JPH0688192B2 - 5-axis NC machine tool - Google Patents

5-axis NC machine tool

Info

Publication number
JPH0688192B2
JPH0688192B2 JP1099956A JP9995689A JPH0688192B2 JP H0688192 B2 JPH0688192 B2 JP H0688192B2 JP 1099956 A JP1099956 A JP 1099956A JP 9995689 A JP9995689 A JP 9995689A JP H0688192 B2 JPH0688192 B2 JP H0688192B2
Authority
JP
Japan
Prior art keywords
axis
machining
work
workpiece
reference point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1099956A
Other languages
Japanese (ja)
Other versions
JPH02279249A (en
Inventor
匡史 田沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Makino Milling Machine Co Ltd
Original Assignee
Makino Milling Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Makino Milling Machine Co Ltd filed Critical Makino Milling Machine Co Ltd
Priority to JP1099956A priority Critical patent/JPH0688192B2/en
Publication of JPH02279249A publication Critical patent/JPH02279249A/en
Publication of JPH0688192B2 publication Critical patent/JPH0688192B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Numerical Control (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、数値制御工作機械(以下、NC工作機械と言
う)に関し、特に、機械の静止機台に設けた直交3軸座
標系(X軸、Y軸、Z軸)において工具主軸と被加工ワ
ークが取付けられるワークテーブルとが相対的に直線移
動可能な構成にあると同時に同ワークテーブルは上記直
交3軸座標系内で相互に直角を成す2つの軸線の回り
(A軸、B軸)に旋回可能に設けられ、従って、総合的
に3軸方向の直線動作機能と2軸回りの旋回動作機能と
を備え、NCプログラムに従って複数の複雑な被加工面を
有したワークにNC加工を遂行できる5軸NC工作機械に関
する。
TECHNICAL FIELD The present invention relates to a numerically controlled machine tool (hereinafter referred to as an NC machine tool), and particularly to an orthogonal three-axis coordinate system (X machine) provided on a stationary stand of the machine. (Axis, Y-axis, Z-axis), the tool spindle and the work table on which the workpiece is mounted can be relatively linearly moved, and at the same time, the work table is perpendicular to each other in the orthogonal three-axis coordinate system. It is provided so as to be able to turn around the two axis lines (A axis, B axis), and thus has a comprehensive linear motion function in the 3 axis direction and a swivel motion function around the 2 axis, and multiple complex according to the NC program. The present invention relates to a 5-axis NC machine tool capable of performing NC machining on a workpiece having various surfaces to be machined.

〔従来の技術〕[Conventional technology]

NC工作機械はNCプログラムに従ってワークのNC加工を遂
行する機能のみならず、ワークを機械外の位置とワーク
テーブル上の加工位置との間でパレットを介して自動的
に着脱交換する機能や又工具主軸へ所望の工具や必要に
応じて測定プローブ等をも自動的に交換する所謂、自動
工具交換機能を備えたマシニングセンターとして種々の
機械加工分野で多用される傾向にある。この場合に、従
来より多用されるNC工作機械は、工具主軸とワークテー
ブルとが静止機台に設けた直交3軸座標系、即ち、工具
主軸の軸心方向(Z軸)、そのZ軸と直交する他の2つ
の軸線方向(X軸、Y軸)の3軸方向を座標軸とする3
次元空間において相対的に送り移動可能に構成され、工
具主軸の回転によりワークテーブル上に取付られた被加
工材であるワークにNC加工を自動遂行する構成が一般的
である。そして、NC工作機械の工具主軸に装着された所
望の工具によってワークテーブル上に取付けられたワー
クをNC加工するには、当該ワークの特定点を加工基準点
に設定し、この加工基準点に関してワークを加工するNC
プログラムを予め作成し、作成したNCプログラムに従っ
てNC加工が遂行される。故に、NC加工の開始に当たって
は、まず、ワークテーブル上に取付けられたワークの加
工基準点を前記の測定プローブで測定し、測定結果の加
工基準点をNC制御装置に設定することにより、当該加工
基準点を基準にして直交3軸座標系において順次に送り
動作が行われ、従って、工具主軸に装着された工具はZ
軸方向に切削送りされてワークを切削し、孔明けや削り
等の所望の機械加工を自動遂行する構成に成っている。
このような従来の一般的なNC工作機械によりNC加工が行
われるときには、通常、ワークの加工面は工具主軸に対
する垂直面であり、この垂直面内で加工基準点を加工開
始点にして例えば、複数の孔明け加工等をインクレメン
タル式に次々と自動的に機械加工を行うものである。然
しながら、特殊なワークでは複雑、多数の加工面を有す
るワーク、例えば、航空機部品などでは種々の傾斜角を
有した多数の面を加工しなければならない場合がある。
The NC machine tool not only has the function of performing NC machining of the workpiece according to the NC program, but also the function of automatically attaching and detaching the workpiece between the position outside the machine and the machining position on the work table via a pallet, or a tool. It tends to be frequently used in various machining fields as a machining center having a so-called automatic tool changing function for automatically changing a desired tool or a measuring probe or the like to a spindle. In this case, an NC machine tool that has been frequently used conventionally has an orthogonal three-axis coordinate system in which a tool spindle and a work table are provided on a stationary machine base, that is, the axial direction (Z axis) of the tool spindle, and its Z axis. The coordinate axes are the three axis directions of the other two orthogonal axis directions (X axis and Y axis).
In general, it is configured to be relatively movable in a dimensional space and automatically perform NC machining on a workpiece, which is a workpiece mounted on a workpiece table, by rotation of a tool spindle. Then, in order to perform NC machining of the workpiece mounted on the work table by the desired tool mounted on the tool spindle of the NC machine tool, a specific point of the workpiece is set as the machining reference point, and the workpiece with respect to this machining reference point is set. NC machining
A program is created in advance, and NC machining is performed according to the created NC program. Therefore, when starting the NC machining, first, measure the machining reference point of the workpiece mounted on the work table with the above-mentioned measuring probe, and set the machining reference point of the measurement result in the NC control device, The feed operation is sequentially performed in the orthogonal three-axis coordinate system with reference to the reference point, and therefore the tool mounted on the tool spindle is Z
It is configured so as to be cut and fed in the axial direction to cut the work, and automatically perform desired machining such as drilling and shaving.
When NC machining is performed by such a conventional general NC machine tool, the machining surface of the work is usually a vertical surface with respect to the tool spindle, and the machining reference point is set as the machining start point in this vertical plane, for example, In this method, a plurality of holes are machined automatically one after another using an incremental method. However, there are cases where a special work is complicated and a work having a large number of processing surfaces, for example, a large number of surfaces having various inclination angles must be processed in an aircraft part.

このような条件のワークでは、NC工作機械のワークテー
ブル上に傾斜テーブルや割り出しテーブル等を搭載し、
機械の直交3軸座標系内でそれらテーブルを更に他の軸
線回りに旋回させ、以てワークの特殊な加工面を工具主
軸に対して垂直面となる位置に傾斜に傾斜させたり、割
り出し旋回させてから加工する場合もあったが、特殊
で、特に、上記傾斜や割り出し旋回により、NCプログラ
ムの基準点となる加工基準点が傾いたり、旋回して移動
してしまうため、その移動後の加工基準点を測定プロー
ブにより測定する際に測定プローブは工具主軸に装着さ
れて直交3軸方向にしか移動可能でないため、必然的に
正確に加工基準点に当接することが不可能、つまり、NC
工作機械自体が自動的にワーク加工基準点を自動計測し
て基準点を設定することは精度上から不可能となる。故
に、このような特殊な加工面を有するワークの場合、そ
れ等の加工面を直交3軸座標系における3軸方向の送り
移動だけでNC加工が自動的に遂行し得るワーク加工面と
共に一連のNCプログラムに従って連続的にNC加工を行う
ことは不可能で、加工基準点を人為的に演算し、演算結
果をNC装置に設定して別工程でNC加工を遂行する等の制
約があった。
For workpieces with such conditions, a tilt table, indexing table, etc. are mounted on the work table of the NC machine tool,
The tables are swiveled around other axes within the machine's orthogonal three-axis coordinate system, so that the special machining surface of the workpiece is tilted to a position perpendicular to the tool spindle, or indexed and swiveled. Although it may have been machined afterwards, it is special, especially because the machining reference point, which is the NC program's reference point, is tilted or moves by turning due to the above-mentioned tilting and indexing turning. When measuring the reference point with the measurement probe, the measurement probe is attached to the tool spindle and can move only in the directions of three orthogonal axes, so it is inevitable that the measurement probe cannot exactly contact the machining reference point, that is, NC
It is impossible for the machine tool itself to automatically measure the workpiece machining reference point and set the reference point in terms of accuracy. Therefore, in the case of a workpiece having such a special machining surface, a series of machining surfaces can be automatically processed by NC machining only by feeding movements in the three-axis directions in the orthogonal three-axis coordinate system. It is impossible to continuously perform NC machining according to the NC program, and there is a restriction such that the machining reference point is artificially calculated, the calculation result is set in the NC device, and NC machining is performed in another process.

〔発明が解決すべき課題〕[Problems to be solved by the invention]

然しながら、近年は上述のような特殊な傾斜面を加工面
とする被加工ワークが種々の分野の製品に出現する傾向
にあり、故に、NC加工プログラムに基づいて、複雑な多
面を有したワークのNC加工を一連のNC加工工程に依って
遂行し得るようにする要望が増加し、NC工作機械を従
来、通常の直交3軸座標系における直線送り移動に加え
て、同直交3軸座標系における他の軸周りにワークテー
ブルを回転駆動源により自動的に旋回可能に構成すると
共にこれらのワークテーブルの旋回動作機能が加わった
場合にもNC加工プログラムに従って一連の加工工程によ
り複雑な多面を効率良く連続的にNC加工可能なNC工作機
械の提供が課題とされている。そこでワークテーブルは
旋回せず、工具主軸がA軸やB軸の旋回軸を有している
5軸NC工作機械があるが、これは加工すべき傾斜面に対
して主軸が直交する向きに旋回軸を傾けたとしても、工
具長さによってNCプログラムを変えなければならず、NC
プログラム作成上から問題があった。
However, in recent years, there is a tendency that workpieces having a special inclined surface as a machining surface as described above appear in products in various fields. Therefore, based on the NC machining program, a workpiece having a complicated multi-face is formed. There is an increasing demand for NC machining to be carried out by a series of NC machining steps, and NC machine tools have been used in the same orthogonal 3-axis coordinate system in addition to the conventional linear feed movement in the orthogonal 3-axis coordinate system. The work table can be automatically swiveled around other axes by the rotary drive source, and even if the swivel function of these work tables is added, a complex machining process can be efficiently performed by a series of machining processes according to the NC machining program. The issue is to provide an NC machine tool that can perform continuous NC machining. Therefore, there is a 5-axis NC machine tool in which the work table does not turn and the tool spindle has the A-axis and B-axis turning axes, but this turns in a direction in which the spindle is orthogonal to the inclined surface to be machined. Even if the axis is tilted, the NC program must be changed depending on the tool length.
There was a problem in programming.

依って、本発明は、直交3軸座標系と共に同直交3軸座
標系内で更に他の相互に直角な2つの軸線周りにワーク
テーブルを旋回可能にした機械的構成を備えると同時
に、予め作成されたNCプログラムに従ってNC動作させる
ことにより、複雑な多数の被加工面を有したワークをも
一連のNC加工工程で連続的に機械加工可能な手段を備え
た5軸NC工作機械を提供せんとするものであり、特に、
たとえ上記相互に直角な2つの軸線(A軸、B軸)の軸
心の間にずれがあっても、A軸とB軸を旋回割出し後の
基準点の位置を正確に求め、加工誤差を解消することが
できる5軸NC工作機械を提供せんとするものである。
Therefore, the present invention is provided with the orthogonal three-axis coordinate system and the mechanical structure in which the work table can be swiveled around the other two mutually perpendicular axes within the same orthogonal three-axis coordinate system, and at the same time, is created in advance. A 5-axis NC machine tool is provided that has means capable of continuously machining a workpiece having a large number of complicated workpiece surfaces by a series of NC machining steps by operating the NC according to the NC program provided. And in particular,
Even if there is a misalignment between the axes of the two axes (A axis and B axis) that are perpendicular to each other, the position of the reference point after the A and B axes have been swiveled and indexed is accurately determined, and the processing error The purpose is to provide a 5-axis NC machine tool that can solve the problem.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明は、上述の発明目的の達成に当たり、5軸NC工作
機械のワークテーブル上に取付けられた多面形の被加工
ワークを加工する場合には、該ワークの加工基準点を例
えば、該ワークテーブルのワーク取付け面が工具主軸の
軸心と平行又は垂直な姿勢を特定姿勢位置として当該特
定姿勢位置で測定手段により測定し、ワークの傾斜した
被加工面を工具主軸に垂直な姿勢までワークテーブルを
その2つの旋回軸線周りに旋回させたときには、加工基
準点が先の測定位置から直交3軸座標系内で変位した点
の座標を予め記憶させた一定の演算式に従って演算手段
により演算し、その演算値から得た加工基準点の変位量
によってNC装置に設定されている加工基準点の座標を補
正し、補正後のワーク加工基準点に基づいてNCプログラ
ムに従って非傾斜ワーク面と同様にNC加工を遂行可能に
する手段を構成したものである。また、ワークテーブル
に2つの旋回軸線周りの機能を付与して5軸NC工作機械
にすると、上記の2つの相互に直角な旋回軸を1点で交
叉する直交状態に組み立てることが極めて工作機械の組
立を煩瑣にし、熟練した組立技術とコスト高とを要する
ことになるため、本発明は、この2つの軸のずれ量を予
め組立終了時に測定し、測定結果から上記演算式を補正
する手段を設けた構成を採っている。
In order to achieve the above-mentioned object of the present invention, when a multi-sided work piece mounted on a work table of a 5-axis NC machine tool is machined, the machining reference point of the work piece is set to, for example, the work table. The workpiece mounting surface of the workpiece is measured in the posture in which the workpiece mounting surface is parallel or perpendicular to the axis of the tool spindle, and the inclined surface of the workpiece is measured up to the posture perpendicular to the tool spindle. When swiveling around the two swivel axes, the coordinates of the point where the machining reference point is displaced in the orthogonal three-axis coordinate system from the previous measurement position are calculated by the calculating means in accordance with a predetermined calculation formula, The coordinates of the machining reference point set in the NC device are corrected by the amount of displacement of the machining reference point obtained from the calculated values, and the non-tilted work is performed according to the NC program based on the corrected workpiece machining reference point. Like the click surface is obtained by a means which enables performing NC machining. In addition, if a 5-axis NC machine tool is provided with a function around two turning axes on the work table, it is extremely possible to assemble the above-mentioned two mutually orthogonal turning axes in an orthogonal state in which they intersect at one point. Since the assembling is complicated and requires skilled assembling technology and high cost, the present invention provides a means for measuring the deviation amount of these two axes at the end of assembling in advance and correcting the above arithmetic expression from the measurement result. The configuration provided is adopted.

即ち、本発明によれば、静止機台に設けた直交3軸座標
系(X軸、Y軸、Z軸)内で工具主軸とワークテーブル
とが相対直線移動可能に設けられると共に、前記ワーク
テーブルが前記X軸と平行に設定されたA軸心周りに旋
回可能な第1の旋回基台と、該第1の旋回基台上に前記
A軸心と直角なB軸心周りに旋回可能な第2の旋回ワー
ク台とを有して前記直交3軸座標系内において相互に直
角な前記2軸線周り(A軸、B軸)に前記ワークテーブ
ルが旋回可能に設けられてワークをNCプログラムに従っ
て加工する5軸NC工作機械において、 前記直交3軸座標系内の被測定点のX、Y、Z座標値を
測定する測定手段と、 前記第1の旋回基台の旋回軸心と前記第2の旋回ワーク
台の旋回軸心との2軸心のずれ量を求め、該ずれ量を加
味して前記直交3軸座標系における前記ワークの旋回用
A軸、B軸の2軸心の位置の座標値を予め記憶する第1
の記憶手段と、 前記A軸、B軸を所定の姿勢位置に位置決めしたときの
前記ワークテーブル上に取付けられたワークの加工基準
点位置を前記測定手段によって測定した前記直交3軸座
標系における測定座標値を記憶する第2の記憶手段と、 前記ワークテーブルを前記A軸、B軸の前記所定姿勢位
置から予め与えられるワークの加工姿勢位置まで割出し
旋回させたときに、その割出し旋回角度と前記第1の記
憶手段に記憶された前記A軸、B軸の2軸心の座標値と
前記第2の記憶手段に記憶されたワークの加工基準点の
測定座標値とから、割出し旋回後の前記ワークテーブル
上のワークの加工基準点位置を所定の演算式に従って算
出する演算手段と、 前記演算手段で算出されたワークの加工基準点位置を前
記NCプログラムの加工原点位置として取込み、前記工具
主軸とワークとの間の相対送り量を制御するNC装置と、 を具備して構成され、前記ワークテーブルを割出し旋回
させることにより加工姿勢位置に設定されたワークをNC
プログラムに基づき加工する5軸NC工作機械を提供する
ものであり、更に、本願発明は、静止機台に設けた直交
3軸座標系(X軸、Y軸、Z軸)内で工具主軸とワーク
テーブルとが相対直線移動可能に設けられると共に、前
記ワークテーブルが前記Y軸と平行に設定されたB軸心
周りに旋回可能な第1の旋回基台と、該第1の旋回基台
上に前記B軸心と直角なA軸心周りに旋回可能な第2の
旋回ワーク台とを有して前記直交3軸座標系内において
相互に直角な前記2軸線周り(A軸、B軸)に前記ワー
クテーブルが旋回可能に設けられてワークをNCプログラ
ムに従って加工する5軸NC工作機械において、 前記直交3軸座標系内の被測定点のX、Y,Z座標値を測
定する測定手段と、 前記第1の旋回基台の旋回軸心と前記第2の旋回ワーク
の旋回軸心との2軸心のずれ量を求め、該ずれ量を加味
して前記直交3軸座標系における前記ワークの旋回用A
軸、B軸の2軸心の位置の座標値を予め記憶する第1の
記憶手段と、 前記A軸、B軸を所定の姿勢位置に位置決めしたときの
前記ワークテーブル上に取付けられたワークの加工基準
点位置を前記測定手段によって測定した前記直交3軸座
標系における測定座標値を記憶する第2の記憶手段と、 前記ワークテーブルを前記A軸、B軸の前記所定姿勢位
置から予め与えられるワークの加工姿勢位置まで割出し
旋回させたときに、その割出し旋回角度と前記第1の記
憶手段に記憶された前記A軸、B軸の2軸心の座標値と
前記第2の記憶手段に記憶されたワークの加工基準点の
測定座標値とから、割出し旋回後の前記ワークテーブル
上のワークの加工基準点位置を所定の演算式に従って算
出する演算手段と、 前記演算手段で算出されたワークの加工基準点位置を前
記NCプログラムの加工原点位置として取込み、前記工具
主軸とワークとの間の相対送り量を制御するNC装置と、 を具備して構成され、前記ワークテーブルを割出し旋回
させることにより加工姿勢位置に設定されたワークをNC
プログラムに基づき加工する5軸NC工作機械を提供する
ものである。
That is, according to the present invention, the tool spindle and the work table are provided so as to be relatively linearly movable within the orthogonal three-axis coordinate system (X axis, Y axis, Z axis) provided on the stationary table, and the work table is also provided. Is rotatable about an A-axis center set parallel to the X-axis, and is rotatable on the first swivel base about a B-axis center perpendicular to the A-axis center. The work table is provided so as to be rotatable around the two axis lines (A axis and B axis) which are orthogonal to each other in the orthogonal three-axis coordinate system with the second swiveling work table, and the work is operated according to the NC program. In a 5-axis NC machine tool for machining, a measuring means for measuring X, Y, Z coordinate values of a measured point in the orthogonal 3-axis coordinate system, a swivel axis of the first swivel base, and the second swivel base. The amount of deviation between the axis of rotation of the rotating work table and the axis of rotation of Turning A axis of the workpiece in a three-axis coordinate system, the first for storing in advance the coordinates of the positions of the two axis of the B-axis
Storage means and measurement in the orthogonal three-axis coordinate system in which the machining reference point position of the work mounted on the work table when the A-axis and the B-axis are positioned at predetermined posture positions is measured by the measuring means. Second storage means for storing coordinate values, and when the work table is indexed and swung from the predetermined posture position of the A-axis and B-axis to a machining posture position of a workpiece given in advance, the indexed swivel angle And an indexing rotation from the coordinate values of the two axial centers of the A axis and the B axis stored in the first storage means and the measured coordinate value of the machining reference point of the workpiece stored in the second storage means. A computing means for calculating the machining reference point position of the workpiece on the workpiece table according to a predetermined arithmetic expression, and the machining reference point position of the workpiece calculated by the computing means as the machining origin position of the NC program. Uptake, a NC device for controlling the relative feed rate between the tool spindle and the workpiece, is configured by including a work set in the machining posture position by pivoting indexing the worktable NC
The present invention provides a 5-axis NC machine tool for machining based on a program. Further, the present invention provides a tool spindle and a workpiece in an orthogonal 3-axis coordinate system (X axis, Y axis, Z axis) provided on a stationary machine base. A table is provided so as to be relatively linearly movable, and the work table is swivelable around a B-axis center set parallel to the Y-axis, and a first swivel base is provided on the first swivel base. A second swiveling work platform that can swivel around the A axis that is perpendicular to the B axis, and around the two axes (A axis and B axis) that are orthogonal to each other in the orthogonal triaxial coordinate system. In a 5-axis NC machine tool in which the work table is rotatably provided to machine a work according to an NC program, measuring means for measuring X, Y, Z coordinate values of a measured point in the orthogonal 3-axis coordinate system, Swivel axis of the first swivel base and swivel axis of the second swivel work 2 axis determined amount of deviation, turning A of the workpiece in the orthogonal three-axis coordinate system in consideration of the deviation between
First storage means for storing in advance the coordinate values of the two axial center positions of the axes A and B, and of the work mounted on the work table when the A and B axes are positioned at predetermined posture positions. Second storage means for storing measurement coordinate values in the orthogonal three-axis coordinate system in which the processing reference point position is measured by the measurement means, and the work table is given in advance from the predetermined posture positions of the A axis and the B axis. When the workpiece is indexed and rotated to the machining posture position, the indexed rotation angle and the coordinate values of the two axial centers of the A axis and the B axis stored in the first storage means and the second storage means. From the measured coordinate value of the machining reference point of the workpiece stored in the calculation means for calculating the machining reference point position of the workpiece on the work table after indexing and turning according to a predetermined arithmetic expression; Added work An NC device that takes in the reference point position as the machining origin position of the NC program and controls the relative feed amount between the tool spindle and the work, and is configured to index and rotate the work table. NC the workpiece set to the machining position
It provides a 5-axis NC machine tool that is machined based on a program.

〔作用〕[Action]

上述の構成によれば、種々の傾斜面を有した多面性のワ
ークを5軸NC工作機械で加工するときに、傾斜した加工
面の加工時にはワークテーブルのA軸またはB軸を旋回
させて該傾斜した加工面を工具主軸に対して垂直姿勢位
置に設定し、このときにNC装置ではワークテーブルの旋
回動に伴ってワークの加工基準点を補正する演算作用を
実行させ、補正後の加工基準点位置に基づきNCプログラ
ムによるNC加工を実行するから、複雑な多面性のワーク
のNC加工も直交3軸座標系のX,Y,Zの3軸で記述した比
較的簡単なNCプログラムによって終了させることができ
るのである。そして、A軸心とB軸心とのずれ量を加味
してA軸とB軸を旋回割出し後の基準点位置を求めてい
るので、より正確な加工が行える。
According to the above configuration, when a multi-faceted work having various inclined surfaces is machined by a 5-axis NC machine tool, the A-axis or B-axis of the work table is swung when machining an inclined machining surface. The tilted machining surface is set in a vertical position with respect to the tool spindle, and at this time, the NC device executes the arithmetic operation to correct the machining reference point of the workpiece in accordance with the turning motion of the work table, and the corrected machining reference Since NC machining is executed by the NC program based on the point position, NC machining of complex multi-faceted workpieces can also be completed by a relatively simple NC program described by the three axes X, Y, Z of the orthogonal three-axis coordinate system. It is possible. Further, since the reference point position after the rotation indexing of the A axis and the B axis is obtained by taking into consideration the deviation amount between the A axis center and the B axis center, more accurate machining can be performed.

以下、本発明を添付図面に示す実施例に基づいて更に詳
細に説明する。
Hereinafter, the present invention will be described in more detail with reference to the embodiments shown in the accompanying drawings.

〔実施例〕〔Example〕

第1図は、本発明による5軸NC工作機械の機能的な構成
を示したブロック図、第2図は、本発明の1実施例によ
る5軸NC工作機械の工具主軸とワークテーブルとの構成
を示した斜視図、第3図は本発明の他の実施例による5
軸NC工作機械の工具主軸とワークテーブルとの構成を示
した斜視図、第4図は、水平軸線周りに旋回可能な旋回
基台上に縦軸線周りに旋回可能な旋回ワーク台が設けら
れた構造のワークテーブルを水平姿勢にした上にワーク
が取付けられワークの加工基準点の測定を実行する状態
を示した斜視図、第5図は第4図の状態から傾斜した状
態を示す斜視図、第6図は第2図に示した5軸NC工作機
械のワークテーブルの2つの旋回軸、A軸とB軸との軸
心のずれを測定に依って求める原理を説明する図、第7
図は第3図に示した5軸NC工作機械のワークテーブルの
2つの旋回軸、A軸とB軸との軸心のずれを測定に依っ
て求める原理を説明する図、第8図は演算過程のフロー
チャート、第9図は第8図の演算過程の詳細プロセスの
フローチャートである。
FIG. 1 is a block diagram showing a functional configuration of a 5-axis NC machine tool according to the present invention, and FIG. 2 is a configuration of a tool spindle and a work table of a 5-axis NC machine tool according to an embodiment of the present invention. And FIG. 3 is a perspective view showing another embodiment of the present invention.
Axis A perspective view showing the structure of the tool spindle and work table of an NC machine tool, and Fig. 4 shows a swivel work table that can swivel around a vertical axis on a swivel base that can swivel around a horizontal axis. FIG. 5 is a perspective view showing a state in which a work is mounted on a work table having a horizontal posture and measurement of a machining reference point of the work is executed, and FIG. 5 is a perspective view showing a state in which the work reference point is inclined from the state of FIG. FIG. 6 is a diagram for explaining the principle of determining the displacement of the two swivel axes of the 5-axis NC machine tool work table shown in FIG.
The figure is for explaining the principle of the measurement of the deviation of the axis between the two rotation axes, A axis and B axis, of the work table of the 5-axis NC machine tool shown in Fig. 3, and Fig. 8 is the calculation. A flow chart of the process, and FIG. 9 is a flow chart of the detailed process of the calculation process of FIG.

先ず、第2図と第3図とを参照すると、本発明の2つの
実施例に係る5軸NC工作機械の構成が示されている。2
つの実施例において同一の要素部分は同一の参照番号で
示してある。
First, referring to FIG. 2 and FIG. 3, there is shown a configuration of a 5-axis NC machine tool according to two embodiments of the present invention. Two
Identical component parts are designated by identical reference numerals in one embodiment.

5軸NC工作機械は、床面に設置されるベース部12を一体
にして有した静止機台14上にコラム16が立設され、この
コラム16に工具主軸18が水平方向に軸心を有した横形主
軸として設けられている。2つの実施例は、何れもコラ
ム16が静止機台14に対して工具主軸18の軸心と一致した
Z軸方向にZ軸モータMzの駆動により送り移動可能であ
り、また、コラム16上で工具主軸18は上記Z軸と直交す
るY軸方向にY軸モータMyの駆動により送り移動可能に
設けられている。また、工具主軸18は主軸モータMsの駆
動により主軸回転を行うように設けられている。
In a 5-axis NC machine tool, a column 16 is erected on a stationary machine base 14 that integrally has a base portion 12 installed on the floor, and a tool spindle 18 has a horizontal axis center on this column 16. It is provided as a horizontal spindle. In each of the two embodiments, the column 16 is capable of being fed and moved with respect to the stationary machine base 14 in the Z-axis direction coinciding with the axis of the tool spindle 18 by driving the Z-axis motor Mz. The tool spindle 18 is provided so as to be movable in the Y-axis direction orthogonal to the Z-axis by driving a Y-axis motor My. Further, the tool spindle 18 is provided so as to rotate the spindle by driving the spindle motor Ms.

他方、上記コラム16が立設された静止機台14に対して略
T字形に一体構造で配設された同静止機台14のT字台部
分にはテーブルベース30が上記Y軸、Z軸の両軸に対し
て直交するX軸方向にX軸モータMxの駆動により横送り
移動可能に設けられている。つまり、機台14に関して3
つの直交軸、X軸、Y軸、Z軸の3軸により3次元の直
交3軸座標系が設けられ、工具主軸18とテーブルベース
30とはこの直交3軸座標系でコラム16を介して相対的に
送り移動可能に設けられているのである。このような直
交3軸座標系における送り移動機構は周知のNC工作機械
と同様な構成であるが、本発明が対象とするNC工作機械
は、更に、上記直交3軸座標系内で上記テーブルベース
30上に設けられたワークテーブル32が互いに直角な2つ
の軸線周りでA軸、B軸方向に旋回可能に設けられてい
る。
On the other hand, a table base 30 is provided on the T-shaped portion of the stationary machine base 14 in which the column 16 is erected in an integrated structure in a substantially T-shape with respect to the stationary machine base 14. It is provided so that it can be moved laterally in the X-axis direction orthogonal to both the axes by driving an X-axis motor Mx. In other words, 3 for machine base 14
A three-dimensional orthogonal three-axis coordinate system is provided by three orthogonal axes, the X-axis, the Y-axis, and the Z-axis, and the tool spindle 18 and the table base are provided.
The numeral 30 is provided so as to be relatively movable via the column 16 in this orthogonal three-axis coordinate system. The feed movement mechanism in such an orthogonal three-axis coordinate system has the same configuration as that of a known NC machine tool, but the NC machine tool of the present invention is further provided with the table base in the orthogonal three-axis coordinate system.
A work table 32 provided on 30 is provided so as to be rotatable about two axes perpendicular to each other in the A-axis and B-axis directions.

第2図に示す第1の実施例では、ワークテーブル32は組
立時に上記X軸と正確に平行に心出し設定されたA軸心
周りに旋回可能な第1の旋回基台34上に、該A軸心と設
計上は直角配置のB軸心周りに旋回可能に第2の旋回ワ
ーク台36が取付けられ、この第2の旋回ワーク台36上に
パレット40を介してワークが取付けられる構成を具備し
ている。そして、上記第1の旋回基台34は2つのA軸サ
ポート38、38に装着された回転軸受(図示に現れな
い。)を介して旋回する構成にある。
In the first embodiment shown in FIG. 2, the work table 32 is mounted on a first swivel base 34 which is swivelable around an A axis center which is set to be exactly parallel to the X axis during assembly. A second swivel work base 36 is mounted so that it can swivel around the A shaft center and the B shaft center which is arranged at right angles to the design, and the work is mounted on the second swivel work base 36 via a pallet 40. It has. The first swivel base 34 is swung via rotary bearings (not shown in the figure) mounted on the two A-axis supports 38, 38.

また、第3図に示した第2の実施例では、ワークテーブ
ル32は組立時に上記Y軸と正確に平行に心出し設定され
たB軸心周りに旋回可能な第1の旋回基台34上に、該B
軸心と設計上は直角配置のA軸心周りに旋回可能に第2
の旋回ワーク台36が取り付けられ、この第2の旋回ワー
ク台36上にパレット40を介してワークが取付けられる構
成になっている。上記第2の旋回ワーク台36は2つのA
軸サポート38、38に装着された回転軸受(図示に現れな
い。)を介して旋回する構成にある。
Further, in the second embodiment shown in FIG. 3, the work table 32 is mounted on the first swivel base 34 which is swivelable around the B axis center which is set to be exactly parallel to the Y axis at the time of assembly. To the B
It is possible to swivel around the A axis centered at a right angle to the axis.
The swivel work base 36 is attached, and the work is mounted on the second swivel work base 36 via the pallet 40. The second swivel work base 36 has two A
It is configured to rotate via rotary bearings (not shown) attached to the shaft supports 38, 38.

本発明は、勿論、上述した2実施例に限るものではな
く、工具主軸18とワークテーブル32とが静止機台14に設
けた直交3軸座標系内で相対的に直交3軸方向に送り移
動可能に設けられ、かつ、同直交3軸座標系内でワーク
テーブル32が互いに直角を成す2つの軸心周りに旋回可
能であることが基本条件であり、従って、例えば、工具
主軸18が図示の2実施例と異なり、縦方向の軸心を有し
た立形主軸の構成の場合や、ワークテーブル32がテーブ
ルベース30を介してX軸方向に横送り動作する構成に換
え、コラム16が横送り動作機能を有した構成とする場合
も本発明が適用可能な5軸NC工作機械に含まれるのであ
る。また、X,Y,Zの直交3軸形NC工作機械のワークテー
ブル上にアタッチメントとしてNCロータリーワークテー
ブルを2段重ねしてA軸、B軸を構成した場合も、本発
明が適用可能な5軸NC工作機械に含まれるのである。
Of course, the present invention is not limited to the above-mentioned two embodiments, but the tool spindle 18 and the work table 32 are relatively moved in the orthogonal three-axis directions within the orthogonal three-axis coordinate system provided in the stationary machine base 14. The basic condition is that the work table 32 can be pivoted about two axes that are orthogonal to each other in the same orthogonal three-axis coordinate system, and therefore, for example, the tool spindle 18 is shown. Unlike the second embodiment, in the case of a vertical spindle having a vertical axis, or in a configuration in which the work table 32 is traversed in the X-axis direction via the table base 30, the column 16 is traversed. The present invention is also applicable to a 5-axis NC machine tool having a configuration having an operation function. The present invention can also be applied to the case where the A-axis and the B-axis are configured by stacking two NC rotary work tables as attachments on the work table of the X, Y, Z orthogonal 3-axis NC machine tool. It is included in the axis NC machine tool.

なお、第2図、第3図には図示されてはいないが、夫々
の5軸NC工作機械はNCプログラムに従って送り動作等の
諸NC制御動作を遂行するNC装置を備え、また、自動工具
交換装置(通常、ATCと呼称される)を備えて、複数の
工具を工具マガジン内に有し、これらの複数の工具から
所望の工具を上記NCプログラムに従って自動工具交換作
用により工具主軸18に着脱、交換し、NC加工を実行する
構成を備え、更に、上記工具マガジン内にはワークの加
工基準点を測定する測定プローブも収納され、加工開始
時等に工具主軸18にこの測定プローブを工具交換と同様
にして装着し、ワークの加工基準点の測定を行ってNC装
置に加工基準点の設定を行う構成に成っている点は従来
のNC工作機械と同じである。
Although not shown in FIGS. 2 and 3, each 5-axis NC machine tool is equipped with an NC device for performing various NC control operations such as a feed operation according to an NC program, and automatic tool change. A tool (usually referred to as ATC) is provided, and a plurality of tools are provided in a tool magazine, and a desired tool from the plurality of tools is attached to and detached from the tool spindle 18 by an automatic tool change operation according to the NC program. It is equipped with a configuration for exchanging and performing NC machining.In addition, a measurement probe for measuring the machining reference point of the workpiece is also stored in the tool magazine, and this measurement probe can be exchanged with the tool spindle 18 when machining is started. It is the same as the conventional NC machine tool in that it is mounted in the same manner, the machining reference point of the workpiece is measured, and the machining reference point is set in the NC device.

さて、本発明は上述した機械的構成を有した5軸NC工作
機械により、複雑な多面性のワークをNCプログラムに基
づき一連の加工工程で自動的にNC加工を遂行可能にする
もので、このために第1図に示す機能手段を更に具備し
て構成されているものであり、これらの機能手段を備え
た本発明の構成を以下に第2図、第3図に加えて第1図
を参照することにより説明する。
Now, according to the present invention, the 5-axis NC machine tool having the above-mentioned mechanical configuration enables automatically performing NC machining of a complex multi-faceted workpiece in a series of machining processes based on an NC program. Therefore, the present invention is configured by further including the functional means shown in FIG. 1, and the configuration of the present invention including these functional means will be described below in addition to FIG. 2 and FIG. It will be described by referring to.

本発明による5軸NC工作機械の構成においては、2つの
旋回軸(A軸、B軸)の軸心の直交3軸座標系おおける
座標値の測定値を記憶するワークテーブル座標値記憶手
段(第1の記憶手段)52と、工具主軸18に装着される後
述の測定プローブを有した測定手段50と、ワークテーブ
ル32を所定の姿勢位置、例えば、A軸、B軸が非旋回の
0゜位置(ワーク取付け面が水平状態にある)に設定し
て上記測定手段50を用いて実行されるワークの加工基準
点の直交3軸座標系における座標値の測定の結果を記憶
する加工基準点記憶手段(第2の記憶手段)54と、上記
ワークテーブル座標値記憶手段52と加工基準点記憶手段
54との両者の記憶データと予め作成されたNCプログラム
48から得るワークテーブル32の割出し旋回角の値とから
ワークテーブル32の割出し旋回に伴うワークの加工基準
点の変位後の直交3軸座標系における座標値を演算する
変位加工基準点演算手段(演算手段)56と、NCプログラ
ム48からの加工プログラムデータ、即ち数値制御データ
及びワークテーブル割出し旋回角のデータと上記変位加
工基準点演算手段56からの加工基準点の演算結果のデー
タを得て、送り制御量の算出とワークテーブル32の割出
し旋回角の補間演算とを実行し、送り制御量や割出し旋
回量の指令値を各駆動モータMx、My、MzやA軸、B軸の
旋回駆動モータMa、Mb(後述する)へ送出するNC装置58
とを具備し、当該NC装置58は加工基準点の座標を記憶す
るワーク座標系記憶手段60、上述の補間演算実行手段で
ある補間演算手段62、補間演算結果により各軸の送りを
制御する送り軸サーボ機構部64等を具備して構成されて
いる。
In the configuration of the 5-axis NC machine tool according to the present invention, a work table coordinate value storage means (for storing measured values of coordinate values in a three-axis coordinate system orthogonal to the axes of the two turning axes (A axis and B axis)) A first memory means) 52, a measuring means 50 having a measuring probe which will be described later mounted on the tool spindle 18, and a work table 32 at a predetermined posture position, for example, 0 ° where the A axis and the B axis are non-rotating. Machining reference point storage for storing the result of the measurement of the coordinate value in the orthogonal three-axis coordinate system of the machining reference point of the workpiece which is set at the position (the work mounting surface is in the horizontal state) and is executed using the measuring means 50. Means (second storage means) 54, the work table coordinate value storage means 52, and the processing reference point storage means
Memory data of both 54 and NC program created in advance
Displacement processing reference point calculating means for calculating the coordinate value in the orthogonal three-axis coordinate system after the displacement of the processing reference point of the workpiece accompanying the indexing rotation of the work table 32 from the value of the indexing rotation angle of the work table 32 obtained from 48. (Computing means) 56, machining program data from the NC program 48, that is, numerical control data and work table indexing turning angle data, and processing result data of the machining reference point from the displacement machining reference point computing means 56 are obtained. Then, the feed control amount is calculated and the indexing swivel angle of the work table 32 is interpolated, and the command values of the feed control amount and the indexing swivel amount are set to the drive motors Mx, My, Mz, A axis, and B axis. NC device 58 for sending to the turning drive motors Ma and Mb (described later) of
The NC device 58 includes a work coordinate system storage unit 60 that stores the coordinates of the machining reference point, an interpolation calculation unit 62 that is the above-described interpolation calculation execution unit, and a feed that controls the feed of each axis based on the interpolation calculation result. It is configured by including an axis servo mechanism unit 64 and the like.

ここで、第2図に示した実施例の5軸NC工作機械に具備
されたワークテーブル32に関して同ワークテーブル32の
構成と同テーブル上に取付けられた被加工ワークWの加
工基準点の測定方法に就いて、以下に第4図と第5図と
に基づいて説明する。
Here, regarding the work table 32 provided in the 5-axis NC machine tool of the embodiment shown in FIG. 2, the structure of the work table 32 and the method of measuring the machining reference point of the workpiece W to be machined mounted on the table. The following is a description based on FIGS. 4 and 5.

ワークテーブル32は既述のように予めNC工作機械の組立
段階でそのA軸心が直交3軸座標系のX軸と正確に平行
に調整、設定されており、この調整自体は適宜の測定治
具を用いることで容易に得ることができる。従って、ワ
ークテーブル32の第1の旋回基第34の旋回軸、A軸心は
正確にX軸と平行な状態にある。A軸の同第1の旋回基
台34の旋回動作は駆動モータMaによって駆動され、この
駆動モータMaは他のX、Y、Z軸の送り駆動モータMx、
My、Mzと同様に周知のサーボモータにより形成され、前
述したNC装置58から送出される動作指令に基づいて作動
する。
As described above, the work table 32 is adjusted and set so that its A-axis center is accurately parallel to the X-axis of the orthogonal three-axis coordinate system in advance at the stage of assembling the NC machine tool. It can be easily obtained by using a tool. Therefore, the first swivel base 34 of the work table 32, the swivel axis, and the A-axis center are accurately parallel to the X-axis. The swiveling operation of the first swiveling base 34 for the A-axis is driven by a drive motor Ma, which drives the other X-, Y-, and Z-axis feed drive motors Mx,
Like My and Mz, it is formed by a well-known servo motor and operates based on the operation command sent from the NC device 58 described above.

第1の旋回基台34上に搭載された第2の旋回ワーク台36
は既述のようにA軸心に対して直角を成す旋回軸、B軸
心の周りに旋回可能に配設されており、設計上は1点で
交叉する直交配置にあるが、ワークテーブル32の組立工
程では、正確に1点で交叉する直交配置とすることは高
度の熟練度を要するため、ソフト手段的に両者の位置ず
れを補正する後述の方法が取られるのである。第2の旋
回ワーク台36上にはワークWが周知のパレット40を介し
て取付けられる。このワークWにはNCプログラムの作成
に当たって加工開始点として用いられる加工基準点Pが
ワーク隅点に決められており、この加工基準点Pを基準
にしてNCプログラムのNC加工データに従って工具主軸18
とワークW間で順次に相対的な送り動作をさせ、かつ工
具主軸18を主軸モータMsで切削回転させれば、NCプログ
ラム通りに所望の加工がワークWに付与されるのであ
る。従って、加工の開始に当たっては、先ず、NC工作機
械は、ワークの加工基準点Pが工具主軸18に対して直交
3軸座標系における何処の座標位置に有るかを測定する
必要がある。この測定は、先に第1図に示したNCプログ
ラム48から測定手段50へ加工基準点Pの概略の座標値を
供給することにより開始される。このとき、測定は測定
手段50の測定プローブ19を工具主軸18に装着し、その測
定プローブ19の先端をワークWの加工基準点Pに向けて
移動、接触させる方法が取られ、該移動は直交3軸座標
系における3軸方向の送り動作により達成するため、測
定プローブ19が加工基準点Pに接近、接触可能なよう
に、ワークテーブル32はその第1の旋回基台34をA軸0
゜の位置に又、第2の旋回ワーク台36をB軸0゜の位置
にした第4図に図示の水平姿勢位置を所定の位置として
測定が遂行される。
The second swivel work base 36 mounted on the first swivel base 34.
Is arranged so as to be rotatable around the axis of rotation and the axis of B which are at right angles to the axis of A as described above, and by design, it is in an orthogonal arrangement intersecting at one point. In the assembling process of (2), it is necessary to have a high degree of skill to make an orthogonal arrangement in which exactly one point intersects, so a method described later is used to correct the positional deviation between the two by means of software. A work W is mounted on the second swivel work table 36 via a well-known pallet 40. In this work W, a machining reference point P used as a machining start point in creating an NC program is determined as a work corner point. Based on this machining reference point P, the tool spindle 18 is operated according to the NC machining data of the NC program.
By sequentially performing relative feed operations between the workpiece W and the workpiece W and cutting and rotating the tool spindle 18 by the spindle motor Ms, desired machining is applied to the workpiece W according to the NC program. Therefore, at the start of machining, the NC machine tool must first measure where the machining reference point P of the workpiece is at the coordinate position in the three-axis coordinate system orthogonal to the tool spindle 18. This measurement is started by supplying an approximate coordinate value of the machining reference point P from the NC program 48 shown in FIG. 1 to the measuring means 50. At this time, the measurement is carried out by mounting the measuring probe 19 of the measuring means 50 on the tool spindle 18 and moving and contacting the tip of the measuring probe 19 toward the machining reference point P of the workpiece W, which movement is orthogonal. This is achieved by the feed operation in the three-axis directions in the three-axis coordinate system, so that the work table 32 moves the first turning base 34 of the A-axis 0 so that the measuring probe 19 can approach and contact the machining reference point P.
Further, the measurement is performed with the horizontal posture position shown in FIG. 4 in which the second swivel work table 36 is set to the position of 0 ° on the B axis at a predetermined position.

なお、A軸を0゜以外の姿勢位置として加工基準点Pの
測定を行ったときは、加工基準点PをA軸0゜で測定し
た場合と同様にするための換算補正の演算を行えば良
い。
When the machining reference point P is measured with the A-axis as an attitude position other than 0 °, the conversion correction calculation should be performed in the same way as when the machining reference point P is measured at 0 ° A-axis. good.

こうしてワークテーブル32を第4図に図示の所定の姿勢
位置にしてワークWの加工基準点Pを測定プローブ19を
有した測定手段50で測定した結果は、既述のように加工
基準点記憶手段54内に記憶される。ワークWの加工面が
工具主軸18の軸心に対して垂直な場合には、測定した加
工基準点Pの座標値を加工原点に設定してNCプログラム
により3軸方向に送り動作させれば、直ちにNC加工が達
成されるのである。
In this way, the measurement reference point P of the workpiece W is measured by the measuring means 50 having the measurement probe 19 with the work table 32 in the predetermined posture position shown in FIG. 4, and the result is as described above. It is stored in 54. When the machining surface of the work W is perpendicular to the axis of the tool spindle 18, if the coordinate value of the measured machining reference point P is set as the machining origin and the NC program feeds it in the three axis directions, NC processing is achieved immediately.

然るに、ワークWの複雑な多面加工を実行する場合に
は、第5図に示すように、加工面W1を工具主軸18に垂直
な面と成るように対向姿勢位置へ変位させる必要があ
る、そこでワークテーブル32の第1の旋回基台34と第2
の旋回ワーク台36とを夫々A軸、B軸方向に旋回させる
と、パレット40に取付けられたワークWは、第5図に示
すように傾けられる。この結果、ワークWの加工基準点
Pは、直交3軸座標系の3次元空間内で位置P′に変位
してしまう。従って、加工面W1をNCプログラム48に従っ
てNC加工するには、変位後の加工基準点P′の座標値を
見出し、この変位後の加工基準点P′を加工原点にして
工具主軸18に装着した工具20でNC加工を行わなければ、
所望のワーク加工を達成することはできない。従って本
発明は、既に測定結果が記憶されているワークWの加工
基準点Pの座標値やA軸及びB軸の旋回角度値等のデー
タに基づいて迅速に一定の演算式によって演算すること
により、上記変位後の加工基準点P′の直交3軸座標系
における座標値を見出すのである。この場合に、本発明
は、ワークテーブル32の第1の旋回基台34と第2の旋回
ワーク台36の夫々の旋回軸、つまりA軸心とB軸心とが
両基台34、36の製造、組立の過程で固有的に位置ずれを
生じていることを考慮して該ずれ量を予め組立完了時等
に測定しておき、このずれ量を補正して、上記変位後の
加工基準点P′の座標値の演算を行うのである。以下に
ワークテーブル32のA軸心とB軸心との位置ずれ量の測
定方法を説明する。
However, when performing complex multi-face machining of the work W, as shown in FIG. 5, it is necessary to displace the machining face W 1 to the facing posture position so as to be a plane perpendicular to the tool spindle 18. Therefore, the first turning base 34 of the work table 32 and the second
When the revolving work table 36 and the revolving work table 36 are revolved in the A axis direction and the B axis direction, respectively, the work W attached to the pallet 40 is tilted as shown in FIG. As a result, the machining reference point P of the work W is displaced to the position P'in the three-dimensional space of the orthogonal triaxial coordinate system. Therefore, in order to perform NC machining of the machining surface W 1 according to the NC program 48, the coordinate value of the machining reference point P ′ after displacement is found, and the machining reference point P ′ after displacement is set as the machining origin and mounted on the tool spindle 18. If NC processing is not performed with the tool 20
The desired work processing cannot be achieved. Therefore, according to the present invention, it is possible to perform a quick calculation by a constant calculation formula based on the data such as the coordinate value of the machining reference point P of the workpiece W, the turning angle values of the A axis and the B axis, etc., in which the measurement results are already stored. The coordinate values of the machining reference point P'after the displacement in the orthogonal three-axis coordinate system are found. In this case, according to the present invention, the respective swivel axes of the first swivel base 34 and the second swivel work base 36 of the work table 32, that is, the A-axis center and the B-axis center of both the bases 34 and 36, respectively. The displacement amount is previously measured at the time of completion of assembly, etc. in consideration of the occurrence of a positional displacement peculiar to the manufacturing and assembling process, and the displacement amount is corrected to be the processing reference point after the displacement. The coordinate value of P'is calculated. A method of measuring the amount of positional deviation between the A axis center and the B axis center of the work table 32 will be described below.

第6図を参照すると、同図はA軸旋回する第1の旋回基
台34上にB軸旋回する第2の旋回ワーク基台36を搭載し
ている第2図の実施例における5軸NC工作機械に関し
て、A軸心とB軸心のずれを測定する原理を説明してい
る。
Referring to FIG. 6, the figure shows a 5-axis NC in the embodiment of FIG. 2 in which a second swivel work base 36 for swiveling the B axis is mounted on a first swivel base 34 for swiveling the A axis. Regarding the machine tool, the principle of measuring the deviation between the A axis center and the B axis center is explained.

第6図でA軸心とB軸心とのZ軸方向のずれ量をa、工
具主軸18先端を送り移動によりZ軸の原点位置に設定し
たときのB軸心との距離をL、A軸心からワークテーブ
ル32上に搭載されたパレット40の水平上面までの距離を
h、パレット40の水平上面から工具主軸18の先端中心ま
での距離をy、パレット40がA軸方向に工具主軸18側へ
90゜旋回されたときのB軸心と工具主軸先端の軸心まで
の距離をY、同パレット40の垂直上面から工具主軸18の
先端までの距離をlとすると、ずれ量aは次の方法で求
めることができる。
In FIG. 6, the shift amount between the A axis center and the B axis center in the Z axis direction is a, and the distance from the B axis center when the origin of the Z axis is set by feeding the tip of the tool spindle 18 is L and A. The distance from the axis to the horizontal upper surface of the pallet 40 mounted on the work table 32 is h, the distance from the horizontal upper surface of the pallet 40 to the center of the tip of the tool spindle 18 is y, and the pallet 40 is in the A axis direction. To the side
Assuming that the distance between the B axis and the tool spindle tip at the time of turning 90 ° is Y, and the distance from the vertical upper surface of the pallet 40 to the tip of the tool spindle 18 is 1, the deviation amount a is calculated by the following method. Can be found at.

ワークテーブル32のA軸の0゜位置、つまり、同ワ
ークテーブル32上に搭載されたパレット40の水平状態出
しを行う。これは工具主軸18にダイヤルゲージを装着
し、A軸心を跨ぐ2点の測定中心を一致させることによ
り、簡単に達成できる。
The 0 ° position of the A axis of the work table 32, that is, the pallet 40 mounted on the work table 32 is leveled. This can be easily achieved by mounting a dial gauge on the tool spindle 18 and aligning the measurement centers at two points across the A axis center.

次いで、周知の円筒ゲージまたはリングゲージを用
い、これをパレット40上に設定してB軸を旋回し、工具
主軸18に取付けたダイヤルインジケータで追跡すること
によりB軸心を求める。このゲージを利用してB軸心か
ら工具主軸先端までの距離Lを知ることができ、この距
離Lが予め決められた所定値Lkになるまで工具主軸18を
Z軸方向に送り後退させ、その点をZ軸原点とする。
Then, using a well-known cylinder gauge or ring gauge, this is set on the pallet 40, the B-axis is rotated, and the B-axis center is obtained by tracking with the dial indicator attached to the tool spindle 18. By using this gauge, the distance L from the center of the B axis to the tip of the tool spindle can be known. The tool spindle 18 is fed in the Z axis direction until the distance L reaches a predetermined value Lk, and Let the point be the Z-axis origin.

またB軸心と工具主軸18の軸心とのX軸方向位置を一致
させ、この点をX軸原点とする。
Further, the positions of the B-axis center and the axis of the tool spindle 18 are made to coincide with each other in the X-axis direction, and this point is set as the X-axis origin.

次にパレット40上にゲージを設定したままA軸を90
゜工具主軸側に旋回させて位置決めする。
Next, with the gauge set on the pallet 40, set the A axis to 90
Rotate to the tool spindle side for positioning.

次いで、パレット40上に設定してある円筒ゲージま
たはリングゲージを利用して、パレット40が垂直な状態
でのB軸心と工具主軸18の中心軸線との距離Yを知るこ
とができる。
Then, by using a cylindrical gauge or a ring gauge set on the pallet 40, the distance Y between the B axis center and the central axis of the tool spindle 18 in the vertical state of the pallet 40 can be known.

更に前述のの工程と同じように、距離Yが予め決
められた所定値Ykになるまで工具主軸18をY軸方向に上
昇させ、その点をY軸原点とする。
Further, similarly to the above-mentioned process, the tool spindle 18 is raised in the Y-axis direction until the distance Y reaches a predetermined value Yk, which is set as the Y-axis origin.

ここでパレット40の垂直上面からZ軸原点に工具主
軸18の先端が位置している状態での該先端までの距離l
を実測する。
Here, the distance l from the vertical upper surface of the pallet 40 to the tip of the tool spindle 18 when the tip of the tool spindle 18 is located at the origin of the Z axis.
Is actually measured.

その後、A軸を0゜位置に戻し、位置決めする。そ
して、パレット水平上面からY軸原点状態の工具主軸18
の先端までの距離yを実測する。
After that, the A-axis is returned to the 0 ° position and positioned. Then, from the horizontal upper surface of the pallet, the tool spindle 18 with the Y-axis origin
The distance y to the tip of is measured.

第6図より、次の関係式(1)、(2)が成立するから、L、
l、Y、yの上記既知量、実測値を代入すると、A軸心
とB軸心とのずれ量aとA軸心からパレット40の上面ま
での距離hを連立方程式(3)、(4)を解くことにより求め
ることができる。
From FIG. 6, since the following relational expressions (1) and (2) are established, L,
Substituting the known values and the measured values of l, Y, and y, the deviation amount a between the A-axis center and the B-axis center and the distance h from the A-axis center to the upper surface of the pallet 40 are expressed as simultaneous equations (3), (4 ) Can be obtained.

a+L=h+l→h−a=L−l ……(1) Y=a+h+y→h+a=Y−y ……(2) ∴ h=1/2(L−l+Y−y) ……(3) a=Y−y−h ……(4) こうして求めたA軸心とB軸心のずれ量aを予め第1図
のワークテーブル座標値記憶手段52に記憶しておけば、
実際のワークWのNC加工過程で加工基準点PがP′へ変
位した際に該P′点の座標値を演算する過程で、上記ず
れ量aを導入してA軸とB軸は1点で交叉して直交して
いる関係にあるものとして演算を実行でき、故に、変位
後の加工基準点P′の座標値を正確に算出することがで
きるのである。複数台製作する5軸NC工作機械のA軸心
とB軸心とのずれ量aは個々に異なる。従って、ワーク
テーブル座標値記憶手段52にはA、B両軸心の設計上の
座標値を予め記憶しておき、実際に製作して上記手段で
求めたずれ量aを個々の機械についてパラメータ入力と
して前記ワークテーブル座標値記憶手段52に入力し、次
の変位加工基準点演算手段56へ出力する時は、設計座標
値とずれ量aとを加味するようにしておけば良い。
a + L = h + l → h−a = L−1 (1) Y = a + h + y → h + a = Y−y (2) ∴h = 1/2 (L−1 + Y−y) (3) a = Y-y-h (4) If the deviation amount a between the A-axis center and the B-axis center thus obtained is stored in advance in the work table coordinate value storage means 52 of FIG.
In the process of calculating the coordinate value of the P'point when the machining reference point P is displaced to P'in the actual NC machining process of the work W, the deviation amount a is introduced and the A-axis and the B-axis have one point. The calculation can be executed assuming that they have a relationship of intersecting and being orthogonal to each other, and therefore the coordinate value of the machining reference point P ′ after displacement can be accurately calculated. The deviation amount a between the A-axis center and the B-axis center of a 5-axis NC machine tool that is manufactured in plural units differs individually. Therefore, the design table coordinate values of both the A and B axis centers are stored in advance in the work table coordinate value storage means 52, and the deviation amount a actually manufactured and obtained by the above means is input as a parameter for each machine. As the input to the work table coordinate value storage means 52 and output to the next displacement processing reference point calculation means 56, the design coordinate value and the shift amount a may be taken into consideration.

なお、第7図は第3図に示した5軸NC工作機械のワーク
テーブル32、つまり、B軸旋回台34の上にA軸旋回ワー
ク台36が搭載された構成においてA軸とB軸とのずれ量
aを求める場合の原理図を示しており、夫々の既知量、
測定量を第6図と同様に取ると、上述のからまでの
測定手順と同様な手順に従うことにより、 上記(3)式、(4)式と同一の式により、A軸心とパレット
40の上面までの距離h、A軸心とB軸心とのずれ量aを
得ることができる。
7 shows the work table 32 of the 5-axis NC machine tool shown in FIG. 3, that is, the structure in which the A-axis swivel work base 36 is mounted on the B-axis swivel base 34. FIG. 7 shows a principle diagram for obtaining a deviation amount a of each known amount,
Taking the measured quantity in the same way as in Fig. 6, by following the same measurement procedure as above, the A axis center and the pallet can be calculated by the same equations as the above equations (3) and (4).
It is possible to obtain the distance h to the upper surface of 40 and the shift amount a between the A axis center and the B axis center.

上述のようにしてワークテーブル32の旋回軸である、A
軸心とB軸心のZ軸方向のずれ量aの値が得られれば同
ワークテーブル32の旋回軸、A軸、B軸の夫々に関し、
機台14の直交3軸座標系における座標値が第6図、第7
図に図示の寸法関係から決定することができる。ここで
直交3軸座標系の原点(0,0,0)は、X軸が工具主軸中
心とB軸心とが一致した点、Y軸はA軸が−90゜のとき
のB軸中心から工具主軸中心までの距離がYの点、Z軸
はA軸が0゜のときのB軸中心から工具主軸先端までの
距離がLの点と定義する。即ち、旋回軸、A軸心は直交
3軸座標系の原点(0,0,0)に対して元々X軸に正確に
平行に設定されているから座標値は(Ya,Za)を有し、
このA軸心に対して直角を成すと共にZ軸方向にずれ量
aを有するB軸心の座標値は(Xb,Zb)を有し、これら
の座標値は、第6図又は第7図から分かるように、 Ya=Y−a,Za=L+a ……(5) Xb=0,Zb=L ……(6) となる(ここでB軸心がA軸心と工具主軸18との間にあ
るときaは正とする)。
As described above, the rotation axis of the work table 32, A
If the value of the shift amount a in the Z-axis direction between the axis center and the B-axis center is obtained, the rotation axis, the A-axis, and the B-axis of the work table 32 are
The coordinate values of the machine base 14 in the orthogonal three-axis coordinate system are shown in Figs.
It can be determined from the dimensional relationship shown in the figure. Here, the origin (0,0,0) of the orthogonal 3-axis coordinate system is the point where the tool spindle center and the B-axis center coincide on the X-axis, and the Y-axis starts from the B-axis center when the A-axis is -90 °. The distance to the tool spindle center is defined as a Y point, and the Z axis is defined as a point where the distance from the B axis center to the tool spindle tip when the A axis is 0 ° is L. That is, since the turning axis and the A-axis center are originally set exactly parallel to the X-axis with respect to the origin (0,0,0) of the orthogonal three-axis coordinate system, the coordinate value has (Ya, Za). ,
The coordinate values of the B-axis center which is perpendicular to the A-axis center and has a shift amount a in the Z-axis direction have (Xb, Zb), and these coordinate values are obtained from FIG. 6 or FIG. As can be seen, Ya = Ya, Za = L + a (5) Xb = 0, Zb = L (6) (where the B axis is between the A axis and the tool spindle 18) In some cases, a is positive).

以上のようにしてワークテーブル32の旋回軸であるA
軸、B軸の直交3軸座標系における座標値が確定する
と、このワークテーブル32上にパレット40を介して取付
けられる被加工ワークWの加工基準点Pが、同ワークテ
ーブル32のA軸、B軸の旋回によって変位した点P′の
直交3軸座標系における座標値は、下記の式から定ま
る。
As described above, the rotation axis A of the work table 32 is used.
When the coordinate values in the orthogonal three-axis coordinate system of the axes B and B are determined, the machining reference point P of the workpiece W to be mounted on the work table 32 via the pallet 40 is the axis A, B of the work table 32. The coordinate value of the point P'displaced by the turning of the shaft in the orthogonal three-axis coordinate system is determined by the following formula.

即ち、A軸の旋回角をα、B軸の旋回角をβ(α、βは
例えば時計周り方向をプラス値と予め定める)とし、
又、ワークテーブル32のA軸、B軸の旋回角α、βがそ
れぞれ0゜であるときに、同ワークテーブル32上のワー
クWの加工基準点Pの直交3軸座標系における座標値を
(x,y,z)、変位後(A軸、B軸がα、βだけ旋回した
とき)の加工基準点P′の座標値を(x′,y′,z′)と
すると、第2図に示したワークテーブル32の構成の場合
には、先ず、B軸をβ゜旋回させた場合の加工基準点P
が変位位置まで、次いで、その変位位置からA軸をα゜
旋回させて変位位置P′に到達するものとして三角関数
を用いて解析すると、 x′=(x−Xb)cosβ−(z−Zb)sinβ+Xb ……(7) y′=(x−Xb)sinαsinβ+(y−Ya)cosα +(z−Zb)sinαsinβ+(Zb−Za)sinα+Ya……(8) z′=(x−Xb)cosαsinβ−(y−Ya)sinα +(z−Zb)cosαcosβ+(Zb−Za)cosα+Za……(9) が得られる。
That is, the turning angle of the A-axis is α, and the turning angle of the B-axis is β (α and β are predetermined, for example, clockwise as positive values),
When the turning angles α and β of the A-axis and B-axis of the work table 32 are 0 °, respectively, the coordinate value of the machining reference point P of the work W on the work table 32 in the orthogonal three-axis coordinate system ( x, y, z), and the coordinate value of the machining reference point P'after displacement (when the A-axis and B-axis are rotated by α and β) is (x ', y', z '). In the case of the construction of the work table 32 shown in FIG. 1, first, the machining reference point P when the B axis is rotated by β °
To the displacement position, and then using the trigonometric function as the one that turns the A axis by α ° from the displacement position to reach the displacement position P ′, x ′ = (x−Xb) cosβ− (z−Zb ) Sinβ + Xb …… (7) y ′ = (x−Xb) sinαsinβ + (y−Ya) cosα + (z−Zb) sinαsinβ + (Zb−Za) sinα + Ya …… (8) z ′ = (x−Xb) cosαsinβ− (Y−Ya) sinα + (z−Zb) cosαcosβ + (Zb−Za) cosα + Za (9) is obtained.

他方、第3図に図示したワークテーブル32の場合には、
同様に解析すると、 x′=(x−Xb)cosβ+(y−Ya)sinαsinβ −(z−Za)cosαsinβ+(Zb−Za)sinβ+Xb …… (10) y′=(y−Ya)cosα+(z−Za)sinα+Ya……(11) z′=(x−Xb)sinβ−(y−Ya)sinαcosβ +(z−Za)cosαcosβ−(Zb−Za)cosβ+Zb …… (12) が得られる。
On the other hand, in the case of the work table 32 shown in FIG. 3,
When analyzed in the same manner, x ′ = (x−Xb) cosβ + (y−Ya) sinαsinβ− (z−Za) cosαsinβ + (Zb−Za) sinβ + Xb (10) y ′ = (y−Ya) cosα + (z− Za) sinα + Ya (11) z '= (x-Xb) sinβ- (y-Ya) sinαcosβ + (z-Za) cosαcosβ- (Zb-Za) cosβ + Zb (12) is obtained.

依って、これらの式(7)〜(9)又は(10)〜(12)を用いるこ
とにより、変位後のワークWの加工基準点P′の直交3
軸座標系における座標値を演算することができるのであ
る。そして、この演算は第1図における変位加工基準点
演算手段56へNC加工プログラム48からワークテーブル32
のA軸、B軸の旋回角α,βを読出し、ワークテーブル
座標値記憶手段52からA軸、B軸の直交3軸座標系にお
けるZ軸の座標値(Ya,Za)、(Xb,Zb)を読出し、加工
基準点記憶手段54からワークテーブル32のA軸、B軸が
夫々、所定の姿勢位置、つまり、0゜位置で測定手段50
で測定した加工基準点Pの座標値(x,y,z)を読出して
上記の演算式に従って演算を実行すれば良いのである。
Therefore, by using these equations (7) to (9) or (10) to (12), the machining reference point P ′ of the workpiece W after displacement is orthogonal to 3
The coordinate value in the axis coordinate system can be calculated. This calculation is performed from the NC machining program 48 to the work table 32 to the displacement machining reference point computing means 56 in FIG.
Of the rotation angles α and β of the A axis and the B axis, and the coordinate values (Ya, Za) and (Xb, Zb) of the Z axis in the orthogonal three-axis coordinate system of the A axis and B axis are read from the work table coordinate value storage means 52. ) Is read out from the machining reference point storage means 54, and the measuring means 50 is operated at a predetermined posture position, that is, 0 ° position, for the A axis and the B axis of the work table 32, respectively.
The coordinate value (x, y, z) of the machining reference point P measured in step 1 is read out and the calculation is executed according to the above calculation formula.

ここで第1図を再び参照すると、上記変位後のワークW
の加工基準点P′の演算値はNC装置58のワーク座標系記
憶手段60に記憶され、この変位後の加工基準点P′を加
工原点として多面性のワークWの傾いた面W1(第5図参
照)のNC加工が実行される。即ち、NCプログラムから加
工プログラムを読出し、補間演算手段62で工具主軸18と
ワークテーブル32上のワークWとの相対送り動作量を補
間演算し、同時にNCプログラム48からワークテーブル32
の各旋回軸、A軸、B軸の旋回角度を読出して補間演算
し、夫々の補間演算値に従って送りサーボ機構部64から
送りモータMx〜Mz、Ma、Mbへ指令値を送出してNC加工を
遂行するものである。つまり多面性のワークWの傾斜し
た面W1のような機械加工も工具主軸18に垂直に対向する
位置へワークテーブル32により傾斜させて、X,Y,Zの3
軸で記述した比較的簡単なNCプログラムにより一連のNC
加工工程として機械加工を行うことができるのである。
なお、第5図のようにA軸またはB軸を旋回後の加工基
準点P′の座標値を測定プローブ19で実測するのが困難
なので、この様なプロセスを経由するのである。
Referring back to FIG. 1 again, the workpiece W after the above displacement
The calculated value of the machining reference point P'of is stored in the work coordinate system storage means 60 of the NC device 58, and the inclined reference surface W 1 of the multifaceted work W (first NC processing (see Fig. 5) is executed. That is, the machining program is read from the NC program, and the relative calculation amount of the relative feed between the tool spindle 18 and the work W on the work table 32 is interpolated by the interpolation calculation means 62, and at the same time, the NC program 48 to the work table 32.
The turning angles of the respective turning axes, A-axis and B-axis are read out and interpolation calculation is performed, and the command values are sent from the feed servo mechanism section 64 to the feed motors Mx to Mz, Ma and Mb according to the respective interpolation calculation values, and NC machining is performed. Is performed. That is, the machining such as the inclined surface W 1 of the multifaceted work W is tilted by the work table 32 to a position perpendicularly facing the tool spindle 18, and X, Y, and Z can be used.
A series of NCs with a relatively simple NC program written in axes
Machining can be performed as a processing step.
As shown in FIG. 5, it is difficult to actually measure the coordinate value of the machining reference point P ′ after turning the A axis or the B axis by the measuring probe 19, and therefore such a process is performed.

記述した第1図の本発明に係る諸機能手段に依って実行
されるワークWの加工基準点Pの変位後の座標値P′を
演算、設定するまでの一連のプロセスを示したものが第
8図のフローチャートである。
A series of processes for calculating and setting the coordinate value P ′ after the displacement of the machining reference point P of the workpiece W, which is executed by the various functional means according to the present invention shown in FIG. 8 is a flowchart of FIG.

第8図において、プロセスにおき、ワークWの加工基
準点Pの測定に当たり、ワークテーブル32の旋回軸、A
軸、B軸が0゜(所定の姿勢位置)に有る状態でNCプロ
グラム48から測定手段50へ予め大凡の加工基準点Pの座
標(x0,y0,z0)を指示される。次いで、測定手段50は
その測定プローブ19(第4図)を駆使して加工基準点P
の正確な座標値(x,y,z)をプロセスにおいて測定す
る。その測定結果は、加工基準点記憶手段54に記憶され
る。(プロセス)。次いで、変位加工基準点P′の演
算手段56は、NCプログラム48からワークテーブル32の割
出し旋回のための角度α,β(つまり、ワークWの傾斜
した面W1を工具主軸18に垂直に対向させる位置までの割
出し旋回)を読み出し、又、ワークテーブル座標値記憶
手段52から予め測定、記憶されたA軸心、B軸心の直交
3軸座標系における座標値を読み出す(プロセス)。
斯くして、上記演算手段56は、割出し旋回による変位後
の加工基準点P′の座標値を測定したP点の座標値を基
にして演算する(プロセス)。そして、演算後の加工
基準点P′の座標値(x′,y′,z′)をワーク座標系記
憶手段60に記憶、設定して(プロセス)加工基準点
P′の演算プロセスを終了する。
In FIG. 8, in the process, when measuring the machining reference point P of the work W, the turning axis of the work table 32, A
The coordinates (x 0 , y 0 , z 0 ) of the rough machining reference point P are instructed in advance from the NC program 48 to the measuring means 50 with the axes B and B at 0 ° (predetermined posture position). Then, the measuring means 50 makes full use of the measuring probe 19 (FIG. 4) to make the processing reference point P.
The exact coordinate value (x, y, z) of is measured in the process. The measurement result is stored in the processing reference point storage means 54. (process). Next, the displacement machining reference point P ′ calculating means 56 uses the NC program 48 to calculate the angles α and β for indexing and turning the work table 32 (that is, the inclined surface W 1 of the work W is perpendicular to the tool spindle 18). The indexed turn to the position where they face each other) is read out, and the coordinate values of the A-axis center and the B-axis center that have been measured and stored in advance in the orthogonal three-axis coordinate system are read from the work table coordinate value storage means 52 (process).
Thus, the computing means 56 computes the coordinate value of the machining reference point P'after displacement by the indexing rotation based on the measured coordinate value of point P (process). Then, the coordinate value (x ', y', z ') of the calculated machining reference point P'is stored and set in the work coordinate system storage means 60, and the (process) machining reference point P'calculation process is terminated. .

なお、上述した第8図のフローチャートのプロセスにお
いては、演算プロセスを更に詳細に図示したものが第
9図のフローチャートである。
In the process of the flowchart of FIG. 8 described above, the calculation process is illustrated in more detail in the flowchart of FIG.

この第9図のフローチャートでは、プロセス〜が第
2図に示した実施例の5軸NC工作機械におけるワークテ
ーブル32を有した機械形態に関し、プロセス〜が第
3図に示した実施例の5軸NC工作機械におけるワークテ
ーブル32を有した機械形態に関するものである。これら
のプロセスにおいて、加工基準点Pが、ワークテーブル
32のA軸、B軸が0゜位置を所定位置として測定手段50
で測定した場合にはプロセス、プロセスの各工程は
省略されるが、ワークテーブル32のA軸、又はB軸を0
゜以外の位置を所定姿勢位置に設定して初期のワークW
の加工基準点Pの測定が実行されたときには、プロセス
及びプロセスのように、加工基準点PをA軸0゜又
はB軸0゜に戻したときの座標値に換算、演算するプロ
セスが必要になる。なお、プロセス、又はプロセス
、から理解できるように、演算過程は、前述の(7)
式〜(12)式に関して既述したように、A軸、B軸を順次
に角度α゜、β゜旋回させながら加工基準点Pがどのよ
うに点P′へ変位するかを順次に演算する方法で演算が
実行され、(7)〜(9)式または(10)〜(12)式を直ちに演算
する方法には依らない。勿論、これらの式(7)から(12)
式を適宜の記憶手段に記憶させ、該式に従って直接的に
演算する方法を採用しても良いことは言うまでもない。
In the flow chart of FIG. 9, the process ~ relates to the machine form having the work table 32 in the 5-axis NC machine tool of the embodiment shown in Fig. 2, and the process ~ is the 5-axis of the embodiment shown in Fig. 3. The present invention relates to a machine form having a work table 32 in an NC machine tool. In these processes, the machining reference point P is the work table.
Measuring means 50 with 32 A-axis and B-axis 0 ° positions as predetermined positions
In the case of measurement with, the process and each step of the process are omitted, but the A axis or the B axis of the work table 32 is set to 0.
Set the position other than ° to the specified posture position and set the initial work W
When the processing reference point P is measured, the process and the process for converting the processing reference point P to the coordinate values when the processing reference point P is returned to 0 ° A axis or 0 ° B axis are necessary. Become. As can be understood from the process or process, the calculation process is described in (7) above.
As described above with respect to equations (12)-(12), it is sequentially calculated how the machining reference point P is displaced to the point P'while the A axis and the B axis are sequentially turned by the angles α ° and β °. The calculation is performed by the method and does not depend on the method of immediately calculating the formulas (7) to (9) or (10) to (12). Of course, these equations (7) to (12)
It goes without saying that a method of storing the formula in an appropriate storage means and directly calculating according to the formula may be adopted.

なお、以上の説明では5軸NC工作機械のワークテーブル
32が機台に設定した直交3軸座標系において、2つの旋
回軸、A軸、B軸を有し、かつ、そのA軸心とB軸心と
が位置ずれを固有的に有していることも考慮して複雑、
多面性のワークWの種々傾斜する面を加工する場合に加
工基準点が所定の姿勢位置からテーブル割出し傾斜の結
果、どのような座標点に変位したかを演算設定し、NCプ
ログラムにより、非傾斜面共々に一連のNC加工を実行す
るときに就いて説明したが、多数の同種ワークを次々と
加工するときには、各ワークWがワークテーブル32上の
定位置に常に取付けられることはないから、各ワークW
の加工基準点Pの座標値を測定手段50で測定し、A軸、
B軸の旋回後の加工基準点P′の座標値を演算で求め、
その点P′を加工原点にしてNC加工すると、取付け位置
ずれは補正され、同一のNCプログラムで均一な加工が同
種ワークに施せることは、容易に理解できよう。
In the above explanation, the work table of the 5-axis NC machine tool
In the orthogonal three-axis coordinate system in which 32 is set on the machine base, it has two turning axes, A axis and B axis, and the A axis center and the B axis center inherently have misalignment. It's also complicated,
When machining variously inclined surfaces of a multi-faceted work W, it is calculated and set to what coordinate point the machining reference point is displaced from the predetermined posture position as a result of the table indexing inclination. Although it has been described that a series of NC machining is performed on both inclined surfaces, when machining a large number of workpieces of the same type one after another, each workpiece W is not always attached to a fixed position on the work table 32. Each work W
The coordinate value of the machining reference point P of is measured by the measuring means 50, and the A-axis,
Calculate the coordinate value of the machining reference point P'after turning the B axis,
It can be easily understood that when NC machining is performed with the point P'as the machining origin, the displacement of the mounting position is corrected and uniform machining can be performed on the same type of workpiece with the same NC program.

〔発明の効果〕〔The invention's effect〕

以上、本発明を実施例に基づいて説明したが、本発明
は、5軸NC工作機械のワークテーブル上に取付けられた
多面形の被加工ワークを加工する場合には、該ワークの
加工基準点を例えば、該ワークテーブルのワーク取付け
面が工具主軸の軸心と平行又は垂直な姿勢を特定姿勢位
置として当該特定姿勢位置で測定手段により測定し、ワ
ークの傾斜した被加工面を工具主軸に垂直な姿勢までワ
ークテーブルをその2つの旋回軸周りに旋回させたとき
には、加工基準点が先の測定位置から直交3軸座標系内
で変位した点の座標を、予め記憶させた一定の演算式に
従って演算手段により演算し、その演算値から得た加工
基準点の変位量によってNC装置に設定されている加工基
準点の座標を補正し、補正後のワーク加工基準点に基づ
いてNCプログラムに従って非傾斜ワーク面と同様にNC加
工を遂行可能にする手段を構成したから、複雑、多面性
のワークの加工もX,Y,Zの3軸で記述した比較的簡単なN
Cプログラムに基づいて一連のNC加工として実行でき、
故に、工具主軸に対して元来、垂直に対向していない面
の加工も垂直に対向している面の加工を連続工程で加工
でき、プログラムの簡略化が得られると共にワーク加工
の段取り段階からNC加工の完了までの総加工時間を大幅
に短縮することができる効果を奏するのである。
The present invention has been described above based on the embodiments. However, when the present invention processes a polygonal workpiece to be machined mounted on a work table of a 5-axis NC machine tool, the machining reference point of the workpiece is used. For example, the workpiece mounting surface of the work table is measured by the measuring means at a specific posture position that is parallel or perpendicular to the axis of the tool spindle, and the inclined work surface of the workpiece is perpendicular to the tool spindle. When the work table is swiveled around its two swivel axes up to different postures, the coordinates of the point where the machining reference point is displaced from the previous measurement position within the orthogonal three-axis coordinate system are stored according to a certain arithmetic expression stored in advance. The coordinates of the machining reference point set in the NC device are corrected by the amount of displacement of the machining reference point calculated by the calculation means, and the NC program is executed according to the corrected workpiece machining reference point. Since the construction means enabling performing NC machining as with non-inclined work surface Te, complexity, processing also X of versatility of the work, Y, relatively simple N written in three axes of Z
It can be executed as a series of NC machining based on the C program,
Therefore, it is possible to process the surface that does not originally face vertically to the tool spindle in a continuous process even for the surface that does not face vertically, which simplifies the program and makes it possible from the setup stage of workpiece machining. This has the effect of significantly reducing the total processing time until the completion of NC processing.

更に、ワークテーブルの割出し旋回に当たり、本発明で
は、同ワークテーブルの旋回軸、A軸、B軸の心ずれ量
aを予め測定し、これを記憶データとしてワークの加工
基準点の変位後の座標値の演算を実行するから、多面性
ワークの何れの面を工具主軸に垂直に対向する姿勢位置
まで割り出しても、正確に変位後の加工基準点の座標値
を演算、設定し、この正確な加工基準点を加工原点とし
てNC加工プロセスを実行できることとなり、故に高精度
の5軸NC加工を実現できる効果を得ることができる。
Further, in the present invention, upon indexing and turning of the work table, in the present invention, the amount of misalignment a of the turning axis, A axis, and B axis of the work table is measured in advance, and this is used as stored data to store the data after displacement of the machining reference point of the work. Since the coordinate value calculation is executed, the coordinate value of the machining reference point after displacement is accurately calculated and set no matter which surface of the multi-faceted work is indexed to the posture position perpendicularly facing the tool spindle. The NC machining process can be executed with a machining reference point as the machining origin, and therefore, the effect of realizing highly accurate 5-axis NC machining can be obtained.

しかも、その結果、複雑、多面を有したワーク加工が達
成できることは、単に航空機部品等の特殊なワークの加
工ばかりでなく、種々の製品に複雑な多面を有した形状
を付与することが比較的簡単に可能となり、製品のデザ
イ性の向上等にも大きく寄与できる効果がある。
Moreover, as a result, it is possible not only to process a special work such as an aircraft part, but also to give a complicated multi-sided shape to various products, as a result that a complex and multi-sided work can be achieved. This is easily possible and has the effect of making a great contribution to improving the design of the product.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明による5軸NC工作機械の機能的な構成
を示したブロック図、第2図は、本発明の1実施例によ
る5軸NC工作機械の工具主軸とワークテーブルとの構成
を示した斜視図、第3図は本発明の他の実施例による5
軸NC工作機械の工具主軸とワークテーブルとの構成を示
した斜視図、第4図は、水平軸線周りに旋回可能な旋回
基台上に縦軸線周りに旋回可能な旋回ワーク台が設けら
れた構造のワークテーブルを水平姿勢にした上にワーク
が取付けられワークの加工基準点の測定を実行する状態
を示した斜視図、第5図は第4図の状態から傾斜した状
態を示す斜視図、第6図は第2図に示した5軸NC工作機
械のワークテーブルの2つの旋回軸、A軸とB軸との軸
心のずれを測定によって求める原理を説明する図、第7
図は第3図に示した5軸NC工作機械のワークテーブルの
2つの旋回軸、A軸とB軸との軸心のずれを測定によっ
て求める原理を説明する図、第8図は演算過程のフロー
チャート、第9図は第8図の演算過程の詳細プロセスの
フローチャート。 14……機台、16……コラム、18……工具主軸、19……測
定プローブ、20……工具、32……ワークテーブル、34…
…第1の旋回基台、36……第2のワーク旋回台、48……
NCプログラム、50……測定手段、52……ワークテーブル
座標値記憶手段、54……加工基準点記憶手段、56……変
位加工基準点演算手段、58……NC装置、60……ワーク座
標系記憶手段、62……補間演算手段、64……送りサーボ
機構部、W……ワーク、P……加工基準点。P′……変
位後の加工基準点。
FIG. 1 is a block diagram showing a functional configuration of a 5-axis NC machine tool according to the present invention, and FIG. 2 is a configuration of a tool spindle and a work table of a 5-axis NC machine tool according to an embodiment of the present invention. And FIG. 3 is a perspective view showing another embodiment of the present invention.
Axis A perspective view showing the structure of the tool spindle and work table of an NC machine tool, and Fig. 4 shows a swivel work table that can swivel around a vertical axis on a swivel base that can swivel around a horizontal axis. FIG. 5 is a perspective view showing a state in which a work is mounted on a work table having a horizontal posture and measurement of a machining reference point of the work is executed, and FIG. 5 is a perspective view showing a state in which the work reference point is inclined from the state of FIG. FIG. 6 is a diagram for explaining the principle of determining the displacement of the two swivel axes of the work table of the 5-axis NC machine tool shown in FIG.
The figure is a diagram for explaining the principle of determining the displacement of the two swivel axes of the work table of the 5-axis NC machine tool shown in FIG. 3 between the two axes A and B, and FIG. Flowchart, FIG. 9 is a detailed process flowchart of the calculation process of FIG. 14 ... Machine stand, 16 ... Column, 18 ... Tool spindle, 19 ... Measuring probe, 20 ... Tool, 32 ... Work table, 34 ...
… 1st swivel base, 36 …… 2nd workpiece swivel base, 48 ……
NC program, 50 ... Measuring means, 52 ... Work table coordinate value storage means, 54 ... Machining reference point storage means, 56 ... Displacement machining reference point calculation means, 58 ... NC device, 60 ... Work coordinate system Storage means, 62 ... Interpolation calculation means, 64 ... Feed servo mechanism section, W ... Work piece, P ... Machining reference point. P '... Machining reference point after displacement.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】静止機台に設けた直交3軸座標系(X軸、
Y軸、Z軸)内で工具主軸とワークテーブルとが相対直
線移動可能に設けられると共に、前記ワークテーブルが
前記X軸と平行に設定されたA軸心周りに旋回可能な第
1の旋回基台と、該第1の旋回基台上に前記A軸心と直
角なB軸心周りに旋回可能な第2の旋回ワーク台とを有
して前記直交3軸座標系内において相互に直角な前記2
軸線周り(A軸、B軸)に前記ワークテーブルが旋回可
能に設けられてワークをNCプログラムに従って加工する
5軸NC工作機械において、 前記直交3軸座標系内の被測定点のX、Y、Z座標値を
測定する測定手段と、 前記第1の旋回基台の旋回軸心と前記第2の旋回ワーク
台の旋回軸心との2軸心のずれ量を求め、該ずれ量を加
味して前記直交3軸座標系における前記ワークの旋回用
A軸、B軸の2軸心の位置の座標値を予め記憶する第1
の記憶手段と、 前記A軸、B軸を所定の姿勢位置に位置決めしたときの
前記ワークテーブル上に取付けられたワークの加工基準
点位置を前記測定手段によって測定した前記直交3軸座
標系における測定座標値を記憶する第2の記憶手段と、 前記ワークテーブルを前記A軸、B軸の前記所定姿勢位
置から予め与えられるワークの加工姿勢位置まで割出し
旋回させたときに、その割出し旋回角度と前記第1の記
憶手段に記憶された前記A軸、B軸の2軸心の座標値と
前記第2の記憶手段に記憶されたワークの加工基準点の
測定座標値とから、割出し旋回後の前記ワークテーブル
上のワークの加工基準点位置を所定の演算式に従って算
出する演算手段と、 前記演算手段で算出されたワークの加工基準点位置を前
記NCプログラムの加工原点位置として取込み、前記工具
主軸とワークとの間の相対送り量を制御するNC装置とを 具備して構成され、前記ワークテーブルを割出し旋回さ
せることにより加工姿勢位置に設定されたワークをNCプ
ログラムに基づき加工することを特徴とする5軸NC工作
機械。
1. An orthogonal three-axis coordinate system (X-axis,
A first rotation base in which a tool spindle and a work table are provided so as to be capable of relative linear movement within a Y-axis and a Z-axis), and the work table is rotatable about an A-axis center set parallel to the X-axis. A platform and a second swivel work platform on the first swivel base which is swivelable about the B axis perpendicular to the A axis, and are orthogonal to each other in the orthogonal triaxial coordinate system. 2 above
A 5-axis NC machine tool in which the work table is rotatably provided around an axis (A-axis, B-axis) to process a work according to an NC program, and X, Y of a measured point in the orthogonal 3-axis coordinate system, Measuring means for measuring a Z-coordinate value, and a deviation amount between two rotation axes of the rotation axis of the first rotation base and the rotation axis of the second rotation work base is obtained, and the deviation amount is taken into consideration. For storing in advance the coordinate values of the positions of the two axes of the A-axis and B-axis for turning the workpiece in the orthogonal 3-axis coordinate system.
Storage means and measurement in the orthogonal three-axis coordinate system in which the machining reference point position of the work mounted on the work table when the A-axis and the B-axis are positioned at predetermined posture positions is measured by the measuring means. Second storage means for storing coordinate values, and when the work table is indexed and swung from the predetermined posture position of the A-axis and B-axis to a machining posture position of a workpiece given in advance, the indexed swivel angle And an indexing rotation from the coordinate values of the two axial centers of the A axis and the B axis stored in the first storage means and the measured coordinate value of the machining reference point of the workpiece stored in the second storage means. A computing means for calculating the machining reference point position of the workpiece on the workpiece table according to a predetermined arithmetic expression, and the machining reference point position of the workpiece calculated by the computing means as the machining origin position of the NC program. It is configured with an NC device that takes in and controls the relative feed amount between the tool spindle and the work, and the work set in the processing posture position by indexing and turning the work table is set based on the NC program. A 5-axis NC machine tool characterized by machining.
【請求項2】静止機台に設けた直交3軸座標系(X軸、
Y軸、Z軸)内で工具主軸とワークテーブルとが相対直
線移動可能に設けられると共に、前記ワークテーブルが
前記Y軸と平行に設定されたB軸心周りに旋回可能な第
1の旋回基台と、該第1の旋回基台上に前記B軸心と直
角なA軸心周りに旋回可能な第2の旋回ワーク台とを有
して前記直交3軸座標系内において相互に直角な前記2
軸線周り(A軸、B軸)に前記ワークテーブルが旋回可
能に設けられてワークをNCプログラムに従って加工する
5軸NC工作機械において、 前記直交3軸座標系内の被測定点のX、Y,Z座標値を測
定する測定手段と、 前記第1の旋回基台の旋回軸心と前記第2の旋回ワーク
台の旋回軸心との2軸心のずれ量を求め、該ずれ量を加
味して前記直交3軸座標系における前記ワークの旋回用
A軸、B軸の2軸心の位置の座標値を予め記憶する第1
の記憶手段と、 前記A軸、B軸を所定の姿勢位置に位置決めしたときの
前記ワークテーブル上に取付けられたワークの加工基準
点位置を前記測定手段によって測定した前記直交3軸座
標系における測定座標値を記憶する第2の記憶手段と、 前記ワークテーブルを前記A軸、B軸の前記所定姿勢位
置から予め与えられるワークの加工姿勢位置まで割出し
旋回させたときに、その割出し旋回角度と前記第1の記
憶手段に記憶された前記A軸、B軸の2軸心の座標値と
前記第2の記憶手段に記憶されたワークの加工基準点の
測定座標値とから、割出し旋回後の前記ワークテーブル
上のワークの加工基準点位置を所定の演算式に従って算
出する演算手段と、 前記演算手段で算出されたワークの加工基準点位置を前
記NCプログラムの加工原点位置として取込み、前記工具
主軸とワークとの間の相対送り量を制御するNC装置と、 を具備して構成され、前記ワークテーブルを割出し旋回
させることにより加工姿勢位置に設定されたワークをNC
プログラムに基づき加工することを特徴とする5軸NC工
作機械。
2. An orthogonal three-axis coordinate system (X-axis,
A first rotation base in which a tool spindle and a work table are provided so as to be capable of relative linear movement within a Y-axis and a Z-axis), and the work table is rotatable about a B-axis center set parallel to the Y-axis. A platform and a second swivel work platform on the first swivel base which can swivel about an A axis perpendicular to the B axis, and are orthogonal to each other in the orthogonal triaxial coordinate system. 2 above
A 5-axis NC machine tool in which the work table is rotatably provided around an axis (A-axis, B-axis) to machine a work according to an NC program, wherein X, Y, and Y of a measured point in the orthogonal 3-axis coordinate system are provided. Measuring means for measuring the Z coordinate value; and a deviation amount between the turning axis of the first turning base and the turning axis of the second turning work base, which is taken into consideration. For storing in advance the coordinate values of the positions of the two axes of the A-axis and B-axis for turning the workpiece in the orthogonal 3-axis coordinate system.
Storage means and measurement in the orthogonal three-axis coordinate system in which the machining reference point position of the work mounted on the work table when the A-axis and the B-axis are positioned at predetermined posture positions is measured by the measuring means. Second storage means for storing coordinate values, and when the work table is indexed and swung from the predetermined posture position of the A-axis and B-axis to a machining posture position of a workpiece given in advance, the indexed swivel angle And an indexing rotation from the coordinate values of the two axial centers of the A axis and the B axis stored in the first storage means and the measured coordinate value of the machining reference point of the workpiece stored in the second storage means. A computing means for calculating the machining reference point position of the workpiece on the workpiece table according to a predetermined arithmetic expression, and the machining reference point position of the workpiece calculated by the computing means as the machining origin position of the NC program. Uptake, a NC device for controlling the relative feed rate between the tool spindle and the workpiece, is configured by including a work set in the machining posture position by pivoting indexing the worktable NC
A 5-axis NC machine tool characterized by machining based on a program.
JP1099956A 1989-04-21 1989-04-21 5-axis NC machine tool Expired - Lifetime JPH0688192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1099956A JPH0688192B2 (en) 1989-04-21 1989-04-21 5-axis NC machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1099956A JPH0688192B2 (en) 1989-04-21 1989-04-21 5-axis NC machine tool

Publications (2)

Publication Number Publication Date
JPH02279249A JPH02279249A (en) 1990-11-15
JPH0688192B2 true JPH0688192B2 (en) 1994-11-09

Family

ID=14261144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1099956A Expired - Lifetime JPH0688192B2 (en) 1989-04-21 1989-04-21 5-axis NC machine tool

Country Status (1)

Country Link
JP (1) JPH0688192B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008119784A (en) * 2006-11-10 2008-05-29 Toshiba Mach Co Ltd Attitude assurance system of 5-axis machine for inclined machining
JP2008269316A (en) * 2007-04-20 2008-11-06 Makino Milling Mach Co Ltd Numerical control machine tool and numerical control device
WO2009057229A1 (en) 2007-11-02 2009-05-07 Makino Milling Machine Co., Ltd. Method and device for preparing error map and numerically controlled machine tool having error map preparation function
JP2009230552A (en) * 2008-03-24 2009-10-08 Mitsubishi Electric Corp Numerical control device

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2308323B (en) * 1995-12-18 1998-02-25 Honda Motor Co Ltd Relative positioning machine
JP2002126972A (en) * 2000-10-26 2002-05-08 Mori Seiki Co Ltd Machine tool
ITTO20010821A1 (en) * 2001-08-21 2003-02-21 O M V Ohg Venete S R L NUMERIC CONTROL MILLING MACHINE.
DE10252824A1 (en) * 2002-11-13 2004-06-03 Deckel Maho Pfronten Gmbh machine tool
DE102004010984B3 (en) * 2004-03-03 2005-09-29 Ops-Ingersoll Funkenerosion Gmbh Machine tool for machining a workpiece
US7509718B1 (en) * 2008-04-04 2009-03-31 Cincinnati Machine, Llc Machine tool with selective drive motor positioning
JP5161124B2 (en) * 2009-01-21 2013-03-13 ファナック株式会社 Numerical control unit for 5-axis machine
US20120326402A1 (en) * 2010-03-02 2012-12-27 Burkhart Grob Machine tool
US20130006394A1 (en) * 2010-03-24 2013-01-03 Mitsubishi Electric Corporation Numerical control device and numerical control method
US8662802B2 (en) 2011-03-04 2014-03-04 Fives Machining Systems, Inc. High rigidity moving column horizontal machine tool
US20150098771A1 (en) * 2013-10-09 2015-04-09 King Fahd University Of Petroleum And Minerals Desktop milling machine with ovate-shaped bridge
US20160074946A1 (en) * 2014-09-12 2016-03-17 Pocket NC Company Multi-axis machining systems and related methods
USD788196S1 (en) 2014-09-12 2017-05-30 Pocket NC Company Multi-axis machine
DE202017102297U1 (en) * 2016-04-19 2017-07-17 Haute Ecole Arc micro system
DE112016007507T5 (en) * 2016-12-08 2019-09-05 Mitsubishi Electric Corporation NUMERICAL CONTROL DEVICE
DE102018201419A1 (en) * 2018-01-30 2019-08-01 Deckel Maho Pfronten Gmbh machine tool
CN111408736B (en) * 2020-04-30 2024-04-16 常州星宇车灯股份有限公司 Swing angle machining method and device
EP3715051B1 (en) * 2020-07-24 2024-04-03 Fill Gesellschaft m.b.H. Machine tool and method for operating same
JP7303593B2 (en) * 2021-03-19 2023-07-05 国立大学法人東海国立大学機構 POSITIONAL RELATIONSHIP MEASUREMENT METHOD AND PROCESSING DEVICE
CN116661375A (en) * 2023-08-02 2023-08-29 济南森峰激光科技股份有限公司 Numerical control roll lathe grinding test method, system, terminal and storage medium

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6234485A (en) * 1985-08-07 1987-02-14 Hitachi Ltd Beam index type color picture reproducing device
JPH0649264B2 (en) * 1985-12-26 1994-06-29 ヤマザキマザツク株式会社 Machining control method for multi-face machining machine tool

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008119784A (en) * 2006-11-10 2008-05-29 Toshiba Mach Co Ltd Attitude assurance system of 5-axis machine for inclined machining
JP2008269316A (en) * 2007-04-20 2008-11-06 Makino Milling Mach Co Ltd Numerical control machine tool and numerical control device
WO2009057229A1 (en) 2007-11-02 2009-05-07 Makino Milling Machine Co., Ltd. Method and device for preparing error map and numerically controlled machine tool having error map preparation function
EP2221692A2 (en) 2007-11-02 2010-08-25 Makino Milling Machine Co. Ltd. Numerically controlled machine tool and numerical control device
US8786243B2 (en) 2007-11-02 2014-07-22 Makino Milling Machine Co., Ltd. Method and device for preparing error map and numerically controlled machine tool having error map preparation function
EP2975475A1 (en) 2007-11-02 2016-01-20 Makino Milling Machine Co. Ltd. Method and device for preparing error map and numerically controlled machine tool having error map preparation function
JP2009230552A (en) * 2008-03-24 2009-10-08 Mitsubishi Electric Corp Numerical control device
JP4637197B2 (en) * 2008-03-24 2011-02-23 三菱電機株式会社 Numerical controller

Also Published As

Publication number Publication date
JPH02279249A (en) 1990-11-15

Similar Documents

Publication Publication Date Title
JPH0688192B2 (en) 5-axis NC machine tool
EP2839925B1 (en) Interference determination method and interference determination device for machine tool
US5020001A (en) Robot controller
CN102375432B (en) Numerical Control Device For Multi-axis Processing Machine Used For Processing Inclined Plane
JP3833386B2 (en) Scroll-shaped processing device and method for manufacturing scroll-shaped component
JP2011173234A (en) Control method for machine tool
JPS61281305A (en) Articulated robot control device
JP4198861B2 (en) Correction method of machine error at spindle head of multi-axis machine tool
JP2007168013A (en) Tool knife edge position computing method and machine tool
EP3101498A1 (en) Machining method and machine-tool control device
KR100310814B1 (en) Method and apparatus for processing scrolled workpiece
CN109531205B (en) Orthogonal double-turntable base rotatable numerical control clamp system and regulation and control method thereof
US20210331261A1 (en) Gear machining apparatus
US6539274B1 (en) Method for compensating for temperature-related dimensional deviations in machine geometry
US20230152772A1 (en) Positional relationship measurement method and machining apparatus
JPS63302310A (en) Method and apparatus for determining absolute position of point within measuring control of coordinate measuring apparatus
JP4531297B2 (en) 6-axis control NC program generation method and generation apparatus, 6-axis control NC program generation program, and computer-readable recording medium storing the program
CN110883499B (en) Program generation method and device for machining inclined plane for multi-axis machine tool
JP2787872B2 (en) Numerical control unit
JP2002001568A (en) Parameter setting method for laser beam machining head of nc control three-dimensional laser beam machine and nc control three-dimensional laser beam machine
WO2021206172A1 (en) Machining method
JP3064043B2 (en) Machining method in which workpiece deformation due to clamp is corrected, and NC machine tool for implementing the method
Sudo Advanced Control Technologies for 5-Axis Machining.
JP4509348B2 (en) Tool position correcting method and control device in numerically controlled lathe
JPH0760505A (en) Cutting tool setting method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081109

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081109

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091109

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091109

Year of fee payment: 15