WO2023140241A1 - Control device, control method, and computer program - Google Patents

Control device, control method, and computer program Download PDF

Info

Publication number
WO2023140241A1
WO2023140241A1 PCT/JP2023/001133 JP2023001133W WO2023140241A1 WO 2023140241 A1 WO2023140241 A1 WO 2023140241A1 JP 2023001133 W JP2023001133 W JP 2023001133W WO 2023140241 A1 WO2023140241 A1 WO 2023140241A1
Authority
WO
WIPO (PCT)
Prior art keywords
pot
distance
pots
control device
rail
Prior art date
Application number
PCT/JP2023/001133
Other languages
French (fr)
Japanese (ja)
Inventor
賢祐 久留美
Original Assignee
ブラザー工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ブラザー工業株式会社 filed Critical ブラザー工業株式会社
Publication of WO2023140241A1 publication Critical patent/WO2023140241A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/155Arrangements for automatic insertion or removal of tools, e.g. combined with manual handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/155Arrangements for automatic insertion or removal of tools, e.g. combined with manual handling
    • B23Q3/157Arrangements for automatic insertion or removal of tools, e.g. combined with manual handling of rotary tools

Definitions

  • the present technology relates to a control device, control method, and computer program for controlling machine tools.
  • a machine tool has a vertically movable spindle head and a tool magazine (for example, Patent Document 1).
  • the tool magazine comprises a plurality of endlessly connected moving bodies. Each truck holds a plurality of gripping arms (pots) that hold tools.
  • the tool magazine moves a plurality of moving bodies along rails surrounding the spindle head to place a predetermined pot below the spindle head (indexed position).
  • the spindle head descends to mount the tool gripped by the pot on the spindle.
  • the amount of movement of the pots is calculated based on information on the length of one round of the rail and the total number of pots.
  • An object of the present invention is to provide a control device or the like capable of calculating the movement amount of the pot and controlling the movement of the pot even in a machine tool in which the pots are arranged at unequal intervals.
  • a control device is a control device for a machine tool that includes a spindle, an endless rail, and a tool magazine that includes a plurality of pots that are arranged at unequal intervals on the rail and store tools.
  • a calculation unit that calculates the amount of movement of the planned pot to the indexed position based on the acquired distance, and a control unit that performs control to move the pot along the rail based on the movement amount calculated by the calculation unit.
  • control device of one embodiment of the present disclosure in a machine tool in which pots are arranged at unequal intervals, it is possible to perform movement control for exchanging the pots arranged at the indexing position.
  • the interval includes a first interval and a second interval wider than the first interval
  • the pots are arranged so that the first interval and the second interval alternate
  • the calculator calculates the movement amount based on a first distance that is the distance of the first interval and a second distance that is the distance of the second interval.
  • control device of one embodiment of the present disclosure it is possible to perform movement control for exchanging the pot placed at the indexing position in a machine tool that is arranged so that two types of intervals alternate.
  • the information includes a number assigned to the pot and a starting point interval indicating the distance between the current pot and an adjacent pot on the upstream side in the moving direction
  • the calculating unit calculates the number of moving pots based on the numbers assigned to the current pot and the scheduled pot, and divides the distance of the starting point interval and the number of moving pots by 2 into the product of the sum of the first distance and the second distance and the quotient obtained by dividing the number of moving pots by 2.
  • the amount of movement is calculated by summing the product with the remainder.
  • the amount of movement can be calculated regardless of the distance between the pot and the adjacent pot on the moving direction side.
  • a control device includes a storage unit that stores the first distance and the second distance, and the acquisition unit acquires the first distance and the second distance from the storage unit.
  • control device of one embodiment of the present disclosure it is possible to calculate the amount of movement based on the first distance and the second distance.
  • a control device includes a storage unit that stores the distance for one round of the rail, the total number of pots, and the ratio between the first interval and the second interval, and the acquisition unit acquires the first distance and the second distance based on the distance for one round of the rail, the total number of pots, and the ratio between the first interval and the second interval.
  • control device of one embodiment of the present disclosure even when the configuration of the machine tool is changed, it is possible to calculate the first distance and the second distance by re-storing the changed numerical values.
  • the information of the control device includes coordinates of the current pot and the planned pot, and includes a storage unit that stores coordinates corresponding to the coordinates assigned to the pot, the obtaining unit obtains the coordinates of the current pot and the planned pot from the storage unit, calculates a difference between the coordinates of the current pot and the planned pot from the storage unit, and obtains the distance based on the difference.
  • control device of one embodiment of the present disclosure in a machine tool in which pots are arranged at irregular intervals, it is possible to perform movement control for exchanging the pots arranged at the indexing position.
  • a control device includes a movement direction determination unit that determines a movement direction for moving the pot based on the coordinates assigned to the current pot and the planned pot, and the calculation unit calculates the movement amount based on the movement direction determined by the movement direction determination unit.
  • control device of one embodiment of the present disclosure when exchanging the pot placed at the indexing position, it is possible to control the movement in the movement direction in which the movement amount becomes shorter.
  • a control method is a control method for a machine tool comprising a spindle, an endless rail, and a tool magazine having a plurality of pots arranged at unequal intervals on the rail to store tools, wherein the plurality of pots includes a current pot to be attached to the spindle and a planned pot to be arranged at the indexed position, a distance between the plurality of pots is acquired, and the planned pot is divided based on information about the current pot and the planned pot and the distance between the gaps.
  • a movement amount for moving to the extended position is calculated, and the pot is moved along the rail based on the movement amount.
  • a computer program is a program executable by a control device of a machine tool comprising a spindle, an endless rail, and a tool magazine having a plurality of pots arranged at unequal intervals on the rail to store tools, wherein the plurality of pots includes a current pot to be attached to the spindle and a planned pot to be arranged at the index position, acquires the distance between the plurality of pots, and acquires the distance between the plurality of pots, and based on the information about the current pot and the planned pot and the distance of the interval, the planned A movement amount for moving the pot to the indexed position is calculated, and the control device is caused to execute processing for moving the pot along the rail based on the movement amount.
  • a control device is capable of movement control for exchanging pots placed at indexing positions even in a machine tool in which pots are placed at unequal intervals.
  • FIG. 1 is a perspective view of a machine tool; FIG. It is a front view of a machine tool. It is the right view which abbreviate
  • FIG. 4 is a schematic perspective view of a tool magazine that moves on rails;
  • FIG. 4 is a schematic partial enlarged plan view of the machine tool;
  • It is a block diagram which shows a control apparatus. It is a top surface schematic diagram of a rail and a pot. 4 is a flowchart for explaining a moving direction determining method and a moving pot number calculating method; 4 is a flowchart for explaining drive control according to the first embodiment; It is a flow chart explaining the first distance and the second distance calculation processing.
  • FIG. 4 is a schematic perspective view of a tool magazine that moves on rails
  • FIG. 4 is a schematic partial enlarged plan view of the machine tool
  • It is a block diagram which shows a control apparatus. It is
  • FIG. 11 is a schematic top view of a rail and a pot according to Embodiment 3; 10 is a flowchart for explaining a method for setting a start point distance and an end point distance according to Embodiment 3.
  • FIG. 11 is a flow chart for explaining a method for setting a start point distance and an end point distance according to Embodiment 3.
  • FIG. 10 is a flowchart for explaining drive control according to Embodiment 3.
  • FIG. FIG. 14 is a schematic top view of a rail and a pot according to Embodiment 4; It is an explanatory view showing a coordinate table.
  • 10 is a flowchart for explaining drive control according to Embodiment 4.
  • Embodiment 1 The machine tool and control device of Embodiment 1 will be described below with reference to the drawings. In the following description, up, down, front, back, left, and right shown in the drawings are used.
  • FIG. 1 is a perspective view of a machine tool.
  • FIG. 2 is a front view of the machine tool.
  • FIG. 3 is a right side view of the machine tool, omitting a chain portion and the like.
  • a machine tool 100 includes a base 10, a spindle head 20, a tool magazine 30, and the like.
  • the base 10 is rectangular and extends forward and backward.
  • the work holding part 11 is provided on the upper front side of the base 10 .
  • the work holding unit 11 holds a work to be processed.
  • the work holding part 11 is rotatable around a vertically extending C-axis.
  • a support base 12 is provided on the rear side of the upper portion of the base 10 .
  • An X-axis direction moving device 14 is provided on the upper surface of the support table 12 .
  • the X-axis direction moving device 14 can move in the left-right direction (X-axis direction).
  • the Y-axis direction moving device 15 is provided above the X-axis direction moving device 14 .
  • the Y-axis direction moving device 15 supports the column 13 so as to be movable in the front-rear direction (Y-axis direction).
  • the Z-axis direction moving device 16 is provided on the front surface of the column 13 .
  • the Z-axis direction moving device 16 moves the spindle head 20 in the vertical direction (Z-axis direction).
  • the spindle head 20 has a spindle 21 extending vertically.
  • the main shaft 21 rotates about its axis.
  • a tool is mounted on the lower end of the spindle 21 .
  • a spindle motor 22 is provided at the upper end of the spindle head 20 .
  • the spindle 21 and the tool are rotated by the rotation of the spindle motor 22 .
  • the rotated tool processes the work held by the work holding part 11 .
  • FIG. 4 is a schematic perspective view of the rail portion.
  • FIG. 5 is a schematic perspective view of a tool magazine moving on rails.
  • the tool magazine 30 has a rail portion 31 , a chain portion 32 and a magazine driving portion 33 .
  • the tool magazine 30 moves the chain portion 32 along the rail portion 31 by driving the magazine driving portion 33 .
  • the rail portion 31 includes two support beams 311 , a rail base 312 and a rail 313 .
  • the support beam 311 is a plate-like structural member having a right triangle shape. The oblique sides of the support beams 311 are inclined downward toward the front.
  • the support beams 311 are cantilevered on the left and right sides of the column 13 .
  • the support beams 311 extend from left and right fixed portions of the column 13 to both side portions of the spindle head 20 .
  • the upper end surface of the support beam 311 is inclined approximately 30 degrees from the horizontal plane from the lower front to the upper rear.
  • the rail base 312 is rectangular in plan view and extends forward and backward.
  • a rail base 312 is fixed to the oblique side of the support beam 311 and surrounds the column 13 and the main shaft 21 .
  • the rail platform 312 is inclined approximately 30 degrees from the horizontal plane.
  • a positioning mechanism 314 for aligning the positions of the tool and the spindle 21 is provided at the center of the front lower end of the rail base 312 .
  • the central portion of the lower end of the rail base 312 is positioned at the tool exchange position.
  • a rail 313 is provided above the rail base 312 to form an endless track.
  • the rail 313 is substantially rectangular in plan view and has a substantially rectangular cross section.
  • the rail 313 has two first straight portions 313a facing each other and two second straight portions 313b facing each other.
  • the two first linear portions 313a are provided in front and rear of the spindle head 20, respectively, and extend linearly in the left-right direction.
  • the two second linear portions 313b are provided on the left and right sides of the spindle head 20, respectively, and extend linearly in the front-rear direction, that is, in a direction orthogonal to the left-right direction.
  • the rail base 312 and the rails 313 are arranged so that the longitudinal center of the first straight portion 313a and the axis of the main shaft 21 are aligned.
  • the mounting base 315 is provided inside the rear part of the rail base 312 .
  • a magazine driving unit 33 is attached to the upper side of the mounting base 315 .
  • the magazine driving section 33 has a motor 331 and a gear 332 .
  • the axis of the gear 332 is substantially perpendicular to the oblique side of the support beam 311 .
  • Gear 332 meshes with chain portion 32 .
  • the motor 331 rotates, and the chain portion 32 and the plurality of pots P rotate.
  • a chain portion 32 is provided along the rail 313 .
  • the chain portion 32 includes a plurality of moving bodies 34, a plurality of links 35 and a plurality of pots P. As shown in FIG. Pots P are arranged on rail 313 at unequal intervals.
  • the link 35 has an elongated, substantially rectangular plate shape. That is, the link 35 extends linearly. Links 35 connect adjacent moving bodies 34 .
  • a plurality of moving bodies 34 and links 35 form an endless chain.
  • FIG. 6 is a schematic partial enlarged plan view of the machine tool.
  • a first space LA between two pots P arranged on the moving body 34 is narrower than a second space LB between two pots P adjacent to each other with the link 35 interposed therebetween.
  • the first interval LA is the distance between the centers of adjacent pots P in the moving direction.
  • the second interval LB is the distance between the axial centers of the connecting shafts 345 at both ends of the link 35 .
  • only some of the connecting shafts 345 are given reference numerals in FIG.
  • FIG. 7 is a block diagram showing the control device.
  • the machine tool 100 includes a control device 40 that controls driving of the motor 331 .
  • the control device 40 rotates the gear 332 by driving the motor 331 to rotate the plurality of pots P.
  • the control device 40 includes a CPU 41 , a RAM 42 and a storage section 43 .
  • the storage unit 43 has a rewritable storage medium such as EEPROM, EPROM, hard disk, or the like.
  • the storage unit 43 stores the pot number assigned to each pot P, the distance of the first interval LA (first distance la), the distance of the second interval LB (second distance lb), a machining program for machining the workpiece, and the like.
  • a processing program (program product) stored in a portable storage medium 43a such as a CD-ROM or flash memory may be stored in the storage unit 43, or each program may be stored in the storage unit 43 from a server via a network.
  • the CPU 41 loads the machining program into the RAM 42 and executes the machining program.
  • the motor 331 has an encoder 331a.
  • the encoder 331 a outputs a signal indicating the rotational position of the motor 331 to the control device 40 .
  • the control device 40 includes motors of the X-axis direction moving device, Y-axis direction moving device, and Z-axis direction moving device, a spindle motor, etc., but the illustration thereof is omitted.
  • FIG. 8 is a schematic top view of the rail and pot.
  • a pot number is assigned to each pot, and is assigned in order from 1 in a counterclockwise direction when viewed from the top as shown in FIG.
  • the number of pots P (total number of pots) is 28.
  • a pot to which the pot number N is assigned is called a pot PN.
  • a pot PN with an odd pot number is called an odd pot, and a pot PN with an even pot number is called an even pot.
  • each odd-numbered pot is aligned with an even-numbered pot with a higher pot number via the moving body 34 and aligned with an even-numbered pot with a lower pot number via a link 35 .
  • the distance between an odd-numbered pot of 1 and an even-numbered pot with a higher pot number by one differs from the distance between an odd-numbered pot of 1 and an even-numbered pot with a lower pot number by one.
  • the distance between each odd-numbered pot and the even-numbered pot with the pot number one higher is the first distance la
  • the distance between the even-numbered pot with the pot number one lower is the second distance lb.
  • the pot P28 and the pot P1 are arranged side by side via a link, and the distance between them is the second distance lb. Distance 1a and distance 1b are different.
  • pot P1 is the current pot.
  • pot PN that is scheduled to be placed at the indexing position to be used for machining the workpiece next time is set as the scheduled pot.
  • the pot number of the current pot be the current pot number
  • the pot number of the planned pot be the planned pot number.
  • the pot P10 is assumed to be the planned pot, and control in an example of moving the planned pot P10 to the indexing position will be described.
  • the control device 40 determines the moving direction for moving the planned pot P10 to the indexed position, and calculates the necessary number of pots to be moved.
  • the clockwise direction in top view is the normal rotation direction, and the counterclockwise direction is the reverse rotation direction. Details of the method of determining the moving direction and the method of calculating the number of pots to be moved will be described later.
  • the CPU 41 of the control device 40 acquires from the storage unit 43 the first distance la, the second distance lb, and the starting point distance, which is the distance between the current pot P1 and the adjacent pot on the upstream side in the movement direction (starting point interval).
  • the starting point interval is the distance between the pot P1 and the pot P2, so the starting point interval is the first interval and the starting point distance is the first distance la.
  • a method of setting the starting point distance will be described later.
  • the control device 40 divides the number of moving pots by 2, and calculates the quotient and remainder. In this example, the quotient is 4 and the remainder is 1.
  • the control device 40 obtains the product of the sum of the first distance la and the second distance lb and the quotient, and then sums up the product of the starting point distance and the remainder to obtain the movement amount. That is, let the distance calculated by the following formula be the amount of movement.
  • the CPU 41 drives the motor 331 based on the calculated movement amount.
  • the storage unit 43 stores the driving distance of the pot P per rotation of the gear 332, and the control device 40 determines the amount of rotation of the motor 331 based on the driving distance and the amount of movement of the pot P per rotation of the gear 332, and drives the motor 331.
  • FIG. 9 is a flow chart explaining the method of determining the moving direction and the method of calculating the number of moving pots, which is activated when the tool change command in the machining program is executed.
  • variables X and Y are used for explanation.
  • the CPU 41 acquires the current pot number and the scheduled pot number (S1), and determines whether or not the scheduled pot number is greater than or equal to the current pot number (S2).
  • the CPU 41 acquires the current pot number based on the rotational position of the motor 331 output from the encoder 331a, and acquires the planned pot number from the machining program read into the RAM42.
  • the CPU 41 sets X to the number obtained by subtracting the current pot number from the scheduled pot number (S3). If the scheduled pot number is less than the current pot number (S2: NO), the CPU 41 subtracts the current pot number from the scheduled pot number and then adds the total number of pots to X (S4). The CPU 41 determines whether or not X is larger than the total number of pots/2 (S5). When X is equal to or less than the quotient obtained by dividing the total number of pots by 2 (S5: NO), the CPU 41 sets Y to the same value as X (S7).
  • the CPU 41 determines whether Y is 0 or more (S8), and if Y is 0 or more (S8: YES), sets the moving direction to the forward direction (S9), and calculates the number of moving pots as the same value as Y (S10). When Y is less than 0 (S8: NO), the CPU 41 sets the moving direction to the reverse direction (S11), and calculates the number of moving pots as -Y (S12). After calculating the number of pots to be moved in S10 or S12, the CPU 41 ends the process.
  • the CPU 41 can determine a closer moving direction for locating the planned pot at the indexed position. In addition, it is possible to calculate the correct number of moving pots regardless of whether the moving direction is determined to be forward rotation or reverse rotation.
  • FIG. 10 is a flowchart for explaining drive control, which is activated after execution of the flowchart in FIG. 9 is completed.
  • the CPU 41 acquires the first distance la and the second distance lb from the storage unit 43 (S21).
  • the CPU 41 acquires the current pot number (S22) and determines whether or not the current pot number is an even number (S23). If the current pot number is an even number (S23: YES), the CPU 41 determines whether or not the moving direction of the pot P is forward rotation (S24). If the movement direction is normal rotation (S24: YES), the CPU 41 sets the starting point distance to the second distance (S27).
  • the CPU 41 sets the starting point distance to the first distance (S26). If the pot number is not even, that is, odd (S23: NO), the CPU 41 determines whether the moving direction of the pot P is forward rotation (S25). If the movement direction is normal rotation (S25: YES), the CPU 41 sets the starting point distance to the first distance (S26). If the movement direction is not forward rotation, that is, if it is reverse rotation (S25: NO), the CPU 41 sets the starting point distance to the second distance (S27). After setting the starting point distance in S26 or S27, the CPU 41 divides the number of moving pots by 2 to calculate the quotient and remainder (S28).
  • the CPU 41 multiplies the sum of the first distance and the second distance by the quotient (S29), and multiplies the starting point distance by the remainder (S30).
  • the CPU 41 adds up the calculation results in S29 and S30 to calculate the amount of movement (S31), and calculates the amount of rotation of the motor based on the amount of movement (S32).
  • the CPU 41 rotates the motor (S33) and ends the process.
  • the control device 40 of the first embodiment includes a storage unit 43 that stores the first distance la and the second distance lb.
  • the control device 40 of the second embodiment includes a storage unit 43 that stores the distance for one round of the rail 313 (the total length of the rail), the total number of pots, and the ratio between the first interval and the second interval (first interval ratio RA: second interval ratio RB), and the first distance la and the second distance lb are calculated by the CPU 41.
  • first interval ratio RA: second interval ratio RB second interval ratio RB
  • FIG. 11 is a flowchart for explaining the first distance and second distance calculation processing.
  • the CPU 41 acquires the distance for one round of the rail and the total number of pots from the storage unit 43 (S41), divides the total length of the rail by the total number of pots, and calculates the average distance between pots (average distance lm) (S42).
  • the CPU 41 acquires the first interval ratio RA and the second interval ratio RB from the storage unit 43 (S43), and calculates the average (average interval ratio Rm) of the first interval ratio RA and the second interval ratio RB (S44).
  • the CPU 41 calculates the first distance la by multiplying the average interval distance lm by the first interval ratio RA and dividing the average interval ratio Rm (S45), and calculates the second distance lb by multiplying the average interval distance lm by the second interval ratio RB and dividing the average interval ratio Rm (S46). That is, the average interval distance lm, the average interval ratio Rm, the first distance la, and the second distance lb are calculated by the following equations.
  • the storage unit 43 of the control device 40 of the second embodiment stores the distance for one round of the rail 313, the total number of pots, and the ratio between the first interval and the second interval. Therefore, when the configuration of the machine tool 100 is changed, it is possible to calculate the first distance and the second distance by re-storing the changed numerical values.
  • the pots P of the machine tool 100 of Embodiment 1 are arranged so that the first intervals and the second intervals alternate, while the pots P of the machine tool 100 of Embodiment 3 are arranged so that the first intervals, the second intervals, and the third intervals are arranged in rotation.
  • Embodiment 3 will be described below with reference to the drawings. The same reference numerals are assigned to the same configurations as in the first embodiment, and detailed description thereof will be omitted.
  • FIG. 12 is a schematic top view of the rail and pot of Embodiment 3.
  • the total number of pots is assumed to be 24.
  • the distance between the pot P1 and the pot P2 is the first distance
  • the distance between the pot P2 and the pot P3 is the second distance
  • the distance between the pot P3 and the pot P4 is the third distance.
  • the first, second, and third intervals are arranged in rotation until pot P24.
  • the distance between the pot P24 and the pot P1 is the third distance.
  • the distance of the first interval is the first distance la
  • the distance of the second interval is the second distance lb
  • the distance of the third interval is the third distance lc.
  • the storage unit 43 of Embodiment 3 stores the first distance la, the second distance lb, and the third distance lc.
  • the control device 40 determines the direction of movement and calculates the number of pots to be moved, as in the first embodiment. In this example, the moving direction is normal rotation, and the number of moving pots is eleven.
  • the CPU 41 of the control device 40 acquires from the storage unit 43 the first distance la, the second distance lb, the third distance lc, the starting point distance that is the distance between the current pot P1 and the adjacent pot on the upstream side in the movement direction (starting point distance), and the end point distance that is the distance between the planned pot P12 and the adjacent pot on the downstream side in the moving direction (end point distance).
  • start point distance the starting point distance that is the distance between the current pot P1 and the adjacent pot on the upstream side in the movement direction
  • end point distance the distance between the planned pot P12 and the adjacent pot on the downstream side in the moving direction
  • the control device 40 divides the number of moving pots by 3 and calculates the first quotient and first remainder.
  • the first quotient is 3 and the first remainder is 2.
  • the control device 40 further divides the number obtained by adding 1 to the first remainder by 2 to obtain a second quotient.
  • the second quotient is 1 in this example.
  • the control device 40 divides the first remainder by 2 to obtain the third quotient.
  • the third quotient is one.
  • the control device 40 sums the product of the sum of the first distance la, the second distance lb, and the third distance lc and the first quotient, the product of the second quotient and the start point distance, and the product of the third quotient and the end point distance, and obtains the movement amount. That is, in this example, the movement amount is calculated by the following formula.
  • 13 and 14 are flowcharts for explaining the method of setting the starting point distance and the ending point distance according to the third embodiment.
  • the CPU 41 of the control device 40 sets the starting point distance and the ending point distance.
  • the CPU 41 acquires the first distance la, the second distance lb, and the third distance lc from the storage unit 43 (S51).
  • the CPU 41 acquires the current pot number (S52), and determines whether or not the current pot number is a multiple of 3 (S53). If the current pot number is a multiple of 3 (S53: YES), the CPU 41 determines whether the moving direction of the pot P is forward rotation (S54).
  • the CPU 41 sets the starting point distance to the third distance (S58). If the movement direction is not forward rotation, that is, if it is reverse rotation (S54: NO), the CPU 41 sets the starting point distance to the second distance (S60). If the current pot number is not a multiple of 3 (S53: NO), the CPU 41 determines whether the remainder obtained by dividing the current pot number by 3 is 1 (S55). If the remainder is 1 (S55: YES), the CPU 41 determines whether or not the moving direction of the pot P is forward rotation (S56). If the movement direction is normal rotation (S56: YES), the CPU 41 sets the starting point distance to the first distance (S59).
  • the CPU 41 sets the starting point distance to the third distance (S58). If the remainder obtained by dividing the current pot number by 3 is not 1, that is, if the remainder is 2 (S55: NO), the CPU 41 determines whether or not the movement direction is forward rotation (S57). If the movement direction is normal rotation (S57: YES), the CPU 41 sets the starting point distance to the second distance (S60). If the movement direction is not forward rotation, that is, if it is reverse rotation (S57: NO), the CPU 41 sets the starting point distance to the first distance (S59).
  • the CPU 41 of the control device 40 acquires the scheduled pot number (S61) and determines whether or not the scheduled pot number is a multiple of 3 (S62). When the scheduled pot number is a multiple of 3 (S62: YES), the CPU 41 determines whether or not the moving direction of the pot P is forward rotation (S63). If the movement direction is normal rotation (S63: YES), the CPU 41 sets the end point distance to the second distance (S67). If the movement direction is not forward rotation, that is, if it is reverse rotation (S63: NO), the CPU 41 sets the end point distance to the third distance (S68).
  • the CPU 41 determines whether the remainder obtained by dividing the scheduled pot number by 3 is 1 (S64). When the remainder is 1 (S64: YES), the CPU 41 determines whether or not the movement direction of the pot P is normal rotation (S65). If the movement direction is normal rotation (S65: YES), the CPU 41 sets the end point distance to the third distance (S68). If the movement direction is not forward rotation, that is, if it is reverse rotation (S65: NO), the CPU 41 sets the end point distance to the first distance (S69).
  • the CPU 41 determines whether or not the movement direction is forward rotation (S66). If the movement direction is normal rotation (S66: YES), the CPU 41 sets the end point distance to the first distance (S69). If the movement direction is not forward rotation, that is, if it is reverse rotation (S66: NO), the CPU 41 sets the end point distance to the second distance (S67). After setting the end point distance in S67, S68 or S69, the CPU 41 ends the process.
  • FIG. 15 is a flowchart for explaining the drive control of the third embodiment, which is activated after the execution of the flowcharts of FIGS. 13 and 14 is completed.
  • the CPU 41 divides the number of moving pots by 3 to calculate a first quotient and a first remainder (S71).
  • the method for calculating the number of pots to be moved is the same as that of the first embodiment (see FIG. 9), so details will be omitted.
  • the CPU 41 divides the first remainder +1 by 2 to calculate a second quotient (S72), and divides the first remainder by 2 to calculate a third quotient (S73).
  • the CPU 41 multiplies the sum of the first distance, the second distance, and the third distance by the first quotient (S74), multiplies the start point distance by the second quotient (S75), and multiplies the end point distance by the third quotient (S76).
  • the CPU 41 adds up the calculation results in S74, S75, and S76 to calculate the amount of movement (S77), and calculates the amount of rotation of the motor based on the amount of movement (S78).
  • the CPU 41 rotates the motor (S79) and terminates the process.
  • the pots P of the machine tool 100 of Embodiment 1 are arranged so that the first intervals and the second intervals alternate, but the pots P of the machine tool 100 of Embodiment 4 are arranged at irregular intervals in order to hold tools of various sizes.
  • Embodiment 4 will be described below with reference to the drawings. The same reference numerals are assigned to the same configurations as in the first embodiment, and detailed description thereof will be omitted.
  • FIG. 16 is a schematic top view of the rail and pot of Embodiment 4.
  • FIG. FIG. 17 is an explanatory diagram showing a coordinate table.
  • the pots P are arranged on the rail at irregular intervals.
  • the storage unit 43 of the control device 40 stores a coordinate table in which coordinates are associated with pot numbers.
  • the coordinate value stores the counterclockwise distance from the pot P1 in top view.
  • the coordinates of the current pot will be referred to as current coordinates
  • the coordinates of the planned pot will be referred to as planned coordinates.
  • FIG. 18 is a flowchart for explaining drive control in the fourth embodiment.
  • the CPU 41 acquires the current pot number and the scheduled pot number (S81), and acquires the current coordinates and the scheduled coordinates from the coordinate table of the storage unit 43 based on the current pot number and the scheduled pot number (S82).
  • the CPU 41 determines whether or not the planned coordinates are greater than or equal to the current coordinates (S83), and if the planned coordinates are greater than or equal to the current coordinates (S83: YES), the CPU 41 sets the number obtained by subtracting the current coordinates from the scheduled coordinates to X (S84).
  • the CPU 41 subtracts the current coordinates from the planned coordinates and adds the total length of the rail, and sets X to the number (S85).
  • the CPU 41 determines whether or not X is greater than the total rail length/2 (S86), and if it is greater (S86: YES), sets Y to the number obtained by subtracting the total rail length from X (S87).
  • S86 is equal to or less than the total rail length/2
  • S88 sets Y to the same value as X (S88).
  • the CPU 41 determines whether Y is 0 or more (S89), and if Y is 0 or more (S89: YES), sets the moving direction to the normal direction (S90), and calculates the moving amount as the same value as Y (S91). When Y is less than 0 (S89: NO), the CPU 41 sets the movement direction to the reverse direction (S92), and calculates the movement amount as -Y (S93). After calculating the amount of movement in S91 or S93, the CPU 41 calculates the amount of rotation of the motor 331 based on the amount of movement (S94), drives the motor 331 to rotate (S95), and ends the process.
  • the moving distance of the pot in this embodiment is the distance between the current pot and the planned pot.
  • the coordinates stored in the coordinate table may be an angle with the center of the track of the rail 313 as the center of the circle. In this case, the movement amount is calculated based on the angle and the total length of the rail.
  • the CPU 41 that executes S21, S41 to S46, S51, and S81 to S88 corresponds to the acquisition unit
  • the CPU 41 that executes S28 to S31, S71 to S77, and S89 to S93 corresponds to the calculation unit
  • the CPU 41 that executes S32, S33, S78, S79, S94, and S95 corresponds to the control unit.
  • the CPU 41 that executes S82 to S92 corresponds to the movement direction determination section.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automatic Tool Replacement In Machine Tools (AREA)

Abstract

The present disclosure provides a control device, etc., capable of controlling movement for replacement of pots disposed at cutting positions even in a machine tool in which pots are disposed at unequal intervals. A control device according to the present disclosure is a control device for a machine tool provided with a spindle, an endless rail, and a tool magazine provided with a plurality of pots accommodating tools and disposed at unequal intervals on the rail, the plurality of pots including a current pot which is disposed at a cutting position for mounting on the spindle, and a scheduled pot which is scheduled to be disposed at the cutting position, and the control device comprising: an acquisition unit which acquires distances among the plurality of pots; a calculation unit which calculates a movement amount by which the scheduled pot will move to the cutting position on the basis of the information relating to the current pot and the scheduled pot and the distance acquired by the acquisition unit; and a control unit which carries out control to move the pot along the rail on the basis of the movement amount calculated by the calculation unit.

Description

制御装置、制御方法及びコンピュータプログラムControl device, control method and computer program
 本技術は、工作機械を制御する制御装置、制御方法及びコンピュータプログラムに関する。 The present technology relates to a control device, control method, and computer program for controlling machine tools.
 従来、工作機械は上下移動可能な主軸ヘッドと、工具マガジンとを備える(例えば特許文献1)。工具マガジンは、無端状に連結した複数の移動体を備える。各移動体は、工具を保持する複数の把持アーム(ポット)を保持する。工具マガジンは、主軸ヘッドの周りを囲むレールに沿って複数の移動体を移動させ、所定のポットを主軸ヘッドの下方(割り出し位置)に配置する。主軸ヘッドは下降し、前記ポットが把持する工具を主軸に装着する。特許文献1に記載の工作機械は、ポットがレール上に等間隔で配置されているため、レール一周分の長さとポットの総数との情報に基づいて、ポットの移動量を算出している。 Conventionally, a machine tool has a vertically movable spindle head and a tool magazine (for example, Patent Document 1). The tool magazine comprises a plurality of endlessly connected moving bodies. Each truck holds a plurality of gripping arms (pots) that hold tools. The tool magazine moves a plurality of moving bodies along rails surrounding the spindle head to place a predetermined pot below the spindle head (indexed position). The spindle head descends to mount the tool gripped by the pot on the spindle. In the machine tool described in Patent Document 1, since the pots are arranged on the rail at regular intervals, the amount of movement of the pots is calculated based on information on the length of one round of the rail and the total number of pots.
特開2013―154436号公報JP 2013-154436 A
 工作機械において工具マガジンが備えるポット数を増やすためにポットが不等な間隔で配置することが考えられる。この場合、上記と同様の処理によっては移動量が算出できない。  In order to increase the number of pots in the tool magazine of a machine tool, it is conceivable to place the pots at unequal intervals. In this case, the amount of movement cannot be calculated by the same processing as described above.
 本発明は、ポットが不等な間隔で配置されている工作機械においても、ポットの移動量を算出してポットの移動制御が可能な制御装置等を提供することを目的とする。 An object of the present invention is to provide a control device or the like capable of calculating the movement amount of the pot and controlling the movement of the pot even in a machine tool in which the pots are arranged at unequal intervals.
 本開示の一実施形態の制御装置は、主軸と、無端状のレールと、前記レールに不等な間隔で配置され、工具を収納する複数のポットとを備える工具マガジンとを備える工作機械の制御装置において、前記複数のポットは前記主軸に装着されるための割り出し位置に配置されている現在ポットと、前記割り出し位置に配置させる予定の予定ポットを含み、前記複数のポット間の距離を取得する取得部と、前記現在ポット及び前記予定ポットに関する情報と、前記取得部が取得した前記距離とに基づき、前記予定ポットを前記割り出し位置までの移動量を算出する算出部と、前記算出部が算出した前記移動量に基づいて前記ポットをレールに沿って移動させる制御を行う制御部とを備える。 A control device according to an embodiment of the present disclosure is a control device for a machine tool that includes a spindle, an endless rail, and a tool magazine that includes a plurality of pots that are arranged at unequal intervals on the rail and store tools. A calculation unit that calculates the amount of movement of the planned pot to the indexed position based on the acquired distance, and a control unit that performs control to move the pot along the rail based on the movement amount calculated by the calculation unit.
 本開示の一実施形態の制御装置によれば、ポットが不等な間隔で配置されている工作機械において、割り出し位置に配置するポットの交換のための移動制御が可能である。 According to the control device of one embodiment of the present disclosure, in a machine tool in which pots are arranged at unequal intervals, it is possible to perform movement control for exchanging the pots arranged at the indexing position.
 本開示の一実施形態の制御装置は、前記間隔は第一間隔と、前記第一間隔よりも広い第二間隔とを含み、前記ポットは、前記第一間隔と前記第二間隔が交互になるように配置され、前記算出部は、前記第一間隔の距離である第一距離及び前記第二間隔の距離である第二距離に基づいて前記移動量を算出する。 In one embodiment of the control device of the present disclosure, the interval includes a first interval and a second interval wider than the first interval, the pots are arranged so that the first interval and the second interval alternate, and the calculator calculates the movement amount based on a first distance that is the distance of the first interval and a second distance that is the distance of the second interval.
 本開示の一実施形態の制御装置によれば、二種類の間隔が交互になるように配置されている工作機械において、割り出し位置に配置するポットの交換のための移動制御が可能である。 According to the control device of one embodiment of the present disclosure, it is possible to perform movement control for exchanging the pot placed at the indexing position in a machine tool that is arranged so that two types of intervals alternate.
 本開示の一実施形態の制御装置は、前記情報は、前記ポットに割り当てられた番号と、前記現在ポットと移動方向上流側の隣のポットとの間隔を示す起点間隔とを含み、前記算出部は、前記現在ポット及び前記予定ポットに割り当てられた番号に基づいて移動する移動ポット数を算出し、前記第一距離及び第二距離の合計と、前記移動ポット数を2で除算した商との積に、前記起点間隔の距離と、前記移動ポット数を2で除算した剰余との積を合算して前記移動量を算出する。 In the control device according to one embodiment of the present disclosure, the information includes a number assigned to the pot and a starting point interval indicating the distance between the current pot and an adjacent pot on the upstream side in the moving direction, and the calculating unit calculates the number of moving pots based on the numbers assigned to the current pot and the scheduled pot, and divides the distance of the starting point interval and the number of moving pots by 2 into the product of the sum of the first distance and the second distance and the quotient obtained by dividing the number of moving pots by 2. The amount of movement is calculated by summing the product with the remainder.
 本開示の一実施形態の制御装置によれば、前記ポット及び移動方向側の隣のポットの間隔に関わらず、移動量を算出可能である。 According to the control device of one embodiment of the present disclosure, the amount of movement can be calculated regardless of the distance between the pot and the adjacent pot on the moving direction side.
 本開示の一実施形態の制御装置は、前記第一距離及び前記第二距離を記憶した記憶部を備え、前記取得部は前記記憶部から前記第一距離及び前記第二距離を取得する。 A control device according to an embodiment of the present disclosure includes a storage unit that stores the first distance and the second distance, and the acquisition unit acquires the first distance and the second distance from the storage unit.
 本開示の一実施形態の制御装置によれば、前記第一距離及び前記第二距離に基づいて移動量を算出可能である。 According to the control device of one embodiment of the present disclosure, it is possible to calculate the amount of movement based on the first distance and the second distance.
 本開示の一実施形態の制御装置は、前記レール一周分の距離、前記ポットの総数及び前記第一間隔と前記第二間隔の比を記憶した記憶部を備え、前記取得部は、前記レール一周分の距離、前記ポットの総数及び前記第一間隔と前記第二間隔の比に基づいて前記第一距離及び前記第二距離を取得する。 A control device according to an embodiment of the present disclosure includes a storage unit that stores the distance for one round of the rail, the total number of pots, and the ratio between the first interval and the second interval, and the acquisition unit acquires the first distance and the second distance based on the distance for one round of the rail, the total number of pots, and the ratio between the first interval and the second interval.
 本開示の一実施形態の制御装置によれば、工作機械の構成が変更された場合も、変更された数値を記憶し直すことで第一距離及び第二距離を算出可能となる。 According to the control device of one embodiment of the present disclosure, even when the configuration of the machine tool is changed, it is possible to calculate the first distance and the second distance by re-storing the changed numerical values.
 本開示の一実施形態の制御装置の前記情報は、前記現在ポット及び前記予定ポットの座標を含み、前記ポットに割り当てられた座標に対応する座標を記憶した記憶部を備え、前記取得部は前記記憶部から前記現在ポット及び前記予定ポットの前記座標を取得し、前記記憶部から前記現在ポット及び前記予定ポットの前記座標の差分を算出し、前記差分に基づいて前記距離を取得する。 The information of the control device according to an embodiment of the present disclosure includes coordinates of the current pot and the planned pot, and includes a storage unit that stores coordinates corresponding to the coordinates assigned to the pot, the obtaining unit obtains the coordinates of the current pot and the planned pot from the storage unit, calculates a difference between the coordinates of the current pot and the planned pot from the storage unit, and obtains the distance based on the difference.
 本開示の一実施形態の制御装置によれば、ポットが不規則な間隔で配置されている工作機械において、割り出し位置に配置するポットの交換のための移動制御が可能である。 According to the control device of one embodiment of the present disclosure, in a machine tool in which pots are arranged at irregular intervals, it is possible to perform movement control for exchanging the pots arranged at the indexing position.
 本開示の一実施形態の制御装置は、前記現在ポット及び前記予定ポットに割り当てられた座標に基づいて前記ポットを移動させる移動方向を決定する移動方向決定部を備え、前記算出部は前記移動方向決定部が決定した前記移動方向に基づいて前記移動量を算出する。 A control device according to an embodiment of the present disclosure includes a movement direction determination unit that determines a movement direction for moving the pot based on the coordinates assigned to the current pot and the planned pot, and the calculation unit calculates the movement amount based on the movement direction determined by the movement direction determination unit.
 本開示の一実施形態の制御装置によれば、割り出し位置に配置するポットの交換する際、より移動量が短くなる移動方向で移動制御が可能である。 According to the control device of one embodiment of the present disclosure, when exchanging the pot placed at the indexing position, it is possible to control the movement in the movement direction in which the movement amount becomes shorter.
 本開示の一実施形態の制御方法は、主軸と、無端状のレールと、前記レールに不等な間隔で配置され、工具を収納する複数のポットとを備える工具マガジンとを備える工作機械の制御方法において、前記複数のポットは前記主軸に装着されるための現在ポットと、前記割り出し位置に配置させる予定の予定ポットを含み、前記複数のポット間の距離を取得し、前記現在ポット及び前記予定ポットに関する情報と、前記間隔の距離とに基づき、前記予定ポットを前記割り出し位置まで移動する移動量を算出し、前記移動量に基づいて前記ポットを前記レールに沿って移動させる。 A control method according to an embodiment of the present disclosure is a control method for a machine tool comprising a spindle, an endless rail, and a tool magazine having a plurality of pots arranged at unequal intervals on the rail to store tools, wherein the plurality of pots includes a current pot to be attached to the spindle and a planned pot to be arranged at the indexed position, a distance between the plurality of pots is acquired, and the planned pot is divided based on information about the current pot and the planned pot and the distance between the gaps. A movement amount for moving to the extended position is calculated, and the pot is moved along the rail based on the movement amount.
 本開示の一実施形態の制御方法によれば、ポットが不等な間隔で配置されている工作機械において、割り出し位置に配置するポットの交換のための移動制御が可能である。 According to the control method of one embodiment of the present disclosure, in a machine tool in which pots are arranged at unequal intervals, it is possible to perform movement control for exchanging the pots arranged at the indexing position.
 本開示の一実施形態のコンピュータプログラムは、主軸と、無端状のレールと、前記レールに不等な間隔で配置され、工具を収納する複数のポットとを備える工具マガジンとを備える工作機械の制御装置で実行可能なプログラムにおいて、前記複数のポットは前記主軸に装着されるための現在ポットと、前記割り出し位置に配置させる予定の予定ポットを含み、前記複数のポット間の距離を取得し、前記現在ポット及び前記予定ポットに関する情報と、前記間隔の距離とに基づき、前記予定ポットを前記割り出し位置まで移動する移動量を算出し、前記移動量に基づいて前記ポットを前記レールに沿って移動させる処理を前記制御装置に実行させる。 A computer program according to an embodiment of the present disclosure is a program executable by a control device of a machine tool comprising a spindle, an endless rail, and a tool magazine having a plurality of pots arranged at unequal intervals on the rail to store tools, wherein the plurality of pots includes a current pot to be attached to the spindle and a planned pot to be arranged at the index position, acquires the distance between the plurality of pots, and acquires the distance between the plurality of pots, and based on the information about the current pot and the planned pot and the distance of the interval, the planned A movement amount for moving the pot to the indexed position is calculated, and the control device is caused to execute processing for moving the pot along the rail based on the movement amount.
 本開示の一実施形態のコンピュータプログラムによれば、ポットが不等な間隔で配置されている工作機械において、割り出し位置に配置するポットの交換のための移動制御が可能である。 According to the computer program of one embodiment of the present disclosure, in a machine tool in which pots are arranged at unequal intervals, it is possible to perform movement control for exchanging the pots arranged at the indexing position.
 本開示の一実施形態の制御装置は、ポットが不等な間隔で配置されている工作機械においても、割り出し位置に配置するポットの交換のための移動制御が可能である。 A control device according to an embodiment of the present disclosure is capable of movement control for exchanging pots placed at indexing positions even in a machine tool in which pots are placed at unequal intervals.
工作機械の斜視図である。1 is a perspective view of a machine tool; FIG. 工作機械の正面図である。It is a front view of a machine tool. 工作機械のチェーン部等を省略した右側面図である。It is the right view which abbreviate|omitted the chain part etc. of the machine tool. レール部の略示斜視図である。It is a schematic perspective view of a rail part. レール部を移動する工具マガジンの略示斜視図である。FIG. 4 is a schematic perspective view of a tool magazine that moves on rails; 工作機械の略示部分拡大平面図である。FIG. 4 is a schematic partial enlarged plan view of the machine tool; 制御装置を示すブロック図である。It is a block diagram which shows a control apparatus. レール及びポットの上面模式図である。It is a top surface schematic diagram of a rail and a pot. 移動方向決定方法及び移動ポット数算出方法説明するフローチャートである。4 is a flowchart for explaining a moving direction determining method and a moving pot number calculating method; 実施形態1に係る駆動制御を説明するフローチャートである。4 is a flowchart for explaining drive control according to the first embodiment; 第一距離及び第二距離算出処理を説明するフローチャートである。It is a flow chart explaining the first distance and the second distance calculation processing. 実施形態3に係るレール及びポットの上面模式図である。FIG. 11 is a schematic top view of a rail and a pot according to Embodiment 3; 実施形態3に係る起点距離及び終点距離の設定方法を説明するフローチャートである。10 is a flowchart for explaining a method for setting a start point distance and an end point distance according to Embodiment 3. FIG. 実施形態3に係る起点距離及び終点距離の設定方法を説明するフローチャートである。11 is a flow chart for explaining a method for setting a start point distance and an end point distance according to Embodiment 3. FIG. 実施形態3に係る駆動制御を説明するフローチャートである。10 is a flowchart for explaining drive control according to Embodiment 3. FIG. 実施形態4に係るレール及びポットの上面模式図である。FIG. 14 is a schematic top view of a rail and a pot according to Embodiment 4; 座標テーブルを示す説明図である。It is an explanatory view showing a coordinate table. 実施形態4に係る駆動制御を説明するフローチャートである。10 is a flowchart for explaining drive control according to Embodiment 4. FIG.
 以下実施形態1の工作機械及び制御装置について図面に基づき説明する。以下の説明では、図に示す上下前後左右を使用する。 The machine tool and control device of Embodiment 1 will be described below with reference to the drawings. In the following description, up, down, front, back, left, and right shown in the drawings are used.
 図1は、工作機械の斜視図である。図2は、工作機械の正面図である。図3は、工作機械のチェーン部等を省略した右側側面図である。工作機械100は、基台10、主軸ヘッド20、工具マガジン30等を備える。基台10は矩形であり、前後に延びる。ワーク保持部11は、基台10の上部前側に設ける。ワーク保持部11は加工対象であるワークを保持する。ワーク保持部11は、上下に延びたC軸周りに回転可能である。支持台12は基台10上部の後側に設ける。支持台12上面に、X軸方向移動装置14が設けてある。X軸方向移動装置14は、左右方向(X軸方向)に移動可能である。Y軸方向移動装置15は、X軸方向移動装置14の上部に設ける。Y軸方向移動装置15は、コラム13を前後方向(Y軸方向)に移動可能に支持する。Z軸方向移動装置16は、コラム13の前面に設ける。Z軸方向移動装置16は、主軸ヘッド20を上下方向(Z軸方向)に移動する。 Fig. 1 is a perspective view of a machine tool. FIG. 2 is a front view of the machine tool. FIG. 3 is a right side view of the machine tool, omitting a chain portion and the like. A machine tool 100 includes a base 10, a spindle head 20, a tool magazine 30, and the like. The base 10 is rectangular and extends forward and backward. The work holding part 11 is provided on the upper front side of the base 10 . The work holding unit 11 holds a work to be processed. The work holding part 11 is rotatable around a vertically extending C-axis. A support base 12 is provided on the rear side of the upper portion of the base 10 . An X-axis direction moving device 14 is provided on the upper surface of the support table 12 . The X-axis direction moving device 14 can move in the left-right direction (X-axis direction). The Y-axis direction moving device 15 is provided above the X-axis direction moving device 14 . The Y-axis direction moving device 15 supports the column 13 so as to be movable in the front-rear direction (Y-axis direction). The Z-axis direction moving device 16 is provided on the front surface of the column 13 . The Z-axis direction moving device 16 moves the spindle head 20 in the vertical direction (Z-axis direction).
 主軸ヘッド20は、上下に延びる主軸21を備える。主軸21は軸回りに回転する。主軸21の下端部は工具を装着する。主軸モータ22は主軸ヘッド20の上端部に設ける。主軸21及び工具は、主軸モータ22の回転で回転する。回転した工具はワーク保持部11で保持したワークを加工する。 The spindle head 20 has a spindle 21 extending vertically. The main shaft 21 rotates about its axis. A tool is mounted on the lower end of the spindle 21 . A spindle motor 22 is provided at the upper end of the spindle head 20 . The spindle 21 and the tool are rotated by the rotation of the spindle motor 22 . The rotated tool processes the work held by the work holding part 11 .
 図4はレール部の略示斜視図である。図5はレール部を移動する工具マガジンの略示斜視図である。工具マガジン30は、レール部31、チェーン部32、及びマガジン駆動部33を備える。工具マガジン30は、マガジン駆動部33の駆動により、チェーン部32をレール部31に沿って移動させる。レール部31は、二つの支持梁311、レール台312、及びレール313を備える。支持梁311は、直角三角形状をなす板状の構造部材である。支持梁311の斜辺は、前方に向かうに従って下降するように傾斜する。支持梁311は、コラム13の左右に片持ちに固定してある。支持梁311は、コラム13の左右に固定した部分から主軸ヘッド20の両側部分まで延びる。支持梁311の上側端面は、前方下方から後方上方へ、水平面から略30度傾斜する。 FIG. 4 is a schematic perspective view of the rail portion. FIG. 5 is a schematic perspective view of a tool magazine moving on rails. The tool magazine 30 has a rail portion 31 , a chain portion 32 and a magazine driving portion 33 . The tool magazine 30 moves the chain portion 32 along the rail portion 31 by driving the magazine driving portion 33 . The rail portion 31 includes two support beams 311 , a rail base 312 and a rail 313 . The support beam 311 is a plate-like structural member having a right triangle shape. The oblique sides of the support beams 311 are inclined downward toward the front. The support beams 311 are cantilevered on the left and right sides of the column 13 . The support beams 311 extend from left and right fixed portions of the column 13 to both side portions of the spindle head 20 . The upper end surface of the support beam 311 is inclined approximately 30 degrees from the horizontal plane from the lower front to the upper rear.
 レール台312は、平面視矩形であり、前後に延びる。レール台312は、支持梁311の斜辺に固定され、コラム13及び主軸21の周りを囲む。レール台312は、水平面から略30度傾斜する。レール台312の前方下端部の中央部に、工具と主軸21との位置を整合させる位置決め機構314を設けてある。レール台312の下端部の中央部が、工具の交換位置に位置する。 The rail base 312 is rectangular in plan view and extends forward and backward. A rail base 312 is fixed to the oblique side of the support beam 311 and surrounds the column 13 and the main shaft 21 . The rail platform 312 is inclined approximately 30 degrees from the horizontal plane. A positioning mechanism 314 for aligning the positions of the tool and the spindle 21 is provided at the center of the front lower end of the rail base 312 . The central portion of the lower end of the rail base 312 is positioned at the tool exchange position.
 レール313はレール台312上部に設け、無端状の軌道を形成する。レール313は、平面視略矩形であり、略矩形状の断面を有する。レール313は、互いに対向する二つの第一直線部313aと、互いに対向する二つの第二直線部313bとを有し、第一直線部313a及び第二直線部313bの端部を曲線部313cが連結する。二つの第一直線部313aは夫々、主軸ヘッド20の前後に設け、左右方向に直線状に延びる。二つの第二直線部313bは夫々、主軸ヘッド20の左右に設け、前後方向、即ち左右方向に直交する方向に直線状に延びる。レール台312及びレール313は、第一直線部313aの長手方向中心と主軸21の軸心とが一致するよう配置してある。 A rail 313 is provided above the rail base 312 to form an endless track. The rail 313 is substantially rectangular in plan view and has a substantially rectangular cross section. The rail 313 has two first straight portions 313a facing each other and two second straight portions 313b facing each other. The two first linear portions 313a are provided in front and rear of the spindle head 20, respectively, and extend linearly in the left-right direction. The two second linear portions 313b are provided on the left and right sides of the spindle head 20, respectively, and extend linearly in the front-rear direction, that is, in a direction orthogonal to the left-right direction. The rail base 312 and the rails 313 are arranged so that the longitudinal center of the first straight portion 313a and the axis of the main shaft 21 are aligned.
 取付台315は、レール台312の後部内側に設ける。取付台315の上側にマガジン駆動部33が取り付けてある。マガジン駆動部33は、モータ331及びギア332を備える。ギア332の軸心は、支持梁311の斜辺に略直角である。ギア332は、チェーン部32に噛合する。モータ331が回転し、チェーン部32及び複数のポットPが回転する。 The mounting base 315 is provided inside the rear part of the rail base 312 . A magazine driving unit 33 is attached to the upper side of the mounting base 315 . The magazine driving section 33 has a motor 331 and a gear 332 . The axis of the gear 332 is substantially perpendicular to the oblique side of the support beam 311 . Gear 332 meshes with chain portion 32 . The motor 331 rotates, and the chain portion 32 and the plurality of pots P rotate.
 レール313に沿ってチェーン部32が設けてある。チェーン部32は、複数の移動体34、複数のリンク35及び複数のポットPを備える。ポットPは、不等な間隔でレール313に配置されている。リンク35は、細長い略長方形の板状である。即ち、リンク35は直線状に延びる。リンク35は、隣り合う移動体34を連結する。複数の移動体34及びリンク35は無端状のチェーンを形成する。 A chain portion 32 is provided along the rail 313 . The chain portion 32 includes a plurality of moving bodies 34, a plurality of links 35 and a plurality of pots P. As shown in FIG. Pots P are arranged on rail 313 at unequal intervals. The link 35 has an elongated, substantially rectangular plate shape. That is, the link 35 extends linearly. Links 35 connect adjacent moving bodies 34 . A plurality of moving bodies 34 and links 35 form an endless chain.
 図6は工作機械の略示部分拡大平面図である。移動体34に並べた二つのポットP間の第一間隔LAは、リンク35を挟んで隣り合う二つのポットP間の第二間隔LBよりも狭い。第一間隔LAは、隣り合うポットPの移動方向における中心部間の距離とする。第二間隔LBは、リンク35の両端部における連結軸体345の軸心間の距離とする。なお、煩雑になるのを防ぐため、図6においては一部の連結軸体345にのみ符号を付している。 FIG. 6 is a schematic partial enlarged plan view of the machine tool. A first space LA between two pots P arranged on the moving body 34 is narrower than a second space LB between two pots P adjacent to each other with the link 35 interposed therebetween. The first interval LA is the distance between the centers of adjacent pots P in the moving direction. The second interval LB is the distance between the axial centers of the connecting shafts 345 at both ends of the link 35 . In order to avoid complication, only some of the connecting shafts 345 are given reference numerals in FIG.
 図7は制御装置を示すブロック図である。工作機械100は、モータ331の駆動を制御する制御装置40を備える。制御装置40は、モータ331を駆動させることでギア332を回転させ、複数のポットPを回転させる。制御装置40は、CPU41、RAM42、記憶部43を備える。記憶部43は、例えばEEPROM、EPROM、ハードディスク等の書き換え可能な記憶媒体を有する。記憶部43は、各ポットPに割り当てられたポット番号、第一間隔LAの距離(第一距離la)、第二間隔LBの距離(第二距離lb)、及びワークを加工する加工プログラム等を記憶する。持ち運び可能な記憶媒体43a、例えばCD-ROM及びフラッシュメモリ等に記憶した加工プログラム(プログラム製品)を記憶部43に格納してもよく、ネットワークを介してサーバから各プログラムを記憶部43に格納してもよい。CPU41は、加工プログラムをRAM42に読み込んで加工プログラムを実行する。また、モータ331は、エンコーダ331aを有する。エンコーダ331aは、モータ331の回転位置を示す信号を制御装置40に出力する。尚、制御装置40はX軸方向移動装置、Y軸方向移動装置、Z軸方向移動装置が有するモータ、主軸モータ等を備えるが図示を省略する。 FIG. 7 is a block diagram showing the control device. The machine tool 100 includes a control device 40 that controls driving of the motor 331 . The control device 40 rotates the gear 332 by driving the motor 331 to rotate the plurality of pots P. As shown in FIG. The control device 40 includes a CPU 41 , a RAM 42 and a storage section 43 . The storage unit 43 has a rewritable storage medium such as EEPROM, EPROM, hard disk, or the like. The storage unit 43 stores the pot number assigned to each pot P, the distance of the first interval LA (first distance la), the distance of the second interval LB (second distance lb), a machining program for machining the workpiece, and the like. A processing program (program product) stored in a portable storage medium 43a such as a CD-ROM or flash memory may be stored in the storage unit 43, or each program may be stored in the storage unit 43 from a server via a network. The CPU 41 loads the machining program into the RAM 42 and executes the machining program. Also, the motor 331 has an encoder 331a. The encoder 331 a outputs a signal indicating the rotational position of the motor 331 to the control device 40 . The control device 40 includes motors of the X-axis direction moving device, Y-axis direction moving device, and Z-axis direction moving device, a spindle motor, etc., but the illustration thereof is omitted.
 図8は、レール及びポットの上面模式図である。各ポットにはポット番号が割り当てられており、図8に示すように上面視反時計回りに、1から順に割り当てられている。本実施形態においては、ポットPの数(ポット総数)は28個として説明する。ポット番号Nが割り当てられたポットを、ポットPNとする。また、ポット番号が奇数のポットPNを奇数ポット、ポット番号が偶数のポットPNを偶数ポットとも称する。 FIG. 8 is a schematic top view of the rail and pot. A pot number is assigned to each pot, and is assigned in order from 1 in a counterclockwise direction when viewed from the top as shown in FIG. In this embodiment, the number of pots P (total number of pots) is 28. A pot to which the pot number N is assigned is called a pot PN. A pot PN with an odd pot number is called an odd pot, and a pot PN with an even pot number is called an even pot.
 本実施形態においては、各奇数ポットは、ポット番号が一つ大きい偶数ポットと移動体34を介して並んでおり、ポット番号が一つ小さい偶数ポットとはリンク35を介して並んでいる。1の奇数ポットとポット番号が一つ大きい偶数ポットとの間の距離と、1の奇数ポットとポット番号が一つ小さい偶数ポットとの間の距離とは異なる。具体的に、各奇数ポットと、ポット番号が一つ大きい偶数ポットとの間の距離は第一距離laであり、ポット番号が一つ小さい偶数ポットとの間の距離は第二距離lbである。なお、ポットP28とポットP1はリンクを介して並んでおり、間の距離は第二距離lbである。距離1aと距離1bは異なる。 In this embodiment, each odd-numbered pot is aligned with an even-numbered pot with a higher pot number via the moving body 34 and aligned with an even-numbered pot with a lower pot number via a link 35 . The distance between an odd-numbered pot of 1 and an even-numbered pot with a higher pot number by one differs from the distance between an odd-numbered pot of 1 and an even-numbered pot with a lower pot number by one. Specifically, the distance between each odd-numbered pot and the even-numbered pot with the pot number one higher is the first distance la, and the distance between the even-numbered pot with the pot number one lower is the second distance lb. The pot P28 and the pot P1 are arranged side by side via a link, and the distance between them is the second distance lb. Distance 1a and distance 1b are different.
 主軸に装着されるための割り出し位置に配置されているポットPを現在ポットとする。図8においてはポットP1が現在ポットである。また、次にワーク加工に使用するため、割り出し位置に配置させる予定のポットPNを予定ポットとする。また、現在ポットのポット番号を現在ポット番号、予定ポットのポット番号を予定ポット番号とする。以下では、ポットP10を予定ポットとして、予定ポットP10を割り出し位置に移動させる例における制御について説明する。 The pot P arranged at the indexed position for mounting on the spindle is assumed to be the current pot. In FIG. 8, pot P1 is the current pot. Also, the pot PN that is scheduled to be placed at the indexing position to be used for machining the workpiece next time is set as the scheduled pot. Also, let the pot number of the current pot be the current pot number, and let the pot number of the planned pot be the planned pot number. In the following, the pot P10 is assumed to be the planned pot, and control in an example of moving the planned pot P10 to the indexing position will be described.
 制御装置40は、予定ポットP10と現在ポットP1のポット番号に基づいて、予定ポットP10を割り出し位置まで移動させるための移動方向を決定し、必要な移動ポット数を算出する。上面視時計回り方向を正転方向とし、反時計回り方向を逆転方向とする。詳細な移動方向決定方法及び移動ポット数の算出方法は後述するが、本例において、移動方向は正転方向であり、移動ポット数は9である。 Based on the pot numbers of the planned pot P10 and the current pot P1, the control device 40 determines the moving direction for moving the planned pot P10 to the indexed position, and calculates the necessary number of pots to be moved. The clockwise direction in top view is the normal rotation direction, and the counterclockwise direction is the reverse rotation direction. Details of the method of determining the moving direction and the method of calculating the number of pots to be moved will be described later.
 制御装置40のCPU41は、記憶部43から第一距離la、第二距離lb、及び現在ポットP1と移動方向上流側の隣のポットとの間隔(起点間隔)の距離である起点距離を取得する。本例において、起点間隔はポットP1とポットP2との間の距離なので、起点間隔は第一間隔であり、起点距離は第一距離laである。起点距離の設定方法は後述する。制御装置40は、移動ポット数を2で除算し、商と剰余を算出する。本例において、商は4、剰余は1である。制御装置40は、第一距離la及び第二距離lbの合計と、商との積を求め、さらに起点距離と剰余の積を合算し、移動量とする。即ち、以下の式によって算出した距離を移動量とする。 The CPU 41 of the control device 40 acquires from the storage unit 43 the first distance la, the second distance lb, and the starting point distance, which is the distance between the current pot P1 and the adjacent pot on the upstream side in the movement direction (starting point interval). In this example, the starting point interval is the distance between the pot P1 and the pot P2, so the starting point interval is the first interval and the starting point distance is the first distance la. A method of setting the starting point distance will be described later. The control device 40 divides the number of moving pots by 2, and calculates the quotient and remainder. In this example, the quotient is 4 and the remainder is 1. The control device 40 obtains the product of the sum of the first distance la and the second distance lb and the quotient, and then sums up the product of the starting point distance and the remainder to obtain the movement amount. That is, let the distance calculated by the following formula be the amount of movement.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 CPU41は、算出した移動量に基づいて、モータ331を駆動させる。具体的には、記憶部43はギア332一回転当たりのポットPの駆動距離を記憶しており、制御装置40はギア332一回転当たりのポットPの駆動距離と移動量に基づいてモータ331の回転量を決定し、駆動させる。 The CPU 41 drives the motor 331 based on the calculated movement amount. Specifically, the storage unit 43 stores the driving distance of the pot P per rotation of the gear 332, and the control device 40 determines the amount of rotation of the motor 331 based on the driving distance and the amount of movement of the pot P per rotation of the gear 332, and drives the motor 331.
 図9は、移動方向決定方法及び移動ポット数算出方法を説明するフローチャートであり、加工プログラム中の工具交換指令を実行時に起動する。図9においては、変数X及びYを用いて説明する。CPU41は、現在ポット番号及び予定ポット番号を取得し(S1)、予定ポット番号が現在ポット番号以上であるか否か判定する(S2)。なお、CPU41は、エンコーダ331aから出力されたモータ331の回転位置に基づいて現在ポット番号を取得し、RAM42に読み込まれた加工プログラムから予定ポット番号を取得する。予定ポット番号が現在ポット番号以上である場合(S2:YES)、CPU41は予定ポット番号から現在ポット番号を引いた数をXに設定する(S3)。予定ポット番号が現在ポット番号未満である場合(S2:NO)、CPU41は予定ポット番号から現在ポット番号を引いた後、ポット総数を足した数をXに設定する(S4)。CPU41は、Xがポット総数/2よりも大きいか否か判定し(S5)、大きい場合(S5:YES)、Xからポット総数を引いた数をYに設定する(S6)。Xがポット総数を2で割った商以下である場合(S5:NO)、CPU41は、YをXと同値に設定する(S7)。CPU41は、Yが0以上であるか否かを判定し(S8)、Yが0以上である場合(S8:YES)、移動方向を正転方向に設定して(S9)、移動ポット数をYと同値として算出する(S10)。Yが0未満の場合(S8:NO)、CPU41は、移動方向を逆転方向に設定し(S11)、移動ポット数を-Yとして算出する(S12)。CPU41は、S10またはS12において移動ポット数を算出後、処理を終了する。 FIG. 9 is a flow chart explaining the method of determining the moving direction and the method of calculating the number of moving pots, which is activated when the tool change command in the machining program is executed. In FIG. 9, variables X and Y are used for explanation. The CPU 41 acquires the current pot number and the scheduled pot number (S1), and determines whether or not the scheduled pot number is greater than or equal to the current pot number (S2). The CPU 41 acquires the current pot number based on the rotational position of the motor 331 output from the encoder 331a, and acquires the planned pot number from the machining program read into the RAM42. If the scheduled pot number is greater than or equal to the current pot number (S2: YES), the CPU 41 sets X to the number obtained by subtracting the current pot number from the scheduled pot number (S3). If the scheduled pot number is less than the current pot number (S2: NO), the CPU 41 subtracts the current pot number from the scheduled pot number and then adds the total number of pots to X (S4). The CPU 41 determines whether or not X is larger than the total number of pots/2 (S5). When X is equal to or less than the quotient obtained by dividing the total number of pots by 2 (S5: NO), the CPU 41 sets Y to the same value as X (S7). The CPU 41 determines whether Y is 0 or more (S8), and if Y is 0 or more (S8: YES), sets the moving direction to the forward direction (S9), and calculates the number of moving pots as the same value as Y (S10). When Y is less than 0 (S8: NO), the CPU 41 sets the moving direction to the reverse direction (S11), and calculates the number of moving pots as -Y (S12). After calculating the number of pots to be moved in S10 or S12, the CPU 41 ends the process.
 以上の処理によって、CPU41は、予定ポットを割り出し位置に配置するためのより近い移動方向を決定することが可能である。また、正転または逆転のどちらに移動方向を決定しても、正しい移動ポット数を算出することが可能である。 Through the above processing, the CPU 41 can determine a closer moving direction for locating the planned pot at the indexed position. In addition, it is possible to calculate the correct number of moving pots regardless of whether the moving direction is determined to be forward rotation or reverse rotation.
 図10は、駆動制御を説明するフローチャートであり、図9のフローチャートの実行完了後起動する。CPU41は、記憶部43から、第一距離la及び第二距離lbを取得する(S21)。CPU41は、現在ポット番号を取得し(S22)、現在ポット番号が偶数であるか否か判定する(S23)。現在ポット番号が偶数である場合(S23:YES)、CPU41は、ポットPの移動方向が正転であるか否か判定する(S24)。移動方向が正転である場合(S24:YES)、CPU41は、起点距離を第二距離に設定する(S27)。移動方向が正転でない場合、即ち逆転である場合(S24:NO)、CPU41は、起点距離を第一距離に設定する(S26)。ポット番号が偶数でない、即ち奇数である場合(S23:NO)、CPU41は、ポットPの移動方向が正転であるか否か判定する(S25)。移動方向が正転である場合(S25:YES)、CPU41は、起点距離を第一距離に設定する(S26)。移動方向が正転でない場合、即ち逆転である場合(S25:NO)、CPU41は、起点距離を第二距離に設定する(S27)。CPU41は、S26またはS27において起点距離を設定後、移動ポット数を2で除算して商と剰余を算出する(S28)。CPU41は、第一距離及び第二距離の合計と商を乗算し(S29)、また、起点距離と剰余を乗算する(S30)。CPU41は、S29とS30における算出結果を合算して移動量を算出し(S31)、移動量に基づいてモータの回転量を算出する(S32)。CPU41は、モータを回転駆動させ(S33)、処理を終了する。 FIG. 10 is a flowchart for explaining drive control, which is activated after execution of the flowchart in FIG. 9 is completed. The CPU 41 acquires the first distance la and the second distance lb from the storage unit 43 (S21). The CPU 41 acquires the current pot number (S22) and determines whether or not the current pot number is an even number (S23). If the current pot number is an even number (S23: YES), the CPU 41 determines whether or not the moving direction of the pot P is forward rotation (S24). If the movement direction is normal rotation (S24: YES), the CPU 41 sets the starting point distance to the second distance (S27). If the movement direction is not forward rotation, that is, if it is reverse rotation (S24: NO), the CPU 41 sets the starting point distance to the first distance (S26). If the pot number is not even, that is, odd (S23: NO), the CPU 41 determines whether the moving direction of the pot P is forward rotation (S25). If the movement direction is normal rotation (S25: YES), the CPU 41 sets the starting point distance to the first distance (S26). If the movement direction is not forward rotation, that is, if it is reverse rotation (S25: NO), the CPU 41 sets the starting point distance to the second distance (S27). After setting the starting point distance in S26 or S27, the CPU 41 divides the number of moving pots by 2 to calculate the quotient and remainder (S28). The CPU 41 multiplies the sum of the first distance and the second distance by the quotient (S29), and multiplies the starting point distance by the remainder (S30). The CPU 41 adds up the calculation results in S29 and S30 to calculate the amount of movement (S31), and calculates the amount of rotation of the motor based on the amount of movement (S32). The CPU 41 rotates the motor (S33) and ends the process.
 以上の処理によれば、ポットが交互に二種類の間隔でレール上に並べられている場合においても、工具交換の際のポットの移動距離を算出することが可能である。 According to the above processing, even if the pots are alternately arranged on the rail at two types of intervals, it is possible to calculate the movement distance of the pots when changing tools.

 実施形態1の制御装置40は、第一距離la及び第二距離lbを記憶した記憶部43を備えるが、実施形態2の制御装置40は、レール313一周分の距離(レール全長)、ポット総数、及び第一間隔と第二間隔の比(第一間隔比RA:第二間隔比RB)を記憶した記憶部43を備え、CPU41による算出によって第一距離la及び第二距離lbを算出する。以下実施形態2について、図面に基づいて説明する。実施形態2の構成の内、実施形態1と同様な構成については同じ符号を付し、その詳細な説明を省略する。

The control device 40 of the first embodiment includes a storage unit 43 that stores the first distance la and the second distance lb. The control device 40 of the second embodiment includes a storage unit 43 that stores the distance for one round of the rail 313 (the total length of the rail), the total number of pots, and the ratio between the first interval and the second interval (first interval ratio RA: second interval ratio RB), and the first distance la and the second distance lb are calculated by the CPU 41. Embodiment 2 will be described below with reference to the drawings. Among the configurations of the second embodiment, the configurations similar to those of the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
 図11は、第一距離及び第二距離算出処理を説明するフローチャートである。CPU41は、レール一周分の距離及びポット総数を記憶部43から取得し(S41)、レール全長をポット総数で除算して各ポット間の間隔の平均距離(平均間隔距離lm)を算出する(S42)。CPU41は、第一間隔比RA及び第二間隔比RBを記憶部43から取得し(S43)、第一間隔比RAと第二間隔比RBの平均(平均間隔比Rm)を算出する(S44)。CPU41は、平均間隔距離lmと第一間隔比RAを乗算して平均間隔比Rmを除算することで第一距離laを算出し(S45)、平均間隔距離lmと第二間隔比RBを乗算して平均間隔比Rmを除算することで第二距離lbを算出する(S46)。即ち、以下の式によって、平均間隔距離lm、平均間隔比Rm、第一距離la及び第二距離lbは算出される。 FIG. 11 is a flowchart for explaining the first distance and second distance calculation processing. The CPU 41 acquires the distance for one round of the rail and the total number of pots from the storage unit 43 (S41), divides the total length of the rail by the total number of pots, and calculates the average distance between pots (average distance lm) (S42). The CPU 41 acquires the first interval ratio RA and the second interval ratio RB from the storage unit 43 (S43), and calculates the average (average interval ratio Rm) of the first interval ratio RA and the second interval ratio RB (S44). The CPU 41 calculates the first distance la by multiplying the average interval distance lm by the first interval ratio RA and dividing the average interval ratio Rm (S45), and calculates the second distance lb by multiplying the average interval distance lm by the second interval ratio RB and dividing the average interval ratio Rm (S46). That is, the average interval distance lm, the average interval ratio Rm, the first distance la, and the second distance lb are calculated by the following equations.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 実施形態2の制御装置40の記憶部43はレール313一周分の距離、ポット総数、及び第一間隔と第二間隔の比を記憶しているため、工作機械100の構成が変更された場合、変更された数値を記憶し直すことで第一距離及び第二距離を算出することが可能となる。 The storage unit 43 of the control device 40 of the second embodiment stores the distance for one round of the rail 313, the total number of pots, and the ratio between the first interval and the second interval. Therefore, when the configuration of the machine tool 100 is changed, it is possible to calculate the first distance and the second distance by re-storing the changed numerical values.

 実施形態1の工作機械100のポットPは、第一間隔及び第二間隔が交互になるように配置されるが、実施形態3の工作機械100のポットPは、第一間隔、第二間隔及び第三間隔が輪番になるように配置される。以下実施形態3について、図面に基づいて説明する。実施形態1と同様な構成については同じ符号を付し、その詳細な説明を省略する。

The pots P of the machine tool 100 of Embodiment 1 are arranged so that the first intervals and the second intervals alternate, while the pots P of the machine tool 100 of Embodiment 3 are arranged so that the first intervals, the second intervals, and the third intervals are arranged in rotation. Embodiment 3 will be described below with reference to the drawings. The same reference numerals are assigned to the same configurations as in the first embodiment, and detailed description thereof will be omitted.
 図12は、実施形態3のレール及びポットの上面模式図である。本実施形態においては、ポット総数は24個として説明する。ポットP1とポットP2の間隔は第一間隔、ポットP2とポットP3の間隔は第二間隔、ポットP3とポットP4の間隔は第三間隔である。同様に、ポットP24まで、第一間隔、第二間隔、及び第三間隔が輪番になるように配置されている。なお、ポットP24とポットP1の間隔は第三間隔である。実施形態1と同様に、第一間隔の距離を第一距離la、第二間隔の距離を第二距離lbとし、第三間隔の距離を第三距離lcとする。実施形態3の記憶部43は、第一距離la、第二距離lb、及び第三距離lcを記憶している。 FIG. 12 is a schematic top view of the rail and pot of Embodiment 3. FIG. In this embodiment, the total number of pots is assumed to be 24. The distance between the pot P1 and the pot P2 is the first distance, the distance between the pot P2 and the pot P3 is the second distance, and the distance between the pot P3 and the pot P4 is the third distance. Similarly, the first, second, and third intervals are arranged in rotation until pot P24. The distance between the pot P24 and the pot P1 is the third distance. As in the first embodiment, the distance of the first interval is the first distance la, the distance of the second interval is the second distance lb, and the distance of the third interval is the third distance lc. The storage unit 43 of Embodiment 3 stores the first distance la, the second distance lb, and the third distance lc.
 以下では、ポットP12を予定ポットとして、予定ポットP12を割り出し位置に移動させる例における制御について説明する。なお、以下の説明における商は、除算における整数商を表す。制御装置40は、実施形態1と同様に移動方向を決定し、移動ポット数を算出する。本例においては、移動方向は正転であり、移動ポット数は11である。 In the following, the control in an example of moving the planned pot P12 to the indexing position will be described with the pot P12 as the planned pot. Note that the quotient in the following description represents an integer quotient in division. The control device 40 determines the direction of movement and calculates the number of pots to be moved, as in the first embodiment. In this example, the moving direction is normal rotation, and the number of moving pots is eleven.
 制御装置40のCPU41は、記憶部43から第一距離la、第二距離lb、第三距離lc、現在ポットP1と移動方向上流側の隣のポットとの間隔(起点間隔)の距離である起点距離、及び予定ポットP12と移動方向下流側の隣のポットとの間隔(終点間隔)の距離である終点距離を取得する。起点距離及び終点距離の設定方法は後述するが、本例において起点距離はla、終点距離はlbである。 The CPU 41 of the control device 40 acquires from the storage unit 43 the first distance la, the second distance lb, the third distance lc, the starting point distance that is the distance between the current pot P1 and the adjacent pot on the upstream side in the movement direction (starting point distance), and the end point distance that is the distance between the planned pot P12 and the adjacent pot on the downstream side in the moving direction (end point distance). A method of setting the start point distance and the end point distance will be described later, but in this example, the start point distance is la and the end point distance is lb.
 制御装置40は、移動ポット数を3で除算し、第一商と第一剰余を算出する。本例において、第一商は3、第一剰余は2である。制御装置40は、さらに第一剰余に1を足した数を2で除算し、第二商を求める。本例において第二商は1である。また、制御装置40は、第一剰余を2で除算し、第三商を求める。本例において、第三商は1である。制御装置40は、第一距離la、第二距離lb及び第三距離lcの合計と第一商との積、第二商と起点距離との積、及び第三商と終点距離との積を合算し、移動量とする。即ち、本例においては以下の式によって移動量は算出される。 The control device 40 divides the number of moving pots by 3 and calculates the first quotient and first remainder. In this example, the first quotient is 3 and the first remainder is 2. The control device 40 further divides the number obtained by adding 1 to the first remainder by 2 to obtain a second quotient. The second quotient is 1 in this example. Also, the control device 40 divides the first remainder by 2 to obtain the third quotient. In this example, the third quotient is one. The control device 40 sums the product of the sum of the first distance la, the second distance lb, and the third distance lc and the first quotient, the product of the second quotient and the start point distance, and the product of the third quotient and the end point distance, and obtains the movement amount. That is, in this example, the movement amount is calculated by the following formula.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 図13及び図14は、実施形態3の起点距離及び終点距離の設定方法を説明するフローチャートである。制御装置40のCPU41は、移動方向決定及び移動ポット数算出(図9参照)後、起点距離及び終点距離を設定する。CPU41は、記憶部43から第一距離la、第二距離lb、及び第三距離lcを取得する(S51)。CPU41は、現在ポット番号を取得し(S52)、現在ポット番号が3の倍数であるか否か判定する(S53)。現在ポット番号が3の倍数である場合(S53:YES)、CPU41はポットPの移動方向が正転であるか否か判定する(S54)。移動方向が正転である場合(S54:YES)、CPU41は起点距離を第三距離に設定する(S58)。移動方向が正転でない場合、即ち逆転である場合(S54:NO)、CPU41は起点距離を第二距離に設定する(S60)。現在ポット番号が3の倍数でない場合(S53:NO)、CPU41は現在ポット番号を3で除算した剰余が1であるか否か判定する(S55)。剰余が1である場合(S55:YES)、CPU41はポットPの移動方向が正転であるか否か判定する(S56)。移動方向が正転である場合(S56:YES)、CPU41は起点距離を第一距離に設定する(S59)。移動方向が正転でない場合、即ち逆転である場合(S56:NO)、CPU41は起点距離を第三距離に設定する(S58)。現在ポット番号を3で除算した剰余が1でない場合、即ち剰余が2である場合(S55:NO)、CPU41は移動方向が正転であるか否か判定する(S57)。移動方向が正転である場合(S57:YES)、CPU41は起点距離を第二距離に設定する(S60)。移動方向が正転でない場合、即ち逆転である場合(S57:NO)、CPU41は起点距離を第一距離に設定する(S59)。 13 and 14 are flowcharts for explaining the method of setting the starting point distance and the ending point distance according to the third embodiment. After determining the moving direction and calculating the number of pots to be moved (see FIG. 9), the CPU 41 of the control device 40 sets the starting point distance and the ending point distance. The CPU 41 acquires the first distance la, the second distance lb, and the third distance lc from the storage unit 43 (S51). The CPU 41 acquires the current pot number (S52), and determines whether or not the current pot number is a multiple of 3 (S53). If the current pot number is a multiple of 3 (S53: YES), the CPU 41 determines whether the moving direction of the pot P is forward rotation (S54). If the movement direction is normal rotation (S54: YES), the CPU 41 sets the starting point distance to the third distance (S58). If the movement direction is not forward rotation, that is, if it is reverse rotation (S54: NO), the CPU 41 sets the starting point distance to the second distance (S60). If the current pot number is not a multiple of 3 (S53: NO), the CPU 41 determines whether the remainder obtained by dividing the current pot number by 3 is 1 (S55). If the remainder is 1 (S55: YES), the CPU 41 determines whether or not the moving direction of the pot P is forward rotation (S56). If the movement direction is normal rotation (S56: YES), the CPU 41 sets the starting point distance to the first distance (S59). If the movement direction is not forward rotation, that is, if it is reverse rotation (S56: NO), the CPU 41 sets the starting point distance to the third distance (S58). If the remainder obtained by dividing the current pot number by 3 is not 1, that is, if the remainder is 2 (S55: NO), the CPU 41 determines whether or not the movement direction is forward rotation (S57). If the movement direction is normal rotation (S57: YES), the CPU 41 sets the starting point distance to the second distance (S60). If the movement direction is not forward rotation, that is, if it is reverse rotation (S57: NO), the CPU 41 sets the starting point distance to the first distance (S59).
 制御装置40のCPU41は、S58、S59またはS60において起点距離を設定後、予定ポット番号を取得し(S61)、予定ポット番号が3の倍数であるか否か判定する(S62)。予定ポット番号が3の倍数である場合(S62:YES)、CPU41はポットPの移動方向が正転であるか否か判定する(S63)。移動方向が正転である場合(S63:YES)、CPU41は終点距離を第二距離に設定する(S67)。移動方向が正転でない場合、即ち逆転である場合(S63:NO)、CPU41は終点距離を第三距離に設定する(S68)。予定ポット番号が3の倍数でない場合(S62:NO)、CPU41は予定ポット番号を3で除算した剰余が1であるか否か判定する(S64)。剰余が1である場合(S64:YES)、CPU41はポットPの移動方向が正転であるか否か判定する(S65)。移動方向が正転である場合(S65:YES)、CPU41は終点距離を第三距離に設定する(S68)。移動方向が正転でない場合、即ち逆転である場合(S65:NO)、CPU41は終点距離を第一距離に設定する(S69)。予定ポット番号を3で除算した剰余が1でない場合、即ち剰余が2である場合(S64:NO)、CPU41は移動方向が正転であるか否か判定する(S66)。移動方向が正転である場合(S66:YES)、CPU41は終点距離を第一距離に設定する(S69)。移動方向が正転でない場合、即ち逆転である場合(S66:NO)、CPU41は終点距離を第二距離に設定する(S67)。CPU41は、S67、S68またはS69において終点距離を設定後、処理を終了する。 After setting the starting point distance in S58, S59 or S60, the CPU 41 of the control device 40 acquires the scheduled pot number (S61) and determines whether or not the scheduled pot number is a multiple of 3 (S62). When the scheduled pot number is a multiple of 3 (S62: YES), the CPU 41 determines whether or not the moving direction of the pot P is forward rotation (S63). If the movement direction is normal rotation (S63: YES), the CPU 41 sets the end point distance to the second distance (S67). If the movement direction is not forward rotation, that is, if it is reverse rotation (S63: NO), the CPU 41 sets the end point distance to the third distance (S68). If the scheduled pot number is not a multiple of 3 (S62: NO), the CPU 41 determines whether the remainder obtained by dividing the scheduled pot number by 3 is 1 (S64). When the remainder is 1 (S64: YES), the CPU 41 determines whether or not the movement direction of the pot P is normal rotation (S65). If the movement direction is normal rotation (S65: YES), the CPU 41 sets the end point distance to the third distance (S68). If the movement direction is not forward rotation, that is, if it is reverse rotation (S65: NO), the CPU 41 sets the end point distance to the first distance (S69). When the remainder obtained by dividing the scheduled pot number by 3 is not 1, that is, when the remainder is 2 (S64: NO), the CPU 41 determines whether or not the movement direction is forward rotation (S66). If the movement direction is normal rotation (S66: YES), the CPU 41 sets the end point distance to the first distance (S69). If the movement direction is not forward rotation, that is, if it is reverse rotation (S66: NO), the CPU 41 sets the end point distance to the second distance (S67). After setting the end point distance in S67, S68 or S69, the CPU 41 ends the process.
 図15は実施形態3の駆動制御を説明するフローチャートであり、図13及び図14のフローチャートの実行完了後起動する。CPU41は、移動ポット数を3で除算し、第一商と第一剰余を算出する(S71)。なお、移動ポット数の算出方法については実施形態1と同様であるので(図9参照)、詳細を省略する。CPU41は、第一剰余+1を2で除算して第二商を算出し(S72)、第一剰余を2で除算して第三商を算出する(S73)。CPU41は、第一距離、第二距離及び第三距離の合計と第一商を乗算し(S74)、起点距離と第二商を乗算し(S75)、終点距離と第三商を乗算する(S76)。CPU41は、S74、S75及びS76における算出結果を合算して移動量を算出し(S77)、移動量に基づいてモータの回転量を算出する(S78)。CPU41は、モータを回転駆動させ(S79)、処理を終了する。 FIG. 15 is a flowchart for explaining the drive control of the third embodiment, which is activated after the execution of the flowcharts of FIGS. 13 and 14 is completed. The CPU 41 divides the number of moving pots by 3 to calculate a first quotient and a first remainder (S71). The method for calculating the number of pots to be moved is the same as that of the first embodiment (see FIG. 9), so details will be omitted. The CPU 41 divides the first remainder +1 by 2 to calculate a second quotient (S72), and divides the first remainder by 2 to calculate a third quotient (S73). The CPU 41 multiplies the sum of the first distance, the second distance, and the third distance by the first quotient (S74), multiplies the start point distance by the second quotient (S75), and multiplies the end point distance by the third quotient (S76). The CPU 41 adds up the calculation results in S74, S75, and S76 to calculate the amount of movement (S77), and calculates the amount of rotation of the motor based on the amount of movement (S78). The CPU 41 rotates the motor (S79) and terminates the process.
 以上の処理によれば、ポットが三種類の間隔で輪番にレール上に並べられている場合においても、工具交換の際のポットの移動距離を算出することが可能である。 According to the above processing, even when the pots are arranged on the rail in rotation at three different intervals, it is possible to calculate the pot movement distance when changing tools.

 実施形態1の工作機械100のポットPは、第一間隔及び第二間隔が交互になるように配置されるが、実施形態4の工作機械100のポットPは、様々な大きさの工具を把持するため、不規則な間隔で配置されている。以下実施形態4について、図面に基づいて説明する。実施形態1と同様な構成については同じ符号を付し、その詳細な説明を省略する。

The pots P of the machine tool 100 of Embodiment 1 are arranged so that the first intervals and the second intervals alternate, but the pots P of the machine tool 100 of Embodiment 4 are arranged at irregular intervals in order to hold tools of various sizes. Embodiment 4 will be described below with reference to the drawings. The same reference numerals are assigned to the same configurations as in the first embodiment, and detailed description thereof will be omitted.
 図16は、実施形態4のレール及びポットの上面模式図である。図17は、座標テーブルを示す説明図である。図16に示すように、ポットPは、不規則な間隔でレール上に配置されている。図17に示すように、制御装置40の記憶部43は、ポット番号に座標を対応させた座標テーブルを記憶している。座標の値には、ポットP1からの上面視反時計回りの距離が格納されている。以下、現在ポットの座標を現在座標、予定ポットの座標を予定座標とする。 FIG. 16 is a schematic top view of the rail and pot of Embodiment 4. FIG. FIG. 17 is an explanatory diagram showing a coordinate table. As shown in FIG. 16, the pots P are arranged on the rail at irregular intervals. As shown in FIG. 17, the storage unit 43 of the control device 40 stores a coordinate table in which coordinates are associated with pot numbers. The coordinate value stores the counterclockwise distance from the pot P1 in top view. Hereinafter, the coordinates of the current pot will be referred to as current coordinates, and the coordinates of the planned pot will be referred to as planned coordinates.
 図18は、実施形態4の駆動制御を説明するフローチャートである。CPU41は、現在ポット番号及び予定ポット番号を取得し(S81)、現在ポット番号及び予定ポット番号に基づいて、記憶部43の座標テーブルから現在座標及び予定座標を取得する(S82)。CPU41は、予定座標が現在座標以上であるか否かを判定し(S83)、予定座標が現在座標以上である場合(S83:YES)、CPU41は予定座標から現在座標を引いた数をXに設定する(S84)。予定座標が現在座標未満である場合(S83:NO)、CPU41は予定座標から現在座標を引き、レール全長を足した数にXを設定する(S85)。CPU41は、Xがレール全長/2よりも大きいか否か判定し(S86)、大きい場合(S86:YES)、Xからレール全長を引いた数にYを設定する(S87)。Xがレール全長/2以下である場合(S86:NO)、CPU41は、Xと同値にYを設定する(S88)。CPU41は、Yが0以上であるか否かを判定し(S89)、Yが0以上である場合(S89:YES)、移動方向を正転方向に設定して(S90)、移動量をYと同値として算出する(S91)。Yが0未満の場合(S89:NO)、CPU41は、移動方向を逆転方向に設定し(S92)、移動量を-Yとして算出する(S93)。CPU41は、S91またはS93において移動量を算出後、移動量に基づいてモータ331の回転量を算出し(S94)、モータ331を回転駆動させ(S95)、処理を終了する。 FIG. 18 is a flowchart for explaining drive control in the fourth embodiment. The CPU 41 acquires the current pot number and the scheduled pot number (S81), and acquires the current coordinates and the scheduled coordinates from the coordinate table of the storage unit 43 based on the current pot number and the scheduled pot number (S82). The CPU 41 determines whether or not the planned coordinates are greater than or equal to the current coordinates (S83), and if the planned coordinates are greater than or equal to the current coordinates (S83: YES), the CPU 41 sets the number obtained by subtracting the current coordinates from the scheduled coordinates to X (S84). If the planned coordinates are less than the current coordinates (S83: NO), the CPU 41 subtracts the current coordinates from the planned coordinates and adds the total length of the rail, and sets X to the number (S85). The CPU 41 determines whether or not X is greater than the total rail length/2 (S86), and if it is greater (S86: YES), sets Y to the number obtained by subtracting the total rail length from X (S87). When X is equal to or less than the total rail length/2 (S86: NO), the CPU 41 sets Y to the same value as X (S88). The CPU 41 determines whether Y is 0 or more (S89), and if Y is 0 or more (S89: YES), sets the moving direction to the normal direction (S90), and calculates the moving amount as the same value as Y (S91). When Y is less than 0 (S89: NO), the CPU 41 sets the movement direction to the reverse direction (S92), and calculates the movement amount as -Y (S93). After calculating the amount of movement in S91 or S93, the CPU 41 calculates the amount of rotation of the motor 331 based on the amount of movement (S94), drives the motor 331 to rotate (S95), and ends the process.
 以上の処理によれば、ポットが不規則な間隔でレール上に並べられている場合においても、工具交換の際のポットの移動距離を算出することが可能である。本実施形態におけるポットの移動距離は、現在ポット及び予定ポット間の距離である。なお、座標テーブルに格納される座標は、レール313の軌道の中心を円心とした角度でもよく、この場合は該角度とレール全長に基づいて移動量が算出される。
 S21、S41~S46、S51、S81~S88を実行するCPU41は取得部に相当し、S28~S31、S71~S77、S89~S93を実行するCPU41は算出部に相当し、S32,S33,S78、S79、S94,S95を実行するCPU41は制御部に相当する。S82~S92を実行するCPU41は移動方向決定部に相当する。
According to the above processing, even when the pots are arranged on the rail at irregular intervals, it is possible to calculate the moving distance of the pots at the time of tool change. The moving distance of the pot in this embodiment is the distance between the current pot and the planned pot. The coordinates stored in the coordinate table may be an angle with the center of the track of the rail 313 as the center of the circle. In this case, the movement amount is calculated based on the angle and the total length of the rail.
The CPU 41 that executes S21, S41 to S46, S51, and S81 to S88 corresponds to the acquisition unit, the CPU 41 that executes S28 to S31, S71 to S77, and S89 to S93 corresponds to the calculation unit, and the CPU 41 that executes S32, S33, S78, S79, S94, and S95 corresponds to the control unit. The CPU 41 that executes S82 to S92 corresponds to the movement direction determination section.
 今回開示した実施の形態は、全ての点で例示であって、制限的なものではないと考えられるべきである。各実施例にて記載されている技術的特徴は互いに組み合わせることができ、本発明の範囲は、特許請求の範囲内での全ての変更及び特許請求の範囲と均等の範囲が含まれることが意図される。 The embodiments disclosed this time should be considered as examples in all respects and not restrictive. The technical features described in each embodiment can be combined with each other, and the scope of the present invention is intended to include all modifications within the scope of the claims and the scope of claims and equivalents.
 100 工作機械
 30 工具マガジン
 313 レール
 331 モータ
 332 ギア
 34 移動体
 35 リンク
 40 制御装置
 41 CPU
 42 RAM
 43 記憶部
 43a 記憶媒体
 P ポット
REFERENCE SIGNS LIST 100 machine tool 30 tool magazine 313 rail 331 motor 332 gear 34 moving body 35 link 40 control device 41 CPU
42 RAM
43 storage unit 43a storage medium P pot

Claims (9)

  1.  主軸と、
     無端状のレールと、前記レールに不等な間隔で配置され、工具を収納する複数のポットとを備える工具マガジンとを備える工作機械の制御装置において、
     前記複数のポットは前記主軸に装着されるための割り出し位置に配置されている現在ポットと、前記割り出し位置に配置させる予定の予定ポットを含み、
     前記複数のポット間の距離を取得する取得部と、
     前記現在ポット及び前記予定ポットに関する情報と、前記取得部が取得した前記距離とに基づき、前記予定ポットを前記割り出し位置まで移動する移動量を算出する算出部と、
     前記算出部が算出した前記移動量に基づいて前記ポットを前記レールに沿って移動させる制御を行う制御部と
     を備える制御装置。
    a main shaft;
    A control device for a machine tool comprising an endless rail and a tool magazine comprising a plurality of pots arranged at unequal intervals on the rail and storing tools,
    the plurality of pots includes a current pot arranged at an indexed position to be mounted on the main shaft and a planned pot to be arranged at the indexed position;
    an acquisition unit that acquires the distances between the plurality of pots;
    a calculation unit that calculates a movement amount for moving the planned pot to the indexed position based on the information about the current pot and the planned pot and the distance acquired by the acquisition unit;
    A control device, comprising: a control unit that performs control to move the pot along the rail based on the movement amount calculated by the calculation unit.
  2.  前記間隔は第一間隔と、前記第一間隔よりも広い第二間隔とを含み、前記ポットは、前記第一間隔と前記第二間隔が交互になるように配置され、
     前記算出部は、前記第一間隔の距離である第一距離及び前記第二間隔の距離である第二距離に基づいて前記移動量を算出する
     請求項1に記載の制御装置。
    said spacing includes a first spacing and a second spacing wider than said first spacing, said pots being arranged such that said first spacing and said second spacing alternate;
    The control device according to claim 1, wherein the calculator calculates the movement amount based on a first distance that is the distance of the first interval and a second distance that is the distance of the second interval.
  3.  前記情報は、前記ポットに割り当てられた番号と、前記現在ポットと移動方向上流側の隣のポットとの間隔を示す起点間隔とを含み、
     前記算出部は、前記現在ポット及び前記予定ポットに割り当てられた番号に基づいて移動する移動ポット数を算出し、前記第一距離及び第二距離の合計と、前記移動ポット数を2で除算した商との積に、前記起点間隔の距離と、前記移動ポット数を2で除算した剰余との積を合算して前記移動量を算出する
     請求項2に記載の制御装置。
    The information includes a number assigned to the pot and a starting point interval indicating the interval between the current pot and the adjacent pot on the upstream side in the moving direction,
    3. The control device according to claim 2, wherein the calculation unit calculates the number of moving pots based on the numbers assigned to the current pot and the scheduled pot, and calculates the movement amount by adding the product of the sum of the first distance and the second distance and the quotient obtained by dividing the number of moving pots by 2 with the product of the distance of the starting point interval and the remainder obtained by dividing the number of moving pots by 2.
  4.  前記第一距離及び前記第二距離を記憶した記憶部を備え、
     前記取得部は前記記憶部から前記第一距離及び前記第二距離を取得する
     請求項2または3に記載の制御装置。
    A storage unit that stores the first distance and the second distance,
    The control device according to claim 2 or 3, wherein the acquisition unit acquires the first distance and the second distance from the storage unit.
  5.  前記レール一周分の距離、前記ポットの総数及び前記第一間隔と前記第二間隔の比を記憶した記憶部を備え、
     前記取得部は、前記レール一周分の距離、前記ポットの総数及び前記第一間隔と前記第二間隔の比に基づいて前記第一距離及び前記第二距離を取得する
     請求項2または3に記載の制御装置。
    A storage unit that stores the distance for one round of the rail, the total number of the pots, and the ratio between the first interval and the second interval,
    The control device according to claim 2 or 3, wherein the acquisition unit acquires the first distance and the second distance based on the distance for one round of the rail, the total number of the pots, and the ratio between the first distance and the second distance.
  6.  前記情報は、前記現在ポット及び前記予定ポットの座標を含み、
     前記ポットに割り当てられた座標に対応する座標を記憶した記憶部を備え、
     前記取得部は前記記憶部から前記現在ポット及び前記予定ポットの前記座標を取得し、前記記憶部から前記現在ポット及び前記予定ポットの前記座標の差分を算出し、前記差分に基づいて前記距離を取得する
     請求項1に記載の制御装置。
    the information includes coordinates of the current pot and the planned pot;
    A storage unit storing coordinates corresponding to the coordinates assigned to the pot,
    The control device according to claim 1, wherein the acquisition unit acquires the coordinates of the current pot and the planned pot from the storage unit, calculates a difference between the coordinates of the current pot and the planned pot from the storage unit, and acquires the distance based on the difference.
  7.  前記現在ポット及び前記予定ポットに割り当てられた座標に基づいて前記ポットを移動させる移動方向を決定する移動方向決定部を備え、
     前記算出部は前記移動方向決定部が決定した前記移動方向に基づいて前記移動量を算出する
     請求項1から6のいずれか一つに記載の制御装置。
    a moving direction determining unit that determines a moving direction for moving the pot based on the coordinates assigned to the current pot and the planned pot;
    The control device according to any one of claims 1 to 6, wherein the calculation section calculates the movement amount based on the movement direction determined by the movement direction determination section.
  8.  主軸と、
     無端状のレールと、前記レールに不等な間隔で配置され、工具を収納する複数のポットとを備える工具マガジンと
     を備える工作機械の制御方法において、
     前記複数のポットは前記主軸に装着されるための現在ポットと、前記割り出し位置に配置させる予定の予定ポットを含み、
     前記複数のポット間の距離を取得し、
     前記現在ポット及び前記予定ポットに関する情報と、前記距離とに基づき、前記予定ポットを前記割り出し位置まで移動する移動量を算出し、前記移動量に基づいて前記ポットを前記レールに沿って移動させる
     制御方法。
    a main shaft;
    A control method for a machine tool comprising: an endless rail; and a tool magazine comprising a plurality of pots arranged at unequal intervals on the rail and storing tools,
    the plurality of pots includes a current pot to be mounted on the spindle and a planned pot to be arranged at the indexing position;
    obtaining distances between the plurality of pots;
    A control method comprising calculating a movement amount for moving the planned pot to the indexed position based on the information about the current pot and the planned pot and the distance, and moving the pot along the rail based on the movement amount.
  9.  主軸と、
     無端状のレールと、前記レールに不等な間隔で配置され、工具を収納する複数のポットとを備える工具マガジンと
     を備える工作機械の制御装置で実行可能なプログラムにおいて、
     前記複数のポットは前記主軸に装着されるための現在ポットと、前記割り出し位置に配置させる予定の予定ポットを含み、
     前記複数のポット間の距離を取得し、
     前記現在ポット及び前記予定ポットに関する情報と、前記距離とに基づき、前記予定ポットを前記割り出し位置まで移動する移動量を算出し、
     前記移動量に基づいて前記ポットを前記レールに沿って移動させる
     処理を前記制御装置に実行させるコンピュータプログラム。
    a main shaft;
    A program executable by a control device of a machine tool comprising an endless rail and a tool magazine comprising a plurality of pots arranged at uneven intervals on the rail and storing tools,
    the plurality of pots includes a current pot to be mounted on the spindle and a planned pot to be arranged at the indexing position;
    obtaining distances between the plurality of pots;
    calculating a movement amount for moving the planned pot to the indexed position based on the information about the current pot and the planned pot and the distance;
    A computer program that causes the control device to move the pot along the rail based on the amount of movement.
PCT/JP2023/001133 2022-01-20 2023-01-17 Control device, control method, and computer program WO2023140241A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-007342 2022-01-20
JP2022007342A JP2023106174A (en) 2022-01-20 2022-01-20 Control device, control method and computer program

Publications (1)

Publication Number Publication Date
WO2023140241A1 true WO2023140241A1 (en) 2023-07-27

Family

ID=87348240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001133 WO2023140241A1 (en) 2022-01-20 2023-01-17 Control device, control method, and computer program

Country Status (2)

Country Link
JP (1) JP2023106174A (en)
WO (1) WO2023140241A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51115377A (en) * 1976-03-19 1976-10-09 Hitachi Seiki Co Ltd Tool clamping device
JPS5380083A (en) * 1976-12-24 1978-07-15 Hitachi Seiki Co Ltd Magazine for storing tools
JPS57108849U (en) * 1981-10-28 1982-07-05
JPS6248439A (en) * 1985-08-29 1987-03-03 Toshiba Corp Tool magazine device
JPS62152635A (en) * 1985-12-27 1987-07-07 Mitsui Seiki Kogyo Kk Tool selecting method by use of tool number memory in numerically controlled machine tool
JPH071272A (en) * 1993-06-11 1995-01-06 Okuma Mach Works Ltd Tool magazine indexing device
JP2001062672A (en) * 1999-08-31 2001-03-13 Okuma Corp Numerical control device
JP2013154437A (en) * 2012-01-30 2013-08-15 Brother Industries Ltd Machine tool

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51115377A (en) * 1976-03-19 1976-10-09 Hitachi Seiki Co Ltd Tool clamping device
JPS5380083A (en) * 1976-12-24 1978-07-15 Hitachi Seiki Co Ltd Magazine for storing tools
JPS57108849U (en) * 1981-10-28 1982-07-05
JPS6248439A (en) * 1985-08-29 1987-03-03 Toshiba Corp Tool magazine device
JPS62152635A (en) * 1985-12-27 1987-07-07 Mitsui Seiki Kogyo Kk Tool selecting method by use of tool number memory in numerically controlled machine tool
JPH071272A (en) * 1993-06-11 1995-01-06 Okuma Mach Works Ltd Tool magazine indexing device
JP2001062672A (en) * 1999-08-31 2001-03-13 Okuma Corp Numerical control device
JP2013154437A (en) * 2012-01-30 2013-08-15 Brother Industries Ltd Machine tool

Also Published As

Publication number Publication date
JP2023106174A (en) 2023-08-01

Similar Documents

Publication Publication Date Title
TW200911710A (en) Multi-head mounted scribing device, and tip holder automatic-exchanging system
US20100119317A1 (en) Machining apparatus and machining method
US11351616B2 (en) Machine tool
JP6861331B2 (en) Work processing control device
KR102095451B1 (en) Machining center
JP6351053B2 (en) Machine Tools
JPH0688192B2 (en) 5-axis NC machine tool
WO2023140241A1 (en) Control device, control method, and computer program
JP6606967B2 (en) Gear processing apparatus and gear processing method
EP1228836A2 (en) Method of producing a jig for three dimensional linear cutting machining
JP2004255515A (en) Horizontal boring machining center
JPH07251386A (en) Mechanical type board processing machine particularly for printed circuit board
CN102218596A (en) Serial-parallel laser process machine
JPH068730B2 (en) Fixed error correction method for robot
KR101098894B1 (en) Method of recognizing shape of welding zone, method of generating welding path adopting the same, and automatic welding robot adopting the same methods
JP2015039734A (en) Machine tool
CN212009367U (en) Workpiece for evaluation
JPS6062448A (en) Copying control system
JP6960376B2 (en) Method for identifying motion error of feeder
JP4183729B2 (en) Machine Tools
CN111168571A (en) System and method for automatically measuring removal amount of abrasive belt grinding material of robot
JP7188346B2 (en) Control device, control method and control program
JP2008126323A (en) Method and apparatus for machining by single point tool
JP2980933B2 (en) Impact test piece automatic processing system and impact test piece automatic processing method
TWI806172B (en) Manufacturing methods of structures, identifiers for manufacturing structures, manufacturing systems and machining formulas of structures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23743235

Country of ref document: EP

Kind code of ref document: A1