WO2023138434A1 - 一种滤波装置、基站天线及基站设备 - Google Patents

一种滤波装置、基站天线及基站设备 Download PDF

Info

Publication number
WO2023138434A1
WO2023138434A1 PCT/CN2023/071444 CN2023071444W WO2023138434A1 WO 2023138434 A1 WO2023138434 A1 WO 2023138434A1 CN 2023071444 W CN2023071444 W CN 2023071444W WO 2023138434 A1 WO2023138434 A1 WO 2023138434A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency selection
conductive pattern
frequency
selection structure
filter device
Prior art date
Application number
PCT/CN2023/071444
Other languages
English (en)
French (fr)
Inventor
李肃成
戴凯
刁锦乾
张海伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023138434A1 publication Critical patent/WO2023138434A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0013Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the technical field of communication, and in particular to a filtering device, a base station antenna and base station equipment.
  • FIG. 1 is a schematic diagram of communication between a base station antenna and a terminal.
  • the base station antenna 101 may include a transmitting end Tx and a receiving end Rx
  • the terminal 102 may be a mobile phone, a tablet computer, a notebook computer, and the like.
  • Signal transmission can be performed between the base station antenna 101 and the terminal 102.
  • the transmitting end Tx of the base station antenna 101 transmits the signal to the terminal 102 over a long distance, the signal is attenuated seriously due to the transmission through a long geometric path.
  • the signal is received by the terminal 102 and then transmitted back to the receiving end Rx of the base station antenna 101, the signal will attenuate again.
  • out-of-band signals refer to signals outside the frequency band required for communication transmission. Out-of-band signals can be signals radiated by the antenna inside the base station antenna, or signals radiated by external communication equipment. When the out-of-band signal enters the receiving end Rx of the base station antenna 101, it will cause very serious signal interference, which will lead to problems such as call crosstalk, sensitivity reduction of the receiving end Rx, and signal distortion.
  • Embodiments of the present application provide a filtering device, a base station antenna, and base station equipment, so as to solve the problem of serious signal interference of the base station antenna.
  • an embodiment of the present application provides a filtering device, which may include: a plurality of frequency selection units, and each frequency selection unit may include: a façade frequency selection structure and a planar frequency selection structure.
  • the façade frequency selection structure is cylindrical, and the façade frequency selection structure includes a first end and a second end arranged oppositely, and each frequency selection unit is provided with a planar frequency selection structure at least at the first end of the façade frequency selection structure.
  • the façade frequency selection structure may include: a first dielectric substrate, and at least two first conductive patterns located on the surface of the first dielectric substrate, each first conductive pattern in the façade frequency selection structure is isolated, the first dielectric substrate is used to surround the façade frequency selection structure, and each first conductive pattern is used for filtering.
  • the planar frequency selection structure may include: a second dielectric substrate, and at least one second conductive pattern on the surface of the second dielectric substrate, and each second conductive pattern is used for filtering.
  • the filtering device includes a plurality of frequency selection units, and each frequency selection unit includes a vertical frequency selection structure and a plane frequency selection structure.
  • the façade frequency selection structure is provided with a first conductive pattern with a filtering effect
  • the plane frequency selection structure is provided with a second conductive pattern with a filtering effect
  • the façade frequency selection structure is cylindrical
  • the frequency selection unit is provided with a plane frequency selection structure at least at the first end of the façade frequency selection structure, and at least two first conductive patterns are arranged in the façade frequency selection structure. Therefore, the filtering device can provide different polarization directions and can achieve a three-dimensional filtering effect.
  • the signal in the passband frequency band required by the filter device can have a higher transmittance, and the out-of-band signal can have a higher cut-off rate.
  • Applying the filter device in the embodiment of the present application to the base station antenna can effectively filter out-of-band signals and prevent the out-of-band signals from entering the receiving end of the base station antenna, thereby preventing the out-of-band signals from interfering with the signals of the base station antenna.
  • the façade frequency selection structure is cylindrical, that is, the inside of the frequency selection unit is hollow, and both the façade frequency selection structure and the planar frequency selection structure include dielectric substrates and conductive patterns.
  • the structure of the frequency selection unit is relatively simple, which makes the filter device thinner and lighter in weight.
  • the frequency selection units can be arranged in the same orientation, that is, the frequency selection units can be arranged in the same direction in which the first end of the façade frequency selection structure points to the second end.
  • the direction in which the first end of the façade frequency selection structure points to the second end can be set to be roughly consistent with the radiation direction of the antenna signal, so that the antenna signal can be radiated to the frequency selection unit, and pass through the planar frequency selection structure and the cylindrical façade frequency selection structure, and the out-of-band signal can be filtered out through the filtering function of the frequency selection unit.
  • multiple frequency selective units in the filtering device can be arranged in a plane perpendicular to the first direction, and the first direction is consistent with the direction in which the first end of the façade frequency selective structure points to the second end.
  • the multiple frequency selective units in the filtering device can be arranged in an array along the second direction and the third direction, and the second direction and the third direction can both be perpendicular to the first direction.
  • the multiple frequency selection units in the filter device can also be arranged in other ways, which is not limited here.
  • the multiple frequency selective units in the filter device can be divided into multiple frequency selective unit layers, each frequency selective unit layer can include multiple frequency selective units, and the frequency selective units in each frequency selective unit layer can be arranged in the same plane.
  • each frequency selection unit may only be provided with a plane frequency selection structure at the first end of the facade frequency selection structure. In some other embodiments of the present application, each frequency selection unit may also be provided with plane frequency selection structures at the first end and the second end of the facade frequency selection structure, which may be set according to actual needs.
  • the first conductive pattern can be located on the inner surface and/or outer surface of the first dielectric substrate, that is, the first conductive pattern can be arranged on the inner surface of the first dielectric substrate; or, the first conductive pattern can be arranged on the outer surface of the first dielectric substrate; or, the first conductive pattern can be arranged on both the inner surface and the outer surface of the first dielectric substrate.
  • the second conductive pattern can be located on the inner surface and/or outer surface of the second dielectric substrate, that is, the second conductive pattern can be arranged on the inner surface of the second dielectric substrate; or, the second conductive pattern can be arranged on the outer surface of the second dielectric substrate; or, the second conductive pattern can be arranged on both the inner surface and the outer surface of the second dielectric substrate.
  • the first medium substrate and the second medium substrate may be transparent or non-transparent, which is not limited here.
  • the above-mentioned first dielectric substrate can be an insulating material.
  • the first dielectric substrate can be a material with a dielectric constant in the range of 1.1 to 10.
  • the first dielectric substrate can be foam, polyethylene terephthalate (polyethylene glycol terephthalate, PET), polyimide (Polyimide, PI), a flame-resistant material with a grade of FR4 (such as a composite material of epoxy resin, filler and glass fiber), At least one of aramid paper, DuPont paper, plastic, ceramics.
  • the first conductive pattern may include: a metal material, for example, the metal material may be at least one of copper, aluminum, and silver.
  • the second dielectric base material can be insulating material
  • the second dielectric base material can be the material of dielectric constant in the range of 1.1 ⁇ 10
  • the second dielectric base material can be foam, polyethylene terephthalate (polyethylene glycol terephthalate, PET), polyimide (Polyimide, PI), grade is the flame-resistant material of FR4 (for example can be the composite material of epoxy resin, filler and glass fiber), aramid paper, DuPont paper, At least one of plastic and ceramics.
  • the second conductive pattern may include: a metal material, for example, the metal material may be at least one of copper, aluminum, and silver. It has been proved by experiments that when the material of the first conductive pattern (or the second conductive pattern) is aluminum, copper or silver, the square coefficient of the filter device is higher, and thus the filter effect of the filter device is better.
  • the vertical frequency selection structure may include a first conductive pattern
  • the planar frequency selection structure may include a second conductive pattern.
  • the electric field can polarize the electrons on the surface of the first conductive pattern (or the second conductive pattern), so as to generate a certain characteristic current distribution on the surface of the first conductive pattern (or the second conductive pattern), so that the surface of the first conductive pattern (or the second conductive pattern) has a certain inductance, and the thinner the pattern trace of the first conductive pattern (or the second conductive pattern), the greater the inductance generated by the pattern trace.
  • the gap of the first conductive pattern (or the second conductive pattern) is polarized by the electric field, which will generate a certain capacitive effect, and the narrower the gap, the greater the capacitance will be. Therefore, the first conductive pattern (or the second conductive pattern) can be equivalent to include capacitance and inductance, so that the first conductive pattern (or the second conductive pattern) has a resonance response characteristic, that is, the first conductive pattern (or the second conductive pattern) can have a band-pass or band-stop filter characteristic, so that signals within the set frequency range can pass through, and signals outside the set frequency range cannot pass through, so that the frequency selection unit has a filtering function.
  • the specific structures of the first conductive pattern and the second conductive pattern in each frequency selection unit can be set according to the passband frequency band corresponding to the filter device.
  • the first conductive pattern in the façade frequency selection structure is separated from the second conductive pattern in the plane frequency selection structure, so that the façade frequency selection structure and the plane frequency selection structure form a capacitive connection, so that through the capacitive coupling between the façade frequency selection structure and the plane frequency selection structure, the filter device has a higher transmittance to signals in the passband frequency band and a higher cut-off rate to out-of-band signals.
  • the first conductive patterns in the façade frequency selection structure are arranged in isolation, so that any two adjacent first conductive patterns form a capacitive connection, so that the façade frequency selection structure has a band-stop resonance characteristic.
  • the filter device in the embodiment of the present application can make the transmittance of the signal in the passband frequency band higher and the cutoff rate of the out-of-band signal higher, which can be reflected by parameters such as cutoff frequency roll-off rate and squareness coefficient.
  • the cut-off frequency roll-off rate refers to the drop rate of the electromagnetic signal from the pass band to the stop band
  • the squareness coefficient refers to the closeness of the frequency response curve of the bandpass filter to the ideal rectangle.
  • the shape of the ideal frequency response curve should be a rectangle, but there is a certain difference between the shape of the actual frequency response curve and the rectangle. The closer the squareness coefficient is to 1, the closer the shape of the frequency response curve is to a rectangle, and the stronger the ability of the filtering device to filter out interference signals in the adjacent channel frequency band.
  • the roll-off rate of the low-frequency cut-off frequency of the frequency selection unit is about 15dB/GHz, and the roll-off rate of the high-frequency cut-off frequency is >100dB/GHz.
  • the roll-off rate of the high-frequency cut-off frequency or the low-frequency cut-off frequency is about 3dB/GHz. That is, the roll-off rate of the high-frequency cut-off frequency and the low-frequency cut-off frequency of the frequency selection unit in the embodiment of the present application are relatively high, so that the filtering device has better out-of-band suppression performance.
  • the slope of the relationship curve between transmittance and frequency is steeper in the high frequency band, which makes the filter device have a higher squareness coefficient.
  • the filter device has a stronger ability to filter out interference signals in adjacent channel frequency bands.
  • the frequency selection unit has low insertion loss and large bandwidth in the passband frequency band.
  • the insertion loss in the passband frequency band can be lower than 0.2dB, and the frequency coverage of the passband frequency range is 3.2GHz to 4.2GHz.
  • the cross-sectional shape of the façade frequency selection structure perpendicular to the first direction may be polygonal, wherein the first direction is the direction in which the first end of the façade frequency selection structure points to the second end.
  • the cross-sectional shape of the façade frequency selection structure perpendicular to the first direction can be triangular, quadrilateral, pentagonal, hexagonal, etc.
  • the cross-sectional shape of the façade frequency selection structure perpendicular to the first direction can be a regular polygon or an irregular polygon, which is not limited here.
  • the cross-sectional shape of the façade frequency selection structure perpendicular to the first direction may also be circular, elliptical or other shapes, which are not limited here.
  • the façade frequency selection structure is hollow cylindrical
  • the cross-sectional shape of the above-mentioned façade frequency selection structure perpendicular to the first direction refers to the shape of the contour obtained by using the plane cross-section vertical frequency selection structure perpendicular to the first direction.
  • the façade frequency selection structure has a polygonal cross-sectional shape perpendicular to the first direction, wherein the first direction is the direction in which the first end of the façade frequency selection structure points to the second end.
  • the façade frequency selection structure is respectively provided with a first conductive pattern on at least two adjacent sides. The distance between the two first conductive patterns located on two adjacent sides is relatively close, an equivalent capacitance will be generated between the two first conductive patterns, and a resonance response will be generated through capacitive coupling, thereby enhancing the filtering effect.
  • the first conductive pattern can be provided on a part of the side surfaces of the facade frequency selection structure, and the first conductive pattern can also be provided on each side of the facade frequency selection structure, which is not limited here.
  • multiple frequency selection units in the filter device may be arranged in an array in a plane perpendicular to the first direction, where the first direction is the direction in which the first end of the façade frequency selection structure points to the second end.
  • Multiple frequency selection units share the same plane frequency selection structure at the first end; and/or, multiple frequency selection units share the same plane frequency selection structure at the second end. That is to say, multiple frequency selection units can share the same plane frequency selection structure only at the first end; or, multiple frequency selection units can only share the same plane frequency selection structure at the second end; or, multiple frequency selection units can share the same plane frequency selection structure at the first end, and share the same plane frequency selection structure at the second end.
  • multiple frequency selection units sharing the same plane frequency selection structure at the first end (or second end) means that the second dielectric substrate of the plane frequency selection structure in each frequency selection unit is an integrated structure, and the second conductive patterns of the plane frequency selection structure in each frequency selection unit are not connected into an integrated structure.
  • multiple second conductive patterns can be fabricated on the same second dielectric substrate, and then the fabricated planar frequency selection structure can be installed on the first end or the second end of the vertical frequency selection structure, so that the manufacturing process is simple and the manufacturing cost is low.
  • each second conductive pattern in the shared planar frequency selection structure can be arranged periodically, and the period of each second conductive pattern in the shared planar frequency selection structure can be consistent with the period of each frequency selection unit, or inconsistent with the period of each frequency selection unit, which is not limited here.
  • the edge of the second conductive pattern may be staggered by a certain distance from the edge of the façade frequency selection structure. It has been proved by experiments that after dislocation of the second conductive pattern, the squareness coefficient of the filter device is still high, indicating that dislocation of the second conductive pattern will not affect the filtering effect of the filter device.
  • the prepared planar frequency selection structure can be installed on the first end or the second end of the façade frequency selection structure. During the process of installing the planar frequency selection structure, the alignment accuracy requirements for the second conductive pattern and the façade frequency selection structure are relatively low, so that the manufacturing cost is low, and the robustness of the manufacturing process is good.
  • the total impedance of the frequency selection unit can be determined according to formula (1):
  • Z represents the total impedance of the frequency selection unit
  • R represents the resistance
  • j represents the imaginary number unit
  • represents the angular frequency
  • L represents the inductance
  • C represents the capacitance.
  • the frequency selection unit can be equivalent to an equivalent circuit composed of multiple inductors and multiple capacitors. Connecting an inductor and a capacitor in parallel can form a band-pass equivalent circuit. Connecting an inductor and a capacitor in series can form a band-stop equivalent circuit.
  • specific patterns of the first conductive pattern and the second conductive pattern can be set according to the total impedance required by the frequency selection unit.
  • each first conductive pattern in the façade frequency selection structure can be equivalent to a series equivalent circuit formed by multiple inductors and multiple capacitors.
  • the series equivalent circuit by setting the figure of the first conductive pattern, the value of the equivalent inductance and capacitance of the first conductive pattern can be designed, thereby parameters such as the resonant frequency of the façade frequency selection structure can be designed, for example, the resonant frequency can be determined according to formula (2):
  • f R represents the resonant frequency
  • L represents the inductance
  • C represents the capacitance
  • the surface of the second conductive pattern can be equivalent to an inductance, and the gap in the second conductive pattern can be equivalent to a capacitor, so that the planar frequency selection structure can be equivalent to a band-stop equivalent circuit or a band-pass equivalent circuit.
  • parameters such as the resonance frequency of the façade frequency selection structure and the plane frequency selection structure can be designed by setting the graphics of the first conductive pattern and the second conductive pattern, so that the filtering device can pass through the signals in the required passband frequency band and filter out out-of-band signals.
  • multiple dielectric substrate units can be manufactured first, and the dielectric substrate unit is composed of a bent dielectric substrate and a plurality of first conductive patterns located on the surface of the dielectric substrate.
  • a plurality of first conductive patterns can be formed on the surface of the dielectric substrate, and then the dielectric substrate with the first conductive patterns on the surface is bent to obtain a dielectric substrate unit.
  • the two dielectric substrate units are combined and pasted together to form a row of facade frequency-selective structures, and multiple rows of facade frequency-selective structures can be produced in the same way.
  • the fabricated whole-surface planar frequency-selective structure can be installed on the first end and the second end of the vertical frequency-selective structure, thereby obtaining a filtering device.
  • At least one frequency selection unit in the filter device is provided with a first conductive pattern on a side of a side of the façade frequency selection structure, and has no first conductive pattern on another side of the side.
  • the façade frequency selection structure may have four sides with the first conductive pattern, and the other two sides without the first conductive pattern.
  • Each side of the façade frequency selection structure of at least one frequency selection unit in the filter device is provided with a first conductive pattern.
  • the filter device includes two adjacent frequency selection units, and the two adjacent frequency selection units are provided with first conductive patterns on two adjacent sides belonging to different facade frequency selection structures.
  • two adjacent frequency selection units can be provided with two layers of first dielectric substrates on two adjacent sides belonging to different facade frequency selection structures, or can share the same layer of first dielectric substrates, which can be arranged according to actual needs.
  • the filter device includes two adjacent frequency selection units, and the two facade frequency selection structures of the two adjacent frequency selection units share the same side surface, that is to say, the two facade frequency selection structures share the same layer of first dielectric substrate, and the first dielectric substrate can be provided with the first conductive pattern on the surface of only one side, or can be provided with the first conductive pattern on the surfaces of both sides, which can be set according to actual needs.
  • the multiple frequency selective units in the filtering device may include at least two layers of frequency selective units, and each layer of frequency selective units may include multiple frequency selective units. Two adjacent frequency selection units located in different frequency selection unit layers share the same plane frequency selection structure. In this way, one layer of planar frequency selection structure can be saved, and the production cost can be saved.
  • the order of the filter device can be determined according to the number of capacitor-inductor combinations in the equivalent circuit.
  • the equivalent circuit of the filter device can have three sets of capacitor-inductor combinations. Therefore, the filter device in the embodiment of the present application is a third-order filter device. Compared with the first-order filter device and the second-order filter device, it can be seen that the slope of the frequency response curve of the filter device in the embodiment of the present application is steeper, so the square coefficient of the filter device in the embodiment of the present application is higher, and the bandwidth of the filter device in the embodiment of the present application is larger, therefore, the filtering effect of the filter device in the embodiment of the present application is better.
  • the traces formed by the first conductive pattern have no intersections.
  • the track formed by the first conductive pattern may be a non-closed figure. In some other embodiments of the present application, the track formed by the first conductive pattern may be a closed figure.
  • the first conductive pattern may be an electrical resonance unit, the first conductive pattern is a band-stop pattern structure, and the relationship between the resonant wavelength of the first conductive pattern and its geometric length satisfies formula (3):
  • m ⁇ 1, m is an integer
  • L 0 represents the geometric length of the first conductive pattern
  • ⁇ R represents the resonant wavelength
  • the above formula (3) needs to further consider the equivalent dielectric constant ⁇ r_eff of the first dielectric substrate and air, that is, the above formula (3) can be modified into formula (4):
  • the first conductive pattern is a non-closed figure, for example, the first conductive pattern may be in the shape of a "several", and in specific implementation, the first conductive pattern may also be other non-closed figures, which are not limited here.
  • the first conductive pattern is a closed figure.
  • the first conductive pattern can be oval.
  • the first conductive pattern can also be a closed figure of other shapes such as a circle or a rectangle, which is not limited here.
  • the geometric length of the first conductive pattern to be designed can be inversely obtained, and then the specific shape of the first conductive pattern can be designed.
  • the first conductive pattern is a magnetic resonance unit, and the first conductive pattern is a band-stop pattern structure.
  • the resonance wavelength of the first conductive pattern no longer follows the half-wavelength resonance principle, and its resonance mainly depends on self-resonance, that is, the inductance and capacitance generated by the first conductive pattern's own structure. Therefore, by setting the capacitance value reasonably, the geometric length of the first conductive pattern can be much smaller than the resonance wavelength.
  • the geometric length of the first conductive pattern to be designed can be inversely obtained, and then the specific shape of the first conductive pattern can be designed.
  • the first conductive pattern may include: a first line segment, a second line segment, and a first connection part.
  • the area surrounded by the first connection part is an open area.
  • the first connection part has a first end part and a second end part. That is to say, the first conductive pattern is an open pattern, and the distance between the two ends of the pattern of the first conductive pattern is relatively close, thereby forming a magnetic resonance unit.
  • a plurality of first conductive patterns may be provided on one side of the façade frequency selection structure.
  • two, three, four or more first conductive patterns may be provided on one side of the façade frequency selection structure.
  • only one first conductive pattern may be provided on the side of the façade frequency selection structure, which is not limited here.
  • the second conductive pattern may include: a first conductive part and a second conductive part, the first conductive part is ring-shaped, and the first conductive part surrounds the second conductive part.
  • the first conductive part can be a ring-shaped figure of any shape such as a circle, an ellipse, a polygon, etc.
  • the second conductive part can be a figure of any shape such as a block shape or a ring shape, which is not limited here.
  • the second conductive pattern may include: a plurality of conductive blocks and a plurality of second connection parts, each second connection part is connected to two conductive blocks, and the plurality of second connection parts are connected to each other.
  • a plurality of second connecting parts a plurality of discrete conductive blocks can be connected, and each second connecting part is located in an area enclosed by each conductive block in the second conductive pattern.
  • the edges of the conductive block can be set in a concave-convex shape, so that the edge of the conductive block can be embedded into the edge of other adjacent conductive blocks, thereby increasing the length of the gap between adjacent conductive blocks and enhancing the capacitive coupling effect.
  • the shapes of the conductive block and the second connecting portion can be set according to actual needs, which is not limited here.
  • an embodiment of the present application further provides a base station antenna, where the base station antenna may include: any filtering device described above, and an antenna array. Since the filter device has a high transmittance for signals in the required passband frequency band and a high cut-off rate for out-of-band signals, the base station antenna including the filter device can effectively filter out the out-of-band signals and prevent the out-of-band signals from entering the receiving end of the base station antenna, thereby preventing the out-of-band signals from interfering with the signals of the base station antenna.
  • the base station antenna may further include: a radome.
  • the base station antenna is easily affected by the environment.
  • the antenna base station used outdoors usually works in an open-air environment, which makes the antenna base station vulnerable to the erosion of storms, ice, snow, sand, and solar radiation in nature.
  • the radome can withstand the external harsh environment in terms of mechanical properties, and can protect the antenna base station from the external environment, ensuring that the antenna base station has high antenna accuracy, long life and high operating reliability.
  • the radome has better electromagnetic wave penetration in terms of electrical performance, and will not affect the transmission of electromagnetic wave signals emitted by the antenna array.
  • the filtering device may be located between the antenna array and the radome.
  • the antenna array can be an array structure formed by a plurality of oscillators, which can emit electromagnetic wave signals of a certain frequency.
  • the orientation of the filter device can be set reasonably so that the first end of the filter device neutral surface frequency selection structure points to the direction of the second end, which is roughly consistent with the radiation direction of the electromagnetic wave signal emitted by the antenna array.
  • the electromagnetic wave signal can be emitted to the inside of the facade frequency selection structure, it is enough. In this way, the signal in the passband frequency band can pass through the filter device, and the out-of-band signal is reflected by the filter device.
  • the signal is filtered, so that the filtering device can be used as a transparent window for space electromagnetic waves.
  • the antenna base station may also include: a circuit board, a reflector, and a radiator.
  • the circuit board may be a Printed Circuit Board (PCB), and the reflector may carry an antenna array.
  • the reflector may be a metal plate, and the reflector may gather and reflect signals to a receiving point.
  • the heat sink can play a cooling role.
  • the base station antenna may also include a radome.
  • the filter device can be integrated inside the radome, which can make the base station antenna more integrated and more concise in structure.
  • the orientation of the filter device can be reasonably set so that the first end of the façade frequency selection structure in the filter device points to the direction of the second end, which is roughly consistent with the radiation direction of the electromagnetic wave signal emitted by the antenna array, as long as the electromagnetic wave signal can be directed to the inside of the façade frequency selection structure.
  • the signal in the passband frequency band can pass through the filter device, and the out-of-band signal is reflected by the filter device, thereby ensuring that the filter device can filter the electromagnetic wave signal emitted by the antenna array, so that the filter device can be used as a space electromagnetic wave transparent window.
  • the antenna array may include: a plurality of first dipoles and a plurality of second dipoles, and the operating frequency of the first dipoles is lower than that of the second dipoles.
  • the electromagnetic wave signal emitted by the first vibrator will radiate to the second vibrator, and this part of the electromagnetic wave signal is an out-of-band signal for the second vibrator.
  • the electromagnetic wave signal of the first dipole radiates to the second dipole, which will also cause a serious problem of port mutual coupling, which will affect the radiation characteristics of the entire base station antenna.
  • the filter device may be located between the first vibrator and the second vibrator, so as to filter out the electromagnetic wave signal radiated from the first vibrator to the second vibrator.
  • the filter device has high transmittance to signals in the channel frequency band, and will not affect the transmission of the electromagnetic wave signal of the second vibrator.
  • the orientation of the filter device can be reasonably set so that the first end of the façade frequency selection structure in the filter device points to the direction of the second end, which is roughly consistent with the radiation direction of the electromagnetic wave signal emitted by the first vibrator, as long as the electromagnetic wave signal can be emitted to the inside of the façade frequency selection structure. In this way, the signal in the passband frequency band can pass through the filter device, and the out-of-band signal is reflected by the filter device, thereby ensuring that the filter device can filter the electromagnetic wave signal emitted by the first vibrator.
  • setting methods 1 to 3 are taken as examples to illustrate the specific setting methods of the filtering device. In practical applications, specific application scenarios of the filtering device can be set according to actual needs, which is not limited here.
  • the embodiment of the present application further provides a base station device, where the base station device may include: any base station antenna described above, and a power supply, where the power supply is used to supply power to the base station antenna. Since the above-mentioned base station antenna can effectively filter out-of-band signals and prevent the out-of-band signals from entering the receiving end of the base station antenna, thereby preventing the out-of-band signals from interfering with the signals of the base station antenna, the quality of signals transmitted by the base station equipment including the base station antenna is also better.
  • FIG. 1 is a schematic diagram of communication between a base station antenna and a terminal
  • FIG. 2 is a schematic structural diagram of a filter device provided in an embodiment of the present application.
  • Fig. 3 is the schematic structural diagram of the intermediate frequency selection unit of the filtering device shown in Fig. 2;
  • Fig. 4 is a structural schematic diagram of the frequency selection structure of the neutral surface of the frequency selection unit shown in Fig. 3;
  • Fig. 5 is the schematic diagram of the frequency response curve of the frequency selection unit shown in Fig. 3;
  • FIG. 6 is another structural schematic diagram of the filtering device in the embodiment of the present application.
  • FIG. 7 is another structural schematic diagram of a filtering device provided in an embodiment of the present application.
  • Fig. 8 is a structural schematic diagram of an intermediate frequency selection unit of the filtering device shown in Fig. 7;
  • Fig. 9 is a schematic diagram of the frequency response curve of the frequency selection unit shown in Fig. 8.
  • Fig. 10 is a schematic diagram of the comparative structure of the frequency selection unit of the non-dislocation setting and the frequency selection unit of the dislocation setting;
  • Fig. 11 is a comparative schematic diagram of the frequency response curves of the frequency selection unit of the non-displacement setting and the frequency selection unit of the dislocation setting;
  • Fig. 12 is the structural representation of band-pass type equivalent circuit
  • Fig. 13 is a structural schematic diagram of a band-resistance equivalent circuit
  • Fig. 14 is a schematic diagram of the equivalent principle of the frequency selection structure of the neutral surface of the frequency selection unit shown in Fig. 8;
  • Figure 15 is a schematic diagram of the equivalent principle of the planar frequency selection structure located at the first end of the facade frequency selection structure in the frequency selection unit shown in Figure 8;
  • Figure 16 is a schematic diagram of the equivalent principle of the plane frequency selection structure located at the second end of the facade frequency selection structure in the frequency selection unit shown in Figure 8;
  • Fig. 17 is a schematic diagram of the equivalent principle of the frequency selection unit shown in Fig. 8;
  • Fig. 18 is another structural schematic diagram of the frequency selection unit in the embodiment of the present application.
  • Fig. 19 is a schematic diagram of the size design of the frequency selection unit shown in Fig. 18;
  • Fig. 20 is a schematic diagram of the equivalent principle of the frequency selection unit shown in Fig. 18;
  • Fig. 21 is a schematic diagram of the manufacturing process of each facade frequency selection structure in the filtering device.
  • Fig. 22 is a schematic structural diagram of multiple facade frequency selection structures in the embodiment of the present application.
  • FIG. 23 is a schematic diagram of a partial structure of a filtering device provided in an embodiment of the present application.
  • Fig. 24 is a schematic diagram of the frequency response curve of the frequency selection unit shown in Fig. 18;
  • 25 is a schematic diagram of the frequency response curves of the frequency selection unit when the first conductive pattern (or the second conductive pattern) uses different materials;
  • Fig. 26 is a schematic diagram of frequency response curves of frequency selection units of different orders
  • FIG. 27 is a schematic structural diagram of a first conductive pattern in an embodiment of the present application.
  • FIG. 28 is another structural schematic diagram of the first conductive pattern in the embodiment of the present application.
  • FIG. 29 is another schematic structural view of the first conductive pattern in the embodiment of the present application.
  • FIG. 30 is a schematic structural diagram of the facade frequency selection structure in the embodiment of the present application.
  • FIG. 31 is a schematic structural diagram of a second conductive pattern in an embodiment of the present application.
  • FIG. 32 is a schematic structural diagram of a second conductive pattern in an embodiment of the present application.
  • FIG. 33 is a schematic structural diagram of a base station antenna provided in an embodiment of the present application.
  • FIG. 34 is another schematic structural diagram of a base station antenna provided in an embodiment of the present application.
  • Fig. 35 is a schematic structural diagram of an antenna array in an embodiment of the present application.
  • the base station antenna provided in the embodiment of the present application can be applied to various communication systems.
  • the communication system can be: long term evolution (LTE for short) system, fifth generation (5th Generation, 5G) communication system, sixth generation (6th Generation, 6G) communication system, global system of mobile communication (GSM for short) system, code division multiple access (code division multiple access for short) CDMA) system, wideband code division multiple access (WCDMA) system, general packet radio service (GPRS) system, LTE time division duplex (TDD) system, universal mobile telecommunications system (UMTS), global microwave access (worldwide interoperability for microwave access, WiMAX for short) communication system, etc.
  • LTE long term evolution
  • 5G fifth generation
  • 6G sixth generation
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet radio service
  • UMTS universal mobile telecommunications system
  • the base station antenna can be installed on the top of the iron tower or on the top floor, etc.
  • the base station antenna can include a transmitting end and a receiving end, which can transmit signals to the terminal or receive signals sent by the terminal. Therefore, the base station antenna can perform signal transmission with the terminal.
  • the base station antenna mainly includes components such as an antenna array, a reflector, and a feed network.
  • the antenna array is an array structure formed by a plurality of oscillators
  • the feed network is a network structure used to transmit signals to the antenna array.
  • the reflector can be a metal plate that carries the antenna array and the feed network, and the reflector can gather and reflect signals to the receiving point.
  • the out-of-band signal refers to a signal outside the frequency band required for communication transmission, and the out-of-band signal may be a signal radiated by an antenna inside the base station antenna, or a signal radiated by an external communication device.
  • the antenna array In a base station antenna, the antenna array generally includes multiple oscillators, and there is often energy transfer between different oscillators.
  • the introduction of out-of-band signals will cause the actual communication of the antenna to be distorted, the communication quality will deteriorate seriously, and the actual experience of the user terminal will be reduced.
  • the passive intermodulation problem is mainly caused by the mutual modulation of signals of different frequencies.
  • components such as radio frequency devices, cables, and fastening screws at the base station, and these components often have defects such as unreliable contact, corrosion, aging, and looseness.
  • Passive intermodulation problems arise when these defective components are excited by out-of-band signals at the transmit end of the antenna.
  • the generation of passive intermodulation problems will lead to problems such as call crosstalk, sensitivity reduction of the receiving end of the base station antenna, and signal distortion (such as network freeze or interruption).
  • embodiments of the present application provide a filtering device, a base station antenna, and base station equipment.
  • FIG. 2 is a schematic structural diagram of the filtering device provided in the embodiment of the present application.
  • the filtering device may include: a plurality of frequency selection units 200 .
  • FIG. 3 is a schematic structural diagram of a frequency selection unit in the filter device shown in FIG. 2 .
  • each frequency selection unit 200 may include: a facade frequency selection structure 21 and a planar frequency selection structure 22 .
  • the façade frequency selection structure 21 is cylindrical, and the façade frequency selection structure 21 includes a first end 21a and a second end 21b oppositely arranged.
  • Each frequency selection unit 200 is provided with a planar frequency selection structure 22 at least at the first end 21a of the façade frequency selection structure 21.
  • the façade frequency selection structure 21 may include: a first dielectric substrate 211, and at least two first conductive patterns 212 positioned on the surface of the first dielectric substrate 211, each first conductive pattern 212 in the façade frequency selection structure 21 is isolated, the first dielectric substrate 211 is used to enclose the façade frequency selection structure 21, and each first conductive pattern 212 is used for filtering.
  • the planar frequency selection structure 22 may include: a second dielectric substrate 221, and at least one second conductive pattern 222 on the surface of the second dielectric substrate 221, and each second conductive pattern 222 is used for filtering.
  • the filtering device includes a plurality of frequency selection units, and each frequency selection unit includes a vertical frequency selection structure and a plane frequency selection structure.
  • the façade frequency selection structure is provided with a first conductive pattern with a filtering effect
  • the plane frequency selection structure is provided with a second conductive pattern with a filtering effect
  • the façade frequency selection structure is cylindrical
  • the frequency selection unit is provided with a plane frequency selection structure at least at the first end of the façade frequency selection structure, and at least two first conductive patterns are arranged in the façade frequency selection structure. Therefore, the filtering device can provide different polarization directions and can achieve a three-dimensional filtering effect.
  • the signal in the passband frequency band required by the filter device can have a higher transmittance, and the out-of-band signal can have a higher cut-off rate.
  • Applying the filter device in the embodiment of the present application to the base station antenna can effectively filter out-of-band signals and prevent the out-of-band signals from entering the receiving end of the base station antenna, thereby preventing the out-of-band signals from interfering with the signals of the base station antenna.
  • the façade frequency selection structure is cylindrical, that is, the inside of the frequency selection unit is hollow, and both the façade frequency selection structure and the planar frequency selection structure include dielectric substrates and conductive patterns.
  • the structure of the frequency selection unit is relatively simple, which makes the filter device thinner and lighter in weight.
  • each frequency selection unit 200 can be set to be placed in the same orientation, that is, each frequency selection unit 200 can be arranged according to the direction in which the first end 21a of the façade frequency selection structure 21 points to the second end 21b.
  • the filter device in the embodiment of the present application to the base station antenna, the direction in which the first end 21a of the façade frequency selection structure 21 points to the second end 21b can be set to be roughly consistent with the radiation direction of the antenna signal.
  • the antenna signal can be radiated to the frequency selection unit 200 along the direction shown by arrow J in FIG. 3 , and the out-of-band signal can be filtered out through the filtering effect of the frequency selection unit 200.
  • multiple frequency selection units 200 in the filter device can be arranged in a plane perpendicular to the first direction F1, and the first direction F1 is consistent with the direction in which the first end 21a of the façade frequency selection structure 21 points to the second end 21b.
  • the multiple frequency selection units 200 in the filter device can be arranged in an array along the second direction F2 and the third direction F3, and the second direction F2 and the third direction F3 can be perpendicular to the first direction F1.
  • the multiple frequency selection units 200 in the filtering device may also be arranged in other ways, which is not limited here.
  • the multiple frequency selective units in the filter device can be divided into multiple frequency selective unit layers, each frequency selective unit layer can include multiple frequency selective units, and each frequency selective unit in each frequency selective unit layer can be arranged in the same plane, for example, each frequency selective unit in each frequency selective unit layer can be arranged according to the manner shown in Figure 2.
  • each frequency selection unit 200 may only be provided with a plane frequency selection structure 22 at the first end 21 a of the elevation frequency selection structure 21 .
  • each frequency selection unit may also be provided with plane frequency selection structures at the first end and the second end of the facade frequency selection structure, which may be set according to actual needs.
  • the first conductive pattern can be located on the inner surface and/or outer surface of the first dielectric substrate, that is, the first conductive pattern can be arranged on the inner surface of the first dielectric substrate; or, the first conductive pattern can be arranged on the outer surface of the first dielectric substrate; or, the first conductive pattern can be arranged on both the inner surface and the outer surface of the first dielectric substrate.
  • the second conductive pattern can be located on the inner surface and/or outer surface of the second dielectric substrate, that is, the second conductive pattern can be arranged on the inner surface of the second dielectric substrate; or, the second conductive pattern can be arranged on the outer surface of the second dielectric substrate; or, the second conductive pattern can be arranged on both the inner surface and the outer surface of the second dielectric substrate.
  • the first conductive pattern 212 is located on the inner surface of the first dielectric substrate 211
  • the second conductive pattern 222 is located on the inner surface of the second dielectric substrate 221.
  • the first dielectric substrate 211 and the second dielectric substrate 221 are shown as transparent in FIG.
  • Fig. 4 is a structural schematic diagram of the façade frequency selection structure in the frequency selection unit shown in Fig. 3.
  • the inner surface and the outer surface of the façade frequency selection structure 21 in Fig. 4 are illustrated with different fillings. It can be seen from Fig. 4 that the first dielectric substrate 211 surrounds the façade frequency selection structure 21, so that the façade frequency selection structure 21 is cylindrical.
  • the above-mentioned first dielectric substrate can be an insulating material.
  • the first dielectric substrate can be a material with a dielectric constant in the range of 1.1 to 10.
  • the first dielectric substrate can be foam, polyethylene terephthalate (polyethylene glycol terephthalate, PET), polyimide (Polyimide, PI), a flame-resistant material with a grade of FR4 (such as a composite material of epoxy resin, filler and glass fiber), At least one of aramid paper, DuPont paper, plastic, ceramics.
  • the first conductive pattern may include: a metal material, for example, the metal material may be at least one of copper, aluminum, and silver.
  • the second dielectric base material can be insulating material, optionally, the second dielectric base material can be the material of dielectric constant in the range of 1.1 ⁇ 10, for example, the second dielectric base material can be foam, polyethylene terephthalate (polyethylene glycol terephthalate, PET), polyimide (Polyimide, PI), grade is the flame-resistant material of FR4 (for example can be the composite material of epoxy resin, filler and glass fiber), aramid paper, DuPont paper, At least one of plastic and ceramics.
  • the second conductive pattern may include: a metal material, for example, the metal material may be at least one of copper, aluminum, and silver.
  • the façade frequency selection structure 21 may include a first conductive pattern 212
  • the planar frequency selection structure 22 may include a second conductive pattern 222 .
  • the electric field can polarize the electrons on the surface of the first conductive pattern 212 (or the second conductive pattern 222), so as to generate a certain characteristic current distribution on the surface of the first conductive pattern 212 (or the second conductive pattern 222), so that the surface of the first conductive pattern 212 (or the second conductive pattern 222) has a certain inductance, and the thinner the pattern trace of the first conductive pattern 212 (or the second conductive pattern 222), the greater the inductance generated by the pattern trace.
  • the slit of the first conductive pattern 212 (or the second conductive pattern 222 ) is polarized by the electric field, which will generate a certain capacitance effect, and the narrower the slit, the greater the capacitance will be. Therefore, the first conductive pattern 212 (or the second conductive pattern 222) can be equivalent to include capacitance and inductance, so that the first conductive pattern 212 (or the second conductive pattern 222) has a resonance response characteristic, that is, the first conductive pattern 212 (or the second conductive pattern 222) can have a band-pass or band-stop filter characteristic, so that signals within the set frequency range can pass through, and signals outside the set frequency range cannot pass through, so that the frequency selection unit 200 has a filtering function.
  • the specific structures of the first conductive pattern 212 and the second conductive pattern 222 in each frequency selection unit 200 can be set according to the passband frequency band corresponding to the filter device.
  • the first conductive pattern 212 in the façade frequency selection structure 21 is isolated from the second conductive pattern 222 in the plane frequency selection structure 22, so that the façade frequency selection structure 21 and the plane frequency selection structure 22 form a capacitive connection, so that through the capacitive coupling between the façade frequency selection structure 21 and the plane frequency selection structure 22, the filter device has a higher transmittance to signals in the passband frequency band and a higher cut-off rate to out-of-band signals.
  • the first conductive patterns 212 in the façade frequency selection structure 21 are arranged in isolation, so that any two adjacent first conductive patterns 212 form a capacitive connection, so that the façade frequency selection structure 21 has a band-stop resonance characteristic.
  • the filter device in the embodiment of the present application can make the transmittance of the signal in the passband frequency band higher and the cutoff rate of the out-of-band signal higher, which can be reflected by parameters such as cutoff frequency roll-off rate and squareness coefficient.
  • the cut-off frequency roll-off rate refers to the drop rate of the electromagnetic signal from the pass band to the stop band
  • the squareness coefficient refers to the closeness of the frequency response curve of the bandpass filter to the ideal rectangle.
  • the shape of the ideal frequency response curve should be a rectangle, but there is a certain difference between the shape of the actual frequency response curve and the rectangle. The closer the squareness coefficient is to 1, the closer the shape of the frequency response curve is to a rectangle, and the stronger the ability of the filtering device to filter out interference signals in the adjacent channel frequency band.
  • Fig. 5 is a schematic diagram of the frequency response curve of the frequency selection unit shown in Fig. 3.
  • the curve S1 in the figure is the relationship curve between the transmittance and the frequency
  • the curve S2 is the relationship curve between the reflectivity and the frequency.
  • the low frequency cut-off frequency roll-off rate of the frequency selection unit is relatively high, so that the filtering device has better out-of-band suppression performance.
  • the shape of the curve S1 is close to a rectangle, which makes the filter device have a higher squareness factor, and therefore, the filter device has a stronger ability to filter out interference signals in adjacent channel frequency bands.
  • the frequency selection unit has low insertion loss and large bandwidth in the passband frequency band.
  • the cross-sectional shape of the façade frequency selection structure 21 perpendicular to the first direction F1 may be a polygon, wherein the first direction F1 is the direction in which the first end 21a of the façade frequency selection structure 21 points to the second end 21b.
  • the façade frequency selection structure 21 shown in FIG. 3 has a quadrilateral cross-sectional shape perpendicular to the first direction F1.
  • the façade frequency selection structure 21 may also have a triangular, pentagonal, hexagonal, etc.
  • Fig. 6 is another schematic structural diagram of the filter device in the embodiment of the present application.
  • the cross-sectional shape of the façade frequency selection structure 21 perpendicular to the first direction F1 may also be circular, that is, the façade frequency selection structure 21 may be a hollow cylinder.
  • the cross-sectional shape of the façade frequency selection structure 21 perpendicular to the first direction F1 may also be an ellipse or other shapes, which are not limited here.
  • the façade frequency selection structure 21 is hollow cylindrical, and the cross-sectional shape of the above-mentioned façade frequency selection structure perpendicular to the first direction refers to the shape of the contour obtained by using the plane cross-section vertical frequency selection structure perpendicular to the first direction.
  • the cross-sectional shape of the façade frequency selection structure 21 perpendicular to the first direction F1 is a polygon, wherein the first direction F1 is the direction in which the first end 21a of the façade frequency selection structure 21 points to the second end 21b.
  • the façade frequency selection structure 21 is provided with a first conductive pattern 212 on at least two adjacent sides, and the distance between the two first conductive patterns 212 located on the two adjacent sides is relatively close. An equivalent capacitance will be generated between the two first conductive patterns 212, and a resonant response will be generated through capacitive coupling, thereby enhancing the filtering effect.
  • the first conductive pattern 212 can be provided on a part of the side surfaces of the façade frequency selection structure 21, and the first conductive pattern 212 can also be provided on each side of the façade frequency selection structure 21, which is not limited here.
  • Fig. 7 is another schematic structural view of the filter device provided by the embodiment of the present application.
  • Fig. 8 is a schematic structural view of the frequency selection unit in the filter device shown in Fig. 7.
  • each side of the façade frequency selection structure 21 is provided with a first conductive pattern 212 as an example.
  • which sides need to be provided with the first conductive pattern 212 can be determined according to needs, which is not limited here.
  • Multiple frequency selection units 200 in the filter device may be arranged in an array in a plane perpendicular to the first direction F1, which is the direction in which the first end 21a of the façade frequency selection structure 21 points to the second end 21b.
  • Multiple frequency selection units 200 share the same plane frequency selection structure 22 at the first end 21a; and/or, multiple frequency selection units 200 share the same plane frequency selection structure 22 at the second end 21b. That is to say, multiple frequency selection units 200 can only share the same plane frequency selection structure 22 at the first end 21a; or, multiple frequency selection units 200 can only share the same plane frequency selection structure 22 at the second end 21b; For example, in FIG. 7 , a plurality of frequency selection units 200 share the same plane frequency selection structure 22 at the first end 21 a and share the same plane frequency selection structure 22 at the second end 21 b as an example for illustration.
  • a plurality of frequency selection units 200 sharing the same plane frequency selection structure 22 at the first end 21a (or second end 21b) means that the second dielectric substrate 221 of the plane frequency selection structure 22 in each frequency selection unit 200 is an integrated structure, and the second conductive pattern 222 of the plane frequency selection structure 22 in each frequency selection unit 200 is not connected into an integral structure. , the second conductive patterns 222 of the planar frequency selection structures 22 in several adjacent frequency selection units 200 may be connected to each other.
  • a plurality of second conductive patterns 222 can be fabricated on the same second dielectric substrate 221, and then the fabricated planar frequency selection structure 22 is installed on the first end 21a or the second end 21b of the vertical frequency selection structure 21, so that the manufacturing process is simple and the manufacturing cost is low.
  • the second conductive patterns 222 in the shared planar frequency selection structure 22 can be arranged periodically, and the period of each second conductive pattern 222 in the shared planar frequency selection structure 22 can be consistent with the period of each frequency selection unit 200, or inconsistent with the period of each frequency selection unit 200, which is not limited here.
  • FIG. 9 is a schematic diagram of the frequency response curve of the frequency selection unit shown in FIG. 8.
  • the curve S3 is the relationship curve between the transmittance and the frequency
  • the curve S4 is the relationship curve between the reflectivity and the frequency.
  • the part of the curve S3 where the transmittance is close to 0 corresponds to the passband frequency, the frequency range smaller than the passband frequency is low frequency, and the frequency range greater than the passband frequency is high frequency. It can be clearly seen from the figure that the roll-off rate of the low-frequency cut-off frequency of the frequency selection unit is greater than 100dB/GHz, and the roll-off rate of the high-frequency cut-off frequency is greater than 100dB/GHz.
  • the roll-off rate of the high-frequency cut-off frequency or the roll-off rate of the low-frequency cut-off frequency is about 3dB/GHz, that is, the roll-off rate of the high-frequency cut-off frequency and the low-frequency cut-off frequency of the frequency selection unit in the embodiment of the application are relatively high, so that the filtering device has better out-of-band suppression performance.
  • the slope of the curve S3 in the high frequency band is steeper, which makes the filter device have a higher square coefficient, so the filter device has a stronger ability to filter out interference signals in adjacent channel frequency bands.
  • the frequency selection unit has low insertion loss and large bandwidth in the passband frequency band. For example, the insertion loss in the passband frequency band can be lower than 0.2dB, and the frequency range of the passband frequency band is 3.2GHz-4.2GHz.
  • Fig. 10 is a schematic diagram of the comparative structure of a non-displaced frequency selection unit and a dislocated frequency selection unit. As shown in Fig. 10, in the frequency selection unit 200 on the left side of the figure, the edge of the second conductive pattern 222 is basically flush with the edge of the façade frequency selection structure 21; Figure 11 is a schematic diagram of the comparison of the frequency response curves of the non-displaced frequency selection unit and the dislocated frequency selection unit.
  • the curve S5 is the relationship between the transmittance and frequency of the non-displaced frequency selection unit
  • the curve S5' is the relationship between the transmittance and the frequency of the frequency selection unit with a displacement
  • the curve S6 is the reflectivity and frequency of the non-displaced frequency selection unit
  • the curve S6' is the frequency selection of the displacement.
  • the relationship curve of the unit Comparing the curve S5 and the curve S5', and the curve S6 and the curve S6', it can be seen that the shapes of the curve S5 and the curve S5' are basically the same, and the shapes of the curve S6 and the curve S6' are basically the same, and the slopes of the curve S5 and the curve S5' are relatively steep.
  • the prepared planar frequency selection structure can be installed on the first end or the second end of the façade frequency selection structure.
  • the alignment accuracy requirements for the second conductive pattern and the façade frequency selection structure are relatively low, so that the manufacturing cost is low, and the robustness of the manufacturing process is good.
  • the total impedance of the frequency selection unit can be determined according to formula (1):
  • Z represents the total impedance of the frequency selection unit
  • R represents the resistance
  • j represents the imaginary number unit
  • represents the angular frequency
  • L represents the inductance
  • C represents the capacitance.
  • the frequency selection unit can be equivalent to an equivalent circuit composed of multiple inductors and multiple capacitors.
  • FIG. 12 is a schematic structural diagram of a band-pass equivalent circuit. As shown in FIG. 12 , connecting an inductor L and a capacitor C in parallel can form a band-pass equivalent circuit.
  • FIG. 13 is a schematic structural diagram of a band-stop equivalent circuit. As shown in FIG. 13 , connecting an inductor L and a capacitor C in series can form a band-stop equivalent circuit.
  • specific patterns of the first conductive pattern and the second conductive pattern can be set according to the total impedance required by the frequency selection unit.
  • FIG. 14 is a schematic diagram of the equivalent principle of the façade frequency selection structure in the frequency selection unit shown in FIG. 8.
  • the surface of the first conductive pattern 212 can be equivalent to an inductance L, and the gap between two adjacent first conductive patterns 212 can be equivalent to a capacitance C.
  • two adjacent first conductive patterns 212 in the facade frequency selection structure are taken as an example.
  • the equivalent principle is similar to that shown in FIG. Resistance equivalent circuit.
  • the values of the inductance L and the capacitance C equivalent to the first conductive pattern 212 can be designed, thereby parameters such as the resonant frequency of the facade frequency selection structure can be designed, for example, the resonant frequency can be determined according to formula (2):
  • f R represents the resonant frequency
  • L represents the inductance
  • C represents the capacitance
  • the surface of the second conductive pattern 222 can be equivalent to an inductance L, and the gap in the second conductive pattern 222 can be equivalent to a capacitor C, so that the planar frequency selection structure is equivalent to an equivalent sub-circuit T2, and the equivalent sub-circuit T2 is a band-stop type equivalent circuit.
  • FIG. 16 is a schematic diagram of the equivalent principle of the planar frequency selection structure located at the second end of the façade frequency selection structure in the frequency selection unit shown in FIG. 8.
  • the surface of the second conductive pattern 222 can be equivalent to an inductance L
  • the gap in the second conductive pattern 222 can be equivalent to a capacitor C
  • the planar frequency selection structure is equivalent to an equivalent sub-circuit T3
  • the equivalent sub-circuit T3 is a band-pass equivalent circuit.
  • Fig. 17 is a schematic diagram of the equivalent principle of the frequency selection unit shown in Fig. 8.
  • the frequency selection unit can be equivalent to the equivalent circuit on the right side of Fig. 17, and the equivalent circuit can include equivalent subcircuits T1, T2 and T3 arranged in parallel, and the equivalent circuit can also include a resistor R.
  • the equivalent sub-circuit T1 is a band-stop equivalent circuit
  • the equivalent sub-circuit T2 is a band-stop equivalent circuit
  • the equivalent sub-circuit T3 is a band-pass equivalent circuit. Therefore, the equivalent circuit is obtained by combining the band-pass equivalent circuit and the band-stop equivalent circuit.
  • parameters such as the resonance frequency of the façade frequency selection structure and the plane frequency selection structure can be designed by setting the graphics of the first conductive pattern and the second conductive pattern, so that the filtering device can pass through the signals in the required passband frequency band and filter out out-of-band signals.
  • FIG. 18 is another structural schematic diagram of the frequency selection unit in the embodiment of the present application.
  • the frequency selection unit 200 can be provided with a planar frequency selection structure 22 at the first end 21a and the second end 21b of the facade frequency selection structure 21, and the cross-sectional shape of the facade frequency selection structure 21 perpendicular to the first direction F1 can be hexagonal.
  • each side of the façade frequency selection structure 21 is provided with a first conductive pattern 212 as an example. In actual implementation, which sides need to be provided with the first conductive pattern 212 can be determined according to needs, which is not limited here.
  • Figure 19 is a schematic diagram of the size design of the frequency selection unit shown in Figure 18, (1) in Figure 19 is a schematic diagram of the size design of the second conductive pattern, as shown in (1) in Figure 19, the second conductive pattern 222 can include a ring-shaped first conductive part 222a formed by patterned wiring with a certain width, the shape of the first conductive part 222a can be hexagonal, and the second conductive part 222b can be set in the area surrounded by the first conductive part 222a, and the second conductive part 222b can be block-shaped , There is a gap of a certain width between the first conductive portion 222a and the second conductive portion 222b.
  • the side length D1 of the first conductive portion 222a can be set within a range of 5mm ⁇ 25mm, and the gap g1 between the first conductive portion 222a and the second conductive portion 222b can be set within a range of 0.05mm ⁇ 4mm.
  • (2) in FIG. 19 is a schematic diagram of the size design of the first conductive pattern. As shown in (2) in FIG. 19 , the shape of the first conductive pattern 212 can be formed by bending a "several" shape. The width W1 of the pattern traces in the first conductive pattern 212 can be set within the range of 0.05 mm to 4 mm. The width W2 of the pattern traces in the first conductive pattern 212 can be set within the range of 0.1 mm to 4 mm.
  • the width W3 of the pattern traces in the first conductive pattern 212 can be set.
  • the length D2 of the traces in the first conductive pattern 212 can be set in the range of 1mm-20mm, and the length D3 of the traces in the first conductive pattern 212 can be set in the range of 2mm-25mm.
  • (3) in FIG. 19 is a schematic diagram of the size design of the side of the façade frequency selection structure. As shown in (3) in FIG.
  • the thickness t1 of the second conductive pattern 222 can be set in the range of 0.005 mm to 1 mm
  • the thickness t2 of the second dielectric substrate 221 can be set in the range of 0.05 mm to 5 mm
  • the thickness t3 of the façade frequency selection structure 21 can be set in the range of 2 mm to 50 mm.
  • FIG. 20 is a schematic diagram of the equivalent principle of the frequency selection unit shown in FIG. 18.
  • the equivalent circuit of the frequency selection unit may include equivalent subcircuits T4, T5 and T6 arranged in parallel, and the equivalent circuit may also include a resistor R.
  • the equivalent sub-circuit T4 is an equivalent circuit of the façade frequency selection structure, and the equivalent sub-circuit T4 is a band-stop type equivalent circuit.
  • the façade frequency selection structure provides a first-order filter response, which can improve the out-of-band signal suppression capability of the filter device and the bandwidth of the passband frequency band.
  • the equivalent subcircuit T5 is the equivalent circuit of the plane frequency selection structure positioned at the first end of the facade frequency selection structure
  • the equivalent subcircuit T6 is the equivalent circuit of the plane frequency selection structure positioned at the second end of the facade frequency selection structure
  • both the equivalent subcircuit T5 and the equivalent subcircuit T6 are band-pass equivalent circuits. Therefore, the equivalent circuit is obtained by combining the band-pass equivalent circuit and the band-stop equivalent circuit.
  • parameters such as the resonance frequency of the façade frequency selection structure and the plane frequency selection structure can be designed by setting the graphics of the first conductive pattern and the second conductive pattern, so that the filtering device can pass through the signals in the required passband frequency band and filter out out-of-band signals.
  • Fig. 21 is a schematic diagram of the manufacturing process of each facade frequency selection structure in the filter device.
  • a plurality of dielectric substrate units 212a and a plurality of dielectric substrate units 212b can be made first, and the dielectric substrate unit 212a or 212b is composed of a bent dielectric substrate and a plurality of first conductive patterns positioned on the surface of the dielectric substrate.
  • a plurality of first conductive patterns can be formed on the surface of the dielectric substrate, and then the dielectric substrate with the first conductive pattern is bent on the surface to obtain the dielectric substrate unit 212a or 2 12b.
  • the medium base material unit 212a and the medium base material unit 212b are combined and pasted together to form a row of facade frequency selection structures 21, and multiple rows of facade frequency selection structures 21 can be produced in the same way to obtain the structure shown in (2) in Figure 21, and (3) in Figure 21 is a partially enlarged schematic diagram of (2) in Figure 21.
  • the fabricated whole-surface planar frequency-selective structure can be installed on the first end and the second end of the vertical frequency-selective structure, thereby obtaining a filtering device.
  • the frequency selection unit 200a in FIG. 22 at least one frequency selection unit in the filter device has a first conductive pattern 212 on one side of the facade frequency selection structure 21, and the other side is not provided with the first conductive pattern 212.
  • the frequency selection unit 200b in FIG. 22 at least one frequency selection unit in the filter device has a first conductive pattern 212 on each side of the façade frequency selection structure 21 .
  • the filtering device comprises two adjacent frequency selection units, such as the frequency selection unit 200a and the frequency selection unit 200c in Fig.
  • the pattern 212 can provide different polarization directions to improve the filtering effect of the filtering device.
  • two adjacent sides belonging to different facade frequency selection structures 21 can be provided with two layers of the first dielectric substrate 211, or can share the same layer of the first dielectric substrate 211, which can be provided according to actual needs.
  • the two façade frequency selection structures 21 of two adjacent frequency selection units for example, the frequency selection unit 200b and the frequency selection unit 200d in FIG.
  • the two façade frequency selection structures 21 share the same layer of first dielectric substrate 211, and the first dielectric substrate 211 may be provided with the first conductive pattern 212 on only one surface, or may be provided with the first conductive pattern 212 on the surfaces of both sides, which can be set according to actual needs.
  • the multiple frequency selective units in the filtering device may include at least two layers of frequency selective units, and each layer of frequency selective units may include multiple frequency selective units.
  • FIG. 23 is a schematic diagram of a partial structure of a filtering device provided by an embodiment of the present application. As shown in FIG. 23 , two adjacent frequency selection units 200 located in different frequency selection unit layers share the same plane frequency selection structure 22 . In this way, one layer of planar frequency selection structure 22 can be saved, and the production cost can be saved.
  • the curve S7 is the relationship curve between the transmittance and the frequency
  • the curve S8 is the relationship curve between the reflectivity and the frequency.
  • the part where the transmittance is close to 0 corresponds to the passband frequency
  • the frequency range smaller than the passband frequency is low frequency
  • the frequency range greater than the passband frequency is high frequency.
  • the roll-off rate of the low-frequency cut-off frequency of the frequency selection unit is about 15dB/GHz
  • the roll-off rate of the high-frequency cut-off frequency is more than 100dB/GHz.
  • the roll-off rate of the high-frequency cut-off frequency or the low-frequency cut-off frequency is about 3dB/GHz. That is, the roll-off rate of the high-frequency cut-off frequency and the low-frequency cut-off frequency of the frequency selection unit in the embodiment of the present application are relatively high, so that the filtering device has better out-of-band suppression performance. Moreover, the slope of the curve S7 in the high frequency band is steeper, which makes the filter device have a higher square coefficient. Therefore, the filter device has a stronger ability to filter out interference signals in adjacent channel frequency bands.
  • the frequency selection unit has low insertion loss and large bandwidth in the passband frequency band, for example, can make the insertion loss in the passband frequency band lower than 0.2dB, and the frequency range of the passband frequency band is 3.2GHz-4.2GHz.
  • the curve S9 is the relationship curve between the transmittance and the frequency when the material of the first conductive pattern (or the second conductive pattern) is aluminum
  • the curve S10 is the relationship curve between the transmittance and the frequency when the material of the first conductive pattern (or the second conductive pattern) is copper
  • the curve S11 is the relationship between the transmittance and the frequency when the material of the first conductive pattern (or the second conductive pattern) is silver. 0 and S11, it can be seen that when the material of the first conductive pattern (or the second conductive pattern) is aluminum, copper or silver, the square coefficient of the filter device is higher, and thus the filter effect of the filter device is better.
  • curve S12 is the relationship curve between transmittance and frequency of the filtering device shown in FIG.
  • the order of the filtering device can be determined according to the number of capacitor-inductor combinations in the equivalent circuit. Referring to FIG. 20, the equivalent circuit of the filter device shown in FIG. Comparing the curves S12, S13 and S14, it can be seen that the slope of the frequency response curve of the filtering device in the embodiment of the present application is steeper, therefore, the square coefficient of the filtering device in the embodiment of the present application is higher, and the bandwidth of the filtering device in the embodiment of the present application is relatively large, therefore, the filtering effect of the filtering device in the embodiment of the present application is better.
  • FIG. 27 is a schematic structural diagram of the first conductive pattern in the embodiment of the present application
  • FIG. 28 is another schematic structural diagram of the first conductive pattern in the embodiment of the present application
  • FIG. 29 is a schematic structural diagram of another first conductive pattern in the embodiment of the present application.
  • the track formed by the first conductive pattern 212 has no intersection point.
  • the trace formed by the first conductive pattern 212 may be an open graph.
  • the track formed by the first conductive pattern 212 may be a closed figure.
  • the first conductive pattern 212 shown in FIG. 27 and FIG. 28 is an electrical resonance unit, and the first conductive pattern 212 is a band-stop pattern structure, and the relationship between the resonant wavelength of the first conductive pattern 212 and its geometric length satisfies the formula (3):
  • m ⁇ 1, m is an integer
  • L 0 represents the geometric length of the first conductive pattern
  • ⁇ R represents the resonant wavelength
  • the above formula (3) needs to further consider the equivalent dielectric constant ⁇ r_eff of the first dielectric substrate and air, that is, the above formula (3) can be modified into formula (4):
  • the first conductive pattern 212 when m is an odd number, the first conductive pattern 212 is an open figure.
  • the first conductive pattern 212 can be in the shape of " ⁇ ". In specific implementation, the first conductive pattern 212 can also be other open figures, which are not limited here.
  • the first conductive pattern 212 when m is an even number, the first conductive pattern 212 is a closed figure.
  • the first conductive pattern 212 can be oval.
  • the first conductive pattern 212 can also be a closed figure of other shapes such as a circle or a rectangle, which is not limited here.
  • the geometric length of the first conductive pattern to be designed can be inversely obtained, and then the specific shape of the first conductive pattern can be designed.
  • the first conductive pattern 212 shown in FIG. 29 is a magnetic resonance unit, and the first conductive pattern 212 is a band-stop pattern structure.
  • the resonant wavelength of the first conductive pattern 212 no longer follows the principle of half-wavelength resonance, and its resonance mainly depends on self-resonance, that is, the inductance and capacitance generated by the structure of the first conductive pattern 212. Therefore, by setting the capacitance value reasonably, the geometric length of the first conductive pattern 212 can be much smaller than the resonance wavelength. :
  • the geometric length of the first conductive pattern to be designed can be inversely obtained, and then the specific shape of the first conductive pattern can be designed.
  • the first conductive pattern 212 may include: a first line segment P1, a second line segment P2, and a first connection portion P3.
  • the area surrounded by the first connection portion P3 is a non-closed area.
  • the first connection portion P3 has a first end portion P3a and a second end portion P3b.
  • the second line segment P2 extends to the inside of the area surrounded by the first connecting portion P3, and there is a gap between the first line segment P1 and the second line segment P2. That is to say, the first conductive pattern 212 is an open pattern, and the distance between the two ends of the pattern of the first conductive pattern 212 is relatively close, thereby forming a magnetic resonance unit.
  • Figure 30 is a structural schematic diagram of the facade frequency selection structure in the embodiment of the present application. As shown in Figure 30, a plurality of first conductive patterns 212 can be provided on one side of the facade frequency selection structure 21. In the figure, three first conductive patterns 212 are provided on each side as an example.
  • the second conductive pattern 222 may include: a first conductive portion 222a and a second conductive portion 222b, the first conductive portion 222a is ring-shaped, and the first conductive portion 222a surrounds the second conductive portion 222b.
  • the first conductive part 222a can be a circular figure of any shape such as a circle, an ellipse, a polygon, etc.
  • the second conductive part 222b can be a figure of any shape such as a block shape or a ring shape, which is not limited here.
  • the second conductive pattern 222 may include: a plurality of conductive blocks 222c and a plurality of second connecting parts 222d, each second connecting part 222d is connected to two conductive blocks 222c, and the plurality of second connecting parts 222d are connected to each other.
  • a plurality of second connecting portions 222d By providing a plurality of second connecting portions 222d, a plurality of discrete conductive blocks 222c can be connected, and each second connecting portion 222d is located in an area surrounded by each conductive block 222c in the second conductive pattern 222 .
  • the edge of the conductive block 222c can be set in a concave-convex shape, so that the edge of the conductive block 222c can be embedded in the edge of other adjacent conductive blocks 222c, thereby increasing the length of the gap between adjacent conductive blocks 222c and enhancing the capacitive coupling effect.
  • the shapes of the conductive block 222c and the second connecting portion 222d can be set according to actual needs, which is not limited here.
  • FIG. 33 is a schematic structural diagram of the base station antenna provided in the embodiment of the present application.
  • the filter device has a high transmittance for signals in the required passband frequency band and a high cut-off rate for out-of-band signals
  • the base station antenna including the filter device can effectively filter out the out-of-band signals and prevent the out-of-band signals from entering the receiving end of the base station antenna, thereby preventing the out-of-band signals from interfering with the signals of the base station antenna.
  • the base station antenna may further include: a radome 32 .
  • the base station antenna is easily affected by the environment.
  • the antenna base station used outdoors usually works in an open-air environment, so that the antenna base station is vulnerable to erosion in nature such as storms, ice, snow, sand, and solar radiation.
  • the radome 32 can withstand the effects of external harsh environments in terms of mechanical performance, and can protect the antenna base station from external environmental influences, ensuring that the antenna base station has high antenna accuracy, long life and high operating reliability.
  • the radome 32 has better electromagnetic wave penetration in terms of electrical performance, and will not affect the transmission of the electromagnetic wave signal emitted by the antenna array 31 .
  • the filter device 2 may be located between the antenna array 31 and the radome 32 .
  • the antenna array 31 can be an array structure formed by a plurality of vibrators 311, which can emit electromagnetic wave signals of a certain frequency.
  • the orientation of the filter device 2 can be set reasonably so that the first end of the filter device 2 is directed to the direction of the second end, which is roughly consistent with the radiation direction of the electromagnetic wave signal emitted by the antenna array 31.
  • the filter device 2 can filter the electromagnetic wave signal emitted by the antenna array 31, so that the filter device 2 can be used as a space electromagnetic wave transparent window.
  • the antenna base station can also include: a circuit board 33, a reflector 34, and a radiator 35.
  • the circuit board 33 can be a printed circuit board (Printed Circuit Board, PCB), and the reflector 34 can carry the antenna array 31.
  • the reflector 34 can be a metal plate, and the reflector 34 can gather and reflect signals to the receiving point.
  • the radiator 35 can play the role of heat dissipation.
  • FIG. 34 is another schematic structural diagram of the base station antenna provided by the embodiment of the present application.
  • the base station antenna may also include a radome 32.
  • the performance and function of the radome 32 can refer to the description in setting mode 1, and will not be repeated here.
  • the filtering device 2 can be integrated inside the radome 32, which can make the base station antenna more integrated and more concise in structure.
  • the orientation of the filtering device 2 can be reasonably set so that the first end of the neutral surface frequency selection structure of the filtering device 2 points to the direction of the second end, which is roughly consistent with the radiation direction of the electromagnetic wave signal emitted by the antenna array 31, as long as the electromagnetic wave signal can be shot to the inside of the facade frequency selection structure. window.
  • the antenna array may include: multiple first dipoles and multiple second dipoles, where the operating frequency of the first dipoles is lower than that of the second dipoles.
  • Figure 35 is the structural diagram of the antenna array in the application embodiment. As shown in Figure 35, the antenna array can include Zhenzi 311A, Zhenzi 311B and Zhenzi 311C. Among them, the working frequency of Zhenzi 311A is less than the operating frequency of Zhenzi 311B. Zhenzi 311A and Zhenzi 311b can be used as the first Zhenzi, and Zhenzi 311C can be used as the second Zhenzi.
  • the electromagnetic wave signal emitted by the first vibrator will radiate to the second vibrator.
  • the electromagnetic wave signals emitted by the vibrator 311a and the vibrator 311b can radiate to the vibrator 311c.
  • This part of the electromagnetic wave signal is an out-of-band signal for the second vibrator.
  • the electromagnetic wave signal of the first dipole radiates to the second dipole, which will also cause a serious problem of port mutual coupling, which will affect the radiation characteristics of the entire base station antenna.
  • the filter device may be located between the first vibrator and the second vibrator.
  • the filter device 2 may be disposed between the vibrator 311b and the vibrator 311c, so as to filter out the electromagnetic wave signal radiated from the vibrator 311a and the vibrator 311b to the vibrator 311c.
  • the filter device has high transmittance to signals in the channel frequency band, and will not affect the transmission of the electromagnetic wave signal of the second vibrator.
  • the orientation of the filtering device 2 can be reasonably set so that the first end of the neutral surface frequency selection structure of the filtering device 2 points to the direction of the second end, which is roughly consistent with the radiation direction of the electromagnetic wave signal emitted by the first vibrator, as long as the electromagnetic wave signal can be directed to the inside of the façade frequency selection structure.
  • the signal in the passband frequency band can pass through the filtering device 2, and the out-of-band signal is reflected by the filtering device 2, thereby ensuring that the filtering device 2 can filter the electromagnetic wave signal emitted by the first vibrator.
  • setting methods 1 to 3 are taken as examples to illustrate the specific setting methods of the filtering device. In practical applications, specific application scenarios of the filtering device can be set according to actual needs, which is not limited here.
  • an embodiment of the present application further provides a base station device, which may include: any base station antenna described above, and a power supply, where the power supply is used to supply power to the base station antenna. Since the above-mentioned base station antenna can effectively filter out-of-band signals and prevent the out-of-band signals from entering the receiving end of the base station antenna, thereby preventing the out-of-band signals from interfering with the signals of the base station antenna, the quality of signals transmitted by the base station equipment including the base station antenna is also better.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

本申请提供一种滤波装置、基站天线及基站设备,滤波装置包括: 多个频选单元,每一个频选单元包括: 立面频选结构和平面频选结构,立面频选结构为筒状,每一个频选单元至少在立面频选结构的第一端设有平面频选结构。立面频选结构包括: 第一介质基材,以及位于第一介质基材表面的至少两个隔离设置的第一导电图案,第一介质基材用于围成立面频选结构,每一个第一导电图案用于滤波。平面频选结构包括: 第二介质基材,以及位于第二介质基材表面的至少一个用于滤波的第二导电图案。立面频选结构与平面频选结构的滤波作用结合,可以使通带频段内的信号的透过率较高,带外信号的截止速率较高。将该滤波装置应用于基站天线中,可以有效滤除带外信号。

Description

一种滤波装置、基站天线及基站设备
相关申请的交叉引用
本申请要求在2022年01月24日提交中国专利局、申请号为202210077688.8、申请名称为“一种滤波装置、基站天线及基站设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种滤波装置、基站天线及基站设备。
背景技术
随着第五代移动通信技术(5th Generation Mobile Communication Technology,5G)的迅猛发展,为了实现万物互连的目标,越来越多的网络业务正在不断兴起。在此背景下,基站天线的性能也需要随之不断提升。
图1为基站天线与终端之间进行通信的示意图,如图1所示,基站天线101可以包括发射端Tx和接收端Rx,终端102可以为手机、平板电脑、笔记本电脑等设备。基站天线101与终端102之间可以进行信号传输,当基站天线101的发射端Tx将信号远距离传输至终端102时,由于经过很长的几何路径传输,使信号衰减较为严重。类似地,当信号被终端102接收后再传回至基站天线101的接收端Rx时,信号会再次衰减。使基站天线101的接收端Rx接收到的信号的功率本身较低。此外,在信号传输过程中,还可能会同时引入带外信号,带外信号指的是通信传输所需频带以外的信号,带外信号可以是基站天线内部的天线辐射的信号,也可以是外部通信设备辐射的信号。带外信号进入基站天线101的接收端Rx,会导致非常严重的信号干扰现象,进而导致通话串音、接收端Rx的灵敏度下降、信号失真等问题。
发明内容
本申请实施例提供了一种滤波装置、基站天线及基站设备,用以解决基站天线信号干扰严重的问题。
第一方面,本申请实施例提供了一种滤波装置,该滤波装置可以包括:多个频选单元,每一个频选单元可以包括:立面频选结构和平面频选结构。立面频选结构为筒状,立面频选结构包括相对设置的第一端和第二端,每一个频选单元至少在立面频选结构的第一端设有平面频选结构。立面频选结构可以包括:第一介质基材,以及位于第一介质基材表面的至少两个第一导电图案,立面频选结构中的各第一导电图案隔离设置,第一介质基材用于围成立面频选结构,每一个第一导电图案用于滤波。平面频选结构可以包括:第二介质基材,以及位于第二介质基材表面的至少一个第二导电图案,每一个第二导电图案用于滤波。
本申请实施例提供的滤波装置中,该滤波装置包括多个频选单元,每一个频选单元包括立面频选结构和平面频选结构。立面频选结构中设有具有滤波作用的第一导电图案,平面频选结构中设有具有滤波作用的第二导电图案,并且,立面频选结构为筒状,频选单元 至少在立面频选结构的第一端设有平面频选结构,立面频选结构中设有至少两个第一导电图案,因而,该滤波装置可以提供不同的极化方向,可以实现三维滤波效果。通过立面频选结构与平面频选结构的滤波作用结合,可以使滤波装置所需通带频段内的信号具有较高的透过率,带外信号具有较高的截止速率。将本申请实施例中的滤波装置应用于基站天线中,可以有效滤除带外信号,防止带外信号进入基站天线的接收端,从而避免带外信号干扰基站天线的信号。此外,立面频选结构为筒状,即频选单元内部是空心的,并且,立面频选结构和平面频选结构均包括介质基材和导电图案,频选单元的结构较简单,使得滤波装置的厚度较薄且重量较轻。
本申请实施例中,可以将各频选单元设置为摆放方位一致,即各频选单元可以按照立面频选结构的第一端指向第二端的方向一致的方位设置。将本申请实施例中的滤波装置应用于基站天线中,可以将立面频选结构的第一端指向第二端的方向设置为与天线信号的辐射方向大致一致,这样,天线信号可以射向频选单元,并穿过平面频选结构和筒状的立面频选结构,经频选单元的滤波作用,可以滤除带外信号。
在实际应用中,滤波装置中的多个频选单元可以在垂直于第一方向上的平面内排列,第一方向与立面频选结构的第一端指向第二端的方向一致,例如,滤波装置中的多个频选单元可以沿第二方向和第三方向呈阵列排布,第二方向和第三方向可以均与第一方向垂直。当然,滤波装置中的多个频选单元也可以按照其他方式排列,此处不做限定。在一种可能的实现方式中,滤波装置中的多个频选单元可以分为多个频选单元层,每一个频选单元层可以包括多个频选单元,每一个频选单元层中的各频选单元可以在同一平面内排布。
在本申请的一些实施例中,每一个频选单元可以仅在立面频选结构的第一端设有平面频选结构。在本申请的另一些实施例中,每一个频选单元也可以在立面频选结构的第一端和第二端均设有平面频选结构,可以根据实际需要进行设置。
在具体实施时,第一导电图案可以位于第一介质基材的内表面和/或外表面,也就是说,可以在第一介质基材的内表面设置第一导电图案;或者,可以在第一介质基材的外表面设置第一导电图案;或者,可以在第一介质基材的内表面和外表面均设置第一导电图案。类似地,第二导电图案可以位于第二介质基材的内表面和/或外表面,也就是说,可以在第二介质基材的内表面设置第二导电图案;或者,可以在第二介质基材的外表面设置第二导电图案;或者,可以在第二介质基材的内表面和外表面均设置第二导电图案。在实际应用中,第一介质基材和第二介质基材可以为透明状也可以为非透明状,此处不做限定。
在本申请的一些实施例中,上述第一介质基材可以为绝缘材料,可选地,第一介质基材可以为介电常数在1.1~10范围内的材料,例如,第一介质基材可以为泡沫、聚对苯二甲酸乙二醇酯(polyethylene glycol terephthalate,PET)、聚酰亚胺(Polyimide,PI)、等级为FR4的耐燃材料(例如可以为环氧树脂、填充剂和玻璃纤维的复合材料)、芳纶纸、杜邦纸、塑料、陶瓷中的至少之一。第一导电图案可以包括:金属材料,例如,该金属材料可以为铜、铝、银中的至少之一。上述第二介质基材可以为绝缘材料,可选地,第二介质基材可以为介电常数在1.1~10范围内的材料,例如,第二介质基材可以为泡沫、聚对苯二甲酸乙二醇酯(polyethylene glycol terephthalate,PET)、聚酰亚胺(Polyimide,PI)、等级为FR4的耐燃材料(例如可以为环氧树脂、填充剂和玻璃纤维的复合材料)、芳纶纸、杜邦纸、塑料、陶瓷中的至少之一。第二导电图案可以包括:金属材料,例如,该金属材料可以为铜、铝、银中的至少之一。经实验证明,第一导电图案(或第二导电图案)的材料为铝、 铜或银时,滤波装置的矩形系数较高,因而,滤波装置的滤波效果较好。
在一种可能的实现方式中,立面频选结构可以包括第一导电图案,平面频选结构可以包括第二导电图案。在频选单元的工作过程中,电场可以对第一导电图案(或第二导电图案)表面的电子进行极化,以在第一导电图案(或第二导电图案)表面产生一定特征的电流分布,使第一导电图案(或第二导电图案)表面具有一定的电感量,且第一导电图案(或第二导电图案)的图案走线越细,该图案走线产生的电感量越大。并且,第一导电图案(或第二导电图案)的缝隙受到电场的极化,会产生一定的电容效应,该缝隙越窄产生的电容越大。因此,第一导电图案(或第二导电图案)可以等效为包括电容和电感,从而使第一导电图案(或第二导电图案)具有谐振响应特性,即第一导电图案(或第二导电图案)可以具有带通或带阻的滤波特性,使设定频段范围内的信号可以通过,该设定频段范围以外的信号无法通过,从而使频选单元具有滤波功能。在具体实施时,可以根据滤波装置对应的通带频段,来设置各频选单元中的第一导电图案和第二导电图案的具体结构。
在本申请实施例中,立面频选结构中的第一导电图案与平面频选结构中的第二导电图案隔离设置,使立面频选结构与平面频选结构形成容性连接,从而通过立面频选结构与平面频选结构的容性耦合作用,使滤波装置对通带频段内的信号的透过率较高、对带外信号的截止速率较高。并且,立面频选结构中的各第一导电图案隔离设置,使任意相邻的两个第一导电图案形成容性连接,进而使立面频选结构具有带阻型谐振特性。
本申请实施例中的滤波装置可以使通带频段内的信号的透过率较高、带外信号的截止速率较高,可以通过截止频率滚降速率和矩形系数等参数反映。其中,截止频率滚降速率指的是电磁信号由通带到阻带的下降速率,矩形系数指的是带通滤波器频响曲线与理想矩形的接近程度,理想频率响应曲线的形状应为矩形,但实际频率响应曲线的形状与矩形存在一定差异,矩形系数越接近1,频率响应曲线的形状越接近矩形,滤波装置能够滤除临近通道频段的干扰信号的能力越强。
本申请实施例中,该频选单元的低频截止频率滚降速率约为15dB/GHz,高频截止频率滚降速率>100dB/GHz,而相关技术中,高频截止频率滚降速率或低频截止频率滚降速率约为3dB/GHz,即本申请实施例中的频选单元的高频截止频率滚降速率和低频截止频率滚降速率均较高,使滤波装置具有较好的带外抑制性能。并且,透射率与频率的关系曲线在高频段的斜率较陡,使滤波装置的矩形系数较高,因而,滤波装置滤除临近通道频段的干扰信号的能力较强。此外,该频选单元的通带频段内的插损较低、带宽较大,例如,可以使通带频段内的插损低于0.2dB,通带频段的覆盖频率范围为3.2GHz4.2GHz。
在具体实施时,立面频选结构在垂直于第一方向的截面形状可以为多边形,其中,第一方向为立面频选结构的第一端指向第二端的方向。例如,立面频选结构在垂直于第一方向的截面形状可以为三角形、四边形、五边形、六边形等,并且,立面频选结构在垂直于第一方向的截面形状可以为正多边形,也可以为不规则的多边形,此处不做限定。此外,立面频选结构在垂直于第一方向的截面形状也可以为圆形、椭圆形或其他形状,此处不做限定。可以理解的是,本申请实施例中,立面频选结构为空心的筒状,上述立面频选结构在垂直于第一方向上的截面形状指的是:用垂直于第一方向上的平面截立面频选结构得到的轮廓的形状。
在本申请的一些实施例中,立面频选结构在垂直于第一方向的截面形状为多边形,其中,第一方向为立面频选结构的第一端指向第二端的方向。立面频选结构至少在相邻的两 个侧面分别设有第一导电图案。分别位于相邻两个侧面的两个第一导电图案的距离较近,这两个第一导电图案之间会产生等效电容,通过电容耦合作用,产生谐振响应,从而可以增强滤波效果。在实际应用中,可以根据实际需要,确定立面频选结构的哪些侧面设置第一导电图案,可以在立面频选结构中的一部分侧面设有第一导电图案,也可以在立面频选结构的每一个侧面均设有第一导电图案,此处不做限定。
在一种可能的实现方式中,滤波装置中的多个频选单元可以在垂直于第一方向上的平面内呈阵列排布,第一方向为立面频选结构的第一端指向第二端的方向。多个频选单元在第一端共用同一平面频选结构;和/或,多个频选单元在第二端共用同一平面频选结构。也就是说,多个频选单元可以仅在第一端共用同一平面频选结构;或者,多个频选单元可以仅在第二端共用同一平面频选结构;或者,多个频选单元可以在第一端共用同一平面频选结构,并且在第二端共用同一平面频选结构。可以理解的是,多个频选单元在第一端(或第二端)共用同一平面频选结构指的是,各频选单元中平面频选结构的第二介质基材为一体结构,而各频选单元中平面频选结构的第二导电图案并没有连成一体结构,例如,各频选单元中平面频选结构的第二导电图案可以分别分立设置,或者,临近的几个频选单元中平面频选结构的第二导电图案可以相互连接。这样,在制作过程中,可以在同一第二介质基材上制作多个第二导电图案,然后,将制作完成的平面频选结构安装到立面频选结构的第一端或第二端,使制作工艺简单、制作成本较低。在具体实施时,被共用的该平面频选结构中的各第二导电图案可以呈周期性排列,被共用的该平面频选结构中的各第二导电图案的周期可以与各频选单元的周期一致,也可以与各频选单元的周期不一致,此处不做限定。
在具体实施时,在频选单元中,第二导电图案的边缘可以与立面频选结构的边缘错开一定的距离。经实验证明,将第二导电图案错位设置后,滤波装置的矩形系数仍较高,说明将第二导电图案错位设置,不会影响滤波装置的滤波效果。这样,在制作滤波装置的过程中,制作完各立面频选结构后,可以将制作好的平面频选结构安装到立面频选结构的第一端或第二端,在安装平面频选结构的过程中,对第二导电图案与立面频选结构的对位精度要求较低,使制作成本较低,且制作工艺的鲁棒性较好。
在本申请实施例中,频选单元的总阻抗可以按照公式(1)确定:
Figure PCTCN2023071444-appb-000001
其中,Z表示频选单元的总阻抗,R表示电阻,j表示虚数单位,ω表示角频率,L表示电感,C表示电容。从公式(1)可以看出,对电感参数而言,串联情况,越串电感越大;并联情况,越并电感越小。对电容参数而言,串联情况,越串电容越小;并联情况,越并电容越大。
在本申请实施例中,在电场的极化作用下,第一导电图案(或第二导电图案)的表面的感应电流可以等效为电感,第一导电图案(或第二导电图案)中的缝隙可以等效为电容。因而,频选单元可以等效为由多个电感和多个电容组成的等效电路。将电感和电容并联连接,可以构成带通型等效电路。将电感和电容串联连接,可以构成带阻型等效电路。在具体实施时,可以根据频选单元所需的总阻抗,来设置第一导电图案和第二导电图案的具体图形。
在立面频选结构中,第一导电图案的表面可以等效为电感,相邻两个第一导电图案之间的缝隙可以等效为电容,因而,立面频选结构中的各第一导电图案可以等效为由多个电 感和多个电容形成的串联等效电路。对于串联等效电路,通过设置第一导电图案的图形,可以设计第一导电图案等效的电感和电容的值,从而可以设计立面频选结构的谐振频率等参数,例如,谐振频率可以按公式(2)确定:
Figure PCTCN2023071444-appb-000002
其中,f R表示谐振频率,L表示电感,C表示电容。
在该平面频选结构中,第二导电图案的表面可以等效为电感,第二导电图案中的缝隙可以等效为电容,可以使该平面频选结构等效为带阻型等效电路或带通型等效电路。
在具体实施时,可以通过设置第一导电图案和第二导电图案的图形,来设计立面频选结构和平面频选结构的谐振频率等参数,使滤波装置能够使所需通带频段内的信号透过,并滤除带外信号。
在具体实施时,滤波装置中各立面频选结构的制作过程中,可以先制作多个介质基材单元,介质基材单元由弯折状的介质基材和位于介质基材表面的多个第一导电图案构成,可以先在介质基材的表面形成多个第一导电图案,然后弯折表面具有第一导电图案的介质基材,以得到介质基材单元。然后,将两个介质基材单元对合并粘贴在一起,形成一排立面频选结构,按照同样的方式可以制作得到多排立面频选结构。之后,可以将制作好的整面的平面频选结构安装到立面频选结构的第一端和第二端,从而得到滤波装置。
在一种可能的实现方式中,滤波装置中的至少一个频选单元的立面频选结构中的一部分侧面设有第一导电图案,另一部分侧面未设有第一导电图案。以截面形状为六边形的立面频选结构为例,该立面频选结构可以有四个侧面设有第一导电图案,其余的两个侧面未设有第一导电图案。滤波装置中的至少一个频选单元的立面频选结构的每一个侧面均设有第一导电图案。举例来说,各侧面均设有第一导电图案的两个立面频选结构之间可以间隔一个侧面,该侧面可以为未设有第一导电图案的侧面。
在本申请的一些实施例中,滤波装置包括相邻设置的两个频选单元,相邻设置的两个频选单元在属于不同立面频选结构的两个相邻侧面均设有第一导电图案,也就是说,该位置处设有两层第一导电图案,可选地,这两层第一导电图案的图形可以设置为一致,这样,通过设置两层第一导电图案,可以提供不同的极化方向,提升滤波装置的滤波效果。在具体实施时,相邻设置的两个频选单元在属于不同立面频选结构的两个相邻侧面可以设置两层第一介质基材,也可以共用同一层第一介质基材,可以根据实际需要进行设置。在本申请的另一些实施例中,滤波装置包括相邻设置的两个频选单元,相邻设置的两个频选单元的两个立面频选结构共用同一侧面,也就是说,这两个立面频选结构之间共用同一层第一介质基材,该第一介质基材可以仅在一侧的表面设置第一导电图案,也可以在两侧的表面均设置第一导电图案,可以根据实际需要进行设置。
在一种可能的实现方式中,滤波装置中的多个频选单元可以包括至少两个频选单元层,每一个频选单元层可以包括多个频选单元。位于不同的频选单元层中的相邻两个频选单元共用同一平面频选结构。这样,可以节省一层平面频选结构,节约制作成本。
在实际应用中,滤波装置的阶数可以根据等效电路的中电容电感组合的数量进行确定,本申请实施例中滤波装置的等效电路中可以具有三组电容电感组合,因而,本申请实施例中的滤波装置为三阶滤波装置。与一阶滤波装置和二阶滤波装置对比可知,本申请实施例中的滤波装置的频率响应曲线的斜率更陡,因而,本申请实施例中的滤波装置的矩形系数更高,并且,本申请实施例中的滤波装置的带宽较大,因此,本申请实施例中的滤波装置 的滤波效果较好。
在一种可能的实现方式中,第一导电图案形成的轨迹没有交叉点。在本申请的一些实施例中,第一导电图案形成的轨迹可以为非闭合的图形。在本申请的另一些实施例中,第一导电图案形成的轨迹可以为闭合的图形。
在本申请的一些实施例中,第一导电图案可以为电谐振单元,该第一导电图案为带阻型图案结构,第一导电图案的谐振波长与其几何长度的关系满足公式(3):
Figure PCTCN2023071444-appb-000003
其中,m≥1,m为整数,L 0表示第一导电图案的几何长度,λ R表示谐振波长。这里需要指出的是,考虑到第一介质基材的重量因素,可以假设第一介质基材的厚度远远小于谐振波长,例如,第一介质基材的厚度可以为0.1mm左右。
如果第一介质基材的厚度较大,例如第一介质基材的厚度大于1mm,则上述公式(3)需要进一步考虑第一介质基材与空气的等效介电常数ε r_eff,即上述公式(3)可以修正为公式(4):
Figure PCTCN2023071444-appb-000004
当m为奇数时,第一导电图案为非闭合的图形,例如,第一导电图案可以为“几”字形,在具体实施时,第一导电图案也可以为其他非闭合的图形,此处不做限定。当m为偶数时,第一导电图案为闭合的图形,例如,第一导电图案可以为椭圆形,在具体实施时,第一导电图案也可以为圆形、矩形等其他形状的闭合的图形,此处不做限定。在实际应用中,可以根据所需设计的第一导电图案的谐振波长,以及上述公式(4),反推得到所需设计的第一导电图案的几何长度,进而设计第一导电图案的具体形状。
在本申请的另一些实施例中,第一导电图案为磁谐振单元,该第一导电图案为带阻型图案结构。第一导电图案的谐振波长不再遵循半波长谐振原理,其谐振主要依靠自谐振,即第一导电图案的自身结构所产生的电感及电容大小,因此,通过合理设置电容值,可以使第一导电图案的几何长度远小于谐振波长,例如,该第一导电图案的几何长度可以为谐振波长的1/10,进而实现深度亚波长结构设计,即第一导电图案的谐振波长与其几何长度的关系满足公式(5):
Figure PCTCN2023071444-appb-000005
在实际应用中,可以根据所需设计的第一导电图案的谐振波长,以及上述公式(5),反推得到所需设计的第一导电图案的几何长度,进而设计第一导电图案的具体形状。
在一种可能的实现方式中,第一导电图案可以包括:第一线段、第二线段及第一连接部,第一连接部围成的区域为非闭合的区域,第一连接部具有第一端部和第二端部,第一线段与第一端部连接,且第一线段向第一连接部围成的区域内部延伸,第二线段与第二端部连接,且第二线段向第一连接部围成的区域内部延伸,且第一线段与第二线段之间具有间隙。也就是说,第一导电图案为非闭合的图形,且第一导电图案的图形的两端的距离较近,从而形成磁谐振单元。
在本申请实施例中,在立面频选结构的一个侧面可以设置多个第一导电图案,在具体实施时,立面频选结构的一个侧面可以设置两个、三个、四个或更多个第一导电图案,当然,立面频选结构的侧面也可以仅设置一个第一导电图案此处不做限定。
在一种可能的实现方式中,第二导电图案可以包括:第一导电部和第二导电部,第一导电部为环状,第一导电部围绕第二导电部。其中,第一导电部可以为圆形、椭圆形、多 边形等任意形状的环状图形,第二导电部可以为块状或环状等任意形状的图形,此处不做限定。
在一种可能的实现方式中,第二导电图案可以包括:多个导电块和多个第二连接部,每一个第二连接部连接两个导电块,多个第二连接部相互连接。通过设置多个第二连接部,可以连接分立设置的多个导电块,各第二连接部位于该第二导电图案中的各导电块围成的区域内。可选地,可以将导电块的边缘设置为凹凸状,使得导电块的边缘可以嵌入到相邻的其他导电块的边缘中,从而增大相邻导电块之间的缝隙的长度,增强电容耦合效果。在具体实施时,可以根据实际需要设置导电块和第二连接部的形状,此处不做限定。
第二方面,本申请实施例还提供了一种基站天线,该基站天线可以包括:上述任一滤波装置,以及天线阵列。由于该滤波装置对所需通带频段内的信号具有较高的透过率,对带外信号具有较高的截止速率,因而,包括该滤波装置的基站天线能够有效滤除带外信号,防止带外信号进入基站天线的接收端,从而避免带外信号干扰基站天线的信号。
以下对滤波装置的具体设置方式进行举例说明。
设置方式一:
基站天线还可以包括:天线罩。在一些应用场景下基站天线容易受到环境的影响,例如,应用于室外的天线基站通常在露天的环境下工作,使天线基站容易受到自然界中暴风雨、冰雪、沙尘以及太阳辐射等的侵蚀,天线罩在机械性能上能够经受外部恶劣环境的作用,可以保护天线基站免受外部环境影响,保证天线基站具有较高的天线精度、较长的寿命及较高的工作可靠性。并且,天线罩在电气性能上具有较好的电磁波穿透性,不会影响天线阵列出射的电磁波信号的传输。
在本申请的一些实施例中,滤波装置可以位于天线阵列与天线罩之间的位置。天线阵列可以为多个振子排列而成的阵列式结构,可以出射一定频率的电磁波信号,可以通过合理设置滤波装置的方位,使得滤波装置中立面频选结构的第一端指向第二端的方向,与天线阵列出射的电磁波信号的辐射方向大致一致,只要能够使电磁波信号射向立面频选结构的内部即可,这样,可以使通带频段内的信号能够穿过滤波装置,带外信号被滤波装置反射,从而保证滤波装置能够对天线阵列出射的电磁波信号进行过滤,使滤波装置可以作为空间电磁波透明窗口。
此外,天线基站还可以包括:电路板、反射板及散热器,电路板可以为印制电路板(Printed Circuit Board,PCB),反射板可以承载天线阵列,例如,反射板可以为金属板,反射板可以将信号聚集反射至接收点处。散热器可以起到散热作用。
设置方式二:
基站天线还可以包括天线罩,天线罩的性能和作用可以参照设置方式一中的描述,此处不再赘述。滤波装置可以集成于天线罩内部,可以使基站天线的集成度更高,结构更简洁化。可以通过合理设置滤波装置的方位,使得滤波装置中立面频选结构的第一端指向第二端的方向,与天线阵列出射的电磁波信号的辐射方向大致一致,只要能够使电磁波信号射向立面频选结构的内部即可,这样,可以使通带频段内的信号能够穿过滤波装置,带外信号被滤波装置反射,从而保证滤波装置能够对天线阵列出射的电磁波信号进行过滤,使滤波装置可以作为空间电磁波透明窗口。
设置方式三:
天线阵列可以包括:多个第一振子和多个第二振子,第一振子的工作频率小于第二振 子的工作频率。在实际应用中,第一振子出射的电磁波信号会向第二振子辐射,这部分电磁波信号对于第二阵子来说属于带外信号,该带外信号进入到第二振子内部,射向第二振子内部的螺钉、线缆接头等缺陷,会引起无源互调问题,导致第二振子的电磁波信号受到干扰。另外,第一振子的电磁波信号辐射至第二振子,还会产生端口相互耦合严重的问题,影响整个基站天线的辐射特性。
本申请实施例中,滤波装置可以位于第一振子与第二振子之间的位置,这样可以滤除第一振子向第二振子辐射的电磁波信号。并且,滤波装置对于通道频带内的信号的透过率较高,不会影响第二振子的电磁波信号的传输。可以通过合理设置滤波装置的方位,使得滤波装置中立面频选结构的第一端指向第二端的方向,与第一振子出射的电磁波信号的辐射方向大致一致,只要能够使电磁波信号射向立面频选结构的内部即可,这样,可以使通带频段内的信号能够穿过滤波装置,带外信号被滤波装置反射,从而保证滤波装置能够对第一振子出射的电磁波信号进行过滤。
本申请实施例中,以设置方式一至设置方式三为例,对滤波装置的具体设置方式进行举例说明,在实际应用中,可以根据实际需求,设置滤波装置的具体应用场景,此处不做限定。
第三方面,本申请实施例还提供了一种基站设备,该基站设备可以包括:上述任一基站天线,以及电源,电源用于向基站天线供电。由于上述基站天线能够有效滤除带外信号,防止带外信号进入基站天线的接收端,从而避免带外信号干扰基站天线的信号,因而,包括该基站天线的基站设备传输的信号的质量也较好。
附图说明
图1为基站天线与终端之间进行通信的示意图;
图2为本申请实施例提供的滤波装置的结构示意图;
图3为图2所示的滤波装置中频选单元的结构示意图;
图4为图3所示的频选单元中立面频选结构的结构示意图;
图5为图3所示的频选单元的频率响应曲线的示意图;
图6为本申请实施例中滤波装置的另一结构示意图;
图7为本申请实施例提供的滤波装置的另一结构示意图;
图8为图7所示的滤波装置中频选单元的结构示意图;
图9为图8所示的频选单元的频率响应曲线的示意图;
图10为非错位设置的频选单元与错位设置的频选单元的对比结构示意图;
图11为非错位设置的频选单元与错位设置的频选单元的频率响应曲线的对比示意图;
图12为带通型等效电路的结构示意图;
图13为带阻型等效电路的结构示意图;
图14为图8所示的频选单元中立面频选结构的等效原理示意图;
图15为图8所示的频选单元中位于立面频选结构第一端的平面频选结构的等效原理示意图;
图16为图8所示的频选单元中位于立面频选结构第二端的平面频选结构的等效原理示意图;
图17为图8所示的频选单元的等效原理示意图;
图18为本申请实施例中频选单元的另一结构示意图;
图19为图18所示的频选单元的尺寸设计示意图;
图20为图18所示的频选单元的等效原理示意图;
图21为滤波装置中的各立面频选结构的制作过程示意图;
图22为本申请实施例中多个立面频选结构的结构示意图;
图23为本申请实施例提供的滤波装置的局部结构示意图;
图24为图18所示的频选单元的频率响应曲线的示意图;
图25为第一导电图案(或第二导电图案)采用不同材料时频选单元的频率响应曲线的示意图;
图26为不同阶数的频选单元的频率响应曲线的示意图;
图27为本申请实施例中第一导电图案的结构示意图;
图28为本申请实施例中第一导电图案的另一结构示意图;
图29为本申请实施例中第一导电图案的另一结构示意图;
图30为本申请实施例中立面频选结构的结构示意图;
图31为本申请实施例中第二导电图案的结构示意图;
图32为本申请实施例中第二导电图案的结构示意图;
图33为本申请实施例提供的基站天线的结构示意图;
图34为本申请实施例提供的基站天线的另一结构示意图;
图35为本申请实施例中天线阵列的结构示意图。
附图标记:
101-基站天线;102-终端;2-滤波装置;200-频选单元;21-立面频选结构;211-第一介质基材;212-第一导电图案;212a、212b-介质基材单元;21a-第一端;21b-第二端;22-平面频选结构;221-第二介质基材;222-第二导电图案;222a-第一导电部;222b-第二导电部;222c-导电块;222d-第二连接部;31-天线阵列;311-振子;32-天线罩;33-电路板;34-反射板;35-散热器;F1-第一方向;F2-第二方向;F3-第三方向;P1-第一线段;P2-第二线段;P3-第一连接部;P3a-第一端部;P3b-第二端部;T1、T2、T3、T4、T5、T6-等效子电路。
具体实施方式
本申请实施例提供的基站天线可以适用于各种通信系统,例如,该通信系统可以为:长期演进(long term evolution,简称LTE)系统、第五代(5th Generation,5G)通信系统、第六代(6th Generation,6G)通信系统、全球移动通讯(global system of mobile communication,简称GSM)系统、码分多址(code division multiple access,简称CDMA)系统、宽带码分多址(wideband code division multiple access,简称WCDMA)系统、通用分组无线业务(general packet radio service,简称GPRS)系统、LTE时分双工(time division duplex,简称TDD)系统、通用移动通信系统(universal mobile telecommunication system,简称UMTS)、全球互联微波接入(worldwide interoperability for microwave access,简称WiMAX)通信系统等,当然,本申请实施例中的基站天线也可以适用于其他通信系统,此处不做限定。
在具体实施时,基站天线可以安装在铁塔顶端或者顶楼等位置,基站天线可以包括发射端和接收端,可以向终端发射信号,也可以接收终端发送的信号,因而,基站天线可以与终端之间进行信号传输。基站天线主要包括天线阵列、反射板及馈电网络等部件,其中, 天线阵列为多个振子排列而成的阵列式结构,馈电网络为用于将信号传输至天线阵列的网络结构,反射板可以为承载天线阵列和馈电网络的金属板,并且,反射板可以将信号聚集反射至接收点处。
在相关技术中,基站天线与终端传输信号的过程中,由于经过很长的几何路径传输,信号衰减较为严重,使基站天线接收到的信号的功率本身较低,此外,在信号传输过程中,还可能会同时引入带外信号,带外信号进入基站天线的接收端,会导致非常严重的信号干扰现象,进而导致通话串音、接收端Rx的灵敏度下降、信号失真等问题。其中,带外信号指的是通信传输所需频带以外的信号,带外信号可以是基站天线内部的天线辐射的信号,也可以是外部通信设备辐射的信号。
在实际应用中,至少在以下两种情况下带外信号产生的干扰比较严重。
情况一:带外信号使天线端口相互耦合严重。
在基站天线中,天线阵列一般包括多个振子,不同振子之间往往存在能量的相互传递,带外信号的引入,会导致天线的实际通信失真,通信质量恶化严重,降低了用户端的实际体验。
情况二:带外信号使无源互调(PassiveInter Modulation,PIM)干扰现象严重。
无源互调问题的产生主要源于不同频率的信号相互调制。在基站端存在大量的射频器件、线缆、紧固螺钉等部件,而这些部件自身往往存在非可靠接触、锈蚀老化、松动等缺陷。当这些存在缺陷的部件被天线发射端的带外信号激励时,就会产生无源互调问题。无源互调问题的产生,会导致通话串音、基站天线的接收端灵敏度下降、信号失真(例如网络卡顿或中断)等问题。
基于此,为了解决基站天线信号干扰严重的问题,本申请实施例提供了一种滤波装置、基站天线及基站设备。
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
应注意的是,本申请的附图中相同的附图标记表示相同或类似的结构,因而将省略对它们的重复描述。本申请中所描述的表达位置与方向的词,均是以附图为例进行的说明,但根据需要也可以做出改变,所做改变均包含在本申请保护范围内。本申请的附图仅用于示意相对位置关系不代表真实比例。
本申请实施例提供了一种滤波装置,图2为本申请实施例提供的滤波装置的结构示意图,如图2所示,该滤波装置可以包括:多个频选单元200。图3为图2所示的滤波装置中频选单元的结构示意图,结合图2和图3,每一个频选单元200可以包括:立面频选结构21和平面频选结构22。立面频选结构21为筒状,立面频选结构21包括相对设置的第一端21a和第二端21b,每一个频选单元200至少在立面频选结构21的第一端21a设有平面频选结构22。立面频选结构21可以包括:第一介质基材211,以及位于第一介质基材211表面的至少两个第一导电图案212,立面频选结构21中的各第一导电图案212隔离设置,第一介质基材211用于围成立面频选结构21,每一个第一导电图案212用于滤波。平面频选结构22可以包括:第二介质基材221,以及位于第二介质基材221表面的至少一个第二导电图案222,每一个第二导电图案222用于滤波。
本申请实施例提供的滤波装置中,该滤波装置包括多个频选单元,每一个频选单元包括立面频选结构和平面频选结构。立面频选结构中设有具有滤波作用的第一导电图案,平 面频选结构中设有具有滤波作用的第二导电图案,并且,立面频选结构为筒状,频选单元至少在立面频选结构的第一端设有平面频选结构,立面频选结构中设有至少两个第一导电图案,因而,该滤波装置可以提供不同的极化方向,可以实现三维滤波效果。通过立面频选结构与平面频选结构的滤波作用结合,可以使滤波装置所需通带频段内的信号具有较高的透过率,带外信号具有较高的截止速率。将本申请实施例中的滤波装置应用于基站天线中,可以有效滤除带外信号,防止带外信号进入基站天线的接收端,从而避免带外信号干扰基站天线的信号。此外,立面频选结构为筒状,即频选单元内部是空心的,并且,立面频选结构和平面频选结构均包括介质基材和导电图案,频选单元的结构较简单,使得滤波装置的厚度较薄且重量较轻。
继续参照图2和图3,本申请实施例中,可以将各频选单元200设置为摆放方位一致,即各频选单元200可以按照立面频选结构21的第一端21a指向第二端21b的方向一致的方位设置,例如,各频选单元200中的立面频选结构21的第一端21a指向第二端21b的方向可以均与第一方向F1一致。将本申请实施例中的滤波装置应用于基站天线中,可以将立面频选结构21的第一端21a指向第二端21b的方向设置为与天线信号的辐射方向大致一致,这样,天线信号可以沿图3中的箭头J所示的方向射向频选单元200,经频选单元200的滤波作用,可以滤除带外信号。
在实际应用中,滤波装置中的多个频选单元200可以在垂直于第一方向F1上的平面内排列,第一方向F1与立面频选结构21的第一端21a指向第二端21b的方向一致,例如,滤波装置中的多个频选单元200可以沿第二方向F2和第三方向F3呈阵列排布,第二方向F2和第三方向F3可以均与第一方向F1垂直。当然,滤波装置中的多个频选单元200也可以按照其他方式排列,此处不做限定。在一种可能的实现方式中,滤波装置中的多个频选单元可以分为多个频选单元层,每一个频选单元层可以包括多个频选单元,每一个频选单元层中的各频选单元可以在同一平面内排布,例如,每一个频选单元层中的各频选单元可以按照图2所示的方式排布。
在本申请的一些实施例中,如图2和图3所示,每一个频选单元200可以仅在立面频选结构21的第一端21a设有平面频选结构22。在本申请的另一些实施例中,每一个频选单元也可以在立面频选结构的第一端和第二端均设有平面频选结构,可以根据实际需要进行设置。
在具体实施时,第一导电图案可以位于第一介质基材的内表面和/或外表面,也就是说,可以在第一介质基材的内表面设置第一导电图案;或者,可以在第一介质基材的外表面设置第一导电图案;或者,可以在第一介质基材的内表面和外表面均设置第一导电图案。类似地,第二导电图案可以位于第二介质基材的内表面和/或外表面,也就是说,可以在第二介质基材的内表面设置第二导电图案;或者,可以在第二介质基材的外表面设置第二导电图案;或者,可以在第二介质基材的内表面和外表面均设置第二导电图案。在图2和图3中均以第一导电图案212位于第一介质基材211的内表面、第二导电图案222位于第二介质基材221的内表面为例进行示意,并且,为了清楚地示意频选单元200的内部结构,图3中将第一介质基材211和第二介质基材221示意为透明状,在实际应用中,第一介质基材211和第二介质基材221可以为透明状也可以为非透明状,此处不做限定。
图4为图3所示的频选单元中立面频选结构的结构示意图,为了清楚地示意立面频选结构的结构,图4中立面频选结构21的内表面和外表面以不同的填充进行示意,从图4 可以看出,第一介质基材211围成立面频选结构21,使立面频选结构21为筒状。
在本申请的一些实施例中,上述第一介质基材可以为绝缘材料,可选地,第一介质基材可以为介电常数在1.1~10范围内的材料,例如,第一介质基材可以为泡沫、聚对苯二甲酸乙二醇酯(polyethylene glycol terephthalate,PET)、聚酰亚胺(Polyimide,PI)、等级为FR4的耐燃材料(例如可以为环氧树脂、填充剂和玻璃纤维的复合材料)、芳纶纸、杜邦纸、塑料、陶瓷中的至少之一。第一导电图案可以包括:金属材料,例如,该金属材料可以为铜、铝、银中的至少之一。上述第二介质基材可以为绝缘材料,可选地,第二介质基材可以为介电常数在1.1~10范围内的材料,例如,第二介质基材可以为泡沫、聚对苯二甲酸乙二醇酯(polyethylene glycol terephthalate,PET)、聚酰亚胺(Polyimide,PI)、等级为FR4的耐燃材料(例如可以为环氧树脂、填充剂和玻璃纤维的复合材料)、芳纶纸、杜邦纸、塑料、陶瓷中的至少之一。第二导电图案可以包括:金属材料,例如,该金属材料可以为铜、铝、银中的至少之一。
如图3所示,立面频选结构21可以包括第一导电图案212,平面频选结构22可以包括第二导电图案222。在频选单元200的工作过程中,电场可以对第一导电图案212(或第二导电图案222)表面的电子进行极化,以在第一导电图案212(或第二导电图案222)表面产生一定特征的电流分布,使第一导电图案212(或第二导电图案222)表面具有一定的电感量,且第一导电图案212(或第二导电图案222)的图案走线越细,该图案走线产生的电感量越大。并且,第一导电图案212(或第二导电图案222)的缝隙受到电场的极化,会产生一定的电容效应,该缝隙越窄产生的电容越大。因此,第一导电图案212(或第二导电图案222)可以等效为包括电容和电感,从而使第一导电图案212(或第二导电图案222)具有谐振响应特性,即第一导电图案212(或第二导电图案222)可以具有带通或带阻的滤波特性,使设定频段范围内的信号可以通过,该设定频段范围以外的信号无法通过,从而使频选单元200具有滤波功能。在具体实施时,可以根据滤波装置对应的通带频段,来设置各频选单元200中的第一导电图案212和第二导电图案222的具体结构。
继续参照图3,在本申请实施例中,立面频选结构21中的第一导电图案212与平面频选结构22中的第二导电图案222隔离设置,使立面频选结构21与平面频选结构22形成容性连接,从而通过立面频选结构21与平面频选结构22的容性耦合作用,使滤波装置对通带频段内的信号的透过率较高、对带外信号的截止速率较高。并且,立面频选结构21中的各第一导电图案212隔离设置,使任意相邻的两个第一导电图案212形成容性连接,进而使立面频选结构21具有带阻型谐振特性。
本申请实施例中的滤波装置可以使通带频段内的信号的透过率较高、带外信号的截止速率较高,可以通过截止频率滚降速率和矩形系数等参数反映。其中,截止频率滚降速率指的是电磁信号由通带到阻带的下降速率,矩形系数指的是带通滤波器频响曲线与理想矩形的接近程度,理想频率响应曲线的形状应为矩形,但实际频率响应曲线的形状与矩形存在一定差异,矩形系数越接近1,频率响应曲线的形状越接近矩形,滤波装置能够滤除临近通道频段的干扰信号的能力越强。
图5为图3所示的频选单元的频率响应曲线的示意图,如图5所示,图中曲线S1为透射率与频率的关系曲线,曲线S2为反射率与频率的关系曲线,从图中可以明显看出,该频选单元的低频截止频率滚降速率较高,使滤波装置具有较好的带外抑制性能。并且,曲线S1的形状接近矩形,使滤波装置的矩形系数较高,因而,滤波装置滤除临近通道频 段的干扰信号的能力较强。此外,该频选单元的通带频段内的插损较低、带宽较大。
在具体实施时,如图3所示,立面频选结构21在垂直于第一方向F1的截面形状可以为多边形,其中,第一方向F1为立面频选结构21的第一端21a指向第二端21b的方向。例如,图3中所示的立面频选结构21在垂直于第一方向F1的截面形状为四边形,在具体实施时,立面频选结构21在垂直于第一方向F1的截面形状也可以为三角形、五边形、六边形等,并且,立面频选结构21在垂直于第一方向F1的截面形状可以为正多边形,也可以为不规则的多边形,此处不做限定。图6为本申请实施例中滤波装置的另一结构示意图,如图6所示,立面频选结构21在垂直于第一方向F1的截面形状也可以为圆形,即立面频选结构21可以为空心圆柱形。或者,立面频选结构21在垂直于第一方向F1的截面形状也可以为椭圆形或其他形状,此处不做限定。可以理解的是,本申请实施例中,立面频选结构21为空心的筒状,上述立面频选结构在垂直于第一方向上的截面形状指的是:用垂直于第一方向上的平面截立面频选结构得到的轮廓的形状。
在本申请的一些实施例中,如图3和图4所示,立面频选结构21在垂直于第一方向F1的截面形状为多边形,其中,第一方向F1为立面频选结构21的第一端21a指向第二端21b的方向。立面频选结构21至少在相邻的两个侧面分别设有第一导电图案212,分别位于相邻两个侧面的两个第一导电图案212的距离较近,这两个第一导电图案212之间会产生等效电容,通过电容耦合作用,产生谐振响应,从而可以增强滤波效果。在实际应用中,可以根据实际需要,确定立面频选结构21的哪些侧面设置第一导电图案212,可以在立面频选结构21中的一部分侧面设置第一导电图案212,也可以在立面频选结构21的每一个侧面均设置第一导电图案212,此处不做限定。
图7为本申请实施例提供的滤波装置的另一结构示意图,图8为图7所示的滤波装置中频选单元的结构示意图,如图7和图8所示,频选单元200可以在立面频选结构21的第一端21a和第二端21b均设有平面频选结构22,立面频选结构21在垂直于第一方向F1的截面形状可以为六边形。图8中以立面频选结构21的每一个侧面均设有第一导电图案212为例进行示意,在具体实施时,可以根据需要确定哪些侧面需要设置第一导电图案212,此处不做限定。滤波装置中的多个频选单元200可以在垂直于第一方向F1上的平面内呈阵列排布,第一方向F1为立面频选结构21的第一端21a指向第二端21b的方向。多个频选单元200在第一端21a共用同一平面频选结构22;和/或,多个频选单元200在第二端21b共用同一平面频选结构22。也就是说,多个频选单元200可以仅在第一端21a共用同一平面频选结构22;或者,多个频选单元200可以仅在第二端21b共用同一平面频选结构22;或者,多个频选单元200可以在第一端21a共用同一平面频选结构22,并且在第二端21b共用同一平面频选结构22。例如,图7中以多个频选单元200在第一端21a共用同一平面频选结构22,且在第二端21b共用同一平面频选结构22为例进行示意。可以理解的是,多个频选单元200在第一端21a(或第二端21b)共用同一平面频选结构22指的是,各频选单元200中平面频选结构22的第二介质基材221为一体结构,而各频选单元200中平面频选结构22的第二导电图案222并没有连成一体结构,例如,各频选单元200中平面频选结构22的第二导电图案222可以分别分立设置,或者,临近的几个频选单元200中平面频选结构22的第二导电图案222可以相互连接。这样,在制作过程中,可以在同一第二介质基材221上制作多个第二导电图案222,然后,将制作完成的平面频选结构22安装到立面频选结构21的第一端21a或第二端21b,使制作工艺简单、制作成本较低。在 具体实施时,被共用的该平面频选结构22中的各第二导电图案222可以呈周期性排列,被共用的该平面频选结构22中的各第二导电图案222的周期可以与各频选单元200的周期一致,也可以与各频选单元200的周期不一致,此处不做限定。
图9为图8所示的频选单元的频率响应曲线的示意图,如图9所示,曲线S3为透射率与频率的关系曲线,曲线S4为反射率与频率的关系曲线,曲线S3中透射率接近于0的部分对应通带频率,小于通带频率的频率范围为低频,大于通带频率的频率范围为高频。从图中可以明显看出,该频选单元的低频截止频率滚降速率大于100dB/GHz,高频截止频率滚降速率>100dB/GHz,而相关技术中,高频截止频率滚降速率或低频截止频率滚降速率约为3dB/GHz,即本申请实施例中的频选单元的高频截止频率滚降速率和低频截止频率滚降速率均较高,使滤波装置具有较好的带外抑制性能。并且,曲线S3在高频段的斜率较陡,使滤波装置的矩形系数较高,因而,滤波装置滤除临近通道频段的干扰信号的能力较强。此外,该频选单元的通带频段内的插损较低、带宽较大,例如,可以使通带频段内的插损低于0.2dB,通带频段的覆盖频率范围为3.2GHz~4.2GHz。
图10为非错位设置的频选单元与错位设置的频选单元的对比结构示意图,如图10所示,在图中左侧的频选单元200中,第二导电图案222的边缘与立面频选结构21的边缘基本平齐,在图中右侧的频选单元200中,第二导电图案222的边缘与立面频选结构21的边缘错开一定的距离。图11为非错位设置的频选单元与错位设置的频选单元的频率响应曲线的对比示意图,如图11所示,曲线S5为非错位设置的频选单元的透射率与频率的关系曲线,曲线S5'为错位设置的频选单元的透射率与频率的关系曲线,曲线S6为非错位设置的频选单元的反射率与频率的关系曲线,曲线S6'为错位设置的频选单元的反射率与频率的关系曲线。对比曲线S5与曲线S5',并曲线S6与曲线S6'可知,曲线S5与曲线S5'的形状基本一致,曲线S6与曲线S6'的形状基本一致,并且,曲线S5与曲线S5'的斜率都比较陡,因而,将第二导电图案错位设置后,滤波装置的矩形系数仍较高,说明将第二导电图案错位设置,不会影响滤波装置的滤波效果。这样,在制作滤波装置的过程中,制作完各立面频选结构后,可以将制作好的平面频选结构安装到立面频选结构的第一端或第二端,在安装平面频选结构的过程中,对第二导电图案与立面频选结构的对位精度要求较低,使制作成本较低,且制作工艺的鲁棒性较好。
在本申请实施例中,频选单元的总阻抗可以按照公式(1)确定:
Figure PCTCN2023071444-appb-000006
其中,Z表示频选单元的总阻抗,R表示电阻,j表示虚数单位,ω表示角频率,L表示电感,C表示电容。从公式(1)可以看出,对电感参数而言,串联情况,越串电感越大;并联情况,越并电感越小。对电容参数而言,串联情况,越串电容越小;并联情况,越并电容越大。
在本申请实施例中,在电场的极化作用下,第一导电图案(或第二导电图案)表面形成的感应电流可以等效为电感,第一导电图案(或第二导电图案)中的缝隙可以等效为电容。因而,频选单元可以等效为由多个电感和多个电容组成的等效电路。
图12为带通型等效电路的结构示意图,如图12所示,将电感L和电容C并联连接,可以构成带通型等效电路。图13为带阻型等效电路的结构示意图,如图13所示,将电感L和电容C串联连接,可以构成带阻型等效电路。在具体实施时,可以根据频选单元所需的总阻抗,来设置第一导电图案和第二导电图案的具体图形。
图14为图8所示的频选单元中立面频选结构的等效原理示意图,如图14所示,在立面频选结构中,第一导电图案212的表面可以等效为电感L,相邻两个第一导电图案212之间的缝隙可以等效为电容C。图14中以立面频选结构中相邻的两个第一导电图案212为例进行示意,当立面频选结构中具有更多第一导电图案212时,等效原理与图14所示的原理类似,立面频选结构中的各第一导电图案212可以等效为由多个电感L和多个电容C形成的串联等效电路,例如,该立面频选结构中的各第一导电图案212可以等效为等效子电路T1,等效子电路T1为带阻型等效电路。对于串联等效电路,通过设置第一导电图案212的图形,可以设计第一导电图案212等效的电感L和电容C的值,从而可以设计立面频选结构的谐振频率等参数,例如,谐振频率可以按公式(2)确定:
Figure PCTCN2023071444-appb-000007
其中,f R表示谐振频率,L表示电感,C表示电容。
图15为图8所示的频选单元中位于立面频选结构第一端的平面频选结构的等效原理示意图,如图15所示,在该平面频选结构中,第二导电图案222的表面可以等效为电感L,第二导电图案222中的缝隙可以等效为电容C,使得该平面频选结构等效为等效子电路T2,等效子电路T2为带阻型等效电路。
图16为图8所示的频选单元中位于立面频选结构第二端的平面频选结构的等效原理示意图,如图16所示,在该平面频选结构中,第二导电图案222的表面可以等效为电感L,第二导电图案222中的缝隙可以等效为电容C,使得该平面频选结构等效为等效子电路T3,等效子电路T3为带通型等效电路。
图17为图8所示的频选单元的等效原理示意图,如图17所示,该频选单元可以等效为图17中右侧的等效电路,该等效电路可以包括并联设置的等效子电路T1、T2和T3,并且,该等效电路还可以包括电阻R。其中,等效子电路T1为带阻型等效电路,等效子电路T2为带阻型等效电路,等效子电路T3为带通型等效电路,因而,该等效电路是由带通型等效电路与带阻型等效电路结合得到的。在具体实施时,可以通过设置第一导电图案和第二导电图案的图形,来设计立面频选结构和平面频选结构的谐振频率等参数,使滤波装置能够使所需通带频段内的信号透过,并滤除带外信号。
图18为本申请实施例中频选单元的另一结构示意图,如图18所示,频选单元200可以在立面频选结构21的第一端21a和第二端21b均设有平面频选结构22,立面频选结构21在垂直于第一方向F1的截面形状可以为六边形。图18中以立面频选结构21的每一个侧面均设有第一导电图案212为例进行示意,在具体实施时,可以根据需要确定哪些侧面需要设置第一导电图案212,此处不做限定。
图19为图18所示的频选单元的尺寸设计示意图,图19中的(1)为第二导电图案的尺寸设计示意图,如图19中的(1)所示,第二导电图案222可以包括由具有一定宽度的图案走线形成的环状的第一导电部222a,该第一导电部222a的形状可以为六边形,在第一导电部222a包围的区域内可以设置第二导电部222b,第二导电部222b可以为块状,第一导电部222a与第二导电部222b之间具有一定宽度的缝隙。第一导电部222a的边长D1可以设置为在5mm~25mm的范围内,第一导电部222a与第二导电部222b之间的缝隙g1可以设置为在0.05mm~4mm的范围内。图19中的(2)为第一导电图案的尺寸设计示意图,如图19中的(2)所示,第一导电图案212的形状可以由“几”字形弯折形成,第一导电图案212中图案走线的宽度W1可以设置为在0.05mm~4mm的范围内,第一导电图案212中 图案走线的宽度W2可以设置为在0.1mm~4mm的范围内,第一导电图案212中图案走线的宽度W3可以设置为在0.05mm~4mm的范围内,第一导电图案212中图案走线的长度D2可以设置为在1mm~20mm的范围内,第一导电图案212中图案走线的长度D3可以设置为在2mm~25mm的范围内。图19中的(3)为立面频选结构的侧面的尺寸设计示意图,如图19中的(3)所示,第二导电图案222的厚度t1可以设置为在0.005mm~1mm的范围内,第二介质基材221的厚度t2可以设置为在0.05mm~5mm的范围内,立面频选结构21的厚度t3可以设置为在2mm~50mm的范围内。
图20为图18所示的频选单元的等效原理示意图,如图20所示,该频选单元的等效电路可以包括并联设置的等效子电路T4、T5和T6,并且,该等效电路还可以包括电阻R。等效子电路T4为立面频选结构的等效电路,等效子电路T4为带阻型等效电路。立面频选结构提供了一阶滤波响应,可以提升滤波装置的带外信号抑制能力和通带频段的带宽。等效子电路T5为位于立面频选结构的第一端的平面频选结构的等效电路,等效子电路T6为位于立面频选结构的第二端的平面频选结构的等效电路,等效子电路T5和等效子电路T6均为带通型等效电路。因而,该等效电路是由带通型等效电路与带阻型等效电路结合得到的。在具体实施时,可以通过设置第一导电图案和第二导电图案的图形,来设计立面频选结构和平面频选结构的谐振频率等参数,使滤波装置能够使所需通带频段内的信号透过,并滤除带外信号。
图21为滤波装置中的各立面频选结构的制作过程示意图,如图21中的(1)所示,在制作过程中,可以先制作多个介质基材单元212a和多个介质基材单元212b,介质基材单元212a或212b由弯折状的介质基材和位于介质基材表面的多个第一导电图案构成,可以先在介质基材的表面形成多个第一导电图案,然后弯折表面具有第一导电图案的介质基材,以得到介质基材单元212a或212b。然后,将介质基材单元212a和介质基材单元212b对合并粘贴在一起,形成一排立面频选结构21,按照同样的方式可以制作得到多排立面频选结构21,得到图21中的(2)所示的结构,图21中的(3)为图21中的(2)的局部放大示意图。之后,可以将制作好的整面的平面频选结构安装到立面频选结构的第一端和第二端,从而得到滤波装置。
图22为本申请实施例中多个立面频选结构的结构示意图,如图22所示,例如图22中的频选单元200a,滤波装置中的至少一个频选单元的立面频选结构21中的一部分侧面设有第一导电图案212,另一部分侧面未设有第一导电图案212,例如,频选单元200a中立面频选结构21有四个侧面设有第一导电图案212,其余的两个侧面未设有第一导电图案212。例如图22中的频选单元200b,滤波装置中的至少一个频选单元的立面频选结构21的每一个侧面均设有第一导电图案212。举例来说,各侧面均设有第一导电图案212的两个立面频选结构21之间可以间隔一个侧面,该侧面可以为未设有第一导电图案212的侧面。
继续参照图22,在本申请的一些实施例中,滤波装置包括相邻设置的两个频选单元,例如图22中的频选单元200a和频选单元200c,相邻设置的两个频选单元在属于不同立面频选结构21的两个相邻侧面均设有第一导电图案212,也就是说,图中Q所示的侧面设有两层第一导电图案212,可选地,这两层第一导电图案212的图形可以设置为一致,这样,通过设置两层第一导电图案212,可以提供不同的极化方向,提升滤波装置的滤波效果。在具体实施时,频选单元200a和频选单元200c中,属于不同立面频选结构21的两个相邻 侧面可以设置两层第一介质基材211,也可以共用同一层第一介质基材211,可以根据实际需要进行设置。在本申请的另一些实施例中,相邻设置的两个频选单元(例如图22中的频选单元200b和频选单元200d)的两个立面频选结构21共用同一侧面,也就是说,这两个立面频选结构21之间共用同一层第一介质基材211,该第一介质基材211可以仅在一侧的表面设有第一导电图案212,也可以在两侧的表面均设有第一导电图案212,可以根据实际需要进行设置。
在一种可能的实现方式中,滤波装置中的多个频选单元可以包括至少两个频选单元层,每一个频选单元层可以包括多个频选单元。图23为本申请实施例提供的滤波装置的局部结构示意图,如图23所示,位于不同的频选单元层中的相邻两个频选单元200共用同一平面频选结构22。这样,可以节省一层平面频选结构22,节约制作成本。
图24为图18所示的频选单元的频率响应曲线的示意图,如图24所示,曲线S7为透射率与频率的关系曲线,曲线S8为反射率与频率的关系曲线,曲线S7中透射率接近于0的部分对应通带频率,小于通带频率的频率范围为低频,大于通带频率的频率范围为高频。从图中可以明显看出,该频选单元的低频截止频率滚降速率约为15dB/GHz,高频截止频率滚降速率>100dB/GHz,而相关技术中,高频截止频率滚降速率或低频截止频率滚降速率约为3dB/GHz,即本申请实施例中的频选单元的高频截止频率滚降速率和低频截止频率滚降速率均较高,使滤波装置具有较好的带外抑制性能。并且,曲线S7在高频段的斜率较陡,使滤波装置的矩形系数较高,因而,滤波装置滤除临近通道频段的干扰信号的能力较强。此外,该频选单元的通带频段内的插损较低、带宽较大,例如,可以使通带频段内的插损低于0.2dB,通带频段的覆盖频率范围为3.2GHz~4.2GHz。
图25为第一导电图案(或第二导电图案)采用不同材料时频选单元的频率响应曲线的示意图,如图25所示,曲线S9为第一导电图案(或第二导电图案)的材料为铝时透射率与频率的关系曲线,曲线S10为第一导电图案(或第二导电图案)的材料为铜时透射率与频率的关系曲线,曲线S11为第一导电图案(或第二导电图案)的材料为银时透射率与频率的关系曲线,对比曲线S9、S10和S11可知,第一导电图案(或第二导电图案)的材料为铝、铜或银时,滤波装置的矩形系数较高,因而,滤波装置的滤波效果较好。
图26为不同阶数的频选单元的频率响应曲线的示意图,如图26所示,曲线S12为本申请实施例中图18所示的滤波装置的透射率与频率的关系曲线,曲线S13为一阶滤波装置的透射率与频率的关系曲线,曲线S14为二阶滤波装置的透射率与频率的关系曲线。滤波装置的阶数可以根据等效电路的中电容电感组合的数量进行确定,参照图20,图18所示的滤波装置的等效电路中具有三组电容电感组合,即等效子电路T4、T5和T6中分别具有一组电容电感组合,因此,图18所示的滤波装置为三阶滤波装置。对比曲线S12、S13和S14可知,本申请实施例中的滤波装置的频率响应曲线的斜率更陡,因而,本申请实施例中的滤波装置的矩形系数更高,并且,本申请实施例中的滤波装置的带宽较大,因此,本申请实施例中的滤波装置的滤波效果较好。
图27为本申请实施例中第一导电图案的结构示意图,图28为本申请实施例中第一导电图案的另一结构示意图,图29为本申请实施例中第一导电图案的另一结构示意图,如图27至图29,第一导电图案212形成的轨迹没有交叉点。在本申请的一些实施例中,如图27和图29所示,第一导电图案212形成的轨迹可以为非闭合的图形。在本申请的另一些实施例中,如图28所示,第一导电图案212形成的轨迹可以为闭合的图形。
图27和图28所示的第一导电图案212为电谐振单元,该第一导电图案212为带阻型图案结构,第一导电图案212的谐振波长与其几何长度的关系满足公式(3):
Figure PCTCN2023071444-appb-000008
其中,m≥1,m为整数,L 0表示第一导电图案的几何长度,λ R表示谐振波长。这里需要指出的是,考虑到第一介质基材的重量因素,可以假设第一介质基材的厚度远远小于谐振波长,例如,第一介质基材的厚度可以为0.1mm左右。
如果第一介质基材的厚度较大,例如第一介质基材的厚度大于1mm,则上述公式(3)需要进一步考虑第一介质基材与空气的等效介电常数ε r_eff,即上述公式(3)可以修正为公式(4):
Figure PCTCN2023071444-appb-000009
如图27所示,当m为奇数时,第一导电图案212为非闭合的图形,例如图27中,第一导电图案212可以为“几”字形,在具体实施时,第一导电图案212也可以为其他非闭合的图形,此处不做限定。如图28所示,当m为偶数时,第一导电图案212为闭合的图形,例如图28中,第一导电图案212可以为椭圆形,在具体实施时,第一导电图案212也可以为圆形、矩形等其他形状的闭合的图形,此处不做限定。在实际应用中,可以根据所需设计的第一导电图案的谐振波长,以及上述公式(4),反推得到所需设计的第一导电图案的几何长度,进而设计第一导电图案的具体形状。
图29所示的第一导电图案212为磁谐振单元,该第一导电图案212为带阻型图案结构。第一导电图案212的谐振波长不再遵循半波长谐振原理,其谐振主要依靠自谐振,即第一导电图案212的自身结构所产生的电感及电容大小,因此,通过合理设置电容值,可以使第一导电图案212的几何长度远小于谐振波长,例如,该第一导电图案212的几何长度可以为谐振波长的1/10,进而实现深度亚波长结构设计,即第一导电图案212的谐振波长与其几何长度的关系满足公式(5):
Figure PCTCN2023071444-appb-000010
在实际应用中,可以根据所需设计的第一导电图案的谐振波长,以及上述公式(5),反推得到所需设计的第一导电图案的几何长度,进而设计第一导电图案的具体形状。
在一种可能的实现方式中,如图29所示,第一导电图案212可以包括:第一线段P1、第二线段P2及第一连接部P3,第一连接部P3围成的区域为非闭合的区域,第一连接部P3具有第一端部P3a和第二端部P3b,第一线段P1与第一端部P3a连接,且第一线段P1向第一连接部P3围成的区域内部延伸,第二线段P2与第二端部P3b连接,且第二线段P2向第一连接部P3围成的区域内部延伸,且第一线段P1与第二线段P2之间具有间隙。也就是说,第一导电图案212为非闭合的图形,且第一导电图案212的图形的两端的距离较近,从而形成磁谐振单元。
图30为本申请实施例中立面频选结构的结构示意图,如图30所示,在立面频选结构21的一个侧面可以设有多个第一导电图案212,图中以每一个侧面设有三个第一导电图案212为例进行示意,在具体实施时,立面频选结构21的一个侧面可以设有两个、四个或更多个第一导电图案212,当然,立面频选结构21的侧面也可以仅设有一个第一导电图案212此处不做限定。
图31为本申请实施例中第二导电图案的结构示意图,如图31所示,第二导电图案222可以包括:第一导电部222a和第二导电部222b,第一导电部222a为环状,第一导电部222a 围绕第二导电部222b。其中,第一导电部222a可以为圆形、椭圆形、多边形等任意形状的环状图形,第二导电部222b可以为块状或环状等任意形状的图形,此处不做限定。
图32为本申请实施例中第二导电图案的结构示意图,如图32所示,第二导电图案222可以包括:多个导电块222c和多个第二连接部222d,每一个第二连接部222d连接两个导电块222c,多个第二连接部222d相互连接。通过设置多个第二连接部222d,可以连接分立设置的多个导电块222c,各第二连接部222d位于该第二导电图案222中的各导电块222c围成的区域内。可选地,可以将导电块222c的边缘设置为凹凸状,使得导电块222c的边缘可以嵌入到相邻的其他导电块222c的边缘中,从而增大相邻导电块222c之间的缝隙的长度,增强电容耦合效果。在具体实施时,可以根据实际需要设置导电块222c和第二连接部222d的形状,此处不做限定。
基于同一技术构思,本申请实施例还提供了一种基站天线,图33为本申请实施例提供的基站天线的结构示意图,如图33所示,该基站天线可以包括:上述任一滤波装置2,以及天线阵列31。由于该滤波装置对所需通带频段内的信号具有较高的透过率,对带外信号具有较高的截止速率,因而,包括该滤波装置的基站天线能够有效滤除带外信号,防止带外信号进入基站天线的接收端,从而避免带外信号干扰基站天线的信号。
以下结合附图,对滤波装置的具体设置方式进行举例说明。
设置方式一:
如图33所示,基站天线还可以包括:天线罩32。在一些应用场景下基站天线容易受到环境的影响,例如,应用于室外的天线基站通常在露天的环境下工作,使天线基站容易受到自然界中暴风雨、冰雪、沙尘以及太阳辐射等的侵蚀,天线罩32在机械性能上能够经受外部恶劣环境的作用,可以保护天线基站免受外部环境影响,保证天线基站具有较高的天线精度、较长的寿命及较高的工作可靠性。并且,天线罩32在电气性能上具有较好的电磁波穿透性,不会影响天线阵列31出射的电磁波信号的传输。
在本申请的一些实施例中,滤波装置2可以位于天线阵列31与天线罩32之间的位置。天线阵列31可以为多个振子311排列而成的阵列式结构,可以出射一定频率的电磁波信号,可以通过合理设置滤波装置2的方位,使得滤波装置2中立面频选结构的第一端指向第二端的方向,与天线阵列31出射的电磁波信号的辐射方向大致一致,只要能够使电磁波信号射向立面频选结构的内部即可,这样,可以使通带频段内的信号能够穿过滤波装置2,带外信号被滤波装置2反射,从而保证滤波装置2能够对天线阵列31出射的电磁波信号进行过滤,使滤波装置2可以作为空间电磁波透明窗口。
此外,继续参照图33,天线基站还可以包括:电路板33、反射板34及散热器35,电路板33可以为印制电路板(Printed Circuit Board,PCB),反射板34可以承载天线阵列31,例如,反射板34可以为金属板,反射板34可以将信号聚集反射至接收点处。散热器35可以起到散热作用。
设置方式二:
图34为本申请实施例提供的基站天线的另一结构示意图,如图34所示,基站天线还可以包括天线罩32,天线罩32的性能和作用可以参照设置方式一中的描述,此处不再赘述。滤波装置2可以集成于天线罩32内部,可以使基站天线的集成度更高,结构更简洁化。可以通过合理设置滤波装置2的方位,使得滤波装置2中立面频选结构的第一端指向第二端的方向,与天线阵列31出射的电磁波信号的辐射方向大致一致,只要能够使电磁 波信号射向立面频选结构的内部即可,这样,可以使通带频段内的信号能够穿过滤波装置2,带外信号被滤波装置2反射,从而保证滤波装置2能够对天线阵列31出射的电磁波信号进行过滤,使滤波装置2可以作为空间电磁波透明窗口。
设置方式三:
天线阵列可以包括:多个第一振子和多个第二振子,第一振子的工作频率小于第二振子的工作频率。图35为本申请实施例中天线阵列的结构示意图,如图35所示,天线阵列可以包括振子311a、振子311b及振子311c,其中,振子311a的工作频率小于振子311b的工作频率,振子311b的工作频率小于振子311c的工作频率,因而,振子311a和振子311b可以作为上述第一振子,振子311c可以作为上述第二振子。
在实际应用中,第一振子出射的电磁波信号会向第二振子辐射,例如,图35中,振子311a和振子311b出射的电磁波信号可以向振子311c辐射,这部分电磁波信号对于第二阵子来说属于带外信号,该带外信号进入到第二振子内部,射向第二振子内部的螺钉、线缆接头等缺陷,会引起无源互调问题,导致第二振子的电磁波信号受到干扰。另外,第一振子的电磁波信号辐射至第二振子,还会产生端口相互耦合严重的问题,影响整个基站天线的辐射特性。
本申请实施例中,滤波装置可以位于第一振子与第二振子之间的位置,例如在图35中,滤波装置2可以设置在振子311b与振子311c之间的位置,这样可以滤除振子311a和振子311b向振子311c辐射的电磁波信号。并且,滤波装置对于通道频带内的信号的透过率较高,不会影响第二振子的电磁波信号的传输。可以通过合理设置滤波装置2的方位,使得滤波装置2中立面频选结构的第一端指向第二端的方向,与第一振子出射的电磁波信号的辐射方向大致一致,只要能够使电磁波信号射向立面频选结构的内部即可,这样,可以使通带频段内的信号能够穿过滤波装置2,带外信号被滤波装置2反射,从而保证滤波装置2能够对第一振子出射的电磁波信号进行过滤。
本申请实施例中,以设置方式一至设置方式三为例,对滤波装置的具体设置方式进行举例说明,在实际应用中,可以根据实际需求,设置滤波装置的具体应用场景,此处不做限定。
基于同一技术构思,本申请实施例还提供了一种基站设备,该基站设备可以包括:上述任一基站天线,以及电源,电源用于向基站天线供电。由于上述基站天线能够有效滤除带外信号,防止带外信号进入基站天线的接收端,从而避免带外信号干扰基站天线的信号,因而,包括该基站天线的基站设备传输的信号的质量也较好。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (22)

  1. 一种滤波装置,其特征在于,包括:多个频选单元;
    每一个所述频选单元包括:立面频选结构和平面频选结构,所述立面频选结构为筒状,所述立面频选结构包括相对设置的第一端和第二端,每一个所述频选单元至少在所述立面频选结构的所述第一端设有所述平面频选结构;
    所述立面频选结构包括:第一介质基材,以及位于所述第一介质基材表面的至少两个第一导电图案,所述至少两个第一导电图案隔离设置;所述第一介质基材用于围成所述立面频选结构,所述至少两个第一导电图案中的每一个所述第一导电图案用于滤波;
    所述平面频选结构包括:第二介质基材,以及位于所述第二介质基材表面的至少一个第二导电图案,所述至少一个第二导电图案中的每一个所述第二导电图案用于滤波。
  2. 如权利要求1所述的滤波装置,其特征在于,所述立面频选结构在垂直于第一方向的截面形状为多边形;其中,所述第一方向为所述立面频选结构的所述第一端指向所述第二端的方向;
    所述立面频选结构至少在相邻的两个侧面分别设有所述第一导电图案。
  3. 如权利要求1所述的滤波装置,其特征在于,所述多个频选单元中的至少一个所述频选单元的所述立面频选结构中的一部分侧面设有所述第一导电图案,另一部分侧面未设有所述第一导电图案。
  4. 如权利要求1所述的滤波装置,其特征在于,所述多个频选单元中的至少一个所述频选单元的在所述立面频选结构的每一个侧面均设有所述第一导电图案。
  5. 如权利要求2~4任一项所述的滤波装置,其特征在于,所述滤波装置包括相邻设置的两个所述频选单元,相邻设置的两个所述频选单元在属于不同所述立面频选结构的两个相邻侧面均设有所述第一导电图案。
  6. 如权利要求2~4任一项所述的滤波装置,其特征在于,所述滤波装置包括相邻设置的两个所述频选单元,相邻设置的两个所述频选单元的两个所述立面频选结构共用同一侧面。
  7. 如权利要求1或3-6任一项所述的滤波装置,其特征在于,所述立面频选结构在垂直于第一方向的截面形状为圆形、椭圆形或多边形;其中,所述第一方向为所述立面频选结构的所述第一端指向所述第二端的方向。
  8. 如权利要求1~7任一项所述的滤波装置,其特征在于,每一个所述频选单元仅在所述立面频选结构的所述第一端设有所述平面频选结构;或者,每一个所述频选单元在所述立面频选结构的所述第一端和所述第二端均设有所述平面频选结构。
  9. 如权利要求1~8任一项所述的滤波装置,其特征在于,所述第一导电图案位于所述第一介质基材的内表面和/或外表面;
    所述第二导电图案位于所述第二介质基材的内表面和/或外表面。
  10. 如权利要求1~9任一项所述的滤波装置,其特征在于,所述第一导电图案形成的轨迹没有交叉点。
  11. 如权利要求10所述的滤波装置,其特征在于,所述第一导电图案形成的轨迹为非闭合的图形。
  12. 如权利要求11所述的滤波装置,其特征在于,所述第一导电图案包括:第一线段、 第二线段及第一连接部;
    所述第一连接部围成的区域为非闭合的区域,所述第一连接部具有第一端部和第二端部;所述第一线段与所述第一端部连接,且所述第一线段向所述第一连接部围成的区域内部延伸;所述第二线段与所述第二端部连接,且所述第二线段向所述第一连接部围成的区域内部延伸;所述第一线段与所述第二线段之间具有间隙。
  13. 如权利要求1~12任一项所述的滤波装置,其特征在于,所述第二导电图案包括:第一导电部和第二导电部;
    所述第一导电部为环状,所述第一导电部围绕所述第二导电部。
  14. 如权利要求1~12任一项所述的滤波装置,其特征在于,所述第二导电图案包括:多个导电块和多个第二连接部;
    每一个所述第二连接部连接两个所述导电块,多个所述第二连接部相互连接。
  15. 如权利要求1~14任一项所述的滤波装置,其特征在于,所述第一介质基材为绝缘材料,所述第一导电图案包括:金属材料;
    所述第二介质基材为绝缘材料,所述第二导电图案包括:金属材料。
  16. 如权利要求1~15任一项所述的滤波装置,其特征在于,所述多个频选单元在垂直于第一方向上的平面内呈阵列排布,所述第一方向为所述立面频选结构的所述第一端指向所述第二端的方向;
    多个所述频选单元在所述第一端共用同一所述平面频选结构;和/或,多个所述频选单元在所述第二端共用同一所述平面频选结构。
  17. 如权利要求1~16任一项所述的滤波装置,其特征在于,所述多个频选单元包括至少两个频选单元层,每一个所述频选单元层包括多个所述频选单元;
    位于不同的所述频选单元层中的相邻两个所述频选单元共用同一所述平面频选结构。
  18. 一种基站天线,其特征在于,包括:如权利要求1~17任一项所述的滤波装置,以及天线阵列。
  19. 如权利要求18所述的基站天线,其特征在于,还包括:天线罩;
    所述滤波装置位于所述天线阵列与所述天线罩之间的位置。
  20. 如权利要求18所述的基站天线,其特征在于,还包括天线罩;
    所述滤波装置集成于所述天线罩内部。
  21. 如权利要求18所述的基站天线,其特征在于,所述天线阵列包括:多个第一振子和多个第二振子;
    所述第一振子的工作频率小于所述第二振子的工作频率,所述滤波装置位于所述第一振子与第二振子之间的位置。
  22. 一种基站设备,其特征在于,包括:如权利要求18~21任一项所述的基站天线,以及电源,所述电源用于向所述基站天线供电。
PCT/CN2023/071444 2022-01-24 2023-01-09 一种滤波装置、基站天线及基站设备 WO2023138434A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210077688.8 2022-01-24
CN202210077688.8A CN114530675B (zh) 2022-01-24 2022-01-24 一种滤波装置、基站天线及基站设备

Publications (1)

Publication Number Publication Date
WO2023138434A1 true WO2023138434A1 (zh) 2023-07-27

Family

ID=81620796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/071444 WO2023138434A1 (zh) 2022-01-24 2023-01-09 一种滤波装置、基站天线及基站设备

Country Status (2)

Country Link
CN (1) CN114530675B (zh)
WO (1) WO2023138434A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114530675B (zh) * 2022-01-24 2023-03-10 华为技术有限公司 一种滤波装置、基站天线及基站设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206497969U (zh) * 2017-03-06 2017-09-15 深圳超级数据链技术有限公司 频率选择结构及天线罩
CN108987936A (zh) * 2018-07-25 2018-12-11 中国人民解放军空军工程大学 一种三维带通频率选择结构及其制作方法
US20180360354A1 (en) * 2017-06-02 2018-12-20 Regents Of The University Of Minnesota 3d isotropic microscale metamaterials and methods of manufacture
CN111969325A (zh) * 2020-06-23 2020-11-20 广州智讯通信系统有限公司 基于滤波天线的频率选择表面单元及频率选择表面
CN112201959A (zh) * 2020-09-29 2021-01-08 中国船舶重工集团公司第七二四研究所 一种大角度稳定的小型化频率选择表面
CN114530675A (zh) * 2022-01-24 2022-05-24 华为技术有限公司 一种滤波装置、基站天线及基站设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI326943B (en) * 2007-02-14 2010-07-01 Univ Southern Taiwan Tech Three-dimensional cross semi-elliptic antenna for restraining a dual band
CN102637927A (zh) * 2012-04-15 2012-08-15 中国电子科技集团公司第十研究所 低通高阻型广义频率选择表面
CN104485502A (zh) * 2014-12-31 2015-04-01 清华大学 一种基于介质谐振器的超材料谐振子及其应用
CN108461926A (zh) * 2018-03-22 2018-08-28 南京邮电大学 基于双皮埃罗结构的宽带圆极化频率选择表面
CN109638460B (zh) * 2018-12-29 2021-05-07 京信通信技术(广州)有限公司 多频天线及抑制共模谐振的低频辐射单元
CN111817011A (zh) * 2020-07-15 2020-10-23 江苏电子信息职业学院 一种窄带带通频率选择表面

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206497969U (zh) * 2017-03-06 2017-09-15 深圳超级数据链技术有限公司 频率选择结构及天线罩
US20180360354A1 (en) * 2017-06-02 2018-12-20 Regents Of The University Of Minnesota 3d isotropic microscale metamaterials and methods of manufacture
CN108987936A (zh) * 2018-07-25 2018-12-11 中国人民解放军空军工程大学 一种三维带通频率选择结构及其制作方法
CN111969325A (zh) * 2020-06-23 2020-11-20 广州智讯通信系统有限公司 基于滤波天线的频率选择表面单元及频率选择表面
CN112201959A (zh) * 2020-09-29 2021-01-08 中国船舶重工集团公司第七二四研究所 一种大角度稳定的小型化频率选择表面
CN114530675A (zh) * 2022-01-24 2022-05-24 华为技术有限公司 一种滤波装置、基站天线及基站设备

Also Published As

Publication number Publication date
CN114530675A (zh) 2022-05-24
CN114530675B (zh) 2023-03-10

Similar Documents

Publication Publication Date Title
EP3545587B1 (en) Vertical antenna patch in cavity region
US11387568B2 (en) Millimeter-wave antenna array element, array antenna, and communications product
US7679577B2 (en) Use of AMC materials in relation to antennas of a portable communication device
CN109638460B (zh) 多频天线及抑制共模谐振的低频辐射单元
CN110098485B (zh) 小间距微带天线阵列
CN210897636U (zh) 壳体组件、天线组件及电子设备
US20120007781A1 (en) Antenna module
KR101638678B1 (ko) 페이즈드 어레이를 위한 통합된 써큘레이터
CN112235449B (zh) 壳体组件、天线组件及电子设备
WO2023138434A1 (zh) 一种滤波装置、基站天线及基站设备
KR102521291B1 (ko) 무선 장치의 방사 증폭기, 방사 시스템 및 무선 장치
CN114267958A (zh) 一种窄过渡带的低通吸收式频率选择结构
CN111162378B (zh) 一种微带天线
US20070085628A1 (en) Dielectric device
CN218101696U (zh) 天线模组、雷达传感器及电子设备
TW200945657A (en) Antenna device
He et al. A tri-band highly selective passband frequency selective surface based on multi-layer coupling
CN210006917U (zh) 一种面向大阵列毫米波系统应用的表面波隔离器
WO2021009893A1 (ja) 周波数選択板
CN110720159B (zh) 微波器件结构及其实现方法
CN221508483U (zh) 一种天线振子及双端口天线
CN115882183B (zh) 一种低损耗线传输结构
WO2013044562A1 (zh) 一种谐振腔及具有该谐振腔的滤波器
EP1914830A1 (en) Decoupling arrays of radiating elements of an antenna
JP4172791B2 (ja) 伝送線路及び高周波モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23742749

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE