WO2023138567A1 - 一种液氢运输装备真空度预警报警方法 - Google Patents

一种液氢运输装备真空度预警报警方法 Download PDF

Info

Publication number
WO2023138567A1
WO2023138567A1 PCT/CN2023/072565 CN2023072565W WO2023138567A1 WO 2023138567 A1 WO2023138567 A1 WO 2023138567A1 CN 2023072565 W CN2023072565 W CN 2023072565W WO 2023138567 A1 WO2023138567 A1 WO 2023138567A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum
early warning
vacuum degree
liquid hydrogen
pressure
Prior art date
Application number
PCT/CN2023/072565
Other languages
English (en)
French (fr)
Inventor
黄圣
吴慧敏
何远新
熊珍艳
吕长乐
岳胜娥
Original Assignee
中车长江运输设备集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车长江运输设备集团有限公司 filed Critical 中车长江运输设备集团有限公司
Publication of WO2023138567A1 publication Critical patent/WO2023138567A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/12Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge with provision for thermal insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • F17C13/025Special adaptations of indicating, measuring, or monitoring equipment having the pressure as the parameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0391Thermal insulations by vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/013Single phase liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/043Pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/45Hydrogen technologies in production processes

Definitions

  • the invention relates to a vacuum degree early warning and alarm method, in particular to a vacuum degree early warning and alarm method for liquid hydrogen transportation equipment.
  • Liquid hydrogen transportation has the advantages of economy, high efficiency and higher safety. Since the transportation temperature of liquid hydrogen needs to be kept below -253°C, which has a large temperature difference with the external environment, in order to realize the safe operation of liquid hydrogen transportation equipment and achieve the longest possible storage and transportation time, liquid hydrogen transportation equipment adopts high-vacuum multi-layer insulation material technology, but the performance of multi-layer insulation materials is greatly affected by the vacuum degree in the interlayer of mobile equipment. Early warning and alarm.
  • the existing monitoring technology basically uses a vacuum gauge for monitoring.
  • vacuum gauges are expensive, easily damaged during equipment transportation, and difficult to monitor. It is necessary to find other convenient ways to characterize the vacuum degree in transportation equipment.
  • the present invention aims to find a method and system for early warning and alarming the vacuum degree of liquid hydrogen transportation equipment, which has solved the problem of difficulty in monitoring the vacuum degree of liquid hydrogen transportation equipment in the prior art.
  • a vacuum early warning and alarm method for liquid hydrogen transportation equipment characterized in that it includes
  • the construction of the correlation model includes the following steps:
  • the liquid hydrogen transportation equipment is filled with a set amount of liquid hydrogen medium, and the vacuum is respectively evacuated so that the vacuum degree of the interlayer is 10 -4 Pa, 10 -3 Pa, 10 -2 Pa, 10 -1 Pa, 1Pa, 10Pa for testing.
  • the safety threshold is set based on the following definition:
  • Set 10 -1 Pa as the system warning value; set 1 Pa as the system alarm value; and the pressure change is divided into three areas by the vacuum safety threshold, which are vacuum ⁇ 10 -1 Pa area, 10 -1 Pa ⁇ vacuum ⁇ 1Pa, and vacuum > 1Pa.
  • the specific steps of early warning include:
  • point i and point j are both in the area between any two curves of the pressure change model, they are determined to belong to the same area.
  • the present invention has the following advantages: it has the characteristics of convenient monitoring, high sensitivity, and good effect, and by adopting such a vacuum early warning method, it can detect the change of the vacuum degree of the heat insulation layer in real time to ensure a good heat insulation effect, and greatly reduce the risk of vacuum failure during liquid hydrogen transportation.
  • liquid hydrogen transportation equipment consists of 1-inner container, 2-insulation material, 3-outer shell, 4-pressure gauge, 5-remote monitoring system, 6-safety relief device, among which,
  • the inner vessel is a pressure vessel, containing liquid hydrogen medium, made of stainless steel.
  • the multi-layer thermal insulation material is composed of alternating layers of radiation screens with high reflectivity and spacers with low thermal conductivity, and is coated on the outer surface of the 1-inner container to play a role of thermal insulation.
  • the outer shell is supported and connected to the 1-inner container by a supporting structure, and the sealed space formed by the 1-inner container and the 3-outer shell is the interlayer space.
  • the thermal insulation performance of the 2-thermal insulation material is proportional to the vacuum degree of the interlayer space. The higher the vacuum degree, the better the thermal insulation performance of the thermal insulation material.
  • Existing research shows that the thermal insulation material has excellent thermal insulation performance when the vacuum degree is below 10 -2 Pa. In the pressure range of 0.01Pa-10Pa, the apparent thermal conductivity increases linearly with the pressure.
  • the pressure gauge is used to monitor the internal pressure value of the liquid hydrogen equipment in real time.
  • the remote monitoring system sends the data of the pressure gauge to the remote monitoring system at regular intervals, monitors the vacuum degree of the interlayer space through a period of pressure changes, judges whether the vacuum degree exceeds the preset safety threshold range, and sends an alarm to the system exceeding the threshold value.
  • the curves in the above data model are respectively the correlation curves between the pressure in the tank and the storage and transportation time when the vacuum degree is 10 -4 Pa, 10 -3 Pa, 10 -2 Pa, 10 -1 Pa, 1 Pa, and 10 Pa.
  • the system judges that the vacuum degree of the interlayer is within the range of 10 -1 Pa ⁇ 1Pa vacuum degree, the system will give an early warning.
  • the liquid hydrogen transportation equipment is filled with a certain amount of liquid hydrogen medium, and vacuumized separately so that the vacuum degree of the interlayer is 10 -4 Pa, 10 -3 Pa, 10 -2 Pa, 10 -1 Pa, 1Pa, 10Pa are tested, the pressure value in the tank is obtained at regular intervals, the pressure-time curve under different vacuum degrees is drawn, and the pressure change model is constructed. See the schematic diagram above.
  • the vacuum degree is higher than 10 -1 Pa
  • the performance of thermal insulation material begins to decrease obviously, set 10 -1 Pa is the warning value of the system; when the vacuum degree is higher than 1Pa, the performance of the thermal insulation material is greatly reduced, and 1Pa is set as the system alarm value.
  • -1 Pa area 10 -1 Pa ⁇ vacuum degree ⁇ 1Pa, vacuum degree>1Pa.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Fluid Pressure (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

一种真空度预警报警方法,尤其是涉及一种液氢运输装备真空度预警报警方法,首先构建不同夹层真空度下罐内压力与储运时间的关联模型;获取当前罐内压力变化值;最后将获取的罐内压力变化值输入至关联模型中,获取即将超过安全阀值范围的真空度,同时进行预警;或者获取超过安全阀值范围的真空度,并对超过安全阀值的运输系统进行报警。该方法具有监控便捷、灵敏度高、效果好的特点,而且通过采用这样的真空预警方法,可以实时检测绝热层的真空度变化以保证良好的绝热效果,大大降低在液氢运输过程真空失效的风险。

Description

一种液氢运输装备真空度预警报警方法 技术领域
本发明涉及一种真空度预警报警方法,尤其是涉及一种液氢运输装备真空度预警报警方法。
背景技术
氢能作为公认的,被誉为21世纪最具发展前景的清洁能源。随着氢能应用的发展需要,相应地催生了液氢储运装备市场的发展,液氢运输具有经济、高效等优点,且安全性更高。由于液氢的运输温度需保持在-253℃以下,与外部环境温差较大,为实现液氢运输装备的安全运行,同时实现尽可能长的储运时间,液氢运输装备采用高真空的多层绝热材料技术,但多层绝热材料的性能受移动装备夹层内的真空度影响较大,当绝热夹层内的真空度变差时,残余气体的导热将占据总漏热的很大比例,其绝热性能也会随之降低,所以需要对液氢运输装备的真空度进行监控预警及报警。
对于液氢运输装备的真空度监测,现有的监测技术基本上是利用真空计进行监测。然而,真空计价格昂贵且在装备运输过程中容易损坏,监测困难,需要寻找其它便捷的方式来表征运输装备内真空度。
发明内容
本发明旨在寻找一种液氢运输装备真空度预警报警方法及系统,已解决现有技术中液氢运输装备真空度监测困难的问题。
本发明的上述技术问题主要是通过下述技术方案得以解决的:
一种液氢运输装备真空度预警报警方法,其特征在于,包括
构建不同夹层真空度下罐内压力与储运时间的关联模型;
获取当前罐内压力变化值;
将获取的罐内压力变化值输入至关联模型中,获取即将超过安全阀值范围的真空度,同时进行预警;或者获取超过安全阀值范围的真空度,并对超过安全阀值的运输系统进行报警。
在上述的一种液氢运输装备真空度预警报警方法,关联模型的构建包括以下步骤:
液氢运输装备充装设定量的液氢介质,分别抽真空使得夹层真空度等级为10-4Pa、10-3Pa、10-2Pa、10-1Pa、1Pa、10Pa进行测试,
每隔设定时间获取罐内压力值,绘制不同真空度下的压力-时间曲线,构建压力变化模型。
在上述的一种液氢运输装备真空度预警报警方法,安全阀值基于以下定义设定:
设定10-1Pa为系统预警值;设定1Pa为系统报警值;并且压力变化由真空度安全阀值划分为三个区域,分别为真空度<10-1Pa区域、10-1Pa<真空度<1Pa、真空度>1Pa。
在上述的一种液氢运输装备真空度预警报警方法,预警的具体步骤包括:
获取液氢运输装备运行过程中的一段时间的i点、j点和压力值,并将压力值输入至压力变化模型,其中,i=j-1,单位是
若i点与j点对应的压力变化在同一区域范围内,则判断系统夹层真空度,若在10-1Pa~1Pa真空度范围内,系统进行预警,若在1Pa范围 以上,系统进行报警;
若i点与j点对应的压力变化在不同区域范围内,继续向前获取短时间段内的j+n(n=1,2,3)点,直至该段时间内的压力变化在同一区域范围,按照以上方法判断系统真空度。
在上述的一种液氢运输装备真空度预警报警方法,同一区域范围内基于以下定义:
若i点与j点均在压力变化模型的任意两条曲线之间的区域,则判定属于同一区域。
因此,本发明具有如下优点:具有监控便捷,灵敏度高、效果好的特点,而且通过采用这样的真空预警方法,可以实时检测绝热层的真空度变化以保证良好的绝热效果,大大降低在液氢运输过程真空失效的风险。
附图说明
附图1是本发明所需要的系统结构示意图。
附图2是本发明实施例中构建的压力变化模型(同真空度下的罐内压力变化曲线)示意图。
附图3是本发明实施例中i点、j点在同一区域的示意图。
附图4是本发明实施例中i点、j点不在同一区域的示意图。
具体实施方式
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。
实施例:
如附图所示,液氢运输装备由1-内容器、2-绝热材料、3-外壳、4-压力表、5-远程监控系统、6-安全泄放装置组成,其中,
内容器为压力容器,承装液氢介质,材质为不锈钢。多层绝热材料,由具有高反射能力的辐射屏与具有低热导率的间隔物的交替层构成,包覆在所述1-内容器外表面,起到绝热的作用。外壳由支撑结构使之与所述1-内容器支撑连接,所述1-内容器与所述3-外壳组成的密封空间即为夹层空间。所述2-绝热材料的绝热性能与夹层空间的真空度成比例关系,真空度越高,绝热材料的绝热性能越好,现有研究表明在真空度10-2Pa以下,绝热材料具有优良的绝热性能,在0.01Pa-10Pa的压强范围内,表观热导率随压强呈线性增加,残余气体导热占总漏热的很大比例,绝热性能大幅下降。
压力表用于实时监测液氢装备内部压力值。
远程监控系统在每隔一段时间将压力表的数据发送至远程监控系统,通过一段时间的压力变化监测夹层空间的真空度,判断真空度是否超过预设的安全阈值范围,并对超过阈值的系统进行报警。
由于液氢介质易燃易爆,设置安全泄放装置保证极端工况液氢装备系统的安全性,不同夹层真空度下罐内压力与储运时间的关联模型见附图2。
上述数据模型中的曲线分别为真空度为10-4Pa、10-3Pa、10-2Pa、10-1Pa、1Pa、10Pa时,罐内压力与储运时间关联曲线。
当系统判断夹层真空度在10-1Pa~1Pa真空度范围内时,系统将预警。
当系统判断夹层真空度>1Pa时,系统将报警。
本发明模型简化如下:
液氢运输装备充装一定量的液氢介质,分别抽真空使得夹层真空度等级为10-4Pa、10-3Pa、10-2Pa、10-1Pa、1Pa、10Pa进行测试,每隔一段时间获取罐内压力值,绘制不同真空度下的压力-时间曲线,构建压力变化模型,示意图见上,根据现有研究,当真空度高于10-1Pa,绝热材料性能开始明显降低,设定10-1Pa为系统预警值;当真空度高于1Pa,绝热材料性能大幅降低,设定1Pa为系统报警值,压力变化由真空度安全阀值划分为三个区域,分别为真空度<10-1Pa区域、10-1Pa<真空度<1Pa、真空度>1Pa。
获取液氢运输装备运行过程中的一段时间的i点、j点,输入至上述压力变化模型,
若i点与j点对应的压力变化在同一区域范围内,判断系统夹层真空度,若在10-1Pa~1Pa真空度范围内,系统进行预警,若在1Pa范围以上,系统进行报警;
若i点与j点对应的压力变化在不同区域范围内,继续向前获取短时间段内的j+n(n=1,2,3)点,直至该段时间内的压力变化在同一区域范围,按照以上方法判断系统真空度。
本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。

Claims (5)

  1. 一种液氢运输装备真空度预警报警方法,其特征在于,包括构建不同夹层真空度下罐内压力与储运时间的关联模型;
    获取当前罐内压力变化值;
    将获取的罐内压力变化值输入至关联模型中,获取即将超过安全阀值范围的真空度,同时进行预警;或者获取超过安全阀值范围的真空度,并对超过安全阀值的运输系统进行报警。
  2. 根据权利要求1所述的一种液氢运输装备真空度预警报警方法,其特征在于,关联模型的构建包括以下步骤:
    液氢运输装备充装设定量的液氢介质,分别抽真空使得夹层真空度等级为10-4Pa、10-3Pa、10-2Pa、10-1Pa、1Pa、10Pa进行测试,
    每隔设定时间获取罐内压力值,绘制不同真空度下的压力-时间曲线,构建压力变化模型。
  3. 根据权利要求1所述的一种液氢运输装备真空度预警报警方法,其特征在于,安全阀值基于以下定义设定:
    设定10-1Pa为系统预警值;设定1Pa为系统报警值;并且压力变化由真空度安全阀值划分为三个区域,分别为真空度<10-1Pa区域、10-1Pa<真空度<1Pa、真空度>1Pa。
  4. 根据权利要求1所述的一种液氢运输装备真空度预警报警方法,其特征在于,预警的具体步骤包括:
    获取液氢运输装备运行过程中的一段时间的i点、j点和压力值,并将压力值输入至压力变化模型,其中,i=j-1,单位是小时
    若i点与j点对应的压力变化在同一区域范围内,则判断系统夹层真空度,若在10-1Pa~1Pa真空度范围内,系统进行预警,若在1Pa范围 以上,系统进行报警;
    若i点与j点对应的压力变化在不同区域范围内,继续向前获取短时间段内的j+n点,n是正整数,单位是小时,直至该段时间内的压力变化在同一区域范围,按照以上方法判断系统真空度。
  5. 根据权利要求4所述的一种液氢运输装备真空度预警报警方法,其特征在于,同一区域范围内基于以下定义:
    若i点与j点均在压力变化模型的任意两条曲线之间的区域,则判定属于同一区域。
PCT/CN2023/072565 2022-01-18 2023-01-17 一种液氢运输装备真空度预警报警方法 WO2023138567A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210055616.3 2022-01-18
CN202210055616.3A CN114458940A (zh) 2022-01-18 2022-01-18 一种液氢运输装备真空度预警报警方法

Publications (1)

Publication Number Publication Date
WO2023138567A1 true WO2023138567A1 (zh) 2023-07-27

Family

ID=81409017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/072565 WO2023138567A1 (zh) 2022-01-18 2023-01-17 一种液氢运输装备真空度预警报警方法

Country Status (2)

Country Link
CN (1) CN114458940A (zh)
WO (1) WO2023138567A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114458940A (zh) * 2022-01-18 2022-05-10 中车长江运输设备集团有限公司 一种液氢运输装备真空度预警报警方法
CN115111529B (zh) * 2022-08-02 2024-04-26 兰州理工大学 用于低温杜瓦的夹层真空度监控报警方法及系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63172094A (ja) * 1987-01-09 1988-07-15 Mitsubishi Electric Corp 回転機を内蔵した真空容器の真空度制御装置
CN105090000A (zh) * 2015-07-17 2015-11-25 北京航空航天大学 一种空间环境模拟器粗抽真空系统的故障诊断方法
DE102016216572A1 (de) * 2016-09-01 2018-03-01 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Überwachen eines Druckbehältersystems in einem Fahrzeug und Druckbehältersystem in einem Fahrzeug
DE102018002072A1 (de) * 2017-03-30 2018-10-04 Scania Cv Ab System und Verfahren zur Ermöglichung eines Erfassens eines Fehlerzustands in einem geschlossenen Behälter
CN108918024A (zh) * 2018-08-06 2018-11-30 南京市锅炉压力容器检验研究院 一种在用低温气瓶夹层真空度快速检测方法
CN110291325A (zh) * 2017-01-16 2019-09-27 克里奥塞尔特有限责任公司 用于确定双壁真空绝热容器的绝热质量的装置和方法
CN214948212U (zh) * 2021-05-27 2021-11-30 大连中正联科通信有限公司 一种具有预测lng罐箱安全阀起跳功能的监测装置
CN114458940A (zh) * 2022-01-18 2022-05-10 中车长江运输设备集团有限公司 一种液氢运输装备真空度预警报警方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110260152B (zh) * 2019-06-12 2021-08-24 无锡泓瑞航天科技有限公司 一种液化天然气车辆车用气瓶智慧监测系统
CN111219598B (zh) * 2020-01-07 2021-06-01 浙江大学 一种真空绝热储罐真空度检测方法及装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63172094A (ja) * 1987-01-09 1988-07-15 Mitsubishi Electric Corp 回転機を内蔵した真空容器の真空度制御装置
CN105090000A (zh) * 2015-07-17 2015-11-25 北京航空航天大学 一种空间环境模拟器粗抽真空系统的故障诊断方法
DE102016216572A1 (de) * 2016-09-01 2018-03-01 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Überwachen eines Druckbehältersystems in einem Fahrzeug und Druckbehältersystem in einem Fahrzeug
CN110291325A (zh) * 2017-01-16 2019-09-27 克里奥塞尔特有限责任公司 用于确定双壁真空绝热容器的绝热质量的装置和方法
DE102018002072A1 (de) * 2017-03-30 2018-10-04 Scania Cv Ab System und Verfahren zur Ermöglichung eines Erfassens eines Fehlerzustands in einem geschlossenen Behälter
CN108918024A (zh) * 2018-08-06 2018-11-30 南京市锅炉压力容器检验研究院 一种在用低温气瓶夹层真空度快速检测方法
CN214948212U (zh) * 2021-05-27 2021-11-30 大连中正联科通信有限公司 一种具有预测lng罐箱安全阀起跳功能的监测装置
CN114458940A (zh) * 2022-01-18 2022-05-10 中车长江运输设备集团有限公司 一种液氢运输装备真空度预警报警方法

Also Published As

Publication number Publication date
CN114458940A (zh) 2022-05-10

Similar Documents

Publication Publication Date Title
WO2023138567A1 (zh) 一种液氢运输装备真空度预警报警方法
US11940097B2 (en) Systems and methods for storing liquid hydrogen
CN101907507B (zh) 光纤光栅大型液化气储罐泄露监测报警系统
US20190368659A1 (en) Device and method for determining the thermal insulation quality of twin-walled, vacuum-insulated containers
CN106840952B (zh) 车载lng气瓶绝热性能的检测方法
CN108758326A (zh) 一种具有报警功能的立式储气罐
US9244033B2 (en) Method for online detection of liner buckling in a storage system for pressurized gas
CN113374946B (zh) 一种液化天然气输送软管安全处理系统
CN112576942A (zh) 一种针对氢气泄露的实时监测系统
CN206055200U (zh) 一种低温液体储罐的监控系统
CN103148341A (zh) 一种带有检测装置的低温储罐
CN102496679A (zh) 超导限流器液氮低温系统
CN106945955A (zh) 一种低温容器内层容器泄漏报警监测系统及方法
CN106970107B (zh) 一种低温输液管路性能测试系统
US20180099246A1 (en) Hydrogen sensing and separation
JP4576939B2 (ja) 真空断熱構造の真空度低下の監視装置および方法
CN205606164U (zh) 低温容器真空丧失检测的装置
CN203147262U (zh) 一种带有检测装置的低温储罐
CN205593952U (zh) 真空深冷容器内支撑材料接触界面导热试验装置
CN114811271A (zh) 包含气凝胶材料的低温真空多层绝热结构及使用方法
Takeda et al. Liquid hydrogen experiment facility with system enabling observation under horizontal vibration
CN112253998A (zh) 一种lng密封系统的泄露检测系统
CN107270113A (zh) 低温容器真空丧失检测的方法和装置
CN112483880A (zh) 一种双层低温液氢球罐设备
CN113804717B (zh) 一种可视化实验装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23742882

Country of ref document: EP

Kind code of ref document: A1