow path switching valve, the outdoor heat exchanger, the first variable throttle, the receiver, the second variable throttle, the indoor heat exchanger, and the flow path switching valve in this order and is sucked into the first opening of the compressor;
    a first temperature and pressure sensor (12) provided between the first opening of the compressor and the flow path switching valve or between the flow path switching valve and the outdoor heat exchanger for detecting at least one of refrigerant temperature and pressure;
    a second temperature and pressure sensor (22) provided between the second opening of the compressor and the flow path switching valve or between the flow path switching valve and the indoor heat exchanger for detecting at least one of refrigerant temperature and pressure;
    During a heating operation, the valve opening of the first variable throttle is controlled according to the temperature and pressure detected by the first temperature-pressure sensor and the second temperature-pressure sensor downstream of the outdoor heat exchanger so that the refrigerant sucked into the first opening of the compressor becomes a gas refrigerant having a predetermined degree of superheat. The valve opening degree of the second variable throttle is controlled according to the temperature and pressure detected by the sensor, and the valve opening degree of the second variable throttle is controlled according to the temperature and pressure detected by the first temperature and pressure sensor and the second temperature and pressure sensor, which are detected by the sensor on the downstream side of the indoor heat exchanger, so that the refrigerant sucked into the first opening of the compressor becomes gas refrigerant having a predetermined degree of superheat during cooling operation, and the refrigerant flowing out of the outdoor heat exchanger becomes liquid refrigerant having a predetermined degree of supercooling. an electronic control device (40) that controls the valve opening degree of the first variable throttle in accordance with the temperature and pressure detected by the sensor on the upstream side of the outdoor heat exchanger among the first temperature-pressure sensor and the second temperature-pressure sensor.
PCT/JP2023/001177 2022-01-24 2023-01-17 Refrigeration cycle device WO2023140249A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-008846 2022-01-24
JP2022008846A JP2023107582A (en) 2022-01-24 2022-01-24 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2023140249A1 true WO2023140249A1 (en) 2023-07-27

Family

ID=87348842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001177 WO2023140249A1 (en) 2022-01-24 2023-01-17 Refrigeration cycle device

Country Status (2)

Country Link
JP (1) JP2023107582A (en)
WO (1) WO2023140249A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61171606A (en) * 1985-01-24 1986-08-02 Matsushita Electric Ind Co Ltd Freezing device for car air conditioning equipment
JPS6213940A (en) * 1985-07-11 1987-01-22 Matsushita Seiko Co Ltd Separation type air conditioner
JP2001174091A (en) * 1999-12-15 2001-06-29 Mitsubishi Electric Corp Refrigeration cycle
JP2002195700A (en) * 2000-12-26 2002-07-10 Mitsubishi Electric Corp Refrigeration cycle device
JP2009270822A (en) * 2009-08-21 2009-11-19 Mitsubishi Electric Corp Heat pump device and outdoor unit of heat pump device
JP2010085001A (en) * 2008-09-30 2010-04-15 Daikin Ind Ltd Refrigerating device
JP2011503504A (en) * 2007-11-09 2011-01-27 キャリア コーポレイション Transport refrigeration system and method of operating the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61171606A (en) * 1985-01-24 1986-08-02 Matsushita Electric Ind Co Ltd Freezing device for car air conditioning equipment
JPS6213940A (en) * 1985-07-11 1987-01-22 Matsushita Seiko Co Ltd Separation type air conditioner
JP2001174091A (en) * 1999-12-15 2001-06-29 Mitsubishi Electric Corp Refrigeration cycle
JP2002195700A (en) * 2000-12-26 2002-07-10 Mitsubishi Electric Corp Refrigeration cycle device
JP2011503504A (en) * 2007-11-09 2011-01-27 キャリア コーポレイション Transport refrigeration system and method of operating the same
JP2010085001A (en) * 2008-09-30 2010-04-15 Daikin Ind Ltd Refrigerating device
JP2009270822A (en) * 2009-08-21 2009-11-19 Mitsubishi Electric Corp Heat pump device and outdoor unit of heat pump device

Also Published As

Publication number Publication date
JP2023107582A (en) 2023-08-03

Similar Documents

Publication Publication Date Title
JP3925545B2 (en) Refrigeration equipment
JP4725387B2 (en) Air conditioner
JP4114471B2 (en) Refrigeration cycle equipment
US11383583B2 (en) Thermal management device for vehicle
JP6361830B2 (en) Heat pump cycle
JP5556499B2 (en) Two-stage boost refrigeration cycle
JP2000346472A (en) Supercritical steam compression cycle
US20190337359A1 (en) Refrigeration cycle device
US9267720B2 (en) Air conditioner and method of controlling the same
US7536872B2 (en) High pressure control valve
JP2016090201A (en) Refrigeration cycle device
JP2008261513A (en) Refrigerating cycle device
AU2003220985A1 (en) Heat source unit of air conditioner and air conditioner
JP2007232265A (en) Refrigeration unit
JP6342084B2 (en) air conditioner
JP6467011B2 (en) air conditioner
JP2006300369A (en) Air conditioner
JP5659909B2 (en) Heat pump equipment
WO2023140249A1 (en) Refrigeration cycle device
JP2000356419A (en) Air conditioner for vehicle
AU2020360865B2 (en) A heat pump
JP2021014930A (en) Refrigeration cycle device
US20060123839A1 (en) Air conditioner and method for controlling the same
JP2008281254A (en) Refrigerating cycle device and air conditioning device for vehicle
WO2021009850A1 (en) Refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23743243

Country of ref document: EP

Kind code of ref document: A1