WO2023276244A1 - Fuel injection device - Google Patents

Fuel injection device Download PDF

Info

Publication number
WO2023276244A1
WO2023276244A1 PCT/JP2022/005961 JP2022005961W WO2023276244A1 WO 2023276244 A1 WO2023276244 A1 WO 2023276244A1 JP 2022005961 W JP2022005961 W JP 2022005961W WO 2023276244 A1 WO2023276244 A1 WO 2023276244A1
Authority
WO
WIPO (PCT)
Prior art keywords
anchor
nozzle holder
fuel injection
injection device
valve
Prior art date
Application number
PCT/JP2022/005961
Other languages
French (fr)
Japanese (ja)
Inventor
寛 向井
泰介 杉井
威生 三宅
明靖 宮本
真士 菅谷
直樹 米谷
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Publication of WO2023276244A1 publication Critical patent/WO2023276244A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/10Other injectors with elongated valve bodies, i.e. of needle-valve type

Definitions

  • the present invention relates to a fuel injection device.
  • an in-cylinder injection type internal combustion engine in which a fuel injection device directly injects fuel into the cylinder has been used. Further, in recent years, from the viewpoint of reducing exhaust emissions, it is required to be able to inject fuel in multiple stages at high pressure and to suppress variations in the amount of fuel injected during low pulses.
  • Patent Document 1 describes a technology related to a conventional fuel injection device.
  • Patent Literature 1 describes a technique that includes a valve member, an anchor that is relatively displaceable with respect to the valve member, and a fixed core having a through hole. Both the anchor and the valve member are provided with an engaging portion that engages when the anchor is displaced in the valve opening direction with respect to the valve member to restrict the displacement of the anchor in the valve opening direction. Further, the gap forming member includes a gap forming member that forms a gap between the engaging portion on the valve member side and the engaging portion on the anchor side, and a biasing spring that biases the gap forming member in the valve closing direction. , the outer diameter of the urging spring, and the maximum outer diameter of the valve member are smaller than the inner diameter of the through hole.
  • the size of the gap formed between the stepped part and the spacer was different for each individual fuel injection device due to the dimensional error of each individual fuel injection device. Due to the difference in the size of the gap, the size of the pressure fluctuation during the opening operation also varies from individual to individual. Then, an individual with a low pressure in the gap opens the valve faster, and an individual with a higher pressure opens the valve slower. As a result, in the technique described in Patent Document 1, the fuel injection amount varies.
  • An object of the present invention is to provide a fuel injection device capable of suppressing variations in fuel injection amount in consideration of the above problems.
  • a fuel injection device includes a nozzle holder provided with an injection hole forming member, a fixed core arranged in the nozzle holder, an anchor, and a valve member.
  • the anchor faces the fixed core and is arranged in a housing recess provided in the nozzle holder.
  • the valve member has a valve body that opens and closes the injection holes provided in the injection hole forming member.
  • the anchor has an insertion hole through which the valve member is inserted. Gaps through which fluid can pass are formed between the anchor and the nozzle holder and between the insertion hole and the valve member.
  • FIG. 1 is a sectional view showing a fuel injection device according to a first embodiment
  • FIG. FIG. 2 is an enlarged cross-sectional view showing the surroundings of spacers and anchors in the fuel injection device according to the first embodiment
  • 3A is a sectional view taken along the line A-A' shown in FIG. 2
  • FIG. 3B is a sectional view showing the anchor of the fuel injection device according to the first embodiment.
  • FIG. 4A shows an example in which the eccentricity is increased
  • FIG. 4B shows an example in which the eccentricity is decreased.
  • FIG. 4 is an enlarged cross-sectional view showing the periphery of the spacer and the anchor when the valve opening operation is completed in the fuel injection device according to the first embodiment
  • FIG. 8 is a cross-sectional view showing an anchor and a nozzle holder in the fuel injection device according to the second embodiment
  • FIG. 11 is a sectional view showing an anchor and a nozzle holder in a fuel injection device according to a third embodiment;
  • Embodiments of the fuel injection device will be described below with reference to FIGS. 1 to 7.
  • FIG. 1 the same code
  • FIG. 1 is a cross-sectional view showing a fuel injection device.
  • the fuel injection device shown in FIG. 1 is used as an internal combustion engine in a four-cycle engine that repeats four strokes of an intake stroke, a compression stroke, a combustion (expansion) stroke, and an exhaust stroke. Further, the fuel injection device is applied to an in-cylinder injection type internal combustion engine that injects fuel into each cylinder.
  • the fuel injection device 100 includes a fixed core (magnetic core) 101, a nozzle holder 102, an injection hole forming member 103, a valve member 104, an electromagnetic coil 108, a housing 109, an anchor ( movable core) 110 and a connecting portion 135 .
  • the fuel injection device 100 also includes a first spring 118 , a second spring 124 and a third spring 126 .
  • the nozzle holder 102 is formed in a cylindrical shape.
  • An injection hole forming member 103 is inserted or press-fitted to the tip of the nozzle holder 102 along the central axis 100a in the axial direction Da (hereinafter simply referred to as "axial direction Da").
  • An injection hole 112 for injecting fuel is formed in the injection hole forming member 103 .
  • the injection hole forming member 103 is formed with a valve seat 103a on which a tip portion of a valve body 117 of the valve member 104 to be described later contacts and separates. By doing so, the fuel is sealed. Further, the valve element 117 seals the fuel by coming into contact with the valve seat 103a, and permits passage of the fuel by separating from the valve seat 103a.
  • a guide member 105 is fixed to the tip of the nozzle holder 102 by press fitting or plastic coupling.
  • the guide member 105 supports the outer peripheral surface of the valve body 117 in the valve member 104 and guides movement of the valve body 117 .
  • a large-diameter portion 102a having an outer diameter larger than that of the tip portion is formed at the rear end portion, which is the other end portion of the nozzle holder 102 in the axial direction Da.
  • a housing recess 102b is formed in the large diameter portion 102a. This accommodation recess 102b communicates with the tip portion through a communication hole 102c formed along the axial direction Da of the nozzle holder 102 .
  • the accommodation recess 102b is a bottomed recess that is open at the rear end side of the large diameter portion 102a and is recessed toward the front end side in the axial direction Da.
  • An anchor 110 which will be described later, and a part of the fixed core 101 are arranged in the accommodation recess 102b.
  • One end of the second spring 124 is accommodated in the central portion of the bottom of the accommodation recess 102b.
  • the housing recess 102b slidably supports an anchor 110, which will be described later, on its inner wall surface along the axial direction Da.
  • a groove 115 is formed in the downstream outer peripheral portion (outside in the radial direction) of the nozzle holder 102 , and a sealing member 116 typified by a chip seal made of resin material is fitted in the groove 115 .
  • Valve member 104 is arranged inside the nozzle holder 102 so as to be movable along the axial direction Da.
  • Valve member 104 includes plunger rod 113 , spacer 125 , third spring 126 and rod head 127 . A detailed configuration of the valve member 104 will be described later.
  • the anchor 110 is arranged in the housing recess 102b of the nozzle holder 102 between the spacer 125 of the valve member 104 and the bottom of the housing recess 102b. A small gap is formed between the outer peripheral surface of the anchor 110 and the inner peripheral surface of the housing recess 102b. Therefore, the anchor 110 is arranged movably along the axial direction Da within the accommodation recess 102b.
  • the anchor 110 is formed in a cylindrical shape.
  • the anchor 110 is formed with an insertion hole 110c (see FIG. 2) and an eccentric through hole 110d.
  • the insertion hole 110c and the eccentric through hole 110d are guide holes that penetrate from the front end portion to the rear end portion of the anchor 110 in the axial direction Da.
  • a plunger rod 113 of the valve member 104 is inserted through the insertion hole 110c.
  • the eccentric through-hole 110 d is formed at a position eccentric from the central axis of the anchor 110 .
  • the eccentric through-hole 110 d communicates with the flow path formed by the through-hole 101 a of the fixed core 101 .
  • the eccentric through-hole 110d forms a flow path through which fuel passes.
  • the rear end portion of the second spring 124 is in contact with the end face of the anchor 110 on the tip side in the axial direction Da. Therefore, the second spring 124 is interposed between the anchor 110 and the accommodation recess 102b of the nozzle holder 102. As shown in FIG. A fixed core 101 is arranged on the rear end side of the anchor 110 in the axial direction Da.
  • the fixed core 101 is a member that attracts the anchor 110 by magnetic attraction.
  • the fixed core 101 is formed in a substantially cylindrical shape having unevenness on the outer peripheral surface.
  • the distal end portion of the fixed core 101 in the axial direction Da is press-fitted inside the large-diameter portion 102a of the nozzle holder 102, that is, inside the housing recess 102b. Then, the nozzle holder 102 and the fixed core 101 are joined by welding. Thereby, the gap between the nozzle holder 102 and the fixed core 101 is sealed, and the space inside the nozzle holder 102 is sealed.
  • the distal end portion 101b of the fixed core 101 faces the end surface of the anchor 110 arranged in the housing recess 102b on the other end side in the axial direction Da.
  • the rear end side of the fixed core 101 in the axial direction Da protrudes from the housing recess 102b of the nozzle holder 102 toward the rear end in the axial direction Da.
  • a through hole 101 a is formed in the fixed core 101 .
  • the through hole 101a is formed coaxially with the center axis 100a.
  • the through hole 101a forms a flow path through which fuel passes.
  • a fuel supply port 111 communicating with the through hole 101a is formed at the rear end portion of the fixed core 101 in the axial direction Da. Fuel is introduced from the fuel supply port 111 toward the through hole 101a.
  • a first spring 118 and an adjusting member 119 are arranged on the tip end side of the through hole 101a in the axial direction Da.
  • the first spring 118 is arranged closer to the distal end of the through hole 101 a than the adjustment member 119 is.
  • the adjusting member 119 is press-fitted into the through hole 101 a and fixed inside the fixed core 101 .
  • a rod head 127, a third spring 126 and a spacer 125 of the valve member 104 are inserted into the through hole 101a.
  • the through hole 101a slidably supports a rod head 127 of the valve member 104, which will be described later, along the axial direction Da.
  • the first spring 118 is interposed between the adjustment member 119 and the rod head 127 of the valve member 104 .
  • the first spring 118 urges the valve member 104 toward the tip of the nozzle holder 102 in the axial direction Da.
  • the biasing force of the first spring 118 on the valve member 104 can be adjusted.
  • the initial load that the valve body 117, which is the tip of the plunger rod 113 in the valve member 104, presses against the valve seat 103a provided in the injection hole forming member 103 of the nozzle holder 102 can be adjusted.
  • the biasing force of the first spring 118 biasing the valve member 104 toward the tip of the nozzle holder 102 is greater than the biasing force of the second spring 124 biasing the anchor 110 toward the fixed core 101. is set.
  • a fuel filter (not shown) is provided on the upstream inner peripheral portion (inside in the radial direction) of the fixed core 101 .
  • a seal member 106 represented by an O-ring is assembled to the upstream outer peripheral portion (diameter direction outer side) 114 of the fixed core 101, and a protection member 107 for protecting the seal member 106 is assembled to the downstream side thereof.
  • the sealing member 106 seals the gap between the inner peripheral surface of the fuel pipe (not shown) and the upstream outer peripheral portion 114 of the fixed core 101 to prevent leakage of fuel flowing through the fuel pipe.
  • the electromagnetic coil 108 is wound around a cylindrical coil bobbin.
  • the electromagnetic coil 108 is wound around a coil bobbin and arranged so as to cover part of the outer peripheral surface of the large diameter portion 102 a of the nozzle holder 102 and part of the outer peripheral surface of the tip of the fixed core 101 .
  • the winding start and winding end portions of the electromagnetic coil 108 are connected to power supply terminals of a connector 136 of a connecting portion 135 to be described later via wiring (not shown).
  • a housing 109 is fixed around the outer circumference of the electromagnetic coil 108 .
  • the housing 109 is formed in a cylindrical shape with a bottom.
  • a fitting hole 109a is formed in the bottom portion of the housing 109, which is the tip portion in the axial direction Da.
  • the fitting hole 109a is formed in the central portion of the bottom.
  • the nozzle holder 102 is inserted into the fitting hole 109a.
  • the opening edge of the fitting hole 109a and the outer peripheral surface of the nozzle holder 102 are welded, for example, over the entire circumference. The nozzle holder 102 is thereby fixed to the housing 109 .
  • the housing 109 is arranged so as to surround the distal end side of the fixed core 101 , the coil bobbin, and the outer periphery of the electromagnetic coil 108 .
  • the inner peripheral surface of the housing 109 faces the nozzle holder 102 and the electromagnetic coil 108 and forms an outer peripheral yoke portion.
  • a magnetic circuit including the fixed core 101, the anchor 110, the nozzle holder 102 and the housing 109 is formed around the electromagnetic coil .
  • the connecting portion 135 is made of resin.
  • the connecting portion 135 is filled between the fixed core 101 and the housing 109 . Further, the connection portion 135 covers the outer peripheral surface of the fixed core 101 excluding the rear end portion of the fixed core 101 on the rear end side of the housing 109 in the axial direction Da.
  • the connecting portion 135 is then molded to form a connector 136 having terminals for power supply. The terminals are connected to connection terminals of a plug (not shown).
  • the fuel injector 100 is thereby connected to a high voltage power supply or battery power supply.
  • an EDU (drive circuit) 121 as a driving device for driving the fuel injection device 100 and an ECU (engine control unit) 120 that controls the EDU 121 are connected to the fuel injection device 100 .
  • the ECU 120 receives signals from various sensors indicating the state of the engine (internal combustion engine, not shown) to which fuel is to be injected by the fuel injection device 100, and determines an appropriate driving pulse width and injection timing according to the operating conditions of the engine. perform the calculation of A drive pulse output from the ECU 120 is input to the EDU 121 of the fuel injection device 100 through the signal line 123 .
  • the EDU 121 controls the voltage applied to the electromagnetic coil 108 of the fuel injection device 100 to supply current to the electromagnetic coil 108 . Also, the ECU 120 communicates with the EDU 121 through a communication line 122 and controls the drive pulse according to the pressure of the fuel supplied to the fuel injection device 100 and operating conditions. Then, it is possible to switch the drive voltage (current) generated by the EDU 121 .
  • the EDU 121 can change the control constant through communication with the ECU 120, and the current waveform changes according to the control constant.
  • the ECU 120 and EDU 121 may be configured as an integral part. That is, the drive device for driving the fuel injection device 100 may be a device that generates a drive voltage for the fuel injection device 100, and for example, the ECU 120 and the EDU 121 may be integrated to form a drive device. Alternatively, the EDU 121 alone may constitute the drive device as exemplified in this embodiment.
  • FIG. 2 is a cross-sectional view showing an enlarged view of spacer 125 and anchor 110 in fuel injection device 100. As shown in FIG. In addition, FIG. 2 shows the closed state.
  • the plunger rod 113 is configured by a cylindrical rod-shaped member. As shown in FIG. 2, the plunger rod 113 is inserted through the insertion hole 110c of the anchor 110 and arranged in the communication hole 102c of the nozzle holder 102 (see FIG. 1). As shown in FIG. 1, a valve body 117 is provided at the tip of the plunger rod 113 in the axial direction Da. The valve body 117 is supported by a guide member 105 provided on the nozzle holder 102 so as to be movable along the axial direction Dab. The valve body 117 releasably contacts the valve seat 103 a of the injection hole forming member 103 to open and close the injection hole 112 provided in the injection hole forming member 103 .
  • the plunger rod 113 has an engaging portion 128 that engages with the anchor 110.
  • the plunger rod 113 is inserted through the insertion hole 110 c provided in the anchor 110 .
  • the engaging portion 128 is formed closer to the rear end side in the axial direction Da than the anchor 110 .
  • the diameter of the engaging portion 128 is larger than the diameter of the plunger rod 113 and the inner diameter 110b (see FIG. 3B) of the insertion hole 110c.
  • the engaging portion 128 protrudes radially outward from the outer peripheral surface of the plunger rod 113 .
  • the engaging portion 128 faces the upper end surface of the anchor 110 .
  • the plunger rod 113 When the plunger rod 113 is in the closed state, there is a gap between the lower end surface of the engaging portion 128 on the one end side in the axial direction Da and the distal end portion of the fixed core 101 . Further, the lower end surface of the engaging portion 128 faces the upper end surface of the anchor 110 with a gap therebetween by a spacer 125 which will be described later.
  • the valve when the valve is opened, that is, when the positions of the anchor 110 and the plunger rod 113 are relatively displaced, the upper end surface of the anchor 110 contacts the lower end surface of the engaging portion 128, and the anchor 110 and the engaging portion 128 are brought into contact with each other. engage.
  • the plunger rod 113 moves along with the anchor 110 toward the rear end side in the axial direction Da, that is, in the valve opening direction.
  • a rod head 127 is attached to the rear end side of the engaging portion 128 in the axial direction Da.
  • the rod head 127 is formed in a substantially disc shape.
  • a first spring 118 is in contact with the upper end surface of the rod head 127 .
  • a third spring 126 is in contact with the lower end surface of the rod head 127 .
  • a third spring 126 is interposed between rod head 127 and spacer 125 to bias spacer 125 toward anchor 110 .
  • a spacer 125 is arranged so as to surround the engagement portion 128 of the plunger rod 113 .
  • the spacer 125 is formed in a substantially cylindrical shape.
  • a third spring 126 abuts on the upper end portion of the spacer 125, which is the end face on the other end side in the axial direction Da.
  • a lower end portion of the spacer 125 on the one end side in the axial direction Da contacts the upper end surface of the anchor 110 .
  • An engaging portion 128 is accommodated within the spacer 125 .
  • the inner diameter of the spacer 125 is set larger than the diameter of the engaging portion 128 of the plunger rod 113 . Therefore, a gap is formed between the radially outer peripheral surface of the engaging portion 128 and the inner wall surface of the spacer 125 .
  • the length of the spacer 125 in the axial direction Da that is, the length from the lower end portion to the upper surface portion is set longer than the length of the engaging portion 128 in the axial direction Da.
  • the spacer 125 is biased toward the anchor 110 by the third spring 126, so that the upper end surface of the engaging portion 128 contacts the upper surface portion inside the spacer 125 in the valve closed state.
  • the plunger rod 113 is inserted into a through hole formed on the rear end side of the spacer 125 in the axial direction Da.
  • the inner diameter of the through hole is set larger than the diameter of the plunger rod 113 .
  • the anchor 110 is biased toward the fixed core 101 side by the biasing force of the second spring 124 . Therefore, the upper end surface of the anchor 110 contacts the lower end of the spacer 125 .
  • the biasing force of the second spring 124 is set smaller than the biasing force of the third spring 126 . Therefore, the anchor 110 is biased toward the distal end side in the axial direction Da by the third spring 126 via the spacer 125 . Thereby, the movement of the anchor 110 toward the rear end in the axial direction Da, that is, the movement in the valve opening direction is restricted by the spacer 125 and the third spring 126 .
  • the engagement portion 128 of the plunger rod 113 abuts against the upper surface of the spacer 125, so that the spacer 125 is placed at a predetermined position (reference position).
  • the lower end portion of the spacer 125 contacts the upper end surface of the anchor 110 while the spacer 125 is arranged at the reference position.
  • a preliminary stroke can be provided between the lower end surface of the engaging portion 128 and the upper end surface of the anchor 110 .
  • FIG. 3A is a cross-sectional view taken along the line AA' shown in FIG. 2.
  • FIG. 3B is a cross-sectional view of anchor 110.
  • the insertion hole 110c of the anchor 110 is formed at a position eccentric to the centerline 110ac of the outer diameter 110a of the anchor 110.
  • the center line 110ac of the outer diameter 110a of the anchor 110 is located at a position shifted leftward from the center line 102ac of the nozzle holder 102 by the length g1.
  • a center line 110bc of the inner diameter 110b (insertion hole 110c) of the anchor 110 is formed at a position shifted rightward from the center line 102ac of the nozzle holder 102 by a length g2. Therefore, the inner diameter 110b (insertion hole 110c) of the anchor 110 is eccentric to the length g1+g2 with the outer diameter 110a of the anchor 110 as a reference.
  • a gap 201 is formed between the insertion hole 110c of the anchor 110 and the valve member 104, as shown in FIG. 3A.
  • a gap 202 is formed between the outer diameter 110 a of the anchor 110 and the valve member 104 .
  • FIGS. 4A and 4B are explanatory diagrams showing the amount of eccentricity of the anchor 110.
  • FIG. 4A shows a case where the eccentricity is large
  • FIG. 4B shows a case where the eccentricity is small.
  • the radius of the valve member 104 is Rr
  • the diameter (inner diameter) of the insertion hole 110c of the anchor 110 is Rai
  • the outer diameter of the anchor 110 is Rao
  • the inner diameter of the receiving recess 102b of the nozzle holder 102 is Rni. .
  • the anchor 110 is arranged at an eccentric position with respect to the nozzle holder 102 and the valve member 104. Therefore, when the anchor 110 moves in a direction perpendicular to the axial direction Da, a biasing force acts on the rod head 127 and the guide member 105 in a direction perpendicular to the axial direction Da. When the valve member 104 moves in this state, wear progresses only in the urged portion. As a result, the valve seat 103a may be unevenly worn, leading to a valve opening failure.
  • FIG. 4A is a diagram showing an example in which the amount of eccentricity of the anchor 110 is large. If the eccentricity is greater than the example shown in FIG. 4A, the anchor 110 will force the valve member 104 to the right. As for the amount of eccentricity g1+g2, a rightward biasing force acts on the valve member 104 from the anchor 110 when the relationship of the following formula 1 is established. [Formula 1] g1+g2>(Rni ⁇ Rao)+(Rai ⁇ Rr)
  • FIG. 4B is a diagram showing an example in which the amount of eccentricity of the anchor 110 is small. If the amount of eccentricity is smaller than the example shown in FIG. 4B, the anchor 110 will push the valve member 104 leftward. As for the amount of eccentricity g1+g2, a leftward biasing force acts on the valve member 104 from the anchor 110 when the relationship of the following formula 2 is established. [Formula 2] g1+g2 ⁇ (Rni-Rao)-(Rai-Rr)
  • the eccentricity g1+g2 of the anchor 110 preferably satisfies the relationship of Equation 3 below.
  • Equation 3 Equation 3
  • FIG. 5 is a cross-sectional view showing an enlarged view of spacer 125 and anchor 110 when the valve opening operation is completed.
  • the anchor 110 moves toward the rear end side in the axial direction Da, the upper end surface of the anchor 110 approaches the lower end surface of the engaging portion 128 of the plunger rod 113 . Therefore, the gap between the upper end surface of the anchor 110 and the lower end surface of the engaging portion 128 is zero.
  • the size of the gap (magnetic attraction gap) between the anchor 110 and the fixed core 101 is reduced by the amount that the anchor 110 moves toward the rear end side in the axial direction Da. Furthermore, since the spacer 125 also moves toward the rear end in the axial direction Da, a gap is generated between the upper surface of the spacer 125 and the upper end surface of the engaging portion 128 .
  • the anchor 110 abuts the engaging portion 128 after moving through the gap.
  • the anchor 110 accelerates until it abuts against the engaging portion 128, that is, while moving through the gap.
  • the anchor 110 can be brought into contact with the engaging portion 128 while the anchor 110 is accelerated.
  • the force applied from the anchor 110 to the plunger rod 113 via the engaging portion 128 can be increased, and the plunger rod 113 can quickly start moving toward the rear end side in the axial direction Da.
  • the valve opening operation of the plunger rod 113 can be started quickly.
  • a region 200 (see FIG. 2) formed by the lower end surface of the engaging portion 128, the upper end surface of the anchor 110, and the spacer 125 (see FIG. 2). volume decreases sharply.
  • the region 200 is a closed space, the pressure in the region 200 fluctuates greatly due to the change in the volume of the region 200 .
  • the dimension of the region 200 varies from individual fuel injection device to fuel injection device due to manufacturing variations of the fuel injection device. Therefore, the amount of change in the pressure in the region 200 varies from individual to individual, and the valve opening timing and valve opening speed of the plunger rod 113 also vary. As a result, in the conventional fuel injection device, the injection amount varies from one fuel injection device to another.
  • the anchor 110 When the valve is in the open state (full lift state), the anchor 110 abuts against the engaging portion 128 of the plunger rod 113 and a gap is formed between the upper end surface of the engaging portion 128 and the upper surface portion of the spacer 125 .
  • the valve When the valve is changed from the open state to the closed state, the volume of the region 200 decreases, so the pressure in the region 200 increases. As a result, the pressure acting on the plunger rod 113 changes, and the valve closing operation of the plunger rod 113 is also affected.
  • the anchor 110 is arranged at a position eccentric to the valve member 104 and the nozzle holder 102 to form the gap 201 between the valve member 104 and the insertion hole 110c. doing.
  • fuel (fluid) in region 200 flows into gap 201 formed between valve member 104 and insertion hole 110c.
  • the anchor 110 can be smoothly brought into contact with the engaging portion 128 without being affected by pressure fluctuations in the region 200 .
  • the anchor 110 moves to the rear end side in the axial direction Da
  • the anchor 110 and the engaging portion 128 are engaged.
  • the length of the gap between the engaging portion 128 and the tip of the fixed core 101 is reduced.
  • the valve member 104 moves to the rear end side in the axial direction Da together with the anchor 110 .
  • the plunger rod 113 moves toward the rear end side in the axial direction Da by inertia force, but is pushed back by the biasing force of the first spring 118 . Therefore, the plunger rod 113 stands still while the lower end surface of the engaging portion 128 is in contact with the upper end surface of the anchor 110 . As a result, the plunger rod 113 moves by a predetermined stroke amount, and the valve is in an open stationary state.
  • the anchor 110 In the valve open stationary state, the anchor 110 is attracted to the fixed core 101 by magnetic attraction force, and the valve member 104 is biased in the valve closing direction by the biasing force of the first spring 118 . Therefore, the anchor 110 and the plunger rod 113 abut each other and are integrated. That is, the lower end surface of the engaging portion 128 of the plunger rod 113 contacts the upper end surface of the anchor 110, and the size of the gap becomes zero.
  • the third spring 126 since the biasing force of the third spring 126 is smaller than the magnetic attraction force, the third spring 126 cannot push back the anchor 110 toward the distal end side in the axial direction Da via the spacer 125 . Therefore, the lower end of the spacer 125 contacts the upper end surface of the anchor 110, and the gap between the upper end surface of the engaging portion 128 and the upper surface of the spacer 125 is maintained. Furthermore, since the anchor 110 is in contact with the fixed core 101, the size of the gap between the upper end surface of the anchor 110 and the distal end portion of the fixed core 101 is zero.
  • the anchor 110 moves toward the tip side in the axial direction Da, the volume of the space 203 formed between the anchor 110, the nozzle holder 102, and the fixed core 101 increases. Fuel flows into the space 203 through the gap 202 between the anchor 110 and the nozzle holder 102 .
  • the anchor 110 is in close contact with the nozzle holder 102 due to the residual magnetic flux. Then, the anchor 110 slides toward the distal end side in the axial direction Da while maintaining a tight contact state with the nozzle holder 102 . At this time, the variation in fluid resistance is caused by the variation in size of the gap 202, and the narrower the gap 202, the greater the variation in fluid resistance. As a result, variations occur in the descending speed of the anchor 110 (valve closing start timing).
  • the center line 110ac of the outer diameter 110a of the anchor 110 is arranged at a position eccentric to the center line 102ac of the nozzle holder 102.
  • a sliding portion where the anchor 110 comes into close contact with the nozzle holder 102 can be secured.
  • the anchor 110 is brought into close contact with the nozzle holder 102 and reliably slid, by setting the gap 202 large, it is possible to suppress variations in the fluid force.
  • FIG. 6 is a sectional view showing the anchor and nozzle holder of the fuel injection device according to the second embodiment.
  • the fuel injection device according to the second embodiment differs from the fuel injection device according to the first embodiment in the shape of the anchor. Therefore, the parts common to the fuel injection device 100 according to the first embodiment are denoted by the same reference numerals, and redundant explanations are omitted.
  • the anchor 110A is formed by two arcs with different curvatures. That is, the anchor 110A includes a first arc portion 110f having a radius of curvature smaller than the inner diameter of the housing recess 102b of the nozzle holder 102 and a second arc portion 110g having a radius of curvature larger than the inside diameter of the housing recess 102b of the nozzle holder 102. have.
  • the first arc portion 110f and the second arc portion 110g are formed continuously along the circumferential direction of the anchor 110A.
  • the insertion hole 110c formed in the anchor 110A is formed in the center of the anchor 110A.
  • the inner diameter of the insertion hole 110 c is formed sufficiently larger than the diameter of the valve member 104 .
  • the anchor 110A having such a shape, it is possible to ensure a large gap 201 between the insertion hole 110c and the valve member 104, like the anchor 110 according to the first embodiment. Furthermore, a large gap 202 between the anchor 110A and the nozzle holder 102 can be ensured.
  • the anchor 110A contacts the nozzle holder 102 at a point (inflection point) C and a point (inflection point) D which are intersection points of the first arc portion 110f and the second arc portion 110g.
  • the magnitude of the radially outward electromagnetic force acting on the anchor 110 is inversely proportional to the square of the distance to the gap 202 . Therefore, the anchor 110A slides between points C and D where the gap with the nozzle holder 102 is the smallest.
  • the first vector 206a can be divided into a first force component 206b directed in a first direction and a second force component 206c directed in a second direction orthogonal to the first direction.
  • the second vector 207a can be divided into a first force component 207b directed in the first direction and a second force component 207c directed in the second direction.
  • the pressing forces at points C and D become vectors 206d and 207d consisting of the second force component 206c and the second force component 207c.
  • the pressing force acting on the nozzle holder 102 can be reduced by the anchor 110A, the amount of wear of the anchor 110 and the nozzle holder 102 can be suppressed.
  • a fuel injection device having such an anchor 110A can also provide the same effects as the fuel injection device 100 according to the first embodiment described above.
  • the shape of the anchor 110A may be elliptical, or the shape of the accommodation recess 102b of the nozzle holder 102 may be formed of a plurality of arcs with different curvatures. good.
  • the shape of the anchor 110 ⁇ /b>A may be any shape that has at least one portion where the radius of curvature is larger than the inner diameter of the nozzle holder 102 .
  • FIG. 7 is a sectional view showing the anchor and nozzle holder of the fuel injection device according to the second embodiment.
  • the fuel injection device according to the third embodiment differs from the fuel injection device according to the first embodiment in the shape of the anchor. Therefore, the parts common to the fuel injection device 100 according to the first embodiment are denoted by the same reference numerals, and redundant explanations are omitted.
  • the anchor 110B is formed of two circles with different curvatures, similar to the anchor 110A according to the second embodiment. That is, the anchor 110A includes a first arc portion 110m having a radius of curvature smaller than the inner diameter of the housing recess 102b of the nozzle holder 102 and a second arc portion 110k having a radius of curvature larger than the inside diameter of the housing recess 102b of the nozzle holder 102. have.
  • the curvature of the anchor 110B changes at points C and D, which are intersections of the first arc portion 110m and the second arc portion 110k. Also, the distance Ra1 from the center of the anchor 110B to the point C is set shorter than the distance Ra2 from the center of the anchor 110B to the point D (Ra1 ⁇ Ra2).
  • the magnitude of the radially outward electromagnetic force acting on anchor 110 is inversely proportional to the square of the distance from gap 202, so anchor 110B first contacts nozzle holder 102 at point D. do. Anchor 110B then contacts nozzle holder 102 at point C. As shown in FIG. Therefore, a torque is generated in the anchor 110B with the vicinity of the center of the anchor 110B as the fulcrum of rotation. This torque slightly rotates the anchor 110B, and by repeating the valve opening operation and the valve closing operation, the sliding position of the anchor 110B with respect to the nozzle holder 102 can be changed. As a result, it is possible to prevent only a part of the nozzle holder 102 from being worn locally.
  • the rest of the configuration is the same as the fuel injection device 100 according to the first embodiment and the fuel injection device according to the second embodiment, so description thereof will be omitted. Even with a fuel injection device having such an anchor 110B, the same effects as those of the fuel injection device 100 according to the first embodiment and the fuel injection device according to the second embodiment can be obtained. can.
  • Fuel injection device 101 Fixed core 101a... Through hole 101b... Tip part 102... Nozzle holder 102a... Large diameter part 102b... Concave part 102c... Communication hole 103... Injection hole forming member 103a Valve seat 104 Valve member 105 Guide member 108 Electromagnetic coil 109 Housing 109a Fitting hole 110 Anchor 110c Insertion hole 110d Eccentric through hole 111 Fuel supply port 112... Injection hole 113... Plunger rod 117... Valve element 118... First spring 124... Second spring 125... Spacer 126... Third spring 127... Rod head 128... Engaging portion 201, 202... Gap part

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

This fuel injection device comprises a nozzle holder provided with an injection hole formation member, a fixed core disposed in the nozzle holder, an anchor, and a valve member. The anchor faces the fixed core and is disposed in an accommodating recess provided in the nozzle holder. An insertion hole into which the valve member is inserted is formed in the anchor. Gaps through which a fluid can pass are formed between the anchor and the nozzle holder and between the insertion hole and the valve member.

Description

燃料噴射装置fuel injector
 本発明は、燃料噴射装置に関する。 The present invention relates to a fuel injection device.
 従来、内燃機関として、燃料噴射装置によりシリンダ内に燃料を直接噴射する筒内噴射型の内燃機関が用いられている。また、近年では、低排気化の観点から高い圧力で燃料を多段噴射でき、低パルス時の燃料の噴射量のばらつきを抑制することが求められている。 Conventionally, as an internal combustion engine, an in-cylinder injection type internal combustion engine in which a fuel injection device directly injects fuel into the cylinder has been used. Further, in recent years, from the viewpoint of reducing exhaust emissions, it is required to be able to inject fuel in multiple stages at high pressure and to suppress variations in the amount of fuel injected during low pulses.
 従来の燃料噴射装置に関する技術としては、例えば、特許文献1に記載されているようなものがある。 For example, Patent Document 1 describes a technology related to a conventional fuel injection device.
 特許文献1には、弁部材と、弁部材に対して相対変位可能なアンカーと、貫通孔が形成された固定コアとを備えた技術が記載されている。そして、アンカーと弁部材との双方にアンカーが弁部材に対して開弁方向に変位した場合に係合してアンカーの開弁方向への変位を規制する係合部を設けている。また、弁部材側の係合部とアンカー側の係合部との間に間隙を形成する間隙形成部材と、間隙形成部材を閉弁方向に付勢する付勢ばねとを備え、間隙形成部材の外径と付勢ばねの外径と弁部材の最大外径とを貫通孔の内径よりも小さくしている。 Patent Literature 1 describes a technique that includes a valve member, an anchor that is relatively displaceable with respect to the valve member, and a fixed core having a through hole. Both the anchor and the valve member are provided with an engaging portion that engages when the anchor is displaced in the valve opening direction with respect to the valve member to restrict the displacement of the anchor in the valve opening direction. Further, the gap forming member includes a gap forming member that forms a gap between the engaging portion on the valve member side and the engaging portion on the anchor side, and a biasing spring that biases the gap forming member in the valve closing direction. , the outer diameter of the urging spring, and the maximum outer diameter of the valve member are smaller than the inner diameter of the through hole.
国際公開第2016/042896号WO2016/042896
 また、特許文献1に記載された技術において、アンカーが弁体に摺動可能に支持されているため、弁体の段付き部とスペーサーを示す間隙形成部材との間に形成される隙間は、閉弁状態では、閉空間となっていた。そして、閉弁状態から開弁状態に移行する際には、この隙間の圧力が大きく変動し、開弁動作に影響を与えていた。 In addition, in the technique described in Patent Document 1, since the anchor is slidably supported by the valve body, the gap formed between the stepped portion of the valve body and the gap forming member indicating the spacer is In the valve closed state, it was a closed space. When the closed state changes to the open state, the pressure in this gap fluctuates greatly, affecting the valve opening operation.
 さらに、燃料噴射装置の個体ごとの寸法誤差により、段付き部とスペーサーとの間に形成される隙間の大きさは、個体ごとに異なっていた。隙間の大きさの違いにより、開動作時における圧力変動の大きさも個体ごとにばらつきが発生していた。そして、隙間の圧力が低い個体は、開弁動作が速くなり、圧力が高い個体は、開弁動作が遅くなる。その結果、特許文献1に記載された技術では、燃料の噴射量にばらつきが発生していた。 Furthermore, the size of the gap formed between the stepped part and the spacer was different for each individual fuel injection device due to the dimensional error of each individual fuel injection device. Due to the difference in the size of the gap, the size of the pressure fluctuation during the opening operation also varies from individual to individual. Then, an individual with a low pressure in the gap opens the valve faster, and an individual with a higher pressure opens the valve slower. As a result, in the technique described in Patent Document 1, the fuel injection amount varies.
 本発明の目的は、上記の問題点を考慮し、燃料の噴射量のばらつきを抑制することができる燃料噴射装置を提供することにある。 An object of the present invention is to provide a fuel injection device capable of suppressing variations in fuel injection amount in consideration of the above problems.
 上記課題を解決し、本発明の目的を達成するため、燃料噴射装置は、噴射孔形成部材が設けられたノズルホルダと、ノズルホルダに配置された固定コアと、アンカーと、弁部材と、を備えている。アンカーは、固定コアと対向し、ノズルホルダに設けた収容凹部に配置される。弁部材は、噴射孔形成部材に設けた噴射孔を開閉する弁体を有する。
 アンカーには、弁部材が挿通する挿通孔が形成されている。そして、アンカーとノズルホルダとの間と、挿通孔と弁部材との間には、流体が通過可能な間隙部が形成されている。
In order to solve the above problems and achieve the object of the present invention, a fuel injection device includes a nozzle holder provided with an injection hole forming member, a fixed core arranged in the nozzle holder, an anchor, and a valve member. I have. The anchor faces the fixed core and is arranged in a housing recess provided in the nozzle holder. The valve member has a valve body that opens and closes the injection holes provided in the injection hole forming member.
The anchor has an insertion hole through which the valve member is inserted. Gaps through which fluid can pass are formed between the anchor and the nozzle holder and between the insertion hole and the valve member.
 上記構成の燃料噴射装置によれば、燃料の噴射量のばらつきを抑制することができる。 According to the fuel injection device configured as described above, it is possible to suppress variations in the amount of fuel injected.
第1の実施の形態例にかかる燃料噴射装置を示す断面図である。1 is a sectional view showing a fuel injection device according to a first embodiment; FIG. 第1の実施の形態例にかかる燃料噴射装置におけるスペーサー及びアンカー周りを拡大して示す断面図である。FIG. 2 is an enlarged cross-sectional view showing the surroundings of spacers and anchors in the fuel injection device according to the first embodiment; 第1の実施の形態例にかかる燃料噴射装置のアンカーを示すもので、図3Aは図2に示すA-A’線断面図、図3Bはアンカーを示す断面図である。3A is a sectional view taken along the line A-A' shown in FIG. 2, and FIG. 3B is a sectional view showing the anchor of the fuel injection device according to the first embodiment. 第1の実施の形態例にかかる燃料噴射装置のアンカーの偏心量を示すもので、図4Aは偏心量を大きくした例を示し、図4Bは偏心量を小さくした例を示している。FIG. 4A shows an example in which the eccentricity is increased, and FIG. 4B shows an example in which the eccentricity is decreased. 第1の実施の形態例にかかる燃料噴射装置における開弁動作が完了した際のスペーサー及びアンカー周りを拡大して示す断面図である。FIG. 4 is an enlarged cross-sectional view showing the periphery of the spacer and the anchor when the valve opening operation is completed in the fuel injection device according to the first embodiment; 第2の実施の形態例にかかる燃料噴射装置にアンカー及びノズルホルダを示す断面図である。FIG. 8 is a cross-sectional view showing an anchor and a nozzle holder in the fuel injection device according to the second embodiment; 第3の実施の形態例にかかる燃料噴射装置にアンカー及びノズルホルダを示す断面図である。FIG. 11 is a sectional view showing an anchor and a nozzle holder in a fuel injection device according to a third embodiment;
 以下、燃料噴射装置の実施の形態例について、図1~図7を参照して説明する。なお、各図において共通の部材には、同一の符号を付している。 Embodiments of the fuel injection device will be described below with reference to FIGS. 1 to 7. FIG. In addition, the same code|symbol is attached|subjected to the member which is common in each figure.
1.第1の実施の形態例
1-1.燃料噴射装置の構成
 まず、第1の実施の形態例(以下、「本例」という。)にかかる燃料噴射装置の構成について図1を参照して説明する。
 図1は、燃料噴射装置を示す断面図である。
1. First embodiment example 1-1. Configuration of Fuel Injection Apparatus First, the configuration of a fuel injection apparatus according to a first embodiment (hereinafter referred to as "this example") will be described with reference to FIG.
FIG. 1 is a cross-sectional view showing a fuel injection device.
 図1に示す燃料噴射装置は、内燃機関として、吸気行程、圧縮行程、燃焼(膨張)行程、排気行程の4行程を繰り返す4サイクルエンジンに用いられるものである。また、燃料噴射装置は、各気筒のシリンダの中に燃料を噴射する筒内噴射型の内燃機関に適用されるものである。 The fuel injection device shown in FIG. 1 is used as an internal combustion engine in a four-cycle engine that repeats four strokes of an intake stroke, a compression stroke, a combustion (expansion) stroke, and an exhaust stroke. Further, the fuel injection device is applied to an in-cylinder injection type internal combustion engine that injects fuel into each cylinder.
 図1に示すように、燃料噴射装置100は、固定コア(磁気コア)101と、ノズルホルダ102と、噴射孔形成部材103と、弁部材104と、電磁コイル108と、ハウジング109と、アンカー(可動コア)110と、接続部135と、を備えている。また、燃料噴射装置100は、第1スプリング118と、第2スプリング124と、第3スプリング126と、を備えている。 As shown in FIG. 1, the fuel injection device 100 includes a fixed core (magnetic core) 101, a nozzle holder 102, an injection hole forming member 103, a valve member 104, an electromagnetic coil 108, a housing 109, an anchor ( movable core) 110 and a connecting portion 135 . The fuel injection device 100 also includes a first spring 118 , a second spring 124 and a third spring 126 .
[ノズルホルダ]
 ノズルホルダ102は、筒状に形成されている。ノズルホルダ102の中心軸線100aに沿う軸線方向Da「以下、単に「軸線方向Da」という」の一端部である先端部には、噴射孔形成部材103が挿入又は圧入により取り付けられている。この噴射孔形成部材103には、燃料を噴射する噴射孔112が形成されている。
[Nozzle holder]
The nozzle holder 102 is formed in a cylindrical shape. An injection hole forming member 103 is inserted or press-fitted to the tip of the nozzle holder 102 along the central axis 100a in the axial direction Da (hereinafter simply referred to as "axial direction Da"). An injection hole 112 for injecting fuel is formed in the injection hole forming member 103 .
 また、噴射孔形成部材103には、後述する弁部材104の弁体117の先端部が離接する弁座103aが形成されている、噴射孔形成部材103は、弁体117が弁座103aに着座することで燃料を封止する。また、弁体117は、弁座103aに当接することで燃料をシールし、弁座103aから離反することで燃料の通過を許可する。 Further, the injection hole forming member 103 is formed with a valve seat 103a on which a tip portion of a valve body 117 of the valve member 104 to be described later contacts and separates. By doing so, the fuel is sealed. Further, the valve element 117 seals the fuel by coming into contact with the valve seat 103a, and permits passage of the fuel by separating from the valve seat 103a.
 ノズルホルダ102の先端部には、ガイド部材105が圧入または塑性結合により固定されている。ガイド部材105は、弁部材104における弁体117の外周面を支持し、弁体117の移動をガイドする。 A guide member 105 is fixed to the tip of the nozzle holder 102 by press fitting or plastic coupling. The guide member 105 supports the outer peripheral surface of the valve body 117 in the valve member 104 and guides movement of the valve body 117 .
 ノズルホルダ102の軸線方向Daの他端部である後端部には、先端部よりも外径が大きい大径部102aが形成されている。この大径部102aには、収容凹部102bが形成されている。この収容凹部102bは、ノズルホルダ102の軸線方向Daに沿って形成された連通孔102cによって先端部に連通している。 A large-diameter portion 102a having an outer diameter larger than that of the tip portion is formed at the rear end portion, which is the other end portion of the nozzle holder 102 in the axial direction Da. A housing recess 102b is formed in the large diameter portion 102a. This accommodation recess 102b communicates with the tip portion through a communication hole 102c formed along the axial direction Da of the nozzle holder 102 .
 収容凹部102bは、大径部102aの後端側が開口し、軸線方向Daの先端側に向けて凹んだ有底の凹部である。収容凹部102bには、後述するアンカー110と、固定コア101の一部が配置される。収容凹部102bにおける底部の中央部には、第2スプリング124の一端部が収容される。そして、収容凹部102bは、その内壁面において後述するアンカー110を軸線方向Daに沿って摺動可能に支持する。 The accommodation recess 102b is a bottomed recess that is open at the rear end side of the large diameter portion 102a and is recessed toward the front end side in the axial direction Da. An anchor 110, which will be described later, and a part of the fixed core 101 are arranged in the accommodation recess 102b. One end of the second spring 124 is accommodated in the central portion of the bottom of the accommodation recess 102b. The housing recess 102b slidably supports an anchor 110, which will be described later, on its inner wall surface along the axial direction Da.
 また、ノズルホルダ102の下流側外周部(径方向外側)には溝115が形成されており、樹脂材製のチップシールに代表されるシール部材116が溝115に嵌め込まれている。 In addition, a groove 115 is formed in the downstream outer peripheral portion (outside in the radial direction) of the nozzle holder 102 , and a sealing member 116 typified by a chip seal made of resin material is fitted in the groove 115 .
[弁部材]
 このノズルホルダ102の内部には、弁部材104が軸線方向Daに沿って移動可能に配置されている。弁部材104は、プランジャロッド113と、スペーサー125と、第3スプリング126と、ロッドヘッド127とを備えている。なお、弁部材104の詳細な構成については、後述する。
[Valve member]
A valve member 104 is arranged inside the nozzle holder 102 so as to be movable along the axial direction Da. Valve member 104 includes plunger rod 113 , spacer 125 , third spring 126 and rod head 127 . A detailed configuration of the valve member 104 will be described later.
[アンカー]
 次に、アンカー110について説明する。アンカー110は、ノズルホルダ102の収容凹部102bにおいて、弁部材104のスペーサー125と収容凹部102bの底部との間に配置されている。また、アンカー110の外周面と収容凹部102bの内周面との間には、微小な間隙が形成されている。そのため、アンカー110は、収容凹部102b内において軸線方向Daに沿って移動可能に配置される。
[anchor]
Next, the anchor 110 will be explained. The anchor 110 is arranged in the housing recess 102b of the nozzle holder 102 between the spacer 125 of the valve member 104 and the bottom of the housing recess 102b. A small gap is formed between the outer peripheral surface of the anchor 110 and the inner peripheral surface of the housing recess 102b. Therefore, the anchor 110 is arranged movably along the axial direction Da within the accommodation recess 102b.
 アンカー110は、円筒状に形成されている。アンカー110には、挿通孔110c(図2参照)と、偏心貫通孔110dが形成されている。挿通孔110c及び偏心貫通孔110dは、アンカー110における軸線方向Daの先端部から後端部にかけて貫通するガイド孔である。挿通孔110cには、弁部材104のプランジャロッド113が挿通している。 The anchor 110 is formed in a cylindrical shape. The anchor 110 is formed with an insertion hole 110c (see FIG. 2) and an eccentric through hole 110d. The insertion hole 110c and the eccentric through hole 110d are guide holes that penetrate from the front end portion to the rear end portion of the anchor 110 in the axial direction Da. A plunger rod 113 of the valve member 104 is inserted through the insertion hole 110c.
 偏心貫通孔110dは、アンカー110の中心軸から偏心した位置に形成されている。
偏心貫通孔110dは、固定コア101の貫通孔101aによって形成された流路に連通している。そして、偏心貫通孔110dは、燃料が通過する流路を形成する。
The eccentric through-hole 110 d is formed at a position eccentric from the central axis of the anchor 110 .
The eccentric through-hole 110 d communicates with the flow path formed by the through-hole 101 a of the fixed core 101 . The eccentric through-hole 110d forms a flow path through which fuel passes.
 アンカー110における軸線方向Daの先端側の端面には、第2スプリング124の後端部が当接している。そのため、第2スプリング124は、アンカー110とノズルホルダ102の収容凹部102bの間に介在される。また、アンカー110における軸線方向Daの後端側には、固定コア101が配置されている。 The rear end portion of the second spring 124 is in contact with the end face of the anchor 110 on the tip side in the axial direction Da. Therefore, the second spring 124 is interposed between the anchor 110 and the accommodation recess 102b of the nozzle holder 102. As shown in FIG. A fixed core 101 is arranged on the rear end side of the anchor 110 in the axial direction Da.
 なお、アンカー110の詳細な構成については、後述する。 A detailed configuration of the anchor 110 will be described later.
[固定コア]
 固定コア101は、アンカー110を磁気吸引力によって吸引する部材である。固定コア101は、外周面に凹凸を有する略円筒状に形成されている。固定コア101における軸線方向Daの先端部は、ノズルホルダ102の大径部102aの内側、すなわち収容凹部102b内に圧入されている。そして、ノズルホルダ102と固定コア101は、溶接により接合される。れにより、ノズルホルダ102と固定コア101との間の間隙が密閉され、ノズルホルダ102の内部の空間が密閉される。
[Fixed core]
The fixed core 101 is a member that attracts the anchor 110 by magnetic attraction. The fixed core 101 is formed in a substantially cylindrical shape having unevenness on the outer peripheral surface. The distal end portion of the fixed core 101 in the axial direction Da is press-fitted inside the large-diameter portion 102a of the nozzle holder 102, that is, inside the housing recess 102b. Then, the nozzle holder 102 and the fixed core 101 are joined by welding. Thereby, the gap between the nozzle holder 102 and the fixed core 101 is sealed, and the space inside the nozzle holder 102 is sealed.
 また、固定コア101の先端部101bは、収容凹部102bに配置されたアンカー110における軸線方向Daの他端側の端面と対向する。なお、固定コア101における軸線方向Daの後端部側は、ノズルホルダ102の収容凹部102bから軸線方向Daの後端に向けて突出している。 In addition, the distal end portion 101b of the fixed core 101 faces the end surface of the anchor 110 arranged in the housing recess 102b on the other end side in the axial direction Da. The rear end side of the fixed core 101 in the axial direction Da protrudes from the housing recess 102b of the nozzle holder 102 toward the rear end in the axial direction Da.
 固定コア101には、貫通孔101aが形成されている。貫通孔101aは、中心軸線100aと同軸上に形成されている。そして、貫通孔101aは、燃料が通過する流路を形成する。また、固定コア101における軸線方向Daの後端部には、貫通孔101aに連通する燃料供給口111が形成されている。この燃料供給口111から貫通孔101aに向けて燃料が導入される。 A through hole 101 a is formed in the fixed core 101 . The through hole 101a is formed coaxially with the center axis 100a. The through hole 101a forms a flow path through which fuel passes. A fuel supply port 111 communicating with the through hole 101a is formed at the rear end portion of the fixed core 101 in the axial direction Da. Fuel is introduced from the fuel supply port 111 toward the through hole 101a.
 さらに、貫通孔101aにおける軸線方向Daの先端部側には、第1スプリング118及び調整部材119が配置されている。第1スプリング118は、調整部材119よりも貫通孔101aの先端部側に配置されている。調整部材119は、貫通孔101aに圧入されて、固定コア101の内部に固定されている。また、貫通孔101aには、弁部材104のロッドヘッド127、第3スプリング126及びスペーサー125が挿入される。
そして、貫通孔101aは、後述する弁部材104のロッドヘッド127を軸線方向Daに沿って摺動可能に支持する。
Further, a first spring 118 and an adjusting member 119 are arranged on the tip end side of the through hole 101a in the axial direction Da. The first spring 118 is arranged closer to the distal end of the through hole 101 a than the adjustment member 119 is. The adjusting member 119 is press-fitted into the through hole 101 a and fixed inside the fixed core 101 . A rod head 127, a third spring 126 and a spacer 125 of the valve member 104 are inserted into the through hole 101a.
The through hole 101a slidably supports a rod head 127 of the valve member 104, which will be described later, along the axial direction Da.
 第1スプリング118は、調整部材119と弁部材104のロッドヘッド127の間に介在される。そして、第1スプリング118は、弁部材104をノズルホルダ102の先端部に向けて軸線方向Daに付勢している。 The first spring 118 is interposed between the adjustment member 119 and the rod head 127 of the valve member 104 . The first spring 118 urges the valve member 104 toward the tip of the nozzle holder 102 in the axial direction Da.
 また、調整部材119における固定コア101に対する固定位置を調整することで、第1スプリング118における弁部材104の付勢力を調整することができる。これにより、弁部材104におけるプランジャロッド113の先端部である弁体117がノズルホルダ102の噴射孔形成部材103に設けた弁座103aに押し付ける初期荷重を調整することができる。 Further, by adjusting the fixing position of the adjusting member 119 with respect to the fixed core 101, the biasing force of the first spring 118 on the valve member 104 can be adjusted. Thereby, the initial load that the valve body 117, which is the tip of the plunger rod 113 in the valve member 104, presses against the valve seat 103a provided in the injection hole forming member 103 of the nozzle holder 102 can be adjusted.
 ここで、第1スプリング118が弁部材104をノズルホルダ102の先端部に向けて付勢する付勢力は、第2スプリング124がアンカー110を固定コア101に向けて付勢する付勢力よりも大きく設定されている。 Here, the biasing force of the first spring 118 biasing the valve member 104 toward the tip of the nozzle holder 102 is greater than the biasing force of the second spring 124 biasing the anchor 110 toward the fixed core 101. is set.
 固定コア101の上流側内周部(径方向内側)には燃料フィルタ(図示せず)が設けられている。また固定コア101の上流側外周部(径方向外側)114には、Oリングに代表されるシール部材106が、その下流側にはシール部材106を保護する保護部材107が組付けられている。シール部材106は燃料配管(図示せず)の内周面と固定コア101の上流側外周部114との間の隙間をシールし、燃料配管を流れる燃料の漏洩を防止する。 A fuel filter (not shown) is provided on the upstream inner peripheral portion (inside in the radial direction) of the fixed core 101 . A seal member 106 represented by an O-ring is assembled to the upstream outer peripheral portion (diameter direction outer side) 114 of the fixed core 101, and a protection member 107 for protecting the seal member 106 is assembled to the downstream side thereof. The sealing member 106 seals the gap between the inner peripheral surface of the fuel pipe (not shown) and the upstream outer peripheral portion 114 of the fixed core 101 to prevent leakage of fuel flowing through the fuel pipe.
[コイル]
 次に、電磁コイル108について説明する。電磁コイル108は、円筒状のコイルボビンに巻回されている。そして、電磁コイル108は、コイルボビンに巻回されて、ノズルホルダ102における大径部102aの外周面の一部及び固定コア101の先端部の外周面の一部を覆うようにして配置される。電磁コイル108の巻き始めと巻き終わりの端部は、不図示の配線を介して後述する接続部135のコネクタ136の電力供給用の端子に接続されている。電磁コイル108の外周には、ハウジング109が固定されている。
[coil]
Next, the electromagnetic coil 108 will be explained. The electromagnetic coil 108 is wound around a cylindrical coil bobbin. The electromagnetic coil 108 is wound around a coil bobbin and arranged so as to cover part of the outer peripheral surface of the large diameter portion 102 a of the nozzle holder 102 and part of the outer peripheral surface of the tip of the fixed core 101 . The winding start and winding end portions of the electromagnetic coil 108 are connected to power supply terminals of a connector 136 of a connecting portion 135 to be described later via wiring (not shown). A housing 109 is fixed around the outer circumference of the electromagnetic coil 108 .
[ハウジング]
 ハウジング109は、有底の円筒状に形成されている。ハウジング109における軸線方向Daの先端部である底部には、嵌合孔109aが形成されている。嵌合孔109aは、底部の中央部に形成されている。この嵌合孔109aには、ノズルホルダ102が挿入される。そして、嵌合孔109aの開口縁とノズルホルダ102の外周面との間は、例えば、全周にわたって溶接されている。これにより、ノズルホルダ102は、ハウジング109に固定される。
[housing]
The housing 109 is formed in a cylindrical shape with a bottom. A fitting hole 109a is formed in the bottom portion of the housing 109, which is the tip portion in the axial direction Da. The fitting hole 109a is formed in the central portion of the bottom. The nozzle holder 102 is inserted into the fitting hole 109a. The opening edge of the fitting hole 109a and the outer peripheral surface of the nozzle holder 102 are welded, for example, over the entire circumference. The nozzle holder 102 is thereby fixed to the housing 109 .
 また、ハウジング109は、固定コア101の先端部側、コイルボビン及び電磁コイル108の外周を囲むようにして配置される。そして、ハウジング109の内周面は、ノズルホルダ102及び電磁コイル108と対向し、外周ヨーク部を形成する。このように、電磁コイル108の周りには、固定コア101、アンカー110、ノズルホルダ102及びハウジング109を含む磁気回路が形成されている。 Further, the housing 109 is arranged so as to surround the distal end side of the fixed core 101 , the coil bobbin, and the outer periphery of the electromagnetic coil 108 . The inner peripheral surface of the housing 109 faces the nozzle holder 102 and the electromagnetic coil 108 and forms an outer peripheral yoke portion. Thus, a magnetic circuit including the fixed core 101, the anchor 110, the nozzle holder 102 and the housing 109 is formed around the electromagnetic coil .
[接続部]
 接続部135は、樹脂により形成されている。そして、接続部135は、固定コア101及びハウジング109との間に充填される。また、接続部135は、ハウジング109よりも軸線方向Daの後端側において、固定コア101の後端部を除く外周面を覆う。そして、接続部135は、電力供給用の端子を有するコネクタ136を形成するようにモールド成形されている。端子は、不図示のプラグの接続端子に接続される。これにより、燃料噴射装置100は、高電圧電源又はバッテリ電源に接続される。
[Connection part]
The connecting portion 135 is made of resin. The connecting portion 135 is filled between the fixed core 101 and the housing 109 . Further, the connection portion 135 covers the outer peripheral surface of the fixed core 101 excluding the rear end portion of the fixed core 101 on the rear end side of the housing 109 in the axial direction Da. The connecting portion 135 is then molded to form a connector 136 having terminals for power supply. The terminals are connected to connection terminals of a plug (not shown). The fuel injector 100 is thereby connected to a high voltage power supply or battery power supply.
 また、燃料噴射装置100には、燃料噴射装置100を駆動するための駆動装置であるEDU(駆動回路)121及びEDU121の制御を行うECU(エンジンコントロールユニット)120が接続されている。 In addition, an EDU (drive circuit) 121 as a driving device for driving the fuel injection device 100 and an ECU (engine control unit) 120 that controls the EDU 121 are connected to the fuel injection device 100 .
 ECU120は、燃料噴射装置100による燃料噴射の対象となるエンジン(内燃機関:図示せず)の状態を示す信号を各種センサーから取り込み、エンジンの運転条件に応じて適切な駆動パルスの幅や噴射タイミングの演算を行う。ECU120より出力された駆動パルスは、信号線123を通して燃料噴射装置100のEDU121に入力される。 The ECU 120 receives signals from various sensors indicating the state of the engine (internal combustion engine, not shown) to which fuel is to be injected by the fuel injection device 100, and determines an appropriate driving pulse width and injection timing according to the operating conditions of the engine. perform the calculation of A drive pulse output from the ECU 120 is input to the EDU 121 of the fuel injection device 100 through the signal line 123 .
 EDU121は、燃料噴射装置100の電磁コイル108に印加する電圧を制御して電磁コイル108に電流を供給する。また、ECU120は、通信ライン122を通してEDU121と通信を行っており、燃料噴射装置100に供給する燃料の圧力や運転条件によって駆動パルスを制御する。そして、EDU121によって生成する駆動電圧(電流)を切替えることが可能である。なお、EDU121は、ECU120との通信によって制御定数を変化できるようになっており、制御定数に応じて電流波形が変化する。 The EDU 121 controls the voltage applied to the electromagnetic coil 108 of the fuel injection device 100 to supply current to the electromagnetic coil 108 . Also, the ECU 120 communicates with the EDU 121 through a communication line 122 and controls the drive pulse according to the pressure of the fuel supplied to the fuel injection device 100 and operating conditions. Then, it is possible to switch the drive voltage (current) generated by the EDU 121 . The EDU 121 can change the control constant through communication with the ECU 120, and the current waveform changes according to the control constant.
 ECU120及びEDU121は一体の部品として構成されてもよい。すなわち、燃料噴射装置100を駆動するための駆動装置は、燃料噴射装置100の駆動電圧を発生する装置であればよく、例えば、ECU120とEDU121とが一体となって駆動装置を構成してもよいし、本実施の形態で例示するようにEDU121単体で駆動装置を構成してもよい。 The ECU 120 and EDU 121 may be configured as an integral part. That is, the drive device for driving the fuel injection device 100 may be a device that generates a drive voltage for the fuel injection device 100, and for example, the ECU 120 and the EDU 121 may be integrated to form a drive device. Alternatively, the EDU 121 alone may constitute the drive device as exemplified in this embodiment.
1-2.弁部材及びアンカーの詳細な構成
 次に、弁部材104及びアンカー110の詳細な構成について図1及び図2を参照して説明する。
 図2は、燃料噴射装置100におけるスペーサー125及びアンカー110周りを拡大して示す断面図である。なお、図2では、閉弁状態を示す。
1-2. Detailed Configuration of Valve Member and Anchor Next, the detailed configuration of the valve member 104 and the anchor 110 will be described with reference to FIGS. 1 and 2. FIG.
FIG. 2 is a cross-sectional view showing an enlarged view of spacer 125 and anchor 110 in fuel injection device 100. As shown in FIG. In addition, FIG. 2 shows the closed state.
 図1に示すように、プランジャロッド113は、円柱状をなす棒状の部材により構成されている。図2に示すように、プランジャロッド113は、アンカー110の挿通孔110cを挿通し、ノズルホルダ102の連通孔102c(図1参照)内に配置されている。
そして、図1に示すように、プランジャロッド113の軸線方向Daの先端部には、弁体117が設けられている。弁体117は、ノズルホルダ102に設けたガイド部材105に軸線方向Dabに沿って移動可能に支持されている。そして、弁体117は、噴射孔形成部材103の弁座103aに離反可能に当接し、噴射孔形成部材103に設けた噴射孔112を開閉する。
As shown in FIG. 1, the plunger rod 113 is configured by a cylindrical rod-shaped member. As shown in FIG. 2, the plunger rod 113 is inserted through the insertion hole 110c of the anchor 110 and arranged in the communication hole 102c of the nozzle holder 102 (see FIG. 1).
As shown in FIG. 1, a valve body 117 is provided at the tip of the plunger rod 113 in the axial direction Da. The valve body 117 is supported by a guide member 105 provided on the nozzle holder 102 so as to be movable along the axial direction Dab. The valve body 117 releasably contacts the valve seat 103 a of the injection hole forming member 103 to open and close the injection hole 112 provided in the injection hole forming member 103 .
 また、図2に示すように、プランジャロッド113は、アンカー110に係合する係合部128を有している。プランジャロッド113は、アンカー110に設けた挿通孔110cを挿通する。係合部128は、アンカー110よりも軸線方向Daの後端側に形成されている。係合部128の直径は、プランジャロッド113の直径及び挿通孔110cの内径110b(図3B参照)よりも大きく形成されている。そして、係合部128は、プランジャロッド113の外周面から半径方向の外側に向けて張り出している。 Further, as shown in FIG. 2, the plunger rod 113 has an engaging portion 128 that engages with the anchor 110. As shown in FIG. The plunger rod 113 is inserted through the insertion hole 110 c provided in the anchor 110 . The engaging portion 128 is formed closer to the rear end side in the axial direction Da than the anchor 110 . The diameter of the engaging portion 128 is larger than the diameter of the plunger rod 113 and the inner diameter 110b (see FIG. 3B) of the insertion hole 110c. The engaging portion 128 protrudes radially outward from the outer peripheral surface of the plunger rod 113 .
 係合部128は、アンカー110の上端面と対向している。プランジャロッド113が閉弁状態では、係合部128の軸線方向Daの一端部側の端面である下端面と固定コア101の先端部との間には、間隙が空いている。さらに、係合部128の下端面は、後述するスペーサー125によってアンカー110の上端面と隙間を空けて対向する。 The engaging portion 128 faces the upper end surface of the anchor 110 . When the plunger rod 113 is in the closed state, there is a gap between the lower end surface of the engaging portion 128 on the one end side in the axial direction Da and the distal end portion of the fixed core 101 . Further, the lower end surface of the engaging portion 128 faces the upper end surface of the anchor 110 with a gap therebetween by a spacer 125 which will be described later.
 また、開弁動作時に、すなわちアンカー110とプランジャロッド113の位置が相対的に変位する際に、アンカー110の上端面は係合部128の下端面に当接し、アンカー110と係合部128が係合する。これにより、プランジャロッド113は、アンカー110とともに軸線方向Daの後端部側、すなわち開弁方向へ移動する。 Further, when the valve is opened, that is, when the positions of the anchor 110 and the plunger rod 113 are relatively displaced, the upper end surface of the anchor 110 contacts the lower end surface of the engaging portion 128, and the anchor 110 and the engaging portion 128 are brought into contact with each other. engage. As a result, the plunger rod 113 moves along with the anchor 110 toward the rear end side in the axial direction Da, that is, in the valve opening direction.
 係合部128よりも軸線方向Daの後端部側には、ロッドヘッド127が取り付けられている。ロッドヘッド127は、略円板状に形成されている。ロッドヘッド127の上端面には、第1スプリング118が当接している。そして、ロッドヘッド127の下端面には、第3スプリング126が当接している。第3スプリング126は、ロッドヘッド127とスペーサー125の間に介在され、スペーサー125をアンカー110に向けて付勢している。 A rod head 127 is attached to the rear end side of the engaging portion 128 in the axial direction Da. The rod head 127 is formed in a substantially disc shape. A first spring 118 is in contact with the upper end surface of the rod head 127 . A third spring 126 is in contact with the lower end surface of the rod head 127 . A third spring 126 is interposed between rod head 127 and spacer 125 to bias spacer 125 toward anchor 110 .
 プランジャロッド113の係合部128の周囲を囲むようにして、スペーサー125が配置されている。スペーサー125は、略円筒状に形成されている。スペーサー125における軸線方向Daの他端部側の端面である上端部には、第3スプリング126が当接する。また、スペーサー125における軸線方向Daの一端部側の下端部は、アンカー110の上端面に当接する。 A spacer 125 is arranged so as to surround the engagement portion 128 of the plunger rod 113 . The spacer 125 is formed in a substantially cylindrical shape. A third spring 126 abuts on the upper end portion of the spacer 125, which is the end face on the other end side in the axial direction Da. A lower end portion of the spacer 125 on the one end side in the axial direction Da contacts the upper end surface of the anchor 110 .
 そして、スペーサー125内に係合部128が収容されている。スペーサー125の内径は、プランジャロッド113の係合部128の直径よりも大きき設定されている。そのため、係合部128の半径方向の外側の外周面とスペーサー125の内壁面の間には、間隙が形成される。 An engaging portion 128 is accommodated within the spacer 125 . The inner diameter of the spacer 125 is set larger than the diameter of the engaging portion 128 of the plunger rod 113 . Therefore, a gap is formed between the radially outer peripheral surface of the engaging portion 128 and the inner wall surface of the spacer 125 .
 また、スペーサー125における軸線方向Daの長さ、すなわち下端部から上面部までの長さは、係合部128の軸線方向Daの長さよりも長く設定されている。また、スペーサー125が第3スプリング126によってアンカー110に向けて付勢されることで、閉弁状態において、係合部128の上端面は、スペーサー125内の上面部に当接する。 In addition, the length of the spacer 125 in the axial direction Da, that is, the length from the lower end portion to the upper surface portion is set longer than the length of the engaging portion 128 in the axial direction Da. Further, the spacer 125 is biased toward the anchor 110 by the third spring 126, so that the upper end surface of the engaging portion 128 contacts the upper surface portion inside the spacer 125 in the valve closed state.
 また、スペーサー125における軸線方向Daの後端側に形成された貫通孔には、プランジャロッド113が挿入される。そして、貫通孔の内径は、プランジャロッド113の直径よりも大きく設定されている。 In addition, the plunger rod 113 is inserted into a through hole formed on the rear end side of the spacer 125 in the axial direction Da. The inner diameter of the through hole is set larger than the diameter of the plunger rod 113 .
 ここで、アンカー110は、第2スプリング124の付勢力により固定コア101側に向けて付勢されている。そのため、アンカー110の上端面は、スペーサー125の下端部に当接する。なお、第2スプリング124の付勢力は、第3スプリング126の付勢力よりも小さく設定されている。そのため、アンカー110は、スペーサー125を介して第3スプリング126により軸線方向Daの先端側に向けて付勢される。これにより、アンカー110における軸線方向Daの後端側への移動、すなわち開弁方向への移動は、スペーサー125と第3スプリング126により規制される。 Here, the anchor 110 is biased toward the fixed core 101 side by the biasing force of the second spring 124 . Therefore, the upper end surface of the anchor 110 contacts the lower end of the spacer 125 . The biasing force of the second spring 124 is set smaller than the biasing force of the third spring 126 . Therefore, the anchor 110 is biased toward the distal end side in the axial direction Da by the third spring 126 via the spacer 125 . Thereby, the movement of the anchor 110 toward the rear end in the axial direction Da, that is, the movement in the valve opening direction is restricted by the spacer 125 and the third spring 126 .
 また、閉弁状態において、スペーサー125内の上面部にプランジャロッド113の係合部128が当接することで、スペーサー125は、所定の位置(基準位置)に配置される。スペーサー125が基準位置に配置された状態で、スペーサー125の下端部がアンカー110の上端面に当接する。これにより、係合部128の下端面とアンカー110の上端面との間に、予備ストロークを設けることができる。 In addition, when the valve is closed, the engagement portion 128 of the plunger rod 113 abuts against the upper surface of the spacer 125, so that the spacer 125 is placed at a predetermined position (reference position). The lower end portion of the spacer 125 contacts the upper end surface of the anchor 110 while the spacer 125 is arranged at the reference position. Thereby, a preliminary stroke can be provided between the lower end surface of the engaging portion 128 and the upper end surface of the anchor 110 .
 また、上述したように、プランジャロッド113が閉弁状態では、係合部128の下端面と固定コア101の先端部との間には、間隙が空いている。 Also, as described above, when the plunger rod 113 is in the valve closed state, there is a gap between the lower end surface of the engaging portion 128 and the tip portion of the fixed core 101 .
 なお、本例では、第3スプリング126を設けた例を説明したが、これに限定されるものではなく、第3スプリング126を設けなくてもよい。 In this example, an example in which the third spring 126 is provided has been described, but the present invention is not limited to this, and the third spring 126 may not be provided.
 次に、アンカー110について図3A及び図3Bを参照して説明する。
 図3Aは、図2に示すA-A’線断面図である。図3B、アンカー110の断面図である。
 図3A及び図3Bに示すように、アンカー110の挿通孔110cは、アンカー110の外径110aの中心線110acに対して偏心した位置に形成されている。さらに、アンカー110の外径110aの中心線110acは、ノズルホルダ102の中心線102acに対して左方向に長さg1だけ移動した位置となっている。また、アンカー110の内径110b(挿通孔110c)の中心線110bcは、ノズルホルダ102の中心線102acに対して右方向に長さg2だけ移動した位置に形成されている。そのため、アンカー110の内径110b(挿通孔110c)は、アンカー110の外径110aを基準として長さg1+g2に偏心した構造となっている。
Anchor 110 will now be described with reference to FIGS. 3A and 3B.
3A is a cross-sectional view taken along the line AA' shown in FIG. 2. FIG. 3B is a cross-sectional view of anchor 110. FIG.
As shown in FIGS. 3A and 3B, the insertion hole 110c of the anchor 110 is formed at a position eccentric to the centerline 110ac of the outer diameter 110a of the anchor 110. As shown in FIGS. Further, the center line 110ac of the outer diameter 110a of the anchor 110 is located at a position shifted leftward from the center line 102ac of the nozzle holder 102 by the length g1. A center line 110bc of the inner diameter 110b (insertion hole 110c) of the anchor 110 is formed at a position shifted rightward from the center line 102ac of the nozzle holder 102 by a length g2. Therefore, the inner diameter 110b (insertion hole 110c) of the anchor 110 is eccentric to the length g1+g2 with the outer diameter 110a of the anchor 110 as a reference.
 そのため、図3Aに示すように、アンカー110の挿通孔110cと弁部材104との間には、間隙部201が形成される。また、アンカー110の外径110aと弁部材104との間には、間隙部202が形成されている。 Therefore, a gap 201 is formed between the insertion hole 110c of the anchor 110 and the valve member 104, as shown in FIG. 3A. A gap 202 is formed between the outer diameter 110 a of the anchor 110 and the valve member 104 .
 次に、図4A及び図4Bを参照してアンカー110の偏心量について説明する。
 図4A及び図4Bは、アンカー110の偏心量を示す説明図である。図4Aは、偏心量が大きい場合を示し、図4Bは偏心量が小さい場合を示している。
Next, the amount of eccentricity of the anchor 110 will be described with reference to FIGS. 4A and 4B.
4A and 4B are explanatory diagrams showing the amount of eccentricity of the anchor 110. FIG. 4A shows a case where the eccentricity is large, and FIG. 4B shows a case where the eccentricity is small.
 図4A及び図4Bでは、弁部材104の半径をRr、アンカー110の挿通孔110cの径(内径)をRai、アンカー110の外径をRao、ノズルホルダ102の収容凹部102bの内径をRniと称する。 4A and 4B, the radius of the valve member 104 is Rr, the diameter (inner diameter) of the insertion hole 110c of the anchor 110 is Rai, the outer diameter of the anchor 110 is Rao, and the inner diameter of the receiving recess 102b of the nozzle holder 102 is Rni. .
 上述したように、アンカー110は、ノズルホルダ102及び弁部材104に対して偏心した位置に配置されている。そのため、アンカー110が軸線方向Daと直交する方向に移動した場合、ロッドヘッド127及びガイド部材105に対して、軸線方向Daと直交する方向への付勢力が作用する。この状態で、弁部材104が移動すると、付勢された箇所にのみ摩耗が進行する。その結果、弁座103aの偏摩耗につながり開弁不良を招くおそれがある。 As described above, the anchor 110 is arranged at an eccentric position with respect to the nozzle holder 102 and the valve member 104. Therefore, when the anchor 110 moves in a direction perpendicular to the axial direction Da, a biasing force acts on the rod head 127 and the guide member 105 in a direction perpendicular to the axial direction Da. When the valve member 104 moves in this state, wear progresses only in the urged portion. As a result, the valve seat 103a may be unevenly worn, leading to a valve opening failure.
 図4Aに示す例では、アンカー110の偏心量が大きい例を示す図である。図4Aに示す例よりも偏心量が大きくなると、アンカー110が弁部材104を右方向に押し付けることになる。そして、偏心量g1+g2は、下記式1の関係が成立した場合、弁部材104に対して右方向の付勢力がアンカー110から作用する。
[式1]
g1+g2>(Rni-Rao)+(Rai-Rr)
The example shown in FIG. 4A is a diagram showing an example in which the amount of eccentricity of the anchor 110 is large. If the eccentricity is greater than the example shown in FIG. 4A, the anchor 110 will force the valve member 104 to the right. As for the amount of eccentricity g1+g2, a rightward biasing force acts on the valve member 104 from the anchor 110 when the relationship of the following formula 1 is established.
[Formula 1]
g1+g2>(Rni−Rao)+(Rai−Rr)
 図4Bに示す例では、アンカー110の偏心量が小さい例を示す図である。図4Bに示す例よりも偏心量が小さくなると、アンカー110が弁部材104を左方向に押し付けることになる。そして、偏心量g1+g2は、下記式2の関係が成立した場合、弁部材104に対して左方向の付勢力がアンカー110から作用する。
[式2]
g1+g2<(Rni-Rao)-(Rai-Rr)
The example shown in FIG. 4B is a diagram showing an example in which the amount of eccentricity of the anchor 110 is small. If the amount of eccentricity is smaller than the example shown in FIG. 4B, the anchor 110 will push the valve member 104 leftward. As for the amount of eccentricity g1+g2, a leftward biasing force acts on the valve member 104 from the anchor 110 when the relationship of the following formula 2 is established.
[Formula 2]
g1+g2<(Rni-Rao)-(Rai-Rr)
 そのため、アンカー110が弁部材104に接触し、弁部材104への付勢力を無くすためには、アンカー110の偏心量g1+g2は、下記式3の関係を成立させることが好ましい。これにより、弁座103aが偏摩耗することを抑制し、閉弁不良が発生することを防止することができる。
[式3]
 (Rni-Rao)-(Rai-Rr)<g1+g2<(Rni-Rao)+(Rai-Rr)
Therefore, in order for the anchor 110 to come into contact with the valve member 104 and eliminate the urging force on the valve member 104, the eccentricity g1+g2 of the anchor 110 preferably satisfies the relationship of Equation 3 below. As a result, uneven wear of the valve seat 103a can be suppressed, and the occurrence of valve closing failure can be prevented.
[Formula 3]
(Rni-Rao)-(Rai-Rr)<g1+g2<(Rni-Rao)+(Rai-Rr)
1-3.燃料噴射装置の動作例
 次に、上述した構成を有する燃料噴射装置100の動作例について図5を参照して説明する。
 図5は、開弁動作が完了した際のスペーサー125及びアンカー110周りを拡大して示す断面図である。
1-3. Operation Example of Fuel Injection Apparatus Next, an operation example of the fuel injection apparatus 100 having the configuration described above will be described with reference to FIG.
FIG. 5 is a cross-sectional view showing an enlarged view of spacer 125 and anchor 110 when the valve opening operation is completed.
 ECUによって電磁コイル108に通電されると、固定コア101、アンカー110、ノズルホルダ102及びハウジング109によって形成される磁気回路に磁束が流れる。
そして、固定コア101には、アンカー110を吸引する磁気吸引力が発生する。固定コア101の磁気吸引力が、第3スプリング126の付勢力を超えると、アンカー110は、スペーサー125を押圧し、固定コア101に向けて移動する。そのため、アンカー110は、軸線方向Daの後端側に向けて移動する。この間、プランジャロッド113の先端部は、噴射孔形成部材103の弁座103aに当接している。
When the electromagnetic coil 108 is energized by the ECU, magnetic flux flows in the magnetic circuit formed by the fixed core 101 , the anchor 110 , the nozzle holder 102 and the housing 109 .
Then, a magnetic attractive force that attracts the anchor 110 is generated in the fixed core 101 . When the magnetic attraction force of fixed core 101 exceeds the biasing force of third spring 126 , anchor 110 presses spacer 125 and moves toward fixed core 101 . Therefore, the anchor 110 moves toward the rear end side in the axial direction Da. During this time, the tip of the plunger rod 113 is in contact with the valve seat 103 a of the injection hole forming member 103 .
 アンカー110が軸線方向Daの後端側に移動することで、アンカー110の上端面は、プランジャロッド113の係合部128の下端面に接近する。そのため、アンカー110の上端面と係合部128の下端面との間隙は、ゼロとなる。 As the anchor 110 moves toward the rear end side in the axial direction Da, the upper end surface of the anchor 110 approaches the lower end surface of the engaging portion 128 of the plunger rod 113 . Therefore, the gap between the upper end surface of the anchor 110 and the lower end surface of the engaging portion 128 is zero.
 さらに、アンカー110が軸線方向Daの後端側に移動した分だけ、アンカー110と固定コア101との間隙(磁気吸引ギャップ)の大きさが減少する。さらに、スペーサー125も軸線方向Daの後端側に移動するため、スペーサー125内の上面部と係合部128の上端面には、間隙が発生する。 Furthermore, the size of the gap (magnetic attraction gap) between the anchor 110 and the fixed core 101 is reduced by the amount that the anchor 110 moves toward the rear end side in the axial direction Da. Furthermore, since the spacer 125 also moves toward the rear end in the axial direction Da, a gap is generated between the upper surface of the spacer 125 and the upper end surface of the engaging portion 128 .
 また、開弁動作を開始する直前では、アンカー110と係合部128との間には、間隙が空いている。そのため、アンカー110は、間隙を移動した後に、係合部128に当接する。これにより、アンカー110は、係合部128に当接するまでの間、すなわち間隙を移動する間に、加速する。その結果、アンカー110が加速した状態で、アンカー110を係合部128に当接させることができる。 Also, there is a gap between the anchor 110 and the engaging portion 128 immediately before the valve opening operation is started. Therefore, the anchor 110 abuts the engaging portion 128 after moving through the gap. As a result, the anchor 110 accelerates until it abuts against the engaging portion 128, that is, while moving through the gap. As a result, the anchor 110 can be brought into contact with the engaging portion 128 while the anchor 110 is accelerated.
 このように、アンカー110から係合部128を介してプランジャロッド113に加える力を上昇させることができ、プランジャロッド113を軸線方向Daの後端側に向かう移動を速やかに開始させることができる。その結果、プランジャロッド113における開弁動作を速やかに開始することができる。 In this way, the force applied from the anchor 110 to the plunger rod 113 via the engaging portion 128 can be increased, and the plunger rod 113 can quickly start moving toward the rear end side in the axial direction Da. As a result, the valve opening operation of the plunger rod 113 can be started quickly.
 また、アンカー110の上端面が係合部128の下端面に接近することで、係合部128の下端面と、アンカー110の上端面と、スペーサー125で形成される領域200(図2参照)の体積が急激に減少する。従来の燃料噴射装置では、領域200が閉空間であるため、領域200の体積の変化により、領域200の圧力が大きく変動していた。また、領域200の寸法は、燃料噴射装置の製造時のばらつきにより個体ごと、すなわち燃料噴射装置ごとに異なっていた。そのため、領域200の圧力の変化量は、個体ごとにばらつきが発生し、プランジャロッド113の開弁タイミングや開弁速度にもばらつきが発生していた。その結果、従来の燃料噴射装置では、燃料噴射装置ごとの噴射量にばらつきが生じていた。 Also, as the upper end surface of the anchor 110 approaches the lower end surface of the engaging portion 128, a region 200 (see FIG. 2) formed by the lower end surface of the engaging portion 128, the upper end surface of the anchor 110, and the spacer 125 (see FIG. 2). volume decreases sharply. In the conventional fuel injection device, since the region 200 is a closed space, the pressure in the region 200 fluctuates greatly due to the change in the volume of the region 200 . In addition, the dimension of the region 200 varies from individual fuel injection device to fuel injection device due to manufacturing variations of the fuel injection device. Therefore, the amount of change in the pressure in the region 200 varies from individual to individual, and the valve opening timing and valve opening speed of the plunger rod 113 also vary. As a result, in the conventional fuel injection device, the injection amount varies from one fuel injection device to another.
 開弁状態(フルリフト状態)となると、アンカー110がプランジャロッド113の係合部128に当接し、係合部128の上端面とスペーサー125の上面部との間に間が形成される。開弁状態から閉弁状態に変位する際は、領域200の体積が減少するため、領域200の圧力が上昇する。その結果、プランジャロッド113に作用する圧力が変化し、プランジャロッド113の閉弁動作にも影響を与えていた。 When the valve is in the open state (full lift state), the anchor 110 abuts against the engaging portion 128 of the plunger rod 113 and a gap is formed between the upper end surface of the engaging portion 128 and the upper surface portion of the spacer 125 . When the valve is changed from the open state to the closed state, the volume of the region 200 decreases, so the pressure in the region 200 increases. As a result, the pressure acting on the plunger rod 113 changes, and the valve closing operation of the plunger rod 113 is also affected.
 これに対して、本例の燃料噴射装置100で、アンカー110を弁部材104及びノズルホルダ102に対して偏心した位置に配置し、弁部材104と挿通孔110cとの間に間隙部201を形成している。これにより、領域200の燃料(流体)は、弁部材104と挿通孔110cとの間に形成された間隙部201に流れ込む。これにより、領域200の体積が変動することによって生じる圧力の変動を抑制することができる。その結果、係合部128とアンカー110が接近する際に領域200の圧力変動による影響を受けることがなく、アンカー110を係合部128にスムーズに接触させることができる。 In contrast, in the fuel injection device 100 of the present embodiment, the anchor 110 is arranged at a position eccentric to the valve member 104 and the nozzle holder 102 to form the gap 201 between the valve member 104 and the insertion hole 110c. doing. As a result, fuel (fluid) in region 200 flows into gap 201 formed between valve member 104 and insertion hole 110c. As a result, it is possible to suppress pressure fluctuations caused by fluctuations in the volume of the region 200 . As a result, when the engaging portion 128 and the anchor 110 approach each other, the anchor 110 can be smoothly brought into contact with the engaging portion 128 without being affected by pressure fluctuations in the region 200 .
 さらに、領域200の体積が個体ごとにばらつきが発生した場合でも、プランジャロッド113や開弁タイミングや開弁速度のばらつきを抑制することができる。その結果、燃料噴射装置100ごとの噴射量のばらつきを抑制することができる。 Furthermore, even if the volume of the region 200 varies from individual to individual, variations in the plunger rod 113, the valve opening timing, and the valve opening speed can be suppressed. As a result, variations in the injection amount for each fuel injection device 100 can be suppressed.
 また、アンカー110が軸線方向Daの後端側に移動すると、アンカー110と係合部128が係合する。このとき、係合部128と固定コア101の先端部との間の間隙の長さは、減少する。そして、弁部材104は、アンカー110と共に軸線方向Daの後端側に移動する。 Further, when the anchor 110 moves to the rear end side in the axial direction Da, the anchor 110 and the engaging portion 128 are engaged. At this time, the length of the gap between the engaging portion 128 and the tip of the fixed core 101 is reduced. Then, the valve member 104 moves to the rear end side in the axial direction Da together with the anchor 110 .
 図5に示すように、アンカー110、スペーサー125及びプランジャロッド113がさらに軸線方向Daの後端側に移動すると、弁体117の先端部は、噴射孔形成部材103の弁座103aから離反し、噴射孔112が開放される開弁状態となる。これにより、噴射孔112から燃料の噴射が開始される。 As shown in FIG. 5, when the anchor 110, the spacer 125 and the plunger rod 113 move further toward the rear end in the axial direction Da, the tip of the valve body 117 separates from the valve seat 103a of the injection hole forming member 103. The valve is opened in which the injection hole 112 is opened. As a result, fuel injection from the injection hole 112 is started.
 また、アンカー110の上端面が固定コア101の先端部に当接することで、アンカー110における軸線方向Daの後端側に向かう移動が規制される。なお、プランジャロッド113は、慣性力で軸線方向Daの後端側へ移動するが、第1スプリング118の付勢力により押し戻される。そのため、プランジャロッド113は、係合部128の下端面がアンカー110の上端面に当接した状態で静止する。これにより、プランジャロッド113が所定のストローク量だけ移動した開弁静止状態となる。 In addition, since the upper end surface of the anchor 110 abuts against the distal end portion of the fixed core 101, movement of the anchor 110 toward the rear end side in the axial direction Da is restricted. The plunger rod 113 moves toward the rear end side in the axial direction Da by inertia force, but is pushed back by the biasing force of the first spring 118 . Therefore, the plunger rod 113 stands still while the lower end surface of the engaging portion 128 is in contact with the upper end surface of the anchor 110 . As a result, the plunger rod 113 moves by a predetermined stroke amount, and the valve is in an open stationary state.
 開弁静止状態では、アンカー110が磁気吸引力により固定コア101に吸引され、弁部材104が第1スプリング118の付勢力により閉弁方向に付勢されている。そのため、アンカー110とプランジャロッド113は、互いに当接し、一体となっている。すなわち、プランジャロッド113の係合部128の下端面がアンカー110の上端面に当接し、間隙の大きさはゼロとなる。 In the valve open stationary state, the anchor 110 is attracted to the fixed core 101 by magnetic attraction force, and the valve member 104 is biased in the valve closing direction by the biasing force of the first spring 118 . Therefore, the anchor 110 and the plunger rod 113 abut each other and are integrated. That is, the lower end surface of the engaging portion 128 of the plunger rod 113 contacts the upper end surface of the anchor 110, and the size of the gap becomes zero.
 さらに、第3スプリング126の付勢力は、磁気吸引力よりも小さいため、第3スプリング126は、スペーサー125を介してアンカー110を軸線方向Daの先端側に押し戻すことはできない。そのため、スペーサー125の下端部は、アンカー110の上端面に当接し、係合部128の上端面とスペーサー125の上面部との間隙は、維持される。
さらに、アンカー110は、固定コア101と当接しているため、アンカー110の上端面と固定コア101の先端部との間隙の大きさはゼロとなる。
Furthermore, since the biasing force of the third spring 126 is smaller than the magnetic attraction force, the third spring 126 cannot push back the anchor 110 toward the distal end side in the axial direction Da via the spacer 125 . Therefore, the lower end of the spacer 125 contacts the upper end surface of the anchor 110, and the gap between the upper end surface of the engaging portion 128 and the upper surface of the spacer 125 is maintained.
Furthermore, since the anchor 110 is in contact with the fixed core 101, the size of the gap between the upper end surface of the anchor 110 and the distal end portion of the fixed core 101 is zero.
 図5に示す開弁した状態(フルリフト状態)において駆動パルスをOFFにすると、電磁コイル108への通電が遮断される。そのため、アンカー110と固定コア101との間に生じる磁気吸引力が消失する。そして、磁気吸引力が第1スプリング118の付勢力よりも小さくなると、弁部材104は、軸線方向Daの先端側、すなわち閉弁方向への移動を開始する。閉弁方向へ移動を開始した弁部材104は、アンカー110と一体になって変位した後、弁体117の先端部が弁座103aに着座する。これにより、図2に示す閉弁状態に戻り、燃料噴射装置100による燃料の噴射が停止される。 When the drive pulse is turned off in the valve open state (full lift state) shown in FIG. 5, the energization to the electromagnetic coil 108 is cut off. Therefore, the magnetic attractive force generated between the anchor 110 and the fixed core 101 disappears. Then, when the magnetic attraction force becomes smaller than the biasing force of the first spring 118, the valve member 104 starts to move toward the distal end side in the axial direction Da, that is, in the valve closing direction. After the valve member 104, which has started to move in the valve closing direction, is displaced together with the anchor 110, the tip of the valve element 117 is seated on the valve seat 103a. As a result, the valve is returned to the closed state shown in FIG. 2, and fuel injection by the fuel injection device 100 is stopped.
 さらに、閉弁動作時では、係合部128の下端面がアンカー110の上端面から離反するため、領域200の体積が急激に増加する。このとき、領域200には、弁部材104と挿通孔110cとの間に形成された間隙部201から燃料(流体)が流れ込む。これにより、閉弁動作時においても、領域200の圧力変動を抑制することができる。その結果、安定した閉弁動作を実現することができ、噴射量のばらつきを抑制することができる。 Furthermore, during the valve closing operation, the lower end surface of the engaging portion 128 separates from the upper end surface of the anchor 110, so the volume of the region 200 increases sharply. At this time, fuel (fluid) flows into the region 200 from the gap 201 formed between the valve member 104 and the insertion hole 110c. As a result, pressure fluctuations in the region 200 can be suppressed even during the valve closing operation. As a result, it is possible to realize a stable valve closing operation, and to suppress variations in the injection amount.
 さらに、アンカー110が軸線方向Daの先端側へ移動することで、アンカー110とノズルホルダ102及び固定コア101に形成された空間203の容積が増大する。そして、アンカー110とノズルホルダ102との間隙部202を通じって、空間203に燃料が流れ込む。 Furthermore, as the anchor 110 moves toward the tip side in the axial direction Da, the volume of the space 203 formed between the anchor 110, the nozzle holder 102, and the fixed core 101 increases. Fuel flows into the space 203 through the gap 202 between the anchor 110 and the nozzle holder 102 .
 このとき、アンカー110は、残留磁束の影響でノズルホルダ102に密着している。
そして、アンカー110は、ノズルホルダ102との密着状態を維持しつつ、軸線方向Daの先端側へ摺動する。このとき、流体抵抗のばらつきは、間隙部202の寸法ばらつきによって生じ、間隙部202が狭いほど、流体抵抗のばらつきが大きくなる。その結果、アンカー110の下降速度(閉弁開始タイミング)にばらつきが発生する。
At this time, the anchor 110 is in close contact with the nozzle holder 102 due to the residual magnetic flux.
Then, the anchor 110 slides toward the distal end side in the axial direction Da while maintaining a tight contact state with the nozzle holder 102 . At this time, the variation in fluid resistance is caused by the variation in size of the gap 202, and the narrower the gap 202, the greater the variation in fluid resistance. As a result, variations occur in the descending speed of the anchor 110 (valve closing start timing).
 これに対して、本例の燃料噴射装置100では、アンカー110の外径110aの中心線110acをノズルホルダ102の中心線102acに対して偏心した位置に配置している。これにより、アンカー110とノズルホルダ102との片側(図3に示す例では右側)の間隙部202を広く確保することができる。さらに、アンカー110とノズルホルダ102との間隙部202との反対側において、アンカー110がノズルホルダ102に密着する摺動部を確保することもできる。これにより、ノズルホルダ102にアンカー110を密着して確実に摺動させつつ、間隙部202を大きく設定することで、流体力のばらつきを抑制するこができる。 On the other hand, in the fuel injection device 100 of this example, the center line 110ac of the outer diameter 110a of the anchor 110 is arranged at a position eccentric to the center line 102ac of the nozzle holder 102. This makes it possible to secure a wide gap 202 on one side (the right side in the example shown in FIG. 3) between the anchor 110 and the nozzle holder 102 . Furthermore, on the side opposite to the gap 202 between the anchor 110 and the nozzle holder 102 , a sliding portion where the anchor 110 comes into close contact with the nozzle holder 102 can be secured. As a result, while the anchor 110 is brought into close contact with the nozzle holder 102 and reliably slid, by setting the gap 202 large, it is possible to suppress variations in the fluid force.
2.第2の実施の形態例
 次に、図6を参照して第2の実施の形態例にかかる燃料噴射装置について説明する。
 図6は、第2の実施の形態例にかかる燃料噴射装置のアンカー及びノズルホルダを示す断面図である。
2. Second Embodiment Next, a fuel injection device according to a second embodiment will be described with reference to FIG.
FIG. 6 is a sectional view showing the anchor and nozzle holder of the fuel injection device according to the second embodiment.
 この第2の実施の形態例にかかる燃料噴射装置が、第1の実施の形態例にかかる燃料噴射装置と異なる点は、アンカーの形状である。そのため、第1の実施の形態例にかかる燃料噴射装置100と共通する部分には、同一の符号を付して重複した説明を省略する。 The fuel injection device according to the second embodiment differs from the fuel injection device according to the first embodiment in the shape of the anchor. Therefore, the parts common to the fuel injection device 100 according to the first embodiment are denoted by the same reference numerals, and redundant explanations are omitted.
 図6に示すように、アンカー110Aは、曲率の異なる2つの円弧により形成されている。すなわち、アンカー110Aは、ノズルホルダ102の収容凹部102bの内径よりも曲率半径が小さい第1円弧部110fと、ノズルホルダ102の収容凹部102bの内径よりも曲率半径が大きい第2円弧部110gとを有している。そして、第1円弧部110fと、第2円弧部110gは、アンカー110Aの周方向に沿って連続して形成されている。 As shown in FIG. 6, the anchor 110A is formed by two arcs with different curvatures. That is, the anchor 110A includes a first arc portion 110f having a radius of curvature smaller than the inner diameter of the housing recess 102b of the nozzle holder 102 and a second arc portion 110g having a radius of curvature larger than the inside diameter of the housing recess 102b of the nozzle holder 102. have. The first arc portion 110f and the second arc portion 110g are formed continuously along the circumferential direction of the anchor 110A.
 また、アンカー110Aに形成された挿通孔110cは、アンカー110Aの中心部に形成されている。そして、挿通孔110cの内径は、弁部材104の直径よりも十分に大きく形成されている。 Also, the insertion hole 110c formed in the anchor 110A is formed in the center of the anchor 110A. The inner diameter of the insertion hole 110 c is formed sufficiently larger than the diameter of the valve member 104 .
 このような、形状を有するアンカー110Aにおいても、第1の実施の形態例にかかるアンカー110と同様に、挿通孔110cと弁部材104との間隙部201を大きく確保することができる。さらに、アンカー110Aとノズルホルダ102との間隙部202を大きく確保することができる。 Also in the anchor 110A having such a shape, it is possible to ensure a large gap 201 between the insertion hole 110c and the valve member 104, like the anchor 110 according to the first embodiment. Furthermore, a large gap 202 between the anchor 110A and the nozzle holder 102 can be ensured.
 また、アンカー110Aは、ノズルホルダ102に対して第1円弧部110fと第2円弧部110gの交点である点(変曲点)Cと、点(変曲点)Dで接触する。ここで、アンカー110に作用する半径方向の外側に向かう電磁力の大きさは、間隙部202との距離の2乗に反比例する。そのため、アンカー110Aは、ノズルホルダ102との隙間が最小となる点Cと点Dで摺動する。 Also, the anchor 110A contacts the nozzle holder 102 at a point (inflection point) C and a point (inflection point) D which are intersection points of the first arc portion 110f and the second arc portion 110g. Here, the magnitude of the radially outward electromagnetic force acting on the anchor 110 is inversely proportional to the square of the distance to the gap 202 . Therefore, the anchor 110A slides between points C and D where the gap with the nozzle holder 102 is the smallest.
 アンカー110Aが電磁力により半径方向の外側に向かう力が作用すると、点Cにおいて第1ベクトル206aの力がノズルホルダ102に作用し、点Dにおいて第2ベクトル207aの力がノズルホルダ102に作用する。第1ベクトル206aは、第1方向に向かう第1分力206bと、第1方向と直交する第2方向に向かう第2分力206cに分けることができる。同様に、第2ベクトル207aは、第1方向に向かう第1分力207bと、第2方向に向かう第2分力207cに分けることができる。 When the anchor 110A exerts a radially outward force due to the electromagnetic force, the force of the first vector 206a acts on the nozzle holder 102 at point C, and the force of the second vector 207a acts on the nozzle holder 102 at point D. . The first vector 206a can be divided into a first force component 206b directed in a first direction and a second force component 206c directed in a second direction orthogonal to the first direction. Similarly, the second vector 207a can be divided into a first force component 207b directed in the first direction and a second force component 207c directed in the second direction.
 ここで、第1ベクトル206aの第1分力206bと第2ベクトル207aの第1分力207bは、互いに異なる向きを向いているため、相殺することができる。その結果、点C、点Dでの押し付け力は、第2分力206c、第2分力207cからなるベクトル206d、207dとなる。このように、アンカー110Aによりノズルホルダ102に作用する押し付け力を低減することができるため、アンカー110及びノズルホルダ102の摩耗量を抑制することができる。 Here, since the first force component 206b of the first vector 206a and the first force component 207b of the second vector 207a are directed in different directions, they can be canceled. As a result, the pressing forces at points C and D become vectors 206d and 207d consisting of the second force component 206c and the second force component 207c. In this way, since the pressing force acting on the nozzle holder 102 can be reduced by the anchor 110A, the amount of wear of the anchor 110 and the nozzle holder 102 can be suppressed.
 その他の構成は、第1の実施の形態例にかかる燃料噴射装置100と同様であるため、それらの説明は省略する。このようなアンカー110Aを有する燃料噴射装置によっても、上述した第1の実施の形態例にかかる燃料噴射装置100と同様の作用効果を得ることができる。 The rest of the configuration is the same as the fuel injection device 100 according to the first embodiment, so description thereof will be omitted. A fuel injection device having such an anchor 110A can also provide the same effects as the fuel injection device 100 according to the first embodiment described above.
 また、第2の実施の形態例にかかる燃料噴射装置では、アンカー110Aの形状を楕円形状にしてもよく、またはノズルホルダ102の収容凹部102bの形状を曲率が異なる複数の円弧により形成してもよい。なお、アンカー110Aの形状として、曲率半径がノズルホルダ102の内径よりも大きい箇所が少なくとも1箇所以上ある形状であればよい。 Further, in the fuel injection device according to the second embodiment, the shape of the anchor 110A may be elliptical, or the shape of the accommodation recess 102b of the nozzle holder 102 may be formed of a plurality of arcs with different curvatures. good. The shape of the anchor 110</b>A may be any shape that has at least one portion where the radius of curvature is larger than the inner diameter of the nozzle holder 102 .
3.第3の実施の形態例
 次に、図7を参照して第3の実施の形態例にかかる燃料噴射装置について説明する。
 図7は、第2の実施の形態例にかかる燃料噴射装置のアンカー及びノズルホルダを示す断面図である。
3. Third Embodiment Next, a fuel injection device according to a third embodiment will be described with reference to FIG.
FIG. 7 is a sectional view showing the anchor and nozzle holder of the fuel injection device according to the second embodiment.
 この第3の実施の形態例にかかる燃料噴射装置が、第1の実施の形態例にかかる燃料噴射装置と異なる点は、アンカーの形状である。そのため、第1の実施の形態例にかかる燃料噴射装置100と共通する部分には、同一の符号を付して重複した説明を省略する。 The fuel injection device according to the third embodiment differs from the fuel injection device according to the first embodiment in the shape of the anchor. Therefore, the parts common to the fuel injection device 100 according to the first embodiment are denoted by the same reference numerals, and redundant explanations are omitted.
 図7に示すように、アンカー110Bは、第2の実施の形態例にかかるアンカー110Aと同様に、曲率の異なる2つの円により形成されている。すなわち、アンカー110Aは、ノズルホルダ102の収容凹部102bの内径よりも曲率半径が小さい第1円弧部110mと、ノズルホルダ102の収容凹部102bの内径よりも曲率半径が大きい第2円弧部110kとを有している。 As shown in FIG. 7, the anchor 110B is formed of two circles with different curvatures, similar to the anchor 110A according to the second embodiment. That is, the anchor 110A includes a first arc portion 110m having a radius of curvature smaller than the inner diameter of the housing recess 102b of the nozzle holder 102 and a second arc portion 110k having a radius of curvature larger than the inside diameter of the housing recess 102b of the nozzle holder 102. have.
 アンカー110Bは、第1円弧部110mと第2円弧部110kの交点である点C、点Dで曲率が変化する。また、アンカー110Bの中心から点Cまでの距離Ra1は、アンカー110Bの中心から点Dまでの距離Ra2よりも短く設定されている(Ra1<Ra2)。 The curvature of the anchor 110B changes at points C and D, which are intersections of the first arc portion 110m and the second arc portion 110k. Also, the distance Ra1 from the center of the anchor 110B to the point C is set shorter than the distance Ra2 from the center of the anchor 110B to the point D (Ra1<Ra2).
 上述したように、アンカー110に作用する半径方向の外側に向かう電磁力の大きさは、間隙部202との距離の2乗に反比例するため、アンカー110Bは、まず点Dでノズルホルダ102に接触する。次に、アンカー110Bは、点Cでノズルホルダ102に接触する。そのため、アンカー110Bには、アンカー110Bの中心付近を回転支点としたトルクが発生する。このトルクによりアンカー110Bが微小回転し、開弁動作と閉弁動作を繰り返すことで、ノズルホルダ102に対するアンカー110Bが摺動する位置を変化させることができる。その結果、ノズルホルダ102の一部分のみが局所的に摩耗することを防ぐことができる。 As described above, the magnitude of the radially outward electromagnetic force acting on anchor 110 is inversely proportional to the square of the distance from gap 202, so anchor 110B first contacts nozzle holder 102 at point D. do. Anchor 110B then contacts nozzle holder 102 at point C. As shown in FIG. Therefore, a torque is generated in the anchor 110B with the vicinity of the center of the anchor 110B as the fulcrum of rotation. This torque slightly rotates the anchor 110B, and by repeating the valve opening operation and the valve closing operation, the sliding position of the anchor 110B with respect to the nozzle holder 102 can be changed. As a result, it is possible to prevent only a part of the nozzle holder 102 from being worn locally.
 その他の構成は、第1の実施の形態例にかかる燃料噴射装置100や第2の実施の形態例にかかる燃料噴射装置と同様であるため、それらの説明は省略する。このようなアンカー110Bを有する燃料噴射装置によっても、上述した第1の実施の形態例にかかる燃料噴射装置100及び第2の実施の形態例にかかる燃料噴射装置と同様の作用効果を得ることができる。 The rest of the configuration is the same as the fuel injection device 100 according to the first embodiment and the fuel injection device according to the second embodiment, so description thereof will be omitted. Even with a fuel injection device having such an anchor 110B, the same effects as those of the fuel injection device 100 according to the first embodiment and the fuel injection device according to the second embodiment can be obtained. can.
 なお、上述しかつ図面に示した実施の形態に限定されるものではなく、請求の範囲に記載した発明の要旨を逸脱しない範囲内で種々の変形実施が可能である。 It should be noted that the present invention is not limited to the embodiments described above and shown in the drawings, and various modifications are possible without departing from the gist of the invention described in the claims.
 なお、本明細書において、「平行」及び「直交」等の単語を使用したが、これらは厳密な「平行」及び「直交」のみを意味するものではなく、「平行」及び「直交」を含み、さらにその機能を発揮し得る範囲にある、「略平行」や「略直交」の状態であってもよい。 In this specification, words such as "parallel" and "perpendicular" are used, but these do not strictly mean only "parallel" and "perpendicular", but include "parallel" and "perpendicular". Furthermore, it may be in a "substantially parallel" or "substantially orthogonal" state within the range where the function can be exhibited.
 100…燃料噴射装置、 101…固定コア、 101a…貫通孔、 101b…先端部、 102…ノズルホルダ、 102a…大径部、 102b…収容凹部、 102c…連通孔、 103…噴射孔形成部材、 103a…弁座、 104…弁部材、 105…ガイド部材、 108…電磁コイル、 109…ハウジング、 109a…嵌合孔、 110…アンカー、 110c…挿通孔、 110d…偏心貫通孔、 111…燃料供給口、 112…噴射孔、 113…プランジャロッド、 117…弁体、 118…第1スプリング、 124…第2スプリング、 125…スペーサー、126…第3スプリング、 127…ロッドヘッド、 128…係合部、 201、202…間隙部 100... Fuel injection device 101... Fixed core 101a... Through hole 101b... Tip part 102... Nozzle holder 102a... Large diameter part 102b... Concave part 102c... Communication hole 103... Injection hole forming member 103a Valve seat 104 Valve member 105 Guide member 108 Electromagnetic coil 109 Housing 109a Fitting hole 110 Anchor 110c Insertion hole 110d Eccentric through hole 111 Fuel supply port 112... Injection hole 113... Plunger rod 117... Valve element 118... First spring 124... Second spring 125... Spacer 126... Third spring 127... Rod head 128... Engaging portion 201, 202... Gap part

Claims (6)

  1.  噴射孔形成部材が設けられたノズルホルダと、
     前記ノズルホルダに配置された固定コアと、
     前記固定コアと対向し、前記ノズルホルダに設けた収容凹部に配置されるアンカーと、
     前記噴射孔形成部材に設けた噴射孔を開閉する弁体を有する弁部材と、を備え、
     前記アンカーには、前記弁部材が挿通する挿通孔が形成され、
     前記アンカーと前記ノズルホルダとの間と、前記挿通孔と前記弁部材との間には、流体が通過可能な間隙部が形成されている
     燃料噴射装置。
    a nozzle holder provided with an injection hole forming member;
    a fixed core disposed in the nozzle holder;
    an anchor facing the fixed core and arranged in a housing recess provided in the nozzle holder;
    a valve member having a valve body for opening and closing the injection hole provided in the injection hole forming member;
    The anchor is formed with an insertion hole through which the valve member is inserted,
    A fuel injection device, wherein gaps through which a fluid can pass are formed between the anchor and the nozzle holder and between the insertion hole and the valve member.
  2.  前記挿通孔の中心線は、前記アンカーの外径の中心線に対して偏心した位置に形成される
     請求項1に記載の燃料噴射装置。
    2. The fuel injection device according to claim 1, wherein a center line of said insertion hole is formed at a position eccentric with respect to a center line of an outer diameter of said anchor.
  3.  前記アンカーの外径の中心線は、前記ノズルホルダの中心線に対して偏心した位置に形成される
     請求項2に記載の燃料噴射装置。
    The fuel injection device according to claim 2, wherein the centerline of the outer diameter of the anchor is formed at a position eccentric with respect to the centerline of the nozzle holder.
  4.  前記挿通孔における前記アンカーの外径に対する偏心量は、下記式を満たす
     (前記ノズルホルダの内径-前記アンカーの外径)-(前記挿通孔の内径-前記弁部材の半径)<偏心量<(前記ノズルホルダの内径-前記アンカーの外径)+(前記挿通孔の内径-前記弁部材の半径)
     請求項3に記載の燃料噴射装置。
    The amount of eccentricity with respect to the outer diameter of the anchor in the insertion hole satisfies the following formula: (inner diameter of the nozzle holder - outer diameter of the anchor) - (inner diameter of the insertion hole - radius of the valve member) < eccentricity < ( Inner diameter of the nozzle holder - Outer diameter of the anchor) + (Inner diameter of the insertion hole - Radius of the valve member)
    4. A fuel injection system according to claim 3.
  5.  前記アンカーの外径は、曲率の異なる複数の円弧により形成される
     請求項1に記載の燃料噴射装置。
    The fuel injection device according to claim 1, wherein the outer diameter of the anchor is formed by a plurality of arcs with different curvatures.
  6.  前記アンカーの外径のうち少なくとも1箇所の円弧の曲率半径は、前記ノズルホルダの内径よりも大きく形成されている
     請求項5に記載の燃料噴射装置。
    The fuel injection device according to claim 5, wherein the radius of curvature of at least one arc of the outer diameter of the anchor is larger than the inner diameter of the nozzle holder.
PCT/JP2022/005961 2021-07-01 2022-02-15 Fuel injection device WO2023276244A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021109794A JP2023006921A (en) 2021-07-01 2021-07-01 Fuel injection device
JP2021-109794 2021-07-01

Publications (1)

Publication Number Publication Date
WO2023276244A1 true WO2023276244A1 (en) 2023-01-05

Family

ID=84691154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/005961 WO2023276244A1 (en) 2021-07-01 2022-02-15 Fuel injection device

Country Status (2)

Country Link
JP (1) JP2023006921A (en)
WO (1) WO2023276244A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008019785A (en) * 2006-07-13 2008-01-31 Hitachi Ltd Solenoid-operated fuel injection valve
JP2013072298A (en) * 2011-09-27 2013-04-22 Hitachi Automotive Systems Ltd Fuel injection valve
JP2013108432A (en) * 2011-11-21 2013-06-06 Denso Corp Fuel injection valve
JP2013151915A (en) * 2012-01-26 2013-08-08 Hitachi Automotive Systems Ltd Fuel injection valve

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008019785A (en) * 2006-07-13 2008-01-31 Hitachi Ltd Solenoid-operated fuel injection valve
JP2013072298A (en) * 2011-09-27 2013-04-22 Hitachi Automotive Systems Ltd Fuel injection valve
JP2013108432A (en) * 2011-11-21 2013-06-06 Denso Corp Fuel injection valve
JP2013151915A (en) * 2012-01-26 2013-08-08 Hitachi Automotive Systems Ltd Fuel injection valve

Also Published As

Publication number Publication date
JP2023006921A (en) 2023-01-18

Similar Documents

Publication Publication Date Title
US7252245B2 (en) Fuel injection valve
JP2003049747A (en) Solenoid valve to control injection valve in internal combustion engine
US20110042491A1 (en) Fuel Injection Valve
US7063279B2 (en) Fuel injection valve
KR20050084098A (en) Fuel injection valve
JPH0457870B2 (en)
WO2016121475A1 (en) Fuel injection valve
WO2017154815A1 (en) Fuel injection device
WO2023276244A1 (en) Fuel injection device
WO2020105571A1 (en) Fuel injection device
WO2022239329A1 (en) Fuel injection device
EP3156638B1 (en) Fuel injector
JP2022143529A (en) Fuel injection device
KR20040086443A (en) Fuel injection valve
WO2020039955A1 (en) Fuel injection valve
WO2023139815A1 (en) Fuel injection device
WO2022149313A1 (en) Fuel injection device
KR20200120547A (en) Valve for metering a fluid
WO2021039434A1 (en) Fuel injection device
WO2023242980A1 (en) Fuel injection device
WO2024150532A1 (en) Fuel injection device
JP6554955B2 (en) Fuel injection valve
US11629678B2 (en) Fuel injection valve and method for assembling same
JP2020176547A (en) Fuel injection device
JPH07167004A (en) Fuel injection valve

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22832412

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22832412

Country of ref document: EP

Kind code of ref document: A1