WO2023139815A1 - Fuel injection device - Google Patents

Fuel injection device Download PDF

Info

Publication number
WO2023139815A1
WO2023139815A1 PCT/JP2022/027702 JP2022027702W WO2023139815A1 WO 2023139815 A1 WO2023139815 A1 WO 2023139815A1 JP 2022027702 W JP2022027702 W JP 2022027702W WO 2023139815 A1 WO2023139815 A1 WO 2023139815A1
Authority
WO
WIPO (PCT)
Prior art keywords
anchor
fuel injection
injection device
spacer
valve
Prior art date
Application number
PCT/JP2022/027702
Other languages
French (fr)
Japanese (ja)
Inventor
泰介 杉井
明靖 宮本
威生 三宅
真士 菅谷
貴敏 飯塚
寛 向井
直樹 米谷
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Publication of WO2023139815A1 publication Critical patent/WO2023139815A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle

Definitions

  • the present invention relates to a fuel injection device.
  • Patent Literature 1 describes a technology related to a fuel injection device that includes a valve body and an injection hole forming portion in which a plurality of injection holes for injecting fuel are formed on the tip side of the valve body.
  • the valve body consists of a second valve body that contacts the anchor when the valve is closed, and a first valve body that contacts the anchor while the valve is open.
  • the lengths of the second valve body and the second valve body are defined so that when the valve is opened, the second valve body abuts against a stroke stopper arranged on the inner circumference of the fixed core, and when the valve is opened, the fixed core and the anchor do not directly abut to ensure a gap.
  • Patent Document 1 has a problem that the fluid force generated between the first valve body and the second valve body and between the first valve body and the anchor during the valve opening operation hinders the responsiveness during the valve opening operation, resulting in variations in the valve opening operation.
  • variation in the valve opening operation causes variation in the amount of fuel injection.
  • a fuel injection device includes a nozzle holder, a stationary core, an anchor, and a valve member.
  • the nozzle holder is provided with an injection hole forming member.
  • a fixed core is arranged in the nozzle holder.
  • An anchor is positioned opposite the fixed core.
  • a valve member is movably disposed in the nozzle holder.
  • the valve member has a valve body and a spacer.
  • the valve body is provided with a shaft portion for opening and closing the injection hole provided in the injection hole forming member and an engaging portion that engages with the anchor during the valve opening operation.
  • the spacer has an accommodating portion in which the engaging portion is accommodated, and forms a predetermined gap between the engaging portion and the anchor when the valve is closed.
  • a fluid resistance reducing portion that reduces fluid resistance is provided between the engaging portion and the anchor.
  • FIG. 1 is a sectional view showing a fuel injection device according to a first embodiment
  • FIG. FIG. 2 is an enlarged cross-sectional view showing the periphery of a spacer in the fuel injection device according to the first embodiment
  • FIG. 4 is an enlarged cross-sectional view showing the periphery of a spacer when valve opening starts in the fuel injection device according to the first embodiment
  • FIG. 4 is an enlarged cross-sectional view showing the periphery of the spacer when the valve opening operation in the fuel injection device according to the first embodiment is completed
  • FIG. 9 is a cross-sectional view showing an enlarged view of the surroundings of a spacer in a conventional fuel injection device.
  • FIG. 10 is an enlarged cross-sectional view showing the periphery of a spacer when valve opening starts in a conventional fuel injection device;
  • FIG. 10 is an enlarged cross-sectional view showing the surroundings of a spacer when the valve opening operation in the conventional fuel injection device is completed;
  • FIG. 7 is an enlarged cross-sectional view showing the periphery of a spacer in a fuel injection device according to a second embodiment;
  • FIG. 11 is an enlarged cross-sectional view showing the periphery of a spacer in a fuel injection device according to a third embodiment;
  • FIG. 11 is an enlarged cross-sectional view showing a periphery of a spacer in a fuel injection device according to a fourth embodiment;
  • FIG. 11 is an enlarged cross-sectional view showing the periphery of a spacer in a fuel injection device according to a fifth embodiment
  • FIG. 11 is an enlarged cross-sectional view showing the periphery of a spacer in a fuel injection device according to a sixth embodiment
  • Embodiments of the fuel injection device will be described below with reference to FIGS. 1 to 12.
  • FIG. the same code
  • FIG. 1 is a cross-sectional view showing a fuel injection device.
  • the fuel injection device shown in FIG. 1 is used as an internal combustion engine in a four-cycle engine that repeats four strokes of an intake stroke, a compression stroke, a combustion (expansion) stroke, and an exhaust stroke. Further, the fuel injection device is applied to an in-cylinder injection type internal combustion engine that injects fuel into each cylinder.
  • the fuel injection device 1 includes a fixed core (magnetic core) 101, a nozzle holder 102, an injection hole forming member 103, a valve member 104, an electromagnetic coil 108, a housing 109, an anchor (movable core) 110, and a connecting portion 135.
  • the fuel injection device 1 also includes a first spring 118 , a second spring 124 and a third spring 126 .
  • the nozzle holder 102 is formed in a cylindrical shape.
  • An injection hole forming member 103 is inserted or press-fitted to the tip of the nozzle holder 102 along the central axis AX1 in the axial direction Da (hereinafter simply referred to as "axial direction Da").
  • An injection hole 112 for injecting fuel is formed in the injection hole forming member 103 .
  • the injection hole forming member 103 is formed with a valve seat 103a to which the tip of the valve body 113 of the valve member 104 described later is separated and contacted.
  • the injection hole forming member 103 seals the fuel when the valve body 113 is seated on the valve seat 103a. Further, the valve body 113 seals the fuel by coming into contact with the valve seat 103a, and permits passage of the fuel by separating from the valve seat 103a.
  • a guide member 105 is fixed to the tip of the nozzle holder 102 by press fitting or plastic coupling.
  • the guide member 105 supports the outer peripheral surface of the valve body 113 in the valve member 104 and guides movement of the valve body 113 .
  • a large-diameter portion 102a having an outer diameter larger than that of the tip portion is formed at the rear end portion, which is the other end portion of the nozzle holder 102 in the axial direction Da.
  • An internal space 102b is formed in the large diameter portion 102a. This internal space 102b communicates with the tip through a communication hole 102c formed along the axial direction Da of the nozzle holder 102 .
  • the internal space 102b is a recess with a bottom that opens at the rear end side of the large diameter portion 102a and is recessed toward the tip side in the axial direction Da.
  • An anchor 110 which will be described later, and part of the fixed core 101 are arranged in the internal space 102b.
  • One end of the second spring 124 is accommodated in the central portion of the bottom of the internal space 102b.
  • a valve member 104 is arranged inside the nozzle holder 102 so as to be movable along the axial direction Da.
  • the valve member 104 has a valve body 113 , a spacer 125 , a third spring 126 and a rod head 127 .
  • the valve body 113 is composed of a cylindrical rod-shaped member.
  • the valve body 113 is inserted through an insertion hole 110c (see FIG. 2) of the anchor 110, which will be described later, and arranged in the communication hole 102c of the nozzle holder 102. As shown in FIG.
  • valve body 113 in the axial direction Da abuts on the valve seat 103a of the injection hole forming member 103 so as to be separated from the valve seat 103a, thereby opening and closing the injection hole 112 provided in the injection hole forming member 103.
  • connection recess 113b (see FIG. 2) is formed at the rear end of the valve body 113 in the axial direction Da.
  • a connection protrusion 127a (see FIG. 2) of the rod head 127 is fitted into the connection recess 113b. Thereby, the rod head 127 is connected to the rear end portion of the valve body 113 .
  • the rod head 127 is formed in a substantially disc shape and slides in a through hole 101a of the fixed core 101, which will be described later.
  • the tip of the first spring 118 in the axial direction Da contacts the rod head 127 .
  • a third spring 126 and a spacer 125 are arranged between the rod head 127 and the valve body 113 .
  • the spacer 125 is in contact with the upper end surface 110a (see FIG. 2) of the anchor 110, which will be described later.
  • the third spring 126 abuts on the spacer 125 at its tip in the axial direction Da, and abuts on the rod head 127 at its rear end in the axial direction Da. That is, the third spring 126 is interposed between the rod head 127 and the spacer 125 to bias the spacer 125 toward the anchor 110 .
  • valve body 113 The detailed configurations of the valve body 113, the spacer 125 and the third spring 126 will be described later.
  • the anchor 110 is arranged in the inner space 102b of the nozzle holder 102 between the spacer 125 of the valve member 104 and the bottom of the inner space 102b.
  • a minute gap is formed between the outer peripheral surface of the anchor 110 and the inner peripheral surface of the internal space 102b. Therefore, the anchor 110 is arranged movably along the axial direction Da within the internal space 102b.
  • the anchor 110 is formed in a cylindrical shape.
  • the anchor 110 is formed with an insertion hole 110c (see FIG. 2) and an eccentric through hole 110d.
  • the insertion hole 110c and the eccentric through hole 110d are guide holes that penetrate from the front end portion to the rear end portion of the anchor 110 in the axial direction Da.
  • the insertion hole 110c is formed on the central axis of the anchor 110. As shown in FIG. A valve body 113 of the valve member 104 is inserted through the insertion hole 110c.
  • the eccentric through hole 110d is formed at a position eccentric from the central axis of the anchor 110.
  • the eccentric through hole 110 d communicates with the flow path formed by the through hole 101 a of the fixed core 101 .
  • the eccentric through-hole 110d forms a flow path through which fuel passes.
  • the rear end portion of the second spring 124 is in contact with the end face of the anchor 110 on the tip side in the axial direction Da. Therefore, the second spring 124 is interposed between the anchor 110 and the inner space 102b of the nozzle holder 102. As shown in FIG. A fixed core 101 is arranged on the rear end side of the anchor 110 in the axial direction Da.
  • a tapered portion 110b is formed at a corner portion of the insertion hole 110c of the anchor 110 on the side of the upper end surface 110a.
  • the diameter of the tapered portion 110b increases toward the rear end side in the axial direction Da.
  • An engaging portion 128 of the valve body 113 which will be described later, abuts against the tapered portion 110b.
  • the fixed core 101 is a member that attracts the anchor 110 by magnetic attraction.
  • the fixed core 101 is formed in a substantially cylindrical shape having unevenness on the outer peripheral surface.
  • the tip of the fixed core 101 in the axial direction Da is press-fitted inside the large-diameter portion 102a of the nozzle holder 102, that is, inside the internal space 102b.
  • the nozzle holder 102 and the fixed core 101 are joined by welding. Thereby, the gap between the nozzle holder 102 and the fixed core 101 is sealed, and the space inside the nozzle holder 102 is sealed.
  • the distal end portion 101b of the fixed core 101 faces the end surface (upper end surface 110a) on the other end side in the axial direction Da of the anchor 110 arranged in the internal space 102b.
  • the rear end side of the fixed core 101 in the axial direction Da protrudes from the internal space 102b of the nozzle holder 102 toward the rear end in the axial direction Da.
  • a through hole 101 a is formed in the fixed core 101 .
  • the through hole 101a is formed coaxially with the center axis AX1.
  • the through hole 101a forms a flow path through which fuel passes.
  • a fuel supply port 111 communicating with the through hole 101a is formed at the rear end portion of the fixed core 101 in the axial direction Da. Fuel is introduced from the fuel supply port 111 toward the through hole 101a.
  • a first spring 118 and an adjusting member 119 are arranged on the tip end side of the through hole 101a in the axial direction Da.
  • the first spring 118 is arranged closer to the distal end of the through hole 101 a than the adjustment member 119 is.
  • the adjusting member 119 is press-fitted into the through hole 101 a and fixed inside the fixed core 101 .
  • a rod head 127, a third spring 126 and a spacer 125 of the valve member 104 are inserted into the through hole 101a.
  • the first spring 118 is interposed between the adjustment member 119 and the rod head 127 of the valve member 104 .
  • the first spring 118 urges the valve member 104 toward the tip of the nozzle holder 102 in the axial direction Da.
  • the biasing force of the first spring 118 on the valve member 104 can be adjusted. This makes it possible to adjust the initial load that the tip portion of the valve body 113 of the valve member 104 presses against the valve seat 103a provided on the injection hole forming member 103 of the nozzle holder 102 .
  • the biasing force of the first spring 118 biasing the valve member 104 toward the tip of the nozzle holder 102 is set larger than the biasing force of the second spring 124 biasing the anchor 110 toward the fixed core 101 .
  • the electromagnetic coil 108 is wound around a cylindrical coil bobbin.
  • the electromagnetic coil 108 is wound around a coil bobbin and arranged so as to cover part of the outer peripheral surface of the large diameter portion 102 a of the nozzle holder 102 and part of the outer peripheral surface of the tip of the fixed core 101 .
  • the winding start and winding end portions of the electromagnetic coil 108 are connected to power supply terminals of a connector 136 of a connecting portion 135 to be described later via wiring (not shown).
  • a housing 109 is fixed around the outer circumference of the electromagnetic coil 108 .
  • the housing 109 is formed in a cylindrical shape with a bottom.
  • a guide hole is formed in the bottom portion of the housing 109, which is the tip portion in the axial direction Da.
  • a guide hole is formed in the center of the bottom.
  • a nozzle holder 102 is inserted into this guide hole. The opening edge of the guide hole and the outer peripheral surface of the nozzle holder 102 are welded, for example, over the entire circumference. The nozzle holder 102 is thereby fixed to the housing 109 .
  • the housing 109 is arranged so as to surround the distal end side of the fixed core 101 , the coil bobbin, and the outer periphery of the electromagnetic coil 108 .
  • the inner peripheral surface of the housing 109 faces the nozzle holder 102 and the electromagnetic coil 108 and forms an outer peripheral yoke portion.
  • a magnetic circuit including the fixed core 101, the anchor 110, the nozzle holder 102 and the housing 109 is formed around the electromagnetic coil .
  • the connecting portion 135 is made of resin.
  • the connecting portion 135 is filled between the fixed core 101 and the housing 109 . Further, the connection portion 135 covers the outer peripheral surface of the fixed core 101 excluding the rear end portion of the fixed core 101 on the rear end side of the housing 109 in the axial direction Da.
  • the connecting portion 135 is then molded to form a connector 136 having terminals for power supply. The terminals are connected to connection terminals of a plug (not shown).
  • the fuel injector 1 is thereby connected to a high voltage power supply or a battery power supply.
  • the energization of the electromagnetic coil 108 is controlled by an engine control unit (ECU) (not shown).
  • ECU engine control unit
  • FIG. 2 is an enlarged cross-sectional view showing the periphery of the spacer 125 in the fuel injection device 1
  • FIG. 3 is an enlarged view showing the periphery of the spacer 125 when the valve starts to open. Note that FIG. 2 shows the valve closed state.
  • the valve body 113 has a shaft portion 113a that passes through the insertion hole 110c of the anchor 110, an engaging portion 128 that engages with the anchor 110, and a sliding shaft portion 129 that indicates the shaft portion.
  • the engaging portion 128 is formed closer to the rear end portion in the axial direction Da than the shaft portion 113a.
  • the diameter of the engaging portion 128 is larger than the diameter of the shaft portion 113a and the inner diameter of the insertion hole 110c.
  • the engaging portion 128 protrudes radially outward from the outer peripheral surface of the shaft portion 113a.
  • the engaging portion 128, the shaft portion 113a and the sliding shaft portion 129 are integrally formed by cutting.
  • the engaging portion 128 has an upper end surface 128a, a lower end surface 128b, a first curved surface portion 128c, a second curved surface portion 128d, a cylindrical portion 128e, a first contact portion 128f, and a second contact portion 128g.
  • the upper end face 128a is formed on the rear end side of the engaging portion 128 in the axial direction Da
  • the lower end face 128b is formed on the leading end side of the engaging portion 128 in the axial direction Da.
  • the lower end surface 128 b faces the upper end surface 110 a of the anchor 110 .
  • the cylindrical portion 128e is formed on the side surface of the engaging portion 128 along the axial direction Da.
  • the first curved surface portion 128c is formed at the corner where the cylindrical portion 128e and the lower end surface 128b are connected, and the second curved surface portion 128d is formed at the corner where the cylindrical portion 128e and the upper end surface 128a are connected.
  • the cylindrical portion 128e is formed between the first curved portion 128c and the second curved portion 128d.
  • the first curved surface portion 128c is formed with a first contact portion 128f that contacts the tapered portion 110b of the anchor 110 described later
  • the second curved surface portion 128d is formed with a second contact portion 128g that contacts the tapered portion 16b of the accommodation portion 16 described later.
  • a gap G2 is provided between the first contact portion 128f of the first curved surface portion 128c and the contact portion 110e of the tapered portion 110b.
  • the sliding shaft portion 129 is formed closer to the rear end portion in the axial direction Da than the engaging portion 128 is.
  • the sliding shaft portion 129 protrudes from the engaging portion 128 toward the rear end in the axial direction Da.
  • the diameter of the sliding shaft portion 129 is formed to be smaller than the diameter of the engaging portion 128 .
  • a connecting concave portion 113b is formed on the rear end surface of the sliding shaft portion 129 in the axial direction Da. As described above, the connection protrusion 127a of the rod head 127 is fitted into the connection recess 113b.
  • a spacer 125 is arranged so as to surround the engaging portion 128 and the sliding shaft portion 129 of the valve body 113 . As shown in FIGS. 2 and 3, the spacer 125 has a substantially cylindrical shape.
  • the spacer 125 has a large diameter portion 11 and a small diameter portion 12 that serves as a guide portion.
  • the large-diameter portion 11 and the small-diameter portion 12 are formed concentrically, and the large-diameter portion 11 is formed closer to the tip side in the axial direction Da than the small-diameter portion 12 is.
  • the diameter of the large diameter portion 11 is formed larger than the diameter of the small diameter portion 12 .
  • a stepped surface 13 is formed at a portion where the large diameter portion 11 and the small diameter portion 12 of the spacer 125 are connected.
  • the stepped surface 13 protrudes substantially perpendicularly outward in the radial direction from the outer peripheral surface of the small diameter portion 12 .
  • the tip side of the third spring 126 in the axial direction Da contacts the step surface 13 .
  • Third spring 126 then biases spacer 125 toward anchor 110 . Therefore, the lower end face 14 of the spacer 125 on the tip end side in the axial direction Da contacts the upper end face 110 a of the anchor 110 .
  • a housing portion 16 is formed in the large diameter portion 11 .
  • the accommodating portion 16 is a recess recessed from the lower end surface 14 of the spacer 125 toward the stepped surface 13 .
  • the accommodating portion 16 accommodates the engaging portion 128 of the valve body 113 .
  • the inner diameter of the accommodating portion 16 is set larger than the diameter of the engaging portion 128 of the valve body 113 . Therefore, a gap is formed between the radially outer peripheral surface of the engaging portion 128 and the inner wall surface 16 a of the accommodating portion 16 .
  • a tapered portion 16b is formed at a portion where the inner wall surface 19 of the guide hole 18 and the inner wall surface 16a of the accommodating portion 16 are connected. That is, the inner diameter of the accommodating portion 16 on the side of the small diameter portion 12 is formed to increase continuously toward the distal end portion side in the axial direction Da.
  • the tapered portion 16b faces the second curved surface portion 128d of the engaging portion 128.
  • the spacer 125 is biased toward the anchor 110 by the third spring 126, so that the second curved surface portion 128d of the engaging portion 128 and the tapered portion 16b of the accommodating portion 16 are brought into contact.
  • the second curved surface portion 128 d and the tapered portion 16 b are in line contact at the second contact portion 128 g of the engaging portion 128 and the contact portion 16 c of the housing portion 16 .
  • the region A is defined by the sliding shaft portion 129, the engaging portion 128, and the tapered portion 16b, and is generally inside the second contact portion 128g and the contact portion 16c.
  • a region C is formed by the engaging portion 128, the spacer 125 and the anchor 110 and is generally surrounded by the second contact portion 128g, the contact portion 16c, the cylindrical portion 128e, the first contact portion 128f and the contact portion 110e.
  • the anchor 110 is biased toward the fixed core 101 side by the biasing force of the second spring 124 . Therefore, the upper end surface 110 a of the anchor 110 contacts the lower end surface 14 of the spacer 125 .
  • the biasing force of the second spring 124 is set smaller than the biasing force of the third spring 126 . Therefore, the anchor 110 is biased toward the distal end side in the axial direction Da by the third spring 126 via the spacer 125 . Thereby, the movement of the anchor 110 toward the rear end in the axial direction Da, that is, the movement in the valve opening direction is restricted by the spacer 125 and the third spring 126 .
  • the contact portion 16c of the housing portion 16 contacts the second contact portion 128g of the engaging portion 128 of the valve body 113, so that the spacer 125 is arranged at a predetermined position (reference position).
  • the lower end surface 14 of the spacer 125 contacts the upper end surface 110a of the anchor 110 while the spacer 125 is arranged at the reference position.
  • a gap G2 a so-called preliminary stroke, can be provided between the first contact portion 128f of the valve body 113 and the contact portion 110e of the anchor 110.
  • the spacer 125 forms a predetermined gap G2 between the anchor 110 and the engaging portion 128 of the valve body 113, which is the preliminary stroke.
  • the length (G1+G2) that is the sum of the gap G2 and the gap G1 is the gap between the tip portion 101b of the fixed core 101 and the upper end surface 110a of the anchor 110, a so-called magnetic attraction gap.
  • FIG. 3 is a cross-sectional view showing the periphery of spacer 125 when the valve opening starts
  • FIG. 4 is a cross-sectional view showing the periphery of spacer 125 when the valve opening operation ends.
  • the tapered portion 110b of the anchor 110 engages the first contact portion 128f of the engaging portion 128 of the valve body 113 at the contact portion 110e, as shown in FIG. Therefore, the gap G2 between the contact portion 110e of the anchor 110 and the first contact portion 128f of the engaging portion 128 is zero.
  • the size of the gap (magnetic attraction gap) between the anchor 110 and the fixed core 101 is reduced by the amount of movement of the anchor 110 to the rear end side in the axial direction Da, and in the example shown in FIG. 3, the magnetic attraction gap has a length of G1. Furthermore, since the spacer 125 also moves toward the rear end side in the axial direction Da, a gap G3 is generated between the contact portion 16c of the accommodating portion 16 and the second contact portion 128g of the engaging portion 128. As shown in FIG.
  • the anchor 110 comes into contact with the engaging portion 128 after moving through the gap G2. As a result, the anchor 110 accelerates until it abuts against the engaging portion 128, that is, while moving through the gap G2. As a result, the anchor 110 can be brought into contact with the engaging portion 128 while the anchor 110 is accelerated.
  • the force applied from the anchor 110 to the valve body 113 via the engaging portion 128 can be increased, and the valve body 113 can be quickly started to move toward the rear end side in the axial direction Da.
  • the valve opening operation in the valve body 113 can be started quickly.
  • the valve opening operation refers to a series of operations from the valve closed state shown in FIG. 2 to the anchor 110 and spacer 125 starting to move to the state shown in FIG. 4 (full lift). Therefore, the start of the valve opening operation means that the anchor 110 and the spacer 125 start moving.
  • the valve opening or valve open state refers to a state in which the valve body 113 actually moves to the rear end side in the axial direction Da, the tip of the valve body 113 separates from the valve seat 103a of the injection hole forming member 103, and the injection hole 112 is opened. Therefore, the start of opening the valve means that the tip of the valve body 113 begins to separate from the valve seat 103a.
  • the upper end surface 110a of the anchor 110 abuts against the distal end portion 101b of the fixed core 101, thereby restricting the movement of the anchor 110 toward the rear end side in the axial direction Da.
  • the valve body 113 moves toward the rear end side in the axial direction Da by inertia force, but is pushed back by the biasing force of the first spring 118 . Therefore, the valve body 113 stops with the first contact portion 128f of the engaging portion 128 contacting the contact portion 110e of the anchor 110, as shown in FIG. As a result, the valve body 113 is moved by a predetermined stroke amount (gap G1 shown in FIG. 2), and the valve is opened and stationary.
  • the anchor 110 In the valve open stationary state, the anchor 110 is attracted to the fixed core 101 by magnetic attraction force, and the valve member 104 is biased in the valve closing direction by the biasing force of the first spring 118 . Therefore, the anchor 110 and the valve body 113 are in contact with each other and integrated. That is, the first contact portion 128f of the engaging portion 128 of the valve body 113 contacts the contact portion 110e of the anchor 110, and the size of the gap G2 becomes zero.
  • the third spring 126 since the biasing force of the third spring 126 is smaller than the magnetic attraction force, the third spring 126 cannot push back the anchor 110 toward the tip side in the axial direction Da via the spacer 125 . Therefore, the lower end surface 14 of the spacer 125 contacts the upper end surface 110a of the anchor 110, and the gap G3 between the second contact portion 128g of the engaging portion 128 and the contact portion 16c of the accommodating portion 16 of the spacer 125 is maintained. Furthermore, since the anchor 110 is in contact with the fixed core 101, the size of the gap G1 between the upper end surface 110a of the anchor 110 and the tip portion 101b of the fixed core 101 is zero.
  • FIGS. 5 to 7 are cross-sectional views enlarging the surroundings of a spacer in a conventional fuel injection device. 5 shows the closed state, FIG. 6 shows the state when the valve starts to open, and FIG. 7 shows the state after the valve opening operation is completed.
  • the area A is surrounded by the spacer 225, the engaging portion 328 and the sliding shaft portion 329. Therefore, the fluid cannot flow in at a sufficient flow rate, and the volume of this area A increases, thereby reducing the pressure in this area.
  • the spacer 225 and the anchor 310 move to the rear end side in the axial direction Da
  • the volume of the gap formed between the upper surface portion 216b of the housing portion 216 and the upper end surface 328a of the engaging portion 328 also increases, so the fluid also tries to flow into this gap.
  • the speed at which the gap formed between the upper surface portion 216b and the upper end surface 328a widens is faster than the inflow speed of the fluid, and the gap is narrow, so the fluid cannot flow in sufficiently. Therefore, the pressure in the gap between the upper surface portion 216b and the upper end surface 328a is reduced. Then, a large fluid force called sticking force acts on the spacer 225 toward the distal end side in the axial direction Da.
  • the spacer 225 is subjected to a force caused by pressure fluctuations in the area A and the gap between the upper surface portion 216b and the upper end surface 328a.
  • pressure and fluid shear force are collectively referred to as fluid force.
  • the fluid force acting on the spacer 225 is dominated by the pressure of the low pressure portion including the region A rather than the shear force of the fluid.
  • the anchor 310 contacts the engaging portion 328 of the valve body 313, and a gap G3 is formed between the upper end surface 328a of the engaging portion 328 and the upper surface portion 216b of the housing portion 216 of the spacer 225.
  • the valve is displaced from the open state shown in FIG. 7 to the closed state, the volume of the area A or the gap between the upper surface portion 216b and the upper end surface 328a decreases, so the pressure increases, and a squeezing force acts on the upper surface portion 216b and the upper end surface 328a.
  • a second curved surface portion 128d is provided on the rear end side of the engaging portion 128 of the valve body 113 in the axial direction Da, and the accommodating portion 16 of the spacer 125 is provided with a tapered portion 16b.
  • the second curved surface portion 128d and the tapered portion 16b are in line contact with each other at the second contact portion 128g and the contact portion 16c, respectively.
  • the first effect is that the resistance of the fluid flowing from area C to area A can be reduced.
  • the gap between the upper surface portion 216b and the upper end surface 328a serves as the flow path.
  • the fluid flows from the area C into the gap between the upper surface portion 216b and the upper end surface 328a, or flows out from the gap between the upper surface portion 216b and the upper end surface 328a into the area A. Therefore, when the gap between the upper surface portion 216b and the upper end surface 328a is considered as a channel, an inlet loss and an outlet loss occur, and the fluid resistance increases.
  • the provision of the tapered portion 16b in the accommodating portion 16 allows the size of the flow path to be changed gradually, so the above-described inlet loss and outlet loss can be reduced.
  • the flow path resistance between the engaging portion 128 and the contact portions 128g and 16c of the housing portion 16 is smaller than in the conventional example. Therefore, in this example, the resistance when the fluid flows from the area C to the area A can be reduced, and the negative pressure in the area A is alleviated. As a result, since the negative pressure can be reduced, the fluid force acting on the spacer 125 toward the distal end side in the axial direction Da can be reduced.
  • the second effect is a reduction in sticking force.
  • the contact portion between the upper surface portion 216b and the upper end surface 328a is flat and is in surface contact. Therefore, a large sticking force is generated between the upper surface portion 216b and the upper end surface 328a.
  • the abutting portions 128f and 128g of this example are formed on the curved surface portions 128c and 128d, and are in line contact with the anchor 110 and the housing portion 16. Therefore, the sticking force is small because the fluid flows in and out easily. As a result, the fluid force acting on the spacer 125 toward the distal end in the axial direction Da becomes smaller.
  • the fluid force at the start of the valve opening operation can be reduced and the responsiveness can be improved.
  • variations in the valve opening operation can be reduced, and variations in the injection amount can be reduced.
  • the fluid force can be similarly reduced by two effects, and the responsiveness can be improved.
  • the upper end surface 310a of the anchor 310 and the lower end surface 328b of the engaging portion 328 form a flow path, which rapidly contracts and expands, and the flow path formed between the flat surfaces is narrow. Therefore, the inlet loss, the outlet loss, and the tube friction loss are large, the fluid resistance when flowing from the region B to the region C is large, and the pressure in the region B becomes high.
  • the engaging portion 128 and the anchor 110 are in line contact with the first contact portion 128f of the first curved surface portion 128c and the contact portion 110e of the tapered portion 110b. Therefore, inlet loss, outlet loss, and pipe friction loss are small, and fluid resistance when flowing from region B to region C can be reduced. As a result, the high pressure in the region B is relaxed, that is, the positive pressure can be made smaller than in the conventional example. That is, in this example, the tapered portion 110b of the anchor and the first curved surface portion 128c of the engaging portion 128 constitute the fluid resistance reducing portion.
  • the fluid can easily flow in and out, so the squeezing force can be reduced.
  • the fluid force acting on the anchor 110 toward the distal end side in the axial direction Da is reduced, and variations in the valve opening operation can be reduced, and variations in the injection amount can be reduced.
  • the engaging portion 128 has a second curved surface portion 128d on the rear end side in the axial direction Da and a first curved surface portion 128c on the front end side in the axial direction Da, both of which are in line contact with the spacer 125 and the anchor 110, respectively.
  • These two line contact portions have different roles during the valve opening operation. That is, the line contact at the second curved surface portion 128d on the rear end side in the axial direction Da reduces the fluid force at the start of the valve opening operation as shown in FIG.
  • the first curved surface portion 128c on the tip side in the axial direction Da reduces the fluid force immediately before the valve opens or when the valve starts to open, as shown in FIG. Therefore, in order to obtain a greater effect, it is desirable to provide line contact portions on both sides of the engaging portion 128 .
  • curved surface portions are provided on both sides of the engaging portion 128 and both sides are in line contact
  • the present invention is not limited to this.
  • only one of the engaging portions 128 may be provided with a curved portion so that only one side is in line contact.
  • the speed of the anchor 110 and the spacer 125 is higher immediately before the valve opening or at the start of the valve opening than at the start of the valve opening operation. Therefore, the fluid force reduction effect is greater at the line contact portion of the first curved surface portion 128c on the tip side in the axial direction Da.
  • the fluid force can be reduced and the responsiveness can be improved when the valve is closed as well as when the valve is opened.
  • region B has a relatively negative pressure
  • region A has a relatively positive pressure.
  • the negative pressure acting on area B, the sticking force acting on the anchor 110 and the engaging portion 128, the positive pressure acting on the area A, and the squeezing force acting on the spacer 125 and the engaging portion 128 can be reduced in the same manner as when the valve is opened.
  • the spacer 125 and the anchor 110 are provided with tapered portions 110b and 16c, which are in line contact with the engaging portion 128 of the valve body 113. Therefore, the central axis of the spacer 125 or the anchor 110 and the central axis of the valve body 113 can be aligned. Therefore, the axial centers of the spacer 125 and the valve body 113 and between the anchor 110 and the valve body 113 can be aligned during the valve closing operation, the valve opening operation, and the valve closing operation. As a result, variations in operation of the spacers 125 and the anchors 110 can be reduced, and variations in the injection amount can be reduced.
  • the sliding shaft portion 129 is formed closer to the rear end portion in the axial direction Da than the engaging portion 128 and slides on the spacer 125 has been described, but it is not limited to this.
  • the valve body 113 and the spacer 125 may slide on the cylindrical portion 128e and the inner wall surface 16a.
  • the spacer 125 has the small diameter portion 12 has been described, but the spacer may not have the small diameter portion 12 .
  • FIG. 8 is an enlarged cross-sectional view showing the periphery of the spacer in the fuel injection device according to the second embodiment.
  • the fuel injection device according to the second embodiment differs from the fuel injection device 1 according to the first embodiment in the shapes of anchors and spacers. Therefore, here, the parts common to the fuel injection device 1 according to the first embodiment are denoted by the same reference numerals, and overlapping explanations are omitted.
  • the spacer 125A has the same shape as the spacer 225 according to the conventional example shown in FIG.
  • a stepped portion 110f is formed on the upper end surface 110a of the anchor 110A.
  • the stepped portion 110f is a concave portion recessed from the upper end surface 110a toward the tip side in the axial direction Da.
  • the stepped portion 110f is formed on a concentric circle between the tapered portion 110b and the insertion hole 110c. The stepped portion 110f continues to the tapered portion 110b.
  • the fluid flows from area B to area C and then to area A as soon as the valve opening operation is started.
  • the step portion 110f in the anchor 110A when the fluid flows from the area B to the area C, the direction of the fluid flow is changed to the direction indicated by the arrow E, that is, the direction in which the spacer 125 opens the valve. Therefore, a force acts on the spacer 125 in the valve opening direction from the diverted fluid.
  • the valve opening responsiveness can be enhanced, and variations in the valve opening operation and variations in the injection amount can be reduced.
  • a fuel injection device having such spacers 125A and anchors 110A can also provide the same effects as the fuel injection device 1 according to the first embodiment described above.
  • FIG. 9 is an enlarged cross-sectional view showing the periphery of the spacer in the fuel injection device according to the third embodiment.
  • the fuel injection device according to the third embodiment differs from the fuel injection device 1 according to the first embodiment in the shape of the spacer and the tapered portion of the spacer. Therefore, here, the parts common to the fuel injection device 1 according to the first embodiment are denoted by the same reference numerals, and overlapping explanations are omitted.
  • a tapered portion 110b provided on the anchor 110 is inclined toward a tapered portion 16b of a spacer 125B, which will be described later. Therefore, during the valve opening operation, the fluid flowing through the contact portion 110e and the first contact portion 128f of the tapered portion 110b flows in the direction of the arrow E, that is, toward the tapered portion 16b of the spacer 125B.
  • the tapered portion 16b of the spacer 125B is formed up to the vicinity of the lower end surface 14 of the spacer 125B. That is, the tapered portion 16b is arranged on the extension of the tapered portion 110b of the anchor 110 in the direction of inclination. Accordingly, the fluid flowing along the tapered portion 110b of the anchor 110 can be received by the tapered portion 16b of the spacer 125B.
  • a fluid flow force acts in the direction in which the spacer 125B opens the valve, so that the valve opening responsiveness can be enhanced, and variations in the valve opening operation and in the injection amount can be reduced.
  • a fuel injection device having such a spacer 125B can also provide the same effects as the fuel injection device 1 according to the first embodiment described above.
  • FIG. 10 is an enlarged cross-sectional view showing the periphery of the spacer in the fuel injection device according to the fourth embodiment.
  • the fuel injection device according to the fourth embodiment differs from the fuel injection device 1 according to the first embodiment in the shape of the engaging portion. Therefore, here, the parts common to the fuel injection device 1 according to the first embodiment are denoted by the same reference numerals, and overlapping explanations are omitted.
  • the anchors 110 and spacers 125 of the fuel injection device according to the fourth embodiment have the same shapes as the anchors 310 and spacers 225 of the conventional fuel injection device shown in FIG.
  • the shapes of the anchors 110 and the spacers 125 may be the shapes of the anchors and spacers according to the first to third embodiments described above.
  • an engaging portion 128 is provided on the valve body 113C.
  • a concave portion 128h is formed in a surface of the engaging portion 128 facing the upper end surface 110a of the anchor 110.
  • the recessed portion 128h is recessed in a curved shape from the lower end surface of the engaging portion 128 toward the axial direction Da. Therefore, the first contact portion 128f of the engaging portion 128 and the contact portion 110e of the anchor 110 are in line contact. As a result, sticking force and squeezing force can be reduced, fluid force during opening/closing valve operation can be reduced, and responsiveness can be improved, as in the case of the fuel injection device 1 according to the first embodiment.
  • a fuel injection device having such a valve body 113C can also provide the same effects as the fuel injection device 1 according to the first embodiment described above.
  • FIG. 11 is an enlarged cross-sectional view showing the periphery of the spacer in the fuel injection device according to the fifth embodiment.
  • the fuel injection device according to the fifth embodiment differs from the fuel injection device 1 according to the first embodiment in the shape of the tapered portion of the anchor. Therefore, here, the parts common to the fuel injection device 1 according to the first embodiment are denoted by the same reference numerals, and overlapping explanations are omitted.
  • a plurality of grooves 110g are formed in the tapered portion 110b of the anchor 110D.
  • the grooves 110g are radially formed in the tapered portion 110b. That is, the groove 110g is formed continuously from the insertion hole 110c to the upper end surface 110a.
  • a fuel injection device having such an anchor 110D can also provide the same effects as the fuel injection device 1 according to the first embodiment described above.
  • grooves may be formed in the first curved surface portion 128c of the engaging portion 128 . That is, it is sufficient that at least one of the first contact portion 128f of the engaging portion 128 and the contact portion 110e of the anchor 110D has a groove.
  • FIG. 12 is an enlarged cross-sectional view showing the periphery of the spacer in the fuel injection device according to the sixth embodiment.
  • the fuel injection device according to the sixth embodiment differs from the fuel injection device 1 according to the first embodiment in the shape of the engaging portion of the valve body. Therefore, here, the parts common to the fuel injection device 1 according to the first embodiment are denoted by the same reference numerals, and overlapping explanations are omitted.
  • the anchors 110 and spacers 125 of the fuel injection device according to the sixth embodiment have the same shapes as the anchors 310 and spacers 225 of the conventional fuel injection device shown in FIG.
  • the shapes of the anchors 110 and the spacers 125 may be the shapes of the anchors and spacers according to the first to fifth embodiments described above.
  • an engaging portion 128 is formed on the valve body 113E.
  • a plurality of grooves 128i are formed in a lower end surface 128b of the engaging portion 128 facing the upper end surface 110a of the anchor 110.
  • the grooves 128i are radially formed in the lower end surface 128b.
  • the groove 128 i is formed in a region where the engaging portion 128 contacts the upper end surface 110 a of the anchor 110 . Since the fluid passes through the groove 128i during the opening/closing operation of the valve, the fluid resistance of the fluid flowing from the area B to the area C or from the area C to the area B can be reduced. That is, in the fuel injection device according to the sixth embodiment, the groove 128i formed in the engaging portion 128 constitutes the fluid resistance reducing portion.
  • the groove which is the fluid resistance reduction portion
  • the present invention is not limited to this, and may be provided on the surface of the anchor 110 facing the engaging portion 128 . That is, the groove should be formed in at least one of the engaging portion 128 and the anchor 110 .
  • a fuel injection device having such a valve body 113E can also provide the same effects as the fuel injection device 1 according to the first embodiment described above.

Abstract

This fuel injection device comprises a nozzle holder, a fixed core, an anchor, and a valve member. The valve member has a valve body and a spacer. The valve body is provided with a shaft portion and an engaging portion that engages with the anchor during a valve-opening action. The spacer has a housing portion in which the engaging portion is housed, and forms a predetermined gap between the engaging portion and the anchor when the valve closes. A fluid resistance reduction portion that reduces the resistance of fluid is provided between the engaging portion and the anchor.

Description

燃料噴射装置fuel injector
 本発明は、燃料噴射装置に関するものである。 The present invention relates to a fuel injection device.
 従来、内燃機関として、燃料噴射装置によりシリンダ内に燃料を直接噴射する筒内噴射型の内燃機関が用いられている。従来の燃料噴射装置に関する技術としては、例えば、特許文献1に記載されているようなものがある。 Conventionally, as an internal combustion engine, an in-cylinder injection type internal combustion engine in which a fuel injection device directly injects fuel into the cylinder has been used. BACKGROUND ART For example, Japanese Patent Laid-Open No. 2002-100000 discloses a technology related to a conventional fuel injection device.
 特許文献1には、弁体と弁体の先端側において燃料を噴射する複数の噴射孔が形成された噴射孔形成部を備えた燃料噴射装置に関する技術が記載されている。そして、特許文献1には、弁体が、閉弁時にアンカーと当接している第2の弁体と、開弁途中でアンカーと当接する第1の弁体からなることが記載されている。特許文献1に記載された技術では、開弁時には第2の弁体が固定コアの内周に配置されたストロークストッパと当接し、開弁時も固定コアとアンカーが直接当接することなくギャップが確保されるよう第2の弁体と第2の弁体の長さを規定している。 Patent Literature 1 describes a technology related to a fuel injection device that includes a valve body and an injection hole forming portion in which a plurality of injection holes for injecting fuel are formed on the tip side of the valve body. Patent document 1 describes that the valve body consists of a second valve body that contacts the anchor when the valve is closed, and a first valve body that contacts the anchor while the valve is open. In the technique described in Patent Document 1, the lengths of the second valve body and the second valve body are defined so that when the valve is opened, the second valve body abuts against a stroke stopper arranged on the inner circumference of the fixed core, and when the valve is opened, the fixed core and the anchor do not directly abut to ensure a gap.
特開2014-227958号公報JP 2014-227958 A
 しかしながら、特許文献1に記載された技術では、開弁動作時に第1の弁体と第2の弁体との間や、第1の弁体とアンカーとの間に生じる流体力により、開弁動作時の応答性が阻害され、開弁動作にばらつきが生じる、という問題を有していた。そして、開弁動作にばらつきが生じることで、燃料の噴射量にもばらつきが発生していた。 However, the technique described in Patent Document 1 has a problem that the fluid force generated between the first valve body and the second valve body and between the first valve body and the anchor during the valve opening operation hinders the responsiveness during the valve opening operation, resulting in variations in the valve opening operation. In addition, variation in the valve opening operation causes variation in the amount of fuel injection.
 本目的は、上記の問題点を考慮し、燃料の噴射量のばらつきを抑制することができる燃料噴射装置を提供することにある。 It is an object of the present invention to provide a fuel injection device capable of suppressing variations in fuel injection amount in consideration of the above problems.
 上記課題を解決し、目的を達成するため、燃料噴射装置は、ノズルホルダと、固定コアと、アンカーと、弁部材と、を備えている。ノズルホルダには、噴射孔形成部材が設けられている。固定コアは、ノズルホルダに配置される。アンカーは、固定コアと対向して配置される。弁部材は、ノズルホルダに移動可能に配置される。
 弁部材は、弁体と、スペーサーと、を有している。弁体は、噴射孔形成部材に設けた噴射孔を開閉する軸部及び開弁動作時にアンカーと係合する係合部が設けられている。スペーサーは、係合部が収容される収容部を有し、閉弁時に係合部とアンカーとの間に所定の間隙を形成する。係合部とアンカーとの間には、流体の抵抗を低減させる流体抵抗低減部が設けられる。
In order to solve the above problems and achieve the object, a fuel injection device includes a nozzle holder, a stationary core, an anchor, and a valve member. The nozzle holder is provided with an injection hole forming member. A fixed core is arranged in the nozzle holder. An anchor is positioned opposite the fixed core. A valve member is movably disposed in the nozzle holder.
The valve member has a valve body and a spacer. The valve body is provided with a shaft portion for opening and closing the injection hole provided in the injection hole forming member and an engaging portion that engages with the anchor during the valve opening operation. The spacer has an accommodating portion in which the engaging portion is accommodated, and forms a predetermined gap between the engaging portion and the anchor when the valve is closed. A fluid resistance reducing portion that reduces fluid resistance is provided between the engaging portion and the anchor.
 上記構成の燃料噴射装置によれば、燃料の噴射量のばらつきを抑制することができる。 According to the fuel injection device configured as described above, it is possible to suppress variations in the amount of fuel injected.
第1の実施の形態例にかかる燃料噴射装置を示す断面図である。1 is a sectional view showing a fuel injection device according to a first embodiment; FIG. 第1の実施の形態例にかかる燃料噴射装置におけるスペーサー周りを拡大して示す断面図である。FIG. 2 is an enlarged cross-sectional view showing the periphery of a spacer in the fuel injection device according to the first embodiment; 第1の実施の形態例にかかる燃料噴射装置における開弁が開始した際のスペーサー周りを拡大して示す断面図である。FIG. 4 is an enlarged cross-sectional view showing the periphery of a spacer when valve opening starts in the fuel injection device according to the first embodiment; 第1の実施の形態例にかかる燃料噴射装置における開弁動作が終了した際のスペーサー周りを拡大して示す断面図である。FIG. 4 is an enlarged cross-sectional view showing the periphery of the spacer when the valve opening operation in the fuel injection device according to the first embodiment is completed; 従来の燃料噴射装置におけるスペーサー周りを拡大して示す断面図である。and FIG. 9 is a cross-sectional view showing an enlarged view of the surroundings of a spacer in a conventional fuel injection device. 従来の燃料噴射装置における開弁が開始した際のスペーサー周りを拡大して示す断面図である。FIG. 10 is an enlarged cross-sectional view showing the periphery of a spacer when valve opening starts in a conventional fuel injection device; 従来の燃料噴射装置における開弁動作が終了した際のスペーサー周りを拡大して示す断面図である。FIG. 10 is an enlarged cross-sectional view showing the surroundings of a spacer when the valve opening operation in the conventional fuel injection device is completed; 第2の実施の形態例にかかる燃料噴射装置におけるスペーサー周りを拡大して示す断面図である。FIG. 7 is an enlarged cross-sectional view showing the periphery of a spacer in a fuel injection device according to a second embodiment; 第3の実施の形態例にかかる燃料噴射装置におけるスペーサー周りを拡大して示す断面図である。FIG. 11 is an enlarged cross-sectional view showing the periphery of a spacer in a fuel injection device according to a third embodiment; 第4の実施の形態例にかかる燃料噴射装置におけるスペーサー周りを拡大して示す断面図である。FIG. 11 is an enlarged cross-sectional view showing a periphery of a spacer in a fuel injection device according to a fourth embodiment; 第5の実施の形態例にかかる燃料噴射装置におけるスペーサー周りを拡大して示す断面図である。FIG. 11 is an enlarged cross-sectional view showing the periphery of a spacer in a fuel injection device according to a fifth embodiment; 第6の実施の形態例にかかる燃料噴射装置におけるスペーサー周りを拡大して示す断面図である。FIG. 11 is an enlarged cross-sectional view showing the periphery of a spacer in a fuel injection device according to a sixth embodiment;
 以下、燃料噴射装置の実施の形態例について、図1~図12を参照して説明する。なお、各図において共通の部材には、同一の符号を付している。 Embodiments of the fuel injection device will be described below with reference to FIGS. 1 to 12. FIG. In addition, the same code|symbol is attached|subjected to the member which is common in each figure.
1.第1の実施の形態例
1-1.燃料噴射装置の構成
 まず、第1の実施の形態例(以下、「本例」という。)にかかる燃料噴射装置の構成について図1を参照して説明する。
 図1は、燃料噴射装置を示す断面図である。
1. First embodiment example 1-1. Configuration of Fuel Injection Apparatus First, the configuration of a fuel injection apparatus according to a first embodiment (hereinafter referred to as "this example") will be described with reference to FIG.
FIG. 1 is a cross-sectional view showing a fuel injection device.
 図1に示す燃料噴射装置は、内燃機関として、吸気行程、圧縮行程、燃焼(膨張)行程、排気行程の4行程を繰り返す4サイクルエンジンに用いられるものである。また、燃料噴射装置は、各気筒のシリンダの中に燃料を噴射する筒内噴射型の内燃機関に適用されるものである。 The fuel injection device shown in FIG. 1 is used as an internal combustion engine in a four-cycle engine that repeats four strokes of an intake stroke, a compression stroke, a combustion (expansion) stroke, and an exhaust stroke. Further, the fuel injection device is applied to an in-cylinder injection type internal combustion engine that injects fuel into each cylinder.
 図1に示すように、燃料噴射装置1は、固定コア(磁気コア)101と、ノズルホルダ102と、噴射孔形成部材103と、弁部材104と、電磁コイル108と、ハウジング109と、アンカー(可動コア)110と、接続部135と、を備えている。また、燃料噴射装置1は、第1スプリング118と、第2スプリング124と、第3スプリング126とを備えている。 As shown in FIG. 1, the fuel injection device 1 includes a fixed core (magnetic core) 101, a nozzle holder 102, an injection hole forming member 103, a valve member 104, an electromagnetic coil 108, a housing 109, an anchor (movable core) 110, and a connecting portion 135. The fuel injection device 1 also includes a first spring 118 , a second spring 124 and a third spring 126 .
[ノズルホルダ]
 ノズルホルダ102は、筒状に形成されている。ノズルホルダ102の中心軸線AX1に沿う軸線方向Da「以下、単に「軸線方向Da」という」の一端部である先端部には、噴射孔形成部材103が挿入又は圧入により取り付けられている。この噴射孔形成部材103には、燃料を噴射する噴射孔112が形成されている。
[Nozzle holder]
The nozzle holder 102 is formed in a cylindrical shape. An injection hole forming member 103 is inserted or press-fitted to the tip of the nozzle holder 102 along the central axis AX1 in the axial direction Da (hereinafter simply referred to as "axial direction Da"). An injection hole 112 for injecting fuel is formed in the injection hole forming member 103 .
 また、噴射孔形成部材103には、後述する弁部材104の弁体113の先端部が離接する弁座103aが形成されている、噴射孔形成部材103は、弁体113が弁座103aに着座することで燃料を封止する。また、弁体113は、弁座103aに当接することで燃料をシールし、弁座103aから離反することで燃料の通過を許可する。 Further, the injection hole forming member 103 is formed with a valve seat 103a to which the tip of the valve body 113 of the valve member 104 described later is separated and contacted. The injection hole forming member 103 seals the fuel when the valve body 113 is seated on the valve seat 103a. Further, the valve body 113 seals the fuel by coming into contact with the valve seat 103a, and permits passage of the fuel by separating from the valve seat 103a.
 ノズルホルダ102の先端部には、ガイド部材105が圧入または塑性結合により固定されている。ガイド部材105は、弁部材104における弁体113の外周面を支持し、弁体113の移動をガイドする。 A guide member 105 is fixed to the tip of the nozzle holder 102 by press fitting or plastic coupling. The guide member 105 supports the outer peripheral surface of the valve body 113 in the valve member 104 and guides movement of the valve body 113 .
 ノズルホルダ102の軸線方向Daの他端部である後端部には、先端部よりも外径が大きい大径部102aが形成されている。この大径部102aには、内部空間102bが形成されている。この内部空間102bは、ノズルホルダ102の軸線方向Daに沿って形成された連通孔102cによって先端部に連通している。 A large-diameter portion 102a having an outer diameter larger than that of the tip portion is formed at the rear end portion, which is the other end portion of the nozzle holder 102 in the axial direction Da. An internal space 102b is formed in the large diameter portion 102a. This internal space 102b communicates with the tip through a communication hole 102c formed along the axial direction Da of the nozzle holder 102 .
 内部空間102bは、大径部102aの後端側が開口し、軸線方向Daの先端側に向けて凹んだ有底の凹部である。内部空間102bには、後述するアンカー110と、固定コア101の一部が配置される。内部空間102bにおける底部の中央部には、第2スプリング124の一端部が収容される。 The internal space 102b is a recess with a bottom that opens at the rear end side of the large diameter portion 102a and is recessed toward the tip side in the axial direction Da. An anchor 110, which will be described later, and part of the fixed core 101 are arranged in the internal space 102b. One end of the second spring 124 is accommodated in the central portion of the bottom of the internal space 102b.
[弁部材]
 このノズルホルダ102の内部には、弁部材104が軸線方向Daに沿って移動可能に配置されている。弁部材104は、弁体113と、スペーサー125と、第3スプリング126と、ロッドヘッド127とを備えている。弁体113は、円柱状をなす棒状の部材により構成されている。弁体113は、後述するアンカー110の挿通孔110c(図2参照)を挿通し、ノズルホルダ102の連通孔102c内に配置されている。そして、弁体113の軸線方向Daの先端部は、噴射孔形成部材103の弁座103aに離反可能に当接し、噴射孔形成部材103に設けた噴射孔112を開閉する。
[Valve member]
A valve member 104 is arranged inside the nozzle holder 102 so as to be movable along the axial direction Da. The valve member 104 has a valve body 113 , a spacer 125 , a third spring 126 and a rod head 127 . The valve body 113 is composed of a cylindrical rod-shaped member. The valve body 113 is inserted through an insertion hole 110c (see FIG. 2) of the anchor 110, which will be described later, and arranged in the communication hole 102c of the nozzle holder 102. As shown in FIG. The distal end portion of the valve body 113 in the axial direction Da abuts on the valve seat 103a of the injection hole forming member 103 so as to be separated from the valve seat 103a, thereby opening and closing the injection hole 112 provided in the injection hole forming member 103.
 また、弁体113の軸線方向Daの後端部には、接続凹部113b(図2参照)が形成されている。この接続凹部113bには、ロッドヘッド127の接続凸部127a(図2参照)が嵌入されている。これにより、弁体113の後端部にロッドヘッド127が接続される。 A connection recess 113b (see FIG. 2) is formed at the rear end of the valve body 113 in the axial direction Da. A connection protrusion 127a (see FIG. 2) of the rod head 127 is fitted into the connection recess 113b. Thereby, the rod head 127 is connected to the rear end portion of the valve body 113 .
 ロッドヘッド127は、略円板状に形成され、後述する固定コア101の貫通孔101aを摺動する。このロッドヘッド127には、第1スプリング118の軸線方向Daの先端部が当接する。ロッドヘッド127と弁体113の間には、第3スプリング126とスペーサー125が配置されている。 The rod head 127 is formed in a substantially disc shape and slides in a through hole 101a of the fixed core 101, which will be described later. The tip of the first spring 118 in the axial direction Da contacts the rod head 127 . A third spring 126 and a spacer 125 are arranged between the rod head 127 and the valve body 113 .
 スペーサー125は、後述するアンカー110の上端面110a(図2参照)に当接している。第3スプリング126は、軸線方向Daの先端部がスペーサー125に当接し、軸線方向Daの後端部がロッドヘッド127に当接している。すなわち、第3スプリング126は、ロッドヘッド127とスペーサー125の間に介在され、スペーサー125をアンカー110に向けて付勢している。 The spacer 125 is in contact with the upper end surface 110a (see FIG. 2) of the anchor 110, which will be described later. The third spring 126 abuts on the spacer 125 at its tip in the axial direction Da, and abuts on the rod head 127 at its rear end in the axial direction Da. That is, the third spring 126 is interposed between the rod head 127 and the spacer 125 to bias the spacer 125 toward the anchor 110 .
 なお、弁体113、スペーサー125及び第3スプリング126の詳細な構成については、後述する。 The detailed configurations of the valve body 113, the spacer 125 and the third spring 126 will be described later.
[アンカー]
 次に、アンカー110について説明する。アンカー110は、ノズルホルダ102の内部空間102bにおいて、弁部材104のスペーサー125と内部空間102bの底部との間に配置されている。また、アンカー110の外周面と内部空間102bの内周面との間には、微小な間隙が形成されている。そのため、アンカー110は、内部空間102b内において軸線方向Daに沿って移動可能に配置される。
[anchor]
Next, the anchor 110 will be explained. The anchor 110 is arranged in the inner space 102b of the nozzle holder 102 between the spacer 125 of the valve member 104 and the bottom of the inner space 102b. A minute gap is formed between the outer peripheral surface of the anchor 110 and the inner peripheral surface of the internal space 102b. Therefore, the anchor 110 is arranged movably along the axial direction Da within the internal space 102b.
 アンカー110は、円筒状に形成されている。アンカー110には、挿通孔110c(図2参照)と、偏心貫通孔110dが形成されている。挿通孔110c及び偏心貫通孔110dは、アンカー110における軸線方向Daの先端部から後端部にかけて貫通するガイド孔である。挿通孔110cは、アンカー110の中心軸上に形成されている。そして、挿通孔110cには、弁部材104の弁体113が挿通している。 The anchor 110 is formed in a cylindrical shape. The anchor 110 is formed with an insertion hole 110c (see FIG. 2) and an eccentric through hole 110d. The insertion hole 110c and the eccentric through hole 110d are guide holes that penetrate from the front end portion to the rear end portion of the anchor 110 in the axial direction Da. The insertion hole 110c is formed on the central axis of the anchor 110. As shown in FIG. A valve body 113 of the valve member 104 is inserted through the insertion hole 110c.
 偏心貫通孔110dは、アンカー110の中心軸から偏心した位置に形成されている。偏心貫通孔110dは、固定コア101の貫通孔101aによって形成された流路に連通している。そして、偏心貫通孔110dは、燃料が通過する流路を形成する。 The eccentric through hole 110d is formed at a position eccentric from the central axis of the anchor 110. The eccentric through hole 110 d communicates with the flow path formed by the through hole 101 a of the fixed core 101 . The eccentric through-hole 110d forms a flow path through which fuel passes.
 アンカー110における軸線方向Daの先端側の端面には、第2スプリング124の後端部が当接している。そのため、第2スプリング124は、アンカー110とノズルホルダ102の内部空間102bの間に介在される。また、アンカー110における軸線方向Daの後端側には、固定コア101が配置されている。 The rear end portion of the second spring 124 is in contact with the end face of the anchor 110 on the tip side in the axial direction Da. Therefore, the second spring 124 is interposed between the anchor 110 and the inner space 102b of the nozzle holder 102. As shown in FIG. A fixed core 101 is arranged on the rear end side of the anchor 110 in the axial direction Da.
 また、アンカー110の挿通孔110cにおける上端面110a側の角部には、テーパー部110bが形成されている。テーパー部110bは、軸線方向Daの後端側に向かうにつれてその直径が大きく形成されている。このテーパー部110bには、後述する弁体113の係合部128が当接する。 A tapered portion 110b is formed at a corner portion of the insertion hole 110c of the anchor 110 on the side of the upper end surface 110a. The diameter of the tapered portion 110b increases toward the rear end side in the axial direction Da. An engaging portion 128 of the valve body 113, which will be described later, abuts against the tapered portion 110b.
[固定コア]
 固定コア101について説明する。固定コア101は、アンカー110を磁気吸引力によって吸引する部材である。固定コア101は、外周面に凹凸を有する略円筒状に形成されている。固定コア101における軸線方向Daの先端部は、ノズルホルダ102の大径部102aの内側、すなわち内部空間102b内に圧入されている。そして、ノズルホルダ102と固定コア101は、溶接により接合される。れにより、ノズルホルダ102と固定コア101との間の間隙が密閉され、ノズルホルダ102の内部の空間が密閉される。
[Fixed core]
The fixed core 101 will be explained. The fixed core 101 is a member that attracts the anchor 110 by magnetic attraction. The fixed core 101 is formed in a substantially cylindrical shape having unevenness on the outer peripheral surface. The tip of the fixed core 101 in the axial direction Da is press-fitted inside the large-diameter portion 102a of the nozzle holder 102, that is, inside the internal space 102b. Then, the nozzle holder 102 and the fixed core 101 are joined by welding. Thereby, the gap between the nozzle holder 102 and the fixed core 101 is sealed, and the space inside the nozzle holder 102 is sealed.
 また、固定コア101の先端部101bは、内部空間102bに配置されたアンカー110における軸線方向Daの他端側の端面(上端面110a)と対向する。なお、固定コア101における軸線方向Daの後端部側は、ノズルホルダ102の内部空間102bから軸線方向Daの後端に向けて突出している。 In addition, the distal end portion 101b of the fixed core 101 faces the end surface (upper end surface 110a) on the other end side in the axial direction Da of the anchor 110 arranged in the internal space 102b. The rear end side of the fixed core 101 in the axial direction Da protrudes from the internal space 102b of the nozzle holder 102 toward the rear end in the axial direction Da.
 固定コア101には、貫通孔101aが形成されている。貫通孔101aは、中心軸線AX1と同軸上に形成されている。そして、貫通孔101aは、燃料が通過する流路を形成する。また、固定コア101における軸線方向Daの後端部には、貫通孔101aに連通する燃料供給口111が形成されている。この燃料供給口111から貫通孔101aに向けて燃料が導入される。 A through hole 101 a is formed in the fixed core 101 . The through hole 101a is formed coaxially with the center axis AX1. The through hole 101a forms a flow path through which fuel passes. A fuel supply port 111 communicating with the through hole 101a is formed at the rear end portion of the fixed core 101 in the axial direction Da. Fuel is introduced from the fuel supply port 111 toward the through hole 101a.
 さらに、貫通孔101aにおける軸線方向Daの先端部側には、第1スプリング118及び調整部材119が配置されている。第1スプリング118は、調整部材119よりも貫通孔101aの先端部側に配置されている。調整部材119は、貫通孔101aに圧入されて、固定コア101の内部に固定されている。また、貫通孔101aには、弁部材104のロッドヘッド127、第3スプリング126及びスペーサー125が挿入される。 Further, a first spring 118 and an adjusting member 119 are arranged on the tip end side of the through hole 101a in the axial direction Da. The first spring 118 is arranged closer to the distal end of the through hole 101 a than the adjustment member 119 is. The adjusting member 119 is press-fitted into the through hole 101 a and fixed inside the fixed core 101 . A rod head 127, a third spring 126 and a spacer 125 of the valve member 104 are inserted into the through hole 101a.
 第1スプリング118は、調整部材119と弁部材104のロッドヘッド127の間に介在される。そして、第1スプリング118は、弁部材104をノズルホルダ102の先端部に向けて軸線方向Daに付勢している。 The first spring 118 is interposed between the adjustment member 119 and the rod head 127 of the valve member 104 . The first spring 118 urges the valve member 104 toward the tip of the nozzle holder 102 in the axial direction Da.
 また、調整部材119における固定コア101に対する固定位置を調整することで、第1スプリング118における弁部材104の付勢力を調整することができる。これにより、弁部材104における弁体113の先端部がノズルホルダ102の噴射孔形成部材103に設けた弁座103aに押し付ける初期荷重を調整することができる。 Further, by adjusting the fixing position of the adjusting member 119 with respect to the fixed core 101, the biasing force of the first spring 118 on the valve member 104 can be adjusted. This makes it possible to adjust the initial load that the tip portion of the valve body 113 of the valve member 104 presses against the valve seat 103a provided on the injection hole forming member 103 of the nozzle holder 102 .
 ここで、第1スプリング118が弁部材104をノズルホルダ102の先端部に向けて付勢する付勢力は、第2スプリング124がアンカー110を固定コア101に向けて付勢する付勢力よりも大きく設定されている。 Here, the biasing force of the first spring 118 biasing the valve member 104 toward the tip of the nozzle holder 102 is set larger than the biasing force of the second spring 124 biasing the anchor 110 toward the fixed core 101 .
[コイル]
 次に、電磁コイル108について説明する。電磁コイル108は、円筒状のコイルボビンに巻回されている。そして、電磁コイル108は、コイルボビンに巻回されて、ノズルホルダ102における大径部102aの外周面の一部及び固定コア101の先端部の外周面の一部を覆うようにして配置される。電磁コイル108の巻き始めと巻き終わりの端部は、不図示の配線を介して後述する接続部135のコネクタ136の電力供給用の端子に接続されている。電磁コイル108の外周には、ハウジング109が固定されている。
[coil]
Next, the electromagnetic coil 108 will be explained. The electromagnetic coil 108 is wound around a cylindrical coil bobbin. The electromagnetic coil 108 is wound around a coil bobbin and arranged so as to cover part of the outer peripheral surface of the large diameter portion 102 a of the nozzle holder 102 and part of the outer peripheral surface of the tip of the fixed core 101 . The winding start and winding end portions of the electromagnetic coil 108 are connected to power supply terminals of a connector 136 of a connecting portion 135 to be described later via wiring (not shown). A housing 109 is fixed around the outer circumference of the electromagnetic coil 108 .
[ハウジング]
 ハウジング109は、有底の円筒状に形成されている。ハウジング109における軸線方向Daの先端部である底部には、ガイド孔が形成されている。ガイド孔は、底部の中央部に形成されている。このガイド孔には、ノズルホルダ102が挿入される。そして、ガイド孔の開口縁とノズルホルダ102の外周面との間は、例えば、全周にわたって溶接されている。これにより、ノズルホルダ102は、ハウジング109に固定される。
[housing]
The housing 109 is formed in a cylindrical shape with a bottom. A guide hole is formed in the bottom portion of the housing 109, which is the tip portion in the axial direction Da. A guide hole is formed in the center of the bottom. A nozzle holder 102 is inserted into this guide hole. The opening edge of the guide hole and the outer peripheral surface of the nozzle holder 102 are welded, for example, over the entire circumference. The nozzle holder 102 is thereby fixed to the housing 109 .
 また、ハウジング109は、固定コア101の先端部側、コイルボビン及び電磁コイル108の外周を囲むようにして配置される。そして、ハウジング109の内周面は、ノズルホルダ102及び電磁コイル108と対向し、外周ヨーク部を形成する。このように、電磁コイル108の周りには、固定コア101、アンカー110、ノズルホルダ102及びハウジング109を含む磁気回路が形成されている。 Further, the housing 109 is arranged so as to surround the distal end side of the fixed core 101 , the coil bobbin, and the outer periphery of the electromagnetic coil 108 . The inner peripheral surface of the housing 109 faces the nozzle holder 102 and the electromagnetic coil 108 and forms an outer peripheral yoke portion. Thus, a magnetic circuit including the fixed core 101, the anchor 110, the nozzle holder 102 and the housing 109 is formed around the electromagnetic coil .
[接続部]
 接続部135は、樹脂により形成されている。そして、接続部135は、固定コア101及びハウジング109との間に充填される。また、接続部135は、ハウジング109よりも軸線方向Daの後端側において、固定コア101の後端部を除く外周面を覆う。そして、接続部135は、電力供給用の端子を有するコネクタ136を形成するようにモールド成形されている。端子は、不図示のプラグの接続端子に接続される。これにより、燃料噴射装置1は、高電圧電源又はバッテリ電源に接続される。そして、不図示のエンジンコントロールユニット(ECU)によって電磁コイル108に対する通電が制御される。
[Connection part]
The connecting portion 135 is made of resin. The connecting portion 135 is filled between the fixed core 101 and the housing 109 . Further, the connection portion 135 covers the outer peripheral surface of the fixed core 101 excluding the rear end portion of the fixed core 101 on the rear end side of the housing 109 in the axial direction Da. The connecting portion 135 is then molded to form a connector 136 having terminals for power supply. The terminals are connected to connection terminals of a plug (not shown). The fuel injector 1 is thereby connected to a high voltage power supply or a battery power supply. The energization of the electromagnetic coil 108 is controlled by an engine control unit (ECU) (not shown).
1-2.弁部材の詳細な構成
 次に、弁部材104を構成する弁体113、スペーサー125及び第3スプリング126の詳細な構成について図2及び図3を参照して説明する。
 図2は、燃料噴射装置1におけるスペーサー125周りを拡大して示す断面図、図3は、開弁が開始した際のスペーサー125周りを拡大して示す図である。なお、図2では、閉弁状態を示す。
1-2. Detailed Configuration of Valve Member Next, detailed configurations of the valve body 113, the spacer 125, and the third spring 126 that constitute the valve member 104 will be described with reference to FIGS. 2 and 3. FIG.
FIG. 2 is an enlarged cross-sectional view showing the periphery of the spacer 125 in the fuel injection device 1, and FIG. 3 is an enlarged view showing the periphery of the spacer 125 when the valve starts to open. Note that FIG. 2 shows the valve closed state.
 図2に示すように、弁体113は、アンカー110の挿通孔110cを挿通する軸部113aと、アンカー110に係合する係合部128と、軸部を示す摺動軸部129と、を有している。 As shown in FIG. 2, the valve body 113 has a shaft portion 113a that passes through the insertion hole 110c of the anchor 110, an engaging portion 128 that engages with the anchor 110, and a sliding shaft portion 129 that indicates the shaft portion.
 係合部128は、軸部113aよりも軸線方向Daの後端部側に形成されている。係合部128の直径は、軸部113aの直径及び挿通孔110cの内径よりも大きく形成されている。そして、係合部128は、軸部113aの外周面から半径方向の外側に向けて張り出している。この係合部128、軸部113a及び摺動軸部129は、切削加工により一体に形成される。 The engaging portion 128 is formed closer to the rear end portion in the axial direction Da than the shaft portion 113a. The diameter of the engaging portion 128 is larger than the diameter of the shaft portion 113a and the inner diameter of the insertion hole 110c. The engaging portion 128 protrudes radially outward from the outer peripheral surface of the shaft portion 113a. The engaging portion 128, the shaft portion 113a and the sliding shaft portion 129 are integrally formed by cutting.
 係合部128には、上端面128aと、下端面128bと、第1曲面部128cと、第2曲面部128dと、円筒部128eと、第1当接部128fと、第2当接部128gとを有している。上端面128aは、係合部128における軸線方向Daの後端部側に形成され、下端面128bは、係合部128における軸線方向Daの先端部側に形成される。そして、下端面128bは、アンカー110の上端面110aと対向する。円筒部128eは、軸線方向Daに沿って係合部128の側面に形成されている。 The engaging portion 128 has an upper end surface 128a, a lower end surface 128b, a first curved surface portion 128c, a second curved surface portion 128d, a cylindrical portion 128e, a first contact portion 128f, and a second contact portion 128g. The upper end face 128a is formed on the rear end side of the engaging portion 128 in the axial direction Da, and the lower end face 128b is formed on the leading end side of the engaging portion 128 in the axial direction Da. The lower end surface 128 b faces the upper end surface 110 a of the anchor 110 . The cylindrical portion 128e is formed on the side surface of the engaging portion 128 along the axial direction Da.
 第1曲面部128cは、円筒部128eと下端面128bが接続する角部に形成され、第2曲面部128dは、円筒部128eと上端面128aが接続する角部に形成されている。そして、円筒部128eは、第1曲面部128cと第2曲面部128dの間に形成される。第1曲面部128cには、後述するアンカー110のテーパー部110bに当接する第1当接部128fが形成され、第2曲面部128dには、後述する収容部16のテーパー部16bに当接する第2当接部128gが形成されている。 The first curved surface portion 128c is formed at the corner where the cylindrical portion 128e and the lower end surface 128b are connected, and the second curved surface portion 128d is formed at the corner where the cylindrical portion 128e and the upper end surface 128a are connected. The cylindrical portion 128e is formed between the first curved portion 128c and the second curved portion 128d. The first curved surface portion 128c is formed with a first contact portion 128f that contacts the tapered portion 110b of the anchor 110 described later, and the second curved surface portion 128d is formed with a second contact portion 128g that contacts the tapered portion 16b of the accommodation portion 16 described later.
 閉弁状態においては、第1曲面部128cの第1当接部128fと、テーパー部110bの当接部110eとの間には、間隙G2が設けられる。そして、開弁時に、すなわちアンカー110と弁体113の位置が変位する際に、アンカー110の当接部110eは係合部128の第1当接部128fに当接し、アンカー110と係合部128が係合する(図4及び図5参照)。これにより、弁体113は、アンカー110とともに軸線方向Daの後端部側、すなわち開弁方向へ移動する。ここで、軸部113a、係合部128及びアンカー110のテーパー部110bによって形成され、かつ概ね第1当接部128f及び当接部110eよりも内径側の領域を、領域Bと称す。 In the closed state, a gap G2 is provided between the first contact portion 128f of the first curved surface portion 128c and the contact portion 110e of the tapered portion 110b. When the valve is opened, that is, when the positions of the anchor 110 and the valve body 113 are displaced, the contact portion 110e of the anchor 110 contacts the first contact portion 128f of the engagement portion 128, and the anchor 110 and the engagement portion 128 are engaged (see FIGS. 4 and 5). As a result, the valve body 113 moves together with the anchor 110 toward the rear end side in the axial direction Da, that is, in the valve opening direction. Here, a region formed by the shaft portion 113a, the engaging portion 128, and the tapered portion 110b of the anchor 110, and which is generally on the inner diameter side of the first contact portion 128f and the contact portion 110e, is referred to as region B.
 摺動軸部129は、係合部128よりも軸線方向Daの後端部側に形成されている。摺動軸部129は、係合部128から軸線方向Daの後端に向けて突出している。また、摺動軸部129の直径は、係合部128の直径よりも小さく形成されている。摺動軸部129における軸線方向Daの後端面には、接続凹部113bが形成されている。上述したように、この接続凹部113bには、ロッドヘッド127の接続凸部127aが嵌入される。 The sliding shaft portion 129 is formed closer to the rear end portion in the axial direction Da than the engaging portion 128 is. The sliding shaft portion 129 protrudes from the engaging portion 128 toward the rear end in the axial direction Da. Also, the diameter of the sliding shaft portion 129 is formed to be smaller than the diameter of the engaging portion 128 . A connecting concave portion 113b is formed on the rear end surface of the sliding shaft portion 129 in the axial direction Da. As described above, the connection protrusion 127a of the rod head 127 is fitted into the connection recess 113b.
 弁体113の係合部128及び摺動軸部129の周囲を囲むようにして、スペーサー125が配置されている。図2及び図3に示すように、スペーサー125は、略円筒状に形成されている。スペーサー125は、大径部11と、ガイド部となる小径部12とを有している。大径部11と、小径部12は、同心円上に形成されており、大径部11は、小径部12よりも軸線方向Daの先端側に形成されている。そして、大径部11の直径は、小径部12の直径よりも大きく形成されている。 A spacer 125 is arranged so as to surround the engaging portion 128 and the sliding shaft portion 129 of the valve body 113 . As shown in FIGS. 2 and 3, the spacer 125 has a substantially cylindrical shape. The spacer 125 has a large diameter portion 11 and a small diameter portion 12 that serves as a guide portion. The large-diameter portion 11 and the small-diameter portion 12 are formed concentrically, and the large-diameter portion 11 is formed closer to the tip side in the axial direction Da than the small-diameter portion 12 is. The diameter of the large diameter portion 11 is formed larger than the diameter of the small diameter portion 12 .
 また、スペーサー125における大径部11と小径部12が接続する箇所には、段差面13が形成されている。段差面13は、小径部12の外周面から半径方向の外側に向けて略垂直に張り出している。この段差面13には、第3スプリング126における軸線方向Daの先端部側が当接する。そして、第3スプリング126は、スペーサー125をアンカー110に向けて付勢する。そのため、スペーサー125の軸線方向Daの先端部側の端面である下端面14は、アンカー110の上端面110aに当接する。 In addition, a stepped surface 13 is formed at a portion where the large diameter portion 11 and the small diameter portion 12 of the spacer 125 are connected. The stepped surface 13 protrudes substantially perpendicularly outward in the radial direction from the outer peripheral surface of the small diameter portion 12 . The tip side of the third spring 126 in the axial direction Da contacts the step surface 13 . Third spring 126 then biases spacer 125 toward anchor 110 . Therefore, the lower end face 14 of the spacer 125 on the tip end side in the axial direction Da contacts the upper end face 110 a of the anchor 110 .
 なお、本例では、第3スプリング126を設けた例を説明したが、これに限定されるものではなく、第3スプリング126を設けなくてもよい。 In this example, an example in which the third spring 126 is provided has been described, but the present invention is not limited to this, and the third spring 126 may not be provided.
 大径部11には、収容部16が形成されている。収容部16は、スペーサー125の下端面14から段差面13に向けて凹んだ凹部である。収容部16には、弁体113の係合部128が収容される。 A housing portion 16 is formed in the large diameter portion 11 . The accommodating portion 16 is a recess recessed from the lower end surface 14 of the spacer 125 toward the stepped surface 13 . The accommodating portion 16 accommodates the engaging portion 128 of the valve body 113 .
 収容部16の内径は、弁体113の係合部128の直径よりも大きき設定されている。そのため、係合部128の半径方向の外側の外周面と収容部16の内壁面16aの間には、間隙が形成される。 The inner diameter of the accommodating portion 16 is set larger than the diameter of the engaging portion 128 of the valve body 113 . Therefore, a gap is formed between the radially outer peripheral surface of the engaging portion 128 and the inner wall surface 16 a of the accommodating portion 16 .
 また、ガイド孔18の内壁面19と収容部16の内壁面16aが接続される箇所には、テーパー部16bが形成されている。すなわち、収容部16における小径部12側の内径は、軸線方向Daの先端部側に向かうにつれて連続してその径が大きく形成されている。このテーパー部16bは、係合部128の第2曲面部128dと対向する。また、スペーサー125が第3スプリング126によってアンカー110に向けて付勢されることで、係合部128の第2曲面部128dと、収容部16のテーパー部16bが当接する。ここで、第2曲面部128dとテーパー部16bは、係合部128の第2当接部128gと収容部16の当接部16cにおいて線接触する。 A tapered portion 16b is formed at a portion where the inner wall surface 19 of the guide hole 18 and the inner wall surface 16a of the accommodating portion 16 are connected. That is, the inner diameter of the accommodating portion 16 on the side of the small diameter portion 12 is formed to increase continuously toward the distal end portion side in the axial direction Da. The tapered portion 16b faces the second curved surface portion 128d of the engaging portion 128. As shown in FIG. Further, the spacer 125 is biased toward the anchor 110 by the third spring 126, so that the second curved surface portion 128d of the engaging portion 128 and the tapered portion 16b of the accommodating portion 16 are brought into contact. Here, the second curved surface portion 128 d and the tapered portion 16 b are in line contact at the second contact portion 128 g of the engaging portion 128 and the contact portion 16 c of the housing portion 16 .
 ここで、本例においては、摺動軸部129、係合部128及びテーパー部16bによって形成され、かつ概ね第2当接部128g及び当接部16cよりも内側の領域を、領域Aとする。さらに、係合部128、スペーサー125及びアンカー110によって形成され、かつ概ね第2当接部128g、当接部16c、円筒部128e、第1当接部128f及び当接部110eで囲まれる領域を領域Cとする。 Here, in this example, the region A is defined by the sliding shaft portion 129, the engaging portion 128, and the tapered portion 16b, and is generally inside the second contact portion 128g and the contact portion 16c. Further, a region C is formed by the engaging portion 128, the spacer 125 and the anchor 110 and is generally surrounded by the second contact portion 128g, the contact portion 16c, the cylindrical portion 128e, the first contact portion 128f and the contact portion 110e.
 小径部12には、小径部側貫通孔を示すガイド孔18が形成されている。ガイド孔18は、スペーサー125の軸線方向Daの後端部側の端面である上端面15から収容部16にかけて貫通している。そして、ガイド孔18は、収容部16に連通している。このガイド孔18には、弁体113の摺動軸部129が挿入される。そして、ガイド孔18の内径は、摺動軸部129の直径よりも大きく設定されている。そして、ガイド孔18の内壁面19は、摺動軸部129を摺動可能に支持する摺動面となる。 A guide hole 18 is formed in the small-diameter portion 12 to indicate a through-hole on the small-diameter portion side. The guide hole 18 penetrates from the upper end face 15 , which is the end face of the spacer 125 on the rear end side in the axial direction Da, to the accommodation portion 16 . The guide hole 18 communicates with the accommodation portion 16 . A sliding shaft portion 129 of the valve body 113 is inserted into the guide hole 18 . The inner diameter of the guide hole 18 is set larger than the diameter of the sliding shaft portion 129 . The inner wall surface 19 of the guide hole 18 serves as a sliding surface that slidably supports the sliding shaft portion 129 .
 ここで、アンカー110は、第2スプリング124の付勢力により固定コア101側に向けて付勢されている。そのため、アンカー110の上端面110aは、スペーサー125の下端面14に当接する。なお、第2スプリング124の付勢力は、第3スプリング126の付勢力よりも小さく設定されている。そのため、アンカー110は、スペーサー125を介して第3スプリング126により軸線方向Daの先端側に向けて付勢される。これにより、アンカー110における軸線方向Daの後端側への移動、すなわち開弁方向への移動は、スペーサー125と第3スプリング126により規制される。 Here, the anchor 110 is biased toward the fixed core 101 side by the biasing force of the second spring 124 . Therefore, the upper end surface 110 a of the anchor 110 contacts the lower end surface 14 of the spacer 125 . The biasing force of the second spring 124 is set smaller than the biasing force of the third spring 126 . Therefore, the anchor 110 is biased toward the distal end side in the axial direction Da by the third spring 126 via the spacer 125 . Thereby, the movement of the anchor 110 toward the rear end in the axial direction Da, that is, the movement in the valve opening direction is restricted by the spacer 125 and the third spring 126 .
 また、閉弁状態において、収容部16の当接部16cが弁体113の係合部128の第2当接部128gに当接することで、スペーサー125は、所定の位置(基準位置)に配置される。スペーサー125が基準位置に配置された状態で、スペーサー125の下端面14がアンカー110の上端面110aに当接する。これにより、弁体113の第1当接部128fとアンカー110の当接部110eとの間に、間隙G2、いわゆる予備ストロークを設けることができる。すなわち、スペーサー125は、アンカー110と弁体113の係合部128との間に、予備ストロークとなる所定の間隙G2を形成する。 Also, in the valve closed state, the contact portion 16c of the housing portion 16 contacts the second contact portion 128g of the engaging portion 128 of the valve body 113, so that the spacer 125 is arranged at a predetermined position (reference position). The lower end surface 14 of the spacer 125 contacts the upper end surface 110a of the anchor 110 while the spacer 125 is arranged at the reference position. Thereby, a gap G2, a so-called preliminary stroke, can be provided between the first contact portion 128f of the valve body 113 and the contact portion 110e of the anchor 110. As shown in FIG. That is, the spacer 125 forms a predetermined gap G2 between the anchor 110 and the engaging portion 128 of the valve body 113, which is the preliminary stroke.
 また、弁体113が閉弁した状態において、間隙G2と間隙G1を足した長さ(G1+G2)が、固定コア101の先端部101bとアンカー110の上端面110aとの間隙、いわゆる磁気吸引ギャップとなる。 In addition, when the valve body 113 is closed, the length (G1+G2) that is the sum of the gap G2 and the gap G1 is the gap between the tip portion 101b of the fixed core 101 and the upper end surface 110a of the anchor 110, a so-called magnetic attraction gap.
1-3.燃料噴射装置の動作例
 次に、上述した構成を有する燃料噴射装置1の動作例について図2から図6を参照して説明する。
 図3は、開弁が開始した際のスペーサー125周りを示す断面図、図4は、開弁動作が終了した際のスペーサー125周りを示す断面図である。
1-3. Operation Example of Fuel Injection Apparatus Next, an operation example of the fuel injection apparatus 1 having the configuration described above will be described with reference to FIGS. 2 to 6. FIG.
FIG. 3 is a cross-sectional view showing the periphery of spacer 125 when the valve opening starts, and FIG. 4 is a cross-sectional view showing the periphery of spacer 125 when the valve opening operation ends.
 ECUによって電磁コイル108に通電されると、固定コア101、アンカー110、ノズルホルダ102及びハウジング109によって形成される磁気回路に磁束が流れる。そして、固定コア101には、アンカー110を吸引する磁気吸引力が発生する。固定コア101の磁気吸引力が、第3スプリング126の付勢力を超えると、アンカー110は、スペーサー125を押圧し、固定コア101に向けて移動する。そのため、アンカー110とスペーサー125は、ともに軸線方向Daの後端側に向けて移動する。この間、弁体113の先端部は、噴射孔形成部材103の弁座103aに当接している。 When the electromagnetic coil 108 is energized by the ECU, magnetic flux flows through the magnetic circuit formed by the fixed core 101 , the anchor 110 , the nozzle holder 102 and the housing 109 . Then, a magnetic attractive force that attracts the anchor 110 is generated in the fixed core 101 . When the magnetic attraction force of fixed core 101 exceeds the biasing force of third spring 126 , anchor 110 presses spacer 125 and moves toward fixed core 101 . Therefore, both the anchor 110 and the spacer 125 move toward the rear end side in the axial direction Da. During this time, the tip of the valve body 113 is in contact with the valve seat 103 a of the injection hole forming member 103 .
 アンカー110が軸線方向Daの後端側に移動することで、図3に示すように、アンカー110のテーパー部110bは、当接部110eにおいて、弁体113の係合部128の第1当接部128fに係合する。そのため、アンカー110の当接部110eと係合部128の第1当接部128fとの間隙G2は、ゼロとなる。 As the anchor 110 moves to the rear end side in the axial direction Da, the tapered portion 110b of the anchor 110 engages the first contact portion 128f of the engaging portion 128 of the valve body 113 at the contact portion 110e, as shown in FIG. Therefore, the gap G2 between the contact portion 110e of the anchor 110 and the first contact portion 128f of the engaging portion 128 is zero.
 また、アンカー110が軸線方向Daの後端側に移動した分だけ、アンカー110と固定コア101との間隙(磁気吸引ギャップ)の大きさが減少し、図3に示す例では、磁気吸引ギャップは、長さG1となる。さらに、スペーサー125も軸線方向Daの後端側に移動するため、収容部16の当接部16cと係合部128の第2当接部128gには、間隙G3が発生する。 In addition, the size of the gap (magnetic attraction gap) between the anchor 110 and the fixed core 101 is reduced by the amount of movement of the anchor 110 to the rear end side in the axial direction Da, and in the example shown in FIG. 3, the magnetic attraction gap has a length of G1. Furthermore, since the spacer 125 also moves toward the rear end side in the axial direction Da, a gap G3 is generated between the contact portion 16c of the accommodating portion 16 and the second contact portion 128g of the engaging portion 128. As shown in FIG.
 また、図2に示す開弁動作を開始する直前では、アンカー110と係合部128との間には、間隙G2が空いている。そのため、アンカー110は、間隙G2を移動した後に、係合部128に当接する。これにより、アンカー110は、係合部128に当接するまでの間、すなわち間隙G2を移動する間に、加速する。その結果、アンカー110が加速した状態で、アンカー110を係合部128に当接させることができる。 Also, just before starting the valve opening operation shown in FIG. Therefore, the anchor 110 comes into contact with the engaging portion 128 after moving through the gap G2. As a result, the anchor 110 accelerates until it abuts against the engaging portion 128, that is, while moving through the gap G2. As a result, the anchor 110 can be brought into contact with the engaging portion 128 while the anchor 110 is accelerated.
 このように、アンカー110から係合部128を介して弁体113に加える力を上昇させることができ、弁体113を軸線方向Daの後端側に向かう移動を速やかに開始させることができる。その結果、弁体113における開弁動作を速やかに開始することができる。 Thus, the force applied from the anchor 110 to the valve body 113 via the engaging portion 128 can be increased, and the valve body 113 can be quickly started to move toward the rear end side in the axial direction Da. As a result, the valve opening operation in the valve body 113 can be started quickly.
 ここで、本例において、開弁動作は、図2に示す閉弁状態からアンカー110及びスペーサー125が動き出し、図4に示す状態(フルリフト)に至るまでの一連の動作のことを示す。したがって、開弁動作開始とは、アンカー110及びスペーサー125が動き出す動作が開始されることをさす。また、開弁あるいは開弁状態とは、実際に弁体113が軸線方向Daの後端側に移動し、弁体113の先端部が、噴射孔形成部材103の弁座103aから離反し、噴射孔112が開放される状態のことをさす。したがって、開弁開始とは、弁体113の先端部が弁座103aから離反し始めることをさす。 Here, in this example, the valve opening operation refers to a series of operations from the valve closed state shown in FIG. 2 to the anchor 110 and spacer 125 starting to move to the state shown in FIG. 4 (full lift). Therefore, the start of the valve opening operation means that the anchor 110 and the spacer 125 start moving. In addition, the valve opening or valve open state refers to a state in which the valve body 113 actually moves to the rear end side in the axial direction Da, the tip of the valve body 113 separates from the valve seat 103a of the injection hole forming member 103, and the injection hole 112 is opened. Therefore, the start of opening the valve means that the tip of the valve body 113 begins to separate from the valve seat 103a.
 図4に示すように、アンカー110、スペーサー125及び弁体113がさらに軸線方向Daの後端側に移動すると、弁体113の先端部は、噴射孔形成部材103の弁座103aから離反し、噴射孔112が開放される開弁状態となる。これにより、噴射孔112から燃料が噴射される。 As shown in FIG. 4, when the anchor 110, the spacer 125, and the valve body 113 move further toward the rear end side in the axial direction Da, the tip of the valve body 113 separates from the valve seat 103a of the injection hole forming member 103, and the injection hole 112 is opened to open the valve. As a result, fuel is injected from the injection hole 112 .
 また、アンカー110の上端面110aが固定コア101の先端部101bに当接することで、アンカー110における軸線方向Daの後端側に向かう移動が規制される。なお、弁体113は、慣性力で軸線方向Daの後端側へ移動するが、第1スプリング118の付勢力により押し戻される。そのため、弁体113は、図4に示すように、係合部128の第1当接部128fがアンカー110の当接部110eに当接した状態で静止する。これにより、弁体113が所定のストローク量(図2に示す間隙G1)だけ移動した開弁静止状態となる。 Also, the upper end surface 110a of the anchor 110 abuts against the distal end portion 101b of the fixed core 101, thereby restricting the movement of the anchor 110 toward the rear end side in the axial direction Da. In addition, the valve body 113 moves toward the rear end side in the axial direction Da by inertia force, but is pushed back by the biasing force of the first spring 118 . Therefore, the valve body 113 stops with the first contact portion 128f of the engaging portion 128 contacting the contact portion 110e of the anchor 110, as shown in FIG. As a result, the valve body 113 is moved by a predetermined stroke amount (gap G1 shown in FIG. 2), and the valve is opened and stationary.
 開弁静止状態では、アンカー110が磁気吸引力により固定コア101に吸引され、弁部材104が第1スプリング118の付勢力により閉弁方向に付勢されている。そのため、アンカー110と弁体113は、互いに当接し、一体となっている。すなわち、弁体113の係合部128の第1当接部128fがアンカー110の当接部110eに当接し、間隙G2の大きさはゼロとなる。 In the valve open stationary state, the anchor 110 is attracted to the fixed core 101 by magnetic attraction force, and the valve member 104 is biased in the valve closing direction by the biasing force of the first spring 118 . Therefore, the anchor 110 and the valve body 113 are in contact with each other and integrated. That is, the first contact portion 128f of the engaging portion 128 of the valve body 113 contacts the contact portion 110e of the anchor 110, and the size of the gap G2 becomes zero.
 さらに、第3スプリング126の付勢力は、磁気吸引力よりも小さいため、第3スプリング126は、スペーサー125を介してアンカー110を軸線方向Daの先端側に押し戻すことはできない。そのため、スペーサー125の下端面14は、アンカー110の上端面110aに当接し、係合部128の第2当接部128gとスペーサー125の収容部16の当接部16cとの間隙G3は、維持される。さらに、アンカー110は、固定コア101と当接しているため、アンカー110の上端面110aと固定コア101の先端部101bとの間隙G1の大きさはゼロとなる。 Furthermore, since the biasing force of the third spring 126 is smaller than the magnetic attraction force, the third spring 126 cannot push back the anchor 110 toward the tip side in the axial direction Da via the spacer 125 . Therefore, the lower end surface 14 of the spacer 125 contacts the upper end surface 110a of the anchor 110, and the gap G3 between the second contact portion 128g of the engaging portion 128 and the contact portion 16c of the accommodating portion 16 of the spacer 125 is maintained. Furthermore, since the anchor 110 is in contact with the fixed core 101, the size of the gap G1 between the upper end surface 110a of the anchor 110 and the tip portion 101b of the fixed core 101 is zero.
 図4に示す開弁した状態(フルリフト状態)において駆動パルスをOFFにすると、電磁コイル108への通電が遮断される。そのため、アンカー110と固定コア101との間に生じる磁気吸引力が消失する。そして、磁気吸引力が第1スプリング118の付勢力よりも小さくなると、弁部材104は、軸線方向Daの先端側、すなわち閉弁方向への移動を開始する。閉弁方向へ移動を開始した弁部材104は、アンカー110と一体になって変位し、長さG1だけ変位した後、弁体113の先端部が弁座103aに着座する。これにより、図2に示す閉弁状態に戻り、燃料噴射装置1による燃料の噴射が停止される。 When the drive pulse is turned off in the valve open state (full lift state) shown in FIG. 4, the energization to the electromagnetic coil 108 is cut off. Therefore, the magnetic attractive force generated between the anchor 110 and the fixed core 101 disappears. Then, when the magnetic attraction force becomes smaller than the biasing force of the first spring 118, the valve member 104 starts to move toward the distal end side in the axial direction Da, that is, in the valve closing direction. The valve member 104, which has started to move in the valve closing direction, is displaced integrally with the anchor 110, and after being displaced by a length G1, the tip of the valve body 113 is seated on the valve seat 103a. As a result, the valve is returned to the closed state shown in FIG. 2, and the injection of fuel by the fuel injection device 1 is stopped.
 ここで、図5から図7を参照して、従来の燃料噴射装置における動作例について説明する。なお、本例の燃料噴射装置1と共通する部分には、同一の符号を付して重複した説明を省略する。図5から図7は、従来の燃料噴射装置におけるスペーサー周りを拡大して示す断面図である。図5は、閉弁状態を示し、図6は、開弁を開始した際の状態、図7は、開弁動作が終了した状態を示している。 Here, an operation example of a conventional fuel injection device will be described with reference to FIGS. 5 to 7. FIG. Parts common to those of the fuel injection device 1 of this embodiment are denoted by the same reference numerals, and overlapping descriptions are omitted. 5 to 7 are cross-sectional views enlarging the surroundings of a spacer in a conventional fuel injection device. 5 shows the closed state, FIG. 6 shows the state when the valve starts to open, and FIG. 7 shows the state after the valve opening operation is completed.
 図5に示す閉弁状態において、電磁コイル108に通電すると、スペーサー225は、アンカー310とともに軸線方向Daの後端側への移動を開始する。このとき、係合部328の上端面328aと、弁体313の摺動軸部329と、スペーサー225における収容部216の面取り部216cによって形成される領域Aの体積は、スペーサー225の移動とともに急激に増加する。そのため、スペーサー225の周囲にある燃料(流体)が領域Aに流入しようとする。さらに、収容部216の上面部216bと係合部328の上端面328aとの間に形成される間隙の体積も増加するため、この間隙にも流体が流入しようとする。 When the electromagnetic coil 108 is energized in the valve closed state shown in FIG. At this time, the volume of the region A formed by the upper end surface 328a of the engaging portion 328, the sliding shaft portion 329 of the valve body 313, and the chamfered portion 216c of the housing portion 216 of the spacer 225 increases sharply as the spacer 225 moves. Therefore, the fuel (fluid) around the spacer 225 tries to flow into the region A. Furthermore, since the volume of the gap formed between the upper surface portion 216b of the accommodating portion 216 and the upper end surface 328a of the engaging portion 328 also increases, the fluid tends to flow into this gap as well.
 しかしながら、図6に示すように、従来の燃料噴射装置では、領域Aは、スペーサー225、係合部328及び摺動軸部329によって囲まれている。そのため、十分な流量の流体が流入することができず、この領域Aの体積が増加することで、この領域の圧力が低下する。 However, as shown in FIG. 6, in the conventional fuel injection device, the area A is surrounded by the spacer 225, the engaging portion 328 and the sliding shaft portion 329. Therefore, the fluid cannot flow in at a sufficient flow rate, and the volume of this area A increases, thereby reducing the pressure in this area.
 なお、摺動軸部329と、ガイド孔218の内壁面219との間や、軸部313aとアンカー310の挿通孔310cとの間には、微小な隙間がある。しかしながら、この隙間からは、低圧部の圧力低下を抑制できるほどの流体が流入することはできない。 There are minute gaps between the sliding shaft portion 329 and the inner wall surface 219 of the guide hole 218 and between the shaft portion 313 a and the insertion hole 310 c of the anchor 310 . However, the amount of fluid that can suppress the pressure drop in the low-pressure portion cannot flow through this gap.
 さらに、スペーサー225とアンカー310の軸線方向Daの後端側への移動に伴い、収容部216の上面部216bと係合部328の上端面328aとの間に形成される間隙の体積も増加するため、この間隙にも流体が流入しようとする。しかしながら、上面部216bと上端面328aの間に形成される間隙が広がる速度は流体の流入速度と比較して速く、また間隙も狭いため、十分な流体が流入できない。そのため、上面部216bと上端面328aとの間隙の圧力が低下する。そして,スペーサー225に対しては、いわゆる張り付き力とよばれる大きな流体力が、軸線方向Daの先端側に作用する。 Furthermore, as the spacer 225 and the anchor 310 move to the rear end side in the axial direction Da, the volume of the gap formed between the upper surface portion 216b of the housing portion 216 and the upper end surface 328a of the engaging portion 328 also increases, so the fluid also tries to flow into this gap. However, the speed at which the gap formed between the upper surface portion 216b and the upper end surface 328a widens is faster than the inflow speed of the fluid, and the gap is narrow, so the fluid cannot flow in sufficiently. Therefore, the pressure in the gap between the upper surface portion 216b and the upper end surface 328a is reduced. Then, a large fluid force called sticking force acts on the spacer 225 toward the distal end side in the axial direction Da.
 このように、スペーサー225には、領域A及び上面部216bと上端面328aとの間隙の圧力変動によって生じる力が作用する。なお、スペーサー225には、領域Aを含む低圧部の圧力だけでなく、スペーサー225の周囲を流れる燃料(流体)のせん断によって生じる力も作用する。ここで、圧力と、流体のせん断力を合わせて流体力と称している。しかしながら、スペーサー225に作用する流体力は、流体のせん断力よりも領域Aを含む低圧部の圧力が支配的である。 In this way, the spacer 225 is subjected to a force caused by pressure fluctuations in the area A and the gap between the upper surface portion 216b and the upper end surface 328a. Note that not only the pressure of the low-pressure portion including the region A but also the force generated by the shearing of the fuel (fluid) flowing around the spacer 225 acts on the spacer 225 . Here, pressure and fluid shear force are collectively referred to as fluid force. However, the fluid force acting on the spacer 225 is dominated by the pressure of the low pressure portion including the region A rather than the shear force of the fluid.
 また、図6に示すように、開弁時には、すなわちアンカー310と弁体313が変位する際には、アンカー310の上端面310aは係合部328の下端面328bに当接し、アンカー310と係合部328が係合する。この際、弁体313の軸部313aと、係合部328の下端面328bと、アンカー310の上端面310aによって形成される領域B(図5及び図6)は、その体積が圧縮されるために圧力が上昇する。この正圧の作用で、アンカー310に対して大きな流体力が、軸線方向Daの先端側に作用する。特に、係合部328の下端面328bと、アンカー310の上端面310aとの間隙が狭くなると、流体が狭い間隙を押し出されることになる。そのため、弁体313やアンカー310には、スクイズ力と呼ばれる大きな流体抵抗力が生じる。すなわちアンカー310に対しては、スクイズ力とよばれる大きな流体力が、軸線方向Daの先端側に作用する。 Also, as shown in FIG. 6, when the valve is opened, that is, when the anchor 310 and the valve body 313 are displaced, the upper end surface 310a of the anchor 310 contacts the lower end surface 328b of the engaging portion 328, and the anchor 310 and the engaging portion 328 are engaged. At this time, the volume of region B (FIGS. 5 and 6) formed by the shaft portion 313a of the valve body 313, the lower end surface 328b of the engaging portion 328, and the upper end surface 310a of the anchor 310 is compressed, so the pressure increases. Due to the action of this positive pressure, a large fluid force acts on the anchor 310 toward the distal end side in the axial direction Da. In particular, when the gap between the lower end surface 328b of the engaging portion 328 and the upper end surface 310a of the anchor 310 becomes narrower, the fluid is pushed out through the narrow gap. Therefore, a large fluid resistance force called squeeze force is generated in the valve body 313 and the anchor 310 . That is, a large fluid force called squeeze force acts on the anchor 310 toward the distal end in the axial direction Da.
 なお、軸部313aと、アンカー310の挿通孔310cとの間には、微小な隙間がある。しかしながら、この隙間からは、領域Bの圧力上昇を抑制できるほどの流体が流出することはできない。 Note that there is a minute gap between the shaft portion 313a and the insertion hole 310c of the anchor 310. However, the amount of fluid that can suppress the pressure increase in region B cannot flow out from this gap.
 このように、領域Aに働く負圧、上面部216bと上端面328aとに働く張り付き力、領域Bに働く正圧、及び下端面328bと上端面310aとに働くスクイズ力によって、スペーサー225及びアンカー310に軸線方向Daの先端側、すなわち開弁動作を妨げる方向に向かって大きな流体力が作用する。したがって、この流体力が、開弁の応答性を妨げていた。また、流体力が大きいことから、摺動部や各パーツの寸法の製造ばらつきの影響を受けやすく、開弁動作にばらつきが生じ、その結果、個体ごとの噴射量にばらつきが生じていた。さらに、この流体力に打ち勝つような磁気吸引力を発生させる必要があることも、噴射量ばらつきの要因となっていた。 In this way, a large fluid force acts on the spacer 225 and the anchor 310 toward the tip side in the axial direction Da, that is, in the direction that hinders the valve opening operation, due to the negative pressure acting on the area A, the sticking force acting on the upper surface portion 216b and the upper end surface 328a, the positive pressure acting on the area B, and the squeeze force acting on the lower end surface 328b and the upper end surface 310a. Therefore, this fluid force hindered the responsiveness of opening the valve. In addition, since the fluid force is large, it is susceptible to manufacturing variations in the dimensions of the sliding parts and each part, resulting in variations in the valve opening operation and, as a result, variations in the injection amount for each unit. Furthermore, the need to generate a magnetic attraction force that overcomes this fluid force has also been a factor in the injection amount variation.
 開弁状態(フルリフト状態)となると、図7に示すように、アンカー310が弁体313の係合部328に当接し、係合部328の上端面328aとスペーサー225における収容部216の上面部216bとの間に間隙G3が形成される。図7に示す開弁状態から閉弁状態に変位する際は、領域Aや上面部216bと上端面328aとの間隙の体積が減少するため、圧力が上昇し、また上面部216bと上端面328aにはスクイズ力が働く。 When the valve is in the open state (full lift state), as shown in FIG. 7, the anchor 310 contacts the engaging portion 328 of the valve body 313, and a gap G3 is formed between the upper end surface 328a of the engaging portion 328 and the upper surface portion 216b of the housing portion 216 of the spacer 225. When the valve is displaced from the open state shown in FIG. 7 to the closed state, the volume of the area A or the gap between the upper surface portion 216b and the upper end surface 328a decreases, so the pressure increases, and a squeezing force acts on the upper surface portion 216b and the upper end surface 328a.
 また、領域Bや下端面328bと上端面310aとの間隙の体積は増加するため、圧力が減少し、また下端面328bと上端面310aには張り付き力が生じる。その結果、スペーサー225やアンカー310には閉弁を妨げる方向、すなわち軸線方向Daの後端側に向けて流体力が作用し、スペーサー225、アンカー310、及び弁体113の閉弁応答性を妨げていた。 In addition, since the volume of the area B and the gap between the lower end surface 328b and the upper end surface 310a increases, the pressure decreases and sticking force is generated between the lower end surface 328b and the upper end surface 310a. As a result, a fluid force acts on the spacer 225 and the anchor 310 in a direction that prevents the valve from closing, that is, toward the rear end side in the axial direction Da.
 これに対して、本例の燃料噴射装置1では、図2に示すように、弁体113の係合部128における軸線方向Daの後端側に第2曲面部128dを設け、スペーサー125の収容部16にテーパー部16bを設けている。また、第2曲面部128dとテーパー部16bは、それぞれ第2当接部128gと当接部16cで線接触により当接する。これにより、図2のような開弁動作開始時において、以下に示す主に2つの効果によって、開弁動作開始時の流体力を低減し、応答性を高めることができる。 On the other hand, in the fuel injection device 1 of this example, as shown in FIG. 2, a second curved surface portion 128d is provided on the rear end side of the engaging portion 128 of the valve body 113 in the axial direction Da, and the accommodating portion 16 of the spacer 125 is provided with a tapered portion 16b. The second curved surface portion 128d and the tapered portion 16b are in line contact with each other at the second contact portion 128g and the contact portion 16c, respectively. As a result, at the start of the valve opening operation as shown in FIG. 2, the fluid force at the start of the valve opening operation can be reduced and the responsiveness can be enhanced mainly by the following two effects.
 まず、1つ目の効果は、領域Cから領域Aに流れる流体の抵抗を低減できることである。図5から図7に示した従来例では、上面部216bと上端面328aとの間隙が流路となる。領域Aに負圧が生じた際に、流体が領域Cから上面部216bと上端面328aとの間隙に流入する際や、上面部216bと上端面328aとの間隙から領域Aに流出する際に、それぞれ急縮小、急拡大の流路となる。そのため、上面部216bと上端面328aとの間隙を流路と考えたときの入口損失、出口損失が生じ、流体抵抗が大きくなる。 First, the first effect is that the resistance of the fluid flowing from area C to area A can be reduced. In the conventional example shown in FIGS. 5 to 7, the gap between the upper surface portion 216b and the upper end surface 328a serves as the flow path. When a negative pressure is generated in the area A, the fluid flows from the area C into the gap between the upper surface portion 216b and the upper end surface 328a, or flows out from the gap between the upper surface portion 216b and the upper end surface 328a into the area A. Therefore, when the gap between the upper surface portion 216b and the upper end surface 328a is considered as a channel, an inlet loss and an outlet loss occur, and the fluid resistance increases.
 また、上面部216bと上端面328aとの間隙も狭い流路となるため、流路の管摩擦損失が大きくなる。したがって、領域Cから領域Aに流体が流れる際の圧力損失は大きくなり、領域Aの負圧の大きさは大きくなる。 In addition, since the gap between the upper surface portion 216b and the upper end surface 328a is also narrow, the pipe friction loss in the flow passage increases. Therefore, the pressure loss when the fluid flows from area C to area A increases, and the magnitude of the negative pressure in area A increases.
 一方で、本例では、領域Cから領域Aに流体が流れる際に、収容部16にテーパー部16bを設けたことで、徐々に流路の大きさを変化させることができるため、上述した入口損失、出口損失を小さくすることができる。 On the other hand, in this example, when the fluid flows from region C to region A, the provision of the tapered portion 16b in the accommodating portion 16 allows the size of the flow path to be changed gradually, so the above-described inlet loss and outlet loss can be reduced.
 また、第2曲面部128dとテーパー部16bは、線接触により当接しているため、係合部128と収容部16の当接部128g、16c間を流れる流路抵抗は、従来例と比較して小さい。このことから、本例においては、領域Cから領域Aに流体が流れる際の抵抗を小さくすることができ、領域Aの負圧は緩和される。その結果、負圧を小さくすることができるため、スペーサー125に働く軸線方向Daの先端側に向かう流体力を小さくすることができる。 In addition, since the second curved surface portion 128d and the tapered portion 16b are in line contact, the flow path resistance between the engaging portion 128 and the contact portions 128g and 16c of the housing portion 16 is smaller than in the conventional example. Therefore, in this example, the resistance when the fluid flows from the area C to the area A can be reduced, and the negative pressure in the area A is alleviated. As a result, since the negative pressure can be reduced, the fluid force acting on the spacer 125 toward the distal end side in the axial direction Da can be reduced.
 次に、2つめの効果は、張り付き力の低下である。図5から7に示す従来例においては、上面部216bと上端面328aの当接部が平面であり、面接触している。そのため、上面部216bと上端面328aの間には、大きな張り付き力が生じる。 Next, the second effect is a reduction in sticking force. In the conventional example shown in FIGS. 5 to 7, the contact portion between the upper surface portion 216b and the upper end surface 328a is flat and is in surface contact. Therefore, a large sticking force is generated between the upper surface portion 216b and the upper end surface 328a.
 これに対して、本例の当接部128f、128gは、曲面部128c、128dに形成されており、アンカー110や収容部16に対して線接触する。そのため、流体が容易に流入出するために張り付き力が小さい。その結果、スペーサー125に働く軸線方向Daの先端側に向かう流体力は小さくなる。 On the other hand, the abutting portions 128f and 128g of this example are formed on the curved surface portions 128c and 128d, and are in line contact with the anchor 110 and the housing portion 16. Therefore, the sticking force is small because the fluid flows in and out easily. As a result, the fluid force acting on the spacer 125 toward the distal end in the axial direction Da becomes smaller.
 以上の理由により,本例においては,開弁動作開始時の流体力を低減し、応答性を高めることができる。それによって、開弁動作のばらつきを低減し、噴射量のばらつきを低減することができる。 For the above reasons, in this example, the fluid force at the start of the valve opening operation can be reduced and the responsiveness can be improved. As a result, variations in the valve opening operation can be reduced, and variations in the injection amount can be reduced.
 また、図3に示したように、開弁直前あるいは開弁開始時においても、同様に2つの効果で流体力を低減し、応答性を高めることができる。図5から図7に示した従来0においては、アンカー310の上端面310aと係合部328の下端面328bは流路を形成するが、急縮小、急拡大を有し、また平面どうしで形成される流路も狭い。そのため、入口損失、出口損失、及び管摩擦損失が大きく、領域Bから領域Cに流れる際の流体抵抗が大きく、領域Bが高圧となる。 Also, as shown in FIG. 3, just before the valve opens or when the valve starts to open, the fluid force can be similarly reduced by two effects, and the responsiveness can be improved. 5 to 7, the upper end surface 310a of the anchor 310 and the lower end surface 328b of the engaging portion 328 form a flow path, which rapidly contracts and expands, and the flow path formed between the flat surfaces is narrow. Therefore, the inlet loss, the outlet loss, and the tube friction loss are large, the fluid resistance when flowing from the region B to the region C is large, and the pressure in the region B becomes high.
 これに対して、本例では、開弁直前あるいは開弁開始時において、係合部128とアンカー110は、第1曲面部128cの第1当接部128fと、テーパー部110bの当接部110eとで当接し、線接触している。そのため、入口損失、出口損失、及び管摩擦損失が小さく、領域Bから領域Cに流れる際の流体抵抗を小さくできる。これにより、領域Bの高圧が緩和され、すなわち正圧は従来例と比較して小さくすることができる。すなわち、本例では、アンカーのテーパー部110bと係合部128の第1曲面部128cにより流体抵抗低減部が構成される。 On the other hand, in this example, just before the valve opens or when the valve starts to open, the engaging portion 128 and the anchor 110 are in line contact with the first contact portion 128f of the first curved surface portion 128c and the contact portion 110e of the tapered portion 110b. Therefore, inlet loss, outlet loss, and pipe friction loss are small, and fluid resistance when flowing from region B to region C can be reduced. As a result, the high pressure in the region B is relaxed, that is, the positive pressure can be made smaller than in the conventional example. That is, in this example, the tapered portion 110b of the anchor and the first curved surface portion 128c of the engaging portion 128 constitute the fluid resistance reducing portion.
 また、係合部128とアンカー110を線接触にすることにより、流体が容易に流入出するためにスクイズ力を小さくすることができる。その結果、アンカー110に働く軸線方向Daの先端側に向かう流体力は小さくなり、開弁動作のばらつきを低減し、噴射量のばらつきを低減することができる。 Also, by making the engaging portion 128 and the anchor 110 in line contact, the fluid can easily flow in and out, so the squeezing force can be reduced. As a result, the fluid force acting on the anchor 110 toward the distal end side in the axial direction Da is reduced, and variations in the valve opening operation can be reduced, and variations in the injection amount can be reduced.
 なお,本例では,係合部128は、軸線方向Daの後端側に第2曲面部128dと、軸線方向Daの先端側に第1曲面部128cとを有し、その双方においてそれぞれスペーサー125と、アンカー110に線接触している。この2つの線接触部は、それぞれ開弁動作中における役割が異なる。すなわち、軸線方向Daの後端側の第2曲面部128dにおける線接触は、図2に示したように開弁動作開始時の流体力を低減する。これ対して、軸線方向Daの先端側の第1曲面部128cは、図3に示したように開弁直前あるいは開弁開始時における流体力を低減する。したがって、より大きな効果を得るためには、係合部128の両側に線接触部を設けることが望ましい。 In this example, the engaging portion 128 has a second curved surface portion 128d on the rear end side in the axial direction Da and a first curved surface portion 128c on the front end side in the axial direction Da, both of which are in line contact with the spacer 125 and the anchor 110, respectively. These two line contact portions have different roles during the valve opening operation. That is, the line contact at the second curved surface portion 128d on the rear end side in the axial direction Da reduces the fluid force at the start of the valve opening operation as shown in FIG. On the other hand, the first curved surface portion 128c on the tip side in the axial direction Da reduces the fluid force immediately before the valve opens or when the valve starts to open, as shown in FIG. Therefore, in order to obtain a greater effect, it is desirable to provide line contact portions on both sides of the engaging portion 128 .
 また、本例では、係合部128の両側に曲面部を設け、両側が線接触する例を説明したが、これに限定されるものではない。例えば、係合部128のうちいずれか一方のみに曲面部を設け、片側のみが線接触するように構成してもよい。なお、開弁動作開始時よりも、開弁直前あるいは開弁開始時の方が、アンカー110及びスペーサー125の速度が大きい。そのため、軸線方向Daの先端側の第1曲面部128cにおける線接触部の方が、流体力低減効果は大きい。 In addition, in this example, an example in which curved surface portions are provided on both sides of the engaging portion 128 and both sides are in line contact has been described, but the present invention is not limited to this. For example, only one of the engaging portions 128 may be provided with a curved portion so that only one side is in line contact. Note that the speed of the anchor 110 and the spacer 125 is higher immediately before the valve opening or at the start of the valve opening than at the start of the valve opening operation. Therefore, the fluid force reduction effect is greater at the line contact portion of the first curved surface portion 128c on the tip side in the axial direction Da.
 また、本例の燃料噴射装置1によれば、開弁時と同様に、閉弁時においても流体力を低減し、応答性を向上することができる。閉弁時においては、領域Bが相対的に負圧にあり、領域Aが相対的に正圧となる。これらに対して、開弁時と同様に、領域Bに働く負圧、アンカー110と係合部128とに働く張り付き力、領域Aに働く正圧、及びスペーサー125と係合部128とに働くスクイズ力を低下することができる。 Further, according to the fuel injection device 1 of this embodiment, the fluid force can be reduced and the responsiveness can be improved when the valve is closed as well as when the valve is opened. When the valve is closed, region B has a relatively negative pressure and region A has a relatively positive pressure. On the other hand, the negative pressure acting on area B, the sticking force acting on the anchor 110 and the engaging portion 128, the positive pressure acting on the area A, and the squeezing force acting on the spacer 125 and the engaging portion 128 can be reduced in the same manner as when the valve is opened.
 また、スペーサー125やアンカー110にテーパー部110b、16cを設け、弁体113の係合部128と線接触している。そのため、スペーサー125やアンカー110の中心軸と、弁体113の中心軸を調芯させることもできる。そのため、閉弁中、開弁動作中、及び閉弁動作中に、スペーサー125と弁体113、及びアンカー110と弁体113の軸芯を調芯させることができる。これにより、スペーサー125やアンカー110の動作ばらつきを低減でき、噴射量ばらつきを低減することができる。 Also, the spacer 125 and the anchor 110 are provided with tapered portions 110b and 16c, which are in line contact with the engaging portion 128 of the valve body 113. Therefore, the central axis of the spacer 125 or the anchor 110 and the central axis of the valve body 113 can be aligned. Therefore, the axial centers of the spacer 125 and the valve body 113 and between the anchor 110 and the valve body 113 can be aligned during the valve closing operation, the valve opening operation, and the valve closing operation. As a result, variations in operation of the spacers 125 and the anchors 110 can be reduced, and variations in the injection amount can be reduced.
 また、摺動軸部129が係合部128よりも軸線方向Daの後端部側に形成され、スペーサー125と摺動する例について説明したが、これに限定されるものではない。例えば弁体113とスペーサー125は、円筒部128e及び内壁面16aで摺動していても良い。さらに、本例では、スペーサー125が小径部12を有する例について説明したが、小径部12を有さないスペーサーであっても良い。 Also, an example in which the sliding shaft portion 129 is formed closer to the rear end portion in the axial direction Da than the engaging portion 128 and slides on the spacer 125 has been described, but it is not limited to this. For example, the valve body 113 and the spacer 125 may slide on the cylindrical portion 128e and the inner wall surface 16a. Furthermore, in this example, an example in which the spacer 125 has the small diameter portion 12 has been described, but the spacer may not have the small diameter portion 12 .
2.第2の実施の形態例
 次に、図8を参照して第2の実施の形態例にかかる燃料噴射装置について説明する。
 図8は、第2の実施の形態例にかかる燃料噴射装置におけるスペーサー周りを拡大して示す断面図である。
2. Second Embodiment Next, a fuel injection device according to a second embodiment will be described with reference to FIG.
FIG. 8 is an enlarged cross-sectional view showing the periphery of the spacer in the fuel injection device according to the second embodiment.
 第2の実施の形態例にかかる燃料噴射装置が、第1の実施の形態例にかかる燃料噴射装置1と異なる点は、アンカー及びスペーサーの形状である。そのため、ここでは、第1の実施の形態例にかかる燃料噴射装置1と共通する部分には、同一の符号を付して重複した説明を省略する。 The fuel injection device according to the second embodiment differs from the fuel injection device 1 according to the first embodiment in the shapes of anchors and spacers. Therefore, here, the parts common to the fuel injection device 1 according to the first embodiment are denoted by the same reference numerals, and overlapping explanations are omitted.
 図8に示すように、スペーサー125Aは、図5に示す従来例にかかるスペーサー225と同様の形状を有しており、収容部16における係合部128の第2当接部128aと当接する面は、平面状の上面部16bとなっている。 As shown in FIG. 8, the spacer 125A has the same shape as the spacer 225 according to the conventional example shown in FIG.
 アンカー110Aの上端面110aには、段差部110fが形成されている。段差部110fは、上端面110aから軸線方向Daの先端側に向けて凹んだ凹部である。段差部110fは、テーパー部110b及び挿通孔110cの同心円上に形成されている。そして、段差部110fは、テーパー部110bに連続する。 A stepped portion 110f is formed on the upper end surface 110a of the anchor 110A. The stepped portion 110f is a concave portion recessed from the upper end surface 110a toward the tip side in the axial direction Da. The stepped portion 110f is formed on a concentric circle between the tapered portion 110b and the insertion hole 110c. The stepped portion 110f continues to the tapered portion 110b.
 この第2の実施の形態例にかかる燃料噴射装置の場合、開弁動作開始と共に、流体は、領域Bから領域Cや、さらに、領域Aに流れる。また、アンカー110Aに段差部110fを設けたことで、領域Bから領域Cに流れる際に、流体が流れる方向が矢印Eに示す方向、すなわちスペーサー125が開弁する方向に転向する。そのため、スペーサー125には、転向した流体から開弁する方向への力が作用する。その結果、第2の実施の形態例にかかる燃料噴射装置によれば、開弁応答性を高めることができ、開弁動作のばらつきや、噴射量のばらつきを低減することができる。 In the case of the fuel injection device according to the second embodiment, the fluid flows from area B to area C and then to area A as soon as the valve opening operation is started. Further, by providing the step portion 110f in the anchor 110A, when the fluid flows from the area B to the area C, the direction of the fluid flow is changed to the direction indicated by the arrow E, that is, the direction in which the spacer 125 opens the valve. Therefore, a force acts on the spacer 125 in the valve opening direction from the diverted fluid. As a result, according to the fuel injection device according to the second embodiment, the valve opening responsiveness can be enhanced, and variations in the valve opening operation and variations in the injection amount can be reduced.
 その他の構成は、第1の実施の形態例にかかる燃料噴射装置1と同様であるため、それらの説明は省略する。このようなスペーサー125A、アンカー110Aを有する燃料噴射装置によっても、上述した第1の実施の形態例にかかる燃料噴射装置1と同様の作用効果を得ることができる。 The rest of the configuration is the same as the fuel injection device 1 according to the first embodiment, so description thereof will be omitted. A fuel injection device having such spacers 125A and anchors 110A can also provide the same effects as the fuel injection device 1 according to the first embodiment described above.
3.第3の実施の形態例
 次に、図9を参照して第3の実施の形態例にかかる燃料噴射装置について説明する。
 図9は、第3の実施の形態例にかかる燃料噴射装置におけるスペーサー周りを拡大して示す断面図である。
3. Third Embodiment Next, a fuel injection device according to a third embodiment will be described with reference to FIG.
FIG. 9 is an enlarged cross-sectional view showing the periphery of the spacer in the fuel injection device according to the third embodiment.
 第3の実施の形態例にかかる燃料噴射装置が、第1の実施の形態例にかかる燃料噴射装置1と異なる点は、スペーサー及びスペーサーのテーパー部の形状である。そのため、ここでは、第1の実施の形態例にかかる燃料噴射装置1と共通する部分には、同一の符号を付して重複した説明を省略する。 The fuel injection device according to the third embodiment differs from the fuel injection device 1 according to the first embodiment in the shape of the spacer and the tapered portion of the spacer. Therefore, here, the parts common to the fuel injection device 1 according to the first embodiment are denoted by the same reference numerals, and overlapping explanations are omitted.
 図9に示すように、アンカー110に設けたテーパー部110bは、後述するスペーサー125Bのテーパー部16bに向けて傾斜している。そのため、開弁動作中において、テーパー部110bの当接部110e及び第1当接部128fを流れる流体は、テーパー部110bによって矢印Eの向きの方向、すなわちスペーサー125Bのテーパー部16bに向けて流れる。 As shown in FIG. 9, a tapered portion 110b provided on the anchor 110 is inclined toward a tapered portion 16b of a spacer 125B, which will be described later. Therefore, during the valve opening operation, the fluid flowing through the contact portion 110e and the first contact portion 128f of the tapered portion 110b flows in the direction of the arrow E, that is, toward the tapered portion 16b of the spacer 125B.
 また、スペーサー125Bのテーパー部16bは、スペーサー125Bの下端面14の近傍まで形成されている。すなわち、テーパー部16bは、アンカー110のテーパー部110bの傾斜方向の延長線上に配置される。これにより、アンカー110のテーパー部110bに沿って流れた流体を、スペーサー125Bのテーパー部16bで受けることができる。その結果、第2の実施の形態例にかかる燃料噴射装置と同様に、スペーサー125Bが開弁する向きに流体が流れる力が作用するため、開弁応答性を高めることができ、開弁動作のばらつきや、噴射量のばらつきを低減することができる。 Also, the tapered portion 16b of the spacer 125B is formed up to the vicinity of the lower end surface 14 of the spacer 125B. That is, the tapered portion 16b is arranged on the extension of the tapered portion 110b of the anchor 110 in the direction of inclination. Accordingly, the fluid flowing along the tapered portion 110b of the anchor 110 can be received by the tapered portion 16b of the spacer 125B. As a result, as in the case of the fuel injection device according to the second embodiment, a fluid flow force acts in the direction in which the spacer 125B opens the valve, so that the valve opening responsiveness can be enhanced, and variations in the valve opening operation and in the injection amount can be reduced.
 その他の構成は、第1の実施の形態例にかかる燃料噴射装置1と同様であるため、それらの説明は省略する。このようなスペーサー125Bを有する燃料噴射装置によっても、上述した第1の実施の形態例にかかる燃料噴射装置1と同様の作用効果を得ることができる。 The rest of the configuration is the same as the fuel injection device 1 according to the first embodiment, so description thereof will be omitted. A fuel injection device having such a spacer 125B can also provide the same effects as the fuel injection device 1 according to the first embodiment described above.
4.第4の実施の形態例
 次に、図10を参照して第4の実施の形態例にかかる燃料噴射装置について説明する。
 図10は、第4の実施の形態例にかかる燃料噴射装置におけるスペーサー周りを拡大して示す断面図である。
4. Fourth Embodiment Next, a fuel injection device according to a fourth embodiment will be described with reference to FIG.
FIG. 10 is an enlarged cross-sectional view showing the periphery of the spacer in the fuel injection device according to the fourth embodiment.
 第4の実施の形態例にかかる燃料噴射装置が、第1の実施の形態例にかかる燃料噴射装置1と異なる点は、係合部の形状である。そのため、ここでは、第1の実施の形態例にかかる燃料噴射装置1と共通する部分には、同一の符号を付して重複した説明を省略する。 The fuel injection device according to the fourth embodiment differs from the fuel injection device 1 according to the first embodiment in the shape of the engaging portion. Therefore, here, the parts common to the fuel injection device 1 according to the first embodiment are denoted by the same reference numerals, and overlapping explanations are omitted.
 図10に示すように、第4の実施の形態例にかかる燃料噴射装置のアンカー110及びスペーサー125の形状は、図5に示す従来にかかる燃料噴射装置のアンカー310及びスペーサー225と同様の形状に構成されている。なお、アンカー110及びスペーサー125の形状は、上述した第1の実施の形態例から第3の実施の形態例にかかるアンカー及びスペーサーの形状にしてもよい。 As shown in FIG. 10, the anchors 110 and spacers 125 of the fuel injection device according to the fourth embodiment have the same shapes as the anchors 310 and spacers 225 of the conventional fuel injection device shown in FIG. The shapes of the anchors 110 and the spacers 125 may be the shapes of the anchors and spacers according to the first to third embodiments described above.
 図10に示すように、弁体113Cには、係合部128が設けられている。係合部128におけるアンカー110の上端面110aと対向する面には、凹部128hが形成されている。凹部128hは、係合部128の下端面から軸線方向Daに向けて曲面状に凹んでいる。そのため、係合部128の第1当接部128fと、アンカー110の当接部110eは、線接触する。これにより、第1の実施の形態例にかかる燃料噴射装置1と同様に、張り付き力やスクイズ力を低減することができ、開閉弁動作中の流体力を低減し、応答性を高めることができる。 As shown in FIG. 10, an engaging portion 128 is provided on the valve body 113C. A concave portion 128h is formed in a surface of the engaging portion 128 facing the upper end surface 110a of the anchor 110. As shown in FIG. The recessed portion 128h is recessed in a curved shape from the lower end surface of the engaging portion 128 toward the axial direction Da. Therefore, the first contact portion 128f of the engaging portion 128 and the contact portion 110e of the anchor 110 are in line contact. As a result, sticking force and squeezing force can be reduced, fluid force during opening/closing valve operation can be reduced, and responsiveness can be improved, as in the case of the fuel injection device 1 according to the first embodiment.
 その他の構成は、第1の実施の形態例にかかる燃料噴射装置1と同様であるため、それらの説明は省略する。このような弁体113Cを有する燃料噴射装置によっても、上述した第1の実施の形態例にかかる燃料噴射装置1と同様の作用効果を得ることができる。 The rest of the configuration is the same as the fuel injection device 1 according to the first embodiment, so description thereof will be omitted. A fuel injection device having such a valve body 113C can also provide the same effects as the fuel injection device 1 according to the first embodiment described above.
5.第5の実施の形態例
 次に、図11を参照して第5の実施の形態例にかかる燃料噴射装置について説明する。
 図11は、第5の実施の形態例にかかる燃料噴射装置におけるスペーサー周りを拡大して示す断面図である。
5. Fifth Embodiment Next, a fuel injection device according to a fifth embodiment will be described with reference to FIG.
FIG. 11 is an enlarged cross-sectional view showing the periphery of the spacer in the fuel injection device according to the fifth embodiment.
 第5の実施の形態例にかかる燃料噴射装置が、第1の実施の形態例にかかる燃料噴射装置1と異なる点は、アンカーのテーパー部の形状である。そのため、ここでは、第1の実施の形態例にかかる燃料噴射装置1と共通する部分には、同一の符号を付して重複した説明を省略する。 The fuel injection device according to the fifth embodiment differs from the fuel injection device 1 according to the first embodiment in the shape of the tapered portion of the anchor. Therefore, here, the parts common to the fuel injection device 1 according to the first embodiment are denoted by the same reference numerals, and overlapping explanations are omitted.
 図11に示すように、アンカー110Dのテーパー部110bには、複数の溝110gが形成されている。溝110gは、テーパー部110bに放射状に形成されている。すなわち、溝110gは、挿通孔110cから上端面110aにかけて連続して形成されている。そして、流体が溝110gを通過することで、開閉弁動作中において、領域Bから領域C、あるいは領域Cから領域Bに流れる流体の流体抵抗を小さくすることができる。 As shown in FIG. 11, a plurality of grooves 110g are formed in the tapered portion 110b of the anchor 110D. The grooves 110g are radially formed in the tapered portion 110b. That is, the groove 110g is formed continuously from the insertion hole 110c to the upper end surface 110a. By passing the fluid through the groove 110g, the fluid resistance of the fluid flowing from the area B to the area C or from the area C to the area B can be reduced during the opening/closing operation of the valve.
 その他の構成は、第1の実施の形態例にかかる燃料噴射装置1と同様であるため、それらの説明は省略する。このようなアンカー110Dを有する燃料噴射装置によっても、上述した第1の実施の形態例にかかる燃料噴射装置1と同様の作用効果を得ることができる。 The rest of the configuration is the same as the fuel injection device 1 according to the first embodiment, so description thereof will be omitted. A fuel injection device having such an anchor 110D can also provide the same effects as the fuel injection device 1 according to the first embodiment described above.
 なお、第5の実施の形態例にかかる燃料噴射装置では、アンカー110Dに溝110gを形成する例を説明したが、これに限定されるものではない。例えば、係合部128における第1曲面部128cに溝を形成してもよい。すなわち、係合部128の第1当接部128fとアンカー110Dの当接部110eのうち少なくとも一方に溝が形成されていればよい。 In addition, in the fuel injection device according to the fifth embodiment, an example in which the groove 110g is formed in the anchor 110D has been described, but the present invention is not limited to this. For example, grooves may be formed in the first curved surface portion 128c of the engaging portion 128 . That is, it is sufficient that at least one of the first contact portion 128f of the engaging portion 128 and the contact portion 110e of the anchor 110D has a groove.
6.第6の実施の形態例
 次に、図12を参照して第6の実施の形態例にかかる燃料噴射装置について説明する。
 図12は、第6の実施の形態例にかかる燃料噴射装置におけるスペーサー周りを拡大して示す断面図である。
6. Sixth Embodiment Next, a fuel injection device according to a sixth embodiment will be described with reference to FIG.
FIG. 12 is an enlarged cross-sectional view showing the periphery of the spacer in the fuel injection device according to the sixth embodiment.
 第6の実施の形態例にかかる燃料噴射装置が、第1の実施の形態例にかかる燃料噴射装置1と異なる点は、弁体の係合部の形状である。そのため、ここでは、第1の実施の形態例にかかる燃料噴射装置1と共通する部分には、同一の符号を付して重複した説明を省略する。 The fuel injection device according to the sixth embodiment differs from the fuel injection device 1 according to the first embodiment in the shape of the engaging portion of the valve body. Therefore, here, the parts common to the fuel injection device 1 according to the first embodiment are denoted by the same reference numerals, and overlapping explanations are omitted.
 図12に示すように、第6の実施の形態例にかかる燃料噴射装置のアンカー110及びスペーサー125の形状は、図5に示す従来にかかる燃料噴射装置のアンカー310及びスペーサー225と同様の形状に構成されている。なお、アンカー110及びスペーサー125の形状は、上述した第1の実施の形態例から第5の実施の形態例にかかるアンカー及びスペーサーの形状にしてもよい。 As shown in FIG. 12, the anchors 110 and spacers 125 of the fuel injection device according to the sixth embodiment have the same shapes as the anchors 310 and spacers 225 of the conventional fuel injection device shown in FIG. The shapes of the anchors 110 and the spacers 125 may be the shapes of the anchors and spacers according to the first to fifth embodiments described above.
 図12に示すように、弁体113Eには、係合部128が形成されている。係合部128におけるアンカー110の上端面110aと対向する下端面128bには、複数の溝128iが形成されている。溝128iは、下端面128bに放射状に形成されている。そして、溝128iは、係合部128がアンカー110の上端面110aに当接する領域に形成されている。開閉弁動作中に流体が、溝128iを通過することで、領域Bから領域C、あるいは領域Cから領域Bに流れる流体の流体抵抗を小さくすることができる。すなわち、第6の実施の形態例にかかる燃料噴射装置では、係合部128に形成した溝128iにより流体抵抗低減部が構成される。 As shown in FIG. 12, an engaging portion 128 is formed on the valve body 113E. A plurality of grooves 128i are formed in a lower end surface 128b of the engaging portion 128 facing the upper end surface 110a of the anchor 110. As shown in FIG. The grooves 128i are radially formed in the lower end surface 128b. The groove 128 i is formed in a region where the engaging portion 128 contacts the upper end surface 110 a of the anchor 110 . Since the fluid passes through the groove 128i during the opening/closing operation of the valve, the fluid resistance of the fluid flowing from the area B to the area C or from the area C to the area B can be reduced. That is, in the fuel injection device according to the sixth embodiment, the groove 128i formed in the engaging portion 128 constitutes the fluid resistance reducing portion.
 なお、流体抵抗低減部である溝を係合部128に設けた例を説明したが、これに限定されるものではなく、アンカー110における係合部128と対向する面に設けてもよい。すなわち、溝は、係合部128とアンカー110における少なくとも一方に形成されていればよい。 Although an example in which the groove, which is the fluid resistance reduction portion, is provided on the engaging portion 128 has been described, the present invention is not limited to this, and may be provided on the surface of the anchor 110 facing the engaging portion 128 . That is, the groove should be formed in at least one of the engaging portion 128 and the anchor 110 .
 その他の構成は、第1の実施の形態例にかかる燃料噴射装置1と同様であるため、それらの説明は省略する。このような弁体113Eを有する燃料噴射装置によっても、上述した第1の実施の形態例にかかる燃料噴射装置1と同様の作用効果を得ることができる。 The rest of the configuration is the same as the fuel injection device 1 according to the first embodiment, so description thereof will be omitted. A fuel injection device having such a valve body 113E can also provide the same effects as the fuel injection device 1 according to the first embodiment described above.
 なお、上述しかつ図面に示した実施の形態に限定されるものではなく、請求の範囲に記載した発明の要旨を逸脱しない範囲内で種々の変形実施が可能である。 It should be noted that the present invention is not limited to the embodiments described above and shown in the drawings, and various modifications are possible without departing from the gist of the invention described in the claims.
 また、上述した実施の形態例では、係合部とアンカー、係合部とスペーサーが線接触する例を説明したが、これに限定されるものではなく、係合部とアンカーや、係合部とスペーサーは、点接触してもよい。 In addition, in the above-described embodiment, an example in which the engaging portion and the anchor and the engaging portion and the spacer are in line contact has been described, but the present invention is not limited to this, and the engaging portion and the anchor or the engaging portion and the spacer may be in point contact.
 なお、本明細書において、「平行」及び「直交」等の単語を使用したが、これらは厳密な「平行」及び「直交」のみを意味するものではなく、「平行」及び「直交」を含み、さらにその機能を発揮し得る範囲にある、「略平行」や「略直交」の状態であってもよい。 Although the terms "parallel" and "perpendicular" are used in this specification, they do not mean strictly "parallel" and "perpendicular" only.
 1…燃料噴射装置、 11…大径部、 12…小径部、 13…段差面、 14…下端面、 15…上端面、 16…収容部、 16a…内壁面、 16b…テーパー部、 16c…当接部、 18…ガイド孔(小径部側貫通孔)、 19…内壁面、 101…固定コア、 101a…貫通孔、 101b…先端部、 102…ノズルホルダ、 102c…連通孔、 103…噴射孔形成部材、 103a…弁座、 104…弁部材、 105…ガイド部材、 108…電磁コイル、 109…ハウジング、 110、110A、110D…アンカー、 110a…上端面、 110b…テーパー部、 110c…挿通孔、 110e…当接部、 110f…段差部、 110g…溝、 111…燃料供給口、 112…噴射孔、 113、113C、113E…弁体、 113a…軸部、 113b…接続凹部、 118…第1スプリング、 119…調整部材、 124…第2スプリング、 125、125A、125B…スペーサー、 126…第3スプリング、 127…ロッドヘッド、 127a…接続凸部、 128…係合部、 128a…上端面、 128b…下端面、 128c…第1曲面部、 128d…第2曲面部、 128e…円筒部、 128f…第1当接部、 128g…第2当接部、 128i…溝(流体抵抗低減部)、 129…摺動軸部 1... Fuel injection device 11... Large diameter part 12... Small diameter part 13... Stepped surface 14... Lower end face 15... Upper end face 16... Accommodating part 16a... Inner wall surface 16b... Taper part 16c... Contact part 18... Guide hole (small diameter side through hole) 19... Inner wall surface 101... Fixed core 101a... Through hole 10 1b... Tip part 102... Nozzle holder 102c... Communication hole 103... Injection hole forming member 103a... Valve seat 104... Valve member 105... Guide member 108... Electromagnetic coil 109... Housing 110, 110A, 110D... Anchor 110a... Upper end face 110b... Taper part 110c... Insertion hole 1 10e... Contact portion 110f... Stepped portion 110g... Groove 111... Fuel supply port 112... Injection hole 113, 113C, 113E... Valve body 113a... Shaft part 113b... Connection recess 118... First spring 119... Adjusting member 124... Second spring 125, 125A, 125B... Spacer 126... Third spring 127... Rod head 127a... Connecting convex part 128... Engaging part 128a... Upper end face 128b... Lower end face 128c... First curved surface part 128d... Second curved surface part 128e... Cylindrical part 128f... First contact part 128g... Second contact part 128i... Groove (fluid resistance reducing part), 129...Sliding shaft part

Claims (10)

  1.  噴射孔形成部材が設けられたノズルホルダと、
     前記ノズルホルダに配置された固定コアと、
     前記固定コアと対向して配置されるアンカーと、
     前記ノズルホルダに移動可能に配置された弁部材と、を備え、
     前記弁部材は、
     前記噴射孔形成部材に設けた噴射孔を開閉する軸部及び開弁動作時に前記アンカーと係合する係合部が設けられた弁体と、
     前記係合部が収容される収容部を有し、閉弁時に前記係合部と前記アンカーとの間に所定の間隙を形成するスペーサーと、を有し、
     前記係合部と前記アンカーとの間には、流体の抵抗を低減させる流体抵抗低減部が設けられる
     燃料噴射装置。
    a nozzle holder provided with an injection hole forming member;
    a fixed core disposed in the nozzle holder;
    an anchor arranged opposite to the fixed core;
    a valve member movably arranged in the nozzle holder,
    The valve member is
    a valve body provided with a shaft portion for opening and closing the injection hole provided in the injection hole forming member and an engaging portion that engages with the anchor during a valve opening operation;
    a spacer that has an accommodating portion in which the engaging portion is accommodated and that forms a predetermined gap between the engaging portion and the anchor when the valve is closed;
    A fuel injection device, wherein a fluid resistance reducing portion that reduces fluid resistance is provided between the engaging portion and the anchor.
  2.  前記係合部と前記アンカーは、点接触又は線接触し、前記係合部と前記アンカーが接触する箇所によって前記流体抵抗低減部が形成される
     請求項1に記載の燃料噴射装置。
    The fuel injection device according to claim 1, wherein the engaging portion and the anchor are in point contact or line contact, and the fluid resistance reducing portion is formed by a portion where the engaging portion and the anchor contact.
  3.  前記係合部と前記スペーサーは、点接触又は線接触する
     請求項2に記載の燃料噴射装置。
    The fuel injection device according to claim 2, wherein the engaging portion and the spacer are in point contact or line contact.
  4.  前記係合部における前記アンカーと対向する面には、曲面部が形成される
     請求項2に記載の燃料噴射装置。
    The fuel injection device according to claim 2, wherein a curved surface portion is formed on a surface of the engaging portion that faces the anchor.
  5.  前記アンカーにおける前記係合部と接触する箇所には、テーパー状に形成されたテーパー部が設けられる
     請求項4に記載の燃料噴射装置。
    5. The fuel injection device according to claim 4, wherein a portion of the anchor that contacts the engaging portion is provided with a tapered portion.
  6.  前記アンカーには、前記テーパー部に連続する段差部が形成され、
     前記テーパー部及び前記段差部は、前記流体が流れる向きを前記スペーサーに転向させる
     請求項5に記載の燃料噴射装置。
    The anchor is formed with a stepped portion continuous with the tapered portion,
    6. The fuel injection device according to claim 5, wherein the tapered portion and the stepped portion turn the flow direction of the fluid toward the spacer.
  7.  前記テーパー部には、前記流体が通過する溝が形成される
     請求項5に記載の燃料噴射装置。
    The fuel injection device according to claim 5, wherein a groove through which the fluid passes is formed in the tapered portion.
  8.  前記スペーサーにおける前記係合部と接触する箇所には、テーパー状に形成されたテーパー部が設けられる
     請求項5に記載の燃料噴射装置。
    6. The fuel injection device according to claim 5, wherein a taper portion formed in a tapered shape is provided at a portion of the spacer that contacts the engaging portion.
  9.  前記アンカーに形成された前記テーパー部の傾斜方向の延長線上に、前記スペーサーに形成したテーパー部が配置される
     請求項8に記載の燃料噴射装置。
    9. The fuel injection device according to claim 8, wherein the tapered portion formed in the spacer is arranged on an extension of the tapered portion formed in the anchor in the direction of inclination.
  10.  前記流体抵抗低減部は、前記係合部及び前記アンカーの少なくとも一方において、互いに対向する面に設けられた溝である
     請求項1に記載の燃料噴射装置。
    2. The fuel injection device according to claim 1, wherein the fluid resistance reduction portion is a groove provided on surfaces facing each other in at least one of the engaging portion and the anchor.
PCT/JP2022/027702 2022-01-18 2022-07-14 Fuel injection device WO2023139815A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022005439A JP2023104448A (en) 2022-01-18 2022-01-18 Fuel injection device
JP2022-005439 2022-01-18

Publications (1)

Publication Number Publication Date
WO2023139815A1 true WO2023139815A1 (en) 2023-07-27

Family

ID=87348477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027702 WO2023139815A1 (en) 2022-01-18 2022-07-14 Fuel injection device

Country Status (2)

Country Link
JP (1) JP2023104448A (en)
WO (1) WO2023139815A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012097704A (en) * 2010-11-05 2012-05-24 Denso Corp Fuel injection valve
JP2013100756A (en) * 2011-11-08 2013-05-23 Denso Corp Fuel injection valve
WO2016042869A1 (en) * 2014-09-18 2016-03-24 日立オートモティブシステムズ株式会社 Fuel injection valve
JP2017020478A (en) * 2015-07-15 2017-01-26 株式会社デンソー Fuel injection control device of internal combustion engine
JP2017053253A (en) * 2015-09-08 2017-03-16 株式会社デンソー Fuel injection device
JP2017089425A (en) * 2015-11-05 2017-05-25 株式会社デンソー Fuel injection device
JP2018159294A (en) * 2017-03-22 2018-10-11 株式会社ケーヒン Fuel injection valve
JP2019065848A (en) * 2017-09-29 2019-04-25 株式会社デンソー Fuel injection valve and manufacturing method of fuel injection valve

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012097704A (en) * 2010-11-05 2012-05-24 Denso Corp Fuel injection valve
JP2013100756A (en) * 2011-11-08 2013-05-23 Denso Corp Fuel injection valve
WO2016042869A1 (en) * 2014-09-18 2016-03-24 日立オートモティブシステムズ株式会社 Fuel injection valve
JP2017020478A (en) * 2015-07-15 2017-01-26 株式会社デンソー Fuel injection control device of internal combustion engine
JP2017053253A (en) * 2015-09-08 2017-03-16 株式会社デンソー Fuel injection device
JP2017089425A (en) * 2015-11-05 2017-05-25 株式会社デンソー Fuel injection device
JP2018159294A (en) * 2017-03-22 2018-10-11 株式会社ケーヒン Fuel injection valve
JP2019065848A (en) * 2017-09-29 2019-04-25 株式会社デンソー Fuel injection valve and manufacturing method of fuel injection valve

Also Published As

Publication number Publication date
JP2023104448A (en) 2023-07-28

Similar Documents

Publication Publication Date Title
JP4503711B2 (en) Fuel injection valve
KR100851767B1 (en) Fuel injection valve
EP3006720A1 (en) Fuel injection valve
US7770823B2 (en) Fuel injector and its stroke adjustment method
JP4790441B2 (en) Electromagnetic fuel injection valve and method of assembling the same
EP2574768A1 (en) Fuel injector
EP2067982A1 (en) Fuel injection valve
US7063279B2 (en) Fuel injection valve
JP2757317B2 (en) High pressure fuel injection device
JP2011208603A (en) Fuel injection valve
JP2010138886A (en) Fuel injection valve
JP2006097659A (en) Fuel injection valve
WO2017154815A1 (en) Fuel injection device
JP2013167194A (en) Fuel injection valve
JP4577654B2 (en) Electromagnetic drive device and fuel injection valve using the same
WO2023139815A1 (en) Fuel injection device
JP2020186704A (en) Fuel injection device
WO2022239329A1 (en) Fuel injection device
CN109196216B (en) Fuel injection device
WO2020105571A1 (en) Fuel injection device
WO2022149313A1 (en) Fuel injection device
JP2022143529A (en) Fuel injection device
WO2021039434A1 (en) Fuel injection device
WO2023276244A1 (en) Fuel injection device
JP2006291856A (en) Fuel injection valve

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22921969

Country of ref document: EP

Kind code of ref document: A1