WO2017154815A1 - Fuel injection device - Google Patents

Fuel injection device Download PDF

Info

Publication number
WO2017154815A1
WO2017154815A1 PCT/JP2017/008691 JP2017008691W WO2017154815A1 WO 2017154815 A1 WO2017154815 A1 WO 2017154815A1 JP 2017008691 W JP2017008691 W JP 2017008691W WO 2017154815 A1 WO2017154815 A1 WO 2017154815A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
movable
movable core
needle
valve seat
Prior art date
Application number
PCT/JP2017/008691
Other languages
French (fr)
Japanese (ja)
Inventor
孝一 望月
松本 修一
英人 武田
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112017001210.4T priority Critical patent/DE112017001210T5/en
Publication of WO2017154815A1 publication Critical patent/WO2017154815A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0614Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of electromagnets or fixed armature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0671Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0671Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto
    • F02M51/0682Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto the body being hollow and its interior communicating with the fuel flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0685Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature and the valve being allowed to move relatively to each other or not being attached to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/10Other injectors with elongated valve bodies, i.e. of needle-valve type
    • F02M61/12Other injectors with elongated valve bodies, i.e. of needle-valve type characterised by the provision of guiding or centring means for valve bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/08Fuel-injection apparatus having special means for influencing magnetic flux, e.g. for shielding or guiding magnetic flux

Definitions

  • the present disclosure relates to a fuel injection device that injects and supplies fuel to an internal combustion engine.
  • a fuel injection device in which a plurality of movable cores are provided for one needle is known.
  • a fuel injection device in which a plurality of movable cores are provided for one needle is known.
  • two movable cores are provided for one needle to realize two needle lift amounts.
  • the first movable core is provided so as to be relatively movable with respect to the needle
  • the second movable core is provided so as not to be relatively movable with respect to the needle.
  • the coil when the coil is not energized, that is, when the needle is in contact with the valve seat and is closed, the first movable core and the second movable core are opposed to each other. Touching. Therefore, the magnetic resistance between the first movable core and the second movable core is small.
  • a magnetic flux flows through the first movable core, and a large amount of magnetic flux also flows through the second movable core.
  • the force for sucking the first movable core toward the fixed core may be reduced.
  • the needle cannot be properly opened at the initial stage of energization of the coil.
  • the coil is energized to such an extent that the needle can be sufficiently opened, power consumption at the initial energization may increase.
  • the opposing surfaces of the first movable core and the second movable core that are in contact with each other at the time of a large stroke of the needle are separated from each other, and a gap is formed therebetween. . Therefore, at this time, there is a possibility that a ringing force, which is a force for preventing separation from each other, is generated between the opposing surfaces. As a result, the valve opening speed of the needle decreases, and a sufficient needle lift amount may not be achieved. Therefore, the fuel injection accuracy may be reduced.
  • the fuel injection device of Patent Document 1 when the needle is closed, that is, in contact with the valve seat in a state where the opposing surfaces of the first movable core and the second movable core are in contact with each other, the first Ringing force is generated between the opposing surfaces of the movable core and the second movable core, and the collision energy when the needle comes into contact with the valve seat may increase. This may cause the needle to bounce at the valve seat and cause an unintended secondary valve opening. Therefore, the fuel injection accuracy may be reduced.
  • the present disclosure has been made in view of the above-described problems, and an object thereof is to provide a fuel injection device that can inject high-pressure fuel with high accuracy.
  • the fuel injection device includes a nozzle, a housing, a needle, a movable core, a fixed core, and a coil.
  • the nozzle has an injection hole through which fuel is injected and a valve seat formed around the injection hole.
  • the housing is formed in a cylindrical shape, has one end connected to the nozzle, and has a fuel passage formed inside so as to communicate with the nozzle hole and guiding fuel to the nozzle hole.
  • the needle is provided so as to be reciprocally movable inside the housing, and opens when one end is separated from the valve seat and closes when one end contacts the valve seat.
  • a plurality of movable cores are provided so as to be movable relative to the needle or not movable relative to the needle.
  • the fixed core is provided on the side opposite to the valve seat with respect to the movable core. When the coil is energized, it generates a magnetic flux, and it is possible to attract the movable core toward the fixed core and move the needle away from the valve seat.
  • an annular movable core is provided between the surface on the fixed core side of one movable core and the surface on the valve seat side of the other movable core different from the one movable core.
  • a gap is formed. Therefore, the magnetic resistance between the plurality of movable cores can be increased.
  • the attractive force between the movable core and the fixed core can be increased. Therefore, even when the fuel pressure in the fuel passage is high, the needle can be opened. Therefore, in this aspect, high-pressure fuel can be injected.
  • the annular gap between the movable cores is formed between the plurality of movable cores, the ringing force generated when the movable cores are about to be separated can be reduced. Therefore, it is possible to suppress a decrease in the valve opening speed of the needle and an unintended secondary valve opening that may occur in the conventional fuel injection device. Therefore, in this aspect, fuel can be injected with high accuracy.
  • the fuel injection device includes a nozzle, a housing, a needle, a movable core, a fixed core, and a coil.
  • the housing or the fixed core has a contact surface that can contact the surface of the fixed core or the needle of at least one of the plurality of movable cores.
  • An annular inter-core gap is formed between the movable core and the fixed core when the surface of the movable core on the fixed core side or the needle and the contact surface contact each other.
  • FIG. 4 is a schematic cross-sectional view showing the fuel injection device according to the first embodiment, and shows a state after the state of FIG. 3.
  • FIG. 4 is a schematic cross-sectional view showing the fuel injection device according to the first embodiment, and shows a state after the state of FIG. 3.
  • FIG. 5 is a schematic cross-sectional view showing the fuel injection device according to the first embodiment, and shows a state after the state of FIG. 4.
  • FIG. 6 is a schematic cross-sectional view showing the fuel injection device according to the first embodiment, and shows a state after the state of FIG. 5.
  • It is a typical sectional view showing the fuel injection device by a 1st embodiment, and is a figure showing the state after the state of Drawing 6.
  • the typical sectional view showing the fuel injection device by a 3rd embodiment It is a typical sectional view showing the fuel injection device by a 3rd embodiment, and is a figure showing the state different from the state of Drawing 10.
  • Typical sectional drawing which shows the fuel-injection apparatus by 4th Embodiment.
  • FIGS. 1 A fuel injection device according to a first embodiment is shown in FIGS.
  • the fuel injection device 1 is used, for example, in a direct injection gasoline engine as an internal combustion engine (not shown), and injects and supplies gasoline as fuel to the engine.
  • the fuel injection device 1 includes a nozzle 10, a housing 20, a needle 30, a first movable core 40 and a second movable core 50 as movable cores, a fixed core 70, a coil 80, and a first biasing member. And a spring 92 as a second urging member.
  • the nozzle 10 is formed in a substantially disc shape by a magnetic material such as ferritic stainless steel.
  • the nozzle 10 has a nozzle hole 11 and a valve seat 12.
  • the nozzle hole 11 is formed so as to penetrate the center of the nozzle 10 in the plate thickness direction.
  • the valve seat 12 is formed in an annular shape around the nozzle hole 11 on one surface of the nozzle 10.
  • the nozzle 10 has a tapered surface on which the valve seat 12 is formed.
  • the housing 20 includes a first cylinder part 21, a second cylinder part 22, and a nonmagnetic member 60.
  • the 1st cylinder part 21 and the 2nd cylinder part 22 are formed in the cylinder shape, for example with magnetic materials, such as ferritic stainless steel.
  • the 1st cylinder part 21 is formed in the substantially cylindrical shape.
  • the 2nd cylinder part 22 is formed in the substantially cylindrical shape.
  • the inner diameter and outer diameter of the second cylindrical portion 22 are larger than the inner diameter and outer diameter of the first cylindrical portion 21.
  • the 1st cylinder part 21 and the 2nd cylinder part 22 are integrally formed so that it may become coaxial.
  • a step surface 201 is formed on the inner wall between the first tube portion 21 and the second tube portion 22.
  • the housing 20 is formed integrally with the nozzle 10 such that the opposite side of the first cylinder portion 21 to the second cylinder portion 22 is connected to the outer edge portion of the surface of the nozzle 10 on the valve seat 12 side. That is, in the present embodiment, the first cylindrical portion 21 and the second cylindrical portion 22 of the housing 20 and the nozzle 10 are integrally formed of the same material.
  • a fuel passage 100 communicating with the injection hole 11 is formed inside the housing 20.
  • the needle 30 is formed in a rod shape from a nonmagnetic material such as austenitic stainless steel.
  • the needle 30 has a needle main body 31 and a collar portion 32.
  • the needle body 31 is formed in a substantially cylindrical shape.
  • One end surface of the needle body 31 is formed in a tapered shape, and a seal portion 33 is formed on the outer edge portion.
  • the needle body 31 is formed with an axial hole 34 and a radial hole 35.
  • the axial hole 34 is formed to extend from the end surface of the needle body 31 opposite to the seal portion 33 toward the seal portion 33 in the axial direction.
  • the radial hole 35 extends in the radial direction of the needle body 31 and is formed to open to the outer wall of the needle body 31.
  • the radial hole portion 35 is connected to the end portion of the axial hole portion 34 on the seal portion 33 side.
  • the collar portion 32 is formed in a substantially cylindrical shape so as to protrude radially outward from the outer wall at the end opposite to the seal portion 33 of the needle body 31.
  • the collar portion 32 is formed integrally with the needle body 31.
  • the end surface of the collar portion 32 opposite to the seal portion 33 is on the same plane as the end surface of the needle body 31 opposite to the seal portion 33.
  • the needle 30 is provided so that it can reciprocate in the axial direction inside the housing 20, and the seal portion 33 can come into contact with the valve seat 12.
  • the needle 30 opens when the seal portion 33 is separated from the valve seat 12 and closes when the seal portion 33 contacts the valve seat 12.
  • the nozzle hole 11 opens and closes.
  • the direction in which the needle 30 is separated from the valve seat 12 is referred to as a valve opening direction
  • the direction in which the needle 30 contacts the valve seat 12 is referred to as a valve closing direction.
  • the fuel injection device 1 includes two movable cores (first movable core 40 and second movable core 50).
  • the first movable core 40 is formed of a magnetic material such as ferritic stainless steel.
  • the first movable core 40 has a cylinder part 41 and a bottom part 42.
  • the cylinder part 41 is formed in a substantially cylindrical shape.
  • the bottom portion 42 is formed in a substantially disc shape, and is formed integrally with the cylinder portion 41 so as to close one end portion of the cylinder portion 41.
  • a recess 43, an insertion hole 44, and a communication hole 45 are formed in the bottom portion 42.
  • the recessed portion 43 is formed so as to be recessed from the center of the surface of the bottom portion 42 opposite to the tubular portion 41 toward the tubular portion 41 side.
  • the insertion hole portion 44 is formed so as to connect the center of the surface 421 of the bottom portion 42 on the cylinder portion 41 side and the center of the recess 43.
  • the communication hole 45 is formed so as to connect the surface 421 of the bottom portion 42 on the cylindrical portion 41 side and the concave portion 43.
  • a plurality of communication holes 45 are formed at equal intervals in the circumferential direction of the bottom 42 on the radially outer side of the insertion hole 44. In the present embodiment, for example, four communication holes 45 are formed.
  • the first movable core 40 is provided such that the needle body 31 is inserted into the insertion hole 44 and is movable relative to the needle body 31 in the axial direction.
  • the outer portion of the insertion hole 44 of the surface 421 on the cylinder portion 41 side of the bottom portion 42 can contact the end surface of the flange portion 32 on the valve seat 12 side.
  • the inner wall of the insertion hole 44 can slide with the outer wall of the needle body 31. That is, the first movable core 40 is provided so as to be movable relative to the needle 30.
  • the outer wall of the cylinder part 41 and the bottom part 42 is slidable with the inner wall of the 2nd cylinder part 22 of the housing 20. As shown in FIG.
  • the second movable core 50 is formed of a magnetic material such as ferritic stainless steel.
  • the second movable core 50 has a movable core body 51.
  • the movable core body 51 is formed in a substantially cylindrical shape.
  • the movable core body 51 is provided such that the inner wall is fitted to the outer wall of the flange portion 32.
  • the movable core body 51 is fixed to the flange portion 32 by, for example, press fitting or welding. That is, the second movable core 50 is provided so as not to move relative to the needle 30. Therefore, the second movable core 50 reciprocates integrally with the needle 30 inside the housing 20.
  • the length of the movable core body 51 in the axial direction is smaller than the length of the flange portion 32 in the axial direction.
  • the end surface of the movable core body 51 opposite to the valve seat 12 is on the same plane as the end surface of the collar portion 32 opposite to the valve seat 12. Therefore, the end surface on the valve seat 12 side of the collar portion 32 is located on the valve seat 12 side with respect to the end surface on the valve seat 12 side of the movable core body 51 of the second movable core 50.
  • a substantially annular gap s1 between the movable cores is formed.
  • the size of the gap s1 between the movable cores in the axial direction varies depending on the position of the first movable core 40 with respect to the needle body 31, and the bottom 42 of the first movable core 40 abuts on the end face of the flange 32 on the valve seat 12 side. The minimum.
  • the bottom portion 42 of the first movable core 40 is in contact with the end surface of the flange portion 32 on the valve seat 12 side, the surface 421 of the bottom portion 42 on the tube portion 41 side and the movable core main body 51.
  • the end face 512 on the valve seat 12 side is always separated from each other, and a movable core gap s1 is formed therebetween.
  • the communication hole 45 of the first movable core 40 communicates with the inter-movable core gap s 1 and connects the inter-movable core gap s 1 and the space inside the recess 43.
  • the axial length of the cylindrical portion 41 of the first movable core 40 is larger than the axial length of the flange portion 32. Therefore, when the bottom portion 42 of the first movable core 40 is in contact with the end surface of the flange portion 32 on the valve seat 12 side, the end surface of the cylinder portion 41 opposite to the valve seat 12 is movable with respect to the second movable core 50.
  • the core body 51 is located on the side opposite to the valve seat 12 with respect to the end surface on the side opposite to the valve seat 12.
  • the outer wall of the movable core body 51 can slide with the inner wall of the cylindrical portion 41 of the first movable core 40.
  • the nonmagnetic member 60 of the housing 20 is formed in a cylindrical shape from a nonmagnetic material such as austenitic stainless steel.
  • the nonmagnetic member 60 forms a magnetic diaphragm portion.
  • the nonmagnetic member 60 is provided on the side opposite to the nozzle 10 with respect to the second cylindrical portion 22.
  • the nonmagnetic member 60 has a nonmagnetic cylindrical portion 61 and a nonmagnetic protruding portion 62.
  • the nonmagnetic cylinder portion 61 is formed in a substantially cylindrical shape.
  • the nonmagnetic projecting portion 62 is formed in a substantially cylindrical shape so as to project radially inward from the inner wall of one end portion of the nonmagnetic tubular portion 61.
  • the nonmagnetic protrusion 62 is formed integrally with the nonmagnetic cylinder 61.
  • the non-magnetic member 60 includes a second cylinder such that an end of the non-magnetic cylinder 61 opposite to the non-magnetic protrusion 62 is connected to an end of the second cylinder 22 opposite to the first cylinder 21. It is provided coaxially with the portion 22.
  • the nonmagnetic member 60 and the second cylindrical portion 22 are connected by welding, for example.
  • the fixed core 70 is provided on the opposite side of the valve seat 12 with respect to the first movable core 40 and the second movable core 50.
  • the fixed core 70 has a fixed core main body 71 and a fixed core outer peripheral portion 72.
  • the fixed core main body 71 and the fixed core outer peripheral portion 72 are formed in a cylindrical shape from a magnetic material such as ferritic stainless steel, for example.
  • the fixed core body 71 is formed in a substantially cylindrical shape.
  • the fixed core outer peripheral portion 72 is formed in a substantially cylindrical shape so as to protrude radially outward from the outer wall of the fixed core main body 71.
  • the fixed core 70 is provided coaxially with the nonmagnetic member 60 so that one end thereof is connected to the end of the nonmagnetic member 60 on the nonmagnetic protrusion 62 side.
  • the fixed core 70 and the nonmagnetic member 60 are connected by welding, for example.
  • the housing 20 has the nonmagnetic member 60 at the end portion on the fixed core 70 side.
  • the end face on the valve seat 12 side of the fixed core outer peripheral portion 72 is located on the opposite side of the valve seat 12 with respect to the end face on the valve seat 12 side of the fixed core main body 71.
  • the end surfaces of the nonmagnetic cylinder portion 61 and the nonmagnetic protrusion 62 on the side opposite to the valve seat 12 are in contact with the end surface of the fixed core outer peripheral portion 72 on the valve seat 12 side.
  • the inner wall of the nonmagnetic protrusion 62 is in contact with the outer wall of the end of the fixed core body 71 on the valve seat 12 side.
  • the end face on the valve seat 12 side of the nonmagnetic protrusion 62 is located on the valve seat 12 side with respect to the end face on the valve seat 12 side of the fixed core body 71.
  • a nonmagnetic contact surface 621 is formed on the end surface of the nonmagnetic protrusion 62 on the valve seat 12 side.
  • the nonmagnetic contact surface 621 is located on the end surface of the first movable core 40 opposite to the bottom 42 of the cylindrical portion 41, that is, on the first movable core end surface 401 that is the end surface of the first movable core 40 on the fixed core 70 side. Abutment is possible.
  • the nonmagnetic contact surface 621 corresponds to a “contact surface”.
  • the end surface of the second movable core 50 opposite to the valve seat 12 of the movable core body 51, that is, the second movable core end surface 501, which is the end surface of the second movable core 50 on the fixed core 70 side, is The end face on the valve seat 12 side, that is, the fixed core end face 701 that is the end face on the first movable core 40 side and the second movable core 50 side of the fixed core 70 can be contacted.
  • An adjusting pipe 90 is provided inside the fixed core body 71.
  • the adjusting pipe 90 is formed in a substantially cylindrical shape with, for example, metal.
  • the adjusting pipe 90 is provided so as not to move relative to the fixed core body 71 so that the outer wall is fitted to the inner wall of the fixed core body 71.
  • the adjusting pipe 90 is provided inside the fixed core main body 71 by, for example, press fitting.
  • the spring 91 is, for example, a coil spring, and is provided between the end surface of the needle 30 opposite to the valve seat 12 and the end surface of the adjusting pipe 90 on the valve seat 12 side.
  • the spring 91 biases the needle 30 toward the valve seat 12 side.
  • the urging force of the spring 91 can be adjusted by adjusting the position of the adjusting pipe 90 with respect to the fixed core body 71.
  • a spring seat 36 is provided on the valve seat 12 side with respect to the collar portion 32 of the needle body 31.
  • the spring seat 36 is formed in a substantially annular shape from a nonmagnetic material such as austenitic stainless steel.
  • the spring seat 36 is provided so that the inner edge portion fits to the outer wall of the needle body 31.
  • the spring seat 36 and the needle body 31 are joined by welding, for example. As a result, the spring seat 36 is not movable relative to the needle body 31.
  • the spring seat 36 is provided on the flange 32 side with respect to the radial hole 35.
  • the spring 92 is a coil spring, for example, and is provided between the recess 43 of the bottom 42 of the first movable core 40 and the spring seat 36. One end of the spring 92 is in contact with the insertion hole 44 of the recess 43 and the communication hole 45, and the other end is in contact with the spring seat 36.
  • the spring 92 biases the first movable core 40 toward the fixed core 70 side.
  • the outer portion of the insertion hole 44 of the surface 421 on the fixed core 70 side of the bottom 42 of the first movable core 40 is pressed against the end face of the flange 32 of the needle 30 on the valve seat 12 side.
  • the urging force of the spring 91 is set larger than the urging force of the spring 92.
  • the coil 80 is formed in a substantially cylindrical shape by winding a winding such as copper.
  • the coil 80 is provided so as to be positioned on the radially outer side of the non-magnetic member 60, the non-magnetic member 60, and the fixed core outer peripheral portion 72 of the second cylindrical portion 22 of the housing 20.
  • a yoke 81 is further provided.
  • the yoke 81 is formed in a cylindrical shape from a magnetic material such as ferritic stainless steel.
  • the yoke 81 is provided so as to cover the outer wall and both ends of the coil 80.
  • One end of the yoke 81 is connected to the outer wall of the second cylindrical portion 22 of the housing 20, and the other end is connected to the outer wall of the fixed core outer peripheral portion 72 of the fixed core 70.
  • the coil 80 generates a magnetic flux when energized.
  • magnetic flux flows through the fixed core 70, the yoke 81, the second cylindrical portion 22, the first movable core 40, and the second movable core 50 so as to avoid the nonmagnetic member 60, thereby forming a magnetic circuit. Is done.
  • the 1st movable core 40 and the 2nd movable core 50 are attracted
  • the first movable core 40 is sucked toward the fixed core 70 in a state where the bottom portion 42 is in contact with the flange portion 32.
  • the needle 30 moves in the valve opening direction and opens.
  • An inlet 101 is formed on the opposite side of the fixed core body 71 from the valve seat 12.
  • the fuel that has flowed into the inside of the fixed core body 71 via the inflow port 101 flows through the inside of the adjusting pipe 90, the axial hole portion 34, the radial hole portion 35, and the inside of the first tube portion 21 of the housing 20. And guided to the nozzle hole 11.
  • the fuel flowing in from the inlet 101 fills the inside of the housing 20, the inside of the nonmagnetic member 60, the inside of the fixed core 70, that is, the fuel passage 100.
  • relatively high-pressure fuel flows from the inlet 101 when the fuel injection device 1 is operated. Therefore, the fuel pressure in the fuel passage 100 is relatively high.
  • the needle 30 is biased toward the valve seat 12 by the biasing force of the spring 91, and the seal portion 33 contacts the valve seat 12 to close the valve. ing. Further, the first movable core 40 is biased toward the fixed core 70 by the biasing force of the spring 92, and the bottom portion 42 is in contact with the flange portion 32 of the needle 30.
  • the distance g1 between the first movable core end surface 401 that is the end surface of the first movable core 40 on the fixed core 70 side and the fixed core end surface 701 that is the end surface of the fixed core 70 on the first movable core 40 side is The distance between the second movable core end surface 501 and the fixed core end surface 701 which is the end surface of the two movable cores 50 on the fixed core 70 side is set smaller.
  • the distance g3 between the first movable core end surface 401 and the nonmagnetic contact surface 621 at this time is equal to the distance g1 minus the distance d1 between the fixed core end surface 701 and the nonmagnetic contact surface 621.
  • the maximum lift amount of the needle 30 is equal to the distance g2.
  • FIG. 1 when the coil 80 is not energized, the needle 30 is closed. As shown in FIG. 2, when the inside of the fuel passage 100 is filled with fuel, the fuel pressure Ff acts on the end surface of the needle 30 opposite to the valve seat 12.
  • the coil 80 When the coil 80 is energized, magnetic flux is generated, and a magnetic circuit is formed in the fixed core 70, the yoke 81, the second cylindrical portion 22, the first movable core 40, and the second movable core 50.
  • the gap between the first movable core 40 and the second movable core 50 is determined.
  • the magnetic resistance is large.
  • the distance g1 between the fixed core end surface 701 and the first movable core end surface 401 is equal to the fixed core end surface 701 and the second core end surface 701.
  • the distance from the movable core end surface 501 is smaller than g2. Therefore, the magnetic flux does not flow so much through the second movable core 50 but flows through the first movable core 40.
  • the suction force between the first movable core 40 and the second movable core 50, particularly the first movable core 40 and the fixed core 70, can be increased. Therefore, when the fuel pressure in the fuel passage 100 is relatively high, the needle 30 can be opened even if the amount of current supplied to the coil 80 is relatively small.
  • the first movable core end surface 401 of the first movable core 40 is brought into nonmagnetic contact. It abuts on the surface 621 (see FIG. 3). Thereby, the movement in the valve opening direction of the 1st movable core 40 is controlled.
  • a substantially annular inter-core gap s2 is formed between the first movable core end surface 401 and the fixed core end surface 701. That is, in a state where the first movable core 40 is in contact with the nonmagnetic contact surface 621, the first movable core end surface 401 and the fixed core end surface 701 are separated from each other.
  • the distance between the fixed core end surface 701 and the second movable core end surface 501 is smaller than the initial energization of the coil 80 (see FIG. 2). Therefore, a large amount of magnetic flux also flows through the second movable core 50, and the attractive force between the fixed core 70 and the second movable core 50 increases.
  • the fuel pressure Ff acts on the outer edge portion of the end surface of the needle body 31 on the valve seat 12 side, that is, the seal portion 33. Therefore, the fuel pressure Ff is applied to both ends of the needle 30.
  • the needle 30 opens in the valve opening direction even if the amount of current supplied to the coil 80 is relatively small. Can be moved further.
  • the second movable core end surface 501 of the second movable core 50 comes into contact with the fixed core end surface 701 (FIG. 4). reference).
  • the 2nd movable core 50 and the needle 30 are controlled to move in the valve opening direction.
  • the lift amount of the needle 30 is maximized.
  • the second movable core 50 When the state shown in FIG. 3 is shifted to the state shown in FIG. 4, the second movable core 50 has the end surface 512 on the valve seat 12 side of the movable core body 51, and the fixed core of the bottom portion 42 of the first movable core 40. It moves in the valve opening direction, which is the direction away from the 70-side surface 421.
  • the gap s1 between the movable cores is formed between the surface 421 on the fixed core 70 side of the bottom 42 of the first movable core 40 and the entire end surface 512 on the valve seat 12 side of the movable core body 51 of the second movable core 50.
  • the ringing force generated between the end surface 512 of the movable core body 51 on the valve seat 12 side and the surface 421 of the bottom 42 on the fixed core 70 side can be reduced.
  • the communication hole 45 communicates with the movable core gap s1, at this time, part of the fuel in the communication hole 45 flows into the movable core gap s1. Therefore, the second movable core 50 is easy to move in the valve opening direction that is the direction away from the first movable core 40. Therefore, the needle 30 can be quickly moved in the valve opening direction.
  • the second movable core 50 When the state shown in FIG. 4 is shifted to the state shown in FIG. 5, the second movable core 50 has the end surface 512 on the valve seat 12 side of the movable core body 51, and the fixed core of the bottom portion 42 of the first movable core 40. It moves in the valve closing direction so as to approach the surface 421 on the 70 side.
  • the communication hole 45 since the communication hole 45 communicates with the movable core gap s 1, at this time, part of the fuel in the movable core gap s 1 flows into the communication hole 45. Therefore, the second movable core 50 and the needle 30 are easy to move in the valve closing direction. Therefore, the needle 30 can be quickly moved in the valve closing direction.
  • the needle 30 When the needle 30 further moves in the valve closing direction with the collar portion 32 in contact with the first movable core 40, the first movable core end surface 401 is separated from the nonmagnetic contact surface 621, and the seal portion 33 is moved to the valve seat 12. The needle 30 closes (see FIG. 6). Thereby, the fuel injection from the nozzle hole 11 is stopped.
  • the first movable core 40 moves in the valve closing direction in which the first movable core end surface 401 is away from the fixed core end surface 701.
  • the inter-core gap s2 is formed between the first movable core end surface 401 and the fixed core end surface 701 in a state where the first movable core end surface 401 is in contact with the nonmagnetic contact surface 621.
  • the first movable core 40 is easy to move in the valve closing direction, which is the direction away from the fixed core 70. Therefore, the needle 30 can be quickly moved in the valve closing direction.
  • the first movable core 40 After the state shown in FIG. 6, the first movable core 40 further moves in the valve closing direction due to inertia (see FIG. 7).
  • the first movable core 40 has a surface 421 on the fixed core 70 side of the bottom 42, and the valve core 12 side of the movable core body 51 of the second movable core 50. It moves in the valve closing direction, which is the direction away from the end face 512 of the valve.
  • the gap s1 between the movable cores is formed between the surface 421 on the fixed core 70 side of the bottom 42 of the first movable core 40 and the entire end surface 512 on the valve seat 12 side of the movable core body 51 of the second movable core 50.
  • the ringing force generated between the end surface 512 of the movable core body 51 on the valve seat 12 side and the surface 421 of the bottom 42 on the fixed core 70 side can be reduced.
  • the communication hole 45 since the communication hole 45 communicates with the movable core gap s1, at this time, part of the fuel in the communication hole 45 flows into the movable core gap s1.
  • the first movable core 40 easily moves in the valve closing direction, which is the direction away from the second movable core 50. Therefore, the collision energy when the seal portion 33 of the needle 30 contacts the valve seat 12 (see FIG. 6) can be reduced. Therefore, it is possible to suppress the needle 30 from bouncing at the valve seat 12 and to suppress an unintended secondary valve opening.
  • the first movable core 40 moves in the valve opening direction by the biasing force of the spring 92.
  • the surface 421 of the bottom 42 on the fixed core 70 side comes into contact with the end surface of the flange 32 on the valve seat 12 side, and movement in the valve opening direction is restricted (see FIG. 1).
  • the fuel injection device 1 repeats the states shown in FIGS. 1 to 7 when continuing to inject fuel into the engine.
  • the fuel injection device 1 includes the nozzle 10, the housing 20, the needle 30, the first movable core 40, the second movable core 50, the fixed core 70, and the coil 80.
  • the nozzle 10 has a nozzle hole 11 through which fuel is injected, and a valve seat 12 formed around the nozzle hole 11.
  • the housing 20 is formed in a cylindrical shape, has one end connected to the nozzle 10, and has a fuel passage 100 that is formed inside so as to communicate with the injection hole 11 and guides fuel to the injection hole 11.
  • the needle 30 is provided so as to be capable of reciprocating inside the housing 20, and opens when one end is separated from the valve seat 12, and closes when one end contacts the valve seat 12.
  • the first movable core 40 is provided to be movable relative to the needle 30.
  • the second movable core 50 is provided so as not to move relative to the needle 30.
  • the fixed core 70 is provided on the opposite side of the valve seat 12 with respect to the first movable core 40 and the second movable core 50.
  • the coil 80 generates magnetic flux when energized, and can attract the first movable core 40 and the second movable core 50 toward the fixed core 70 and move the needle 30 to the side opposite to the valve seat 12.
  • the surface 421 on the fixed core 70 side of the bottom 42 of the first movable core 40 and the movable core body 51 of the second movable core 50 is formed between the end face 512 on the valve seat 12 side. Therefore, the magnetic resistance between the first movable core 40 and the second movable core 50 can be increased. Thereby, when the coil 80 is energized, a large amount of magnetic flux can flow through the first movable core 40 of the first movable core 40 and the second movable core 50, and the first movable core 40 and the fixed core 70 The suction force between the two can be increased. Therefore, even when the fuel pressure in the fuel passage 100 is high, the needle 30 can be opened. Therefore, in this embodiment, high-pressure fuel can be injected.
  • the annular movable core gap s1 is formed between the first movable core 40 and the second movable core 50, the first movable core 40 and the second movable core 50 are separated from each other.
  • the ringing force generated when trying to do so can be reduced. Therefore, it is possible to suppress a decrease in the valve opening speed of the needle and an unintended secondary valve opening that may occur in the conventional fuel injection device. Therefore, in this embodiment, fuel can be injected with high accuracy.
  • the nonmagnetic member 60 of the housing 20 is the first movable core 40 and the first movable core 50, which is the surface of the first movable core 40 on the fixed core 70 side.
  • a nonmagnetic contact surface 621 that can contact the core end surface 401 is provided.
  • an annular inter-core gap s ⁇ b> 2 is formed between the first movable core 40 and the fixed core 70. Therefore, when energization of the coil 80 is stopped and the needle 30 is closed, the residual magnetism of the fixed core 70 affects the first movable core 40 or between the fixed core 70 and the first movable core 40.
  • the housing 20 has a nonmagnetic member 60 formed of a nonmagnetic material at the end on the fixed core 70 side.
  • the nonmagnetic contact surface 621 is formed on the end surface of the nonmagnetic member 60 on the valve seat 12 side. Therefore, when the energization to the coil 80 is stopped while the first movable core end surface 401 is in contact with the nonmagnetic contact surface 621, the first movable core 40 is quickly separated from the nonmagnetic contact surface 621. Thereby, the responsiveness of the fuel injection device 1 can be improved.
  • the first movable core 40 has a communication hole 45 communicating with the gap s1 between the movable cores. Therefore, the fuel can be moved back and forth between the movable core gap s 1 and the communication hole 45. Accordingly, when the needle 30 is opened and closed, the first movable core 40 and the second movable core 50 can be quickly separated from each other, or the collision energy when the needle 30 comes into contact with another member can be reduced. . Therefore, the fuel can be injected with high accuracy.
  • the needle 30 has a rod-shaped needle body 31 and a flange 32 provided on the radially outer side of the needle body 31.
  • a gap s1 between the movable cores is formed between the first movable core 40 and the second movable core 50.
  • the first movable core end surface 401 which is the end surface of the first movable core 40 on the fixed core 70 side, the first movable core 40 of the fixed core 70, and
  • the distance from the fixed core end surface 701 that is the end surface on the second movable core 50 side is set to be smaller than the distance between the second movable core end surface 501 that is the end surface on the fixed core 70 side of the second movable core 50 and the fixed core end surface 701.
  • the present embodiment further includes a spring 91 and a spring 92.
  • the spring 91 biases the needle 30 toward the valve seat 12 side.
  • the spring 92 biases the first movable core 40 of the first movable core 40 and the second movable core 50 toward the fixed core 70. This exemplifies a specific configuration of the present disclosure.
  • FIGS. A fuel injection device according to the second embodiment is shown in FIGS.
  • the second embodiment is different from the first embodiment in the configuration of the nonmagnetic member 60 and the fixed core 70.
  • the nonmagnetic member 60 does not have the nonmagnetic protrusion 62 shown in the first embodiment, and consists only of the nonmagnetic cylinder 61.
  • the inner wall of the end portion of the nonmagnetic cylinder portion 61 opposite to the valve seat 12 is in contact with the outer wall of the end portion of the fixed core body 71 on the valve seat 12 side.
  • the fixed core 70 further has a fixed core protrusion 73.
  • the fixed core protrusion 73 is formed so as to protrude from the outer edge of the fixed core end surface 701 to the valve seat 12 side in a substantially annular shape.
  • a fixed core contact surface 731 is formed on the end surface of the fixed core protrusion 73 on the valve seat 12 side.
  • the fixed core contact surface 731 can contact the first movable core end surface 401 of the first movable core 40 (see FIG. 9).
  • the fixed core contact surface 731 corresponds to a “contact surface”.
  • the protruding height of the fixed core protrusion 73 from the fixed core end surface 701, that is, the distance d1 between the fixed core end surface 701 and the fixed core abutting surface 731 is different from the fixed core end surface 701 shown in the first embodiment.
  • the distance d1 is the same as the distance d1 from the magnetic contact surface 621.
  • the fixed core protrusion 73 of the fixed core 70 is located on the fixed core 70 side of the first movable core 40 of the first movable core 40 and the second movable core 50. It has a fixed core contact surface 731 that can contact the first movable core end surface 401 that is a surface. When the first movable core end surface 401 and the fixed core contact surface 731 come into contact with each other, an annular inter-core gap s ⁇ b> 2 is formed between the first movable core 40 and the fixed core 70.
  • the influence of the residual magnetism of the fixed core 70 affects the first movable core 40 or the fixed core 70 and the first core.
  • Generation of ringing force between the movable core 40 and the movable core 40 can be suppressed. Thereby, it can suppress that the 1st movable core 40 will be in the state which contact
  • FIG. Therefore, the needle 30 can be quickly closed after energization of the coil 80 is stopped. Therefore, in this embodiment, fuel can be injected with high accuracy.
  • the fixed core 70 is formed with a fixed core abutting surface 731 which is a surface capable of abutting on the first movable core end surface 401 which is an end surface of the first movable core 40 on the fixed core 70 side. .
  • the fixed core 70 includes a cylindrical fixed core main body 71 and a fixed core end surface 701 that is an end surface of the fixed core main body 71 on the first movable core 40 side and the second movable core 50 side.
  • the fixed core protrusion 73 protrudes from the first movable core 40 to the first movable core 40 side.
  • the fixed core contact surface 731 is formed on the end surface of the fixed core protrusion 73 on the first movable core 40 side. This exemplifies a specific configuration of the present disclosure.
  • FIGS. 1 A fuel injection device according to a third embodiment is shown in FIGS.
  • the third embodiment differs from the first embodiment in the configuration of the fixed core 70.
  • the fixed core 70 further includes a bush 74.
  • the bush 74 is formed in a substantially cylindrical shape by a nonmagnetic material such as austenitic stainless steel.
  • the bush 74 is provided inside the end of the fixed core body 71 on the valve seat 12 side.
  • the outer wall of the bush 74 is fitted to the inner wall of the fixed core body 71.
  • the bush 74 is fixed to the fixed core body 71 by welding, for example.
  • the end surface of the bush 74 on the valve seat 12 side is located on the valve seat 12 side with respect to the fixed core end surface 701.
  • a fixed core contact surface 741 is formed on the end surface of the bush 74 on the valve seat 12 side.
  • the fixed core abutting surface 741 can abut on the second movable core end surface 501 of the second movable core 50 and the end surface of the flange portion 32 opposite to the valve seat 12 (see FIG. 11).
  • the fixed core contact surface 741 corresponds to a “contact surface”.
  • the distance d2 between the fixed core contact surface 741 and the fixed core end surface 701 is smaller than the distance d1 between the nonmagnetic contact surface 621 and the fixed core end surface 701.
  • the bush 74 of the fixed core 70 is the surface of the first movable core 40 and the second movable core 50 on the fixed core 70 side of the second movable core 50.
  • the second movable core end surface 501 and the fixed core contact surface 741 that can contact the surface of the needle 30 on the fixed core 70 side are provided.
  • an annular inter-core gap s 3 is formed between the second movable core 50 and the fixed core 70.
  • the residual magnetism of the fixed core 70 affects the second movable core 50 or between the fixed core 70 and the second movable core 50. It is possible to suppress the occurrence of ringing force. Thereby, it can suppress that the 2nd movable core 50 will be in the state which contact
  • the fixed core 70 is a surface that can abut on the second movable core end surface 501 that is the end surface of the second movable core 50 on the fixed core 70 side and the end surface of the needle 30 opposite to the valve seat 12.
  • a fixed core contact surface 741 is formed.
  • the fixed core 70 has a cylindrical fixed core main body 71 and a cylindrical bush 74 provided inside the fixed core main body 71.
  • the fixed core contact surface 741 is formed on the end surface of the bush 74 on the second movable core 50 side. This exemplifies a specific configuration of the present disclosure.
  • FIG. 12 shows a fuel injection device according to the fourth embodiment.
  • the fourth embodiment differs from the first embodiment in the configuration of the needle 30 and the second movable core 50.
  • the needle 30 does not have the collar part 32 shown in 1st Embodiment.
  • the second movable core 50 has a movable core body 51 and a movable core protrusion 52.
  • the movable core body 51 is provided so that the inner wall is fitted to the outer wall of the end portion of the needle body 31 opposite to the seal portion 33.
  • the movable core body 51 is fixed to the needle body 31 by, for example, press fitting or welding. That is, the second movable core 50 is provided so as not to move relative to the needle 30.
  • the movable core projecting portion 52 is formed so as to project in a substantially annular shape from the inner edge portion of the end surface 512 of the movable core body 51 on the valve seat 12 side to the valve seat 12 side. Therefore, the end surface on the valve seat 12 side of the movable core projecting portion 52 is located on the valve seat 12 side with respect to the end surface 512 on the valve seat 12 side of the movable core body 51 of the second movable core 50. Between the surface 421 of the bottom 42 of the first movable core 40 on the fixed core 70 side and the end surface 512 of the movable core body 51 of the second movable core 50 on the valve seat 12 side, there is a substantially annular gap s1 between the movable cores. Is formed.
  • the axial size of the gap s1 between the movable cores varies depending on the position of the first movable core 40 with respect to the needle body 31, and the bottom 42 of the first movable core 40 is located on the end face of the movable core protrusion 52 on the valve seat 12 side. When abutting, it is minimum.
  • the surface 421 on the fixed core 70 side of the bottom 42 and the movable core main body. 51 is always separated from the end surface 512 on the valve seat 12 side, and a gap s1 between the movable cores is formed therebetween.
  • the configuration of the fourth embodiment is the same as that of the first embodiment except for the points described above.
  • the movable core is between the second movable core 50 and the movable core.
  • a gap s1 is formed.
  • the shape of the needle 30 can be simplified. Therefore, the processing cost of the needle 30 can be reduced.
  • the volume of the second movable core 50 can be increased by the amount that the needle 30 does not have the flange portion 32. Therefore, the suction force between the fixed core 70 and the second movable core 50 can be increased.
  • the second movable core 50 includes the movable core main body 51 and the movable core protruding portion 52 that protrudes from the end face 512 of the movable core main body 51 on the valve seat 12 side to the valve seat 12 side.
  • a movable inter-core gap s1 is formed between the first movable core 40 and the end surface 512 of the movable core body 51 on the valve seat 12 side.
  • the surface 421 on the fixed core 70 side of the bottom 42 of the first movable core 40 and the end surface 512 on the valve seat 12 side of the movable core body 51 of the second movable core 50 may be in contact with each other.
  • the gap s1 between the movable cores. Is not formed.
  • the example in which the movable inter-core gap s1, the inter-core gap s2, and the inter-core gap s3 are formed is shown.
  • at least one of the movable inter-core gap s1, the inter-core gap s2, and the inter-core gap s3 may be formed.
  • the bush 74 may be configured to contact only the surface of the needle 30 on the fixed core 70 side without contacting the second movable core 50. In the case of this configuration, wear of the second movable core 50 due to contact with the bush 74 can be prevented.
  • the configuration in which the outer wall of the movable core body 51 of the second movable core 50 is slidable with the inner wall of the cylindrical portion 41 of the first movable core 40 is exemplified.
  • the inner diameter of the insertion hole 44 of the bottom 42 of the first movable core 40 is set slightly larger than the outer diameter of the needle body 31, and the outer diameter of the movable core body 51 is set to be a cylinder.
  • a cylindrical clearance may always be formed between the outer wall of the movable core body 51 and the inner wall of the cylindrical portion 41.
  • the magnetic resistance between the first movable core 40 and the second movable core 50 can be increased, and the attractive force between the first movable core 40 and the fixed core 70 can be increased.
  • the cylindrical clearance is always in communication with the movable core gap s1
  • fuel can be transferred between the movable core gap s1 and the cylindrical clearance. Accordingly, when the needle 30 is opened and closed, the first movable core 40 and the second movable core 50 can be quickly separated from each other, or the collision energy when the needle 30 comes into contact with another member can be reduced. . Therefore, the fuel can be injected with high accuracy.
  • the communication hole 45 may be omitted. In the modification of the above embodiment, the communication hole 45 may be formed in the second movable core 50.
  • the distance g1 between the first movable core end surface 401 of the first movable core 40 and the fixed core end surface 701 of the fixed core 70 is The example in which the distance between the second movable core end surface 501 and the fixed core end surface 701 of the two movable cores 50 is set smaller than the distance g2 is shown.
  • the distance g1 may be set to the distance g2 or more.
  • the example in which the spring 92 as the second urging member is provided between the first movable core 40 and the spring seat 36 has been described.
  • the spring seat 36 is omitted, and the spring 92 has one end in contact with the first movable core 40 and the other end in contact with the stepped surface 201 of the housing 20.
  • the core 40 may be provided to be urged in the valve opening direction.
  • the example in which the bush 74 is formed separately from the fixed core main body 71 is shown.
  • the bush 74 may be formed integrally with the fixed core body 71.
  • the distance d2 between the fixed core contact surface 741 that is the end surface of the bush 74 on the valve seat 12 side and the fixed core end surface 701 that is the end surface of the fixed core body 71 on the valve seat 12 side is any size. May be.
  • the distance d2 is the nonmagnetic contact surface 621 or fixed.
  • the housing 20 is replaced with the nonmagnetic member 60, and has a magnetic aperture part which is formed in a cylindrical shape from a magnetic material and has a partly axial thickness smaller than that of other parts. It is good.
  • a contact surface that can be in contact with the first movable core end surface 401 may be formed in the magnetic aperture portion, similar to the nonmagnetic contact surface 621.
  • the two movable cores of the first movable core 40 and the second movable core 50 are provided.
  • the modification of the said embodiment may be provided with three or more movable cores.
  • the movable core main body 51 of the second movable core 50 is divided into two in the axial direction, the divided body on the fixed core 70 side is provided so as not to move relative to the needle 30, and the divided body on the valve seat 12 side is provided with the needle 30.
  • it is provided so as to be relatively movable.
  • the nozzle 10 may be formed separately from the housing 20.
  • the nozzle 10 is formed of the same material as that of the needle 30, wear of the valve seat 12 of the nozzle 10 associated with the opening / closing valve of the needle 30 can be suppressed.
  • the fixed core outer peripheral portion 72 is formed integrally with the fixed core main body 71 is shown.
  • the fixed core outer peripheral portion 72 may be formed separately from the fixed core main body 71.
  • the cylindrical flange 32, the nonmagnetic protrusion 62, and the bush 74 may be formed in a shape with a part of the circumferential direction missing.
  • annular fixed core protrusion part 73 and the movable core protrusion part 52 may be formed in the shape where a part of circumferential direction lacked.
  • the housing 20, the 1st movable core 40, the 2nd movable core 50, the fixed core 70, and the yoke 81 may be formed not only with ferritic stainless steel but with another magnetic material.
  • the needle 30, the nonmagnetic member 60, the spring seat 36, and the bush 74 are not limited to austenitic stainless steel, and may be formed of other nonmagnetic materials.
  • the needle 30 may be made of martensitic stainless steel, for example.
  • the present disclosure is not limited to injecting high-pressure fuel, and may be used to inject low-pressure fuel.
  • the present disclosure is not limited to a direct injection type gasoline engine, and may be applied to, for example, a port injection type gasoline engine or a diesel engine.
  • the present disclosure is not limited to the above-described embodiment, and can be implemented in various forms without departing from the gist thereof.

Abstract

A fuel injection device (1) is provided with: a nozzle (10) having a nozzle hole (11) from which fuel is injected and a valve seat (12) which is formed around the nozzle hole; a cylindrical housing (20) having one end connected to the nozzle, the cylindrical housing (20) having a fuel passage (100) which is formed inside so as to be in communication with the nozzle hole and which conducts fuel to the nozzle hole; a needle (30) provided so as to be capable of reciprocating inside the housing and configured so as to open the valve when one end of the needle (30) moves away from the valve seat and to close the valve when said end is in contact with the valve seat; a plurality of movable cores (40, 50) provided so as to be capable or incapable of moving relative to the needle; a stationary core (70) provided on the opposite side of the movable cores from the valve seat; and a coil (80) which, when an electric current is conducted thereto, generates a magnetic flux to attract the movable cores toward the stationary core, thereby being capable of moving the needle to the side opposite the valve seat. An annular inter-movable-core gap (s1) is formed between the stationary core-side surface (421) of one movable core (40) of the plurality of movable cores and the valve seat-side surface (512) of the other movable core (50), which is different from said movable core.

Description

燃料噴射装置Fuel injection device 関連出願の相互参照Cross-reference of related applications
 本出願は、2016年3月10日に出願された日本特許出願番号2016-46914号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2016-46914 filed on Mar. 10, 2016, the contents of which are incorporated herein by reference.
 本開示は、内燃機関に燃料を噴射供給する燃料噴射装置に関する。 The present disclosure relates to a fuel injection device that injects and supplies fuel to an internal combustion engine.
 従来、1つのニードルに対し複数の可動コアを設けた燃料噴射装置が知られている。例えば特許文献1には、1つのニードルに対し2つの可動コアを設け、大小2つのニードルリフト量を実現している。 Conventionally, a fuel injection device in which a plurality of movable cores are provided for one needle is known. For example, in Patent Document 1, two movable cores are provided for one needle to realize two needle lift amounts.
特開2014-141924号公報JP 2014-141924 A
 特許文献1の燃料噴射装置では、第1の可動コアをニードルに対し相対移動可能に設け、第2の可動コアをニードルに対し相対移動不能に設けている。この燃料噴射装置では、コイルに通電されていないとき、すなわち、ニードルが弁座に当接し閉弁しているとき、第1の可動コアと第2の可動コアとは、対向する面同士が当接している。よって、第1の可動コアと第2の可動コアとの間の磁気抵抗は小さい。この構成では、コイルに通電したとき、第1の可動コアに磁束が流れるとともに、第2の可動コアにも多くの磁束が流れる。そのため、第1の可動コアを固定コア側に吸引する力が小さくなるおそれがある。これにより、特に燃料噴射装置内の燃圧が高い場合、コイルへの通電初期にニードルを適切に開弁できないおそれがある。一方、ニードルを十分開弁可能な程度にコイルに通電した場合、通電初期の消費電力が大きくなるおそれがある。 In the fuel injection device of Patent Document 1, the first movable core is provided so as to be relatively movable with respect to the needle, and the second movable core is provided so as not to be relatively movable with respect to the needle. In this fuel injection device, when the coil is not energized, that is, when the needle is in contact with the valve seat and is closed, the first movable core and the second movable core are opposed to each other. Touching. Therefore, the magnetic resistance between the first movable core and the second movable core is small. In this configuration, when the coil is energized, a magnetic flux flows through the first movable core, and a large amount of magnetic flux also flows through the second movable core. For this reason, the force for sucking the first movable core toward the fixed core may be reduced. Thereby, especially when the fuel pressure in the fuel injection device is high, there is a possibility that the needle cannot be properly opened at the initial stage of energization of the coil. On the other hand, when the coil is energized to such an extent that the needle can be sufficiently opened, power consumption at the initial energization may increase.
 また、特許文献1の燃料噴射装置では、ニードルの大ストローク時、互いに当接していた第1の可動コアおよび第2の可動コアの対向する面同士は、離間し、間に隙間が形成される。そのため、このとき、当該対向する面の間に、互いが離間するのを妨げようとする力であるリンギング力が生じるおそれがある。これにより、ニードルの開弁速度が低下するとともに十分なニードルリフト量を達成できないおそれがある。したがって、燃料の噴射精度が低下するおそれがある。 Further, in the fuel injection device of Patent Document 1, the opposing surfaces of the first movable core and the second movable core that are in contact with each other at the time of a large stroke of the needle are separated from each other, and a gap is formed therebetween. . Therefore, at this time, there is a possibility that a ringing force, which is a force for preventing separation from each other, is generated between the opposing surfaces. As a result, the valve opening speed of the needle decreases, and a sufficient needle lift amount may not be achieved. Therefore, the fuel injection accuracy may be reduced.
 また、特許文献1の燃料噴射装置では、第1の可動コアおよび第2の可動コアの対向する面同士が当接した状態でニードルが閉弁、すなわち、弁座に当接した場合、第1の可動コアおよび第2の可動コアの対向する面同士の間にリンギング力が生じ、ニードルが弁座に当接したときの衝突エネルギーが大きくなるおそれがある。これにより、ニードルが弁座でバウンスし、意図しない二次開弁を招くおそれがある。したがって、燃料の噴射精度が低下するおそれがある。 Further, in the fuel injection device of Patent Document 1, when the needle is closed, that is, in contact with the valve seat in a state where the opposing surfaces of the first movable core and the second movable core are in contact with each other, the first Ringing force is generated between the opposing surfaces of the movable core and the second movable core, and the collision energy when the needle comes into contact with the valve seat may increase. This may cause the needle to bounce at the valve seat and cause an unintended secondary valve opening. Therefore, the fuel injection accuracy may be reduced.
 また、特許文献1の燃料噴射装置では、ニードルの開弁時、第1の可動コアおよび第2の可動コアは、固定コアに対向する面が固定コアに当接する。そのため、コイルへの通電を停止し、ニードルを閉弁するとき、固定コアの残留磁気の影響が第1の可動コアおよび第2の可動コアに及ぶとともに、固定コアと第1の可動コアおよび第2の可動コアとの間にリンギング力が生じ、第1の可動コアおよび第2の可動コアが固定コアに当接したままの状態になるおそれがある。これにより、ニードルの閉弁が遅延するおそれがある。したがって、燃料の噴射精度が低下するおそれがある。 Further, in the fuel injection device of Patent Document 1, when the needle is opened, the first movable core and the second movable core are in contact with the fixed core at the surfaces facing the fixed core. Therefore, when energization of the coil is stopped and the needle is closed, the influence of the residual magnetism of the fixed core reaches the first movable core and the second movable core, and the fixed core, the first movable core, and the first movable core A ringing force may be generated between the two movable cores, and the first movable core and the second movable core may remain in contact with the fixed core. This may delay the closing of the needle. Therefore, the fuel injection accuracy may be reduced.
 本開示は、上述の問題に鑑みてなされたものであり、その目的は、高圧の燃料を高精度に噴射可能な燃料噴射装置を提供することにある。 The present disclosure has been made in view of the above-described problems, and an object thereof is to provide a fuel injection device that can inject high-pressure fuel with high accuracy.
 上記目的を達成するため、本開示の第1の態様による燃料噴射装置は、ノズルとハウジングとニードルと可動コアと固定コアとコイルとを備えている。ノズルは、燃料が噴射される噴孔、および、噴孔の周囲に形成された弁座を有している。ハウジングは、筒状に形成され、一端がノズルに接続され、噴孔に連通するよう内側に形成され噴孔に燃料を導く燃料通路を有している。ニードルは、ハウジングの内側で往復移動可能に設けられ、一端が弁座から離間すると開弁し、一端が弁座に当接すると閉弁する。可動コアは、ニードルに対し相対移動可能または相対移動不能に複数設けられている。固定コアは、可動コアに対し弁座とは反対側に設けられている。コイルは、通電されると磁束を生じ、可動コアを固定コア側に吸引しニードルを弁座とは反対側に移動させることが可能である。 In order to achieve the above object, the fuel injection device according to the first aspect of the present disclosure includes a nozzle, a housing, a needle, a movable core, a fixed core, and a coil. The nozzle has an injection hole through which fuel is injected and a valve seat formed around the injection hole. The housing is formed in a cylindrical shape, has one end connected to the nozzle, and has a fuel passage formed inside so as to communicate with the nozzle hole and guiding fuel to the nozzle hole. The needle is provided so as to be reciprocally movable inside the housing, and opens when one end is separated from the valve seat and closes when one end contacts the valve seat. A plurality of movable cores are provided so as to be movable relative to the needle or not movable relative to the needle. The fixed core is provided on the side opposite to the valve seat with respect to the movable core. When the coil is energized, it generates a magnetic flux, and it is possible to attract the movable core toward the fixed core and move the needle away from the valve seat.
 そして、本態様では、複数の可動コアのうち、1つの可動コアの固定コア側の面と、前記1つの可動コアと異なる他の可動コアの弁座側の面との間に環状の可動コア間隙間が形成されている。そのため、複数の可動コア間の磁気抵抗を大きくすることができる。これにより、コイルへの通電時、複数の可動コアのうちの一部に多くの磁束を流すことができ、当該可動コアと固定コアとの間の吸引力を大きくすることができる。したがって、燃料通路内の燃圧が高い場合でも、ニードルを開弁することができる。よって、本態様では、高圧の燃料を噴射することができる。 And in this aspect, an annular movable core is provided between the surface on the fixed core side of one movable core and the surface on the valve seat side of the other movable core different from the one movable core. A gap is formed. Therefore, the magnetic resistance between the plurality of movable cores can be increased. As a result, when energizing the coil, a large amount of magnetic flux can flow through a part of the plurality of movable cores, and the attractive force between the movable core and the fixed core can be increased. Therefore, even when the fuel pressure in the fuel passage is high, the needle can be opened. Therefore, in this aspect, high-pressure fuel can be injected.
 また、本態様では、複数の可動コア同士の間に環状の可動コア間隙間が形成されているため、可動コア同士が離れようとするときに生じるリンギング力を小さくすることができる。そのため、従来の燃料噴射装置で生じ得るニードルの開弁速度の低下や意図しない二次開弁を抑制することができる。したがって、本態様では、燃料を高精度に噴射することができる。 Further, in this aspect, since the annular gap between the movable cores is formed between the plurality of movable cores, the ringing force generated when the movable cores are about to be separated can be reduced. Therefore, it is possible to suppress a decrease in the valve opening speed of the needle and an unintended secondary valve opening that may occur in the conventional fuel injection device. Therefore, in this aspect, fuel can be injected with high accuracy.
 上記目的を達成するため、本開示の第2の態様による燃料噴射装置は、ノズルとハウジングとニードルと可動コアと固定コアとコイルとを備えている。そして、本態様では、ハウジングまたは固定コアは、複数の可動コアのうちの少なくとも1つの可動コアの固定コア側の面またはニードルに当接可能な当接面を有している。可動コアの固定コア側の面またはニードルと当接面とが当接したとき、可動コアと固定コアとの間に環状のコア間隙間を形成する。そのため、コイルへの通電を停止し、ニードルを閉弁するとき、固定コアの残留磁気の影響が可動コアに及んだり、固定コアと可動コアとの間にリンギング力が生じたりするのを抑制することができる。これにより、可動コアが固定コアに当接したままの状態になるのを抑制することができる。したがって、コイルへの通電停止後、ニードルを速やかに閉弁させることができる。よって、本態様では、燃料を高精度に噴射することができる。 In order to achieve the above object, the fuel injection device according to the second aspect of the present disclosure includes a nozzle, a housing, a needle, a movable core, a fixed core, and a coil. In this aspect, the housing or the fixed core has a contact surface that can contact the surface of the fixed core or the needle of at least one of the plurality of movable cores. An annular inter-core gap is formed between the movable core and the fixed core when the surface of the movable core on the fixed core side or the needle and the contact surface contact each other. Therefore, when energization to the coil is stopped and the needle is closed, the influence of the remanent magnetism of the fixed core on the movable core and ringing force between the fixed core and the movable core are suppressed. can do. Thereby, it can suppress that a movable core will be in the state which contact | abutted to the fixed core. Therefore, the needle can be quickly closed after energization of the coil is stopped. Therefore, in this aspect, fuel can be injected with high accuracy.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
第1実施形態による燃料噴射装置を示す模式的断面図。 第1実施形態による燃料噴射装置を示す模式的断面図であって、コイルへの通電初期の状態を示す図。 第1実施形態による燃料噴射装置を示す模式的断面図であって、図2の状態の後の状態を示す図。 第1実施形態による燃料噴射装置を示す模式的断面図であって、図3の状態の後の状態を示す図。 第1実施形態による燃料噴射装置を示す模式的断面図であって、図4の状態の後の状態を示す図。 第1実施形態による燃料噴射装置を示す模式的断面図であって、図5の状態の後の状態を示す図。 第1実施形態による燃料噴射装置を示す模式的断面図であって、図6の状態の後の状態を示す図。 第2実施形態による燃料噴射装置を示す模式的断面図。 第2実施形態による燃料噴射装置を示す模式的断面図であって、図8の状態とは異なる状態を示す図。 第3実施形態による燃料噴射装置を示す模式的断面図。 第3実施形態による燃料噴射装置を示す模式的断面図であって、図10の状態とは異なる状態を示す図。 第4実施形態による燃料噴射装置を示す模式的断面図。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
The typical sectional view showing the fuel injection device by a 1st embodiment. It is typical sectional drawing which shows the fuel-injection apparatus by 1st Embodiment, Comprising: The figure which shows the state by the initial stage of electricity supply to a coil. It is a typical sectional view showing the fuel injection device by a 1st embodiment, and is a figure showing the state after the state of Drawing 2. FIG. 4 is a schematic cross-sectional view showing the fuel injection device according to the first embodiment, and shows a state after the state of FIG. 3. FIG. 5 is a schematic cross-sectional view showing the fuel injection device according to the first embodiment, and shows a state after the state of FIG. 4. FIG. 6 is a schematic cross-sectional view showing the fuel injection device according to the first embodiment, and shows a state after the state of FIG. 5. It is a typical sectional view showing the fuel injection device by a 1st embodiment, and is a figure showing the state after the state of Drawing 6. The typical sectional view showing the fuel injection device by a 2nd embodiment. It is a typical sectional view showing the fuel injection device by a 2nd embodiment, and is a figure showing the state different from the state of Drawing 8. The typical sectional view showing the fuel injection device by a 3rd embodiment. It is a typical sectional view showing the fuel injection device by a 3rd embodiment, and is a figure showing the state different from the state of Drawing 10. Typical sectional drawing which shows the fuel-injection apparatus by 4th Embodiment.
 以下、複数の実施形態による燃料噴射装置を図面に基づき説明する。なお、複数の実施形態において実質的に同一の構成部位には同一の符号を付し、説明を省略する。 Hereinafter, a fuel injection device according to a plurality of embodiments will be described with reference to the drawings. Note that, in a plurality of embodiments, substantially the same components are denoted by the same reference numerals, and description thereof is omitted.
(第1実施形態)
 第1実施形態による燃料噴射装置を図1~7に示す。燃料噴射装置1は、例えば図示しない内燃機関としての直噴式ガソリンエンジンに用いられ、燃料としてのガソリンをエンジンに噴射供給する。
(First embodiment)
A fuel injection device according to a first embodiment is shown in FIGS. The fuel injection device 1 is used, for example, in a direct injection gasoline engine as an internal combustion engine (not shown), and injects and supplies gasoline as fuel to the engine.
 図1に示すように、燃料噴射装置1は、ノズル10、ハウジング20、ニードル30、可動コアとしての第1可動コア40および第2可動コア50、固定コア70、コイル80、第1付勢部材としてのスプリング91、第2付勢部材としてのスプリング92等を備えている。 As shown in FIG. 1, the fuel injection device 1 includes a nozzle 10, a housing 20, a needle 30, a first movable core 40 and a second movable core 50 as movable cores, a fixed core 70, a coil 80, and a first biasing member. And a spring 92 as a second urging member.
 ノズル10は、例えばフェライト系ステンレス等の磁性材料により略円板状に形成されている。ノズル10は、噴孔11、弁座12を有している。噴孔11は、ノズル10の中央を板厚方向に貫くよう形成されている。弁座12は、ノズル10の一方の面の噴孔11の周囲に環状に形成されている。なお、ノズル10は、弁座12が形成された面がテーパ状に形成されている。 The nozzle 10 is formed in a substantially disc shape by a magnetic material such as ferritic stainless steel. The nozzle 10 has a nozzle hole 11 and a valve seat 12. The nozzle hole 11 is formed so as to penetrate the center of the nozzle 10 in the plate thickness direction. The valve seat 12 is formed in an annular shape around the nozzle hole 11 on one surface of the nozzle 10. The nozzle 10 has a tapered surface on which the valve seat 12 is formed.
 ハウジング20は、第1筒部21、第2筒部22、非磁性部材60を有している。第1筒部21、第2筒部22は、ノズル10と同様、例えばフェライト系ステンレス等の磁性材料により筒状に形成されている。第1筒部21は、略円筒状に形成されている。第2筒部22は、略円筒状に形成されている。第2筒部22の内径および外径は、第1筒部21の内径および外径よりも大きい。第1筒部21と第2筒部22とは、同軸となるよう一体に形成されている。第1筒部21と第2筒部22との間の内壁には、段差面201が形成されている。 The housing 20 includes a first cylinder part 21, a second cylinder part 22, and a nonmagnetic member 60. Like the nozzle 10, the 1st cylinder part 21 and the 2nd cylinder part 22 are formed in the cylinder shape, for example with magnetic materials, such as ferritic stainless steel. The 1st cylinder part 21 is formed in the substantially cylindrical shape. The 2nd cylinder part 22 is formed in the substantially cylindrical shape. The inner diameter and outer diameter of the second cylindrical portion 22 are larger than the inner diameter and outer diameter of the first cylindrical portion 21. The 1st cylinder part 21 and the 2nd cylinder part 22 are integrally formed so that it may become coaxial. A step surface 201 is formed on the inner wall between the first tube portion 21 and the second tube portion 22.
 ハウジング20は、第1筒部21の第2筒部22とは反対側がノズル10の弁座12側の面の外縁部に接続するようにしてノズル10と一体に形成されている。すなわち、本実施形態では、ハウジング20の第1筒部21および第2筒部22とノズル10とは、同一の材料により一体に形成されている。ハウジング20の内側には、噴孔11に連通する燃料通路100が形成されている。 The housing 20 is formed integrally with the nozzle 10 such that the opposite side of the first cylinder portion 21 to the second cylinder portion 22 is connected to the outer edge portion of the surface of the nozzle 10 on the valve seat 12 side. That is, in the present embodiment, the first cylindrical portion 21 and the second cylindrical portion 22 of the housing 20 and the nozzle 10 are integrally formed of the same material. A fuel passage 100 communicating with the injection hole 11 is formed inside the housing 20.
 ニードル30は、例えばオーステナイト系ステンレス等の非磁性材料により棒状に形成されている。ニードル30は、ニードル本体31、鍔部32を有している。ニードル本体31は、略円柱状に形成されている。ニードル本体31の一方の端面は、テーパ状に形成されており、外縁部にシール部33が形成されている。また、ニードル本体31には、軸方向穴部34、径方向穴部35が形成されている。軸方向穴部34は、ニードル本体31のシール部33とは反対側の端面から軸方向のシール部33側に延びるよう形成されている。径方向穴部35は、ニードル本体31の径方向に延び、ニードル本体31の外壁に開口するよう形成されている。径方向穴部35は、軸方向穴部34のシール部33側の端部に接続している。 The needle 30 is formed in a rod shape from a nonmagnetic material such as austenitic stainless steel. The needle 30 has a needle main body 31 and a collar portion 32. The needle body 31 is formed in a substantially cylindrical shape. One end surface of the needle body 31 is formed in a tapered shape, and a seal portion 33 is formed on the outer edge portion. Further, the needle body 31 is formed with an axial hole 34 and a radial hole 35. The axial hole 34 is formed to extend from the end surface of the needle body 31 opposite to the seal portion 33 toward the seal portion 33 in the axial direction. The radial hole 35 extends in the radial direction of the needle body 31 and is formed to open to the outer wall of the needle body 31. The radial hole portion 35 is connected to the end portion of the axial hole portion 34 on the seal portion 33 side.
 鍔部32は、ニードル本体31のシール部33とは反対側の端部の外壁から径方向外側へ突出するよう略円筒状に形成されている。本実施形態では、鍔部32は、ニードル本体31と一体に形成されている。鍔部32のシール部33とは反対側の端面は、ニードル本体31のシール部33とは反対側の端面と同一平面上にある。 The collar portion 32 is formed in a substantially cylindrical shape so as to protrude radially outward from the outer wall at the end opposite to the seal portion 33 of the needle body 31. In the present embodiment, the collar portion 32 is formed integrally with the needle body 31. The end surface of the collar portion 32 opposite to the seal portion 33 is on the same plane as the end surface of the needle body 31 opposite to the seal portion 33.
 ニードル30は、ハウジング20の内側で軸方向に往復移動可能、かつ、シール部33が弁座12に当接可能に設けられている。ここで、ニードル30は、シール部33が弁座12から離間すると開弁し、シール部33が弁座12に当接すると閉弁する。ニードル30が開弁または閉弁すると、噴孔11が開閉する。以下、適宜、ニードル30が弁座12から離間する方向を開弁方向といい、ニードル30が弁座12に当接する方向を閉弁方向という。 The needle 30 is provided so that it can reciprocate in the axial direction inside the housing 20, and the seal portion 33 can come into contact with the valve seat 12. Here, the needle 30 opens when the seal portion 33 is separated from the valve seat 12 and closes when the seal portion 33 contacts the valve seat 12. When the needle 30 opens or closes, the nozzle hole 11 opens and closes. Hereinafter, the direction in which the needle 30 is separated from the valve seat 12 is referred to as a valve opening direction, and the direction in which the needle 30 contacts the valve seat 12 is referred to as a valve closing direction.
 本実施形態の燃料噴射装置1は、2つの可動コア(第1可動コア40、第2可動コア50)を備えている。第1可動コア40は、例えばフェライト系ステンレス等の磁性材料により形成されている。第1可動コア40は、筒部41、底部42を有している。筒部41は、略円筒状に形成されている。底部42は、略円板状に形成され、筒部41の一方の端部を塞ぐようにして筒部41と一体に形成されている。底部42には、凹部43、挿通穴部44、連通孔45が形成されている。凹部43は、底部42の筒部41とは反対側の面の中央から筒部41側へ凹むようにして形成されている。挿通穴部44は、底部42の筒部41側の面421の中央と凹部43の中央とを接続するよう形成されている。連通孔45は、底部42の筒部41側の面421と凹部43とを接続するよう形成されている。連通孔45は、挿通穴部44の径方向外側において底部42の周方向に等間隔で複数形成されている。本実施形態では、連通孔45は、例えば4つ形成されている。 The fuel injection device 1 according to the present embodiment includes two movable cores (first movable core 40 and second movable core 50). The first movable core 40 is formed of a magnetic material such as ferritic stainless steel. The first movable core 40 has a cylinder part 41 and a bottom part 42. The cylinder part 41 is formed in a substantially cylindrical shape. The bottom portion 42 is formed in a substantially disc shape, and is formed integrally with the cylinder portion 41 so as to close one end portion of the cylinder portion 41. In the bottom portion 42, a recess 43, an insertion hole 44, and a communication hole 45 are formed. The recessed portion 43 is formed so as to be recessed from the center of the surface of the bottom portion 42 opposite to the tubular portion 41 toward the tubular portion 41 side. The insertion hole portion 44 is formed so as to connect the center of the surface 421 of the bottom portion 42 on the cylinder portion 41 side and the center of the recess 43. The communication hole 45 is formed so as to connect the surface 421 of the bottom portion 42 on the cylindrical portion 41 side and the concave portion 43. A plurality of communication holes 45 are formed at equal intervals in the circumferential direction of the bottom 42 on the radially outer side of the insertion hole 44. In the present embodiment, for example, four communication holes 45 are formed.
 第1可動コア40は、挿通穴部44にニードル本体31が挿通され、ニードル本体31に対し軸方向に相対移動可能に設けられている。第1可動コア40は、底部42の筒部41側の面421の挿通穴部44の外側の部分が鍔部32の弁座12側の端面に当接可能である。第1可動コア40は、挿通穴部44の内壁がニードル本体31の外壁と摺動可能である。すなわち、第1可動コア40は、ニードル30に対し相対移動可能に設けられている。第1可動コア40は、筒部41および底部42の外壁がハウジング20の第2筒部22の内壁と摺動可能である。 The first movable core 40 is provided such that the needle body 31 is inserted into the insertion hole 44 and is movable relative to the needle body 31 in the axial direction. In the first movable core 40, the outer portion of the insertion hole 44 of the surface 421 on the cylinder portion 41 side of the bottom portion 42 can contact the end surface of the flange portion 32 on the valve seat 12 side. In the first movable core 40, the inner wall of the insertion hole 44 can slide with the outer wall of the needle body 31. That is, the first movable core 40 is provided so as to be movable relative to the needle 30. As for the 1st movable core 40, the outer wall of the cylinder part 41 and the bottom part 42 is slidable with the inner wall of the 2nd cylinder part 22 of the housing 20. As shown in FIG.
 第2可動コア50は、第1可動コア40と同様、例えばフェライト系ステンレス等の磁性材料により形成されている。第2可動コア50は、可動コア本体51を有している。可動コア本体51は、略円筒状に形成されている。可動コア本体51は、内壁が鍔部32の外壁に嵌合するよう設けられている。本実施形態では、可動コア本体51は、例えば圧入または溶接等により鍔部32に固定されている。すなわち、第2可動コア50は、ニードル30に対し相対移動不能に設けられている。よって、第2可動コア50は、ハウジング20の内側でニードル30と一体になって往復移動する。 As with the first movable core 40, the second movable core 50 is formed of a magnetic material such as ferritic stainless steel. The second movable core 50 has a movable core body 51. The movable core body 51 is formed in a substantially cylindrical shape. The movable core body 51 is provided such that the inner wall is fitted to the outer wall of the flange portion 32. In the present embodiment, the movable core body 51 is fixed to the flange portion 32 by, for example, press fitting or welding. That is, the second movable core 50 is provided so as not to move relative to the needle 30. Therefore, the second movable core 50 reciprocates integrally with the needle 30 inside the housing 20.
 ここで、可動コア本体51の軸方向の長さは、鍔部32の軸方向の長さより小さい。また、可動コア本体51の弁座12とは反対側の端面は、鍔部32の弁座12とは反対側の端面と同一平面上にある。そのため、鍔部32の弁座12側の端面は、第2可動コア50の可動コア本体51の弁座12側の端面に対し弁座12側に位置している。第1可動コア40の底部42の筒部41側の面412と第2可動コア50の可動コア本体51の弁座12側の端面512との間には、略円環状の可動コア間隙間s1が形成されている。可動コア間隙間s1の軸方向の大きさは、ニードル本体31に対する第1可動コア40の位置により変化し、第1可動コア40の底部42が鍔部32の弁座12側の端面に当接したとき、最小となる。このように、第1可動コア40の底部42が鍔部32の弁座12側の端面に当接しているか否かにかかわらず、底部42の筒部41側の面421と可動コア本体51の弁座12側の端面512とは常に離間しており、間に可動コア間隙間s1を形成している。また、第1可動コア40の連通孔45は、可動コア間隙間s1に連通し、可動コア間隙間s1と凹部43の内側の空間とを接続している。 Here, the length of the movable core body 51 in the axial direction is smaller than the length of the flange portion 32 in the axial direction. The end surface of the movable core body 51 opposite to the valve seat 12 is on the same plane as the end surface of the collar portion 32 opposite to the valve seat 12. Therefore, the end surface on the valve seat 12 side of the collar portion 32 is located on the valve seat 12 side with respect to the end surface on the valve seat 12 side of the movable core body 51 of the second movable core 50. Between the surface 412 of the bottom portion 42 of the first movable core 40 on the cylinder portion 41 side and the end surface 512 of the movable core body 51 of the second movable core 50 on the valve seat 12 side, a substantially annular gap s1 between the movable cores. Is formed. The size of the gap s1 between the movable cores in the axial direction varies depending on the position of the first movable core 40 with respect to the needle body 31, and the bottom 42 of the first movable core 40 abuts on the end face of the flange 32 on the valve seat 12 side. The minimum. Thus, regardless of whether or not the bottom portion 42 of the first movable core 40 is in contact with the end surface of the flange portion 32 on the valve seat 12 side, the surface 421 of the bottom portion 42 on the tube portion 41 side and the movable core main body 51. The end face 512 on the valve seat 12 side is always separated from each other, and a movable core gap s1 is formed therebetween. The communication hole 45 of the first movable core 40 communicates with the inter-movable core gap s 1 and connects the inter-movable core gap s 1 and the space inside the recess 43.
 本実施形態では、第1可動コア40の筒部41の軸方向の長さは、鍔部32の軸方向の長さより大きい。そのため、第1可動コア40の底部42が鍔部32の弁座12側の端面に当接しているとき、筒部41の弁座12とは反対側の端面は、第2可動コア50の可動コア本体51の弁座12とは反対側の端面に対し弁座12とは反対側に位置している。なお、本実施形態では、第2可動コア50は、可動コア本体51の外壁が第1可動コア40の筒部41の内壁と摺動可能である。ハウジング20の非磁性部材60は、例えばオーステナイト系ステンレス等の非磁性材料により筒状に形成されている。非磁性部材60は、磁気絞り部を形成している。 In the present embodiment, the axial length of the cylindrical portion 41 of the first movable core 40 is larger than the axial length of the flange portion 32. Therefore, when the bottom portion 42 of the first movable core 40 is in contact with the end surface of the flange portion 32 on the valve seat 12 side, the end surface of the cylinder portion 41 opposite to the valve seat 12 is movable with respect to the second movable core 50. The core body 51 is located on the side opposite to the valve seat 12 with respect to the end surface on the side opposite to the valve seat 12. In the present embodiment, in the second movable core 50, the outer wall of the movable core body 51 can slide with the inner wall of the cylindrical portion 41 of the first movable core 40. The nonmagnetic member 60 of the housing 20 is formed in a cylindrical shape from a nonmagnetic material such as austenitic stainless steel. The nonmagnetic member 60 forms a magnetic diaphragm portion.
 非磁性部材60は、第2筒部22に対しノズル10とは反対側に設けられている。非磁性部材60は、非磁性筒部61、非磁性突出部62を有している。非磁性筒部61は、略円筒状に形成されている。非磁性突出部62は、非磁性筒部61の一方の端部の内壁から径方向内側へ突出するよう略円筒状に形成されている。非磁性突出部62は、非磁性筒部61と一体に形成されている。非磁性部材60は、非磁性筒部61の非磁性突出部62とは反対側の端部が第2筒部22の第1筒部21とは反対側の端部に接続するよう第2筒部22と同軸に設けられている。非磁性部材60と第2筒部22とは、例えば溶接により接続されている。 The nonmagnetic member 60 is provided on the side opposite to the nozzle 10 with respect to the second cylindrical portion 22. The nonmagnetic member 60 has a nonmagnetic cylindrical portion 61 and a nonmagnetic protruding portion 62. The nonmagnetic cylinder portion 61 is formed in a substantially cylindrical shape. The nonmagnetic projecting portion 62 is formed in a substantially cylindrical shape so as to project radially inward from the inner wall of one end portion of the nonmagnetic tubular portion 61. The nonmagnetic protrusion 62 is formed integrally with the nonmagnetic cylinder 61. The non-magnetic member 60 includes a second cylinder such that an end of the non-magnetic cylinder 61 opposite to the non-magnetic protrusion 62 is connected to an end of the second cylinder 22 opposite to the first cylinder 21. It is provided coaxially with the portion 22. The nonmagnetic member 60 and the second cylindrical portion 22 are connected by welding, for example.
 固定コア70は、第1可動コア40および第2可動コア50に対し弁座12とは反対側に設けられている。固定コア70は、固定コア本体71、固定コア外周部72を有している。固定コア本体71および固定コア外周部72は、例えば例えばフェライト系ステンレス等の磁性材料により筒状に形成されている。 The fixed core 70 is provided on the opposite side of the valve seat 12 with respect to the first movable core 40 and the second movable core 50. The fixed core 70 has a fixed core main body 71 and a fixed core outer peripheral portion 72. The fixed core main body 71 and the fixed core outer peripheral portion 72 are formed in a cylindrical shape from a magnetic material such as ferritic stainless steel, for example.
 固定コア本体71は、略円筒状に形成されている。固定コア外周部72は、固定コア本体71の外壁から径方向外側へ突出するよう略円筒状に形成されている。固定コア70は、一方の端部が非磁性部材60の非磁性突出部62側の端部に接続するよう非磁性部材60と同軸に設けられている。固定コア70と非磁性部材60とは、例えば溶接により接続されている。このように、ハウジング20は、固定コア70側の端部に、非磁性部材60を有している。 The fixed core body 71 is formed in a substantially cylindrical shape. The fixed core outer peripheral portion 72 is formed in a substantially cylindrical shape so as to protrude radially outward from the outer wall of the fixed core main body 71. The fixed core 70 is provided coaxially with the nonmagnetic member 60 so that one end thereof is connected to the end of the nonmagnetic member 60 on the nonmagnetic protrusion 62 side. The fixed core 70 and the nonmagnetic member 60 are connected by welding, for example. Thus, the housing 20 has the nonmagnetic member 60 at the end portion on the fixed core 70 side.
 より詳細には、固定コア外周部72の弁座12側の端面は、固定コア本体71の弁座12側の端面に対し弁座12とは反対側に位置している。非磁性筒部61および非磁性突出部62の弁座12とは反対側の端面は、固定コア外周部72の弁座12側の端面に当接している。非磁性突出部62の内壁は、固定コア本体71の弁座12側の端部の外壁に当接している。非磁性突出部62の弁座12側の端面は、固定コア本体71の弁座12側の端面に対し弁座12側に位置している。 More specifically, the end face on the valve seat 12 side of the fixed core outer peripheral portion 72 is located on the opposite side of the valve seat 12 with respect to the end face on the valve seat 12 side of the fixed core main body 71. The end surfaces of the nonmagnetic cylinder portion 61 and the nonmagnetic protrusion 62 on the side opposite to the valve seat 12 are in contact with the end surface of the fixed core outer peripheral portion 72 on the valve seat 12 side. The inner wall of the nonmagnetic protrusion 62 is in contact with the outer wall of the end of the fixed core body 71 on the valve seat 12 side. The end face on the valve seat 12 side of the nonmagnetic protrusion 62 is located on the valve seat 12 side with respect to the end face on the valve seat 12 side of the fixed core body 71.
 非磁性突出部62の弁座12側の端面には、非磁性当接面621が形成されている。非磁性当接面621は、第1可動コア40の筒部41の底部42とは反対側の端面、すなわち、第1可動コア40の固定コア70側の端面である第1可動コア端面401に当接可能である。ここで、非磁性当接面621は、「当接面」に対応している。 A nonmagnetic contact surface 621 is formed on the end surface of the nonmagnetic protrusion 62 on the valve seat 12 side. The nonmagnetic contact surface 621 is located on the end surface of the first movable core 40 opposite to the bottom 42 of the cylindrical portion 41, that is, on the first movable core end surface 401 that is the end surface of the first movable core 40 on the fixed core 70 side. Abutment is possible. Here, the nonmagnetic contact surface 621 corresponds to a “contact surface”.
 第2可動コア50の可動コア本体51の弁座12とは反対側の端面、すなわち、第2可動コア50の固定コア70側の端面である第2可動コア端面501は、固定コア本体71の弁座12側の端面、すなわち、固定コア70の第1可動コア40および第2可動コア50側の端面である固定コア端面701に当接可能である。 The end surface of the second movable core 50 opposite to the valve seat 12 of the movable core body 51, that is, the second movable core end surface 501, which is the end surface of the second movable core 50 on the fixed core 70 side, is The end face on the valve seat 12 side, that is, the fixed core end face 701 that is the end face on the first movable core 40 side and the second movable core 50 side of the fixed core 70 can be contacted.
 固定コア本体71の内側には、アジャスティングパイプ90が設けられている。アジャスティングパイプ90は、例えば金属により略円筒状に形成されている。アジャスティングパイプ90は、外壁が固定コア本体71の内壁に嵌合するよう固定コア本体71に対し相対移動不能に設けられている。アジャスティングパイプ90は、例えば圧入により固定コア本体71の内側に設けられている。 An adjusting pipe 90 is provided inside the fixed core body 71. The adjusting pipe 90 is formed in a substantially cylindrical shape with, for example, metal. The adjusting pipe 90 is provided so as not to move relative to the fixed core body 71 so that the outer wall is fitted to the inner wall of the fixed core body 71. The adjusting pipe 90 is provided inside the fixed core main body 71 by, for example, press fitting.
 スプリング91は、例えばコイルスプリングであり、ニードル30の弁座12とは反対側の端面とアジャスティングパイプ90の弁座12側の端面との間に設けられている。スプリング91は、ニードル30を弁座12側に付勢している。なお、スプリング91の付勢力は、固定コア本体71に対するアジャスティングパイプ90の位置を調整することにより調整することができる。 The spring 91 is, for example, a coil spring, and is provided between the end surface of the needle 30 opposite to the valve seat 12 and the end surface of the adjusting pipe 90 on the valve seat 12 side. The spring 91 biases the needle 30 toward the valve seat 12 side. The urging force of the spring 91 can be adjusted by adjusting the position of the adjusting pipe 90 with respect to the fixed core body 71.
 ニードル本体31の鍔部32に対し弁座12側には、ばね座36が設けられている。ばね座36は、例えばオーステナイト系ステンレス等の非磁性材料により略円環状に形成されている。ばね座36は、内縁部がニードル本体31の外壁に嵌合するよう設けられている。ばね座36とニードル本体31とは、例えば溶接により接合されている。これにより、ばね座36は、ニードル本体31に対し相対移動不能である。なお、ばね座36は、径方向穴部35に対し鍔部32側に設けられている。 A spring seat 36 is provided on the valve seat 12 side with respect to the collar portion 32 of the needle body 31. The spring seat 36 is formed in a substantially annular shape from a nonmagnetic material such as austenitic stainless steel. The spring seat 36 is provided so that the inner edge portion fits to the outer wall of the needle body 31. The spring seat 36 and the needle body 31 are joined by welding, for example. As a result, the spring seat 36 is not movable relative to the needle body 31. The spring seat 36 is provided on the flange 32 side with respect to the radial hole 35.
 スプリング92は、例えばコイルスプリングであり、第1可動コア40の底部42の凹部43とばね座36との間に設けられている。スプリング92は、一端が凹部43の挿通穴部44と連通孔45との間に当接し、他端がばね座36に当接している。スプリング92は、第1可動コア40を固定コア70側に付勢している。これにより、第1可動コア40の底部42の固定コア70側の面421の挿通穴部44の外側の部分は、ニードル30の鍔部32の弁座12側の端面に押し付けられる。なお、本実施形態では、スプリング91の付勢力は、スプリング92の付勢力より大きく設定されている。 The spring 92 is a coil spring, for example, and is provided between the recess 43 of the bottom 42 of the first movable core 40 and the spring seat 36. One end of the spring 92 is in contact with the insertion hole 44 of the recess 43 and the communication hole 45, and the other end is in contact with the spring seat 36. The spring 92 biases the first movable core 40 toward the fixed core 70 side. As a result, the outer portion of the insertion hole 44 of the surface 421 on the fixed core 70 side of the bottom 42 of the first movable core 40 is pressed against the end face of the flange 32 of the needle 30 on the valve seat 12 side. In the present embodiment, the urging force of the spring 91 is set larger than the urging force of the spring 92.
 コイル80は、例えば銅等の巻線を巻回すことにより略円筒状に形成されている。コイル80は、ハウジング20の第2筒部22の非磁性部材60側の端部、非磁性部材60、固定コア外周部72の径方向外側に位置するよう設けられている。 The coil 80 is formed in a substantially cylindrical shape by winding a winding such as copper. The coil 80 is provided so as to be positioned on the radially outer side of the non-magnetic member 60, the non-magnetic member 60, and the fixed core outer peripheral portion 72 of the second cylindrical portion 22 of the housing 20.
 本実施形態では、ヨーク81をさらに備えている。ヨーク81は、例えばフェライト系ステンレス等の磁性材料により筒状に形成されている。ヨーク81は、コイル80の外壁および両端部を覆うようにして設けられている。ヨーク81は、一方の端部がハウジング20の第2筒部22の外壁に接続し、他方の端部が固定コア70の固定コア外周部72の外壁に接続している。 In this embodiment, a yoke 81 is further provided. The yoke 81 is formed in a cylindrical shape from a magnetic material such as ferritic stainless steel. The yoke 81 is provided so as to cover the outer wall and both ends of the coil 80. One end of the yoke 81 is connected to the outer wall of the second cylindrical portion 22 of the housing 20, and the other end is connected to the outer wall of the fixed core outer peripheral portion 72 of the fixed core 70.
 コイル80は、通電されると、磁束を生じる。コイル80に磁束が生じると、非磁性部材60を避けるようにして、固定コア70、ヨーク81、第2筒部22、第1可動コア40、第2可動コア50に磁束が流れ磁気回路が形成される。これにより、第1可動コア40および第2可動コア50は、固定コア70側に吸引される。このとき、第1可動コア40は、底部42が鍔部32に当接した状態で固定コア70側に吸引される。その結果、ニードル30が開弁方向に移動し開弁する。 The coil 80 generates a magnetic flux when energized. When magnetic flux is generated in the coil 80, magnetic flux flows through the fixed core 70, the yoke 81, the second cylindrical portion 22, the first movable core 40, and the second movable core 50 so as to avoid the nonmagnetic member 60, thereby forming a magnetic circuit. Is done. Thereby, the 1st movable core 40 and the 2nd movable core 50 are attracted | sucked to the fixed core 70 side. At this time, the first movable core 40 is sucked toward the fixed core 70 in a state where the bottom portion 42 is in contact with the flange portion 32. As a result, the needle 30 moves in the valve opening direction and opens.
 固定コア本体71の弁座12とは反対側には、流入口101が形成されている。流入口101を経由して固定コア本体71の内側に流入した燃料は、アジャスティングパイプ90の内側、軸方向穴部34、径方向穴部35、ハウジング20の第1筒部21の内側を流通し、噴孔11に導かれる。なお、流入口101から流入した燃料は、ハウジング20の内側、非磁性部材60の内側、固定コア70の内側、すなわち、燃料通路100を満たす。また、本実施形態では、燃料噴射装置1の作動時、流入口101から比較的高圧の燃料が流入する。そのため、燃料通路100内の燃圧は比較的高くなる。 An inlet 101 is formed on the opposite side of the fixed core body 71 from the valve seat 12. The fuel that has flowed into the inside of the fixed core body 71 via the inflow port 101 flows through the inside of the adjusting pipe 90, the axial hole portion 34, the radial hole portion 35, and the inside of the first tube portion 21 of the housing 20. And guided to the nozzle hole 11. The fuel flowing in from the inlet 101 fills the inside of the housing 20, the inside of the nonmagnetic member 60, the inside of the fixed core 70, that is, the fuel passage 100. In this embodiment, relatively high-pressure fuel flows from the inlet 101 when the fuel injection device 1 is operated. Therefore, the fuel pressure in the fuel passage 100 is relatively high.
 図1に示すように、コイル80に通電されていないとき、ニードル30は、スプリング91の付勢力により弁座12側に付勢されており、シール部33が弁座12に当接し閉弁している。また、第1可動コア40は、スプリング92の付勢力により固定コア70側に付勢されており、底部42がニードル30の鍔部32に当接している。この状態において、第1可動コア40の固定コア70側の端面である第1可動コア端面401と固定コア70の第1可動コア40側の端面である固定コア端面701との距離g1は、第2可動コア50の固定コア70側の端面である第2可動コア端面501と固定コア端面701との距離g2より小さく設定されている。なお、このときの第1可動コア端面401と非磁性当接面621との距離g3は、距離g1から、固定コア端面701と非磁性当接面621との距離d1を引いた大きさに等しい。また、ニードル30の最大リフト量は、距離g2に等しい。 As shown in FIG. 1, when the coil 80 is not energized, the needle 30 is biased toward the valve seat 12 by the biasing force of the spring 91, and the seal portion 33 contacts the valve seat 12 to close the valve. ing. Further, the first movable core 40 is biased toward the fixed core 70 by the biasing force of the spring 92, and the bottom portion 42 is in contact with the flange portion 32 of the needle 30. In this state, the distance g1 between the first movable core end surface 401 that is the end surface of the first movable core 40 on the fixed core 70 side and the fixed core end surface 701 that is the end surface of the fixed core 70 on the first movable core 40 side is The distance between the second movable core end surface 501 and the fixed core end surface 701 which is the end surface of the two movable cores 50 on the fixed core 70 side is set smaller. The distance g3 between the first movable core end surface 401 and the nonmagnetic contact surface 621 at this time is equal to the distance g1 minus the distance d1 between the fixed core end surface 701 and the nonmagnetic contact surface 621. . Further, the maximum lift amount of the needle 30 is equal to the distance g2.
 次に、本実施形態の燃料噴射装置1の作動について、図1~7に基づき詳細に説明する。図1に示すように、コイル80に通電されていないとき、ニードル30は閉弁している。図2に示すように、燃料通路100内が燃料で満たされると、ニードル30の弁座12とは反対側の端面に燃圧Ffが作用する。コイル80に通電すると、磁束が生じ、固定コア70、ヨーク81、第2筒部22、第1可動コア40、第2可動コア50に磁気回路が形成される。これにより、第1可動コア40および第2可動コア50と固定コア70との間に吸引力が生じ、第1可動コア40および第2可動コア50は、固定コア70側に吸引される。その結果、ニードル30は、スプリング91の付勢力および燃圧Ffに抗し開弁方向に移動し、シール部33が弁座12から離間し開弁する。これにより、噴孔11からの燃料の噴射が開始される。 Next, the operation of the fuel injection device 1 of the present embodiment will be described in detail based on FIGS. As shown in FIG. 1, when the coil 80 is not energized, the needle 30 is closed. As shown in FIG. 2, when the inside of the fuel passage 100 is filled with fuel, the fuel pressure Ff acts on the end surface of the needle 30 opposite to the valve seat 12. When the coil 80 is energized, magnetic flux is generated, and a magnetic circuit is formed in the fixed core 70, the yoke 81, the second cylindrical portion 22, the first movable core 40, and the second movable core 50. Thereby, a suction force is generated between the first movable core 40 and the second movable core 50 and the fixed core 70, and the first movable core 40 and the second movable core 50 are sucked to the fixed core 70 side. As a result, the needle 30 moves in the valve opening direction against the urging force of the spring 91 and the fuel pressure Ff, and the seal portion 33 is separated from the valve seat 12 and opened. As a result, fuel injection from the nozzle hole 11 is started.
 なお、本実施形態では、第1可動コア40と第2可動コア50との間に環状の可動コア間隙間s1が形成されているため、第1可動コア40と第2可動コア50との間の磁気抵抗が大きい。また、図2に示すコイル80への通電初期、すなわち、ニードル30が閉弁している状態では、固定コア端面701と第1可動コア端面401との距離g1は、固定コア端面701と第2可動コア端面501との距離g2より小さい。そのため、磁束は、第2可動コア50にはあまり流れず、第1可動コア40に多く流れる。これにより、第1可動コア40および第2可動コア50のうち特に第1可動コア40と固定コア70との間の吸引力を大きくすることができる。したがって、燃料通路100内の燃圧が比較的高い場合において、コイル80への通電量が比較的小さくても、ニードル30を開弁することができる。 In the present embodiment, since the annular movable core gap s1 is formed between the first movable core 40 and the second movable core 50, the gap between the first movable core 40 and the second movable core 50 is determined. The magnetic resistance is large. Further, in the initial energization of the coil 80 shown in FIG. 2, that is, in the state where the needle 30 is closed, the distance g1 between the fixed core end surface 701 and the first movable core end surface 401 is equal to the fixed core end surface 701 and the second core end surface 701. The distance from the movable core end surface 501 is smaller than g2. Therefore, the magnetic flux does not flow so much through the second movable core 50 but flows through the first movable core 40. As a result, the suction force between the first movable core 40 and the second movable core 50, particularly the first movable core 40 and the fixed core 70, can be increased. Therefore, when the fuel pressure in the fuel passage 100 is relatively high, the needle 30 can be opened even if the amount of current supplied to the coil 80 is relatively small.
 コイル80への通電が継続され、第1可動コア40、第2可動コア50およびニードル30が開弁方向へさらに移動すると、第1可動コア40の第1可動コア端面401は、非磁性当接面621に当接する(図3参照)。これにより、第1可動コア40は、開弁方向への移動が規制される。第1可動コア40は、非磁性当接面621に当接したとき、第1可動コア端面401と固定コア端面701との間に略円環状のコア間隙間s2を形成する。すなわち、第1可動コア40が非磁性当接面621に当接した状態において、第1可動コア端面401と固定コア端面701とは、離間している。 When energization of the coil 80 is continued and the first movable core 40, the second movable core 50, and the needle 30 further move in the valve opening direction, the first movable core end surface 401 of the first movable core 40 is brought into nonmagnetic contact. It abuts on the surface 621 (see FIG. 3). Thereby, the movement in the valve opening direction of the 1st movable core 40 is controlled. When the first movable core 40 is in contact with the nonmagnetic contact surface 621, a substantially annular inter-core gap s2 is formed between the first movable core end surface 401 and the fixed core end surface 701. That is, in a state where the first movable core 40 is in contact with the nonmagnetic contact surface 621, the first movable core end surface 401 and the fixed core end surface 701 are separated from each other.
 なお、このとき、固定コア端面701と第2可動コア端面501との距離は、コイル80への通電初期(図2参照)と比べ、小さくなっている。そのため、第2可動コア50にも多くの磁束が流れ、固定コア70と第2可動コア50との間の吸引力が大きくなる。また、このとき、ニードル30が開弁しているため、ニードル本体31の弁座12側の端面の外縁部、すなわち、シール部33には、燃圧Ffが作用する。そのため、ニードル30には両端部に燃圧Ffが作用した状態になり、燃料通路100内の燃圧が比較的高い場合において、コイル80への通電量が比較的小さくても、ニードル30を開弁方向にさらに移動させることができる。 At this time, the distance between the fixed core end surface 701 and the second movable core end surface 501 is smaller than the initial energization of the coil 80 (see FIG. 2). Therefore, a large amount of magnetic flux also flows through the second movable core 50, and the attractive force between the fixed core 70 and the second movable core 50 increases. At this time, since the needle 30 is opened, the fuel pressure Ff acts on the outer edge portion of the end surface of the needle body 31 on the valve seat 12 side, that is, the seal portion 33. Therefore, the fuel pressure Ff is applied to both ends of the needle 30. When the fuel pressure in the fuel passage 100 is relatively high, the needle 30 opens in the valve opening direction even if the amount of current supplied to the coil 80 is relatively small. Can be moved further.
 コイル80への通電が継続され、第2可動コア50およびニードル30が開弁方向へさらに移動すると、第2可動コア50の第2可動コア端面501は、固定コア端面701に当接する(図4参照)。これにより、第2可動コア50およびニードル30は、開弁方向への移動が規制される。本実施形態では、第2可動コア端面501が固定コア端面701に当接したとき、ニードル30のリフト量が最大になる。 When energization of the coil 80 is continued and the second movable core 50 and the needle 30 further move in the valve opening direction, the second movable core end surface 501 of the second movable core 50 comes into contact with the fixed core end surface 701 (FIG. 4). reference). Thereby, the 2nd movable core 50 and the needle 30 are controlled to move in the valve opening direction. In the present embodiment, when the second movable core end surface 501 contacts the fixed core end surface 701, the lift amount of the needle 30 is maximized.
 なお、図3に示す状態から図4に示す状態に移行するとき、第2可動コア50は、可動コア本体51の弁座12側の端面512が、第1可動コア40の底部42の固定コア70側の面421から離れる方向である開弁方向に移動する。本実施形態では、第1可動コア40の底部42の固定コア70側の面421と第2可動コア50の可動コア本体51の弁座12側の端面512全体との間に可動コア間隙間s1が形成されているため、このとき、可動コア本体51の弁座12側の端面512と底部42の固定コア70側の面421との間に生じるリンギング力を小さくすることができる。また、本実施形態では、可動コア間隙間s1に連通孔45が連通しているため、このとき、連通孔45内の燃料の一部は、可動コア間隙間s1に流入する。そのため、第2可動コア50は、第1可動コア40から離れる方向である開弁方向に移動し易い。したがって、ニードル30を開弁方向に速やかに移動させることができる。 When the state shown in FIG. 3 is shifted to the state shown in FIG. 4, the second movable core 50 has the end surface 512 on the valve seat 12 side of the movable core body 51, and the fixed core of the bottom portion 42 of the first movable core 40. It moves in the valve opening direction, which is the direction away from the 70-side surface 421. In this embodiment, the gap s1 between the movable cores is formed between the surface 421 on the fixed core 70 side of the bottom 42 of the first movable core 40 and the entire end surface 512 on the valve seat 12 side of the movable core body 51 of the second movable core 50. In this case, the ringing force generated between the end surface 512 of the movable core body 51 on the valve seat 12 side and the surface 421 of the bottom 42 on the fixed core 70 side can be reduced. In the present embodiment, since the communication hole 45 communicates with the movable core gap s1, at this time, part of the fuel in the communication hole 45 flows into the movable core gap s1. Therefore, the second movable core 50 is easy to move in the valve opening direction that is the direction away from the first movable core 40. Therefore, the needle 30 can be quickly moved in the valve opening direction.
 図4に示す状態でコイル80への通電を停止すると、固定コア70と第1可動コア40および第2可動コア50との間の吸引力が消失する。これにより、ニードル30および第2可動コア50は、スプリング91の付勢力により閉弁方向に移動する。その結果、鍔部32の弁座12側の端面が、第1可動コア40の底部42の固定コア70側の面421に当接する(図5参照)。 When the power supply to the coil 80 is stopped in the state shown in FIG. 4, the attractive force between the fixed core 70, the first movable core 40, and the second movable core 50 disappears. Thereby, the needle 30 and the second movable core 50 are moved in the valve closing direction by the biasing force of the spring 91. As a result, the end surface of the flange portion 32 on the valve seat 12 side contacts the surface 421 on the fixed core 70 side of the bottom portion 42 of the first movable core 40 (see FIG. 5).
 なお、図4に示す状態から図5に示す状態に移行するとき、第2可動コア50は、可動コア本体51の弁座12側の端面512が、第1可動コア40の底部42の固定コア70側の面421に近付くようにして閉弁方向に移動する。本実施形態では、可動コア間隙間s1に連通孔45が連通しているため、このとき、可動コア間隙間s1内の燃料の一部は、連通孔45に流入する。そのため、第2可動コア50およびニードル30は、閉弁方向に移動し易い。したがって、ニードル30を閉弁方向に速やかに移動させることができる。 When the state shown in FIG. 4 is shifted to the state shown in FIG. 5, the second movable core 50 has the end surface 512 on the valve seat 12 side of the movable core body 51, and the fixed core of the bottom portion 42 of the first movable core 40. It moves in the valve closing direction so as to approach the surface 421 on the 70 side. In the present embodiment, since the communication hole 45 communicates with the movable core gap s 1, at this time, part of the fuel in the movable core gap s 1 flows into the communication hole 45. Therefore, the second movable core 50 and the needle 30 are easy to move in the valve closing direction. Therefore, the needle 30 can be quickly moved in the valve closing direction.
 鍔部32が第1可動コア40に当接した状態でニードル30が閉弁方向にさらに移動すると、第1可動コア端面401が非磁性当接面621から離間し、シール部33が弁座12に当接し、ニードル30が閉弁する(図6参照)。これにより、噴孔11からの燃料の噴射が停止する。 When the needle 30 further moves in the valve closing direction with the collar portion 32 in contact with the first movable core 40, the first movable core end surface 401 is separated from the nonmagnetic contact surface 621, and the seal portion 33 is moved to the valve seat 12. The needle 30 closes (see FIG. 6). Thereby, the fuel injection from the nozzle hole 11 is stopped.
 なお、図5に示す状態から図6に示す状態に移行するとき、第1可動コア40は、第1可動コア端面401が固定コア端面701から離れる方向である閉弁方向に移動する。本実施形態では、第1可動コア端面401が非磁性当接面621に当接している状態において第1可動コア端面401と固定コア端面701との間にコア間隙間s2が形成されているため、第1可動コア40は、固定コア70から離れる方向である閉弁方向に移動し易い。したがって、ニードル30を閉弁方向に速やかに移動させることができる。 In addition, when shifting from the state shown in FIG. 5 to the state shown in FIG. 6, the first movable core 40 moves in the valve closing direction in which the first movable core end surface 401 is away from the fixed core end surface 701. In the present embodiment, the inter-core gap s2 is formed between the first movable core end surface 401 and the fixed core end surface 701 in a state where the first movable core end surface 401 is in contact with the nonmagnetic contact surface 621. The first movable core 40 is easy to move in the valve closing direction, which is the direction away from the fixed core 70. Therefore, the needle 30 can be quickly moved in the valve closing direction.
 図6に示す状態の後、第1可動コア40は、慣性で閉弁方向にさらに移動する(図7参照)。図6に示す状態から図7に示す状態に移行するとき、第1可動コア40は、底部42の固定コア70側の面421が、第2可動コア50の可動コア本体51の弁座12側の端面512から離れる方向である閉弁方向に移動する。本実施形態では、第1可動コア40の底部42の固定コア70側の面421と第2可動コア50の可動コア本体51の弁座12側の端面512全体との間に可動コア間隙間s1が形成されているため、このとき、可動コア本体51の弁座12側の端面512と底部42の固定コア70側の面421との間に生じるリンギング力を小さくすることができる。また、本実施形態では、可動コア間隙間s1に連通孔45が連通しているため、このとき、連通孔45内の燃料の一部は、可動コア間隙間s1に流入する。そのため、第1可動コア40は、第2可動コア50から離間する方向である閉弁方向に移動し易い。したがって、ニードル30のシール部33が弁座12に当接したとき(図6参照)の衝突エネルギーを小さくすることができる。よって、ニードル30が弁座12でバウンスするのを抑制し、意図しない二次開弁を抑制することができる。 After the state shown in FIG. 6, the first movable core 40 further moves in the valve closing direction due to inertia (see FIG. 7). When the state shown in FIG. 6 is shifted to the state shown in FIG. 7, the first movable core 40 has a surface 421 on the fixed core 70 side of the bottom 42, and the valve core 12 side of the movable core body 51 of the second movable core 50. It moves in the valve closing direction, which is the direction away from the end face 512 of the valve. In this embodiment, the gap s1 between the movable cores is formed between the surface 421 on the fixed core 70 side of the bottom 42 of the first movable core 40 and the entire end surface 512 on the valve seat 12 side of the movable core body 51 of the second movable core 50. In this case, the ringing force generated between the end surface 512 of the movable core body 51 on the valve seat 12 side and the surface 421 of the bottom 42 on the fixed core 70 side can be reduced. In the present embodiment, since the communication hole 45 communicates with the movable core gap s1, at this time, part of the fuel in the communication hole 45 flows into the movable core gap s1. Therefore, the first movable core 40 easily moves in the valve closing direction, which is the direction away from the second movable core 50. Therefore, the collision energy when the seal portion 33 of the needle 30 contacts the valve seat 12 (see FIG. 6) can be reduced. Therefore, it is possible to suppress the needle 30 from bouncing at the valve seat 12 and to suppress an unintended secondary valve opening.
 図7に示す状態の後、第1可動コア40は、スプリング92の付勢力により開弁方向に移動する。これにより、第1可動コア40は、底部42の固定コア70側の面421が鍔部32の弁座12側の端面に当接し、開弁方向の移動が規制される(図1参照)。 After the state shown in FIG. 7, the first movable core 40 moves in the valve opening direction by the biasing force of the spring 92. As a result, in the first movable core 40, the surface 421 of the bottom 42 on the fixed core 70 side comes into contact with the end surface of the flange 32 on the valve seat 12 side, and movement in the valve opening direction is restricted (see FIG. 1).
 なお、図7に示す状態から図1に示す状態に移行するとき、可動コア間隙間s1内の燃料の一部は、連通孔45に流入する。そのため、第1可動コア40に所謂ダンパ効果が生じ、第1可動コア40が鍔部32に当接するときの衝突エネルギーを小さくすることができる。これにより、第1可動コア40が鍔部32に衝突することによる意図しない開弁を抑制することができる。このように、燃料噴射装置1は、エンジンへの燃料の噴射を継続するとき、図1~7に示す状態を繰り返す。 In addition, when shifting from the state shown in FIG. 7 to the state shown in FIG. 1, a part of the fuel in the gap s1 between the movable cores flows into the communication hole 45. Therefore, a so-called damper effect is generated in the first movable core 40, and the collision energy when the first movable core 40 abuts against the flange portion 32 can be reduced. Thereby, the unintended valve opening by the 1st movable core 40 colliding with the collar part 32 can be suppressed. As described above, the fuel injection device 1 repeats the states shown in FIGS. 1 to 7 when continuing to inject fuel into the engine.
 以上説明したように、(1)本実施形態による燃料噴射装置1は、ノズル10とハウジング20とニードル30と第1可動コア40および第2可動コア50と固定コア70とコイル80とを備えている。ノズル10は、燃料が噴射される噴孔11、および、噴孔11の周囲に形成された弁座12を有している。ハウジング20は、筒状に形成され、一端がノズル10に接続され、噴孔11に連通するよう内側に形成され噴孔11に燃料を導く燃料通路100を有している。ニードル30は、ハウジング20の内側で往復移動可能に設けられ、一端が弁座12から離間すると開弁し、一端が弁座12に当接すると閉弁する。第1可動コア40は、ニードル30に対し相対移動可能に設けられている。第2可動コア50は、ニードル30に対し相対移動不能に設けられている。固定コア70は、第1可動コア40および第2可動コア50に対し弁座12とは反対側に設けられている。コイル80は、通電されると磁束を生じ、第1可動コア40および第2可動コア50を固定コア70側に吸引しニードル30を弁座12とは反対側に移動させることが可能である。 As described above, (1) the fuel injection device 1 according to the present embodiment includes the nozzle 10, the housing 20, the needle 30, the first movable core 40, the second movable core 50, the fixed core 70, and the coil 80. Yes. The nozzle 10 has a nozzle hole 11 through which fuel is injected, and a valve seat 12 formed around the nozzle hole 11. The housing 20 is formed in a cylindrical shape, has one end connected to the nozzle 10, and has a fuel passage 100 that is formed inside so as to communicate with the injection hole 11 and guides fuel to the injection hole 11. The needle 30 is provided so as to be capable of reciprocating inside the housing 20, and opens when one end is separated from the valve seat 12, and closes when one end contacts the valve seat 12. The first movable core 40 is provided to be movable relative to the needle 30. The second movable core 50 is provided so as not to move relative to the needle 30. The fixed core 70 is provided on the opposite side of the valve seat 12 with respect to the first movable core 40 and the second movable core 50. The coil 80 generates magnetic flux when energized, and can attract the first movable core 40 and the second movable core 50 toward the fixed core 70 and move the needle 30 to the side opposite to the valve seat 12.
 そして、本実施形態では、第1可動コア40および第2可動コア50のうち、第1可動コア40の底部42の固定コア70側の面421と、第2可動コア50の可動コア本体51の弁座12側の端面512との間に環状の可動コア間隙間s1が形成されている。そのため、第1可動コア40と第2可動コア50との間の磁気抵抗を大きくすることができる。これにより、コイル80への通電時、第1可動コア40および第2可動コア50のうちの第1可動コア40に多くの磁束を流すことができ、当該第1可動コア40と固定コア70との間の吸引力を大きくすることができる。したがって、燃料通路100内の燃圧が高い場合でも、ニードル30を開弁することができる。よって、本実施形態では、高圧の燃料を噴射することができる。 In the present embodiment, of the first movable core 40 and the second movable core 50, the surface 421 on the fixed core 70 side of the bottom 42 of the first movable core 40 and the movable core body 51 of the second movable core 50. An annular movable inter-core gap s1 is formed between the end face 512 on the valve seat 12 side. Therefore, the magnetic resistance between the first movable core 40 and the second movable core 50 can be increased. Thereby, when the coil 80 is energized, a large amount of magnetic flux can flow through the first movable core 40 of the first movable core 40 and the second movable core 50, and the first movable core 40 and the fixed core 70 The suction force between the two can be increased. Therefore, even when the fuel pressure in the fuel passage 100 is high, the needle 30 can be opened. Therefore, in this embodiment, high-pressure fuel can be injected.
 また、本実施形態では、第1可動コア40と第2可動コア50との間に環状の可動コア間隙間s1が形成されているため、第1可動コア40と第2可動コア50とが離れようとするときに生じるリンギング力を小さくすることができる。そのため、従来の燃料噴射装置で生じ得るニードルの開弁速度の低下や意図しない二次開弁を抑制することができる。したがって、本実施形態では、燃料を高精度に噴射することができる。 In the present embodiment, since the annular movable core gap s1 is formed between the first movable core 40 and the second movable core 50, the first movable core 40 and the second movable core 50 are separated from each other. The ringing force generated when trying to do so can be reduced. Therefore, it is possible to suppress a decrease in the valve opening speed of the needle and an unintended secondary valve opening that may occur in the conventional fuel injection device. Therefore, in this embodiment, fuel can be injected with high accuracy.
 また、(2)本実施形態では、ハウジング20の非磁性部材60は、第1可動コア40および第2可動コア50のうちの第1可動コア40の固定コア70側の面である第1可動コア端面401に当接可能な非磁性当接面621を有している。第1可動コア端面401と非磁性当接面621とが当接したとき、第1可動コア40と固定コア70との間に環状のコア間隙間s2を形成する。そのため、コイル80への通電を停止し、ニードル30を閉弁するとき、固定コア70の残留磁気の影響が第1可動コア40に及んだり、固定コア70と第1可動コア40との間にリンギング力が生じたりするのを抑制することができる。これにより、第1可動コア40が固定コア70に当接したままの状態になるのを抑制することができる。したがって、コイル80への通電停止後、ニードル30を速やかに閉弁させることができる。よって、本実施形態では、燃料を高精度に噴射することができる。 (2) In the present embodiment, the nonmagnetic member 60 of the housing 20 is the first movable core 40 and the first movable core 50, which is the surface of the first movable core 40 on the fixed core 70 side. A nonmagnetic contact surface 621 that can contact the core end surface 401 is provided. When the first movable core end surface 401 and the nonmagnetic contact surface 621 contact each other, an annular inter-core gap s <b> 2 is formed between the first movable core 40 and the fixed core 70. Therefore, when energization of the coil 80 is stopped and the needle 30 is closed, the residual magnetism of the fixed core 70 affects the first movable core 40 or between the fixed core 70 and the first movable core 40. It is possible to suppress the occurrence of ringing force. Thereby, it can suppress that the 1st movable core 40 will be in the state which contact | abutted to the fixed core 70. FIG. Therefore, the needle 30 can be quickly closed after energization of the coil 80 is stopped. Therefore, in this embodiment, fuel can be injected with high accuracy.
 また、(4)本実施形態では、ハウジング20は、固定コア70側の端部に、非磁性材料により形成された非磁性部材60を有している。非磁性当接面621は、非磁性部材60の弁座12側の端面に形成されている。そのため、第1可動コア端面401が非磁性当接面621に当接しているときにコイル80への通電を停止すると、第1可動コア40は、非磁性当接面621から速やかに離間する。これにより、燃料噴射装置1の応答性を向上することができる。 (4) In the present embodiment, the housing 20 has a nonmagnetic member 60 formed of a nonmagnetic material at the end on the fixed core 70 side. The nonmagnetic contact surface 621 is formed on the end surface of the nonmagnetic member 60 on the valve seat 12 side. Therefore, when the energization to the coil 80 is stopped while the first movable core end surface 401 is in contact with the nonmagnetic contact surface 621, the first movable core 40 is quickly separated from the nonmagnetic contact surface 621. Thereby, the responsiveness of the fuel injection device 1 can be improved.
 また、(9)本実施形態では、第1可動コア40は、可動コア間隙間s1に連通する連通孔45を有している。そのため、可動コア間隙間s1と連通孔45との間で燃料を行き来させることができる。これにより、ニードル30の開閉弁時、第1可動コア40と第2可動コア50とを速やかに離したり近付けたり、ニードル30が他部材に当接するときの衝突エネルギーを小さくしたりすることができる。したがって、燃料を高精度に噴射することができる。 (9) In the present embodiment, the first movable core 40 has a communication hole 45 communicating with the gap s1 between the movable cores. Therefore, the fuel can be moved back and forth between the movable core gap s 1 and the communication hole 45. Accordingly, when the needle 30 is opened and closed, the first movable core 40 and the second movable core 50 can be quickly separated from each other, or the collision energy when the needle 30 comes into contact with another member can be reduced. . Therefore, the fuel can be injected with high accuracy.
 また、(10)本実施形態では、第1可動コア40は、ニードル30の一部(32)に当接したとき、第2可動コア50との間に可動コア間隙間s1を形成する。本実施形態では、ニードル30が非磁性材料により形成されているため、第1可動コア40と第2可動コア50との間の磁気抵抗を大きくすることができる。これにより、第2可動コア50と固定コア70との間の吸引力に比べ、第1可動コア40と固定コア70との間の吸引力をより大きくすることができる。 (10) In the present embodiment, when the first movable core 40 abuts a part (32) of the needle 30, a gap s1 between the movable cores is formed between the first movable core 40 and the second movable core 50. In the present embodiment, since the needle 30 is made of a nonmagnetic material, the magnetic resistance between the first movable core 40 and the second movable core 50 can be increased. Thereby, the suction force between the first movable core 40 and the fixed core 70 can be made larger than the suction force between the second movable core 50 and the fixed core 70.
 また、(11)本実施形態では、ニードル30は、棒状のニードル本体31、および、ニードル本体31の径方向外側に設けられた鍔部32を有している。第1可動コア40は、鍔部32に当接したとき、第2可動コア50との間に可動コア間隙間s1を形成する。これは、本開示の具体的な構成を例示するものである。 (11) In this embodiment, the needle 30 has a rod-shaped needle body 31 and a flange 32 provided on the radially outer side of the needle body 31. When the first movable core 40 comes into contact with the flange portion 32, a gap s1 between the movable cores is formed between the first movable core 40 and the second movable core 50. This exemplifies a specific configuration of the present disclosure.
 また、(14)ニードル30が弁座12に当接した状態のとき、第1可動コア40の固定コア70側の端面である第1可動コア端面401と固定コア70の第1可動コア40および第2可動コア50側の端面である固定コア端面701との距離は、第2可動コア50の固定コア70側の端面である第2可動コア端面501と固定コア端面701との距離より小さく設定されている。そのため、コイル80への通電初期において、第2可動コア50と固定コア70との間の吸引力よりも、第1可動コア40と固定コア70との間の吸引力を大きくすることができる。これにより、燃料通路100内の燃圧が高い場合でも、ニードル30を開弁することができる。 (14) When the needle 30 is in contact with the valve seat 12, the first movable core end surface 401, which is the end surface of the first movable core 40 on the fixed core 70 side, the first movable core 40 of the fixed core 70, and The distance from the fixed core end surface 701 that is the end surface on the second movable core 50 side is set to be smaller than the distance between the second movable core end surface 501 that is the end surface on the fixed core 70 side of the second movable core 50 and the fixed core end surface 701. Has been. Therefore, at the initial stage of energization of the coil 80, the attractive force between the first movable core 40 and the fixed core 70 can be made larger than the attractive force between the second movable core 50 and the fixed core 70. Thereby, even when the fuel pressure in the fuel passage 100 is high, the needle 30 can be opened.
 また、(15)本実施形態は、スプリング91およびスプリング92をさらに備えている。スプリング91は、ニードル30を弁座12側に付勢する。スプリング92は、第1可動コア40および第2可動コア50のうち第1可動コア40を固定コア70側に付勢する。これは、本開示の具体的な構成を例示するものである。 (15) The present embodiment further includes a spring 91 and a spring 92. The spring 91 biases the needle 30 toward the valve seat 12 side. The spring 92 biases the first movable core 40 of the first movable core 40 and the second movable core 50 toward the fixed core 70. This exemplifies a specific configuration of the present disclosure.
(第2実施形態)
 第2実施形態による燃料噴射装置を図8、9に示す。第2実施形態は、非磁性部材60および固定コア70の構成が第1実施形態と異なる。
(Second Embodiment)
A fuel injection device according to the second embodiment is shown in FIGS. The second embodiment is different from the first embodiment in the configuration of the nonmagnetic member 60 and the fixed core 70.
 図8に示すように、第2実施形態では、非磁性部材60は、第1実施形態で示した非磁性突出部62を有しておらず、非磁性筒部61のみからなる。非磁性部材60は、非磁性筒部61の弁座12とは反対側の端部の内壁が固定コア本体71の弁座12側の端部の外壁に当接している。 As shown in FIG. 8, in the second embodiment, the nonmagnetic member 60 does not have the nonmagnetic protrusion 62 shown in the first embodiment, and consists only of the nonmagnetic cylinder 61. In the nonmagnetic member 60, the inner wall of the end portion of the nonmagnetic cylinder portion 61 opposite to the valve seat 12 is in contact with the outer wall of the end portion of the fixed core body 71 on the valve seat 12 side.
 固定コア70は、固定コア突出部73をさらに有している。固定コア突出部73は、固定コア端面701の外縁部から弁座12側へ略円環状に突出するよう形成されている。固定コア突出部73の弁座12側の端面には、固定コア当接面731が形成されている。固定コア当接面731は、第1可動コア40の第1可動コア端面401に当接可能である(図9参照)。ここで、固定コア当接面731は、「当接面」に対応している。また、固定コア突出部73の固定コア端面701からの突出高さ、すなわち、固定コア端面701と固定コア当接面731との距離d1は、第1実施形態で示した固定コア端面701と非磁性当接面621との距離d1と同じである。 The fixed core 70 further has a fixed core protrusion 73. The fixed core protrusion 73 is formed so as to protrude from the outer edge of the fixed core end surface 701 to the valve seat 12 side in a substantially annular shape. A fixed core contact surface 731 is formed on the end surface of the fixed core protrusion 73 on the valve seat 12 side. The fixed core contact surface 731 can contact the first movable core end surface 401 of the first movable core 40 (see FIG. 9). Here, the fixed core contact surface 731 corresponds to a “contact surface”. Further, the protruding height of the fixed core protrusion 73 from the fixed core end surface 701, that is, the distance d1 between the fixed core end surface 701 and the fixed core abutting surface 731 is different from the fixed core end surface 701 shown in the first embodiment. The distance d1 is the same as the distance d1 from the magnetic contact surface 621.
 図9に示すように、第1可動コア40は、固定コア当接面731に当接したとき、第1可動コア端面401と固定コア端面701との間に略円環状のコア間隙間s2を形成する。すなわち、第1可動コア40が固定コア当接面731に当接した状態において、第1可動コア端面401と固定コア端面701とは、離間している。第2実施形態は、上述した点以外の構成は、第1実施形態と同様である。 As shown in FIG. 9, when the first movable core 40 abuts on the fixed core abutment surface 731, a substantially annular inter-core gap s <b> 2 is formed between the first movable core end surface 401 and the fixed core end surface 701. Form. That is, in a state where the first movable core 40 is in contact with the fixed core contact surface 731, the first movable core end surface 401 and the fixed core end surface 701 are separated from each other. The second embodiment is the same as the first embodiment except for the points described above.
 以上説明したように、(2)本実施形態では、固定コア70の固定コア突出部73は、第1可動コア40および第2可動コア50のうちの第1可動コア40の固定コア70側の面である第1可動コア端面401に当接可能な固定コア当接面731を有している。第1可動コア端面401と固定コア当接面731とが当接したとき、第1可動コア40と固定コア70との間に環状のコア間隙間s2を形成する。そのため、第1実施形態と同様、コイル80への通電を停止し、ニードル30を閉弁するとき、固定コア70の残留磁気の影響が第1可動コア40に及んだり、固定コア70と第1可動コア40との間にリンギング力が生じたりするのを抑制することができる。これにより、第1可動コア40が固定コア70に当接したままの状態になるのを抑制することができる。したがって、コイル80への通電停止後、ニードル30を速やかに閉弁させることができる。よって、本実施形態では、燃料を高精度に噴射することができる。 As described above, (2) in the present embodiment, the fixed core protrusion 73 of the fixed core 70 is located on the fixed core 70 side of the first movable core 40 of the first movable core 40 and the second movable core 50. It has a fixed core contact surface 731 that can contact the first movable core end surface 401 that is a surface. When the first movable core end surface 401 and the fixed core contact surface 731 come into contact with each other, an annular inter-core gap s <b> 2 is formed between the first movable core 40 and the fixed core 70. Therefore, as in the first embodiment, when the energization to the coil 80 is stopped and the needle 30 is closed, the influence of the residual magnetism of the fixed core 70 affects the first movable core 40 or the fixed core 70 and the first core. Generation of ringing force between the movable core 40 and the movable core 40 can be suppressed. Thereby, it can suppress that the 1st movable core 40 will be in the state which contact | abutted to the fixed core 70. FIG. Therefore, the needle 30 can be quickly closed after energization of the coil 80 is stopped. Therefore, in this embodiment, fuel can be injected with high accuracy.
 また、(5)固定コア70には、第1可動コア40の固定コア70側の端面である第1可動コア端面401に当接可能な面である固定コア当接面731が形成されている。また、(6)本実施形態では、固定コア70は、筒状の固定コア本体71、および、固定コア本体71の第1可動コア40および第2可動コア50側の端面である固定コア端面701から第1可動コア40側へ突出する固定コア突出部73を有している。そして、固定コア当接面731は、固定コア突出部73の第1可動コア40側の端面に形成されている。これは、本開示の具体的な構成を例示するものである。 Further, (5) the fixed core 70 is formed with a fixed core abutting surface 731 which is a surface capable of abutting on the first movable core end surface 401 which is an end surface of the first movable core 40 on the fixed core 70 side. . (6) In the present embodiment, the fixed core 70 includes a cylindrical fixed core main body 71 and a fixed core end surface 701 that is an end surface of the fixed core main body 71 on the first movable core 40 side and the second movable core 50 side. The fixed core protrusion 73 protrudes from the first movable core 40 to the first movable core 40 side. The fixed core contact surface 731 is formed on the end surface of the fixed core protrusion 73 on the first movable core 40 side. This exemplifies a specific configuration of the present disclosure.
(第3実施形態)
 第3実施形態による燃料噴射装置を図10、11に示す。第3実施形態は、固定コア70の構成が第1実施形態と異なる。
(Third embodiment)
A fuel injection device according to a third embodiment is shown in FIGS. The third embodiment differs from the first embodiment in the configuration of the fixed core 70.
 図10に示すように、第3実施形態では、固定コア70は、ブッシュ74をさらに有している。ブッシュ74は、例えばオーステナイト系ステンレス等の非磁性材料により略円筒状に形成されている。ブッシュ74は、固定コア本体71の弁座12側の端部の内側に設けられている。ブッシュ74は、外壁が固定コア本体71の内壁に嵌合している。ブッシュ74は、例えば溶接により固定コア本体71に固定されている。ここで、ブッシュ74の弁座12側の端面は、固定コア端面701に対し弁座12側に位置している。 As shown in FIG. 10, in the third embodiment, the fixed core 70 further includes a bush 74. The bush 74 is formed in a substantially cylindrical shape by a nonmagnetic material such as austenitic stainless steel. The bush 74 is provided inside the end of the fixed core body 71 on the valve seat 12 side. The outer wall of the bush 74 is fitted to the inner wall of the fixed core body 71. The bush 74 is fixed to the fixed core body 71 by welding, for example. Here, the end surface of the bush 74 on the valve seat 12 side is located on the valve seat 12 side with respect to the fixed core end surface 701.
 ブッシュ74の弁座12側の端面には、固定コア当接面741が形成されている。固定コア当接面741は、第2可動コア50の第2可動コア端面501および鍔部32の弁座12とは反対側の端面に当接可能である(図11参照)。ここで、固定コア当接面741は、「当接面」に対応している。また、固定コア当接面741と固定コア端面701との距離d2は、非磁性当接面621と固定コア端面701との距離d1より小さい。 A fixed core contact surface 741 is formed on the end surface of the bush 74 on the valve seat 12 side. The fixed core abutting surface 741 can abut on the second movable core end surface 501 of the second movable core 50 and the end surface of the flange portion 32 opposite to the valve seat 12 (see FIG. 11). Here, the fixed core contact surface 741 corresponds to a “contact surface”. The distance d2 between the fixed core contact surface 741 and the fixed core end surface 701 is smaller than the distance d1 between the nonmagnetic contact surface 621 and the fixed core end surface 701.
 図11に示すように、第2可動コア50は、固定コア当接面741に当接したとき、第2可動コア端面501と固定コア端面701との間に略円環状のコア間隙間s3を形成する。すなわち、第2可動コア50が固定コア当接面741に当接した状態において、第2可動コア端面501と固定コア端面701とは、離間している。第3実施形態は、上述した点以外の構成は、第1実施形態と同様である。 As shown in FIG. 11, when the second movable core 50 abuts against the fixed core abutment surface 741, a substantially annular inter-core gap s 3 is provided between the second movable core end surface 501 and the fixed core end surface 701. Form. That is, in a state where the second movable core 50 is in contact with the fixed core contact surface 741, the second movable core end surface 501 and the fixed core end surface 701 are separated from each other. The third embodiment is the same as the first embodiment except for the points described above.
 以上説明したように、(2)本実施形態では、固定コア70のブッシュ74は、第1可動コア40および第2可動コア50のうちの第2可動コア50の固定コア70側の面である第2可動コア端面501およびニードル30の固定コア70側の面に当接可能な固定コア当接面741を有している。第2可動コア端面501およびニードル30と固定コア当接面741とが当接したとき、第2可動コア50と固定コア70との間に環状のコア間隙間s3を形成する。そのため、コイル80への通電を停止し、ニードル30を閉弁するとき、固定コア70の残留磁気の影響が第2可動コア50に及んだり、固定コア70と第2可動コア50との間にリンギング力が生じたりするのを抑制することができる。これにより、第2可動コア50が固定コア70に当接したままの状態になるのを抑制することができる。したがって、コイル80への通電停止後、ニードル30を速やかに閉弁させることができる。よって、本実施形態では、燃料を高精度に噴射することができる。 As described above, (2) in this embodiment, the bush 74 of the fixed core 70 is the surface of the first movable core 40 and the second movable core 50 on the fixed core 70 side of the second movable core 50. The second movable core end surface 501 and the fixed core contact surface 741 that can contact the surface of the needle 30 on the fixed core 70 side are provided. When the second movable core end surface 501 and the needle 30 are in contact with the fixed core contact surface 741, an annular inter-core gap s 3 is formed between the second movable core 50 and the fixed core 70. Therefore, when energization of the coil 80 is stopped and the needle 30 is closed, the residual magnetism of the fixed core 70 affects the second movable core 50 or between the fixed core 70 and the second movable core 50. It is possible to suppress the occurrence of ringing force. Thereby, it can suppress that the 2nd movable core 50 will be in the state which contact | abutted to the fixed core 70. FIG. Therefore, the needle 30 can be quickly closed after energization of the coil 80 is stopped. Therefore, in this embodiment, fuel can be injected with high accuracy.
 また、(5)固定コア70には、第2可動コア50の固定コア70側の端面である第2可動コア端面501およびニードル30の弁座12とは反対側の端面に当接可能な面である固定コア当接面741が形成されている。また、(7)本実施形態では、固定コア70は、筒状の固定コア本体71、および、固定コア本体71の内側に設けられた筒状のブッシュ74を有している。そして、固定コア当接面741は、ブッシュ74の第2可動コア50側の端面に形成されている。これは、本開示の具体的な構成を例示するものである。 Further, (5) the fixed core 70 is a surface that can abut on the second movable core end surface 501 that is the end surface of the second movable core 50 on the fixed core 70 side and the end surface of the needle 30 opposite to the valve seat 12. A fixed core contact surface 741 is formed. (7) In the present embodiment, the fixed core 70 has a cylindrical fixed core main body 71 and a cylindrical bush 74 provided inside the fixed core main body 71. The fixed core contact surface 741 is formed on the end surface of the bush 74 on the second movable core 50 side. This exemplifies a specific configuration of the present disclosure.
(第4実施形態)
 第4実施形態による燃料噴射装置を図12に示す。第4実施形態は、ニードル30および第2可動コア50の構成が第1実施形態と異なる。第4実施形態では、ニードル30は、第1実施形態で示した鍔部32を有していない。
(Fourth embodiment)
FIG. 12 shows a fuel injection device according to the fourth embodiment. The fourth embodiment differs from the first embodiment in the configuration of the needle 30 and the second movable core 50. In 4th Embodiment, the needle 30 does not have the collar part 32 shown in 1st Embodiment.
 第2可動コア50は、可動コア本体51および可動コア突出部52を有している。可動コア本体51は、内壁がニードル本体31のシール部33とは反対側の端部の外壁に嵌合するよう設けられている。本実施形態では、可動コア本体51は、例えば圧入または溶接等によりニードル本体31に固定されている。すなわち、第2可動コア50は、ニードル30に対し相対移動不能に設けられている。 The second movable core 50 has a movable core body 51 and a movable core protrusion 52. The movable core body 51 is provided so that the inner wall is fitted to the outer wall of the end portion of the needle body 31 opposite to the seal portion 33. In the present embodiment, the movable core body 51 is fixed to the needle body 31 by, for example, press fitting or welding. That is, the second movable core 50 is provided so as not to move relative to the needle 30.
 可動コア突出部52は、可動コア本体51の弁座12側の端面512の内縁部から弁座12側へ略円環状に突出するよう形成されている。そのため、可動コア突出部52の弁座12側の端面は、第2可動コア50の可動コア本体51の弁座12側の端面512に対し弁座12側に位置している。第1可動コア40の底部42の固定コア70側の面421と第2可動コア50の可動コア本体51の弁座12側の端面512との間に、略円環状の可動コア間隙間s1が形成されている。可動コア間隙間s1の軸方向の大きさは、ニードル本体31に対する第1可動コア40の位置により変化し、第1可動コア40の底部42が可動コア突出部52の弁座12側の端面に当接したとき、最小となる。このように、第1可動コア40の底部42が可動コア突出部52の弁座12側の端面に当接しているか否かにかかわらず、底部42の固定コア70側の面421と可動コア本体51の弁座12側の端面512とは常に離間しており、間に可動コア間隙間s1を形成している。第4実施形態は、上述した点以外の構成は、第1実施形態と同様である。 The movable core projecting portion 52 is formed so as to project in a substantially annular shape from the inner edge portion of the end surface 512 of the movable core body 51 on the valve seat 12 side to the valve seat 12 side. Therefore, the end surface on the valve seat 12 side of the movable core projecting portion 52 is located on the valve seat 12 side with respect to the end surface 512 on the valve seat 12 side of the movable core body 51 of the second movable core 50. Between the surface 421 of the bottom 42 of the first movable core 40 on the fixed core 70 side and the end surface 512 of the movable core body 51 of the second movable core 50 on the valve seat 12 side, there is a substantially annular gap s1 between the movable cores. Is formed. The axial size of the gap s1 between the movable cores varies depending on the position of the first movable core 40 with respect to the needle body 31, and the bottom 42 of the first movable core 40 is located on the end face of the movable core protrusion 52 on the valve seat 12 side. When abutting, it is minimum. Thus, regardless of whether or not the bottom 42 of the first movable core 40 is in contact with the end face of the movable core protrusion 52 on the valve seat 12 side, the surface 421 on the fixed core 70 side of the bottom 42 and the movable core main body. 51 is always separated from the end surface 512 on the valve seat 12 side, and a gap s1 between the movable cores is formed therebetween. The configuration of the fourth embodiment is the same as that of the first embodiment except for the points described above.
 以上説明したように、(10)本実施形態では、第1可動コア40は、第2可動コア50の一部(52)に当接したとき、第2可動コア50との間に可動コア間隙間s1を形成する。本実施形態では、ニードル30は鍔部32を有していないため、ニードル30の形状を単純なものにすることができる。そのため、ニードル30の加工コストを低減することができる。また、ニードル30が鍔部32を有しない分、第2可動コア50の体積を大きくすることができる。そのため、固定コア70と第2可動コア50との間の吸引力を大きくすることができる。 As described above, (10) in the present embodiment, when the first movable core 40 abuts a part (52) of the second movable core 50, the movable core is between the second movable core 50 and the movable core. A gap s1 is formed. In this embodiment, since the needle 30 does not have the collar part 32, the shape of the needle 30 can be simplified. Therefore, the processing cost of the needle 30 can be reduced. Further, the volume of the second movable core 50 can be increased by the amount that the needle 30 does not have the flange portion 32. Therefore, the suction force between the fixed core 70 and the second movable core 50 can be increased.
 また、(12)本実施形態では、第2可動コア50は、可動コア本体51、および、可動コア本体51の弁座12側の端面512から弁座12側へ突出する可動コア突出部52を有している。第1可動コア40は、可動コア突出部52に当接したとき、可動コア本体51の弁座12側の端面512との間に可動コア間隙間s1を形成する。これは、本開示の具体的な構成を例示するものである。 (12) In the present embodiment, the second movable core 50 includes the movable core main body 51 and the movable core protruding portion 52 that protrudes from the end face 512 of the movable core main body 51 on the valve seat 12 side to the valve seat 12 side. Have. When the first movable core 40 comes into contact with the movable core protrusion 52, a movable inter-core gap s1 is formed between the first movable core 40 and the end surface 512 of the movable core body 51 on the valve seat 12 side. This exemplifies a specific configuration of the present disclosure.
 上述の実施形態の変形例について述べる。上述の第1、2、4実施形態では、可動コア間隙間s1およびコア間隙間s2の両方が形成される例を示した。これに対し、上記実施形態の変形例では、可動コア間隙間s1またはコア間隙間s2のいずれか一方のみが形成される構成であってもよい。すなわち、第1可動コア端面401と固定コア端面701とが当接する構成でもよい。この場合、第1可動コア端面401と固定コア端面701とが当接したとき、コア間隙間s2は形成されない。あるいは、第1可動コア40の底部42の固定コア70側の面421と第2可動コア50の可動コア本体51の弁座12側の端面512とが当接する構成でもよい。この場合、第1可動コア40の底部42の固定コア70側の面421と第2可動コア50の可動コア本体51の弁座12側の端面512とが当接したとき、可動コア間隙間s1は形成されない。 A modification of the above embodiment will be described. In the first, second, and fourth embodiments described above, the example in which both the movable inter-core gap s1 and the inter-core gap s2 are formed has been described. On the other hand, in the modification of the above embodiment, only one of the movable inter-core gap s1 and the inter-core gap s2 may be formed. That is, the structure which the 1st movable core end surface 401 and the fixed core end surface 701 contact | abut may be sufficient. In this case, when the first movable core end surface 401 and the fixed core end surface 701 come into contact with each other, the inter-core gap s2 is not formed. Alternatively, the surface 421 on the fixed core 70 side of the bottom 42 of the first movable core 40 and the end surface 512 on the valve seat 12 side of the movable core body 51 of the second movable core 50 may be in contact with each other. In this case, when the surface 421 on the fixed core 70 side of the bottom 42 of the first movable core 40 and the end surface 512 on the valve seat 12 side of the movable core main body 51 of the second movable core 50 abut, the gap s1 between the movable cores. Is not formed.
 また、上述の第3実施形態では、可動コア間隙間s1、コア間隙間s2およびコア間隙間s3が形成される例を示した。これに対し、上記実施形態の変形例では、可動コア間隙間s1、コア間隙間s2およびコア間隙間s3のうち少なくとも1つが形成される構成であってもよい。 Further, in the above-described third embodiment, the example in which the movable inter-core gap s1, the inter-core gap s2, and the inter-core gap s3 are formed is shown. On the other hand, in the modified example of the above embodiment, at least one of the movable inter-core gap s1, the inter-core gap s2, and the inter-core gap s3 may be formed.
 また、上記実施形態の変形例では、ブッシュ74は、第2可動コア50には当接せず、ニードル30の固定コア70側の面のみに当接する構成であってもよい。この構成の場合、ブッシュ74に当接することによる第2可動コア50の摩耗を防ぐことができる。 In the modification of the above embodiment, the bush 74 may be configured to contact only the surface of the needle 30 on the fixed core 70 side without contacting the second movable core 50. In the case of this configuration, wear of the second movable core 50 due to contact with the bush 74 can be prevented.
 また、上述の実施形態では、第2可動コア50の可動コア本体51の外壁が、第1可動コア40の筒部41の内壁と摺動可能である構成を例示した。これに対し、上記実施形態の変形例では、例えば第1可動コア40の底部42の挿通穴部44の内径をニードル本体31の外径よりやや大きく設定し、可動コア本体51の外径を筒部41の内径より小さく設定することにより、可動コア本体51の外壁と筒部41の内壁との間に筒状のクリアランスが常に形成されている構成としてもよい。この構成では、第1可動コア40と第2可動コア50との磁気抵抗をより大きくすることができ、第1可動コア40と固定コア70との間の吸引力をより大きくすることができる。また、前記筒状のクリアランスが可動コア間隙間s1に常に連通した状態になるため、可動コア間隙間s1と前記筒状のクリアランスとの間で燃料を行き来させることができる。これにより、ニードル30の開閉弁時、第1可動コア40と第2可動コア50とを速やかに離したり近付けたり、ニードル30が他部材に当接するときの衝突エネルギーを小さくしたりすることができる。したがって、燃料を高精度に噴射することができる。なお、この構成の場合、連通孔45を省略してもよい。また、上記実施形態の変形例では、連通孔45は、第2可動コア50に形成されていてもよい。 In the above-described embodiment, the configuration in which the outer wall of the movable core body 51 of the second movable core 50 is slidable with the inner wall of the cylindrical portion 41 of the first movable core 40 is exemplified. On the other hand, in the modified example of the above embodiment, for example, the inner diameter of the insertion hole 44 of the bottom 42 of the first movable core 40 is set slightly larger than the outer diameter of the needle body 31, and the outer diameter of the movable core body 51 is set to be a cylinder. By setting it smaller than the inner diameter of the portion 41, a cylindrical clearance may always be formed between the outer wall of the movable core body 51 and the inner wall of the cylindrical portion 41. In this configuration, the magnetic resistance between the first movable core 40 and the second movable core 50 can be increased, and the attractive force between the first movable core 40 and the fixed core 70 can be increased. In addition, since the cylindrical clearance is always in communication with the movable core gap s1, fuel can be transferred between the movable core gap s1 and the cylindrical clearance. Accordingly, when the needle 30 is opened and closed, the first movable core 40 and the second movable core 50 can be quickly separated from each other, or the collision energy when the needle 30 comes into contact with another member can be reduced. . Therefore, the fuel can be injected with high accuracy. In this configuration, the communication hole 45 may be omitted. In the modification of the above embodiment, the communication hole 45 may be formed in the second movable core 50.
 また、上述の実施形態では、ニードル30が弁座12に当接した状態のとき、第1可動コア40の第1可動コア端面401と固定コア70の固定コア端面701との距離g1が、第2可動コア50の第2可動コア端面501と固定コア端面701との距離g2より小さく設定されている例を示した。これに対し、上記実施形態の変形例では、距離g1は、距離g2以上に設定されていてもよい。 In the above-described embodiment, when the needle 30 is in contact with the valve seat 12, the distance g1 between the first movable core end surface 401 of the first movable core 40 and the fixed core end surface 701 of the fixed core 70 is The example in which the distance between the second movable core end surface 501 and the fixed core end surface 701 of the two movable cores 50 is set smaller than the distance g2 is shown. On the other hand, in the modified example of the above embodiment, the distance g1 may be set to the distance g2 or more.
 また、上述の実施形態では、第2付勢部材としてのスプリング92が、第1可動コア40とばね座36との間に設けられる例を示した。これに対し、上記実施形態の変形例では、ばね座36を省略し、スプリング92を、一端が第1可動コア40に当接し、他端がハウジング20の段差面201に当接し、第1可動コア40を開弁方向に付勢するよう設けてもよい。 In the above-described embodiment, the example in which the spring 92 as the second urging member is provided between the first movable core 40 and the spring seat 36 has been described. On the other hand, in the modified example of the above embodiment, the spring seat 36 is omitted, and the spring 92 has one end in contact with the first movable core 40 and the other end in contact with the stepped surface 201 of the housing 20. The core 40 may be provided to be urged in the valve opening direction.
 また、上述の第3実施形態では、ブッシュ74が固定コア本体71と別体に形成される例を示した。これに対し、上記実施形態の変形例では、ブッシュ74は、固定コア本体71と一体に形成されていてもよい。また、ブッシュ74の弁座12側の端面である固定コア当接面741と固定コア本体71の弁座12側の端面である固定コア端面701との距離d2は、どのような大きさであってもよい。ただし、非磁性部材60に非磁性当接面621が形成される場合、または、固定コア70に固定コア当接面731が形成される場合は、距離d2は、非磁性当接面621または固定コア当接面731と固定コア端面701との距離d1より小さく設定すればよい。また、上記実施形態の変形例では、ハウジング20は、非磁性部材60に代えて、磁性材料から筒状に形成され軸方向の一部の肉厚が他の部位より小さい磁気絞り部を有することとしてもよい。この場合、磁気絞り部に、非磁性当接面621と同様の、第1可動コア端面401に当接可能な当接面を形成してもよい。 Further, in the above-described third embodiment, the example in which the bush 74 is formed separately from the fixed core main body 71 is shown. On the other hand, in the modified example of the above embodiment, the bush 74 may be formed integrally with the fixed core body 71. In addition, the distance d2 between the fixed core contact surface 741 that is the end surface of the bush 74 on the valve seat 12 side and the fixed core end surface 701 that is the end surface of the fixed core body 71 on the valve seat 12 side is any size. May be. However, when the nonmagnetic contact surface 621 is formed on the nonmagnetic member 60, or when the fixed core contact surface 731 is formed on the fixed core 70, the distance d2 is the nonmagnetic contact surface 621 or fixed. What is necessary is just to set smaller than the distance d1 of the core contact surface 731 and the fixed core end surface 701. Moreover, in the modification of the said embodiment, the housing 20 is replaced with the nonmagnetic member 60, and has a magnetic aperture part which is formed in a cylindrical shape from a magnetic material and has a partly axial thickness smaller than that of other parts. It is good. In this case, a contact surface that can be in contact with the first movable core end surface 401 may be formed in the magnetic aperture portion, similar to the nonmagnetic contact surface 621.
 また、上述の実施形態では、第1可動コア40および第2可動コア50の2つの可動コアを備える例を示した。これに対し、上記実施形態の変形例は、可動コアを3つ以上備えていてもよい。例えば、第2可動コア50の可動コア本体51を軸方向で2つに分割し、固定コア70側の分割体をニードル30に対し相対移動不能に設け、弁座12側の分割体をニードル30に対し相対移動可能に設けるといった具合である。 Further, in the above-described embodiment, an example in which the two movable cores of the first movable core 40 and the second movable core 50 are provided is shown. On the other hand, the modification of the said embodiment may be provided with three or more movable cores. For example, the movable core main body 51 of the second movable core 50 is divided into two in the axial direction, the divided body on the fixed core 70 side is provided so as not to move relative to the needle 30, and the divided body on the valve seat 12 side is provided with the needle 30. For example, it is provided so as to be relatively movable.
 また、上述の実施形態では、ノズル10がハウジング20と一体に形成される例を示した。これに対し、上記実施形態の変形例では、ノズル10は、ハウジング20とは別体に形成されていてもよい。この場合、例えばノズル10をニードル30の材料と同じ材料で形成すれば、ニードル30の開閉弁に伴うノズル10の弁座12の摩耗を抑制することができる。 In the above-described embodiment, an example in which the nozzle 10 is formed integrally with the housing 20 has been described. On the other hand, in the modified example of the above embodiment, the nozzle 10 may be formed separately from the housing 20. In this case, for example, if the nozzle 10 is formed of the same material as that of the needle 30, wear of the valve seat 12 of the nozzle 10 associated with the opening / closing valve of the needle 30 can be suppressed.
 また、上述の実施形態では、固定コア外周部72が固定コア本体71と一体に形成される例を示した。これに対し、上記実施形態の変形例では、固定コア外周部72は、固定コア本体71と別体に形成されていてもよい。 In the above-described embodiment, the example in which the fixed core outer peripheral portion 72 is formed integrally with the fixed core main body 71 is shown. On the other hand, in the modified example of the above embodiment, the fixed core outer peripheral portion 72 may be formed separately from the fixed core main body 71.
 また、上記実施形態の変形例では、筒状の鍔部32、非磁性突出部62、ブッシュ74は、周方向の一部が欠けた形状に形成されていてもよい。また、上記実施形態の変形例では、環状の固定コア突出部73、可動コア突出部52は、周方向の一部が欠けた形状に形成されていてもよい。 In the modification of the above embodiment, the cylindrical flange 32, the nonmagnetic protrusion 62, and the bush 74 may be formed in a shape with a part of the circumferential direction missing. Moreover, in the modification of the said embodiment, the cyclic | annular fixed core protrusion part 73 and the movable core protrusion part 52 may be formed in the shape where a part of circumferential direction lacked.
 また、上記実施形態の変形例では、ハウジング20、第1可動コア40、第2可動コア50、固定コア70、ヨーク81は、フェライト系ステンレスに限らず、他の磁性材料により形成されていてもよい。また、ニードル30、非磁性部材60、ばね座36、ブッシュ74は、オーステナイト系ステンレスに限らず、他の非磁性材料により形成されていてもよい。また、ニードル30は、例えばマルテンサイト系ステンレスにより形成されていてもよい。また、本開示は、高圧の燃料を噴射するのに限らず、低圧の燃料を噴射するのに用いてもよい。また、本開示は、直噴式のガソリンエンジンに限らず、例えばポート噴射式のガソリンエンジンやディーゼルエンジン等に適用してもよい。このように、本開示は、上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の形態で実施可能である。 Moreover, in the modification of the said embodiment, the housing 20, the 1st movable core 40, the 2nd movable core 50, the fixed core 70, and the yoke 81 may be formed not only with ferritic stainless steel but with another magnetic material. Good. Further, the needle 30, the nonmagnetic member 60, the spring seat 36, and the bush 74 are not limited to austenitic stainless steel, and may be formed of other nonmagnetic materials. The needle 30 may be made of martensitic stainless steel, for example. The present disclosure is not limited to injecting high-pressure fuel, and may be used to inject low-pressure fuel. Further, the present disclosure is not limited to a direct injection type gasoline engine, and may be applied to, for example, a port injection type gasoline engine or a diesel engine. Thus, the present disclosure is not limited to the above-described embodiment, and can be implemented in various forms without departing from the gist thereof.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (15)

  1.  燃料が噴射される噴孔(11)、および、前記噴孔の周囲に形成された弁座(12)を有するノズル(10)と、
     一端が前記ノズルに接続され、前記噴孔に連通するよう内側に形成され前記噴孔に燃料を導く燃料通路(100)を有する筒状のハウジング(20)と、
     前記ハウジングの内側で往復移動可能に設けられ、一端が前記弁座から離間すると開弁し、一端が前記弁座に当接すると閉弁するニードル(30)と、
     前記ニードルに対し相対移動可能または相対移動不能に設けられた複数の可動コア(40、50)と、
     前記可動コアに対し前記弁座とは反対側に設けられた固定コア(70)と、
     通電されると磁束を生じ、前記可動コアを前記固定コア側に吸引し前記ニードルを前記弁座とは反対側に移動させることが可能なコイル(80)と、を備え、
     複数の前記可動コアのうち、1つの前記可動コア(40)の前記固定コア側の面(421)と、前記1つの前記可動コアと異なる他の前記可動コア(50)の前記弁座側の面(512)との間に環状の可動コア間隙間(s1)が形成されている燃料噴射装置(1)。
    A nozzle (10) having a nozzle hole (11) through which fuel is injected, and a valve seat (12) formed around the nozzle hole;
    A cylindrical housing (20) having one end connected to the nozzle and having a fuel passage (100) formed inside to communicate with the nozzle hole and guiding fuel to the nozzle hole;
    A needle (30) which is provided inside the housing so as to be reciprocally movable and opens when one end is separated from the valve seat and closes when one end contacts the valve seat;
    A plurality of movable cores (40, 50) provided so as to be movable relative to the needle or not movable relative to the needle;
    A fixed core (70) provided on the opposite side of the valve seat to the movable core;
    A coil (80) capable of generating magnetic flux when energized, attracting the movable core toward the fixed core, and moving the needle to the opposite side of the valve seat;
    Of the plurality of movable cores, one of the movable cores (40) on the fixed core side surface (421) and the other movable core (50) different from the one movable core on the valve seat side. A fuel injection device (1) in which an annular gap (s1) between movable cores is formed between the surface (512).
  2.  前記ハウジングまたは前記固定コアは、複数の前記可動コアのうちの少なくとも1つの前記可動コアの前記固定コア側の面(401、501)または前記ニードルの前記固定コア側の面に当接可能な当接面(621、731、741)を有し、
     前記可動コアの前記固定コア側の面または前記ニードルの前記固定コア側の面と前記当接面とが当接したとき、前記可動コアと前記固定コアとの間に環状のコア間隙間(s2、s3)を形成する請求項1に記載の燃料噴射装置。
    The housing or the fixed core is capable of abutting against a surface (401, 501) of the movable core of at least one of the movable cores or a surface of the needle on the side of the fixed core. Have contact surfaces (621, 731, 741),
    When the surface of the movable core on the side of the fixed core or the surface of the needle on the side of the fixed core is in contact with the contact surface, an annular inter-core gap (s2) is formed between the movable core and the fixed core. , S3).
  3.  燃料が噴射される噴孔(11)、および、前記噴孔の周囲に形成された弁座(12)を有するノズル(10)と、
     一端が前記ノズルに接続され、前記噴孔に連通するよう内側に形成され前記噴孔に燃料を導く燃料通路(100)を有する筒状のハウジング(20)と、
     前記ハウジングの内側で往復移動可能に設けられ、一端が前記弁座から離間すると開弁し、一端が前記弁座に当接すると閉弁するニードル(30)と、
     前記ニードルに対し相対移動可能または相対移動不能に設けられた複数の可動コア(40、50)と、
     前記可動コアに対し前記弁座とは反対側に設けられた固定コア(70)と、
     通電されると磁束を生じ、前記可動コアを前記固定コア側に吸引し前記ニードルを前記弁座とは反対側に移動させることが可能なコイル(80)と、を備え、
     前記ハウジングまたは前記固定コアは、複数の前記可動コアのうちの少なくとも1つの前記可動コアの前記固定コア側の面(401、501)または前記ニードルの前記固定コア側の面に当接可能な当接面(621、731、741)を有し、
     前記可動コアの前記固定コア側の面または前記ニードルの前記固定コア側の面と前記当接面とが当接したとき、前記可動コアと前記固定コアとの間に環状のコア間隙間(s2、s3)を形成する燃料噴射装置(1)。
    A nozzle (10) having a nozzle hole (11) through which fuel is injected, and a valve seat (12) formed around the nozzle hole;
    A cylindrical housing (20) having one end connected to the nozzle and having a fuel passage (100) formed inside to communicate with the nozzle hole and guiding fuel to the nozzle hole;
    A needle (30) which is provided inside the housing so as to be reciprocally movable and opens when one end is separated from the valve seat and closes when one end contacts the valve seat;
    A plurality of movable cores (40, 50) provided so as to be movable relative to the needle or not movable relative to the needle;
    A fixed core (70) provided on the opposite side of the valve seat to the movable core;
    A coil (80) capable of generating magnetic flux when energized, attracting the movable core toward the fixed core, and moving the needle to the opposite side of the valve seat;
    The housing or the fixed core is capable of abutting against a surface (401, 501) of the movable core of at least one of the movable cores or a surface of the needle on the side of the fixed core. Have contact surfaces (621, 731, 741),
    When the surface of the movable core on the side of the fixed core or the surface of the needle on the side of the fixed core is in contact with the contact surface, an annular inter-core gap (s2) is formed between the movable core and the fixed core. , S3), a fuel injection device (1).
  4.  前記ハウジングは、前記固定コア側の端部に、非磁性材料により形成された非磁性部材(60)を有し、
     前記当接面は、前記非磁性部材の前記弁座側の面に形成された非磁性当接面(621)を含む請求項2または3に記載の燃料噴射装置。
    The housing has a nonmagnetic member (60) formed of a nonmagnetic material at an end on the fixed core side,
    The fuel injection device according to claim 2 or 3, wherein the contact surface includes a nonmagnetic contact surface (621) formed on a surface of the nonmagnetic member on the valve seat side.
  5.  前記当接面は、前記固定コアに形成された固定コア当接面(731、741)を含む請求項2~4のいずれか一項に記載の燃料噴射装置。 The fuel injection device according to any one of claims 2 to 4, wherein the contact surface includes a fixed core contact surface (731, 741) formed on the fixed core.
  6.  前記固定コアは、筒状の固定コア本体(71)、および、前記固定コア本体の前記可動コア側の面(701)から前記可動コア側へ突出する固定コア突出部(73)を有し、
     前記固定コア当接面(731)は、前記固定コア突出部の前記可動コア側の面に形成されている請求項5に記載の燃料噴射装置。
    The fixed core has a cylindrical fixed core body (71), and a fixed core protrusion (73) protruding from the surface (701) of the fixed core body on the movable core side toward the movable core,
    The fuel injection device according to claim 5, wherein the fixed core abutting surface (731) is formed on a surface of the fixed core protruding portion on the movable core side.
  7.  前記固定コアは、筒状の固定コア本体(71)、および、前記固定コア本体の内側に設けられた筒状のブッシュ(74)を有し、
     前記固定コア当接面(741)は、前記ブッシュの前記可動コア側の面に形成されている請求項5に記載の燃料噴射装置。
    The fixed core has a cylindrical fixed core body (71) and a cylindrical bush (74) provided inside the fixed core body,
    The fuel injection device according to claim 5, wherein the fixed core contact surface (741) is formed on a surface of the bush on the movable core side.
  8.  複数の前記可動コアのうち、1つの前記可動コア(40)の前記固定コア側の面(421)と、前記1つの前記可動コアと異なる他の前記可動コア(50)の前記弁座側の面(512)との間に環状の可動コア間隙間(s1)が形成されている請求項3~7のいずれか一項に記載の燃料噴射装置。 Of the plurality of movable cores, one of the movable cores (40) on the fixed core side surface (421) and the other movable core (50) different from the one movable core on the valve seat side. The fuel injection device according to any one of claims 3 to 7, wherein an annular gap (s1) between the movable cores is formed between the surface (512).
  9.  前記可動コアは、前記可動コア間隙間に連通する連通孔(45)を有している請求項1、2または8に記載の燃料噴射装置。 The fuel injection device according to claim 1, 2 or 8, wherein the movable core has a communication hole (45) communicating with the gap between the movable cores.
  10.  複数の前記可動コアは、前記ニードルに対し相対移動可能に設けられた第1可動コア(40)、および、前記ニードルに対し相対移動不能に設けられた第2可動コア(50)を含み、
     前記第1可動コアは、前記ニードルの一部(32)または前記第2可動コアの一部(52)に当接したとき、前記第2可動コアとの間に前記可動コア間隙間を形成する請求項1、2、8または9に記載の燃料噴射装置。
    The plurality of movable cores include a first movable core (40) provided so as to be relatively movable with respect to the needle, and a second movable core (50) provided so as not to be relatively movable with respect to the needle,
    The first movable core forms a gap between the movable cores between the first movable core and the second movable core when the first movable core comes into contact with a part (32) of the needle or a part (52) of the second movable core. The fuel injection device according to claim 1, 2, 8 or 9.
  11.  前記ニードルは、棒状のニードル本体(31)、および、前記ニードル本体の径方向外側に設けられた鍔部(32)を有し、
     前記第1可動コアは、前記鍔部に当接したとき、前記第2可動コアとの間に前記可動コア間隙間を形成する請求項10に記載の燃料噴射装置。
    The needle has a rod-shaped needle body (31) and a flange (32) provided on the radially outer side of the needle body,
    11. The fuel injection device according to claim 10, wherein the first movable core forms a gap between the movable cores with the second movable core when the first movable core comes into contact with the flange portion.
  12.  前記第2可動コアは、可動コア本体(51)、および、前記可動コア本体の前記弁座側の端面から前記弁座側へ突出する可動コア突出部(52)を有し、
     前記第1可動コアは、前記可動コア突出部に当接したとき、前記可動コア本体の前記弁座側の端面との間に前記可動コア間隙間を形成する請求項10に記載の燃料噴射装置。
    The second movable core has a movable core main body (51) and a movable core projecting portion (52) projecting from the valve seat side end surface of the movable core main body to the valve seat side,
    11. The fuel injection device according to claim 10, wherein when the first movable core abuts on the movable core projecting portion, the gap between the movable cores is formed between the first movable core and an end face on the valve seat side of the movable core body. .
  13.  複数の前記可動コアは、前記ニードルに対し相対移動可能に設けられた第1可動コア(40)、および、前記ニードルに対し相対移動不能に設けられた第2可動コア(50)を含む請求項1~9のいずれか一項に記載の燃料噴射装置。 The plurality of movable cores include a first movable core (40) provided to be movable relative to the needle and a second movable core (50) provided to be non-movable relative to the needle. 10. The fuel injection device according to any one of 1 to 9.
  14.  前記ニードルが前記弁座に当接した状態のとき、前記第1可動コアの前記固定コア側の端面である第1可動コア端面(401)と前記固定コアの前記可動コア側の端面である固定コア端面(701)との距離(g1)は、前記第2可動コアの前記固定コア側の端面である第2可動コア端面(501)と前記固定コア端面との距離(g2)より小さく設定されている請求項10~13のいずれか一項に記載の燃料噴射装置。 When the needle is in contact with the valve seat, the first movable core end surface (401) which is the end surface on the fixed core side of the first movable core and the fixed surface which is the end surface on the movable core side of the fixed core. The distance (g1) from the core end surface (701) is set to be smaller than the distance (g2) between the second movable core end surface (501), which is the end surface on the fixed core side of the second movable core, and the fixed core end surface. The fuel injection device according to any one of claims 10 to 13.
  15.  前記ニードルを前記弁座側に付勢する第1付勢部材(91)と、
     複数の前記可動コアのうち少なくとも1つを前記固定コア側に付勢する第2付勢部材(92)と、
     をさらに備える請求項1~14のいずれか一項に記載の燃料噴射装置。
    A first biasing member (91) for biasing the needle toward the valve seat;
    A second biasing member (92) for biasing at least one of the plurality of movable cores toward the fixed core;
    The fuel injection device according to any one of claims 1 to 14, further comprising:
PCT/JP2017/008691 2016-03-10 2017-03-06 Fuel injection device WO2017154815A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112017001210.4T DE112017001210T5 (en) 2016-03-10 2017-03-06 Fuel injector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016046914A JP6613973B2 (en) 2016-03-10 2016-03-10 Fuel injection device
JP2016-046914 2016-03-10

Publications (1)

Publication Number Publication Date
WO2017154815A1 true WO2017154815A1 (en) 2017-09-14

Family

ID=59790399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008691 WO2017154815A1 (en) 2016-03-10 2017-03-06 Fuel injection device

Country Status (3)

Country Link
JP (1) JP6613973B2 (en)
DE (1) DE112017001210T5 (en)
WO (1) WO2017154815A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065414A1 (en) * 2017-09-29 2019-04-04 株式会社デンソー Fuel injection valve
JP2019065852A (en) * 2017-09-29 2019-04-25 株式会社デンソー Fuel injection valve

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7135705B2 (en) * 2018-10-17 2022-09-13 株式会社デンソー solenoid valve
JP7376337B2 (en) 2019-12-19 2023-11-08 株式会社Soken fuel injection valve

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0589866U (en) * 1992-05-08 1993-12-07 本田技研工業株式会社 Electromagnetic fuel injection valve
JPH1054324A (en) * 1996-08-13 1998-02-24 Nippon Carbureter Co Ltd Fuel injection valve
JP2004506132A (en) * 2000-08-10 2004-02-26 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Fuel injection valve and method of operating fuel injection valve
JP2011208603A (en) * 2010-03-30 2011-10-20 Denso Corp Fuel injection valve
US20130299611A1 (en) * 2010-10-19 2013-11-14 Anatoliy Lyubar Valve Assembly for an Injection Valve and Injection Valve
WO2014017227A1 (en) * 2012-07-27 2014-01-30 日立オートモティブシステムズ株式会社 Electromagnetic fuel injection valve

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19948238A1 (en) * 1999-10-07 2001-04-19 Bosch Gmbh Robert Fuel injector
JP5835421B2 (en) * 2010-10-05 2015-12-24 株式会社デンソー Fuel injection valve
JP5893495B2 (en) * 2012-04-24 2016-03-23 株式会社日本自動車部品総合研究所 Fuel injection valve
JP6186126B2 (en) 2013-01-24 2017-08-23 日立オートモティブシステムズ株式会社 Fuel injection device
JP6167993B2 (en) * 2014-05-28 2017-07-26 株式会社デンソー Fuel injection valve
JP2016046914A (en) 2014-08-22 2016-04-04 株式会社オートネットワーク技術研究所 Heat-shrinkable corrugated tube, manufacturing method for heat-shrinkable corrugated tube, and manufacturing method for wiring module with protective member

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0589866U (en) * 1992-05-08 1993-12-07 本田技研工業株式会社 Electromagnetic fuel injection valve
JPH1054324A (en) * 1996-08-13 1998-02-24 Nippon Carbureter Co Ltd Fuel injection valve
JP2004506132A (en) * 2000-08-10 2004-02-26 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Fuel injection valve and method of operating fuel injection valve
JP2011208603A (en) * 2010-03-30 2011-10-20 Denso Corp Fuel injection valve
US20130299611A1 (en) * 2010-10-19 2013-11-14 Anatoliy Lyubar Valve Assembly for an Injection Valve and Injection Valve
WO2014017227A1 (en) * 2012-07-27 2014-01-30 日立オートモティブシステムズ株式会社 Electromagnetic fuel injection valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065414A1 (en) * 2017-09-29 2019-04-04 株式会社デンソー Fuel injection valve
JP2019065852A (en) * 2017-09-29 2019-04-25 株式会社デンソー Fuel injection valve

Also Published As

Publication number Publication date
JP2017160862A (en) 2017-09-14
JP6613973B2 (en) 2019-12-04
DE112017001210T5 (en) 2018-12-20

Similar Documents

Publication Publication Date Title
JP6087210B2 (en) Fuel injection valve
US20180163681A1 (en) Fuel injection valve
JP6635212B2 (en) Fuel injection valve
JP6483574B2 (en) Fuel injection device
JP6426556B2 (en) Fuel injection device
WO2017154815A1 (en) Fuel injection device
CN107709751B (en) Electromagnetic valve
JP2011208603A (en) Fuel injection valve
WO2017037973A1 (en) Fuel injection device
JP2017089425A (en) Fuel injection device
WO2016199347A1 (en) Fuel injection device
JP5482267B2 (en) Fuel injection valve
JP6167992B2 (en) Fuel injection valve and manufacturing method thereof
JP6421730B2 (en) Fuel injection device
US9334842B2 (en) Fuel injection valve for internal combustion engine
WO2015136862A1 (en) Fuel injection device
JP6504023B2 (en) Fuel injection device
JP5839228B2 (en) Fuel injection valve
JP6167993B2 (en) Fuel injection valve
JP4285701B2 (en) Fuel injection valve
US20220356860A1 (en) Fuel injection valve
JP2009236095A (en) Fuel injection device
JP2018009548A (en) Fuel injection valve
JP2020060154A (en) Fuel injection device
JP2016217242A (en) Fuel injection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17763155

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17763155

Country of ref document: EP

Kind code of ref document: A1